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Abstract

In this thesis we study a particular rank-aware relational model over domains with

similarities. The model results by generalization of the classical relational model of data

by considering residuated lattice (instead of the two-element Boolean algebra) as the basic

structure of truth values. We first focus on similarity-based functional dependencies within

the model and compare them with other approaches. We also present a graph-based

method of inference and show its application in closures computing. We further study the

sensitivity issues and answer questions related to similarity-preservation. We show that

the similarity of query results can be estimated from similarity of input data for arbitrary

complex queries.
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Chapter 1

Introduction

Relational model of data, introduced by E. F. Codd in [41], is one of the most important

paradigms in Computer Science. It is based on the idea that all information should be

represented by relations, which are usually depicted as tables. Roughly speaking, an n-ary

relation can be seen as a table with n-columns: columns correspond to attributes and rows

correspond to tuples. The set of possible values for an attribute is called a domain (or

type). A key role in the design of relational databases is played by functional dependencies

(FDs) [1, 7], that serve as an important tool for redundancy elimination and normalization,

see [82, 53] for example. Functional dependency is a statement of the form A⇒ B, where

A, B are sets of attributes. The basic meaning of FD A ⇒ B is that any two tuples

that have the same values on all attributes from A have also the same values on all

attributes from B. The meaning of “same values” is given by the identity relations, which,

although not explicitly stated, are presented on each domain. These identity relations are

also behind the precise matches when evaluating relational algebra queries, consider for

example the JOIN command in SQL.

In many situations, it is desirable to consider similarities on domains instead of equal-

ities. Assume you are looking for a hotel in Olomouc which offers a room for 100e.

Then you are interested not only in hotels offering rooms for the exact price of 100e, but

also in hotels with prices sufficiently “close” to your requirements (expressed as query in

database). The “closeness” can be formalized by similarity relation, which is by nature

a graded concept [118, 119]. In addition to the cases of full similarity (two prices are

similar to degree 1) and full dissimilarity (two prices are similar to degree 0, i.e. not

similar at all) we may say that two prices are somewhat similar (their similarity degree

will be greater than 0 but smaller than 1). Functional dependencies employing similarity

can reveal us new information. Let us say that we are interested whether hotels offering

rooms for similar price have obtained similar average evaluation from guests (e.g. points

on the scale 1-10). If not, we may conclude that there is some discrepancy between price

and service quality. The classical (equality based) FD dependency: “hotels with the same

room’s price have the same average evaluation” will hardly be satisfied; and the violation

of such FD gives us no interesting information.
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As argued, the idea to use similarities for comparing domain values is quite natural

and it is therefore not surprising that the concept of similarity entered the relational

model very soon. The first paper on this topic was published by Buckles and Petry in

1982 [31]. Since then, several hundreds of papers dealing with similarities in relational

databases have emerged, for example [92, 95, 59, 15, 44, 60]. Many papers have been

devoted to functional dependencies over domains with similarities (an overview is given in

Chapter 3). Such dependencies are usually trying to capture the following: “If tuples have

similar values on attribute from A, then they have similar values on attributes from B. ”

A lot of papers also address similarity-based querying [32, 93, 59, 20], including design of

similarity-based query languages [34, 74].

How to deal with the novel, similarity-based issues such as validity of similarity-based

FD? In general, there are two ways: One option is to reduce the similarity-based concepts

to bivalent ones: the similarity-based FD is either satisfied or not, the result of a similarity-

based query is a classical (ordinary) data table, etc. A second option is to accept partial

matches when evaluating queries and let the similarity-based FD to be true to some degree

(between the borderline cases: satisfied, not satisfied). The second option is the one chosen

by Belohlavek and Vychodil [18, 19, 20, 23, 24]. The authors built their generalization of

Codd’s relational model on fuzzy logic in narrow sense [67, 9, 64]. The original Codd’s

model have also a clear connection to a logical calculi (first order logic), which, as argued

in [51], is one of the reasons that yields to its great success. Belohlavek and Vychodil

extended the Codd’s orignal model in the following way: domains are additionally equipped

with similarity relations and each tuple in a data table has assigned a rank. The rank is

a degree to which a tuple matches a similarity-based query. Both similarity degrees and

ranks come from complete residuated lattice.

In this thesis we will investigate the model proposed by Belohlavek and Vychodil. In

the first part of the thesis we will study similarity-based functional dependencies (SBFDs).

We propose a graph-based method for reasoning and show a correspondence between con-

struction of a directed graph and normalized proof. We also provide detailed comparison

of the definition of SBFD given by Belohlavek and Vychodil with other approaches. In

the second part of this thesis we examine sensitivity issues. We define two similarity mea-

sures for ranked-data tables (RDTs): ranked-based similarity (two RDTs are considered

similar if they contain the same tuples with similar ranks) and tuple-based similarity (two

RDTs are considered similar if they contain tuples with similar values). The tuple-based

similarity can be expressed by rank-based similarity and a new relational operation, called

similarity-based closure. Using the notion of rank-based similarity, we show that the simi-

larity of query results can be estimated based on the similarity of input data prior to query

execution. Such estimations can be provided for arbitrary complex queries. We further

study estimations for tuple-based similarity and properties of the similarity-based closure.

We also explore sensitivity issues connected to similarity-based functional dependencies.
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This thesis is based on the following results:

[70] L. Ježková, P. Cordero, M. Enciso: Codd’s Relational Model of Data Over Domains

With Similarities: A Comparative Survey, Fuzzy Sets and Systems, submitted

[109] L. Urbanová and V. Vychodil: Derivation digraphs for dependencies in ordinal and

similarity-based data, Information Sciences 268 (2014), pp. 381-–396

[12] R. Bělohlávek, L. Urbanová and V. Vychodil: Sensitivity Analysis for Declarative

Relational Query Languages with Ordinal Ranks, In: Tompits H., Abreu S., Oetsch

J., Pührer J., Seipel D., Umeda M., Wolf A. (Eds.): Applications of Declarative

Programming and Knowledge Management: 19th International Conference, INAP

2011, Lecture Notes in Artificial Intelligence 7773, 2013, pp. 58–76

[11] R. Bělohlávek, L. Urbanová and V. Vychodil: Similarity of query results in similarity-

based databases, In: Yao J. T., Ramanna S., Wang G., Suraj Z. (Eds.): Rough Sets

and Knowledge Technology, Lecture Notes in Computer Science 6954, 2011, pp.

258—267

Outline of the thesis: The thesis is organized as follows.

In Chapter 2 we summarize basic facts from residuated lattices, fuzzy set theory and

Codd’s relational model of data. We also introduce the model proposed by Belohlavek

and Vychodil. We pay attention to similarity-based relational algebra and functional

dependencies.

In Chapter 3 we review and critically examine the existing work on similarity-based

functional dependencies. We try to objectively compare various approaches and we propose

a novel criterion to achieve this goal.

In Chapter 4 we show that degrees to which a SBFD semantically follows from sets (or

graded sets) of other SBFDs can be characterized by existence of particular directed acyclic

graphs with vertices labeled by attributes and degrees coming from complete residuated

lattices. In addition, we show that the construction of directed acyclic graphs can be used

to compute closures of sets of attributes.

In Chapter 5 we define the rank-based similarity of RDTs and show that a SBFD holds

in similar data tables to similar degree. We also explore how the validity of SBFD change

if we replace the antecedent (or consequent) by similar set of attributes.

In Chapter 6 we show that relational operations preserve the rank-based similarity

of RDTS. We also provide an alternative definition of similarity of RDTs (tuple-based

similarity) and explore its preservation for relational operations. The tuple-based similarity

is closely related to a new relational operation, a similarity-based closure, whose properties

are investigated as well. We also outline a general approach to similarity of RDTs that

includes both the rank-based similarity and tuple-based similarity.
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Chapter 2

Preliminaries

In this section we recall the basic facts of residuated lattices, fuzzy set theory, directed

graphs, and relational model of data. We also introduce one extension of the Codd’s model

of data, namely ranked data tables over domains with similarities.

2.1 Residuated lattices

A complete residuated lattice [9, 67], which will serve as a basic structure of truth degrees,

is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

• 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and the greatest

element of L;

• 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commutative,

associative, and a⊗ 1 = 1⊗ a = a for each a ∈ L;

• ⊗ and → satisfy so-called adjointness property:

a⊗ b ≤ c iff a ≤ b→ c (2.1)

for each a, b, c ∈ L, where ≤ is the order induced by the lattice structure of L, i.e.

a ≤ b iff a = a ∧ b.

Elements a of L are interpreted as truth degrees. The operations ⊗ and → are truth

functions of “fuzzy conjunction” and “fuzzy implication” and are called a multiplication

and a residuum, respectively. For every ⊗ there is at most one → satisfying adjointness,

and similarly → uniquely determines ⊗. For a complete residuated lattice L we define

a↔ b = (a→ b) ∧ (b→ a) (2.2)

and call this derived operation a biresiduum. The biresiduum can be seen as a truth

function for an equivalence, because it satisfies several properties which can be considered

as natural for graded equivalence, e.g. ↔ is commutative and a ↔ b = 1 iff a = b. For a

nonnegative integer n, the n-th power of a ∈ L is defined by

a0 = 1 and an+1 = an ⊗ a. (2.3)

7



8 2.1. RESIDUATED LATTICES

The unit interval: Common examples of complete residuated lattices include structures

defined on the real unit interval, i.e. structures L where L = [0, 1], ∧ and ∨ being minimum

and maximum, respectively, and ⊗ being a left-continuous triangular norm (shortly, a t-

norm) with the corresponding→. More precisely, the structure 〈[0, 1],min,max,⊗,→, 0, 1〉
is a complete residuated lattice iff ⊗ is a left continues t-norm and a→ b = max{c | a⊗c ≤
b}, see [67]. All complete residuated lattices on the real unit interval with continuous ⊗
can be constructed by means of ordinal sums [40] from the following three pairs of adjoint

operations:

 Lukasiewicz: a⊗ b = max(a+ b− 1, 0), a→ b = min(1− a+ b, 1);

Gödel: a⊗ b = min(a, b), a→ b = b if a > b, 1 otherwise;

Goguen: a⊗ b = a · b, a→ b = b
a if a > b, 1 otherwise.

Complete resitudated lattices 〈[0, 1],min,max,⊗,→, 0, 1〉 with universe [0, 1] and with

 Lukasiewicz, Gödel or Goguen operations will be called standard  Lukasiewicz, Gödel and

Goguen algebra, respectively, and will be denoted as [0, 1] L, [0, 1]G, [0, 1]Π. Sometimes we

will denote → L, →G, and →Π to emphasize the  Lukasiewicz, Gödel and Goguen implica-

tion, respectively.

Theorem 1 ([9]). Each residuated lattice satisfies:

a ≤ b iff a→ b = 1, (2.4)

b1 ≤ b2 implies a→ b1 ≤ a→ b2, (2.5)

a1 ≤ a2 implies a2 → b ≤ a1 → b, (2.6)

a→ 1 = 1, (2.7)

0→ a = 1, (2.8)

1→ a = a, (2.9)

a⊗ b ≤ a, (2.10)

a ≤ b→ a, (2.11)

a⊗ b ≤ a ∧ b, (2.12)

a⊗ (a→ b) ≤ b, (2.13)

(a⊗ b)→ c = a→ (b→ c), (2.14)

a⊗ (b→ c) ≤ b→ (a⊗ c), (2.15)

(a→ b)⊗ (b→ c) ≤ a→ c, (2.16)

a⊗
∨
i∈I

bi =
∨
i∈I

(a⊗ bi), (2.17)

a→
∧
i∈I

bi =
∧
i∈I

(a→ bi), (2.18)∨
i∈I

ai → b =
∧
i∈I

(ai → b), (2.19)
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∧
i∈I

(ai → bi) ≤
∧
i∈I

ai →
∧
i∈I

bi, (2.20)

a⊗
∧
i∈I

bi ≤
∧
i∈I

(a⊗ bi), (2.21)∧
i∈I

ai ⊗
∧
i∈I

bi ≤
∧
i∈I

(ai ⊗ bi). (2.22)

We now turn our attention to unary operations called truth-stressing hedges [68, 67, 58].

Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice. An unary operation ∗ : L→
L satisfying

1∗ = 1, (2.23)

a∗ ≤ a, (2.24)

(a→ b)∗ ≤ a∗ → b∗, (2.25)

a∗∗ = a∗, (2.26)

for each a, b ∈ L will be called a truth-stressing hedge (or shortly hedge) for L. The algebra

L = 〈L,∧,∨,⊗,→, ∗, 0, 1〉 is then called a complete residuated lattice with hedge and

denoted as L∗. Hedge ∗ can be understood as a truth function of unary connective “very

true”. If φ is a proposition with truth degree ||φ||, then the truth degree of proposition “φ

is very true” (or “it is very true that φ”) is ||φ||∗. Properties (2.23)–(2.26) have natural

interpretations, e.g., (2.24) can be read: “if a is very true, then a is true”, (2.25) can be

read: “if a→ b is very true and if a is very true, then b is very true”, etc.

Two boundary cases of (truth-stressing) hedges are

(i) identity, i.e., a∗ = a (a ∈ L);

(ii) globalization [105]:

a∗ =

{
1, if a = 1,

0, otherwise.
(2.27)

If ∗ is a globalization, then (a→ b)∗ = 1 iff a→ b = 1 iff a ≤ b.

Since ∗ is intensive (2.24), monotone (consequence of (2.23) and (2.25)) and idempotent

(2.26), it is an interior operator. We may therefore denote by fix(∗) the set of all fixed

points:

fix(∗) = {a ∈ L | a∗ = a} = {a∗ | a ∈ L}. (2.28)

If ∗1 and ∗2 are two hedges on L such that fix(∗1) ⊆ fix(∗2) we say that ∗1 is stronger than

∗2.

A special case of a complete residuated lattice with hedge is the two-element Boolean

algebra 〈{0, 1},∧,∨,⊗,→, ∗, 0, 1〉, denoted by 2, which is the structure of truth degrees of

the classical logic. That is, the operations ∧,∨,⊗,→ of 2 are the truth functions of the

corresponding logical connectives of the classical logic and 0∗ = 0, 1∗ = 1.
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L-sets and L-relations [9, 118]

An L-set (or fuzzy set) in a universe X is a mapping A : X → L, where L is a support of

a complete residuated lattice L. The degree A(x) is interpreted as a degree to which an

element x belongs to A. The set of all L-sets in X is denoted by LX . We are going to use

the following notation for denoting L-sets: If X = {x1, . . . , xn} then an L-set A in X can

be denoted by A = {a1/x1, . . . ,
an/xn} meaning that A(xi) equals ai for each i = 1, . . . , n.

Operations with L-sets are defined component-wise, for A,B ∈ LX we have:

(A ∪B)(u) = A(u) ∨B(u), (2.29)

(A ∩B)(u) = A(u) ∧B(u), (2.30)

(A⊗B)(u) = A(u)⊗B(u), (2.31)

(A→ B)(u) = A(u)→ B(u). (2.32)

For L-sets A,B ∈ LX we define a degree of subsethood of A in B and a degree of equality

of A,B as follows:

S(A,B) =
∧
x∈X

(A(x)→ B(x)), (2.33)

E(A,B) =
∧
x∈X

(A(x)↔ B(x)). (2.34)

The subsethood relation (2.33) generalizes the classical subsethood relation “⊆”. In

particular, we have S(A,B) = 1 (A is fully included in B) iff A(x) ≤ B(x) for each x ∈ X.

S(A,B) can be understood as a truth degree of the following formula: “for every x ∈ X: if

x belongs to A, then x belongs to B.” And similarly E(A,B) can be thought of as a truth

degree of the formula “for every x ∈ X: x belongs to A iff x belongs to B.” The following

Theorem shows some properties of graded subsethood S and graded equality E.

Theorem 2 ([9]). For L-sets A,B,C ∈ LX we have:

S(A,A) = 1, (2.35)

S(A,B)⊗ S(B,C) ≤ S(A,C), (2.36)

E(A,A) = 1, (2.37)

E(A,B) = E(B,A), (2.38)

E(A,B)⊗ E(B,C) ≤ E(A,C). (2.39)

An n-ary L-relation between sets X1, . . . , Xn is an L-set I ∈ LX1×...×Xn . Thus a binary

L-relation on X is a mapping I : X×X → L that assigns to each pair of elements x, y ∈ X
a degree to which they are related according to I. A binary L-relation I on X is called an

L-equivalence if it is reflexive, symmetric and ⊗-transitive, that is for all x, y, z ∈ X:

I(x, x) = 1, (2.40)

I(x, y) = I(y, x), (2.41)
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I(x, y)⊗ I(y, z) ≤ I(x, z). (2.42)

L-equivalence, or fuzzy equivalence, will be denoted as ≡. Note that (2.34) is an L-

equivalence on LX . A binary L-relation I that is reflexive and symmetric will be called

similarity and denoted as ≈. We will write x ≈ y instead of ≈ (x, y). An L-equivalence

that satisfies separability

I(x, y) = 1 iff x = y

will be called L-equality. It is important to keep in mind that I(x, y) are general degrees

from L and thus have a comparative meaning. I(x1, y1) > I(x2, y2) means that the values

x1 and y1 are more related according to I than the values of x2 and y2. Moreover, since 1

is the greatest element of L, I(x, y) = 1 means that x and y are fully related according to

I. For 0 being the least element of L, the meaning of I(x, y) = 0 is that x and y are not

related (according to I) at all.

2.2 The relational model

Now we will present the basic notions from the relational model of data, which was intro-

duced by Codd in [41]. For further details see [82, 52]. Let Y denotes a set of attribute

names. For each attribute y ∈ Y we consider its domain Dy, which is an arbitrary

nonempty set of all values allowed for y. A relation scheme is a finite subset R ⊆ Y . In

particular R = ∅ ⊆ Y is an empty relation scheme. For each relation scheme R, Tupl(R)

denotes
∏
y∈RDy, i.e. the Cartesian product of domains Dy (y ∈ R). Recall that the

Cartesian product is a set of all maps r : R →
⋃
y∈RDy such that r(y) ∈ Dy holds for all

y ∈ R. For R = ∅ we get
∏
y∈∅Dy = {∅}. A data table D on R is any finite subset of

Tupl(R). Each r ∈ Tupl(R) is called a tuple over R and r(y) is called the y-value of r.

The only data tables on relation scheme R = ∅ are D> = {∅} and D⊥ = ∅ which are called

TABLE_DEE and TABLE_DUM (in [54]) and represent the truth values 1 and 0, respectively.

Moreover, for each A ⊆ R, the restriction of r to the subset A is denoted by r(A), that is

r(A) : A →
⋃
y∈ADy. If D is a data table on a relation scheme R, i.e. D ⊆ Tupl(R), and

A is a subset of R, then πA(D) denotes the projection of the data table D to the set of

attributes A,

πA(D) = {r(A) | r ∈ D}. (2.43)

Assume A,B are sets of attributes, i.e. A,B ⊆ R, then we say A determines B (or B is

functionally dependent on A) if whenever two tuples of D agree on attributes from A then

they agree on attributes from B. We write A ⇒ B and call such a statement functional

dependency (FD). Formally, FD is satisfied by relation D iff

∀r1, r2 ∈ D : if r1(A) = r2(A), then r1(B) = r2(B). (2.44)

We will denote by ||A ⇒ B||D the degree to which an FD A ⇒ B holds in a relation D.

From (2.44) we obviously have ||A⇒ B||D ∈ {0, 1}.
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2.3 Ranked data tables over domains with similarities

There are various extensions of the Codd’s relational model of data which take similarities

into account. Their comparison, mainly focused on similarity based functional dependen-

cies, is presented in Section 3. Here we concentrate on the approach originally introduced

by Belohlavek and Vychodil, see [15, 18, 23, 24].

2.3.1 Ranked data tables

The concept of a ranked data table over domains with similarities is the counterpart to

the concept of a relation on a relation scheme. As in the original Codd’s relational model,

Y denotes a set of attributes names, a relation scheme is any finite subset R ⊆ Y , and

a domain Dy is a set of all possible values of the attribute y ∈ Y . The relational model is

generalized in the following way:

(i) Each domain Dy is additionally equipped with a similarity relation ≈y, i.e. with

a reflexive symmetric binary L-relation on Dy;

(ii) Each tuple has assigned a rank, which represents a degree to which a tuple matches

a query. Ranks have mainly comparative meaning: the higher the rank the better

the match.

Similarity degrees as well as ranks come from complete residuated lattice. The following

table which can be seen as a result of the query “hotels in Olomouc with a room for 100e”

is an example of a ranked data table.

name price eval dist

1.00 Hotel Central 100,00e 8.9 0.5 km

0.90 Hotel ABC 90,00e 9.1 0.8 km

0.85 Pension Angel 115,00e 8.5 1.2 km

0.45 Hotel Paradise 55,00e 6.7 2.5 km

0.30 Hotel Kryton 170,00e 10.0 1.6 km

In the data table we store the following informations: name (name of the hotel), price

(price for the double room), eval (average evaluation), dist (distance from the city

center). The numbers 1.00, . . . , 0.30 in the leftmost column are the ranks from a scale

of truth values (here [0, 1]). The remaining part of the table can be seen as a classical

data table. Similarities on domains are not shown directly. For the attribute price , we

consider the following similarity on its domain: p1 ≈price p2 = (100 − |p1 − p2|)/100 if

|p1 − p2| < 100, and 0 otherwise.

We will now introduce ranked data tables (RDTs) formally:

Definition 3 ([23]). Let R ⊆ Y be a relation scheme and let 〈Dy,≈y, 〉 be domains with

similarities for attributes y ∈ R. A ranked data table on R over {〈Dy,≈y, 〉 | y ∈ R} is any

map

D :
∏
y∈R

Dy → L, (2.45)
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such that the set {r ∈
∏
y∈RDy | D(r) > 0}, called the answer set, is finite. The cardinality

of the answer set of D is called the size of D and is denoted by |D|. D is called nonranked

if D(r) ∈ {0, 1} for any r. Each degree D(r) ∈ L is called a rank of r in D.

Remark 1. The cardinality of the answer set is influenced by the choice of residuated

lattice L. It was shown in [110] that ordinal sums play an important role in altering the

size of the answer set.

Each RDT D on the empty relation scheme is uniquely given by the degree to which

the empty tuple belongs to D, i.e. by D(∅).

Definition 4 ([23]). For each a ∈ L, we denote by a∅ the RDT on ∅ such that a∅(∅) = a.

Therefore, each a∅ is a map which assigns to the empty tuple the degree a ∈ L

a∅ : {∅} → L. (2.46)

Each a∅ is viewed as a relational representation of the rank a ∈ L. Notice the analogy

with the classical model: the role of TABLE_DEE and TABLE_DUM is now played by RDTs

1∅ and 0∅ which are both particular cases of (2.46).

Note that the original Codd’s model is a particular case of the model of RDT over

domains with similarities. If one takes the two-element Boolean algebra for L, then all

RDTs become nonranked and all similarities become identities.

2.3.2 Relational operations for RDTs

We introduce relational operations for RDTs as given in [23]. For RDTs D1 and D2 on

relation scheme R, we put

(D1 ∪ D2)(r) = D1(r) ∨ D2(r), (2.47)

(D1 ∩ D2)(r) = D1(r) ∧ D2(r), (2.48)

(D1 ⊗D2)(r) = D1(r)⊗D2(r). (2.49)

D1∪D2 is called the union of D1 and D2. D1∩D2 and D1⊗D2 are called the ∧-intersection

and the ⊗-intersection. Hence, ∪, ∩, and ⊗ are defined componentwise based on the opera-

tions of the complete residuated lattice L and can be seen as counterparts to the ordinary

set-theoretic operations with relations on relation schemes. The fact that we have two

kinds of intersection for RDTs is natural, since both ∧ and ⊗ are fundamental operations

of residuated lattices that generalize the classical conjunction and are not mutually de-

finable in general. The intersection based on ∧ is also called an idempotent intersection

and the intersection based on ⊗ is called a strong intersection and it is not idempotent

in general, i.e. for D on R, we may have D(r) ⊗ D(r) < D(r). As we have mentioned,

the meaning of a rank is a degree to which a tuple matches a query. Therefore if D1 is

viewed as a result of query Q1 and D2 is viewed as a result of query Q2, then the rank

(D1 ∪ D2)(r) is “a degree to which r matches Q1 or r matches Q2”.
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Note that a data table resulting from componentwise application of → may have in

general (if at least one of the domain is infinite) an infinite number of tuples with nonzero

ranks. This is a consequence of (2.8). In order to have a domain independent reisuduum,

the authors introduced a ternary counterpart of → with one of the argument serving as a

range [23]. For RDTs D1, D2, and D3 on relational scheme R we put(
D1 _D3 D2

)
(r) = D3(r)⊗

(
D1(r)→ D2(r)

)
(2.50)

for all r ∈ Tupl(R). D1 _D3 D2 is called a residuum of D1 with respect to D2 which

ranges over D3. From Equation (2.10) it immediately follows that D1 _D3 D2 ⊆ D3. The

RDT D3 serves as a range for the componentwise application of residuum →, which is

more easily seen if one considers D3 as a nonranked RDT. In this case D1 _D3 D2 can be

rewritten as follows:

(
D1 _D3 D2

)
(r) =

{
D1(r)→ D2(r), if D(r) = 1,

0, otherwise.

If the RDTs D1, D2, D3 are considered as results of queries Q1, Q2, Q3, respectively, then(
D1 _D3 D2

)
(r) is a degree to which “r matches Q3 and if it matches Q1 then it matches

Q2.” If we take the first or the second argument of the ternary residuum as a constant

degree from L, we obtain two important binary operations: residuated c-negation and

residuated c-shift. For RDTs D1 and D2 on R and for c ∈ L, we put(
D2 �c D1

)
(r) = D1(r) _D2(r) c, (2.51)(

c_D2 D1

)
(r) = c_D2(r) D1(r), (2.52)

for all tuples r ∈ Tupl(R). The operation defined by (2.51) is called a residuated c-negation

of D1 which ranges over D2. In a particular case if c = 0, we can abbreviate D2 �c D1 by

D2 �D1 and call it a (residuated) negation of D1 which ranges over D2. Moreover, (2.52)

is called a residuated c-shift of D1 which ranges over D2. If the RDTs D1 and D2 are

results of queries Q1 and Q2, then
(
D2 �c D1

)
(r) is a degree to which “r matches Q2 and

r matches Q1 at most to degree c.” Note that if c = 0, then the meaning of
(
D2 �cD1

)
(r)

is a degree to which “r matches Q2 and r does not match Q1.” Similarly
(
c _D2 D1

)
(r)

is a degree to which “r matches Q2 and r matches Q1 at least to degree c.”

Projections and residuated divisions represent operations which allow users to express

queries with existential and universal quantification.

We start by considering the projection. If D is an RDT on R1, the projection of D
onto R2 ⊆ R1, denoted by πR2(D), is defined as

(πR2(D))(r2) =
∨
r3∈Tupl(R1\R2)D(r2r3) (2.53)

for each r2 ∈ Tupl(R2). Note that (2.53) uses a general suprema
∨

to define the rank of

r2 in πR2(D). If D is interpreted as a result of query Q, then the rank of r2 in πR2(D) can

be understood as the degree to which “there is a tuple matching Q which agrees with r2

on all the attributes from R2”.
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Relational expressions involving projections can be utilized in existentially quantified

queries. In the same spirit, relational expressions involving divisions are algebraic coun-

terpart to universally quantified queries, see [82]. Since in residuated logics the existential

and universal quantifiers are not mutually definable [64, 67], the residuated division is

introduced as a fundamental operation. Moreover, the residuated division is considered as

a ternary operation in order to ensure its domain independence.

Let D1 be an RDT on R1, D2 be an RDT on R2 ⊆ R1, and D3 be an RDT on

R3 = R1 \ R2. Then, a division of D1 by D2 which ranges over D3 is an RDT on R3

denoted by D1 ÷D3 D2 and defined by(
D1 ÷D3 D2

)
(r3) =

∧
r2∈Tupl(R2)

(
D2(r2) _D3(r3) D1(r2r3)

)
=
∧
r2∈Tupl(R2)

(
D3(r3)⊗ (D2(r2)→ D1(r2r3))

)
(2.54)

for each r3 ∈ Tupl(R3). It is easily seen that D1 ÷D3 D2 ⊆ D3 and therefore the result of

division is fully contained in D3. Therefore D3 can be seen as a range for the division.

Similarity-based restriction is another fundamental operation and it is a counterpart

to the ordinary restriction. If D is an RDT on relation scheme R, y ∈ R and d ∈ Dy,

the similarity-based restriction of D by y ≈ d is an RDT on R denoted by σy≈d(D) and

defined by

(σy≈d(D))(r) = D(r)⊗ r(y)≈y d, (2.55)

for all r ∈ Tupl(R). The meaning of (2.55) is best seen if D is viewed as a result of

query Q. Then, the rank of r given by (2.55) is a degree to which “r matches Q and

r(y) is similar to d”, where the logical connective and is interpreted by ⊗. The similarity-

based restriction that compares values of two attributes y1, y2 with the same domain is

introduced as follows: For an RDT D on relation scheme R and for y1, y2 ∈ R such that

Dy1 = Dy2 and u ≈y1 v = u ≈y2 v for all u, v ∈ Dy1 , we define

(σy1≈y2(D))(r) = D(r)⊗ r(y1)≈y1 r(y2). (2.56)

By applying a similarity-based restriction to a nonranked RDT we obtain a ranked RDT.

The (equality-based) natural join is introduced as follows. If D1 is an RDT on relation

scheme R1∪R3 and D2 is an RDT of relation scheme R2∪R3 such that R1∩R2 = R1∩R3 =

R2 ∩R3 = ∅ (i.e., R1, R2, and R3 are pairwise disjoint), then the (equality-based) natural

join of D1 and D2 is an RDT on relation scheme R1 ∪ R2 ∪ R3 denoted by D1 ./ D2 and

defined by (
D1 ./ D2

)
(r1r2r3) = D1(r1r3)⊗D2(r2r3) (2.57)

for each r1 ∈ Tupl(R1), r2 ∈ Tupl(R2), and r3 ∈ Tupl(R3). If D1 is a result of query Q1

and D2 is a result of query Q2, then the rank
(
D1 ./ D2

)
(r1r2r3) is a degree to which

“r1r2 matches Q1 and r2r3 matches Q2. Natural joins have important special cases:

i) Considering D1 and D2 in (2.57) with R3 = ∅, we get a natural join D1 ./ D2 of two

RDTs on disjoint relation schemes. This generalizes the traditional cross join.



16 2.3. RANKED DATA TABLES OVER DOMAINS WITH SIMILARITIES

ii) Considering R1 = R2 = ∅, then D1 ./ D2 is a ⊗-intersection.

Similarity-based restrictions can be used to define various types of similarity-based

joins. The first type of join we introduce is a similarity-based equijoin. For RDTs D1 on

R1 and D2 on R2 such that R1 ∩ R2 = ∅, the similarity-based equijoin of D1 and D2 by

y1 ≈ y2, denoted by D1 ./y1≈y2 D2, is defined by

D1 ./y1≈y2 D2 = σy1≈y2(D1 ./ D2), (2.58)

provided that y1 ∈ R1, y2 ∈ R2, and both y1 and y2 have the same domain with similarity.

A second type of join can be used when we want to put only a partial emphasis instead of

the full emphasis on the similarity-based condition y1 ≈ y2:

(D1 ./c/y1≈y2
D2)(r1r2) = D1(r1)⊗D2(r2)⊗ (c→ r1(y1)≈y1r2(y2)) (2.59)

for any r1 ∈ Tupl(R1) and r2 ∈ Tupl(R2). As a result of property (2.4) the degree

c → r1(y1)≈y1r2(y2) is indeed “a degree to which r1(y1) is similar to r2(y2) at least to

degree c ∈ L.” Note that for c = 1, (2.59) becomes (2.58), which is a consequence of (2.9).

We have seen that similarity-based restriction can produce a ranked RDT from a non-

ranked one. Conversely, operations kernel and support produce a nonranked RDT from

a data table containing ranks. For D, we define RDTs ∆D (a kernel of D) and ∇D (a

support of D) on the same relation scheme as follows:

(∆D)(r) =

{
1, if D(r) = 1,

0, otherwise.
(2.60)

(∇D)(r) =

{
1, if D(r) > 0,

0, otherwise.
(2.61)

If D is interpreted as a result of query Q, the kernel ∆D of D contains tuples which match

the query Q fully (to a degree 1), whereas ∇D is an RDT which consists of all tuples that

match Q to a nonzero degree.

The last operation we discuss is renaming, which plays the same role as in the Codd’s

model. Given an RDT D, the renaming ρf (D) produces an RDT with the same contents

(and the same ranks) with attributes renamed by an injective renaming function f : R→ Y

such that attributes y and f(y) have the same domain.

The authors proved in [20, 23] that relational algebra has the same expressive power as

the domain relational calculus (with range declarations). The domain relational calculus

is based on first-order fuzzy logic.

2.3.3 Similarity-based functional dependencies

In this section we introduce functional dependencies, which are called similarity-based

functional dependencies (SBFDs) and their interpretation in RDTs [15, 18, 21, 24]. For
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A,B ∈ LR the similarity-based functional dependency is an expression of the form A⇒ B.

For an RDT D on R a degree ||A⇒ B||D to which A⇒ B is true in D is defined by

||A⇒ B||D =
∧

r1,r2∈Tupl(R)

(
(r1(A) ≈ r2(A))∗ → (r1(B) ≈ r2(B))

)
, (2.62)

where

r1(A) ≈D r2(A) = (D(r1)⊗D(r2))→
∧
y∈R

(A(y)→ r1(y) ≈y r2(y)). (2.63)

The authors built their approach on first-order predicate fuzzy logic [67] and thus (2.62)

is the truth degree of the following formula: “For all pairs of tuples: if r1 and r2 have very

similar values on attributes from A then r1 and r2 have similar values on attributes from

B.” And (2.63) is the truth degree of the formula: “If r1, r2 are from D then for each

attribute y from A, r1 and r2 have similar values on y.”

Remark 2. (i) If A is a crisp set and all similarities become identities then r1(A) ≈D
r2(A) = 1 iff r1 and r2 are equal on all attributes from A. (ii) The antecedent of (2.62) is

modified by a hedge. The hedge can be seen as an additional parameter which influences

the truth degree of A⇒ B.

In what follows, we are interested in the entailment of SBFDs from theories [15, 24].

An L-set T of SBFDs on R will be called a theory. A theory T is called crisp if T (A ⇒
B) ∈ {0, 1} for each SBFD A ⇒ B. We say that an RDT D is a model of theory T

whenever T (A ⇒ B) ≤ ||A ⇒ B||D for all A ⇒ B on R. Put into words: an RDT D is

a model of theory T if for all A ⇒ B from T the degree to which A ⇒ B is true in D
is at least as high as a degree to which A ⇒ B belongs to T (is prescribed by T ). The

collection of models will be denoted as Mod(T ), i.e.

Mod(T ) = {D | for each A,B ∈ LR : T (A⇒ B) ≤ ||A⇒ B||D}, (2.64)

where D is any RDT over R. A degree ||A ⇒ B||T to which A ⇒ B (on R) semantically

follows from T is defined by

||A⇒ B||T =
∧
D∈Mod(T ) ||A⇒ B||D. (2.65)

The degree to which a particular SBFD follows from a given theory (an L-set of SBFDs)

can be expressed using the concepts of entailment to degree 1 and crisp theory. More

precisely: For A,B ∈ LR and theory T on R

||A⇒ B||T =
∨
{c ∈ L | ||A⇒ c⊗B||crisp(T ) = 1}, (2.66)

where crisp(T ) = {A⇒ T (A⇒ B)⊗B |A,B ∈ LR and T (A⇒ B)⊗B 6⊆ A}.
We have introduced the concept of semantic entailment, which is defined in terms of

models. As in the ordinary Codd model there is an alternative type of entailment based

on the notion of provability. The deductive system for SBFDs consists of three rules:
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(Ax) infer A∪B ⇒ B,

(Cut) from A⇒ B and B∪C ⇒ D infer A∪C ⇒ D,

(Mul) from A⇒ B infer c∗ ⊗A⇒ c∗ ⊗B

for each A,B,C,D ∈ LR and c ∈ L. The inference system consisting of (Ax), (Cut),

and (Mul) is complete in the following sense: ||A⇒ B||T = 1 iff T ` A⇒ B, i.e., iff there

is a proof of A⇒ B from T . The proof of A⇒ B from T is a sequence of SBFDs ending

with A⇒ B such that each element of the sequence is either from T or is inferred from the

preceding formulas using (Ax), (Mul), or (Cut). This result (ordinary-style completeness)

characterizes SBFDs which follow semantically from T to degree 1. There is also a result

on graded-style (Pavelka-style [89, 90, 91]) completeness saying that

||A⇒ B||T =
∨
{c ∈ L |T ` A⇒ c⊗B}, (2.67)

i.e., the degree to which A⇒ B semantically follows from T is a supremum of degrees c ∈ L
for which A ⇒ c⊗B is provable from T in the ordinary sense. The completeness results

have been established over all finite residuated lattices and general complete residuated

lattices (considering an additional infinitary deduction rule), see [14].

2.4 Directed graphs

We now recall basic notions of directed graphs [5].

A directed graph (a digraph) is a pair D = 〈V,A〉, where V is a nonempty finite set of

elements called vertices and A is a binary relation A ⊆ V ×V , each 〈v, w〉 ∈ A is called an

arc. V and A are called the vertex set and the arc set of D, respectively. If 〈v, w〉 ∈ A, we

say that the arc 〈v, w〉 leaves v and enters w. A digraph D = 〈V,A〉 is acyclic (in short,

D is a DAG) if there is no finite sequence v1, . . . , vk (k ≥ 2) of vertices from V such that

v1 = vk and 〈vi, vi+1〉 ∈ A for all i = 1, . . . , k− 1, i.e., if D does not contain a cycle in the

usual sense.



Chapter 3

Overview of similarity-based

functional dependencies

We have seen one particular extension of functional dependencies, namely similarity-based

functional dependencies proposed by Belohlavek and Vychodil, see Section 2.3.3. This

approach is one of many extensions that appeared in the past, actually more than one

hundred papers dealing with functional dependencies (FDs) over domain with similarities

can be found in the literature. In our opinion the wide variety of approaches are worthy

of an exhaustive review and comparison.

The name “fuzzy functional dependencies” is often used for various extensions of FDs

which we think is unfortunate for several reasons. First of all, the term “fuzzy functional

dependency” is usually used for functional dependencies defined within “fuzzy relational

model”. But there is no agreement among researchers what the terms “fuzzy relational

model” or “fuzzy database” really mean. For example in [107] the term “fuzzy database”

is used for a collection of (ordinary, crisp) relations defined over complex domains (sets of

possibility distributions). Contrary to that, in [94] the term “fuzzy relational data model”

is used for collection of fuzzy relations, i.e. fuzzy subsets of the Cartesian product of

domains. Moreover, although many definitions of so called fuzzy functional dependencies

extend the classical one, the dependency usually remains crisp in the sense that either

a given relation satisfies the dependency or it does not. In this sense the term fuzzy

functional dependency is somehow inadequate. We will therefore use the term general-

ized functional dependency (GFD) and generalized relational model (GRM) to prevent

misunderstanding.

In this chapter, we intend to concentrate specifically on GFD over domains with simi-

larities and the directly related issues. From the logical point of view, the generalization

of FDs to FDs over domains with similarities may be looked at as replacing two-valued

identity relations by many-valued ones which represent similarities. This step may be

considered as switching from a two-valued logic, as the formal framework in which the

ordinary model is implicitly developed 1, to appropriate fuzzy logic. Since two-valued

1Codd’s original model was based on two-valued logic, although later Codd himself extended its rela-

19
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logic may be considered as a particular case of a fuzzy logic, the logical viewpoint makes it

naturally possible to reflect on whether and in what sense a particular approach to GFD

over domain with similarities is a proper generalization of the ordinary one. The switch

to fuzzy logic naturally brings the question of how the concept of validity, entailment etc.

should be dealt with. Should the validity of a GFD in a given relation remains bivalent

(true or false) or should the validity be many-valued (e.g. taking values from [0, 1])? These

are our “ideological roots”: we are aware that other generalizations are possible than those

that may be addressed from the logical viewpoint but we insist on the claim that good

approaches need to have logical foundations to follow the idea of the relational model of

data.

There are several works which addressed and examined the various proposals to GFDs.

In [27] the authors focused on the semantics of various extensions of functional dependen-

cies. In [28] the authors concentrate on the connection between GFD and redundancy

elimination. In [21] it is shown that some approaches can be considered as a special case

of the approach given by Belohlavek and Vychodil. Recently, in [111] a list of different

kinds of approaches to functional dependencies in generalized relational model was pre-

sented. The first two works are almost twenty years old now and thus do not provide

up to date information. More importantly none of the works is trying to unify various

approaches or to objectively compare them.

We are going to focus on GFD over domains with similarities, in this chapter we want

to: (i) present a reasonably complete list of various definitions of similarity-based GFDs

and critically examine them, (ii) provide a unifying framework for different approaches

using fuzzy logic based on complete residuated lattices, (iii) objectively compare them

using our criterion (which is based on the notion of fuzzy function).

The rest of this chapter is organized as follows: Section 3.1 provides a first glimpse in

the area of GFD and GRM. Section 3.2 contains an exhaustive presentation of similarity-

based approaches to GFD which appear in the literature. Each approach is described by

paying attention to the structure of truth degrees and to the extension of relation (data

table). In Section 3.3 we introduce a widely accepted definition of fuzzy function as a basis

for the development of our comparative criterion, which we further use for comparing the

influential generalizations of functional dependencies. In Section 3.4 we summarize the

results concerning different generalizations of FD and we give some conclusions.

3.1 Generalizations of the relational model

The main goal of this section is to look into generalizations of the relational model involving

similarity relations. The extension of domains with a similarity relation usually does not

tional calculus by considering a three-valued logic to manage missing, non-applicable or unknown informa-

tion via the NULL value [42]. In the further step [43] a four-valued logic was introduced to deal separately

with these different types of uncertainties. Nevertheless, these extensions have been subject to criticism in

the past (see C.J. Date in [50]).
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stand alone but comes together with ranked data tables, and various data extensions.

Therefore in the following overview we include works that are dealing with at least one of

the following three issues: similarity on domains, ranked data tables, and data extension.

1. Similarity-based approaches (from equality to similarity): In most of the

approaches we will consider, domains are additionally equipped with some kind of

similarity relation to denote the degrees of similarity between domain values. Thus

the equality relation that is implicitly presented in the original Codd’s model (do-

main values are either “equal” or “not equal”) is replaced by a binary fuzzy relation

that maps every pair of domain values to [0, 1] and is meant to express the similarity

(closeness) of domain values [26, 30, 31, 46, 35, 56, 92, 95, 96, 97, 116, 103] and

later in [15, 25, 60, 76, 80, 99, 106, 122]. By similarity (also called resemblance or

proximity) is usually meant a reflexive symmetric measure. Sometimes an additional

property, namely transitivity, is required. Contrary, there are approaches in which

similarity is defined as (only) reflexive relation [66]. Although the degree of similar-

ity comes usually from [0, 1], there are extensions considering more general algebraic

structures, e.g. commutative semiring [66] or residuated lattice [15, 44].

2. Rank-based approaches (from relation to fuzzy relation): By rank-based

approaches we mean extensions of the relational model in which the data table is

seen as a fuzzy set of tuples (in the original model the data table is simply a set

of tuples). Thus the data table has an additional column which contains a rank—

also called (membership) grade, score or weight—to express to what degree a tuple

belongs to a data table. First attempts to rank-based approaches can be found in [4,

71, 95, 108, 123]. Later works include [21, 115, 59, 85, 87, 96, 104, 106]. There are also

extensions in which the rank is assigned to every attribute value, e.g. in [83, 44, 22].

The ranks usually take values from [0, 1], but there are approaches in which the unit

interval is replaced by some general algebraic structure, e.g. commutative semiring

[65], De Morgan frame [66], or residuated lattice [21]. In one of the pioneering work

done by Umano [108] the rank itself is a possibility distribution on [0, 1]. The idea

that the rank is a non-single value appears also in [87], where the rank is a pair

of possibility and necessity measures to indicate the possibility and necessity that

a tuple satisfies a certain constraint.

The meaning of the rank differs among approaches and it is seen as:

(a) Compatibility with the relation, e.g. in [4] the rank is “a degree to which t

satisfies the relation or is compatible with the relation”. Later in [28] the rank

is understood as a “degree to which tuple belongs to the relation, which is

then supposed to have a fuzzy (or gradual meaning)”. For example consider

relation Young employee with attributes Name and Age, then a tuple belongs

to the data table to the degree to which it satisfies the concept “Young”.
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(b) Global confidence level, see [28] for example: “(The weight is a) global con-

fidence level in information stored in the tuple which is a part of a relation

representing all or nothing concept”. Consider relation Likes with attributes

Name and Movie, then the degree to which a tuple belongs to the relation is

understood as the confidence in the information stored in the tuple, but with

relation Likes remaining crisp.

(c) Compatibility with the set of individual constraints specified on the relation,

see [85, 87].

(d) Degree to which a tuple matches a query, see [21, 59, 96], or the degree to which

it is possible that a tuple matches a query, see [32].

The fact that the interpretation of the rank differs among approaches is puzzling,

as it was already pointed out by Dubois and Prade in [56]. Moreover, there are

approaches in which the meaning of the rank is not clearly explained, for example

in [71].

3. Data extensions (from precise to imprecise values):

The third aspect involved in the various generalizations of the relational model is

data extensions, i.e. replacing precise values by imprecise ones. There are several

approaches where the authors are trying to incorporate more complex data, namely

an attribute value is considered to be a set of (possible) values in [31, 35, 101,

116, 113], a fuzzy set (including linquistic terms) or a possibility distribution in

[26, 88, 48, 56, 35, 75, 77, 80, 95, 87, 93, 104, 108], a vague set in [122] or an

interval-valued possibility distribution in [86]. When a (fuzzy) set is considered

as an attribute value, it is important to know its interpretation. Any set can be

interpreted in two different ways, either as a conjunctive set (also called ontic set)

or as a disjunctive set (also called epistemic set). One set can be interpreted in both

ways, for example consider the crisp set of Jane’s pets: {dog, cat, parrrot}. In the

ontic point of view the set represents the fact that Jane has three pets at home. By

contrast, in the epistemic point of view, the set represents the fact that Jane has one

pet at home—a dog or a cat or a parrot, where the or is exclusive. In this case the set

is understood as a possibility distribution (all three values are equally possible) and

represents uncertainty in our knowledge. This applies to fuzzy sets as well. On the

one hand, fuzzy sets can represent gradual entities or linguistic variables (conjunctive

meaning) and on the other hand fuzzy sets can be used as possibility distributions

[120] (disjunctive meaning). This distinction was made by Zadeh in [121] and later

discussed for example in [57]. When the attribute value is considered to be a set or

a fuzzy set, it is crucial to know whether the meaning is conjunctive or disjunctive.

Unfortunately, the interpretation is not always clear and does not usually affect the

semantics of GFD. Nevertheless, in Codd’s relational model there are no limitations

in what can and cannot be an attribute value. C. J. Date, one of the leading experts

on relational databases, pointed out that [52]: “. . . the domains over which relations
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are defined can be of arbitrary complexity. As a consequence, we can have attributes

of relations—or columns of tables, if you prefer—that contain geometric points,

or polygons, or X rays, or XML documents, or fingerprints, or arrays, or lists, or

relations, or any other kinds of values you can think of. But this idea too was always

part of the relational model! The idea that the relational model could handle only

rather simple kinds of data (like numbers and strings and dates and times) is a huge

misconception, and always was. . . . ”.

We therefore argue that approaches considering only more complex data (without

any further extensions of the model) should not be seen as a genuine extensions of

the original relational model, even when they consider fuzzy sets as attribute values.

3.2 Survey of similarity-based generalizations of FD

In this section we are going to present an exhaustive set of approaches to similarity-based

GFDs. To ease the reading of this section we point out some problems that need to be

solved once the equality is replaced by a similarity relation.

The definition of classical functional dependency introduced in Equation (2.44) can be

rewritten as follows:

||A⇒ B||D = min{(r1(A) = r2(A))→ (r1(B) = r2(B)) | r1, r2 ∈ D}. (3.1)

In the above equation the equality is understood as bivalent (either two values from

a domain are equal or not) and the implication is the classical one (taking values from

the set {0, 1}). Again, the underlying logic of the Codd’s relational model is the classic

predicate logic. Although the following is obvious, we want to explicitly mention that in

the original relational model: the truth value of FD, the degree to which an FD follows

from a set of FDs, as well as the degree to which a tuple matches a query, come from

the same set, {0, 1}. We are going to list generalizations of FD which replaced in the

Equation (3.1) equality by similarity. As a consequence, the set {0, 1} is replaced by

some more general partially ordered set (usually [0, 1]) for expressing the similarity of two

domain values. Having similarity relation on each domain many questions suddenly arise:

• [AtrSim] In the case of more complex data (e.g. attribute value is a set of possible

values, or a fuzzy set): how should the similarity of attribute values be defined?

• [TuplSim] How to define the similarity of tuples based on the similarity of the cor-

responding attribute values?

• [Imp] What implication should be used? Note that now r1(A) ≈ r2(A), r1(B) ≈
r2(B) are degrees from the previously chosen set.

• [TrGFD] Should the notion of GFD remain crisp? This will mean that the GFD is

either true or false in a given relation. Or should the concept become many-valued,
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meaning that we allow the GFD to be satisfied to certain degree (between the two

borderline cases: not satisfied, satisfied).

• [Rank] Having similarities on domains, how should the similarity-based queries be

evaluated? Should some degree to which data match a similarity-based condition

appear? In [59] Fagin said about querying in multimedia database systems that:

“. . . it is convenient to introduce “graded” (or “fuzzy”) sets, in which scores are

assigned to objects, depending on how well they satisfy atomic queries”. We believe

this applies not only to multimedia databases but to all databases where similarities

are involved.

We would like the reader to keep in mind these questions when going through the

survey, the comparison based on how these questions are answered can be found in Sec-

tion 3.4. We will now go through various attempts to generalize FD that use similarity

measures and reformulate them using residuated lattice as a structure of truth degrees.

We will not focus on how various similarity measures were defined (the [AtrSim] problem),

although some important and widely cited approaches are mentioned, but mainly on how

the similarity is used in the generalization of FDs.

If not otherwise stated we assume a relation scheme R = {y1, . . . , yn}, A,B ⊆ R.

Similarity or equivalence relation on domain Di of attribute yi will be denoted as ≈i, ≡i,
respectively. In most of the approaches that used the unit interval as a set of truth degrees,

the [TuplSim] issue is solved by using the minimum of the similarities of the corresponding

attribute values. If not otherwise stated we assume that the similarity of two tuples r1, r2

from some data table D on R is defined as:

r1(A) ≈D r2(A) = min
yi∈A

r1(yi) ≈i r2(yi). (3.2)

If there is no confusion we will write r1(A) ≈ r2(A) instead of r1(A) ≈D r2(A).

Buckles and Petry (1983): One of the pioneering work was done by Buckles and Petry,

see [31]. The authors introduced a model, which will be later referred as Buckles-Petry

model, where domains are equipped with fuzzy equivalence relations (called similarity in

the original work) and tuple values are allowed to be (ordinary) non-empty subsets of the

domain. That is,

D ⊆
∏
y∈R

2Dy , where 2Dy denotes 2Dy r {∅}. (3.3)

The authors called such relation D a fuzzy relation, although relation D is an ordinary

relation, i.e. an ordinary subset (not fuzzy subset) of some cross product. Each domain is

equipped with fuzzy equivalence, i.e. reflexive, symmetric and transitive relation, which

maps every pair of domain values to [0, 1]. The transitivity was given by two different

inequalities:

T1 : u ≡i w ≥ max
v∈Di

{min{u ≡i v, v ≡i w}} (3.4)
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T2 : u ≡i w ≥ max
v∈Di

{u ≡i v ∗ v ≡i w}, (3.5)

where * is an arithmetic multiplication. The correspondence with ⊗-transitivity (2.42) is

obvious when one considers Gödel and Goguen t-norm. As far as we know, it was the first

time when some kind of similarity relation was used in database design.

In the earlier work [31] the authors considered domains which may consist of a finite

(or infinite) set of scalars or a finite (or infinite) set of numbers with appropriate similarity

relation. Later [32] the authors began to propound the idea that domains may also consist

of linguistic values or fuzzy numbers (in a example given in [32] a fuzzy number was used

to express preferences). The meaning of a set of values (used as an attribute value) is

conjunctive, see [33] where the authors distinguished between their model (as an example

of uniform data model) and possibilistic data models.

Remark 3. In [32] the authors presented part of relational algebra for their generalized

model and introduced the concept of a rank—query Q can induce a membership degree for

every tuple r ∈ D, denoted in the original work as µQ(r), which represents the “possibility

of matching the query specifications”. But this means that after executing a query and

obtaining a ranked data table, we actually leave the model, because according to (3.3) a

data table is an ordinary set. Put it in another way: the result of a query may not be

a valid data table.

Generalized functional dependencies (called fuzzy FD) were defined in [3]: Let 0 <

β ≤ 1. The GFD A ⇒β B holds in the Buckles-Petry model, iff for every pair of tuples

ri = (di1, . . . , din), rj = (dj1, . . . djn):

min
yk∈A

{ min
u∈dik,v∈djk

u ≡k v} ≤ β ∗ min
yr∈B

{ min
u∈dir,v∈djr

u ≡r v}, (3.6)

where dik is the value of attribute yk for tuple ri and ∗ is the arithmetic product. In the

above definition, β is a parameter which influences the validity of generalized functional

dependency. Observe that if β is close to 0, the GFD will hardly be fulfilled in any table.

Moreover, if a relation D satisfies classical functional dependency A ⇒ B, then it will

satisfy the dependency given by Equation (3.6) if and only if β = 1 and all values are

singletons, see Example 1.

Later, this definition was modified and reformulated using the so called conformance

[116] and by moving the β parameter from the right hand side to the left hand side of (3.6).

Thanks to this the classical FD can be captured by the GFD even for β 6= 1, but still

under assumption that all attribute values are singletons. The conformance of attribute

yk ∈ R for tuples r1, r2 ∈ D, denoted as C(yk[r1, r2]), is given by the following formula:

C(yk[r1, r2]) = min
u,v∈d1k∪d2k

u ≡k v. (3.7)

Note that the conformance is not necessary reflexive, which leads to odd behavior as

demonstrated in Example 1. Moreover, for A ⊆ R: C(A[r1, r2]) = min
yk∈A

C(yk[r1, r2]). The
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y1 y2 y3

r1 {a, b} {c, d} {c}
r2 {a, b} {c, d} {d}

Table 3.1: Relation D in the Buckles-Petry model.

GFD A⇒β B is satisfied in the Buckles-Petry model if and only if for every pair of tuples

r1, r2 we have:

β ∗ C(A[r1, r2]) ≤ C(B[r1, r2]), (3.8)

where β ∈ [0, 1] is called linguistic strength and is optional. The default value of β is 1.

Example 1. Both (3.6) and (3.8) behave unnaturally. Assume R = {y1, y2, y3} with

D1 = D2 = D3 = {a, b, c, d} and relation D from Table 3.1.

First, note that the table can be seen as an ordinary relation in the Codd’s relational

model over domains D
′
1 = 2D1, D

′
2 = 2D2, D

′
3 = 2D3 and it is in first normal form,

since it is “a direct and faithful representation of some relation”, see [53]. We can see

that the classical FD {y1} ⇒ {y2} is satisfied in D. Now one would expect that the GFD

{y1} ⇒ {y2} holds in D for any β as well. But it is not the case. If a ≡1 b > c ≡2 d,

then according to (3.6) the GFD does not hold for β = 1. If a ≡1 b is much greater than

c ≡2 d, then β must be close to 0 in order to make {y1} ⇒ {y2} valid. The same remark

holds when one takes (3.8) instead of (3.6).

The problem illustrated in Example 1 was solved in [117] by proposing a new definition

of conformance:

C(yk[r1, r2]) = min{min
u∈d1k

{max
v∈d2k

{u ≡k v}}, min
u∈d2k

{max
v∈d1k

{u ≡k v}}} (3.9)

This definition of conformance yields to reflexive and symmetric measure and therefore we

can employ our notation for similarity relations. Let us denote C(A[r1, r2]) by r1(A) ≈
r2(A). Since the ∗ from (3.8) is arithmetic product and the similarity takes values from

[0, 1], authors actually use the standard product algebra [0, 1]Π as structure of truth degrees

(i.e. ⊗ and→ are Goguen adjoint operations). Equation (3.8) can be formulated as follows:

β ⊗ (r1(A) ≈ r2(A)) ≤ (r1(B) ≈ r2(B)), (3.10)

which is also equivalent to:

β ≤ (r1(A) ≈ r2(A))→ (r1(B) ≈ r2(B)). (3.11)

As a consequence, the definition of GFD can be reformulated as follows:

||A⇒ B||D =
∧

r1,r2∈D

(
(β ⊗ r1(A) ≈ r2(A))→ r1(B) ≈ r2(B)

)∗
, (3.12)

where ∗ is the globalization.
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Shenoi at al. [100, 101] claimed to extend the Buckles and Petry model by considering

a family of partitions on each domain (ordinary equivalence relation) instead of a fuzzy

equivalence relation. Each partition is determined by a level of precision, denoted as αi,

which means that elements in the same equivalence class are “in relation to each other to

a degree no lower than αi”.

The notion of data table remains the same as in Equation (3.3). To understand the

defintion of GFD, we need one more concept: redundancy at level of partition. Two

tuples r1, r2 are called redundant at level α = (αy)y∈R, denoted by r1 ∼α r2, iff for every

y ∈ R, r1(y) and r2(y) are subsets of the same equivalence class in the partition Py(αy).

A functional dependency A ⇒ B holds with respect to partition levels α = (αy)y∈A

and β = (βy)y∈B in D if, for every pair of tuples r1, r2, if they are redundant at level

α for attributes in A, then they are redundant at level β for attributes in B. That

is, r1(A) ∼α r2(A) implies r1(B) ∼β r2(B). If we will use the notion of similarity for

reformulation of GFD given by Shenoi et al., we will obtain (3.34). We are free to do

that since in a subsequent paper [84], Shenoi et al. admit that there is no distinction

between their model and Buckles and Petry’s one: “Our model was thought to generalize

Buckles and Petry’s work because tuple components in their model are always non-empty

subsets of equivalence classes. However, . . . our early work is essentially a reformulation

of Buckles and Petry’s work.” In [84] the authors proposed so called complete-lattice-

equivalence-class model, in which each domain is associated with a complete lattice of

(ordinary) equivalence relations (and thus partitions). The size and structure of each

complete lattice of equivalence relations is required to be the same, more precisely to be

isomorphic to previously given lattice L. The lattice L becomes part of a relation scheme.

Prade and Testemale(1984): In [93] Prade and Testemale considered so called possi-

bilistic fuzzy data model, i.e. attribute values are allowed to be possibility distribution in

Zadeh’s sense [120]. A model based on the concept of possibility distribution was originally

proposed by Umano [108]. The model of Prade and Testemale is a slight generalization

of the Umano concept by introducing an extra element denoted by e, which is used when

there is a nonzero possibility that the attribute does not apply. The relation D is defined

as:

D ⊆
∏
y∈R

[0, 1]Dy∪{e}, (3.13)

where [0, 1]Dy∪{e} denotes the set of all possibility distributions onDy∪{e}. Moreover, each

domain Dy ∪ {e} is associated with a similarity relation (called fuzzy proximity relation)

∼y which takes values from [0, 1]. The similarity relation is then extended to possibility

distributions on Dy ∪ {e} as follows: For r1(y), r2(y) ∈ [0, 1]Dy∪{e}:

r1(y) ≈y r2(y) = max
u,v∈Dy∪{e}

min{u ∼y v, (r1(y))(u), (r2(y))(v)}. (3.14)

r1(y) ≈y r2(y) is the possibility that values r1(y) and r2(y) are similar in the sense of ∼y.
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If all possibility distributions are normal 2, then ≈y is a similarity relation for all y ∈ R.

The GFDs were introduced only for singleton sets. Given a fixed threshold λ ∈ [0, 1] and

yi, yj ∈ R, the GFD {yi} ⇒ {yj} is satisfied in D if and only if for all r1, r2 ∈ D

(r1(yi) = r2(yi))→ (r1(yj) ≈j r2(yj) ≥ λ), (3.15)

where → is the ordinary implication. The FD should capture the following: “If the values

of the attribute yi are equal for r1 and r2, we may want to express that the values of the

attribute yj for r1 and r2 cannot be far from each other”.

This definition can be extended to sets of attributes and reformulated as follows:

Assume L = [0, 1] and ∗ being globalization. Then for any t-norm and corresponding

residuum:

||A⇒ B||D =
∧

r1,r2∈D

(
(r1(A) = r2(A))→ (λ→ r1(B) ≈ r2(B))∗

)
, (3.16)

where r1(B) ≈ r2(B) is given by (3.2). Moreover, if the ≈y’s are separable, then we can

use (r1(A) ≈ r2(A))∗ instead of r1(A) = r2(A).

Remark 4. The authors introduced part of relational algebra in [93]. The result of a query

consists in general of two fuzzy sets: the set of tuples which possibly satisfy the condition

and the set of tuples which necessarily satisfy the condition. This again means that the

result of a query is not in correspondence with (3.13).

Remark 5. Nakata in [87] used the similarity given by Equation (3.14) to define the

compatibility of a relation with a functional dependency. The compatibility itself is a pair

of possibility and necessity measures. Given yi, yj ∈ R with yi 6= yj and assuming a→ b =

¬a ∨ b, the possibility that a given relation D is compatible with an FD {yi} ⇒ {yj} is

defined as ∧
r1,r2∈D, r1 6=r2

max{¬(r1(yi) ≈i r2(yi)), r1(yj) ≈j r2(yj)}, (3.17)

where ¬(r1(yi) ≈i r2(yi)) = max
u,v∈Di

min{1 − (u ∼i v), (r1(yi))(u), (r2(yi))(v)}. The ne-

cessity measure is then computed from possibility measure replacing r1(yi) ≈i r2(yi) by

1− (¬(r1(yi) ≈i r2(yi))).

Raju and Majumdar (1988): Another generalization of FD was proposed by Raju

and Majumdar [95]. They considered similarity relation on each domain and ranks asso-

ciated to each tuple, but the ranks and similarity degrees come from [0.1]. More precisely,

a relation D is a fuzzy subset on Tupl(R):

D :
∏
y∈R

Dy → [0, 1]. (3.18)

2A possibility distribution π ∈ [0, 1]X is normal if there is an element x ∈ X such that π(x) = 1.
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Therefore every tuple r has associated a degree (rank) to which the tuple belongs to

D, denoted as D(r). The meaning of the ranks in not clearly given. In Example 3.1 in [95]

the authors say that a rank can be interpreted as a possibility measure, fuzzy measure of

the association between values, or as a truth degree of a fuzzy predicate associated with

given relation.

Depending on the complexity of domains, the authors classified their model into two

categories, namely

• Type-1, where each domain may be a classical set or a fuzzy set. In this case,

attribute values are singletons, taken from some set U .

• Type-2, where each domain may be a set of fuzzy sets or a set of possibility distri-

butions (page 136 in [95]).

The authors considered both interpretations of a fuzzy set and they also provided two

different interpretation of a rank (page 138 in [95]): “. . . as a possibility measure of asso-

ciation among the data or as a truth value of a fuzzy predicate associated with (relation)

r.”

Later, we will refer to the model where attribute values are allowed to be fuzzy sets

and data table is understood as in (3.18) as Raju-Majumdar’s model. The generalized

functional dependency A⇒ B is satisfied by a relation D iff for all r1, r2 ∈ D (r1, r2 ∈ D
means r1, r2 ∈ Tupl(R) with D(r1) > 0 and D(r2) > 0)

r1(A) ≈ r2(A) ≤ r1(B) ≈ r2(B). (3.19)

The inequality can be reformulated using Rescher-Gaines (RG) implication, a→RG b = 1

iff a ≤ b, 0 otherwise,

r1(A) ≈ r2(A)→RG r1(B) ≈ r2(B). (3.20)

This reformulation often appears in the literature, but RG implication is not a resid-

uated implication and therefore we prefer the following formulation: For L = [0, 1], any

t-norm and corresponding residuum, and for hedge being globalization the definition of

GFD given by Equation (3.19) is equivalent to:

||A⇒ B||D =
∧

r1,r2∈D

(
r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)

)∗
. (3.21)

Remark 6. Some inconveniences arise from this definition: (i) First, note that the rank

is not involved in the definition of GFD. As a result tuples with low degrees of membership

can significantly influence the validity of GFD.

(ii) Furthermore, note that if r1(A) ≈ r2(A) = 1, then r1(B) ≈ r2(B) must also be equal

to 1, in order to satisfy GFD given by (3.19). This behavior is seen as a weak spot of the

definition and was mentioned by several authors. In [97] Saharia and Barron addressed

this problem and introduced cluster dependencies to solve this issue.

(iii) The completeness of inference axioms is conditioned by the following: For each domain
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Di there is at least one pair u, v ∈ Di such that u ≈i v = 0. It was later shown by

Belohlavek and Vychodil in [21] that this condition is not needed. Furthermore, Belohlavek

and Vychodil proved that although the semantics of Raju-Majumdar model is richer, we

can not infer anything new comparing to the original Codd’s model. More precisely: An

FD A⇒ B follows from a set T of another FDs in the sense of Raju-Majumdar iff A⇒ B

follows from T in the sense of ordinary Codd’s model.

The paper by Raju and Majumdar is probably the most influential one and the defi-

nition of the GFD given by (3.19) inspired many authors. The following authors used the

same definition of GFD as Raju and Majumdar, but presented a new notion of similarity,

or a new extension of Codd’s model:

(i) In [80] the authors followed the model of Raju-Majumdar. But the similarity of tuple

values was defined using a notion of semantic space.

(ii) In [122] the authors presented a GFD in the framework of so called vague relational

database, i.e. databases where tuple values are allowed to be vague sets.

(iii) Also Wei-Yi Liu in [79] used the same idea for definition of GFD. However, the author

considered intervals as fuzzy attribute values and used “Semantic proximity (SP )” instead

of similarity in the definition of GFD. SP is a symmetric measure, but it is not reflexive in

general. The author also presented Armstrong’s axioms and claimed them to be sound and

complete. Unfortunately, the non-reflexivity of semantic proximity produces a mistake as

pointed out in [49], where the authors showed that two of the inference rules given by Liu

are not sound. The soundness is guaranteed by reflexivity of SP .

(iv) Later, in [75] a new semantic proximity was defined for intervals, which is again not

reflexive. (v) Liu also used semantic distance instead of semantic proximity to define the

GFD, see [78, 77].

(vi) The work done by Raju and Majumdar inspired also Saxena and Tyagi. In [98] the

authors used a special fuzzy set φ to represent null value “does not apply”. The null value

unknown is represented differently. This approach differs from its precursors due to the

specific treatment of the special fuzzy set φ. a GFD A⇒ B holds in D according to Saxena

and Tyagi if for all pair of tuples r1, r2 such that D(r1) > 0, D(r2) > 0, r1(y) 6= φ 6= r2(y),

for each y ∈ A, and r1(A) ≈ r2(A) > 0, one of the following conditions holds:

1. r1(B) = r2(B) = φ, or

2. there exists a nonempty set B′ ⊆ B such that r1(y) 6= φ 6= r2(y) for each y ∈ B′,
r1(B rB′) = r2(B rB′) = φ and r1(A) ≈ r2(A) ≤ r1(B′) ≈ r2(B′).

Chen (1991): Another significant proposal of definition of GFD was developed by

Chen [39], see also [36, 35]. Chen used the possibilistic fuzzy data model:

D ⊆
∏
y∈R

[0, 1]Dy , (3.22)

where [0, 1]Dy denotes the set of all possibility distributions over domain Dy. Moreover,

a similarity relation ∼y (originally called closeness relation) is associated with each do-
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main Dy, which is then used to express the similarity ≈y of attribute values (possibility

distribution). The GFD A⇒ B holds in D to degree θ iff

min
r1,r2∈D

(r1(A) ≈ r2(A)→I r1(B) ≈ r2(B)) ≥ θ, (3.23)

where →I stands for “fuzzy implication operator”, i.e. →I : [0, 1] × [0, 1] → [0, 1] and

satisfies for every a, b, c ∈ [0, 1]:

a→I b = 1 iff a ≤ b,

a→I b ≤ min(a, c)→I min(b, c),

min(a→I b, b→I c) ≤ a→I c.

The GFD expresses the fact that: “Close B values correspond to close A values”. Later,

Chen et al. [61] have proposed a specific form of the previous definition in order to express

the fact that “Close B values correspond to close A values, and identical B values corre-

spond to identical A values”. The →I is classical implication when r1(A) and r2(A) are

identical, and Gödel implication otherwise, i.e. the GFD A⇒ B holds in D to a degree θ

iff for all pair of tuples r1, r2:

if r1(A) = r2(A) then r1(B) = r2(B),

(r1(A) ≈ r2(A)→G r1(B) ≈ r2(B)) ≥ θ otherwise. (3.24)

By using Gödel implication in the second part of the definition, the meaning of the fact

that GFD A⇒ B is true to degree θ is as follows: For each pair of tuples: the similarity

on attributes B is at least as high as the similarity on attributes A or greater then θ. The

last inequality can be reformulated as follows:

θ ⊗ r1(A) ≈ r2(A) ≤ r1(B) ≈ r2(B). (3.25)

Note the correspondence with Equation (3.10), but now ⊗,→ are Gödel operations. For

L = [0, 1]G being the standard Gödel algebra, the GFD given by (3.24) can be reformulated

as follows:

||A⇒ B||D = θ if

θ ≤
∧

r1,r2∈D

(
r1(A) = r2(A)→ r1(B) = r2(B)

)
∧(r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)). (3.26)

The fact that ||A ⇒ B||D = θ does not exclude existence of other θ′ > θ for which the

inequality (3.26) holds. The soundness and completeness of Armstrong-like inference rules

has been proved in [36]. Chen et al. also proposed normal forms, whose definitions remain

the same as the classical ones with the notion of FD replaced by the notion of author’s

GFD, see [38, 37].

Remark 7. In [112] the authors presented an algorithm for mining GFD based on Chen’s

definition. The authors first transform quantitative data into fuzzy data (e.g. the value
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10 000 $ for salary attribute is modified into the value 0.3/Low Salary) and then search

for GFD. In [102] authors considered (3.23) and demonstrated on particular examples

how different similarity measures and different implications ( Lukasiewicz, Gödel, etc) in-

fluence the result. The definition of GFD given by Equation (3.24) was recently used in

the framework of interval-valued possibility distribution, see [86].

Bhuniya and Niyogi (1993): According to Bhuniya and Niyogi [26] the generalized

functional dependency A⇒ B holds in a Raju-Majumdar’s model (3.18) if and only if for

all r1, r2 ∈ D one of the following conditions holds

r1(A) ≈ r2(A) ≤ r1(B) ≈ r2(B), (3.27)

r1(A) ≈ r2(A)− r1(B) ≈ r2(B) ≤ 1− β, (3.28)

where r1(A) ≈ r2(A) ≥ α, r1(B) ≈ r2(B) ≥ α, and α < β < 1. In another words: if

α ≤ r1(A) ≈ r2(A) and α ≤ r1(B) ≈ r2(B) then either (3.27) or (3.28). Or equivalently:

A⇒ B holds in D iff for all r1, r2 ∈ D at least one of the following conditions holds:

r1(A) ≈ r2(A) < α or r1(B) ≈ r2(B) < α or (3.27) or (3.28). (3.29)

First, note that r1(A) ≈ r2(A) < α implies either r1(B) ≈ r2(B) < α or (3.27). Therefore

condition (3.29) is equivalent to

r1(B) ≈ r2(B) < α or (3.27) or (3.28). (3.30)

Now, since β < 1, condition (3.27) implies condition (3.28) and therefore the disjunction

“(3.27) or (3.28)” is equivalent to

β ≤ r1(A) ≈ r2(A)→ L r1(B) ≈ r2(B) (3.31)

in the standard  Lukasiewicz algebra. As a consequence, A ⇒ B holds (to degree 1) in D
iff α ≤ r1(B) ≈ r2(B) implies β ≤ (r1(A) ≈ r2(A) → r1(B) ≈ r2(B)), for all r1, r2 ∈ D.

For hedge being globalization and for the standard  Lukasiewicz algebra as a structure of

truth degrees the following definition of GFD is equivalent to definition given by Bhuniya

and Niyogi:

||A⇒ B||D =∧
r1,r2∈D

(α→ r1(B) ≈ r2(B))∗ → (β → (r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)))∗. (3.32)

Cubero et al. (1994): Cubero et al. [48] proposed the following definition of an GFD

for a possibilistic fuzzy data model (3.22). Each domain Dy is equipped with similarity

relation (called proximity in the original work) ∼y and a fixed threshold cy. GFD A⇒ B

is satisfied iff for all r1, r2 ∈ D:

(r1(A) ≈ r2(A) ≥ α)→ (r1(B) ≈ r2(B) ≥ β). (3.33)
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Put into words: If r1(A) and r2(A) are similar at least to degree α, then r1(B) and

r2(B) must be similar at least to degree β. Since → is classical implication, as long as

(r1(B) ≈ r2(B)) ≥ β, it does not matter to what values r1(B) and r2(B) are associated

with. The parameters α and β are vectors, α = (cy)y∈A, β = (cy)y∈B, where values

cy ∈ [0, 1], y ∈ R, are fixed and common to all GFDs. Thus r1(A) ≈ r2(A) ≥ α means

r1(y) ≈y r2(y) ≥ cy for all y ∈ A. The definition of GFD given by Equation (3.33) can be

reformulated as follows: Let L be any complete residuated lattice with universe L = [0, 1]

and with globalization as a hedge:

||A⇒ B||D =
∧

r1,r2∈D

(
(
∧
y∈A

cy → r1(y) ≈ r2(y))∗ → (
∧
y∈B

cy → r1(y) ≈ r2(y))∗
)
. (3.34)

Remark 8. Later in [46] the authors used two different similarity measures for computing

the similarity of tuple values (possibility distributions) in the antecedent and consequent

part of GFD. In the antecedent part they used (3.14), but for the consequent part they used

the following:

(r1(y) ≈′y r2(y)) = min
u,v∈Dy

max{u ∼y v, 1− (r1(y))(u), 1− (r2(y))(v)}. (3.35)

The definition of GFD remained almost the same, more precisely: A GFD A ⇒ B is

satisfied in relation D iff (i) every tuple value is normalized, (ii) ri(y) ≈′y ri(y) ≥ cy for

every y ∈ B and r ∈ D, and (iii)

(r1(A) ≈ r2(A) ≥ α)→ (r1(B) ≈′ r2(B) ≥ β).

This definition of GFD was then used to define so called rule-based fuzzy functional

dependencies [46, 47].

Remark 9. A very similar idea appeared later in [2], where an FD captures the following:

For every pair of tuples: If r1(A) and r2(A) are close to each other, then r1(B) and r2(B)

must also be close to each other, more precisely:

∀r1, r2 ∈ D If ∀yi ∈ A : |r1(yi)− r2(yi)| ≤ ε, then ∀yj ∈ B : |r1(yj)− r2(yj)| ≤ ε. (3.36)

Ben Yahia et al. (1999): Ben Yahia, Ounalli, and Jaoua presented their definition

of so called dynamic functional dependency in [115]. The word dynamic is used to em-

phasize the fact that an GFD can be true to some degree. The authors considered the

Raju-Majumdar’s model with uncertain data (fuzzy sets) and ranks coming from [0, 1].

The dynamic FD is defined as follows: A determines B to degree β, denoted as A ∼>β B,

β, θ ∈ [0, 1] in D if for all tuples r1 and r2 we have:

(r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)) ≥ θ, (3.37)

where

β = min
r1,r2

(r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)), (3.38)
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and → is the  Lukasiewicz implication. The threshold θ is fixed by the database designer.

Note that the definition of Raju and Majumdar (3.19) is a special case for θ = 1. The

authors also proposed inference axioms and proved their soundness. The completeness is

not proved.

The definition can be reformulated as follows: For L = [0, 1] L being the standard  Lukasiewicz

algebra, if
∧
r1,r2∈D

(
r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)

)
≥ θ, then

||A⇒ B||D =
∧

r1,r2∈D

(
r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)

)
(3.39)

and ||A⇒ B||D = 0 otherwise.

Bosc et al. (1999): Another generalization was done by Bosc, Pivert, and Ughetto,

see [30]. They were the first that used residuated implication corresponding to some t-

norm. The authors worked with crisp data and similarity relation on every domain. Two

generalizations of classical FD were proposed. Firstly, they relaxed the equality in the

consequent only and secondly, they replaced the equality by similarity in both parts of the

implication:

• Similarity is used only in the consequence part (which is meant to express tolerance)

and GFD is defined as:

∀r1, r2 ∈ D : r1(A) = r2(A)→ r1(B) ≈ r2(B). (3.40)

Note the correspondence with the definition given by Equation (3.15). However,

there is a big conceptual difference: The GFD given by Equation (3.15) remains

bivalent (either it is true or not), whereas the GFD given above can be true to any

degree from [0, 1].

• Similarity relation is used in both parts,

∀r1, r2 ∈ D : r1(A) ≈ r2(A)→ r1(B) ≈ r2(B). (3.41)

Meaning: “The closer the A values, the closer the B values”. For example: “Em-

ployees with similar experiences and jobs must have similar salaries.” [30].

The reformulation using complete residuated lattice with universe [0, 1] is straightforward:

||A⇒ B||D =
∧

r1,r2∈D
(r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)). (3.42)

Unfortunately, the authors presented only those definitions and did not go any further by

showing properties of such FD or presenting inference rules.

Tyagi et al. (2005): Later Tyagi et al. [106] introduced another generalization of

functional dependencies using the framework of so called fuzzy functions. The authors

developed GFD for Raju and Majumdar’s model. Contrary to Raju and Majumdar,
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[0, 1]G-equality (see Section 2) is employed in the model instead of similarity relation. The

authors considered relation ≡y on each domain which is separable (therefore reflexive),

min-transitive and weakly symmetric (i.e. (u ≡ v) = 1 iff (v ≡ u) = 1 for all u, v ∈ Dy).

This approach was inspired by the definition of fuzzy function (see Definition 6 in

Section 3.3) provided by Gottwald [63], which was later used and extensively studied by

Demirci, see [55] for example. Relation D satisfies the GFD A⇒ B if its projection over

A ∪B (denoted as DAB) is a partial fuzzy function. That is, if ∀r1, r2 ∈ Tupl(A ∪B):

(DAB(r1) ∧ DAB(r2) ∧ r1(A) ≡ r2(A)) ≤ r1(B) ≡ r2(B), (3.43)

where DAB(r) = sup{D(r′) | r′ ∈ Tupl(R) such that r′(A ∪B) = r}.
The Definition (3.43) is a generalization of (3.19) in the sense that if the GFD is true

according to (3.19) then it is also true according to (3.43). This approach has an advantage,

which lies in the fact that the rank is involved in the definition of GFD. Assume that there

is a pair of tuples violating r1(A) ≡ r2(A) ≤ r1(B) ≡ r2(B). In the case of (3.19) the

GFD will be violated regardless of the ranks of these two tuples, but in the case of (3.43)

the GFD may still be satisfied if the ranks are low enough. In general, we can say that

the lower the rank the lower the influence on the validity of GFD. This is, in our opinion,

the way how the GFD should behave when ranks are presented. If tuples have zero ranks

(tuples do not belong to the relation), they should not influence the validity of GFD at

all. Even this definition of GFD can be reformulated using complete residuated lattices.

For L being the standard Gödel algebra (i.e. a ⊗ b = a ∧ b = min(a, b)) equipped with

globalization we have:

||A⇒ B||D =∧
r1,r2∈Tupl(A∪B)

(
(DAB(r1)⊗DAB(r2)⊗ (r1(A) ≡ r2(A)))→ (r1(B) ≡ r2(B))

)∗
. (3.44)

Kiss (1991): The idea that the rank should influence the validity of FD can be already

found in [71]. Therefore we decided to include this approach here although the similarity

relation is not employed in this model. The author considered ranks from [0, 1] and

presented the following Horn-formula of the first order logic:

∀r1, r2 : (D(r1) ∧D(r2) ∧ r1(A) = r2(A))⇒ r1(B) = r2(B). (3.45)

When giving the semantic meaning to logical connectives, Kiss substituted ∧,∀ with the

operator inf; ∨,∃ with sup; ⇒ with  Lukasiewicz implication; and ¬a = 1 − a for all

a ∈ [0, 1]. The truth value to which the fuzzy relation D satisfies a given FD was given by

||A⇒ B||D = 1− sup{inf(D(r1),D(r2))| r1(A) = r2(A) and r1(B) 6= r2(B))}. (3.46)

It is clear from (3.46) that the higher the degree of D(r1) and D(r2) when r1, r2 violate

the classical FD, the lower the the truth degree of FD A⇒ B.
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The reformulation of (3.45) using residuated lattice is straightforward. For L being

[0, 1] L:

||A⇒ B||D =
∧

r1,r2∈D
(D(r1) ∧D(r2) ∧ r1(A) = r2(A))→ r1(B) = r2(B). (3.47)

Remark 10. When going from (3.45) to (3.46) Kiss used the following rule: ¬(a →
b) = a ∧ ¬b, which does not hold in general when one takes  Lukasiewicz implication and

conjunction given by infimum. But the equality holds when b is 0 or 1, which is also our

case, because b represents r1(B) = r2(B).

Belohavek and Vychodil (2006): Another extension is the proposal made by Belohavek

and Vychodil, see [15]. We have already presented the definition of GFD, called similarity-

based functional dependencies (SBFD) in Section 2.3.3. We will repeat the definition here

for completeness of this survey. For A,B ∈ LR the degree to which SBFD A⇒ B is true

in relation D over R is defined as:

||A⇒ B||D =
∧

r1,r2∈Tupl(R)

(
(r1(A) ≈ r2(A))∗ → (r1(B) ≈ r2(B))

)
,

where

r1(A) ≈D r2(A) = (D(r1)⊗D(r2))→
∧
y∈R

(A(y)→ r1(y) ≈y r2(y)).

When compared to other approaches, the SBFD is true to some degree, which comes from

the complete residuated lattice with hedge, and ranks are influencing the degree to which

SBFD holds. Also note that contrary to previous approaches A,B are fuzzy sets.

Cordero et al. (2011): The last extension we want to mention in this section was

presented by Cordero et al. in [45]. The authors worked with a generalization of Codd’s

relational model called fuzzy attribute table. The basic idea is that tuple value has assigned

a rank coming from complete residuated lattice. More precisely, the fuzzy attribute table

is understood as a map

D :
∏
y∈R

Dy → LR. (3.48)

This means that for each tuple r: D(r) ∈ LR, i.e. D(r) is a tuple of truth values. For all

y ∈ R, D(r)(y) is the truthfulness of tuple r in the value r(y).

Remark 11. Later in [22] Belohlavek and Vychodil introduced a similar model called

Multi Ranked Data Tables where ranks (degrees) come from similarity-based queries and

provided a relational algebra for this model.

The definition of the GFD is accompanied with a Pavelka-style logic [89, 90, 91] called

“Simplification Logic for fuzzy functional dependencies”. The completeness is proved for

a particular case of truth degrees, the unit interval. The authors introduced the following
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definition: a fuzzy attribute table D is said to satisfy a generalized functional dependency

A⇒ B with θ degree iff

θ ≤
∧

r1,r2∈Tupl(R)

(r1(A) ≈D r2(A))→ (r1(B) ≈D r2(B)), (3.49)

where → is a residuated implication. The similarity relation is called relative similarity in

order to emphasize that the similarity of two tuples r1, r2 on the set of attributes A ⊆ R

depends on ranks:

(r1(A) ≈D r2(A)) =
∧
a∈A

(
(D(r1)(a)⊗D(r2)(a))→ (r1(a) ≈ r2(a))

)
. (3.50)

In [45] the authors considered supremum of degrees to which the GFD is true. That is:

||A⇒ B||D = sup{θ ∈ [0, 1] | θ satisfies (3.49)}.

The last two approaches are connected with each other in the sense that the validity

of GFD given by (3.49) may be expressed using the validity of GFD given by (2.62) and

vice versa. A fuzzy attribute table D :
∏
y∈RDy → LY may be represented using a ranked

data table DR over the following family of domains (DR)y = Dy × L (Dy are the original

domains for D) and mapping all the tuples to 1. More precisely: the ranks are defined

by DR(r) = 1 if there exists y ∈ R such that D(r)(y) 6= 0, and DR(r) = 0 otherwise.

Similarities are defined by

〈d1, a1〉 ≈y 〈d1, a2〉 = (a1 ⊗ a2)→ ρy(d1, d2),

where ρy is the original similarity for D. Conversely, a ranked data table D :
∏
y∈RDy → L

can be transformed into a fuzzy attribute table DF :
∏
y∈RDy → LY by considering for

each tuple r ∈ D: DF (r)(y) = D(r) for all y ∈ R.

Lemma 5. For A,B ⊆ R, a fuzzy attribute data table D satisfies A ⇒ B in degree

θ ∈ [0, 1] according to (3.49) iff ||A ⇒ B||DR
≥ θ according to (2.62). Therefore, ||A ⇒

B||D = ||A⇒ B||DR
.

We have seen how to reformulate various definitions of GFD using complete residuated

lattice as a structure of truth degree. It can be easily seen that the approaches given by

(2.62), (3.49) as well as by (3.41) 3 are the most general ones, leaving other approaches as

their particular cases. Discussion on this topic as well as proofs can be found in [21], where

the authors showed that approaches given by (3.15), (3.19), (3.23) and (3.37) are special

cases of (2.62). To summarize the results of the paper [21] note that: 1) Many approaches

consider one particular case of t-norm (and corresponding implication), whereas GFD

given by Equations (2.62) (this result applies to (3.49) and (3.41)as well) is developed for

any t-norm. 2) Since A,B from (2.62) are in general fuzzy sets, the definition of GFD

3As we have already mentioned the promising and very general definition given by (3.41) was not

developed any further.
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given by (2.62) can easily incorporate GFD which use some additional parameters. For

example for GFD given by (3.34) consider fuzzy sets A,B defined as: A(y) = cy for y ∈ A,

B(y) = cy for y ∈ B.

Remark 12. Functional dependencies in terms of fuzzy rules

In most of the previous approaches, FD are generalized by replacing the equality by sim-

ilarity and by using concrete (not residuated in general) implication. Further, there are

approaches in which different techniques are employed, but the resulting dependencies are

still called fuzzy functional dependencies. Here we comment on some of them:

(i) Rasmussen and Yager [96] utilized linguistic summaries to define FDs. The authors

considered a similarity relation defined on each domain and crisp data. FD can be in

general true to some degree and should express the following: “If any two objects in the

database have similar values for A then they have similar values for B.” But the technique

is completely different—the degree of satisfaction is computed for each tuple and then an

average is taken.

(ii) Dubois and Prade in [56] and later Dubois, Prade and Bosc in [28] suggested to use

fuzzy rules for definition of new kind of generalized functional dependencies (also called

fuzzy functional dependencies) in the possibilistic fuzzy data model. Authors used certainty

rules (the more x is A, the more certain y lies in B), possibility rules (the more x is A,

the more possible B is a range for y), and gradual rules (the more x is A, the more y is

B) and employed them in the definition of various types of functional dependencies.

(iii) Later in [29] Bosc, Lietard, Pivert defined functional dependencies (called extended

functional dependencies) using gradual rules.

(iv) The ideas introduced in [115], see Equations (3.37) and (3.38), were used in [114] for

defining linguistic summaries (also called fuzzy functional dependencies).

3.3 Comparison of similarity-based generalizations of FD

The semantics of classical FD corresponds to the notion of mathematical function. More

precisely: ||A⇒ B||D = 1 iff {〈r(A), r(B)〉| ∀r ∈ D} is a function (from πA(D) to πB(D),

see (2.43)). In this section we will examine how different approaches correspond to the

notion of function. Since the similarity and ranks are employed in the various generaliza-

tion of Codd’s model, the classical definition of function is no longer adequate and we will

use the notion of fuzzy function.

The definition of a fuzzy function was provided by S. Gottwald in [63]. In that paper

the author introduced a notion of fuzzy uniqueness of a fuzzy mapping F 4 using a formula

of first order fuzzy logic. Every fuzzy mapping F has a degree to which it satisfies the

uniqueness property U :

U(F ) =
∧

x,y,u,v

(
((F (x, u)⊗ F (y, v))⊗ x ≡ y)→ u ≡ v

)
, (3.51)

4For the definition of fuzzy mapping as well as for the definition of ≡ see the original paper [63].
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where → is a  Lukasiewicz implication, ⊗ stands for a  Lukasiewicz t-norm or minimum,

i.e. by this definition four different notions of fuzzy uniqueness were given. The set of

truth degree was considered as [0, 1]. A mapping is called fuzzy function if it is unique to

degree 1. Later (3.51) was used by M. Demirci in [55] in the framework of L-relation and

L-equalities. Demirci also used a complete residuated lattice (called integral commutative

residuated l-monoid) as a structure of truth degrees.

Definition 6 (Fuzzy function). Let L be a residuated lattice, let A and B be crisp sets,

and let ≈A and ≈B be L-equalities. An L-relation ρ : A×B → L (L is a support set of L)

is said to be a fuzzy function iff for all a1, a2 ∈ A and b1, b2 ∈ B we have

ρ(a1, b1)⊗ ρ(a2, b2)⊗ (a1 ≈A a2) ≤ (b1 ≈B b2). (3.52)

Remark 13. i) Note that (3.52) is only a reformulation of Equation (3.51) since in all

residuated lattices we have a→ b = 1 iff a ≤ b.
ii) Tyagi’s definition of GFD [106] was inspired by the condition (3.52).

iii) In [9] the condition (3.52) corresponds to the notion of compatibility. Relation ρ is

called compatible with respect to ≈A and ≈B if it satisfies (3.52), where ≈A and ≈B are

L-equivalencies.

iv) Another notion of fuzzy function with respect to similarity relation was defined in [67].

The term fuzzy function was understood as a syntactic notion, and the term fuzzy mapping

was used as the corresponding semantic one.

5) A partial fuzzy function [55, 72] is used in [9] in the definition of a degree to which

a given relation is a fuzzy function.

We will use the idea from [63] (and later from [9]) to define a degree to which a ranked

data table corresponds to the notion of fuzzy function given by (3.52).

Definition 7. Let L be a complete residuated lattice and D : Tupl(R) → L be a ranked

data table. Let ≈i be L-similarities on corresponding domains. Let A,B ⊆ R and let the

similarity of two tuples on a set of attributes be given by Equation (3.2). The degree to

which D is a fuzzy function with respect to the sets of attributes A and B is defined as:

Fun(D, A,B) =∧
r1,r2∈Tupl(R)

(
(D(r1)⊗D(r2)⊗ (r1(A) ≈D r2(A)))→ (r1(B) ≈D r2(B))

)
. (3.53)

The verbal description of the previous definition is as follows: The degree to which

a relation D corresponds to a fuzzy function from A to B is a degree to which it is true

that for all pairs of tuples from D: if they belong to D and have similar values on attributes

A, then they have similar values on attributes from B.

Remark 14. (i) In the above definition we only assume that ≈i are similarities, although

in the original works of Demirci and Belohlavek L-equalities and L-equivalences were used,

respectively.

(ii) Note that tuples with zero ranks do not influence the resulting degree of (3.53).
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It will not make any difference if we use projection of a ranked data table to A ∪B in

the Definition 7 as the following lemma shows:

Lemma 8. Let L be complete residuated lattice. Given a ranked data table D : Tupl(R)→
L and a set A ⊆ R. If the projection of D to A is defined as DA(r) = sup{D(r′) | r′ ∈
Tupl(R) with r′(A) = r}, then Fun(D, A,B) = Fun(DA∪B, A,B).

Proof. Consequence of (2.17) and (2.19).

We decided not to use the projection in Definition 7 since the definition of projection

differs among approaches, although supremum or maximum is usually used. We will now

illustrate the above definition on a simple example.

Example 2. Let L be any complete residuated lattice. Let R = {y1, y2, y3} with Dy1 =

{a1, a2}, Dy2 = Dy3 = {b1, b2}. Let us assume that the L-similarity relation ≈2 coincides

with ≈3 and that ≈1,≈2 and the RDT D are given as follows:

≈1 a1 a2

a1 1 µ1

a2 µ1 1

≈2 b1 b2

b1 1 µ2

b2 µ2 1

D y1 y2 y3

λ1 a1 b1 b1

λ2 a2 b2 b1

λ3 a1 b1 b2

The degree to which the relation D is a fuzzy function w.r.t. {y1} and {y2} is computed

as follows:

Fun(D, {y1}, {y2}) =

((λ1 ⊗ λ2 ⊗ µ1)→ µ2) ∧ ((λ1 ⊗ λ3 ⊗ 1)→ 1) ∧ ((λ2 ⊗ λ3 ⊗ µ1)→ µ2) =

((λ1 ⊗ λ2 ⊗ µ1)→ µ2) ∧ 1 ∧ ((λ2 ⊗ λ3 ⊗ µ1)→ µ2) =

((λ1 ⊗ λ2 ⊗ µ1)→ µ2) ∧ ((λ2 ⊗ λ3 ⊗ µ1)→ µ2) =

((λ1 ⊗ λ2 ⊗ µ1) ∨ (λ2 ⊗ λ3 ⊗ µ1))→ µ2 =

((λ1 ∨ λ3)⊗ λ2 ⊗ µ1)→ µ2 = Fun(D{y1,y2}, {y1}, {y2}).

The last equality holds iff the projection is defined using supremum.

Definition 7 gives us the degree to which a relation (data table D) captures the notion

of fuzzy function from A to B. Now we will look at the correspondence of Definition 7

with the degree to which a GFD is true in D for various definitions of GFD.

The following criterion will give us the degree to which: “For all relations D: If a GFD

A⇒ B is satisfied in relation D, then D corresponds to the fuzzy function from A to B.”

S(A⇒ B,Fun) =
∧

D:Tupl(R)→L

(
||A⇒ B||D → Fun(D, A,B)

)
. (3.54)

Similarly, the next criterion will give us a degree to which: “For all relations D: If D
corresponds to the fuzzy function from A to B, then a GFD A⇒ B is satisfied by D.”

S(Fun, A⇒ B) =
∧

D:Tupl(R)→L

(
Fun(D, A,B)→ ||A⇒ B||D

)
. (3.55)
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Finally, combining (3.54) and (3.55) we will obtain the degree to which a particular defi-

nition of GFD corresponds to the fuzzy function,

E(Fun, A⇒ B) =
∧

D:Tupl(R)→L

(
Fun(D, A,B)↔ ||A⇒ B||D

)
= S(A⇒ B,Fun) ∧ S(Fun, A⇒ B). (3.56)

The infimum is going over all RDTs on Tupl(R), where ranks are taken from complete

residuated lattice with support L. Note that nonranked data tables are special case of

ranked ones with ranks coming from {0, 1}. Moreover, we would like to remark that the

→ (and ↔) are the operations from the residuated lattice used in the definition of GFD.

As a consequence, the concrete form of the criterion (3.56) may vary.

Note that the semantics of GFDs is usually given as follows: similar values on attributes

from A correspond to similar values on attributes from B. The semantics of (3.53) is almost

the same. The difference is that ranks have impact on the resulting degree. The definition

of fuzzy function given by (3.52) is widely accepted among researchers and thus the idea

that lower ranks should have lower influence on the validity seems to be appropriate, and

we think it is very natural. Contrary to this stands the fact that a lot of GFD definitions

do not depend on the ranks at all.

In the rest of this section we will use E(Fun, A ⇒ B) as a criterion to measure the

degree in which a given GFD definition preserves the notion of the fuzzy function. We

will compute the criterion (3.56) using (3.54) and (3.55). We have selected significant

approaches presented in Section 3 for comparison. Approaches that are similar to the

selected ones are not mentioned explicitly, for example the result obtained for Raju and

Majumdar’s definition is applicable to all their followers.

The following lemma simplifies the computation of (3.54) and (3.55) for the cases

where the validity of GFD remains bivalent. We will write D � A ⇒ B and D 2 A ⇒ B

to denote ||A ⇒ B||D = 1 and ||A ⇒ B||D = 0, respectively. The set of all relations that

satisfy a given GFD A⇒ B will be denoted as Mod({A⇒ B}) or simply Mod(A,B).

Lemma 9. Let L be a complete residuated lattice, let A and B be sets of attributes A,B ⊆
R. If the validity of a GFD A⇒ B is bivalent then

S(A⇒ B,Fun) =
∧

D∈Mod(A,B)

Fun(D, A,B), (3.57)

S(Fun, A⇒ B) =
( ∨
D/∈Mod(A,B)

Fun(D, A,B)
)
→ 0. (3.58)

Proof. (3.57): Using (2.9), (2.8) and 1 ∧ a = a we have:

S(A⇒ B,Fun) =
∧

D:Tupl(R)→L

(
||A⇒ B||D → Fun(D, A,B)

)
=

=
∧

D∈Mod(A,B)

(
1→ Fun(D, A,B)

)
∧

∧
D/∈Mod(A,B)

(
0→ Fun(D, A,B)

)
=
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=
∧

D∈Mod(A,B)

(
1→ Fun(D, A,B)

)
=

∧
D∈Mod(A,B)

Fun(D, A,B).

Equation (3.58) is a consequence of (2.7) and (2.19). Indeed:

S(Fun, A⇒ B) =
∧

D:Tupl(R)→L

(
Fun(D, A,B)→ ||A⇒ B||D

)
=

=
∧

D∈Mod(A,B)

(
Fun(D, A,B)→ 1

)
∧

∧
D/∈Mod(A,B)

(
Fun(D, A,B)→ 0

)
=

=
∧

D/∈Mod(A,B)

(
Fun(D, A,B)→ 0

)
=
( ∨
D/∈Mod(A,B)

Fun(D, A,B)
)
→ 0.

We will now apply the criterion given by Equation (3.56) to all significant approaches.

Theorem 10 (Buckles and Petry). Let L = [0, 1]Π, let A,B ⊆ R be sets of attributes and

let the GFD be defined as in (3.8). Assuming β ∈ [0, 1] is the parameter from (3.8), then

S(A⇒ B,Fun) = β and S(Fun, A⇒ B) = β → 0.

Proof. First, note that the GFD is defined for nonranked data table and therefore

Fun(D, A,B) =
∧

r1,r2∈D
(r1(A) ≈D r2(A)→ r1(B) ≈D r2(B)). (3.59)

Moreover, since ||A ⇒ B||D ∈ {0, 1} we can use Lemma 9. For proving the first part,

observe that if D ∈ Mod(A,B), i.e. ||A⇒ B||D = 1, then:

β ⊗ (r1(A) ≈ r2(A)) ≤ r1(B) ≈ r2(B) ∀r1, r2 ∈ D,

β ≤ (r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)) ∀r1, r2 ∈ D,

β ≤
∧

r1,r2∈D
(r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)).

The last inequality can be written as β ≤ Fun(D, A,B) for any D ∈ Mod(A,B). As

a consequence β ≤
∧

Mod(A,B) Fun(D, A,B). Finally, for any β there exists D ∈ Mod(A,B)

such that Fun(D, A,B) = β (take D with only two tuples r1, r2 ∈ D such that r1(A) ≈
r2(A) = 1 and r1(B) ≈ r2(B) = β). Therefore β =

∧
Mod(A,B) Fun(D, A,B) = S(A ⇒

B,Fun). Using our previous observation and Lemma 9 we have:

S(Fun, A⇒ B) =
( ∨
D/∈Mod(A,B)

Fun(D, A,B)
)

= β → 0.

Note that the proof remains valid for any complete residuated lattice.

Theorem 11 (Prade and Testemale). Let L be any complete residuated lattice with uni-

verse L = [0, 1]. Let A,B ∈ R. Let the GFD be defined by (3.15) and let λ ∈ [0, 1] be the

parameter from (3.15). Then S(A⇒ B,Fun) = 0 and S(Fun, A⇒ B) = λ→ 0.
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Proof. First note that A,B are single attributes. Moreover, ||A ⇒ B||D ∈ {0, 1} and

we can apply Lemma 9. For proving S(A ⇒ B,Fun) = 0 it is sufficient to show that∧
Mod(A,B) Fun(D, A,B) = 0. Let us fix four different elements a1, a2, b1, b2 and consider

M⊆ Mod(A,B) being the set of models described as follows:

≈A a1 a2

a1 1 α

a2 α 1

≈B b1 b2

b1 1 0

b2 0 1

D A B

1.0 a1 b1

1.0 a2 b2

where α ∈ [0, 1) is an arbitrary parameter. It means that the relations fromM differ from

each other by the parameter α (by the similarity relation on domain DA). Then,∧
Mod(A,B)

Fun(D, A,B) ≤
∧
M

Fun(D, A,B) =
∧

α∈[0,1)

(α→ 0) =
( ∨
α∈[0,1)

α
)
→ 0 = 1→ 0 = 0.

The second equality follows from the fact that GFD are defined for nonranked data

tables and therefore Fun(D, A,B) is given by (3.59). Also note that if D /∈ Mod(A,B)

then there exist tuples r1, r2 such that r1(A) = r2(A) and r1(B) ≈ r2(B) < λ. Therefore

S(Fun, A⇒ B) =
( ∨
D/∈Mod(A,B)

Fun(D, A,B)
)
→ 0 =

( ∨
D/∈Mod(A,B)

∧
r1,r2∈D

(r1(A) ≈D r2(A)→ r1(B) ≈D r2(B))
)
→ 0 = λ→ 0.

Theorem 12 (Raju and Majumdar). Let L be any complete residuated lattice with uni-

verse L = [0, 1]. Assume R is a relational scheme and A,B ⊆ R. For the GFD given by

Equation (3.19), S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.

Proof. First of all, we have to mention that authors’ extension involve ranked data tables.

As we shall see in this proof, the theorem holds for any residuated lattice built over the

unit interval. Observe that if ||A ⇒ B||D = 1, then r1(A) ≈D r2(A) ≤ r1(B) ≈D r2(B)

for all r1, r2 ∈ Tupl(R) with D(r1) > 0 and D(r2) > 0. Together with the fact that

D(r1) ⊗ D(r2) ⊗ r1(A) ≈D r2(A) ≤ r1(A) ≈D r2(A), for all r1, r2 and any t-norm, we

obtain Fun(D, A,B) = 1 for any D ∈ Mod(A,B). The proof of the first equality is

completed by applying Lemma 9.

For proving the second equality it is sufficient to find a ranked data table D such that

D /∈ Mod(A,B) and Fun(D, A,B) = 1. Such an RDT is easy to find: consider for example

D with only two tuples r1, r2 such that D(r1) = D(r2) = 0.2, r1(A) ≈D r2(A) = 1 and

r1(B) ≈D r2(B) = 0.9.

Theorem 13 (Chen et al.). Let L = [0, 1]G, A,B ⊆ R be sets of attributes, θ ∈ [0, 1] and

let the GFD be defined as in (3.24). Then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.
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Proof. Note, that if ||A ⇒ B||D = θ, then Fun(D, A,B) will be at least θ. As a conse-

quence: ||A⇒ B||D → Fun(D, A,B) = 1 for any D.

To prove S(Fun, A⇒ B) = 0 let us consider the set

M = {D over R = {A,B}|D 2 A⇒ B, |D| = 2 and r1(A) = r2(A), r1, r2 ∈ D}.

Note that for each D ∈M we have r1(A) = r2(A) and r1(B) 6= r2(B). As a consequence:

S(Fun, A⇒ B) =
∧

D:Tupl(R)→{0,1}

(
Fun(D, A,B)→ ||A⇒ B||D

)
≤

∧
D∈M

(Fun(D, A,B)→ 0) =( ∨
D∈M

(r1(A) ≈D r2(A)→ r1(B) ≈D r2(B))
)
→ 0 =( ∨

D∈M
(1→ r1(B) ≈D r2(B))

)
→ 0 =( ∨

D∈M
r1(B) ≈D r2(B)

)
→ 0 = 1→ 0 = 0.

Theorem 14 (Bhuniya and Niyogi). Let L = [0, 1]L, A,B ⊆ R. For GFD given in (3.31)

we have S(A⇒ B,Fun) = β and S(Fun, A⇒ B) = 0.

Proof. The first result can be proved by following the same arguments as in the proof of

Theorem 10. The second result is a consequence of the fact that ranks are not involved in

the definition of GFD, see the proof of Theorem 12.

Theorem 15 (Cubero et al.). Let L be any complete residuated lattice with universe

L = [0, 1]. For the GFD given by Equation (3.33) and for fixed thresholds cy, y ∈ R:

S(A⇒ B,Fun) =
( ∨
y∈A

cy → 0
)
∧
∧
y∈B

cy, (3.60)

S(Fun, A⇒ B) =
( ∧
y∈A

cy →
∨
y∈B

cy
)
→ 0. (3.61)

Proof. Since the degree to which GFD is true remains bivalent, we can again apply

Lemma 9 and compute only
∧

Mod(A,B) Fun(D, A,B). First of all notice thatD ∈ Mod(A,B)

if for all pair of tuples either r1(A) ≈ r2(A) < α or r1(B) ≈ r2(B) ≥ β. Since α = (cy)y∈A,

β = (cy)y∈B are vectors, r1(A) ≈ r2(A) < α means there exists y ∈ A such that

r1(y) ≈y r2(y) < cy and r1(B) ≈ r2(B) ≥ β means that for all y ∈ B: r1(y) ≈y r2(y) ≥ cy.
Now we will look at these two cases separately. First, using (2.18) and isotony of → in

the second argument, we have:∧
Mod(A,B)

∧
r1,r2∈D

r1(A)≈r2(A)<α

(
r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)

)
=
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∧
Mod(A,B)

∧
r1,r2∈D

r1(A)≈r2(A)<α

(
r1(A) ≈ r2(A)→ 0

)
=

( ∨
Mod(A,B)

∨
r1,r2∈D

r1(A)≈r2(A)<α

(
r1(A) ≈ r2(A)

))
→ 0 =

∨
y∈A

cy → 0.

The last equality follows from the fact that r1(A) ≈ r2(A) =
∧
y∈A r1(y) ≈y r2(y).

The second case follows from antitony of → in the first argument and (2.9):∧
Mod(A,B)

∧
r1,r2∈D

r1(B)≈r2(B)≥β

(
r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)

)
=

∧
Mod(A,B)

∧
r1,r2∈D

r1(B)≈r2(B)≥β

(
1→ r1(B) ≈ r2(B)

)
=

∧
Mod(A,B)

∧
r1,r2∈D

r1(B)≈r2(B)≥β

(
r1(B) ≈ r2(B)

)
=
∧
y∈B

cy,

finishing the proof of (3.60). The equation (3.61) follows from Lemma (9), antitony of

residuum in the first argument and isotony in the second.

Theorem 16 (Tyagi et al.). Let L = [0, 1]G, A,B ⊆ R be sets of attributes and let the

GFD be defined as in (3.43). Then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.

Proof. First of all, the validity of the GFD given by (3.43) is bivalent and therefore we

can use Lemma 9 again. The equality S(A ⇒ B,Fun) = 1 follows from the fact that

a⊗ b = a ∧ b for all a, b ∈ [0, 1]G and from (2.4).

The second equality follows from Lemma 9 and the fact that 1 → 0 = 0. The result

is maybe surprising, since Tyagi et at. use the definition of fuzzy function for their GFD.

Nevertheless, the validity of their GFD remains bivalent.

Theorem 17 (Kiss). Let L = [0, 1]L, A,B ⊆ R be sets of attributes and let the GFD be

defined as in (3.47). Then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.5.

Proof. The first result follows from (2.12) and from antitony of → in the first argument.

For proving the second equality we will use (2.20) and a → b ≤ (b → c) → (a → c),

which holds in every residuated lattice. Therefore

S(Fun, A⇒ B) =
∧

D:Tupl(R)→L

(
Fun(D, A,B)→ ||A⇒ B||D

)
≥

=
∧

D:Tupl(R)→L

∧
r1,r2∈D

(
(D(r1) ∧D(r2) ∧ r1(A) = r2(A))→ (D(r1)⊗D(r2)⊗ r1(A) = r2(A))

)
=

∧
D:Tupl(R)→L

∧
r1,r2∈D

(
(D(r1) ∧D(r2))→ (D(r1)⊗D(r2))

)
.

Since the → and ⊗ are  Lukasiewicz operations we get: 0.5 ≤ S(Fun, A ⇒ B). It is easy

to find relation D such that Fun(D, A,B)→ ||A⇒ B||D = 0.5.
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Theorem 18 (Ben Yahia et al.). Let R be a relational scheme and A,B ⊆ R. For GFD

given by (3.37) and (3.41): S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.

Proof. The first result is a consequence of the antitony of → in the first argument, more

precisely for any D and any r1, r2 ∈ D we have:

r1(A) ≈ r2(A)→ r1(B) ≈ r2(B) ≤ (D(r1)⊗D(r2)⊗ r1(A) ≈ r2(A))→ r1(B) ≈ r2(B)

and thus for any D we have ||A⇒ B||D ≤ Fun(D, A,B).

The second result is again a consequence of the fact that the rank is not involved in

the definition of GFD and thus it is easy to find a relation D such that ||A ⇒ B||D = 0

and Fun(A,B) = 1.

Theorem 19 (Bosc et al.). Let R be a relational scheme and A,B ⊆ R. For GFD given

by (3.41): S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 1.

Proof. Since authors proposed the definition of GFD for nonranked data tables, we have

for all D: Fun(D, A,B) = ||A⇒ B||D.

Theorem 20 (Belohlavek and Vychodil). Let R be a relational scheme and A,B ⊆ R. For

the GFD defined by Equation (2.62) we have: S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 1.

Proof. According to (2.63) ranks are involved in the definition of similarity itself and not

in definition of GFD, therefore it seems somehow inadequate to apply the criteria given

by (3.56). Fortunately, the authors have proved in [24] that for each ranked data table D
there exists a nonranked D′ (ranks come from {0, 1}) such that ||A⇒ B||D = ||A⇒ B||D′ .
Therefore for hedge being identity we obtain: Fun(D, A,B) = ||A ⇒ B||D′ = ||A ⇒
B||D.

Theorem 21 (Cordero et al. case). Let R be a relational scheme and A,B ⊆ R. If the

GFD is defined by Equation (3.49), then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 1.

Proof. Consequence of Lemma 5 and Theorem 20.

We have seen that although the definition of fuzzy function is natural and widely

accepted, many approaches to GFD failed to satisfy the criterion given by Equation (3.56).

One reason is that the validity of GFD usually remains crisp. Another reason is the

fact that although many of the GFDs are defined for some rank-aware model, the ranks

(usually) do not influence the validity of such dependency.

3.4 Conclusions

The main aim of this chapter was to compare generalizations of FD in which similar-

ity relations replace the classical equality. We have established a criterion which makes

the comparison of various GFD easier and more objective. The criterion given by Equa-

tion (3.56) gives us a degree to which a particular GFD corresponds to the fuzzy function.
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From various notions of GFD we have selected 12 of them which have had significant im-

pact on other authors and have introduced interesting and new approach to GFD: Buckles

and Petry (1983), Prade and Testemale (1984), Raju and Majumdar (1988), Chen (1991),

Bhuniya and Niyogi (1993), Cubero et al. (1994), Ben Yahia et al. (1999), Bosc et al.

(1999), Tyagi et al. (2005), Kiss (1991), Belohavek and Vychodil (2006) and Cordero et

al. (2011). The summary can be found in Table 3.2. We want to emphasize several points:

Authors/approach GFD [Imp] [TrGFD] [Rank] E(Fun, A⇒ B)

Buckles and Petry

[31]
(3.6) R-G imp. {0, 1} No β ∧ (β → 0)

Prade and Testemale

[93]
(3.15) R-G imp. {0, 1} No 0

Raju and Majumdar

[95]
(3.19) R-G imp. {0, 1} Yes 0

Chen et al. [61] (3.24)
Classical or

Gödel
{0, 1} No 0

Bhuniya and Niyogi

[26]
(3.27) R-G imp. {0, 1} Yes 0

Cubero et al. [48] (3.33) R-G imp. {0, 1} No (3.60)∧(3.61)

Tyagi et al. [106] (3.43) R-G imp. {0, 1} Yes 0

Kiss [71] (3.45)  Lukasiewicz [0, 1] Yes 0.5

Ben Yahia et al.

[115]
(3.37)  Lukasiewicz [0] ∪ [θ, 1] Yes 0

Bosc, Pivert and

Ughetto [30]
(3.41) Residuum [0, 1] No 1

Belohavek and

Vychodil [21]
(3.37) Residuum

Complete

residuated

lattice

Yes 1

Cordero et al. [45] (3.49) Residuum [0, 1] Yes 1

Table 3.2: Review of similarity-based functional dependencies.
In the [Imp] column the implication used in definition of a GFD is highlighted. The choice of the

implication influences the degree to which a GFD is true, column [TrGFD]. The column [Rank] indicates

if a GFD is defined for data table with ranks. In the last column the degree to which a GFD corresponds

to fuzzy function is presented.

1. As it is shown in Table 3.2, many approaches reduce the new (generalized) concept

of FD to a bivalent one. This is usually done by introducing some extra parameter

and by letting the GFD to be satisfied when some criterion exceeds the parameter.

Otherwise the GFD is not satisfied. We strongly believe that a proper approach

(from the logical point of view) should consider a richer framework.

2. In some cases the interpretation of a rank is not very clear.

3. The ranks are not usually involved in the definition of GFD. This fact yields to odd

behavior: tuples with very low ranks may caused the GFD to be satisfied to low
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degree (even 0). Note that our criterion (Equation (3.56)) is able to capture this

kind of behavior.

4. As we have seen, in some cases, the generalizations of relational model and functional

dependencies are not treated consistently. For example in the Buckles-Petry’s model

the GFD is defined for nonranked data tables. Nevertheless, the ranks may appear

after executing a query. Does the GFD remain the same for ranked data table or is

the definition not applicable?

5. In many cases, the authors put their effort only to GFD. As we have already men-

tioned, the GFD from [30] were not developed any further—even Armstrong-like

axioms were not introduced.

None of these problems appears in approaches which are built on fuzzy logic in narrow

sense [21, 45]. Among conceptual clarity, the connection to fuzzy logic in narrow sense

enables us to generalize many concepts form the original Codd’s relational model (which

is connected to the first order logic). In the next chapter we will provide a generalization

of derivation graphs [81] which can be seen as an alternative prove system.

As a future work, we want to focus on a deeper comparison of relational languages for

similarity-based queries: although relational algebra is usually defined, no completeness

with respect to domain calculus is presented. And if so, the domain calculus is usually

based on classical predicate logic. As far as we know the completeness of relational algebra

(which involves similarity-based queries) with respect to domain calculus based on fuzzy

predicate logic was provided only in [20], see [23] for current results.

We have provided only one criterion for comparing GFDs which takes similarities into

account. As a part of the future work we want to provide criteria which will reflect

sensitivity issues in the following sense:

1. Having similar data tables D1, D2 (e.g. results of similarity-based queries in two

database instances), can we say anything about the validity of a GFD in D1 and D2?

Is the definition of GFD insensitive to small changes in data and (or) ranks or is it

not?

2. For similarity-based relational algebras: If the similarity-based query is evaluated on

similar data tables, will the results be similar as well?

One may assume that a similarity-based model is robust if a small change of input data

and/or domains similarities and/or ranks leads only to a small change in the query result

and to a small change in validity of GFD. Although this requirement is quite natural, it

is not obvious if it is satisfied (and under which conditions) by the currently available

approaches. In Chapters 5 and 6 we will study the sensitivity issues for one particular

model: ranked data tables over domains with similarities from Section 2.3.



Chapter 4

Derivation digraphs for graded

if-then rules

Functional dependencies (2.44) are rules of the form A ⇒ B, where A,B are sets of

attributes, and play an important role in relational database systems [41, 82]. From the

point of view of syntax, functional dependencies are the same formulas (if-then rules) as

attribute implications in formal concept analysis (FCA), see [62], but their interpretation

is different. Attribute implications are interpreted in formal context, which is a triple

X,Y, I, where X is a set of objects, Y is a set of attributes, and I is a binary relation

I ⊆ X × Y indicating which object has which attribute. The basic meaning of A⇒ B in

FCA is that if an object has all the attributes from A, then it has all the attributes from

B. An interesting property is that both the different interpretations of the if-then rules

yield the same notion of semantic entailment. As a result, one can use a single inference

system for reasoning with both attribute implications and functional dependencies. The

best known inference system has been proposed by Armstrong [1] and can be simplified

to a system of two rules [69]. An interesting alternative graph-based approach that is also

aimed at possible automated proving has been proposed by Maier in [81], see also [82] for

an extensive description and its application for theorem proving.

In this chapter we present a graph-based method of reasoning with graded if-then rules,

by which we mean rules of the form A⇒ B, where A,B are fuzzy sets of attributes. Rules

of this form describe dependencies between attributes in ordinal and similarity-based data

and have two basic interpretations:

1. Similarity-based functional dependencies, see Section 2.3.3, which are interpreted in

ranked data tables.

2. Attribute implications (AIs) in formal concept analysis with grades [13], where ob-

jects are allowed to have attributes (features) to degrees, i.e. I ⊆ LX×Y . Given

M ∈ LY (L-set of attributes) the degree to which A ⇒ B is true in M is degree to

which: “if it is very true, that the object has all attributes from A, then it has also

all attributes from B.” Formally: ||A⇒ B||M = S(A,M)∗ → S(B,M).

49
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Even in the graded version, the notion of semantic entailment for SBFDs coincide with

the notion of semantic entailment for AIs in FCA with grades in the following sense: The

degree to which a graded if-then rule A ⇒ B follows from a theory (L-set of graded if-

then rules) is the same under both interpretations [13]. As a consequence, on may use

single Armstrong-like axiomatization, for example the rules (Ax), (Cut) and (Mul) from

Section 2.3.3.

Looking for a graph-based inference system for graded if-then rules is interesting from

several viewpoints. First, the notion of semantic entailment of the rules we consider is

graded, i.e., the entailment expresses a degree to which a rule follows from other rules. It

is therefore interesting to find a graph-based inference system that is able to infer rules

from other ones including the entailment degrees. Second, there is an Armstrong-like

axiomatization of the semantic entailment for the graded rules (see Section 2.3.3, or the

original papers [15, 13]), i.e., one might be interested in finding a corresponding graph-

based inference method. Third, the Armstrong-like proofs can be formalized to form

particular sequences (so-called MRAP-sequences, see [17]). It is therefore interesting to

observe whether the graph-based proofs can be constructed according to the normalized

proofs and vice versa.

In what follows the graded if-then rules will be called fuzzy attribute implications

(FAIs). We will first introduce derivation digraphs as particular labeled acyclic digraphs

constructed from an input theory (collections of FAIs).

4.1 Derivation acyclic digraphs for FAIs

We now introduce derivation digraphs as particular acyclic digraphs where vertices are

labeled by attributes from R and degrees from L. The arcs of the digraphs will correspond

to FAIs from an input theory and indicate which formulas from the theory are used in

the process of inference. In what follows, L is a complete residuated lattice. In order to

denote that ∗ is a hedge on L, we write L∗.

Definition 22 (T -based L∗-derivation DAG). Let T be a set of FAIs over R.

1. Any D = 〈V, ∅〉 such that ∅ 6= V ⊆ R × L and for every y ∈ R there is at most one

a ∈ L such that 〈y, a〉 ∈ V , is a T -based L∗-derivation DAG;

2. If D = 〈V,A〉 is a T -based L∗-derivation DAG and there are E ⇒ F ∈ T , attribute

y ∈ R, and vertices 〈y1, a1〉 ∈ V, . . . , 〈yk, ak〉 ∈ V such that for

s0 =
∧
{E(y)→ 0 | y ∈ R and y 6∈ {y1, . . . , yk}}, (4.1)

s1 =
∧
{E(yi)→ ai | i = 1, . . . , k}, (4.2)

m =
∨
{a ∈ L | 〈y, a〉 ∈ V }, (4.3)

d =
(
(s0 ∧ s1)∗ ⊗ F (y)

)
∨m, (4.4)

we have d > m, then D′ = 〈V ′, A′〉, where

V ′ = V ∪ {〈y, d〉}, (4.5)
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A′ = A ∪ {〈〈yi, ai〉, 〈y, d〉〉 | i = 1, . . . , k}, (4.6)

is a T -based L∗-derivation DAG.

Remark 15. (i) As one can see, the definition of T -based L∗-derivation DAGs is recursive.

The base step says that a set of unconnected vertices is a T -based L∗-derivation DAG if

for every y ∈ R we have |{a ; 〈y, a〉 ∈ V }| ≤ 1. Notice that the set V of vertices can be

seen as a partial map from R to L. The meaning of the vertices in V is the following:

if 〈y, a〉 ∈ V , we can interpret the fact that the attribute y is assumed valid at least to

degree a. Thus, the DAG defined by the base step represents a fact that some attributes

are assumed valid to some (nonzero) degrees and we do not make any assumptions about

the remaining attributes (not present in the vertices).

(ii) In the second step, the definition postulates that more complex T -based L∗-derivation

DAGs result from simpler ones by adding a vertex and arcs leading from vertices related to

antecedents of FAIs from T . In more detail, the idea is that one selects an attribute y which

is assumed to be valid to a degree denoted by m, see (4.3), and the validity of which can be

increased to a strictly higher degree d, see (4.4), by considering a FAI E ⇒ F ∈ T with the

following properties: (I) there are vertices 〈y1, a1〉, . . . , 〈yk, ak〉 the validities of which are

at least E(yi) for each i = 1, . . . , k; (II) the thresholds prescribed by E for attributes not

among those in y1, . . . , yk are zero; (III) d is obtained as a supremum of m (the assumed

validity) and the degree to which it is “very true that (I) and (II) hold” and “y is prescribed

by F”. If the condition (III) holds and d > m, the original T -based L∗-derivation DAGs

can be extended by vertex labeled by 〈y, d〉 and arcs going from the selected vertices to

the new vertex. Note that the conditions we have just described correspond to expressions

(4.2), (4.1), and (4.4), respectively.

(iii) For better understanding of the second step in Definition 22, consider the case

when L is a two-element Boolean algebra. Suppose we have D with all vertices of the form

〈y, 1〉 for all y ∈ R′ where R′ is a subset of R. Then, in the second step of Definition 22,

a1 = · · · = ak = 1 and the step is applied to form D′ whenever the following conditions

hold: s0 = 1 (which is true iff E, considered as an ordinary set, consists at most of the

attributes y1, . . . , yk), s1 = 1 (holds trivially), m = 0 iff 〈y, 1〉 6∈ V , d = 1 iff y ∈ F

(F considered as an ordinary set). It means, T contains E ⇒ F such that all attributes

appearing in E (to nonzero degrees) are already contained in D, and F has an attribute

y that is not contained in D. This can be interpreted so that the antecedent of E ⇒ F

is “proved valid by D” and thus, we may construct a new DAG D′ which in addition

“proves that y is valid”. This particular deduction step corresponds to computing closures

of attribute sets for ordinary functional dependencies [6, 82]. The Definition 22 can be

seen as graded extension of this procedure.

If D is a T -based L∗-derivation DAG, we put

D(y) =
∨
{a ∈ L | 〈y, a〉 ∈ V }, (4.7)
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and call D(y) the yield of D on y. Clearly, the yield of D corresponds to (4.3), i.e., we

can interpret it as the degree to which y is assumed to be valid according to D. Moreover,

〈y, a〉 ∈ V is called an initial vertex of D if 〈y, a〉 has no incoming arcs (i.e., no arc in D

enters 〈y, a〉).
Notice that for each y ∈ R such that D(y) > 0 there is 〈y, a〉 ∈ V such that a = D(y).

This is a consequence of Definition 22. Furthermore, it follows that for any y ∈ R, the set

Ly = {a ∈ L | 〈y, a〉 ∈ V } (4.8)

has a greatest element provided that Ly 6= ∅. Another direct consequence of Definition 22

is that Ly is either empty or it is a finite subchain (if equipped with the restriction of ≤ to

Ly) of the lattice part of L. The latter observation is of course trivial if L is a chain but it

pertains to all complete residuated lattices taken for L. We make use of these observations

later in the proofs.

The following notion introduces derivation digraphs related to FAIs:

Definition 23 (T -based L∗-derivation DAG for E ⇒ F ). Let D = 〈V,A〉 be a T -based

L∗-derivation DAG. Then D is called a T -based L∗-derivation DAG for E ⇒ F if the

following conditions are all satisfied:

1. D(y) ≥ F (y) for all y ∈ R;

2. if E 6= ∅ then the set of initial vertices of D is

{〈y,E(y)〉 | y ∈ R and E(y) > 0}; (4.9)

3. if E = ∅, then the set of initial vertices of D is {〈y], 0〉},

where y] ∈ R is a designated attribute.

By the designated attribute in the previous definition we mean a fixed attribute that

has been selected from R (no particular role or intended interpretation of the attribute

is assumed). In theory, we could have defined the set of initial vertices for any E as

{〈y,E(y)〉 | y ∈ R} but this would introduce extraneous vertices into the DAG and that

can be seen as an undesirable feature especially from the computational point of view

(imagine situation when R is large compared to the number of attributes which belong to

E to nonzero degrees). Therefore, we have distinguished the cases for E = ∅ and E 6= ∅,
because we want to have a minimum set of initial vertices so that D remains a DAG.

Example 3. In this example, we utilize the residuated lattice with L = [0, 1] given by the

 Lukasiewicz operations together with hedge ∗ defined as follows: For each a ∈ L we put

a∗ =


1, for a = 1,

0.6, for 0.6 ≤ a ≤ 0.9,

0.2, for 0.2 ≤ a ≤ 0.5,

0, for 0 ≤ a ≤ 0.1.
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0.6/y1

0.3/y4

0.7/y2

0.6/y3

0.6/y1

0.3/y4

0.7/y2

0.6/y3
0.5/y4

Figure 4.1: Construction of T -based L∗-derivation DAG.

0.6/y1

0.3/y4

0.7/y2

0.8/y3
0.8/y4

Figure 4.2: T -based L∗-derivation DAG for ∗ being identity.

Figure 4.1 depicts a single step of the process of construction of a T -based L∗-derivation

DAG for FAI {0.6/y1,
0.7/y2,

0.3/y4} ⇒ {0.5/y4}, where T is the following set of FAIs:

T = {{0.7/y1,
0.5/y4} ⇒ {0.7/y2,

1/y3}, {0.7/y3} ⇒ {0.8/y5},

{0.7/y2,
0.9/y3} ⇒ {0.9/y4}}.

The DAG on the right-hand side of Figure 4.1 results from the DAG on the left-hand

side by adding vertex 〈y4, 0.5〉 and two arcs leading from 〈y2, 0.7〉 and 〈y3, 0.6〉. In a

more detail, the vertex 〈y4, 0.5〉 in the right-hand side DAG has been added because the

validity of y4 resulting from some E ⇒ F ∈ T was strictly higher than 0.3. Namely,

for E = {0.7/y2,
0.9/y3}, F = {0.9/y4}, we have m = 0.3, (s0 ∧ s1)∗ ⊗ F (y4) = 0.7∗ ⊗

0.9 = 0.6 ⊗ 0.9 = 0.5, see (4.1)–(4.4). If we replace the hedge by identity, then the

T -based L∗-derivation DAG for the same fuzzy attribute implication as before looks like

the one in Figure 4.2. Note that this time the L∗-derivation DAG is even a DAG for

{0.6/y1,
0.7/y2,

0.3/y4} ⇒ {0.8/y4}.

4.2 Completeness

We now turn our attention to the completeness by which we mean a characterization of the

semantic entailment by existence of L∗-derivation DAGs. We prove the claim by showing

that a FAI is provable from a theory T iff it has a T -based L∗-derivation DAG. We now

show that T -based L∗-derivation DAGs are in a correspondence with normalized proofs

called MRAP-sequences [17].

Recall from [17] that the following three rules can be derived from (Ax), (Cut) and

(Mul), which were introduced in Section 2.3.3:

(Ref) infer A⇒ A,
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(Acc) from A⇒ B∪C and C ⇒ D∪E infer A⇒ B∪C∪D,

(Pro) from A⇒ B∪C infer A⇒ B,

for all A,B,C,D,E ∈ LY . The rules are called reflexivity, accumulation and projection,

respectively. By a derivable rule we mean that for all A,B,C,D,E ∈ LY , from the part

preceding “infer”, we can derive using (Ax), (Mul), and (Cut), the part succeeding “infer”.

By an MRAP-sequence for A⇒ B from T (see [17]), we mean a sequence of formulas

such that it

(a) starts with A⇒ A;

(b) continues with FAIs from T ;

(c) continues with FAIs which result from using (Mul) on FAIs from (b);

(d) continues with FAIs which result from using (Acc) on FAIs from (a), (b), (c), (d);

(e) ends with a single application of (Pro), on the last FAI in (d);

(f) the FAI which results by (e) is A⇒ B.

In [17] the following assertion was proved:

Theorem 24. Let T be a set of FAIs. Then the following is equivalent:

1) ||A⇒ B||T = 1,

2) A⇒ B is provable from T using (Ax), (Cut), (Mul),

3) there is an MRAP-sequence for A⇒ B from T .

Before presenting the equivalence between 3) from the previous theorem and existence

of T -based L∗-derivation DAG, we introduce even a more restrictive notion of a derivation

sequence by putting further restriction on (d). Namely, we may require that all formulas

appearing in (d) should have A as their antecedents.

Lemma 25. Any MRAP-sequence for A⇒ B and T can be transformed into an MRAP-

sequence for A⇒ B and T such that all formulas appearing in its (d)-part are of the form

A⇒ C.

Proof. For any MRAP-sequence for A ⇒ B and T , one can use the same argument as

in [82, Theorem 4.2, page 55] because (Acc) is just an “ordinary rule” with ordinary sets

replaced by L-sets.

From now on, we tacitly assume that all MRAP-sequences satisfy the additional con-

dition justified by Lemma 25. The following assertions show constructions of MRAP-

sequences based on T -based L∗-derivation DAGs and vice versa.

Theorem 26. Let T be a theory. If there is an MRAP-sequence for A⇒ B from T , then

there is a T -based L∗-derivation DAG for A⇒ B.
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Proof. Let us assume there is an MRAP-sequence for A ⇒ B from T and let A ⇒
X1, . . . , A ⇒ Xn be all FAIs from the sequence that have A as their antecedents. We

construct a sequence of T -based L∗-derivation DAGs Di (i = 1, . . . , n) such that Di is a

T -based L∗-derivation DAG for all A⇒ Xj (j ≤ i). In addition, each Di+1 results from Di

by a series of finitely many applications of the second rule of Definition 22. We distinguish

the following cases based on the role of A⇒ Xi in the MRAP-sequence.

Case a) By definition of an MRAP-sequence, A⇒ X1 must be an instance of (Ref), i.e.,

X1 = A. In that case, we let D1 be the DAG which consists solely of the initial vertices

(and no arcs) corresponding to A.

Case b) Let E ⇒ F ∈ T be the first FAI in the MRAP-sequence such that E = A. Since

all attributes from A are already present in D1, we can enlarge D1 by attributes y

for which F (y) ∨D1(y) > D1(y) according to the rule 2 in Definition 22. Note that

(s0 ∧ s1)∗ = 1∗ = 1. Doing so we will obtain an L∗-derivation DAG D2 for A⇒ F . We

repeat the process for all FAIs in the MRAP-sequence that are from T and have A as

their antecedents and form a sequence of DAGs D2, . . . ,Dj for some j ≤ n.

Case c) Let c∗⊗E ⇒ c∗⊗F be the first FAI in the MRAP-sequence which results from

E ⇒ F ∈ T by (Mul) and c∗⊗E = A. Analogously to the Case b), we consecutively

enlarge Dj by attributes y for which d > Dj(y), where d = ((s0∧ s1)∗⊗F (y))∨Dj(y).

Doing so we will obtain a new DAG Dj+1 which is also a DAG for A⇒ c∗⊗F . Indeed,

we have

s0 ∧ s1 =
∧
y∈R

(
E(y)→ A(y)

)
=
∧
y∈R

(
E(y)→ (c∗ ⊗ E(y))

)
≥ c∗,

and so for every y that is used in the construction of Dj+1 from Dj , we have d ≥
(s0∧s1)∗⊗F (y) ≥ c∗⊗F (y) = (c∗⊗F )(y) due to monotony and idempotency of ∗. We

repeat the process for the remaining FAIs from the MRAP-sequence which result by

(Mul) and have A as their antecedent. We will form a sequence of DAGs Dj+1, . . . ,Dk

for some k ≤ n.

Case d) Let A ⇒ Xl (l > k) results by using (Acc). According to Lemma 25, A ⇒ Xl

results from some FAIs A ⇒ G∪C and C ⇒ D∪E, i.e., Xl = G∪C∪D. Since Dl−1 is

already a T -based L∗-derivation DAG for A ⇒ G∪C, we have C(y) ≤ Dl−1(y) for all

y ∈ R and we may proceed with subcases as follows:

1. If C ⇒ D∪E is from T , we proceed analogously as in the Case b).

2. If C ⇒ D∪E results from application of (Mul) on some FAI from T , we proceed

analogously as in the Case c).

3. If C ⇒ D∪E results from application of (Acc), then C = A and Dl−1 is a T -based

L∗-derivation DAG for C ⇒ D∪E (trivial case).

Thus, Dl results from Dl−1 by consecutive addition of vertices and arcs by one of the

preceding subcases. We repeat the process for all FAIs obtained by (Acc) and form a

sequence of DAGs Dk+1, . . . ,Dn−1.
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Case e) The last FAI A ⇒ Xn in the MRAP-sequence is obtained using (Pro) on A ⇒
Xn−1. Notice that Dn−1 is already a T -based L∗-derivation DAG for A⇒ Xn because

we have Xn(y) ≤ Xn−1(y) for all y ∈ R. Hence, we may let Dn = Dn−1.

Dn is the desired T -based L∗-derivation DAG for A⇒ B since B = Xn.

In the opposite direction, we have the following characterization.

Theorem 27. Let T be a theory. If there is a T -based L∗-derivation DAG for A ⇒ B,

then there is an MRAP-sequence for A⇒ B from T .

Proof. Let D be a T -based L∗-derivation DAG for A ⇒ B. We will create an MRAP-

sequence for A ⇒ B. The proof goes by induction on the complexity of T -based L∗-

derivation DAGs. Let D1, . . . ,Dn be a sequence of T -based L∗-derivation DAGs such that

Di+1 is constructed from Di, i ∈ {1, . . . , n}, by the second rule of Definition 22. We will

create an MRAP-sequence with A ⇒ BDi as a subsequence, where BDi is a yield of Di,

i.e. BDi ∈ LR such that BDi(y) = Di(y) for all y ∈ R.

D1 consists solely of the initial vertices, and our MRAP-sequence will start with (Ref):

T ` A⇒ A.

Assume that Di+1 results from Di = 〈Vi, Ai〉 by the second rule of Definition 22.

Therefore, there are E ⇒ F ∈ T , attribute y ∈ R, and vertices 〈y1, a1〉 ∈ Vi, . . . , 〈yk, ak〉 ∈
Vi such that Di+1 results by adding vertex 〈y, d〉, where d = ((s0∧s1)∗⊗F (y))∨Di(y) for

s0 and s1 given by (4.1) and (4.2), respectively. Therefore, BDi+1 ⊆ {d/y}∪BDi . Consider

now G ⊆ BDi such that G(yi) = ai (for all i = 1, . . . , k), and G(y′) = 0 for all y′ ∈ R
which are not among y1, . . . , yk. In order to make G well defined, we have to assume that

all y1, . . . , yk are pairwise distinct. We may indeed assume this since for yi1 = · · · = yik
we may substitute selected vertices 〈yi1 , ai1〉, . . . , 〈yik , aik〉 by a single vertex 〈yi1 ,

∧k
j=1 aij 〉

where
∧k
j=1 aij is in fact one of the degrees ai1 , . . . , aik (recall that Ly given by (4.8) is a

finite chain and so are its arbitrary nonempty subsets). From induction hypothesis Di is

a T -based L∗-derivation DAG for A⇒ BDi . Therefore,

T ` A⇒ BDi induction hypothesis

T ` E ⇒ F from E ⇒ F ∈ T
T ` S(E,G)∗ ⊗ E ⇒ S(E,G)∗ ⊗ F using (Mul)

T ` A⇒ (S(E,G)∗ ⊗ {F (y)/y}) ∪BDi︸ ︷︷ ︸
{S(E,G)∗⊗F (y)/y}∪BDi

using (Acc)

Now, observe that s0 ∧ s1 = S(E,G), i.e., T ` A ⇒ {d/y} ∪ BDi , see (4.4). Notice

that the application of (Acc) is correct since S(E,G)∗ ⊗ E ⊆ G ⊆ BDi and S(E,G)∗ ⊗
{F (y)/y} ⊆ S(E,G)∗ ⊗ F . Then, we can transform the resulting sequence into an MRAP-

sequence by reordering its formulas: we start with A ⇒ A, continue with formulas from

T , then formulas resulting from previous ones by using (Mul), then formulas resulting by

applications of (Acc) which all have A as their antecedents, and ending with the application

of (Pro).
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Note that the proofs of the previous assertions do not utilizes any notions from seman-

tics of FAIs, and so they are presented in a purely proof-theoretical way. The following

assertion provides the ordinary-style completeness:

Theorem 28. If L is finite, then ||A ⇒ B||T = 1 iff there is a T -based L∗-derivation

DAG for A⇒ B.

Proof. Follows from Theorem 26, Theorem 27 and Theorem 24.

Furthermore, we can express the graded-style completeness as follows:

Theorem 29. If L is finite, then ||A⇒ B||T is the greatest degree a ∈ L such that there

is a T -based L∗-derivation DAG for A⇒ a⊗B.

Proof. Consequence of Theorem 28 and (2.67).

In abstract fuzzy logic (also known as Pavelka’s fuzzy logic [67, 89, 90, 91]), theories

as considered as L-sets of formulas. T (ϕ) is interpreted as a degree to which T prescribes

ϕ valid. Even in this case, we can show that T -based L∗-derivation DAGs are capable of

describing degrees of semantic entailment as it is shown by the following theorem.

Theorem 30. If L is finite and T is an L-set of FAIs, then ||A ⇒ B||T is the greatest

degree a ∈ L such that there is a T ′-based L∗-derivation DAG for A ⇒ a⊗B, where

T ′ = {A⇒ T (A⇒ B)⊗B |A,B ∈ LY and T (A⇒ B)⊗B * A}.

Proof. Follows from Theorem 29 and (2.66).

4.3 Computing closures

Considering the construction of T -based L∗-derivation DAGs as an alternative proof tech-

nique not only can help visualize the inference from if-then rules but in addition, the con-

struction of such DAGs yields algorithms for checking whether (and to what degree) A⇒ B

semantically follows from a theory. Indeed, in order to check whether ||A⇒ B||T = 1, we

may proceed as follows:

Procedure 31 (Checking of full entailment). For any T and A⇒ B:

1. Construct a T -based L∗-derivation DAG D = 〈V, ∅〉 with

V = {〈y,A(y)〉 |A(y) > 0};

If V = ∅, put V = {〈y], 0〉}, where y] is the designated attribute, see Definition 23.

2. If D(y) ≥ B(y) for all y ∈ R, stop and return “YES”; otherwise continue with step

3.

3. If D can be enlarged according to Definition 22 (case 2.), then enlarge D and continue

with step 2.; otherwise return “NO”.
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Provided that L and Y are finite, the three-step procedure always terminates and

returns either “YES” or “NO”. With respect to the semantic entailment from T , we can

prove that the “YES” answer comes iff A ⇒ B follows from T . Before we prove that

we need some more observations and auxiliary notions. First, we look at combination of

two (or more) T -based L∗-derivation DAGs together to get a DAG with a combined yield

which is greater than the yield of the input DAGs.

Lemma 32. Let D1 = 〈V1, A1〉 and D2 = 〈V2, A2〉 be T -based L∗-derivation DAGs with

sets of initial vertices I1 ⊆ V1 and I2 ⊆ V2, respectively. Then there is a T -based L∗-

derivation DAG D1 ∪D2 = 〈V,A〉 with set of initial vertices

I = {〈y, a1 ∨ a2〉 | 〈y, a1〉 ∈ I1 and 〈y, a2〉 ∈ I2}∪

{〈y, a1〉 | 〈y, a1〉 ∈ I1 and 〈y, a2〉 /∈ I2 for all a2 ∈ L}∪ (4.10)

{〈y, a2〉 | 〈y, a2〉 ∈ I2 and 〈y, a1〉 /∈ I1 for all a1 ∈ L}

such that (D1 ∪D2)(y) ≥ D1(y) ∨D2(y) for all y ∈ R.

Proof. Initially, put V = I as in (4.10) and A = ∅. Furthermore, let

W1 = {〈y, a〉 ∈ V1 | 〈y, b〉 6∈ I for all b ≥ a},

W2 = {〈y, a〉 ∈ V2 | 〈y, b〉 6∈ I for all b ≥ a}.

We are going to iteratively enlarge V and A by adding vertices (and arcs) based on

vertices from W1 and W2. We start with vertices from W1. Notice that from (4.10) it

follows that W1 ∩ I1 = ∅. During each step of the procedure, we ensure that for each

vertex 〈y, a〉 ∈ V1 \W1, there is a vertex 〈y, b〉 ∈ V such that a ≤ b. Initially, the condition

follows directly from (4.10). Assume that W1 6= ∅. Since W1 ⊆ V1 and D1 is acyclic, W1

satisfies the following

Property: There is 〈y, a〉 ∈ W1 such that all arcs entering 〈y, a〉 in D1 leave

from vertices 〈yi, ai〉 ∈ V1 \W1 (i ∈ I).

Moreover, our assumption yields that for all those vertices 〈yi, ai〉 ∈ V1 \W1 (i ∈ I) there

are 〈yi, bi〉 ∈ V such that ai ≤ bi (i ∈ I). Since 〈y, a〉 resulted from 〈yi, ai〉 ∈ V1 (i ∈ I)

considering some FAI from T , by considering the same FAI, we can compute the value of

m and d, see (4.3) and (4.4), for vertices 〈yi, bi〉 ∈ V (i ∈ I) and the attribute y. Note that

due to the monotony of ∨, ⊗, ∗, and → in the second argument, we get d ≥ a. If d > m,

we may add 〈y, d〉 to V and add all arcs 〈〈yi, bi〉, 〈y, d〉〉 to A (i ∈ I). Otherwise, we left V

and A unchanged. Then, we remove 〈y, a〉 from W1. Since d ≥ a, our initial assumption

remains valid: for each 〈y, a〉 ∈ V1 \W1, there is 〈y, b〉 ∈ V such that a ≤ b. Now, we may

repeat the procedure until W1 = ∅. Then, we continue the procedure with W1, V1, and I1

replaced by W2, V2, and I2 until W2 = ∅. After that, we get D1 ∪D2 = 〈V,A〉 which is

a T -based L∗-derivation DAG that obviously satisfies (D1 ∪D2)(y) ≥ D1(y) for all y ∈ R
and (D1 ∪D2)(y) ≥ D2(y) for all y ∈ R.
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0

a

b1 b2

c1 c2

d

1 ⊗ 0 a b1 b2 c1 c2 d 1

0 0 0 0 0 0 0 0 0

a 0 a a a a a a a

b1 0 a b1 a b1 a b1 b1
b2 0 a a b2 a b2 b2 b2
c1 0 a b1 a b1 a b1 c1
c2 0 a a b2 a b2 b2 c2
d 0 a b1 b2 b1 b2 d d

1 0 a b1 b2 c1 c2 d 1

→ 0 a b1 b2 c1 c2 d 1

0 1 1 1 1 1 1 1 1

a 0 1 1 1 1 1 1 1

b1 0 c2 1 c2 1 c2 1 1

b2 0 c1 c1 1 c1 1 1 1

c1 0 c2 d c2 1 c2 1 1

c2 0 c1 c1 d c1 1 1 1

d 0 a c1 c2 c1 c2 1 1

1 0 a b1 b2 c1 c2 d 1

Figure 4.3: Nonlinear structure of truth degrees from Example 4

b1/y2

b2/y3

b2/y4

a/y1 d/y2

b2/y2

b1/y5

b1/y3

b1/y4

a/y1

Figure 4.4: L∗-derivation DAGs D1 and D2

Further in the thesis, we denote by D1 ∪ D2 a DAG satisfying the conditions from

Lemma 32 and call it a union of T -based L∗-derivation DAGs D1 and D2. Note here that

D1 ∪D2 satisfying conditions of Lemma 32 may not be given uniquely.

Remark 16. One may be tempted to simplify the construction from Lemma 32 by taking

the set-theoretic unions V1 ∪ V2 and A1 ∪A2 for the sets of vertices and arcs of D1 ∪D2.

However, the resulting structure may not be a T -based L∗-derivation DAG (even if acyclic,

it may not conform to the definition of a T -based L∗-derivation DAG).

Directly by observing (4.10), we get the following

Corollary 33. If D1 and D2 are T -based L∗-derivation DAGs which have the same set

of initial vertices I, then the set of initial vertices of D1 ∪D2 is I.

In addition, in case of identical sets of initial vertices, D1 ∪D2 may be viewed as a

DAG obtained from D1 by consecutively adding (some) vertices and arcs corresponding to

vertices and arcs from D2, respectively, check the proof of Lemma 32. We further illustrate

the construction of D1 ∪D2 in the following example.

Example 4. For better illustration, we use a nonlinear structure of degrees as it is depicted

by the Hasse diagram in Figure 4.3 (left); the adjoint operations ⊗ and → are defined by

the tables. In addition, we assume that ∗ is identity. Using this structure of degrees, we

consider the following theory:

T = {{b2/y2,
c2/y5} ⇒ {c1/y3,

c1/y4}, (A1)

{d/y3,
d/y2} ⇒ {1/y1}, (A2)

{c1/y1,
c2/y4} ⇒ {c2/y2}}. (A3)
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d/y2

b2/y3
b2/y4

b1/y5

c2/y1 d/y3
d/y4

Figure 4.5: L∗-derivation DAG D1 ∪D2

Let us consider T -based L∗-derivation DAGs D1 and D2 for fuzzy attribute implications

{b1/y2,
b2/y3,

b2/y4} ⇒ {a/y1,
d/y2} and {b2/y2,

b1/y5} ⇒ {b1/y3,
b1/y4,

a/y1}, respectively.

The DAGs are depicted in Figure 4.4. D1 is constructed from the set of initial vertices

{〈y2, b1〉, 〈y3, b2〉, 〈y4, b2〉} by adding vertices 〈y1, a〉, 〈y2, d〉 using FAIs (A2) and (A3),

respectively. More precisely, when using (A2), we obtain (see (4.1)–(4.4)): s0 =
∧
∅ = 1,

s1 =
∧
{d → b2, d → b1} = c2 ∧ c1 = a, m = 0, and d = ((1 ∧ a)∗ ⊗ 1) ∨ 0 = a.

When using (A3) we get: s0 =
∧
∅ = 1, s1 =

∧
{c1 → a, c2 → b2} = c2, m = b1, and

d = ((1∧ c2)∗⊗ c2)∨ b1 = b2 ∨ b1. D2 is constructed from {〈y2, b2〉, 〈y5, b1〉} by using (A1)

twice for adding vertices 〈y3, b1〉, 〈y4, b1〉, and then using (A2) for adding 〈y1, a〉.
The set of initial vertices for D1 ∪D2 given by Lemma 32 is {〈y2, d〉, 〈y3, b2〉, 〈y4, b2〉,

〈y5, b1〉}. Moreover, we have W1 = {〈y1, a〉} and W2 = {〈y3, b1〉, 〈y4, b1〉, 〈y1, a〉}. During

the process of construction of D1∪D2, we use (A2) once and (A1) twice for adding vertices

〈y1, c2〉, 〈y3, d〉, and 〈y4, d〉. The result is depicted in Figure 4.5.

Regarding the ability to enlarge a T -based L∗-derivation DAG by adding vertices and

arcs, we recognize so-called final DAGs which cannot be enlarged in this sense. The

following definition introduces this notion formally.

Definition 34 (Final T -based L∗-derivation DAG). A T -based L∗-derivation DAG is

called final if there are no E ⇒ F ∈ T , attribute y ∈ R, and vertices 〈y1, a1〉 ∈
V, . . . , 〈yk, ak〉 ∈ V such that for s0, s1,m, d given by (4.1)–(4.4) we have d > m.

Final T -based L∗-derivation DAGs possess the following property:

Lemma 35. Let D1 and D2 be T -based L∗-derivation DAGs with the same set of initial

vertices. If D1 is final, then D1(y) ≥ D2(y) for all y ∈ R.

Proof. Let us consider there is y ∈ R such that D1(y) � D2(y). It suffices to show that

D1 is not final. From Lemma 32 we get that D1∪D2 has the same set of initial vertices as

D1 and D2. Furthermore, D1(y) � D2(y) yields (D1 ∪D2)(y) ≥ D1(y) ∨D2(y) > D1(y).

In addition, we may consider that D1 ∪D2 6= D1 has been constructed by adding vertices

and arcs to D1 (see the proof of Lemma 32), which means that D1 is not final.

As a consequence, final T -based L∗-derivation DAGs with the same sets of initial

vertices are fully characterized by their yields:

Theorem 36. Let D1 and D2 be T -based L∗-derivation DAGs with the same set of initial

vertices and let D1 be final. Then, D2 is final iff D1(y) = D2(y) for all y ∈ R.
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Proof. From Lemma 35 it follows that if both D1 and D2 are final, then D1(y) = D2(y)

for all y ∈ R. Conversely, if D1 and D2 have the same yield for all y ∈ R and D1 is

final, from Lemma 35 it follows that one cannot extend D2 by another vertex because this

would contradict that D1 is final, i.e., D2 must be final.

We are now ready to prove correctness of Procedure 31.

Theorem 37. Assuming L finite, for any A⇒ B and theory T , Procedure 31 terminates

after finitely many steps and it returns “YES” iff ||A⇒ B||T = 1.

Proof. The termination is clear and follows from the finiteness of LY . If “YES” is returned,

then D is a T -based L∗-derivation DAG for A ⇒ B and using Theorem 28, we get that

||A⇒ B||T = 1. Conversely, let ||A⇒ B||T = 1 and by contradiction, assume that “NO”

has been returned. That means, for the last T -based L∗-derivation DAG D there is y ∈ R
such that B(y) � D(y). Since ||A ⇒ B||T = 1, according to Theorem 28, there is a

T -based L∗-derivation DAG for A ⇒ B, denote it by D′. Now, according to Lemma 32,

the union D ∪D′ is a T -based L∗-derivation DAG for A ⇒ B since both D and D′ have

the same set of initial vertices. In addition, (D ∪D′)(y) > D(y), which contradicts the

fact that D was final, see Lemma 35.

As a further consequence, which is easy to see, we get that if “NO” is answered by

the above procedure, then the last D considered was final. The asymptotic worst-case

time complexity of the procedure we have introduced for checking whether A⇒ B follows

from T to a degree 1 is O(p2n), where p = |Y |, and n = |T | provided that the size of L is

considered as a constant, cf. [6, 82].

The previous observations enable us to extend the procedure for computing syntactic

closures for L-sets of attributes. Let us recall that by a closure of A under T , denoted A+
T ,

we mean the largest L-set such that T ` A⇒ A+
T , see [13]. For every A and T , A+

T always

exists, is uniquely given and has the following important property [13] provided that L is

finite:

||A⇒ B||T = S
(
B,A+

T

)
. (4.11)

The closure A+
T can be obtained from the yield of a final T -based L∗-derivation DAG:

Theorem 38. Let L be finite and D be a T -based L∗-derivation DAG for A⇒ B. Then

D is final iff D(y) = A+
T (y) for all y ∈ R.

Proof. Since A+
T is known to be the greatest L-set such that T ` A ⇒ A+

T , there is a

T -based L∗-derivation DAG D′ for A ⇒ A+
T which is final and D′(y) = A+

T (y) for all

y ∈ R (otherwise we would get a contradiction to the fact that A+
T is the greatest L-set

such that T ` A⇒ A+
T ). Now, we may apply Theorem 36.

Owing to Theorem 38, in order to compute the degree ||A⇒ B||T , it suffices to find a

single final T -based L∗-derivation DAG D for A⇒ B, and apply (4.11) for A+
T determined

from the yield of D. We may formalize this computation by a modification of Procedure 31:
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Procedure 39 (Compute entailment degree). For any T and A⇒ B:

1. Step 1. remains the same as in Procedure 31.

2. If D can be enlarged according to Definition 22 (case 2.), then enlarge D and repeat

step 2.; otherwise return S(B,A+
T ), where A+

T (y) = D(y) for all y ∈ R.

Theorem 38 ensures that Procedure 39 is correct.

4.4 Illustrative example

For further illustration of the procedures discussed in this chapter, we present here an ex-

tended example in which we use the similarity-based database semantics of FAIs. Assume

that a bank is keeping the following information about clients: city of residence (attribute

c ), age (attribute a ), education (attribute e ), job position (attribute j ), salary (at-

tribute s ), loan amount (attribute l ), account balance (attribute b ), number of children

(attribute ch ), and insurance products (attribute i ). Suppose that each attribute domain

is equipped with a graded similarity relation. For instance, a similarity ≈c on the domain

of cities may express the similarity of cities in terms of their size and location, ≈ch may

express similarity of numbers of children in the account holder’s household, ≈i can be

based on type of insurance products the client has. In this setting, one may be interested

in dependencies between values of the attributes. Since each domain is equipped with

similarity, the dependencies may be satisfied (in data) to degrees and thus it is natural to

express the dependencies by SBFDs.

Consider the set L = [0, 1] together with  Lukasiewicz operations and hedge ∗ being

identity as a structure of truth degrees. Assume that the following set of SBFDs has been

derived from a database (see [13] for a survey of methods):

T = {{0.8/c , 0.4/a , 0.9/j } ⇒ {0.9/s }, (A1)

{0.9/l , 0.8/s } ⇒ {0.8/b }, (A2)

{0.8/ch , 0.8/s , 0.8/e } ⇒ {0.8/a }, (A3)

{0.8/e , 0.7/a } ⇒ {0.8/ch } (A4)

{0.7/a , 0.7/c , 0.8/s } ⇒ {0.8/l }, (A5)

{0.8/b , 0.8/a , 0.9/l , 0.8/ch } ⇒ {0.8/i }}. (A6)

For example, (A5) can be read as follows: “If two clients have similar age at least to degree

0.7, live in cities which are similar at least to degree 0.7 and have salaries similar at least

to degree 0.8, then their loan amount is similar at least to degree 0.8”. Now consider A =

{0.8/c , 0.7/j , 0.7/e , 0.6/ch } and B = {0.8/i , 0.7/l }. Suppose we are interested in the degree

to which A⇒ B follows from T (i.e., the degree ||A⇒ B||T ). According to Procedure 39,

we construct a final T -based L∗-derivation DAG D with initial vertices from A, determine

the closure A+
T , and compute the subsethood degree S(B,A+

T ). The desired T -based L∗-

derivation DAG is depicted in Figure 4.6. In the process of its construction, we have used
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0.8/c

0.7/j

0.6/ch

0.7/e

0.5/s

0.5/a

0.7/s

0.6/a

0.7/ch

0.7/a

0.7/l

0.6/b 0.6/i

Figure 4.6: T -based L∗-derivation DAG for A⇒ A+
T .

(A1), (A3), (A1), (A3), (A4), (A3), (A5), (A2), and (A6) for adding vertices 〈s , 0.5〉,
〈a , 0.5〉, 〈s , 0.7〉, 〈a , 0.6〉, 〈ch , 0.7〉, 〈a , 0.7〉, 〈l , 0.7〉, 〈b , 0.6〉, and 〈i , 0.6〉, respectively.

Notice that D is final and thanks to Theorem 38 we have

A+
T = {0.8/c , 0.7/j , 0.7/e , 0.7/ch , 0.7/s , 0.7/a , 0.7/l , 0.6/b , 0.6/i },

and thus

||A⇒ B||T = S(B,A+
T ) = (0.8→ 0.6) ∧ (0.7→ 0.7) = 0.8 ∧ 1 = 0.8.

The following sequence is a proof of A⇒ A+
T constructed from the DAG in Figure 4.6.

The proof uses derivation rules (Mul), (Ref), and (Acc) and has been constructed from

the DAG according to the procedure from Theorem 27.

1) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.6/ch }
(Ref)

2) {0.8/c , 0.4/a , 0.9/j } ⇒ {0.9/s }
∈ T

3) {0.4/c , 0.5/j } ⇒ {0.5/s }
(Mul) on 2)

4) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.6/ch , 0.5/s }
(Acc) on 1), 3)

5) {0.8/ch , 0.8/s , 0.8/e } ⇒ {0.8/a }
∈ T

6) {0.5/ch , 0.5/s , 0.5/e } ⇒ {0.5/a }
(Mul) on 5)

7) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.6/ch , 0.5/s , 0.5/a }
(Acc) on 4), 6)

8) {0.6/c , 0.2/a , 0.7/j } ⇒ {0.7/s }
(Mul) on 2)

9) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.6/ch , 0.7/s , 0.5/a }
(Acc) on 7), 8)
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10) {0.6/ch , 0.6/s , 0.6/e } ⇒ {0.6/a }
(Mul) on 5)

11) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.6/ch , 0.7/s , 0.6/a }
(Acc) on 9), 10)

12) {0.8/e , 0.7/a } ⇒ {0.8/ch }
∈ T

13) {0.7/e , 0.6/a } ⇒ {0.7/ch }
(Mul) on 12)

14) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.7/ch , 0.7/s , 0.6/a }
(Acc) on 11), 13)

15) {0.7/ch , 0.7/s , 0.7/e } ⇒ {0.7/a }
(Mul) on 5)

16) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.7/ch , 0.7/s , 0.7/a }
(Acc) on 14), 15)

17) {0.7/a , 0.7/c , 0.8/s } ⇒ {0.8/l }
∈ T

18) {0.6/a , 0.6/c , 0.7/s } ⇒ {0.7/l }
(Mul) on 17)

19) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒ {0.8/c , 0.7/j , 0.7/e , 0.7/ch , 0.7/s , 0.7/a , 0.7/l }
(Acc) on 16), 18)

20) {0.9/l , 0.8/s } ⇒ {0.8/b }
∈ T

21) {0.7/l , 0.6/s } ⇒ {0.6/b }
(Mul) on 20)

22) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒
⇒ {0.8/c , 0.7/j , 0.7/e , 0.7/ch , 0.7/s , 0.7/a , 0.7/l , 0.6/b }
(Acc) on 19), 21)

23) {0.8/b , 0.8/a , 0.9/l , 0.8/ch } ⇒ {0.8/i }
∈ T

24) {0.6/b , 0.6/a , 0.7/l , 0.6/ch } ⇒ {0.6/i }
(Mul) on 23)

25) {0.8/c , 0.7/j , 0.7/e , 0.6/ch } ⇒
⇒ {0.8/c , 0.7/j , 0.7/e , 0.7/ch , 0.7/s , 0.7/a , 0.7/l , 0.6/b , 0.6/i }
(Acc) on 22), 24)

Notice that if we reorder the formulas in the preceding proof (see the proof of Theorem 27),

we obtain an MRAP sequence for A ⇒ A+
T which corresponds to the DAG. Notice that

(Pro) is not needed in this case.
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4.5 Conclusions

We have presented a graph-based inference methods for graded if-then rules, particularly

for SBFDs from Section 2.3.3. We have introduced a notion of a T -based L∗-derivation

directed acyclic graph (DAG) which generalizes the ordinary notion of a T -based derivation

DAG from [81]. The main results show that degrees of semantic entailment of if-then

rules from collections of other if-then rules can be characterized by the existence of such

directed acyclic graphs. We have proved the result by showing correspondences between

the constructions of T -based L∗-derivation DAGs and proofs from T .
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Chapter 5

Sensitivity analysis for

similarity-based functional

dependencies

In this chapter we look at similarity estimates for SBFDs (given by Equation (2.62)) in

ranked data tables (RDTs) over domains with similarities (see Section 2.3). We answer

some natural questions such as: What is the relationship between ||A⇒ B||D1 and ||A⇒
B||D2 in terms of similarity of RDTs D1 and D2? Or what can we say about the truth

degrees ||A ⇒ B1||D and ||A ⇒ B2||D in terms of similarity of B1 and B2. The first

problem we discuss in this chapter is how to assess similarity of two ranked data tables.

5.1 Rank-based similarity

In this section, we introduce a notion of a similarity and a related notion of a graded

containment (subsethood) of RDTs on the same relation scheme R. As in the case of

domain similarities, the similarity of RDTs is expressed by degrees from the complete

residuated lattice L.

The rank-based similarity of RDTs which is based on the idea that RDTs D1 and D2

(on the same relation scheme R) are similar iff for each tuple r ∈ Tupl(R), ranks D1(r)

and D2(r) are similar degrees from L. Similarity of degrees from L can be expressed by

a biresiduum (2.2). Since we are interested in assessing similarity of D1(r) and D2(r) for

all possible tuples r, we may define the similarity E(D1,D2) of RDTs D1 and D2 as an

infimum which goes over all tuples:

E(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)↔ D2(r)

)
. (5.1)

If D1 and D2 are results of queries Q1 and Q2, then (5.1) can be interpreted as a degree

to which the following proposition is true: “Each tuple matches query Q1 if and only if

it matches query Q2.” Thus, D1 and D2 are considered similar if they represent similar

answers to queries.

67
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Remark 17. Note that from the computational point of view, (5.1) involves a general

infimum which goes over all tuples in Tupl(R). If R contains an attribute y ∈ R whose

domain Dy is infinite, so is Tupl(R). Thus, in order to evaluate (5.1), one has to go over

infinitely many tuples. Nevertheless, determining E(D1,D2) is tractable since only finitely

many tuples have nonzero ranks in D1 and D2. Indeed, from properties of↔, we can easily

see that in (5.1), only for finitely many tuples r ∈ Tupl(R), the value of D1(r)↔ D2(r) is

nonzero and for all r ∈ Tupl(R) such that D1(r) = D2(r) = 0, we have D1(r)↔ D2(r) = 1

which does not contribute to the degree E(D1,D2). Hence, the right-hand side of (5.1) can

be rewritten as ∧
{D1(r)↔ D2(r) | D1(r) > 0 or D2(r) > 0}.

Also note that for a∅ and b∅, E(a∅, b∅) = a↔ b.

An alternative (but equivalent) way to define similarity of RDTs is the following: we

first formalize a degree S(D1,D2) to which D1 is included in D2. The motivation for having

degrees of inclusion comes from considering a rank-aware generalization of the subsethood

of classic relations. In case of RDTs, we can say that D1 is fully included in D2 iff, for each

tuple r, the rank D2(r) is at least as high as the rank D1(r). Notice that in the ordinary

case, this is exactly how one defines the ordinary subsethood relation “⊆”. Considering

general degrees of inclusion (subsethood), a degree S(D1,D2) to which D1 is included in

D2 can be defined as follows:

S(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→ D2(r)

)
. (5.2)

Described verbally, S(D1,D2) is a degree to which “each tuple matches Q2 at least to the

degree to which it matches Q1” provided that D1 and D2 are interpreted as results of

queries Q1 and Q2, respectively. Similar observations as in Remark 17 apply: S(D1,D2)

can be computed considering only finitely many tuples from Tupl(R). In this case, it

suffices to go over tuples which have nonzero ranks in D1 because 0→ a = 1 for all a ∈ L.

Remark 18. By a slight abuse of notation, we denote the fact S(D1,D2) = 1 by D1 ⊆ D2.

Observe that S(D1,D2) = 1 iff D1(r) ≤ D2(r) for all r ∈ Tupl(R). Analogously, we

denote E(D1,D2) = 1 by D1 = D2. In this case, E(D1,D2) = 1 iff D1(r) = D2(r) for all

r ∈ Tupl(R).

It is easy to prove [9] that (5.1) and (5.2) satisfy:

E(D1,D2) = S(D1,D2) ∧ S(D2,D1). (5.3)

Note that E and S defined by (5.1) and (5.2) are known as degrees of similarity (2.34)

and subsethood (2.33) (in this case, the fuzzy relations are RDTs).

Remark 19. (a) An interesting point is the relationship between the notions of domain

similarity and similarity defined by (5.1). In fact, (5.1) can be seen as a definition of
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a similarity on a domain of all RDTs on R. This follows from the fact that E defined by

(5.1) is obviously reflexive and symmetric (in addition, it is separating and ⊗-transitive).

As a consequence, if one requires RDTs as values of attributes (e.g., as in [54]), (5.1) can

be used to measure similarity on domains of RDTs. We consider this to be an important

aspect of the model, showing its universality.

(b) Note that if the complete residuated lattice L becomes the two-element Boolean

algebra, the notions of degree of similarity and inclusion become the ordinary (bivalent)

notions of equality and inclusion of data tables, meaning that S(D1,D2) = 1 iff each tuple

from D1 is also in D2, and S(D1,D2) = 0 otherwise (D1 contains a tuple which is not in

D2). Analogously for E.

5.2 Similarity estimates for similarity-based FD

We have seen how to define the similarity of two RDTs on the same relation scheme. An

interesting question regarding the validity of SBFDs is: What can we say about the truth

degree of A⇒ B in similar RDTs? Before we answer this question, we present a Lemma

that establishes the relationship between the similarity of two tuples in two different RDTs

on the same relation scheme. Recall from (2.3) that a2 = a⊗ a.

Lemma 40. For RDTs D1, D2 on the same relation scheme R and for any tuples r1, r2 ∈
Tupl(R):

S(D1,D2)2 ⊗ (r1(A) ≈D2 r2(A)) ≤ r1(A) ≈D1 r2(A), (5.4)

(S(D1,D2)∗)2 ⊗ (r1(A) ≈D2 r2(A))∗ ≤ (r1(A) ≈D1 r2(A))∗. (5.5)

Proof. Using the fact that for any a, b, c ∈ L

(a⊗ b)→ c = a→ (b→ c) = b→ (a→ c)

together with (2.16) and (5.2) we have

S(D1,D2)2 ⊗ (r1(A) ≈D2 r2(A)) =

S(D1,D2)2 ⊗
(

(D2(r1)⊗D2(r2))→
∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
)

=

S(D1,D2)2 ⊗
(
D2(r1)→

(
D2(r2)→

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
))
≤

S(D1,D2)⊗ (D1(r1)→ D2(r1))⊗
(
D2(r1)→

(
D2(r2)→

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
))
≤

S(D1,D2)⊗
(
D1(r1)→

(
D2(r2)→

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
))

=

S(D1,D2)⊗
(
D2(r2)→

(
D1(r1)→

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
))
≤

(D1(r2)→ D2(r2))⊗
(
D2(r2)→

(
D1(r1)→

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
))
≤
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D1(r2)→
(
D1(r1)→

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
)

=

(D1(r2)⊗D1(r1))→
∧
y∈R

(A(y)→ r1(y) ≈y r2(y)) = r1(A) ≈D1 r2(A).

The second inequality follows from the first one using a∗ ⊗ b∗ ≤ (a⊗ b)∗ twice.

The following Theorem shows the relationship between the similarity of two RDTs D1,

D2 and the degrees to which they satisfy a SBFD A⇒ B.

Theorem 41. For RDTs D1, D2 on the same relation scheme R we have

(S(D1,D2)∗)2 ⊗ S(D2,D1)2 ≤ ||A⇒ B||D1 → ||A⇒ B||D2 , (5.6)

(E(D1,D2)∗)2 ⊗ E(D2,D1)2 ≤ ||A⇒ B||D1 ↔ ||A⇒ B||D2 . (5.7)

Proof. Using adjointness the Equation (5.6) is equivalent to

(S(D1,D2)∗)2 ⊗ S(D2,D1)2 ⊗ ||A⇒ B||D1 ≤ ||A⇒ B||D2 .

Thus it suffices to show that

(S(D1,D2)∗)2 ⊗ S(D2,D1)2 ⊗ ||A⇒ B||D1 ≤ (r1(A) ≈D2 r2(A))∗ → (r1(B) ≈D2 r2(B))

is true for any r1, r2 ∈ Tupl(R). Which is further equivalent to

(S(D1,D2)∗)2 ⊗ S(D2,D1)2 ⊗ ||A⇒ B||D1 ⊗ (r1(A) ≈D2 r2(A))∗ ≤ (r1(B) ≈D2 r2(B)).

The last inequality is indeed true, for any r1, r2 ∈ Tupl(R) we have

(S(D1,D2)∗)2 ⊗ S(D2,D1)2 ⊗ ||A⇒ B||D1 ⊗ (r1(A) ≈D2 r2(A))∗ =

(S(D1,D2)∗)2 ⊗ (r1(A) ≈D2 r2(A))∗ ⊗ S(D2,D1)2 ⊗ ||A⇒ B||D1 ≤

(r1(A) ≈D1 r2(A))∗ ⊗ S(D2,D1)2 ⊗ ||A⇒ B||D1 ≤

S(D2,D1)2 ⊗ (r1(A) ≈D1 r2(A))∗ ⊗
(
(r1(A) ≈D1 r2(A))∗ → (r1(B) ≈D1 r2(B))

)
≤

S(D2,D1)2 ⊗ (r1(B) ≈D1 r2(B)) ≤ (r1(B) ≈D2 r2(B)),

using Lemma 40 and (2.13). The Equation (5.7) is a consequence of (5.6), monotony of

hedge, and of the fact that for any degrees a1i ∈ L, a2i ∈ L where i = 1, . . . , n, we have⊗n
i=1(a1i ∧ a2i) ≤

⊗n
i=1 a1i ∧

⊗n
i=1 a2i. (5.8)

Indeed:

(E(D1,D2)∗)2 ⊗ E(D2,D1)2 =
(
(S(D1,D2) ∧ S(D2,D1))∗

)2 ⊗ E(D2,D1)2 ≤(
S(D1,D2)∗ ∧ S(D2,D1)∗

)2 ⊗ (S(D2,D1) ∧ S(D1,D2)
)2 ≤(

(S(D1,D2)∗)2 ∧ (S(D2,D1)∗)2
)
⊗
(
(S(D2,D1))2 ∧ (S(D1,D2))2

)
≤(

(S(D1,D2)∗)2 ⊗ (S(D2,D1))2
)
∧
(
(S(D2,D1)∗)2 ⊗ (S(D1,D2))2 ≤

(||A⇒ B||D1 → ||A⇒ B||D2) ∧ (||A⇒ B||D2 → ||A⇒ B||D1) =

||A⇒ B||D1 ↔ ||A⇒ B||D2 .
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If we take an identity for a hedge, the left hand side of the Equation (5.7) can be

simplified.

Corollary 42. For RDTs D1, D2 on the same relation scheme R and for hedge being

identity we have

E(D1,D2)4 ≤ ||A⇒ B||D1 ↔ ||A⇒ B||D2 .

We now turn our attention to hedges. Since a hedge is used as a parameter in the

definition of SBFD, the natural question is how the truth degree of SBFD A ⇒ B when

hedge ∗1 is used differs from the truth degree of the same SBFD when hedge ∗2 is used. In

order to emphasize the hedge used in the definition of SBFD, we will employ the following

notation: ||A⇒ B||∗D. First of all, we need to capture the similarity of two hedges:

Definition 43 ([16]). For hedges ∗1, ∗2 on L put

(∗1 � ∗2) =
∧
a∈L

(a∗1 → a∗2), (5.9)

(∗1 ≈ ∗2) =
∧
a∈L

(a∗1 ↔ a∗2). (5.10)

The Equation (5.10) can be interpreted as a degree to which hedges ∗1 and ∗2 yield

similar results. More precisely, (5.10) is a true degree of of the following formula: “for

each a ∈ L: the result of a∗1 is similar to the result of a∗2 .” Analogously, (5.9) can be

interpreted as a degree to which ∗1 is stronger than ∗2.

Theorem (44) shows that “if A⇒ B is true using hedge ∗2 and if hedge ∗1 is stronger

than ∗2, then A⇒ B is true using hedge ∗1” and that “if the hedges ∗1 and ∗2 are similar,

then the degrees to which A⇒ B is true using hedge ∗1 and hedge ∗2 are similar”.

Theorem 44. Let A,B ∈ LR and let ∗1, ∗2 be two hedges on L. Then for any RDT D
on R we have:

(∗1 � ∗2) ≤ ||A⇒ B||∗2D → ||A⇒ B||∗1D , (5.11)

(∗1 ≈ ∗2) ≤ ||A⇒ B||∗2D ↔ ||A⇒ B||∗1D . (5.12)

Proof. The first inequality is true iff

(∗1 � ∗2)⊗ ||A⇒ B||∗2D ≤ ||A⇒ B||∗1D

holds. Using (2.21) we have:

(∗1 � ∗2)⊗ ||A⇒ B||∗2D =

(∗1 � ∗2)⊗
∧

r1,r2∈Tupl(R)

(r1(A) ≈D r2(A))∗2 → (r1(B) ≈D r2(B)) ≤

∧
r1,r2∈Tupl(R)

(∗1 � ∗2)⊗
(
(r1(A) ≈D r2(A))∗2 → (r1(B) ≈D r2(B))

)
=
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∧
r1,r2∈Tupl(R)

(
∧
a∈L

(a∗1 → a∗2))⊗
(
(r1(A) ≈D r2(A))∗2 → r1(B) ≈D r2(B)

)
.

Now observe that∧
a∈L

(a∗1 → a∗2) ≤ (r1(A) ≈D r2(A))∗1 → (r1(A) ≈D r2(A))∗2

which together with ⊗-transitivity of residuum (2.16) yields:

(∗1 � ∗2)⊗ ||A⇒ B||∗2D ≤∧
r1,r2∈Tupl(R)

((
(r1(A) ≈D r2(A))∗1 → (r1(A) ≈D r2(A))∗2

)
⊗

⊗
(
(r1(A) ≈D r2(A))∗2 → r1(B) ≈D r2(B)

))
≤∧

r1,r2∈Tupl(R)

(r1(A) ≈D r2(A))∗1 → (r1(B) ≈D r2(B)) = ||A⇒ B||∗1D

finishing the proof of (5.11). The inequality (5.12) is a consequence of (5.11).

The previous theorem showed how the truth degree of SBFD A ⇒ B changes if we

change the hedge. The next problem we want to tackle is how the truth degree of A⇒ B

depends on the truth degrees prescribed by the L-sets A,B. First, we present an auxiliary

lemma, which we will use in the subsequent proofs. The Lemma 45 states that if two

tuples are similar on the attributes A and if B is subset of A, then they are similar on B

as well.

Lemma 45. Let A,B ∈ LR be fuzzy sets of attributes. For any RDT D on R and any

tuples r1, r2 ∈ D we have:

S(B,A)⊗ (r1(A) ≈D r2(A)) ≤ (r1(B) ≈D r2(B)). (5.13)

Proof. Using (2.15) we get

S(B,A)⊗ (r1(A) ≈D r2(A)) =

S(B,A)⊗
(
(D(r1)⊗D(r2))→

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
)
≤

(D(r1)⊗D(r2))→
(
S(B,A)⊗

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
)
.

Now observe that using (2.21), (2.15) and (2.16) we have

S(B,A)⊗
∧
y∈R

(A(y)→ r1(y) ≈y r2(y)) ≤

∧
y∈R

(
S(B,A)⊗ (A(y)→ r1(y) ≈y r2(y))

)
≤

∧
y∈R

(
(B(y)→ A(y))⊗ (A(y)→ r1(y) ≈y r2(y))

)
≤
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∧
y∈R

(B(y)→ r1(y) ≈y r2(y)),

which together with isotony of → in the second argument yields

(D(r1)⊗D(r2))→
(
S(B,A)⊗

∧
y∈R

(A(y)→ r1(y) ≈y r2(y))
)
≤

(D(r1)⊗D(r2))→
(∧
y∈R

(B(y)→ r1(y) ≈y r2(y))
)
.

Putting the previous observations together we finally obtain

S(B,A)⊗ (r1(A) ≈D r2(A)) ≤

(D(r1)⊗D(r2))→
(∧
y∈R

(B(y)→ r1(y) ≈y r2(y))
)

=

(r1(B) ≈D r2(B)).

We are now ready to show how the validity of A ⇒ B will change, if we replace the

sets of attributes A and B by similar ones.

Lemma 46. Let A,B1, B2 ∈ LR be fuzzy sets of attributes. For any RDT D on R we

have

S(B2, B1)⊗ ||A⇒ B1||D ≤ ||A⇒ B2||D. (5.14)

Proof. Using the Lemma 45 and (2.15) we observe that

S(B2, B1)⊗ ||A⇒ B1||D =

S(B2, B1)⊗
∧

r1,r2∈Tupl(R)

(
(r1(A) ≈D r2(A))∗ → (r1(B1) ≈D r2(B1))

)
≤

∧
r1,r2∈Tupl(R)

S(B2, B1)⊗
(
(r1(A) ≈D r2(A))∗ → (r1(B1) ≈D r2(B1))

)
≤

∧
r1,r2∈Tupl(R)

(r1(A) ≈D r2(A))∗ →
(
S(B2, B1)⊗ (r1(B1) ≈D r2(B1))

)
≤

∧
r1,r2∈Tupl(R)

(r1(A) ≈D r2(A))∗ → (r1(B2) ≈D r2(B2))
)

= ||A⇒ B2||D.

Lemma 47. Let A1, A2, B ∈ LR be fuzzy sets of attributes. For any RDT D on R we

have

S(A1, A2)∗ ⊗ ||A1 ⇒ B||D ≤ ||A2 ⇒ B||D. (5.15)
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Proof. Using adjointness, (5.15) is equivalent to

||A1 ⇒ B||D ≤ S(A1, A2)∗ → ||A2 ⇒ B||D.

From (2.18) and (2.14) we have:

S(A1, A2)∗ → ||A2 ⇒ B||D =

S(A1, A2)∗ →
∧

r1,r2∈Tupl(R)

(
(r1(A2) ≈D r2(A2))∗ → (r1(B) ≈D r2(B))

)
=

∧
r1,r2∈Tupl(R)

S(A1, A2)∗ →
(
(r1(A2) ≈D r2(A2))∗ → (r1(B) ≈D r2(B))

)
=

∧
r1,r2∈Tupl(R)

(
S(A1, A2)∗ ⊗ (r1(A2) ≈D r2(A2))∗

)
→ (r1(B) ≈D r2(B)).

Using the fact that in every residuated lattice with hedge a∗⊗ b∗ ≤ (a⊗ b)∗ is true for any

a, b ∈ L, together with (5.13) and monotony of ∗ we have:

S(A1, A2)∗ ⊗ (r1(A2) ≈D r2(A2))∗ ≤(
S(A1, A2)⊗ (r1(A2) ≈D r2(A2))

)∗ ≤
(r1(A1) ≈D r2(A1))∗.

Using the previous observation together with antitony of → in the first argument:

S(A1, A2)∗ → ||A2 ⇒ B||D =∧
r1,r2∈Tupl(R)

(
S(A1, A2)∗ ⊗ (r1(A2) ≈D r2(A2))∗

)
→ (r1(B) ≈D r2(B)) ≥

∧
r1,r2∈Tupl(R)

(r1(A1) ≈D r2(A1))∗ → (r1(B) ≈D r2(B)) = ||A1 ⇒ B||D.

To sum up, we obtain the following Theorem.

Theorem 48. Let A1, A2, B1, B2 ∈ LR. For any RDT D on R and for fixed hedge ∗ we

have:

S(A1, A2)∗ ⊗ S(B2, B1)⊗ ||A1 ⇒ B1||D ≤ ||A2 ⇒ B2||D, (5.16)

E(A1, A2)∗ ⊗ E(B2, B1) ≤ ||A1 ⇒ B1||D ↔ ||A2 ⇒ B2||D. (5.17)

Proof. The inequality (5.16) is a direct consequence of Lemma 46 and Lemma 47. Equa-

tion (5.17) is a consequence of (5.16) and can be proved following the same arguments as

in the prove of (5.7):

E(A1, A2)∗ ⊗ E(B2, B1) =

(S(A1, A2) ∧ S(A2, A1))∗ ⊗ (S(B2, B1) ∧ S(B1, B2)) ≤

(S(A1, A2)∗ ∧ S(A2, A1)∗)⊗ (S(B2, B1) ∧ S(B1, B2)) ≤
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(S(A1, A2)∗ ⊗ S(B2, B1)) ∧ (S(A2, A1)∗ ⊗ S(B1, B2)) ≤

(||A1 ⇒ B1||D → ||A2 ⇒ B2||D) ∧ (||A2 ⇒ B2||D → ||A1 ⇒ B1||D) =

||A1 ⇒ B1||D ↔ ||A2 ⇒ B2||D.

5.3 Conclusions

In this chapter we have introduced a similarity measure for RDTs (called rank-based

similarity) and presented several estimates for similarity-based functional dependencies.

Future research will focus on similarity estimates for other similarity measures of RDTs,

for example for the tuple-based similarity of RDTs from Chapter 6. We are also going to

study weather such similarity estimates are possible for other generalizations of FD from

Chapter 3.
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Chapter 6

Similarity estimates of query

results

In this chapter we will show that relational operations from Section 2.3.2 are robust because

they are insensitive to slight changes in data: (very) similar input data cannot yield (very)

different results under the notions of similarity defined by (5.1). This has many practical

implications. For instance, if two experts are asked to assign ranks in a datatable based

on their knowledge of particular problem domain, they can come up with different ranks.

If the assigned ranks are sufficiently close, we know that we can take either of the ranked

data tables and it will produce similar results as the other one when used in subsequent

queries. Later in this chapter we will provide an alternative measure of similarity of RDTs

based on ranks and tuple values, and we will introduce related relational operation—a

similarity-based closure.

6.1 Similarity estimates for relational operations

Before we will show how various relational operations preserve subsethood and similarity

degrees, we prove a technical lemma which allows us to derive observations of preserving

similarity (5.1) based on observations on preserving subsethood degrees (5.2). The lemma

can be used to draw general conclusions about n-ary operations on RDTs, i.e., operations

f which map input RDTs D1, . . . ,Dn to f(D1, . . . ,Dn).

Lemma 49. Let f be an n-ary operation on RDTs. If

⊗j
i=1 S(Di,D′i)⊗

⊗n
i=j+1 S(D′i,Di) ≤ S(f(D1, . . . ,Dn), f(D′1, . . . ,D′n)), (6.1)

for some 0 ≤ j ≤ n and all Di,D′i (i = 1, . . . , n), then

⊗n
i=1E(Di,D′i)≤E(f(D1, . . . ,Dn), f(D′1, . . . ,D′n)) (6.2)

for all RDTs Di,D′i where i = 1, . . . , n.

77
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Proof. First, observe that j in (6.1) splits the arguments to f into two subsets: arguments

which are isotone with respect to the graded subsethood and antitone with respect to the

graded subsethood: If j = 0 and j = n then all considered arguments are antitone and

isotone, respectively. Anyway, if (6.1) holds for j and any RDTs Di,D′i, we can use (6.1)

twice to get(⊗j
i=1 S(Di,D′i)⊗

⊗n
i=j+1 S(D′i,Di)

)
∧
(⊗j

i=1 S(D′i,Di)⊗
⊗n

i=j+1 S(Di,D′i)
)
≤

S(f(D1, . . . ,Dn), f(D′1, . . . ,D′n))∧S(f(D′1, . . . ,D′n), f(D1, . . . ,Dn)) =

E(f(D1, . . . ,Dn), f(D′1, . . . ,D′n)).

Now, using (5.8) and (5.3)⊗n
i=1E(Di,D′i) =

⊗n
i=1

(
S(Di,D′i) ∧ S(D′i,Di)

)
≤ E(f(D1, . . . ,Dn), f(D′1, . . . ,D′n)),

which proves the claim.

Note that by a particularization of Lemma 49, for a unary operation f , we get that if

S(D,D′) ≤ S(f(D), f(D′)), (6.3)

for all RDTs D and D′, then

E(D,D′) ≤ E(f(D), f(D′)), (6.4)

for all RDTs D and D′. Condition (6.3) can be seen as a stronger form of isotony. Indeed,

f being isotone means that f(D) ⊆ f(D′) whenever D ⊆ D′. Clearly, if (6.3) holds then

f(D) ⊆ f(D′) is an abbreviation for S(D,D′) = 1 which implies S(f(D), f(D′)) = 1, i.e.,

f(D) ⊆ f(D′) and thus f is isotone.

Further subsections describe similarity estimates for relational operations.

6.1.1 Boolean-like operations

The following assertion shows that ∪ and ∩ preserve subsethood degrees and similarity

degrees given by (5.2) and (5.1), respectively. Putting Theorem 50 into words, (6.5) can

be read as: the degree to which D1 ∪ D2 is included in D′1 ∪ D′2 is at least as high as

the degree to which D1 is included in D′1 and D2 is included in D′2. Following the same

principle for the Equation (6.7): the degree to which D1 ∪ D2 is similar to D′1 ∪ D′2 is at

least as high as the degree to which D1 is similar to D′1 and D2 is similar D′2.

Theorem 50. For any D1, D′1, D2, and D′2 on relation scheme R,

S(D1,D′1) ∧ S(D2,D′2) ≤ S(D1 ∪ D2,D′1 ∪ D′2), (6.5)

S(D1,D′1) ∧ S(D2,D′2) ≤ S(D1 ∩ D2,D′1 ∩ D′2), (6.6)

E(D1,D′1) ∧ E(D2,D′2) ≤ E(D1 ∪ D2,D′1 ∪ D′2), (6.7)

E(D1,D′1) ∧ E(D2,D′2) ≤ E(D1 ∩ D2,D′1 ∩ D′2). (6.8)
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Proof. (6.5): We need to prove that

S(D1,D′1) ∧ S(D2,D′2) ≤
∧

r∈Tupl(R)

(
(D1 ∪ D2)(r)→ (D′1 ∪ D′2)(r)

)
.

Using adjointness, it suffices to check that(
S(D1,D′1) ∧ S(D2,D′2)

)
⊗ (D1 ∪ D2)(r) ≤ (D′1 ∪ D′2)(r)

is true for any r ∈ Tupl(R). Using (5.2), (2.17) and (2.13):(
S(D1,D′1) ∧ S(D2,D′2)

)
⊗ (D1 ∪ D2)(r) ≤(

(D1(r)→ D′1(r)) ∧ (D2(r)→ D′2(r))
)
⊗ (D1 ∪ D2)(r) =(

(D1(r)→ D′1(r)) ∧ (D2(r)→ D′2(r))
)
⊗ (D1(r) ∨ D2(r)) =((

(D1(r)→ D′1(r)) ∧ (D2(r)→ D′2(r))
)
⊗D1(t)

)
∨((

(D1(r)→ D′1(r)) ∧ (D2(r)→ D′2(r))
)
⊗D2(r)

)
≤(

(D1(r)→ D′1(r))⊗D1(r)
)
∨
(
(D2(r)→ D′2(r))⊗D2(r)

)
D′1(r) ∨

(
(D2(r)→ D′2(r))⊗D2(r)

)
≤

D′1(r) ∨ D′2(r) = (D′1 ∪ D′2)(r).

(6.6): Using the same idea, in order to prove (6.6) it is sufficient to check that for any

r ∈ Tupl(R) (
S(D1,D′1) ∧ S(D2,D′2)

)
⊗ (D1 ∩ D2)(r) ≤ (D′1 ∩ D′2)(r).

Using the monotony of ⊗ and ∧, and (2.21) we obtain:(
S(D1,D′1) ∧ S(D2,D′2)

)
⊗ (D1 ∩ D2)(r) ≤(

(D1(r)→ D′1(r)) ∧ (D2(r)→ D′2(r))
)
⊗ (D1 ∩ D2)(r) =(

(D1(r)→ D′1(r)) ∧ (D2(r)→ D′2(r))
)
⊗ (D1(r) ∧ D2(r)) ≤(

(D1(r)→ D′1(r))⊗ (D1(r) ∧ D2(r))
)
∧
(
(D2(r)→ D′2(r))⊗ (D1(r) ∧ D2(r))

)
≤(

(D1(r)→ D′1(r))⊗D1(r)
)
∧
(
(D2(r)→ D′2(r))⊗D2(r)

)
≤

D′1(r) ∧ D′2(r) = (D′1 ∩ D′2)(r).

The proof of (6.7) is straightforward. By applying (6.5) twice:

E(D1,D′1) ∧ E(D2,D′2) = S(D1,D′1) ∧ S(D′1,D1) ∧ S(D2,D′2) ∧ S(D′2,D2) ≤

S(D1 ∪ D2,D′1 ∪ D′2) ∧ S(D′1 ∪ D′2,D1 ∪ D2) = E(D1 ∪ D2,D′1 ∪ D′2).

(6.8) can be proved in the same way as (6.7).

Optimality

All (6.5)–(6.8) are optimal in the following sense: For any a ∈ L there are D1, D′1, D2, D′2
such that

S(D1,D′1) ∧ S(D2,D′2) = S(D1 ∪ D2,D′1 ∪ D′2) = a
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and similarly for (6.6)–(6.8). Therefore, one cannot find an expression which can be sub-

stituted for the left-hand side of (6.5)–(6.8) and which produces strictly higher similarity

estimates for all RDTs. Indeed, in the case of (6.5) and (6.7): for any a ∈ L consider

D1 = D′1 = 0∅, D2 = 1∅ and D′2 = a∅. Then

S(D1,D′1) ∧ S(D2,D′2) = (0→ 0) ∧ (1→ a) = 1 ∧ a = a,

S(D1 ∪ D2,D′1 ∪ D′2) = (0 ∨ 1)→ (0 ∨ a) = 1→ a = a,

E(D1,D′1) ∧ E(D2,D′2) = 1 ∧ a = a,

E(D1 ∪ D2,D′1 ∪ D′2) = 1↔ a = a.

The optimality of (6.6) and (6.8) can be seen by taking D1 = D′1 = D2 = 1∅ and D′2 = a∅

for any a ∈ L. Analogous observation can be made for other estimates in this section.

The estimates we will investigate further in this section employ ⊗ instead of ∧ for

combining subsethood degrees. Since ∧ is an upper bound for ⊗ in L we have

S(D1,D2)⊗ S(D′1,D′2) ≤ S(D1,D2) ∧ S(D′1,D′2)

and analogously for E. Therefore the Corollary 51 immediately follows from Theorem 50.

Corollary 51. For any D1, D′1, D2, and D′2 on relation scheme R,

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ∪ D2,D′1 ∪ D′2), (6.9)

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ∩ D2,D′1 ∩ D′2), (6.10)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ∪ D2,D′1 ∪ D′2), (6.11)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ∩ D2,D′1 ∩ D′2). (6.12)

Estimates given by Corollary 51 are optimal as well: for any estimate from Corollary 51

one can not find another estimate which will be strictly higher for all RDTs. Although

there exists estimates which are strictly higher for some RDT (e.g. the estimates from

Theorem 50).

Remark 20. Let us note that inclusion estimates like those from Theorem 50 do not

have a nontrivial interpretation in the original Codd’s model of data. For instance, if L

is the two-element Boolean algebra, the left-hand side of (6.5) is either 0 or 1. Clearly,

S(D1,D′1)∧S(D2,D′2) = 1 iff D1 is a subset of D′1 (in the usual sense) and D2 is a subset

of D′2, from which one immediately derives that D1 ∪D2 is a subset of D′1 ∪D′2. A similar

situation applies for (6.6)–(6.12).

6.1.2 Ternary residuum

The next operation we consider is the ternary residuum _, see (2.50), which can be seen

as a ternary counterpart of → with one of the argument serving as a range. Note that the

lower estimate (6.13) differs from the previous inequalities (6.5)–(6.12) in the sense that

we use S(D′1,D1) and not S(D1,D′1). This is a consequence of the antitony of → in the

first argument, see (2.6).
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Theorem 52. For any D1, D′1, D2, D′2, D3, and D′3 on R, we have:

S(D′1,D1)⊗ S(D2,D′2)⊗ S(D3,D′3) ≤ S(D1 _D3 D2,D′1 _D
′
3 D′2), (6.13)

E(D1,D′1)⊗ E(D2,D′2)⊗ E(D3,D′3) ≤ E(D1 _D3 D2,D′1 _D
′
3 D′2). (6.14)

Proof. In order to prove (6.13) we need to show that the following inequality is true for

each r ∈ Tupl(R):

S(D′1,D1)⊗ S(D2,D′2)⊗ S(D3,D′3)⊗ (D1 _D3 D2)(r) ≤ (D′1 _D
′
3 D′2)(r).

The claim is a consequence of (2.13), (2.16) and monotony of ⊗.

S(D′1,D1)⊗ S(D2,D′2)⊗ S(D3,D′3)⊗ (D1 _D3 D2)(r) =

S(D′1,D1)⊗ S(D2,D′2)⊗ S(D3,D′3)⊗D3(r)⊗
(
D1(r)→ D2(r)

)
≤

S(D′1,D1)⊗ S(D2,D′2)⊗D3(r)⊗
(
D3(r)→ D′3(r)

)
⊗
(
D1(r)→ D2(r)

)
≤

S(D′1,D1)⊗ S(D2,D′2)⊗D′3(r)⊗
(
D1(r)→ D2(r)

)
≤

D′3(r)⊗
(
D′1(r)→ D1(r)

)
⊗
(
D1(r)→ D2(r)

)
⊗
(
D2(r)→ D′2(r)

)
≤

D′3(r)⊗
(
D′1(r)→ D2(r)

)
⊗
(
D2(r)→ D′2(r)

)
≤

D′3(r)⊗
(
D′1(r)→ D′2(r)

)
= (D′1 _D

′
3 D′2)(r).

The inequality (6.14) is a consequence of Lemma 49 and Equation (6.13).

Corollary 53. For any D1,D′1,D2,D′2 on R:

S(D′1,D1)⊗ S(D2,D′2)⊗ (c→ c′) ≤ S(D2 �c D1,D′2 �c′ D′1), (6.15)

E(D1,D′1)⊗ E(D2,D′2)⊗ (c↔ c′) ≤ E(D2 �c D1,D′2 �c′ D′1), (6.16)

S(D1,D′1)⊗ S(D2,D′2)⊗ (c′ → c) ≤ S(c_D2 D1, c
′ _D

′
2 D′1), (6.17)

E(D1,D′1)⊗ E(D2,D′2)⊗ (c↔ c′) ≤ E(c_D2 D1, c
′ _D

′
2 D′1). (6.18)

Proof. Inequalities (6.15) and (6.16) follow from Theorem 52 and (2.51). Furthermore,

(6.17) and (6.18) follow from Theorem 52 and (2.52).

6.1.3 Projection and division

We will now establish similarity estimates for projection and residuated division. We start

by considering projection (2.53):

Theorem 54. Let D and D′ be RDTs on relation scheme R1 and let R2 ⊆ R1. Then

S(D,D′) ≤ S(πR2(D), πR2(D′)), (6.19)

E(D,D′) ≤ E(πR2(D), πR2(D′)). (6.20)

Proof. We prove the first inequality (6.19), the second one is a consequence of Lemma 49.

Using adjointness, we need to check that

S(D,D′)⊗ (πR2(D))(r2) ≤ (πR2(D′))(r2)
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holds true for any r2 ∈ Tupl(R2). By definition of πR2(D) and using the fact that ⊗ is

distributive over
∨

(2.17) we get

S(D,D′)⊗ (πR2(D))(r2) =

S(D,D′)⊗
∨
r3∈Tupl(R3)D(r2r3) =∨

r3∈Tupl(R3)

(
S(D,D′)⊗D(r2r3)

)
,

where R3 = R1 \R2. From the fact that r2r3 ∈ Tupl(R1), we further obtain:

∨
r3∈Tupl(R3)

(
S(D,D′)⊗D(r2r3)

)
≤∨

r3∈Tupl(R3)

(
(D(r2r3)→ D′(r2r3))⊗D(r2r3)

)
≤∨

r3∈Tupl(R3)D′(r2r3) = (πR2(D′))(r2).

Now we turn our attention to residuated division (2.54), which was also introduced in

the Section 2.3. We repeat the definition here mainly for convenience. Let D1 be an RDT

on R1, let D2 be an RDT on R2 ⊆ R1, and let D3 be an RDT on R3 = R1 \ R2. Then, a

division of D1 by D2 which ranges over D3 is an RDT on R3:(
D1 ÷D3 D2

)
(r3) =

∧
r2∈Tupl(R2)

(
D2(r2) _D3(r3) D1(r2r3)

)
=
∧
r2∈Tupl(R2)

(
D3(r3)⊗ (D2(r2)→ D1(r2r3))

)
. (6.21)

First, let us note that residuated division can be used to express containment and similarity

degrees of RDTs. Consider the borderline case of residuated division when R1 = R2 (and

thus R3 = ∅): (
D1 ÷D3 D2

)
(∅) =

∧
r2∈Tupl(R2)

(
D2(r2) _D3(∅) D1(r2∅)

)
=
∧
r2∈Tupl(R2)

(
D3(∅)⊗ (D2(r2)→ D1(r2))

)
.

Since R3 = ∅, D3 is an RDT on empty relational scheme. In particular, by choosing

D3 = 1∅ we obtain:(
D1 ÷1 D2

)
(∅) =

∧
r2∈Tupl(R2)

(
1⊗ (D2(r2)→ D1(r2))

)
=
∧
r2∈Tupl(R2)(D2(r2)→ D1(r2)) = S(D2,D1).

As a consequence, (5.2) and (5.1) are expressible inside the model of Belohlavek and

Vychodil and thus the similarity estimations are relational per se. The only conceptual

difference between (5.2) and
(
D1 ÷1 D2

)
(∅) is that the value of (5.2) is a degree from L

whereas the
(
D1 ÷1 D2

)
(∅) is an RDT on the empty relation scheme which represents the

degree. The case of (5.1) is analogous.

The similarity estimates for residuated division are described by the following theorem.
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Theorem 55. Let D1, D′1 be RDTs on R1, D2, D′2 be RDTs on R2 ⊆ R1, and D3, D′3 be

RDTs on R3 = R1 \R2, respectively. Then

S(D1,D′1)⊗ S(D′2,D2)⊗ S(D3,D′3) ≤ S(D1 ÷D3 D2,D′1 ÷D
′
3 D′2), (6.22)

E(D1,D′1)⊗ E(D2,D′2)⊗ E(D3,D′3) ≤ E(D1 ÷D3 D2,D′1 ÷D
′
3 D′2). (6.23)

Proof. For proving (6.22), we need to verify that

S(D1,D′1)⊗ S(D′2,D2)⊗ S(D3,D′3)⊗(D1 ÷D3 D2)(r3) ≤ (D′1 ÷D
′
3 D′2)(r3)

for every r3 ∈ Tupl(R3). By using (2.21) and (2.16) we obtain:

S(D1,D′1)⊗ S(D′2,D2)⊗ S(D3,D′3)⊗(D1 ÷D3 D2)(r3) =

S(D1,D′1)⊗ S(D′2,D2)⊗ S(D3,D′3)⊗
∧
r2∈Tupl(R2)

(
D3(r3)⊗ (D2(r2)→ D1(r2r3))

)
≤∧

r2∈Tupl(R2)

(
S(D1,D′1)⊗ S(D′2,D2)⊗ S(D3,D′3)⊗D3(r3)⊗ (D2(r2)→ D1(r2r3))

)
.

Using the same ideas as in the proof of Theorem 52 we observe:∧
r2∈Tupl(R2)

(
S(D1,D′1)⊗ S(D′2,D2)⊗ S(D3,D′3)⊗D3(r3)⊗ (D2(r2)→ D1(r2r3))

)
≤∧

r2∈Tupl(R2)

(
D′3(r3)⊗ (D′2(r2)→ D′1(r2r3))

)
= (D′1 ÷D

′
3 D′2)(r3).

The second inequality (6.23) follows from (6.22) by applying Lemma 49.

6.1.4 Similarity-based restriction

The basic characterization of similarity estimates for similarity-based restriction (2.55) is

the following.

Theorem 56. Let D and D′ be RDTs on relation scheme R and let y ∈ R and d ∈ Dy.

Then,

S(D,D′) ≤ S(σy≈d(D), σy≈d(D′)), (6.24)

E(D,D′) ≤ E(σy≈d(D), σy≈d(D′)). (6.25)

Proof. Again, using the adjointness of ⊗ and →, in order to prove (6.24), it suffices to

check that

S(D,D′)⊗ (σy≈d(D))(r) ≤ (σy≈d(D′))(r)

holds for all tuples r ∈ Tupl(R). Using the definition of σy≈d(D) and (2.13), we observe

that:

S(D,D′)⊗ (σy≈d(D))(r) =

S(D,D′)⊗D(r)⊗ r(y)≈y d ≤

(D(r)→ D′(r))⊗D(r)⊗ r(y)≈y d ≤

D′(r)⊗ r(y)≈y d = σy≈d(D′).

Since r ∈ Tupl(R) has been taken arbitrarily, we can conclude that (6.24) holds true. Now,

the inequality (6.25) is a consequence of Lemma 49.
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Remark 21. We have proved the similarity estimates for a similarity-based condition

y ≈ d. The estimates given by Theorem 56 will remain valid for general comparators [82].

The similarity estimates in Theorem 56 involve two restrictions using the same constant

d from the domain of y. Intuitively, we may expect that two restrictions that use different

constants d and d′ should yield similar results if d and d′ are similar. This can be shown

if the similarity on the domain of y is ⊗-transitive.

Theorem 57. Let D be an RDT on R, let y ∈ R, d, d′ ∈ Dy, and let ≈y be ⊗-transitive.

Then

d ≈y d′ ≤ S(σy≈d(D), σy≈d′(D)). (6.26)

Proof. By adjointness, for verifying (6.26) it is sufficient to check that

d ≈y d′ ⊗ (σy≈d(D))(r) ≤ (σy≈d′(D))(r)

is true for all r ∈ Tupl(R). Using the ⊗-transitivity of ≈y and isotony of ⊗, for each

r ∈ Tupl(R) we have:

d ≈y d′ ⊗ (σy≈d(D))(r) =

d ≈y d′ ⊗ (D(r)⊗ r(y) ≈y d) =

D(r)⊗ (r(y) ≈y d⊗ d ≈y d′) ≤

D(r)⊗ r(y) ≈y d′ = (σy≈d′(D))(r).

As a consequence of Theorem 56 and Theorem 57 we obtain the following corollary.

Corollary 58. Let D and D′ be RDTs on R and let y ∈ R, d, d′ ∈ Dy and ≈y be ⊗-

transitive. Then,

S(D,D′)⊗ d ≈y d′ ≤ S(σy≈d(D), σy≈d′(D′)), (6.27)

E(D,D′)⊗ d ≈y d′ ≤ E(σy≈d(D), σy≈d′(D′)). (6.28)

Proof. Using Theorem 56, Theorem 57 and (2.36)

S(D,D′)⊗ d ≈y d′ ≤

S(σy≈d(D), σy≈d(D′))⊗ d ≈y d′ ≤

S(σy≈d(D), σy≈d(D′))⊗ S(σy≈d(D′), σy≈d′(D′)) ≤

S(σy≈d(D), σy≈d′(D′)),

proving (6.27). The inequality (6.28) is a consequence of (6.27) and (2.21).

E(D,D′)⊗ d ≈y d′ =(
S(D,D′) ∧ S(D′,D)

)
⊗ d ≈y d′ ≤
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(
S(D,D′)⊗ d ≈y d′

)
∧
(
S(D′,D)⊗ d ≈y d′

)
≤

S(σy≈d(D), σy≈d′(D′)) ∧ S(σy≈d′(D′), σy≈d(D)) = E(σy≈d(D), σy≈d′(D′)).

Remark 22. Note that Lemma 57 and Corollary 58 do not hold for similarities which are

not ⊗-transitive. For instance, take D on {y} such that D(r) = 1 for r with r(y) = c, and

D(r′) = 0 for all r′ 6= r. Suppose that L is a complete residuated lattice on the real unit

interval with ⊗ and → being the  Lukasiewicz operations. Furthermore, suppose that for

d, d′ ∈ Dy we have d ≈y d′ = 0.9, c ≈y d = 0.8, and c ≈y d′ = 0. Obviously, ≈y is not

⊗-transitive since c ≈y d ⊗ d ≈y d′ = 0.8 ⊗ 0.9 = 0.7 � 0 = c ≈y d′. As a consequence,

S(σy≈d(D), σy≈d′(D)) = 0.8→ 0 = 0.2 � 0.9.

Further question related to similarity is whether a small change of the definition of

domain similarities yields a small change of query results. This type of similarity preser-

vation can also be established in the model. The issue of sensitivity to changes in domain

similarities is actually important from the application viewpoint—several different simi-

larities can be defined on a domain and database users may be interested in assessing the

impact of using a chosen similarity with respect to other similarity on the domain. The

fact that small differences in similarities yield small differences in results shows that the

model is robust.

In order to measure containment and similarity of domain similarities, we introduce

the following notation. If ≈y and ≈′y are similarities on the same domain Dy, we put:

S(≈y,≈′y) =
∧
d1,d2∈Dy

(
d1 ≈y d2 → d1 ≈′y d2

)
, (6.29)

E(≈y,≈′y) =
∧
d1,d2∈Dy

(
d1 ≈y d2 ↔ d1 ≈′y d2

)
. (6.30)

Notice that (6.29) and (6.30) are defined in a similar way as (5.2) and (5.1) only with

domain similarities ≈y and ≈′y instead of RDTs.

Considering similarities ≈y and ≈′y on the domain of the attribute y, we denote by

σy≈d(D) and σy≈′d(D) the restrictions which use ≈y and ≈′y, respectively. Under this

notation, we have the following observation:

Theorem 59. Let D be RDT on R, y ∈ R, and d ∈ Dy. Furthermore, let ≈y and ≈′y be

similarities on Dy. Then

S(D,D′)⊗ S(≈y,≈′y) ≤ S(σy≈d(D), σy≈′d(D′)), (6.31)

E(D,D′)⊗ E(≈y,≈′y) ≤ E(σy≈d(D), σy≈′d(D′)). (6.32)

Proof. Analogously as in previous observations, for (6.31) it is sufficient to prove that for

each r ∈ Tupl(R):

S(D,D′)⊗ S(≈y,≈′y)⊗ (σy≈d(D))(r) ≤ (σy≈′d(D′))(r).
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Using isotony of ⊗ and
∧

and utilizing (2.13) twice:

S(D,D′)⊗ S(≈y,≈′y)⊗ (σy≈d(D))(r) =

S(D,D′)⊗ S(≈y,≈′y)⊗D(r)⊗ r(y) ≈y d ≤

S(D,D′)⊗ (r(y) ≈y d→ r(y) ≈′y d)⊗D(r)⊗ r(y) ≈y d =

S(D,D′)⊗D(r)⊗ (r(y) ≈y d)⊗ (r(y) ≈y d→ r(y) ≈′y d) ≤

S(D,D′)⊗D(r)⊗ r(y) ≈′y d ≤

D(r)⊗ (D(r)→ D′(r))⊗ r(y) ≈′y d ≤

D′(r)⊗ r(y) ≈′y d = (σy≈′d(D′))(r).

The inequality (6.32) can be derived from (6.31).

As a consequence we obtain the following corollary.

Corollary 60. Let D and D′ be RDTs on R, let y ∈ R, and let ≈y and ≈′y be similarities

on Dy. Then,

S(≈y,≈′y) ≤ S(σy≈d(D), σy≈′d(D)), (6.33)

E(≈y,≈′y) ≤ E(σy≈d(D), σy≈′d(D)). (6.34)

Remark 23. Moreover, the previous assertion can be combined with Corollary 58 to in-

corporate restrictions using different values from Dy but we do not present the observation

here because it can be derived from our general result in Section 6.2.

6.1.5 Natural and similarity-based joins

Natural joins and their variants have been introduced in Section 2.3. As we have seen, the

(equality-based) natural join (2.57) can be considered as the fundamental one, meaning

that the other possible joins result from the fundamental one and other relational opera-

tions. This enables us to simplify observations of similarity estimates. We will first explore

the similarity preservation for the equality-based natural join, and utilize observations on

similarity preservation of other operations to get estimates for other joins.

Theorem 61. Let D1, D′1 be RDTs on R1 ∪ R3 and D2, D′2 be RDTs on R2 ∪ R3 such

that R1 ∩R2 = R1 ∩R3 = R2 ∩R3 = ∅. Then

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ./ D2,D′1 ./ D′2), (6.35)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ./ D2,D′1 ./ D′2). (6.36)

Proof. Again, in order to prove (6.35) we need to show that

S(D1,D′1)⊗ S(D2,D′2)⊗ (D1 ./ D2)(r1r2r3) ≤ (D′1 ./ D′2)(r1r2r3)

is true for any r1 ∈ Tupl(R1), r2 ∈ Tupl(R2), and r3 ∈ Tupl(R3). Using (2.57), (2.13),

isotony of ⊗ and
∧

, we have

S(D1,D′1)⊗ S(D2,D′2)⊗ (D1 ./ D2)(r1r2r3) =
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S(D1,D′1)⊗ S(D2,D′2)⊗D1(r1r3)⊗D2(r2r3) ≤

D1(r1r3)⊗ (D1(r1r3)→ D′1(r1r3))⊗D2(r2r3)⊗ (D2(r2r3)→ D′2(r2r3)) ≤

D′1(r1r3)⊗D′2(r2r3) = (D′1 ./ D′2)(r1r2r3),

which proves (6.35) since r1, r2, r3 have been taken arbitrarily. The second claim follows

from the first one using Lemma 49.

Corollary 62. For any D1, D′1, D2, and D′2 on relation scheme R,

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ⊗D2,D′1 ⊗D′2), (6.37)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ⊗D2,D′1 ⊗D′2). (6.38)

Proof. Consequence of the fact that ⊗-intersection is a special case of (equality-based)

natural join, see Section 2.

Corollary 63. For any D,D′ on R:

S(D,D′)⊗ (c→ c′) ≤ S(c⊗D, c′ ⊗D′), (6.39)

E(D,D′)⊗ (c↔ c′) ≤ E(c⊗D, c′ ⊗D′). (6.40)

Proof. The inequalities (6.39) and (6.40) follow from Theorem 61 by taking D2 = c∅ and

D′2 = c′∅.

We now turn our attention to particular joins which can be seen as derived relational

operations. For the derived joins, we establish similarity preservation theorems based on

our previous observations. For example a similarity-based equijoin is in fact a similarity-

based restriction of a cross join of two RDTs (defined on disjoint relation schemes). Un-

like (2.55), (2.58) uses a restriction based on a more general comparator y1 ≈ y2, where

both y1 and y2 are attributes (from R1 ∪ R2) but this is just a conservative extension

of (2.55), cf. Remark 21.

Corollary 64. Let D1 and D′1 be RDTs on R1 and let D2 and D′2 be RDTs on R2 such

that R1 ∩R2 = ∅. Let y1 ∈ R1 and y2 ∈ R2 have the same domain with similarity. Then

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ./y1≈y2 D2,D′1 ././y1≈y2
D′2), (6.41)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ./y1≈y2 D2,D′1 ./y1≈y2 D′2). (6.42)

Proof. The first inequality (6.41) is a consequence of Theorem 61 and Theorem 56:

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ./ D2,D′1 ./ D′2) ≤

S(σy1≈y2(D1 ./ D2), σy1≈y2(D′1 ./ D′2)) = S(D1 ./y1≈y2 D2,D′1 ./y1≈y2 D′2).

The inequality (6.42) follows from (6.41) and Lemma 49.



88 6.1. SIMILARITY ESTIMATES FOR RELATIONAL OPERATIONS

Another join-like operation with RDTs introduced in Section 2.3 is a similarity-based

equijoin with a threshold (2.59), which allows us to put emphasis on the similarity-based

condition. For this particular join, we may want to describe lower similarity estimates

based not only on the containment and/or similarity of RDTs but also on similarity of

the threshold degrees from L which appear in the restriction condition. The following

similarity estimates can be established:

Theorem 65. Let D1 and D2 be RDTs on R1 and R2 such that R1∩R2 = ∅. Let y1 ∈ R1

and y2 ∈ R2 have the same domain with similarity and let c, c′ ∈ L. Then

c′ → c ≤ S
(
D1 ./c/y1≈y2

D2,D1 ./c′/y1≈y2
D2

)
, (6.43)

c↔ c′ ≤ E
(
D1 ./c/y1≈y2

D2,D1 ./c′/y1≈y2
D2

)
. (6.44)

Proof. Observe that using (2.13)

(c′ → c)⊗ (D1 ./c/y1≈y2
D2)(r1r2) =

(c′ → c)⊗D1(r1)⊗D2(r2)⊗ (c→ r1(y1)≈y1r2(y2)) ≤

D1(r1)⊗D2(r2)⊗ (c′ → r1(y1)≈y1r2(y2)) =

(D1 ./c′/y1≈y2
D2)(r1r2).

The inequality (6.43) follows by adjointness. Now, (6.44) is a consequence of (6.43).

As a consequence:

Corollary 66. Let D1 and D′1 be RDTs on R1 and let D2 and D′2 be RDTs on R2 such

that R1 ∩R2 = ∅. Let y1 ∈ R1 and y2 ∈ R2 have the same domain with similarity. Then,

S(D1,D′1)⊗ S(D2,D′2)⊗ (c′ → c) ≤ S(D1 ./c/y1≈y2
D2,D′1 ./c′/y1≈y2

D′2), (6.45)

E(D1,D′1)⊗ E(D2,D′2)⊗ (c′ ↔ c) ≤ E(D1 ./c/y1≈y2
D2,D′1 ./c′/y1≈y2

D′2), (6.46)

for all c, c′ ∈ L.

Moreover, with smaller values of thresholds, the restriction condition is more relaxed

and the degrees (2.59) are higher, meaning

S
(
D1 ./c/y1≈y2

D2,D1 ./c′/y1≈y2
D2

)
= 1

whenever c′ ≤ c, i.e., D1 ./c/y1≈y2
D2 is fully contained in D1 ./c′/y1≈y2

D2. This is a

consequence of the antitony of the residuum → in the first argument and the isotony of

the multiplication ⊗.

6.1.6 Further operations

So far, we have shown that relational operations introduced in Section 2.3 preserve similar-

ities and as a consequence, pairwise similar arguments to operations yield similar results.
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Among the operations we have not considered yet are the operations of renaming, kernel,

and support which also belong to the basic operations in the model.

Since the operation of renaming only changes the names of attributes without altering

the data table as such (i.e. data as well as ranks stay untouched), the renaming preserves

similarity trivially. The similarity of input RDTs is simply the same as the similarity of

output RDTs and thus S(D,D′) = S(ρf (D), ρf (D′)) and analogously for E.

As we have seen in Section 2.3, kernel and support are unary operations that produce

a nonranked table from an RDT. It is easily seen that by nature, neither the kernel

nor the support preserve similarity except for the trivial cases, as the following example

demonstrates.

Example 5. Assume data tables D1, D2, D3 on the same relation scheme R with single

tuple r such that D1(r) = 1, D2(r) = 0.3, D3(r) = 0. For the  Lukasiewicz structure of truth

degrees on [0, 1] we have: S(D1,D2) = 1 → 0.3 = 0.3 and S(∆D1,∆D2) = 1 → 0 = 0.

Furthermore S(D2,D3) = 0.3→ 0 = 0.7, whereas S(∇D2,∇D3) = 1→ 0 = 0.

In general, since both ∆D and ∇D are nonranked, we have S(∆D,∆D′) ∈ {0, 1} and

S(∇D,∇D′) ∈ {0, 1}. Thus, the only nontrivial estimations are:

(i) If for each r ∈ Tupl(R) such that D(r) = 1,

we have D′(r) = 1, then S(∆D,∆D′) = 1;

(ii) If for each r ∈ Tupl(R) such that D(r) > 0,

we have D′(r) > 0, then S(∇D,∇D′) = 1;

and analogously for E.

The negative result on preserving similarity by kernel and support should not be inter-

preted as a weakness of the model. For the majority of queries which are free of kernels and

supports, one can utilize all the positive results we have made in this section. In practice,

the kernel and supports are used as the “outermost operations”, so one can always esti-

mate similarity of the results prior to the application of kernels and supports. In addition

to queries which are free of kernels and supports, one may use the nontrivial estimates

for queries involving kernels and supports whose arguments are constant (i.e., always the

same RDTs). The issues related with compound relational queries are discussed in the

next section.

6.2 Similarity of complex query results

The previous section was devoted to the similarity preservation of single relational opera-

tions. Usually, relational queries expressed by relational algebra expressions are compound.

When such a compound query is evaluated a series of relational operations are performed

in order to obtain the result of the compound query. In this section, we extend the previous

results from single operations to arbitrarily complex relational queries.
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First, we formalize relational algebra expressions which constitute queries [20, 23].

We assume a fixed database scheme which is given by a finite set of relation symbols

r1, . . . , rn, each relation symbol ri is given its relation scheme. Furthermore, we assume

that all attributes appearing in the schemes of relation symbols have defined their domains.

In this setting, the relational algebra expressions (shortly, RA-expressions) are defined as

follows:

1. If r is a relation symbol on scheme R, then r is RA-expression on scheme R;

2. if a ∈ L, then a∅ is RA-expression on ∅;

3. if Q1 and Q2 are RA-expressions on R, then (Q1 ∩ Q2) and (Q1 ∪ Q2) are RA-

expressions on R;

4. if Q1, Q2, and Q3 are RA-expressions on R, then (Q1 _Q3 Q2) is RA-expression on

R;

5. if Q1 is RA-expression on R1 and Q2 is RA-expression on R2 then (Q1 ./ Q2) is RA-

expression on R1 ∪R2; if R1 ∩R2 = ∅, c ∈ L, y1 ∈ R1, y2 ∈ R2, and both attributes

y1 and y2 have the same domain, then (Q1 ./y1≈y2 Q2) and (Q1 ./c/y1≈y2
Q2) are

RA-expressions on R1 ∪R2;

6. if Q is RA-expression on R1 and R2 ⊆ R1, then πR2(Q) is RA-expression on R2;

7. if Q1 is RA-expression on R1, Q2 is RA-expression on R2 ⊆ R1, and Q3 is RA-

expression on R3 = R1 \R2, then (Q1 ÷Q3 Q2) is RA-expression on R3;

8. if Q is RA-expression on R, y ∈ R, and d ∈ Dy (d is a value from the domain of

y), then σy≈d(Q) is RA-expression on R; if z ∈ R has the same domain as y, then

σy≈z(Q) is RA-expression on R;

9. if Q is RA-expression on R, and f is an injective map such that f(y) has the same

domain as y (y ∈ R), then ρf (Q) is RA-expression on h(R).

In addition, if Q is RA-expression on R, we call R the relation scheme of Q.

As usual, we may evaluate RA-expressions in databases instances to get results of

queries. In our setting, a database instance D consists of RDTs which interpret the

relation symbols and defines similarities on domains. In a more detail, for each relation

variable ri from the database scheme, a database instance D defines its interpretation

denoted rDi (an RDT) so that the relation scheme of ri is the same as the scheme of

rDi . Moreover, for each attribute y, D defines the similarity ≈Dy on its domain. The

notion of database instance is presented here in a simplified form but it is sufficient for

the subsequent considerations.

Given an RA-expression Q on scheme R and a database instance D, we denote by

QD the value of Q in D which is an RDT on scheme R defined recursively by cases (as

usual). Notice that in case of the atomic RA-expressions, we have QD = rD whenever
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r is a relation symbol, and QD = a∅ whenever Q is a∅. If Q is Q1 ∩ Q2, then QD =

(Q1∩Q2)D = QD1 ∩QD2 and analogously for the other cases of compound RA-expressions.

Now, we may ask the following question:

Do similar queries yield similar results when evaluated in similar database in-

stances?

By a similar query, we mean a query which results from other query by modifying some

of its subqueries. For instance, if a query Q1 involves a similarity-based restriction using

constant d, we may consider its modification Q2 by substituting d′ for d and preserving the

rest of this query, cf. Section 6.1.4. Then, considering two database instances D1 and D2,

we may be interested in estimating the similarity degree E
(
QD1

1 , QD2
2

)
, i.e., the degree to

which QD1
1 (the result of Q1 in D1) and QD2

2 (the result of Q2 in D2) are similar.

In order to formalize the similarity estimates, for a pair of queries Q1 and Q2, we define

their similarity E(Q1, Q2). Before we show details, two clarifying notes are in order. First,

there are pairs of queries for which it makes no sense to consider E(Q1, Q2). For instance,

if the relation schemes of Q1 and Q2 are different, we cannot express E
(
QD1

1 , QD2
2

)
by (5.1)

and thus there is no point in considering its estimation. Hence, E(Q1, Q2) may not be

defined. Second, E(Q1, Q2) is not a single degree from L. Instead, we introduce E(Q1, Q2)

as a map of the form

E(Q1, Q2) : I × I → L, (6.47)

where I is a set of all database instances of the considered database scheme. Thus, for

database instances D1 and D2,
(
E(Q1, Q2)

)
(D1,D2) is a degree from L. Our intention is

to define the degree so that it is a lower bound of the similarity of QD1
1 and QD2

2 .

We define (6.47) by cases taking into account the structure of Q1 and Q2. In the

following list, we use
def
= to denote that the left-hand size of assignment expressions with

def
= is defined whenever the right-hand side is defined. Following the definition of RA-

expressions, we distinguish the following cases:

• If Q1 and Q2 are relation symbols r1 and r2 on the same relation scheme, then(
E(Q1, Q2)

)
(D1,D2)

def
= E(rD1

1 , rD2
2 ). (6.48)

• If Q1 and Q2 are a∅ and b∅, then(
E(Q1, Q2)

)
(D1,D2)

def
= a↔ b. (6.49)

• If Q1 = Q2 and D1 = D2, then(
E(Q1, Q2)

)
(D1,D2)

def
= 1. (6.50)

• If Q1 is Q11 opQ12 and Q2 is Q21 opQ22 where op in both RA-expressions is either

of ∩, ∪, ./, then(
E(Q1, Q2)

)
(D1,D2)

def
=
(
E(Q11, Q21)

)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2). (6.51)
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• If Q1 is op(Q′1) and Q2 is op(Q′2) where op in both RA-expressions is πR or ρf , then

(
E(Q1, Q2)

)
(D1,D2)

def
=
(
E(Q′1, Q

′
2)
)
(D1,D2). (6.52)

• If Q1 is Q11 opQ13 Q12 and Q2 is Q21 opQ23 Q22 where op is _ or ÷, then

(
E(Q1, Q2)

)
(D1,D2)

def
=(

E(Q11, Q21)
)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2)⊗

(
E(Q13, Q23)

)
(D1,D2). (6.53)

• If Q1 is σy≈d1(Q′1) and Q2 is σy≈d2(Q′2) where d1, d2 ∈ Dy, then

(
E(Q1, Q2)

)
(D1,D2)

def
=(

E(Q′1, Q
′
2)
)
(D1,D2)⊗

∧
d∈Dy

(
d ≈D1

y d1 ↔ d ≈D2
y d2

)
. (6.54)

• If Q1 is σy≈y′(Q
′
1) and Q2 is σy≈y′(Q

′
2) where y, y′ are attributes with the same

domain, then

(
E(Q1, Q2)

)
(D1,D2)

def
=
(
E(Q′1, Q

′
2)
)
(D1,D2)⊗ E

(
≈D1
y ,≈D2

y

)
. (6.55)

• If Q1 is Q11 ./y1≈y2 Q12 and Q2 is Q21 ./y1≈y2 Q22, then

(
E(Q1, Q2)

)
(D1,D2)

def
=(

E(Q11, Q21)
)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2)⊗ E

(
≈D1
y ,≈D2

y

)
. (6.56)

• If Q1 is Q11 ./a/y1≈y2
Q12 and Q2 is Q21 ./b/y1≈y2

Q22, then

(
E(Q1, Q2)

)
(D1,D2)

def
=

(a↔ b)⊗
(
E(Q11, Q21)

)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2)⊗ E

(
≈D1
y ,≈D2

y

)
.

(6.57)

The following theorem shows that similarities as defined above are indeed lower bounds

of similarities of query results.

Theorem 67. Let Q1 and Q2 be RA-expressions such that E(Q1, Q2) is defined. Then,

for any database instances D1 and D2, we have

(
E(Q1, Q2)

)
(D1,D2) ≤ E

(
QD1

1 , QD2
2

)
. (6.58)

Proof. The assertion is a consequence of the similarity estimates from Section 6.1 and is

proved by structural induction over RA-expressions Q1 and Q2.
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6.3 Tuple-based similarity

In this section, we show an alternative definition of similarity of RDTs, which is connected

to the notion of similarity-based closure.

While the rank-based similarity (5.1) can be sufficient in many cases there are situations

in which the use of (5.1) seems to be inadequate. For example, take the RDT from

Section 2.3, increase the price of every room by 1 euro and keep all other data and ranks

unaltered. Then according to rank-based similarity, the original data table and the new

one are very different, their similarity degree will be 0 for any choice of L. Intuitively,

since the two data tables differ only by a small change in price, one would expect to have

a high degree of similarity. Hence, we wish to consider the values in tuples in addition to

the ranks of tuples in RDTs when assessing similarity. Naturally, D1 and D2 will likely be

considered similar if they pass a test given by the following proposition:

For every tuple in D1, there exists a similar tuple in D2

and for every tuple in D2, there exists a similar tuple in D1.

That is, one may define

S≈(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→

∨
r′∈Tupl(R)

(
D2(r′)⊗ r ≈R r′

))
, (6.59)

E≈(D1,D2) = S≈(D1,D2) ∧ S≈(D2,D1), (6.60)

where the similarity degree r ≈R r′ of tuples r and r′ is defined by

r ≈R r′ =
∧
y∈R r(y) ≈y r′(y). (6.61)

Note that (6.61) is a particular definition of a degree to which tuples r and r′ have similar

values. Namely, r ≈R r′ is a degree to which “for each attribute y ∈ R, r(y) is similar

to r′(y)”. Observe that ≈R defined by (6.61) is reflexive and symmetric since each ≈y is

reflexive and symmetric. Moreover, if all ≈y are ⊗-transitive (L-equivalences), then ≈R is

⊗-transitive (L-equivalence) as well.

Remark 24. (i) Note that (6.59) is used in [9, Section 4.2] to assess similarity between

two fuzzy sets in a universe equipped with a similarity relation. (ii) As in Remark 19, if L

is the two-valued Boolean algebra and each ≈y is an identity, then E≈(D1,D2) = 1 iff D1

and D2 are identical (in the usual sense). (iii) Obviously, S(D1,D2) ≤ S≈(D1,D2) due to

the isotony of → in the second argument (2.5) and the reflexivity of ≈R. Therefore, (6.59)

yields an estimate which is at least as high as (5.2); analogously for E and E≈.

6.3.1 Similarity-based semijoins and closures

The similarity of RDTs based on (6.59) can be expressed using (5.2) and a derived re-

lational operation. In order to show this relationship, we digress and introduce further

relational operations which involve similarity of tuple values [23].
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For any RDTs D1 and D2 on R1 ∪ R2 and R2 ∪ R3 such that R1, R2, and R3 are

pairwise disjoint, a (natural) similarity-based semijoin D1 n≈ D2 of D1 and D2 is defined

by (
D1 n≈ D2

)
(r1r2) = D1(r1r2)⊗

∨
r′2∈Tupl(R2)

∨
r3∈Tupl(R3)

(
D2(r′2r3)⊗ r′2 ≈R2 r2

)
, (6.62)

for all r1 ∈ Tupl(R1) and r2 ∈ Tupl(R2). If D1 and D2 are viewed as results of queries Q1

and Q2, then (6.62) is a degree to which r1r2 from D1 approximately matches a tuple from

D2 (namely, r1r2 matches Q1 and r2 is similar to r′2 for which r′2r3 matches Q2). Clearly,

(6.62) is a similarity-based counterpart of the ordinary semijoin.

It can be shown that similarity-based semijoins are indeed derived relational operations

[23]. Now we will consider a particular case of similarity-based semijoins. Namely, we let

R1 = R3 = ∅ and consider D1 to be nonranked such that D2 ⊆ D1. In this particular case,

we denote D1n≈D2 by C≈D1
(D2) and call it a similarity closure of D2 (with respect to D1).

Thus,

(C≈D1
(D2))(r) = D1(r)⊗

∨
r′∈Tupl(R2)

(
D2(r′)⊗ r′≈R r

)
(6.63)

for each r ∈ Tupl(R2). Furthermore, since D1 is nonranked, we may write

(C≈D1
(D2))(r) =

∨
r′∈Tupl(R2)

(
D2(r′)⊗ r′≈R r

)
, (6.64)

whenever r ∈ D1 (and = 0 otherwise).

Taking into account (6.63), C≈D(D1) can be seen as a result of query: “Show all tuples

which are in D1 and, in addition, include all tuples which are from D and are similar

to those in D1.” Thus, C≈D(D1) extends D1 by all tuples from D similar to tuples from

D1. This can be useful in many cases, especially in the query-by-example paradigm. For

example D1 can store information about ideal candidates for a particular job position

with ranks indicating the degree to which the ideal candidates satisfy our requirements.

Suppose the data table D contains information about real job applicants. Then C≈D(D1)

will give us a collection of job applicants satisfying our requirements given by examples

in D1 together with the degree of satisfaction (rank). More precisely C≈D(D1) will contain

(among the ideal candidates) a collection of job applicants for which there exists a similar

ideal candidate.

Similarity-based closures and semijoins may be considered as examples of nontrivial

relational operations which do not appear in the classical relational model. More precisely,

they do appear in the Codd model but only in a trivial form—C≈D(D1) equals D1 and the

similarity-based semijoin coincides with the ordinary semijoin. Also note that (6.63) can

be seen as a domain independent variant of a concept of a similarity closure which appears

in fuzzy relational systems [9, 10, 73].

Using similarity-closures, it is now apparent that S≈ defined by (6.59) can be restated

as

S≈(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→ C≈D(D2)(r)

)
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= S
(
D1,C

≈
D(D2)

)
, (6.65)

where D is nonranked such that D1∪D2 ⊆ D. Clearly, the value of (6.65) does not depend

on the choice of a nonranked D satisfying D1 ∪ D2 ⊆ D.

If ≈R is ⊗-transitive, then C≈D forms an L-closure operator [9, 8]:

Lemma 68. Let D be a nonranked table on R and let ≈R be ⊗-transitive. Then, C≈D is

an L-closure operator, i.e., it satisfies

D1 ⊆ C≈D(D1), (6.66)

S(D1,D2) ≤ S(C≈D(D1),C≈D(D2)), (6.67)

C≈D(D1)) = C≈D(C≈D(D1)), (6.68)

for all D1 and D2 on R such that D1 ∪ D2 ⊆ D.

Proof. The assertion is proved using the same arguments as in [8].

Remark 25. Note that if ≈R is not ⊗-transitive, then C≈D still satisfies (6.66) and (6.67)

but it is not idempotent in general. Indeed, consider D on {y} and ≈y from Remark 22

and a nonranked D′ ⊇ D which consists c, d, d′ as y-values of some of its tuples with

nonzero ranks. In addition, take r, r′ such that r(y) = d and r′(y) = d′. By definition,

(C≈D′(D))(r′) = 0 because c ≈y d′ = 0. On the other hand, (C≈D′(D))(r) = 0.8 because

c ≈y d = 0.8 and thus using d ≈y d′ = 0.9 we get (C≈D′(C
≈
D′(D)))(r′) = 0.8 ⊗ 0.9 = 0.7 >

(C≈D′(D))(r′). As a consequence, (6.68) is not satisfied.

Moreover, as a consequence of Lemma 68, we get

S≈(D1,D2) = S(D1,C
≈
D(D2))

= S(C≈D(D1),C≈D(D2))

= S≈(C≈D(D1),D2) (6.69)

and analogously for E provided that ≈R is ⊗-transitive. Indeed, the “≤”-part of (6.69)

follows from (6.67) and (6.68); the “≥”-part follows from (6.66) and antitony of → in the

first argument.

Based on our observations, we may view S≈ and E≈ as being defined using (5.2), (5.1),

and similarity-based closures of RDTs. The following theorem shows further properties of

C≈D with respect to other relational operations.

Theorem 69. For any RDTs D1,D2 and nonranked D on R, such that D1 ∪ D2 ⊆ D:

C≈D(D1) ∪ C≈D(D2) = C≈D(D1 ∪ D2), (6.70)

C≈D(D1 ∩ D2) ⊆ C≈D(D1) ∩ C≈D(D2), (6.71)

If D1 and D2 are RDTs on disjoint schemes R1 and R2, respectively, R ⊆ R1, then

C≈D(D1) ./ C≈D′(D2) ⊆ C≈D./D′(D1 ./ D2), (6.72)

πR(C≈D(D1)) ⊆ C≈πR(D)(πR(D1)), (6.73)

for any nonranked D and D′ on R1 and R2, respectively, such that D1 ⊆ D and D2 ⊆ D′.
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Proof. The “⊆”-part of (6.70) is a consequence of isotony of C≈D. In order to prove the

“⊇”-part, observe that

(C≈D(D1 ∪ D2))(r) =

D(r)⊗
∨
r′∈Tupl(R)

(
(D1(r′) ∨ D2(r′))⊗ r′ ≈R r

)
=

D(r)⊗
∨
r′∈Tupl(R)

(
(D1(r′)⊗ r′ ≈R r)∨(D2(r′)⊗ r′ ≈R r)

)
≤

D(r)⊗
(∨

r′∈Tupl(R)

(
D1(r′)⊗ r′ ≈R r

)
∨
∨
r′∈Tupl(R)

(
D2(r′)⊗ r′ ≈R r

))
=(

D(r)⊗
∨
r′∈Tupl(R)

(
D1(r′)⊗ r′ ≈R r

))
∨
(
D(r)⊗

∨
r′∈Tupl(R)

(
D2(r′)⊗ r′ ≈R r

))
=

(C≈D(D1))(r) ∨ (C≈D(D2))(r) = (C≈D(D1) ∪ C≈D(D2))(r)

for any r ∈ Tupl(R), showing (6.70);

(6.71): Consequence of isotony of C≈D;

(6.72): Using (2.12) we get

(C≈D(D1) ./ C≈D′(D2))(r1r2) =(
D(r1)⊗

∨
r′1∈Tupl(R1)

(
D1(r′1)⊗ r′1 ≈R1 r1

))
⊗
(
D′(r2)⊗

∨
r′2∈Tupl(R2)

(
D2(r′2)⊗ r′2 ≈R2 r2

))
=

D(r1)⊗D′(r2)⊗
∨
r′1∈Tupl(R1)

∨
r′2∈Tupl(R2)

(
D1(r′1)⊗D2(r′2)⊗ r′1 ≈R1 r1 ⊗ r′2 ≈R2 r2

)
≤

D(r1)⊗D′(r2)⊗
∨
r′1∈Tupl(R1)

∨
r′2∈Tupl(R2)

(
D1(r′1)⊗D2(r′2)⊗ (r′1 ≈R1 r1 ∧ r′2 ≈R2 r2)

)
=

(D ./ D′)(r1r2)⊗
∨
r′1∈Tupl(R1)

∨
r′2∈Tupl(R2)

(
(D1 ./ D2)(r′1r

′
2)⊗ (r′1 ≈R1 r1 ∧ r′2 ≈R2 r2)

)
=

(D ./ D′)(r1r2)⊗
∨
r′1r
′
2∈Tupl(R1∪R2)

(
(D1 ./ D2)(r′1r

′
2)⊗ r′1r′2 ≈R1∪R2 r1r2

)
=(

C≈D./D′(D1 ./ D2)
)
(r1r2).

(6.73): Taking into account (2.53), it suffices to check that

(πR(C≈D(D1)))(r) =∨
r2∈Tupl(R1\R)(C

≈
D(D1))(rr2) ≤

(
C≈πR(D)(πR(D1))

)
(r)

for all r ∈ Tupl(R). Thus, is suffices to show (C≈D(D1))(rr2) ≤ (C≈πR(D)(πR(D1)))(r) for all

r ∈ Tupl(R) and r2 ∈ Tupl(R1 \R), which is indeed true:

(C≈D(D1))(rr2) =

D(rr2)⊗
∨
r′r′2∈Tupl(R1)

(
D1(r′r′2)⊗ r′r′2 ≈R1 rr2

)
≤

D(rr2)⊗
∨
r′r′2∈Tupl(R1)

(
D1(r′r′2)⊗ r′ ≈R r

)
=

D(rr2)⊗
∨
r′∈Tupl(R)

(∨
r′2∈Tupl(R1\R)D1(r′r′2)⊗ r′ ≈R r

)
=

D(rr2)⊗
∨
r′∈Tupl(R)

(
(πR(D))(r′)⊗ r′ ≈R r

)
≤∨

r2∈Tupl(R1\R)D(rr2)⊗
∨
r′∈Tupl(R)

(
(πR(D))(r′)⊗ r′ ≈R r

)
=

(πR(D))(r)⊗
∨
r′∈Tupl(R)

(
(πR(D))(r′)⊗ r′ ≈R r

)
=(

C≈πR(D)(πR(D1))
)
(r).
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6.3.2 Tuple-based similarity estimates

As in case of the rank-based similarity introduced in Section 5.1, we may investigate

inequalities which provide tuple-based similarity estimates of query results based on input

data. Unlike the rank-based approach, the tuple-based approach has some limitations. In

this section, we provide an if and only if criterion for general relational operations which

preserve tuple-based similarity. The criterion is based on similarity closures introduced in

the previous section.

In the section, we make the following assumptions. We consider relation schemes

R1, . . . , Rn, R and a map f which maps any RDTs D1, . . . ,Dn on R1, . . . , Rn to an RDT

f(D1, . . . ,Dn) on R (called the result of f). The map f represents a general n-ary rela-

tional operation for which we investigate the issues related to preservation of tuple-based

similarity.

Furthermore, let � be a binary operation on L with 1 being its neutral element. The

operation f is called S-compatible with respect to � if for some 0 ≤ j ≤ n, we have⊙j
i=1 S(Di,D′i)�

⊙n
i=j+1 S(D′i,Di) ≤ S

(
f(D1, . . . ,Dn), f(D′1, . . . ,D′n)

)
, (6.74)

for all Di,D′i on Ri (i = 1, . . . , n). Analogously, f is called S≈-compatible with respect

to � if (6.74) holds for S replaced by S≈. Furthermore, f is called E-compatible and

E≈-compatible if (6.74) holds for S replaced by E and E≈, respectively.

In a sense, (6.74) generalizes the condition from Lemma 49. From the point of

view of tuple-based similarity, it is interesting to investigate the relationship between

S-compatibility (E-compatibility) and S≈-compatibility (E≈-compatibility). The follow-

ing theorem gives an if-and-only-if criterion for a general n-ary operation on ranked data

tables to be compatible with tuple-based inclusion S≈.

Theorem 70. Let f be S-compatible with respect to �. Then, the following statements

are equivalent:

(i) For any D1, . . . ,Dn and nonranked D′1, . . . ,D′n such that D1 ⊆ D′1, . . . ,Dn ⊆ D′n
there is a nonranked D such that f(D1, . . . ,Dn) ⊆ D and

f
(
C≈D′1

(D1), . . . ,C≈D′n(Dn)
)
⊆ C≈D(f(D1, . . . ,Dn));

(ii) f is S≈-compatible with respect to �.

Proof. For simplicity of presentation of the proof, we only consider (6.74) for j = n (the

general case can be proved using the same arguments). In order to prove the only-if part,

observe that the S-compatibility with respect to � yields

S≈(D1,D′1)� · · · � S≈(Dn,D′n) =

S
(
D1,C

≈
D′′1

(D′1)
)
� · · · � S

(
Dn,C≈D′′n(D′n)

)
≤

S
(
f(D1, . . . ,Dn), f(C≈D′′1

(D′1), . . . ,C≈D′′n(D′n))
)
.
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Moreover, from (i) and the isotony of → in the second argument, it follows that

S
(
f(D1, . . . ,Dn), f(C≈D′′1

(D′1), . . . ,C≈D′′n(D′n))
)
≤

S
(
f(D1, . . . ,Dn),C≈D(f(D′1, . . . ,D′n))

)
=

S≈
(
f(D1, . . . ,Dn), f(D′1, . . . ,D′n)

)
.

Hence, (ii) follows from (i).

Conversely, let (ii) holds and take D1, . . . ,Dn and nonranked D′1, . . . ,D′n where D1 ⊆
D′1, . . . ,Dn ⊆ D′n. Applying the S≈ compatibility with respect to �,

S≈
(
C≈D′1

(D1),D1

)
� · · · � S≈

(
C≈D′n(Dn),Dn

)
≤

S≈
(
f
(
C≈D′1

(D1), . . . ,C≈D′n(Dn)
)
, f(D1, . . . ,Dn)

)
=

S
(
f
(
C≈D′1

(D1), . . . ,C≈D′n(Dn)
)
,C≈D(f(D1, . . . ,Dn))

)
for some nonranked D such that f(D1, . . . ,Dn) ⊆ D. Moreover, for each i = 1, . . . , n, we

have

S≈
(
C≈D′i

(Di),Di
)

= S≈
(
C≈D′i

(Di),C≈D′i(Di)
)

= 1.

Since, � is neutral with respect to 1, the previous inequality yields

S
(
f
(
C≈D′1

(D1), . . . ,C≈D′n(Dn)
)
,C≈D(f(D1, . . . ,Dn))

)
= 1

which proves (i).

Theorem 70 enables us to simplify proofs for S≈D -compatibility of relational operations.

In order to prove that operation f is S≈-compatible, it is sufficient to show that f is

S-compatible together with (i) of Theorem 70. The following corollary is a consequence

of Theorem 70, Theorem 69 and the S-compatibility of operations with respect to ⊗ or ∧
proved in Section 6.1.

Corollary 71. The following inequalities

S≈(D1,D2) ≤ S≈(πR(D1), πR(D2)),

S≈(D1,D′1) ∧ S≈(D2,D′2) ≤ S≈(D1 ∪ D2,D′1 ∪ D′2),

S≈(D1,D2)⊗ S≈(D3,D4) ≤ S≈(D1 ./ D3,D2 ./ D4),

hold for any RDTs provided that the relations schemes of D1 and D3 (D2 and D4) are

disjoint. Moreover, the same inequalities hold if S≈ is replaced by E≈.

It can be shown by means of simple counterexamples that relational operations from

previous sections excluding those listed in Corollary 71 are not S≈-compatible with respect

to ⊗. We will now show such counterexamples for some relational operations. In all of the

following examples we utilize the residuated lattice with L = [0.1, 0.2, . . . , 1] given by the

 Lukasiewicz operations together with ∗ being identity. We consider domains Dy = Dz =

{0.1, 0.2, . . . , 1}, with similarities given by biresiduum, i.e. a1 ≈y a2 = a1 ↔ a2 for any

y ∈ R, a1, a2 ∈ Dy .
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Example 6. Let us start with selection, which was proven to be S-compatible by Theorem

56. According to Theorem 70, for proving S≈-compatibility of selection we need to show

that σy≈d(C
≈
D(D1)) ⊆ C≈D(σy≈d(D1)). The following choice of RDTs falsifies this claim

and therefore selection is not S≈-compatible. Consider domain Dy and d = 0.3 ∈ Dy, D,

and D1 given as below.

D D1

y

1 0.1

1 0.3

y

0.5 0.1

σy≈0.3(C≈D(D1)) C≈D(σy≈0.3(D1))

y

0.3 0.1

0.3 0.3

y

0.3 0.1

0.1 0.3

Example 7. Similarly, ternary residuum _ is S≈-compatible iff C≈D(D1) _C≈D(D3) C≈D(D2)

⊆ C≈D(D1 _D3 D2) for any D1, D′1, D2, D′2, D3, and D′3 on relation scheme R. The

following choice of RDTs demonstrates that the claim doesn’t hold in general.

D = D3 D1 D2

y z

1 0.8 0.6

1 0.8 0.5

1 0.1 0.6

1 0.1 0.5

y z

0.7 0.8 0.6

0.6 0.1 0.6

0.4 0.1 0.5

y z

0.9 0.1 0.6

0.2 0.8 0.6

C≈D(D1) _C≈D(D3) C≈D(D2) C≈D(D1 _D3 D2)

y z

1.0 0.1 0.6

1.0 0.1 0.5

0.5 0.8 0.6

0.6 0.8 0.5

y z

1.0 0.1 0.6

1.0 0.8 0.5

0.9 0.8 0.6

0.9 0.1 0.5

In the last example we will show that even ⊗ is not S≈-compatible.

Example 8. Neither C≈D(D1 ⊗ D2) ⊆ C≈D(D1) ⊗ C≈D(D2) or C≈D(D1 ⊗ D2) ⊇ C≈D(D1) ⊗
C≈D(D2) hold in general (for any L and arbitrary similarities on domains).

D D1 D2

y z

1 0.4 0.2

1 0.8 0.2

1 0.4 0.7

1 0.8 0.7

y z

0.9 0.4 0.2

0.5 0.8 0.7

y z

1.0 0.8 0.7

0.3 0.4 0.7

C≈D(D1)⊗ C≈D(D2) C≈D(D1 ⊗D2)

y z

0.5 0.8 0.7

0.4 0.4 0.2

y z

0.5 0.8 0.7

0.1 0.4 0.7
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Analogous observation can be made for division or intersection.

We have seen that for many relational operations we cannot provide inclusion and

similarity estimates (6.74). On the other hand, the relational operations may be extended

to satisfy the S≈-compatibility if all ≈R are ⊗-transitive. For instance, consider (2.55)

and observe that using (6.24) and (6.69), we get

S≈(D1,D2) = S(C≈D(D1),C≈D(D2))

≤ S(σy≈d(C
≈
D(D1)), σy≈d(C

≈
D(D2)))

≤ S≈(σy≈d(C
≈
D(D1)), σy≈d(C

≈
D(D2))).

The result of σy≈d(C
≈
D(D1)) can be seen as a new relational operation—an extended re-

striction which is compatible with S≈ and select results not only from tuples in D1 but

also from tuples in D which are similar to those in D1. In a similar fashion, one may

proceed with the other operations and derive new S≈-compatible variants of the relational

operations.

6.3.3 Unifying approach to similarity of RDTs

It was shown in [12] that both (5.2) and (6.65) have a common generalization using truth-

stressing hedge. Let ∗ be truth-stressing hedge on L. For RDTsD1,D2 on R and nonranked

D on R such that D1 ∪ D2 ⊆ D we define a degree S≈∗ (D1,D2) of inclusion of D1 in D2

(with respect to ∗) and a degree of similarity E≈∗ (D1,D2) with respect to ∗ as

S≈∗ (D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→ C≈

∗
D (D2)

)
, (6.75)

E≈∗ (D1,D2) = S≈∗ (D1,D2) ∧ S≈∗ (D2,D1), (6.76)

where C≈
∗
D (D2) is a similarity-based closure of D2 with respect to D and hedge ∗ and is

defined as

(C≈
∗
D (D2))(r) = D(r)⊗

∨
r′∈Tupl(R)

(
D2(r′)⊗ (r′≈ r)∗

)
. (6.77)

If there is no confusion, we will denote C≈
∗
D (D2) by C∗D(D2).

Now, observe that for ∗ being the identity, (6.75) coincides with (6.59). Furthermore

if ≈R is separating (i.e., r1 ≈ r2 = 1 iff r1 is identical to r2) and ∗ is the globalization,

(6.75) coincides with (5.2). Thus, both rank-based similarity (5.1) and tuple-based sim-

ilarity (6.60) are particular instances of (6.76). Therefore, the hedge in (6.75) serves as

a parameter, and determines how much emphasis we put on the fact that two tuples are

similar. In case of globalization, we put full emphasis, i.e. the tuples are required to be

equal to degree 1.

The following lemma shows that S≈∗ and consequently E≈∗ have properties that are

considered natural for (degrees of) inclusion and similarity:

Lemma 72. If ≈ satisfies (r ≈ s)∗ ⊗ (s ≈ t)∗ ≤ (r ≈ t)∗ with respect to ∗ then

(i) S≈∗ is a reflexive and transitive L-relation, i.e. an L-quasiorder.
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(ii) E≈∗ is an L-equivalence.

Proof. The assertion follows from results in [9, Section 4.2].

The condition (r ≈ s)∗ ⊗ (s ≈ t)∗ ≤ (r ≈ t)∗ is satisfied (among other cases) in the

following situations:

i) ∗ is globalization and ≈ is separating. If (r ≈ s)∗⊗(s ≈ t)∗ is nonzero, then r ≈ s = 1

and s ≈ t = 1. Separability implies r = s = t, i.e. (r ≈ t)∗ = 1∗ = 1.

ii) ≈ is transitive. In this case, since a∗⊗ b∗ ≤ (a⊗ b)∗, transitivity of ≈ and monotony

of ∗ yield (r ≈ s)∗ ⊗ (s ≈ t)∗ ≤ ((r ≈ s)⊗ (s ≈ t))∗ ≤ (r ≈ t)∗.

By considering two different hedges ∗1, ∗2 on L we obtain for any RDTs two different

subsethood degrees (and two similarity degrees), one using ∗1 and one using ∗2. We will

denote such degree S≈∗1 and S≈∗2 . In the rest of this section, we will investigate the role of

hedge and the relationship between S≈∗1 and S≈∗2 . First of all, note that if ∗1 is stronger

than ∗2, see Section 2, then a∗1 ≤ a∗2 for any a ∈ L. As an immediate consequence we

obtain the following lemma, which states that stronger hedge yields smaller closure and,

as a consequence, smaller subsethood and similarity degrees.

Lemma 73. Let ∗1, ∗2 be two different hedges on L such that fix (∗1) ⊆ fix (∗2). Then for

any RDTs D1, D2 on R and any nonranked D on R such that D1 ∪ D2 ⊆ D:

C∗1D (D1) ⊆ C∗2D (D1), (6.78)

S≈∗1(D1,D2) ≤ S≈∗2(D1,D2), (6.79)

E≈∗1(D1,D2) ≤ E≈∗2(D1,D2). (6.80)

Since globalization is the strongest hedge with {0, 1} being the only fixed points and

identity is the weakest hedge on L, we have that for any hedge ∗:

S(D1,D2) ≤ S≈∗ (D1,D2) ≤ S≈(D1,D2). (6.81)

The following lemma shows that similar hedges yield similar closures.

Lemma 74. Let ∗1, ∗2 be two hedges on L. Then for any RDT D′ and any nonranked

RDT D on R such that D′ ⊆ D we have:

(∗1 � ∗2) ≤ S(C∗1D (D′),C∗2D (D′)), (6.82)

(∗1 ≈ ∗2) ≤ E(C∗1D (D′),C∗2D (D′)). (6.83)

Proof. The first inequality is true iff for every r ∈ Tupl(R)

(∗1 � ∗2)⊗ (C∗1D (D′))(r) ≤ (C∗2D (D′))(r), (6.84)

which is indeed the case:

(∗1 � ∗2)⊗ (C∗1D (D′))(r) =
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(∗1 � ∗2)⊗D(r)⊗
∨
r′∈Tupl(R)

(
D′(r′)⊗ (r′≈R r)∗1

)
=

D(r)⊗
∨
r′∈Tupl(R)

(
D′(r′)⊗ (r′≈R r)∗1 ⊗ (∗1 � ∗2)

)
≤

D(r)⊗
∨
r′∈Tupl(R)

(
D′(r′)⊗ (r′≈R r)∗1 ⊗ ((r′≈R r)∗1 → (r′≈R r)∗2)

)
≤

D(r)⊗
∨
r′∈Tupl(R)

(
D′(r′)⊗ (r′≈R r)∗2

)
=

(C∗2D (D′))(r),

where we used (2.17) and (2.13). (6.83) is a consequence of (6.82).

Theorem 75. Let ∗1, ∗2 be two hedges on L. Then for any RDTs D1, D2 and any

nonranked RDT D on R such that D1 ∪ D2 ⊆ D we have:

(∗1 � ∗2) ≤ S≈∗1(D1,D2)→ S≈∗2(D1,D2), (6.85)

(∗1 ≈ ∗2) ≤ E≈∗1(D1,D2)↔ E≈∗2(D1,D2). (6.86)

Proof. Using adjointness (6.85) is equivalent to

(∗1 � ∗2)⊗ S≈∗1(D1,D2) ≤ S≈∗2(D1,D2).

Due to (2.21), (2.15) and (6.82):

(∗1 � ∗2)⊗ S≈∗1(D1,D2) =

(∗1 � ∗2)⊗
∧
r∈Tupl(R)

(
D1(r)→ (C≈

∗1
D (D2))(r′)

)
≤∧

r∈Tupl(R)

(
(∗1 � ∗2)⊗ (D1(r)→ (C≈

∗1
D (D2))(r′))

)
≤∧

r∈Tupl(R)

(
D1(r)→ ((∗1 � ∗2)⊗ (C≈

∗1
D (D2))(r′))

)
≤∧

r∈Tupl(R)

(
D1(r)→ (C≈

∗2
D (D2)(r′))

)
= S≈∗2(D1,D2).

(6.86) is a consequence of (6.85).

In words, (6.85) says that if D1 is a subset of D2 using ∗1 and if ∗1 is stronger than ∗2,

then D1 is a subset of D2 using ∗2. Analogously, (6.86) says that if hedges ∗1 and ∗2 are

similar, then the degree of similarity of D1 and D2 using ∗1 and ∗2 are similar.

6.4 Conclusions

In this chapter we have investigated the questions related to similarity preservation. We

have shown that if a relational operation (from Section 2.3.2) is applied to pairwise similar

input arguments (i.e., pairwise similar RDTs), it produces similar results. In addition,

the degree of similarity of the results can be estimated based on the degrees of similarity

of the input arguments prior to the evaluation of relational operations, i.e., prior to the

execution of a relational query. We have also shown that the estimations of similarity are

optimal considering all possible RDTs over arbitrary domains with similarities. Later we

have investigated similarity of ranked data tables based on pairwise similar tuple values.

We have focused on the role of similarity-based closures of ranked data tables which are

new and nontrivial relational operations. We have shown that tuple-based similarity can

be reduced to rank-based similarity of similarity-based closure.



Shrnut́ı v českém jazyce

Relačńı databáze, založené na relačńım modelu dat (E. F. Codd 1970 [41]), jsou dnes stan-

dardem pro ukládáńı a manipulaci s daty. Za úspěchem relačńıho modelu stoj́ı, mimo

jiné, jeho pevné matematické základy – teorie množin a (dvouhodnotová) predikátová lo-

gika. To, co je na jednu stranu výhodou, je na druhou stranu limituj́ıćı. Relačńı databáze

založené na klasickém relačńım modelu neumı́ pracovat s koncepty, které nejsou bivalentńı,

ale v́ıcehodnotové, např. s podobnost́ı.

Představme si, že hledáme hotel v Olomouci, který nab́ıźı pokoje za 100e. Klasické

relačńı databáze nám vrát́ı množinu hotel̊u, jejichž cena je přesně 100e. Je ale přirozené,

že vedle hotel̊u stoj́ıćıch 100e nás zaj́ımaj́ı i hotely, jejichž ceny jsou bĺızko naš́ı představě

(např. hotely s cenou 95e nebo 105e). Na úvaze se nic nezměńı, budeme-li hledat hotely

s cenou v nějakém intervalu, např. 95–105e. Opět nás budou zcela určitě zaj́ımat i hotely,

jejichž cena je dostatečně bĺızko (je podobná) našim požadavk̊um, např. hotely s cenou

89e nebo 110e.

Snahy rozš́ı̌rit relačńı model o podobnosti na doménách (doména je množina možných

hodnot pro daný atribut) se objevuj́ı už od roku 1982 [31]. Podobnost na doméně Dy

atributu y lze formalizovat pomoćı binárńı fuzzy relace ≈y: Dy ×Dy → L. Tedy každým

dvěma hodnotám d1, d2 ∈ Dy je přǐrazen stupeň jejich podobnosti (d1 ≈y d2) ∈ L. Často

se voĺı L = [0, 1]. Relačńım model̊um, které uvažuj́ı podobnosti na doménách, budeme

ř́ıkat podobnostńı relačńı modely.

Disertačńı práce je věnována relačńımu modelu dat, který představili Bělohlávek a Vy-

chodil [18], a který rozšǐruje p̊uvodńı relačńı model takto: 1) na každé doméně je zavedena

relace podobnosti, 2) relace (databázové tabulky) jsou rozš́ı̌rené o tzv. ranky. Každý řádek

(záznam) obsahuje nav́ıc rank, což je stupeň, ve kterém daný řádek vyhovuje dotazu. Tento

model je založen na predikátové fuzzy logice.

Prvńı část disertačńı práce je zaměřena na funkčńı závislosti v podobnostńıch relačńıch

modelech, které se snaž́ı popsat závislosti typu: jestliže jsou si dva řádky podobné na atri-

butech A, pak jsou si podobné na atributech B. Př́ıstup̊u k funkčńım závislostem v po-

dobnostńıch relačńıch modelech je několik deśıtek, pozornost je proto věnována porovnáńı

těchto př́ıstup̊u. Je představeno kritérium, které umožňuje rozd́ılné definice objektivně

srovnat. U funkčńıch závislost́ı, které představili Bělohlávek a Vychodil, jsou A,B fuzzy

množiny atribut̊u. Př́ıkladem takové závislosti může být: jestliže maj́ı hotely podobnou

cenu alespoň ve stupni 0,8, pak maj́ı podobné hodnoceńı od zákazńık̊u alespoň ve stupni
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0,7. Formálně lze psát {0,8/cena} ⇒ {0,7/hodnoceńı}. Pravdivost funkčńıch závislost́ı se

uvažuje ve stupńıch. V disertačńı práci je pro tyto funkčńı závislosti vyvinut alterna-

tivńı dokazovaćı systém, který je založen na orientovaných grafech. Je dokázána úplnost

v následuj́ıćım smyslu: Funkčńı závislost A ⇒ B sémanticky plyne z množiny funkčńıch

závislost́ı tehdy a jen tehdy, existuje-li orientovaný graf pro A ⇒ B. Konstrukci oriento-

vaných graf̊u lze využ́ıt i pro určeńı uzávěru (fuzzy) množiny atribut̊u vzhledem k teorii.

Druhá část práce je věnována citlivosti funkčńıch závislosti a relačńıch operaćı (v mo-

delu Bělohlávka a Vychodila) na vstupńıch datech. Nejprve je diskutováno, jak lze měřit

podobnost databázových tabulek (relaćı s ranky) a jsou představeny dvě mı́ry: podobnost

založená na ranćıch (rank-based similarity) a podobnost založená na datech (tuple-based

similarity). U podobnosti založené na ranćıch řekneme, že dvě relace s ranky jsou si po-

dobné, pokud stejné řádky patř́ı do obou relaćı v podobném stupni. Pro tuto podobnost

je dokázáno, že v podobných relaćıch budou funkčńı závislosti platit v podobném stupni.

Tedy, že definice funkčńıch závislost́ı je robustńı: malá změna na vstupńıch datech zp̊usob́ı

pouze malou změnu v platnosti funkčńıch závislost́ı. Rovněž jsou prezentovány odhady pro

pravdivost funkčńı závislosti A1 ⇒ B1, A2 ⇒ B2 v závislosti na podobnosti fuzzy množin

atribut̊u A1, A2 a B1, B2. Pro podobnost založenou na ranćıch je dále studována citlivost

výsledk̊u relačńıch operaćı na vstupńıch datech. Je ukázáno, že pro libovolný dotaz lze

podobnost výsledk̊u dotazu odhadnout na základě podobnosti vstupńıch dat.

U podobnosti založené na datech řekneme, že dvě relace s ranky jsou si podobné,

jestliže ke každému řádku v jedné relaci existuje řádek v druhé relaci, který je mu po-

dobný a opačně. Ukazuje se, že tuto podobnost lze vyjádřit pomoćı podobnosti založené

na ranćıch a nové relačńı operace: podobnostńıho uzávěru. V disertačńı práci jsou stu-

dovány vlastnosti podobnostńıho uzávěru a jeho vztah k relačńım operaćım. Rovněž je

představena podobnost pro relace s ranky, která zobecňuje obě předchoźı.
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Chapter 1

Problem setting

1.1 Introduction

Similarity search and related issues are current topic in databases. Over the last ten years,

several thousands papers dealing with similarity in databases were published according to

Web of Science. We study a particular rank-aware relational model over domains with

similarities, which was introduced by Belohlavek and Vychodil [12, 13, 14, 17, 18].

Belohlavek and Vychodil extended the Codd’s orignal model in the following way: do-

mains are additionally equipped with similarity relations and each tuple in a data table has

assigned a rank. The rank is a degree to which a tuple matches a similarity-based query.

Both similarity degrees and ranks come from complete residuated lattice. We will inves-

tigate the model proposed by Belohlavek and Vychodil. First, we study similarity-based

functional dependencies (SBFDs). We propose a graph-based method for reasoning and

show a correspondence between construction of a directed graph and normalized proof.

We also compare the definition of SBFD given by Belohlavek and Vychodil with other

approaches. Second, we examine sensitivity issues. We define two similarity measures for

ranked-data tables (RDTs): ranked-based similarity (two RDTs are considered similar if

they contain tuples with similar ranks) and tuple-based similarity (two RDTs are consid-

ered similar if they contain tuples with similar values). The tuple-based similarity can be

expressed by rank-based similarity and a new relational operation, called similarity-based

closure. Using the notion of rank-based similarity, we show that the similarity of query

results can be estimated based on the similarity of input data prior to query execution.

Such estimates can be provided for arbitrary complex queries. We further study estimates

for tuple-based similarity and properties of the similarity-based closure. We also explore

sensitivity issues connected to similarity-based functional dependencies.

The document is organized as follows:

In Chapter 1.2 we summarize basic facts from residuated lattices, fuzzy set theory and

Codd’s relational model of data. We also introduce the model proposed by Belohlavek

and Vychodil.

In Chapter 2 we review and critically examine the existing work on similarity-based

functional dependencies. We try to objectively compare various approaches and we propose

a novel criterion to achieve this goal.

In Chapter 3 we show that degrees to which a SBFD semantically follows from sets (or

3



4 1.2. PRELIMINARIES

graded sets) of other SBFDs can be characterized by existence of particular directed acyclic

graphs with vertices labeled by attributes and degrees coming from complete residuated

lattices. In addition, we show that the construction of directed acyclic graphs can be used

to compute closures of sets of attributes.

In Chapter 4 we define the rank-based similarity of RDTs and show that a SBFD holds

in similar data tables to similar degree. We also explore how the validity of SBFD change

if we replace the antecedent (or consequent) by similar set of attributes.

In Chapter 5 we show that relational operations preserve the rank-based similarity

of RDTS. We also provide an alternative definition of similarity of RDTs (tuple-based

similarity) and explore its preservation for relational operations. The tuple-based similarity

is closely related to a new relational operation, a similarity-based closure, whose properties

are investigated as well. We also outline a general approach to similarity of RDTs that

includes both the rank-based similarity and tuple-based similarity.

1.2 Preliminaries

In this section we recall the basic facts of residuated lattices, fuzzy set theory, and relational

model of data. We also introduce one extension of the Codd’s model of data, namely ranked

data tables over domains with similarities.

1.2.1 Residuated lattices

A complete residuated lattice [4, 50], which will serve as a basic structure of truth degrees,

is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that

• 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 and 1 being the least and the greatest

element of L;

• 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is a binary operation which is commutative,

associative, and a⊗ 1 = 1⊗ a = a for each a ∈ L;

• ⊗ and → satisfy so-called adjointness property:

a⊗ b ≤ c iff a ≤ b→ c (1.1)

for each a, b, c ∈ L, where ≤ is the order induced by the lattice structure of L, i.e.

a ≤ b iff a = a ∧ b.

Elements a of L are interpreted as truth degrees. The operations ⊗ and → are truth

functions of “fuzzy conjunction” and “fuzzy implication” and are called a multiplication

and a residuum, respectively. For a complete residuated lattice L we define

a↔ b = (a→ b) ∧ (b→ a) (1.2)

and call this derived operation a biresiduum. The biresiduum can be seen as a truth

function for an equivalence. For a nonnegative integer n, the n-th power of a ∈ L is

defined by

a0 = 1 and an+1 = an ⊗ a. (1.3)
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The unit interval: Common examples of complete residuated lattices include structures

defined on the real unit interval, i.e. structures L where L = [0, 1], ∧ and ∨ being minimum

and maximum, respectively, and ⊗ being a left-continuous triangular norm (shortly, a t-

norm) with the corresponding→. All complete residuated lattices on the real unit interval

with continuous ⊗ can be constructed by means of ordinal sums [29] from the following

three pairs of adjoint operations:

 Lukasiewicz: a⊗ b = max(a+ b− 1, 0), a→ b = min(1− a+ b, 1);

Gödel: a⊗ b = min(a, b), a→ b = b if a > b, 1 otherwise;

Goguen: a⊗ b = a · b, a→ b = b
a if a > b, 1 otherwise.

Complete resitudated lattices 〈[0, 1],min,max,⊗,→, 0, 1〉 with universe [0, 1] and with

 Lukasiewicz, Gödel or Goguen operations will be called standard  Lukasiewicz, Gödel and

Goguen algebra, respectively, and will be denoted as [0, 1] L, [0, 1]G, [0, 1]Π. Sometimes we

will denote → L, →G, and →Π to emphasize the  Lukasiewicz, Gödel and Goguen implica-

tion, respectively.

We now turn our attention to unary operations called truth-stressing hedges [51, 50, 42].

Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice. An unary operation ∗ : L→
L satisfying

1∗ = 1, (1.4)

a∗ ≤ a, (1.5)

(a→ b)∗ ≤ a∗ → b∗, (1.6)

a∗∗ = a∗, (1.7)

for each a, b ∈ L will be called a truth-stressing hedge (or shortly hedge) for L. The algebra

L = 〈L,∧,∨,⊗,→, ∗, 0, 1〉 is then called a complete residuated lattice with hedge and

denoted as L∗. Hedge ∗ can be understood as a truth function of unary connective “very

true”. If φ is a proposition with truth degree ||φ||, then the truth degree of proposition

“φ is very true” (or “it is very true that φ”) is ||φ||∗. Properties (1.4)–(1.7) have natural

interpretations, e.g., (1.5) can be read: “if a is very true, then a is true”.

Two boundary cases of (truth-stressing) hedges are

(i) identity, i.e., a∗ = a (a ∈ L);

(ii) globalization [82]:

a∗ =

{
1, if a = 1,

0, otherwise.
(1.8)

If ∗ is a globalization, then (a→ b)∗ = 1 iff a→ b = 1 iff a ≤ b.

Since ∗ is intensive (1.5), monotone (consequence of (1.4) and (1.6)) and idempotent (1.7),

it is an interior operator. We may therefore denote by fix(∗) the set of all fixed points:

fix(∗) = {a ∈ L | a∗ = a} = {a∗ | a ∈ L}. (1.9)

If ∗1 and ∗2 are two hedges on L such that fix(∗1) ⊆ fix(∗2) we say that ∗1 is stronger than

∗2.
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A special case of a complete residuated lattice with hedge is the two-element Boolean

algebra 〈{0, 1},∧,∨,⊗,→, ∗, 0, 1〉, denoted by 2, which is the structure of truth degrees of

the classical logic. That is, the operations ∧,∨,⊗,→ of 2 are the truth functions of the

corresponding logical connectives of the classical logic and 0∗ = 0, 1∗ = 1.

L-sets and L-relations [4, 93]

An L-set (or fuzzy set) in a universe X is a mapping A : X → L, where L is a support of

a complete residuated lattice L. The degree A(x) is interpreted as a degree to which an

element x belongs to A. The set of all L-sets in X is denoted by LX . We are going to use

the following notation for denoting L-sets: If X = {x1, . . . , xn} then an L-set A in X can

be denoted by A = {a1/x1, . . . ,
an/xn} meaning that A(xi) equals ai for each i = 1, . . . , n.

Operations with L-sets are defined component-wise, for A,B ∈ LX we have:

(A ∪B)(u) = A(u) ∨B(u), (1.10)

(A ∩B)(u) = A(u) ∧B(u), (1.11)

(A⊗B)(u) = A(u)⊗B(u), (1.12)

(A→ B)(u) = A(u)→ B(u). (1.13)

For L-sets A,B ∈ LX we define a degree of subsethood of A in B and a degree of equality

of A,B as follows:

S(A,B) =
∧
x∈X

(A(x)→ B(x)), (1.14)

E(A,B) =
∧
x∈X

(A(x)↔ B(x)). (1.15)

The subsethood relation (1.14) generalizes the classical subsethood relation “⊆”. In

particular, we have S(A,B) = 1 (A is fully included in B) iff A(x) ≤ B(x) for each x ∈ X.

S(A,B) can be understood as a truth degree of the following formula: “for every x ∈ X: if

x belongs to A, then x belongs to B.” And similarly E(A,B) can be thought of as a truth

degree of the formula “for every x ∈ X: x belongs to A iff x belongs to B.”

An n-ary L-relation between sets X1, . . . , Xn is an L-set I ∈ LX1×...×Xn . Thus a binary

L-relation on X is a mapping I : X×X → L that assigns to each pair of elements x, y ∈ X
a degree to which they are related according to I. A binary L-relation I on X is called an

L-equivalence if it is reflexive, symmetric and ⊗-transitive, that is for all x, y, z ∈ X:

I(x, x) = 1, (1.16)

I(x, y) = I(y, x), (1.17)

I(x, y)⊗ I(y, z) ≤ I(x, z). (1.18)

L-equivalence, or fuzzy equivalence, will be denoted as ≡. Note that (1.15) is an L-

equivalence on LX . A binary L-relation I that is reflexive and symmetric will be called

similarity and denoted as ≈. We will write x ≈ y instead of ≈ (x, y). An L-equivalence

that satisfies separability I(x, y) = 1 iff x = y will be called L-equality.

1.2.2 The relational model

Now we will present the basic notions from the relational model of data, which was intro-

duced by Codd in [30]. For further details see [62, 38]. Let Y denotes a set of attribute
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names. For each attribute y ∈ Y we consider its domain Dy, which is an arbitrary

nonempty set of all values allowed for y. A relation scheme is a finite subset R ⊆ Y . In

particular R = ∅ ⊆ Y is an empty relation scheme. For each relation scheme R, Tupl(R)

denotes
∏
y∈RDy, i.e. the Cartesian product of domains Dy (y ∈ R). Recall that the

Cartesian product is a set of all maps r : R →
⋃
y∈RDy such that r(y) ∈ Dy holds for all

y ∈ R. For R = ∅ we get
∏
y∈∅Dy = {∅}. A data table D on R is any finite subset of

Tupl(R). Each r ∈ Tupl(R) is called a tuple over R and r(y) is called the y-value of r.

The only data tables on relation scheme R = ∅ are D> = {∅} and D⊥ = ∅ which are called

TABLE_DEE and TABLE_DUM (in [39]) and represent the truth values 1 and 0, respectively.

Moreover, for each A ⊆ R, the restriction of r to the subset A is denoted by r(A), that is

r(A) : A →
⋃
y∈ADy. If D is a data table on a relation scheme R, i.e. D ⊆ Tupl(R), and

A is a subset of R, then πA(D) denotes the projection of the data table D to the set of

attributes A,

πA(D) = {r(A) | r ∈ D}. (1.19)

Assume A,B are sets of attributes, i.e. A,B ⊆ R, then we say A determines B (or B is

functionally dependent on A) if whenever two tuples of D agree on attributes from A then

they agree on attributes from B. We write A ⇒ B and call such a statement functional

dependency (FD). Formally, FD is satisfied by relation D iff

∀r1, r2 ∈ D : if r1(A) = r2(A), then r1(B) = r2(B). (1.20)

We will denote by ||A ⇒ B||D the degree to which an FD A ⇒ B holds in a relation D.

From (1.20) we obviously have ||A⇒ B||D ∈ {0, 1}.

1.2.3 Ranked data tables over domains with similarities

The concept of a ranked data table over domains with similarities [9, 12, 17, 18] is the

counterpart to the concept of a relation on a relation scheme. As in the original Codd’s

relational model, Y denotes a set of attributes names, a relation scheme is any finite

subset R ⊆ Y , and a domain Dy is a set of all possible values of the attribute y ∈ Y . The

relational model is generalized in the following way: i) Each domain Dy is additionally

equipped with a similarity relation ≈y, i.e. with a reflexive symmetric binary L-relation

on Dy; ii) Each tuple has assigned a rank, which represents a degree to which a tuple

matches a query. Ranks have mainly comparative meaning: the higher the rank the better

the match. Similarity degrees as well as ranks come from complete residuated lattice. The

following table which can be seen as a result of the query “hotels in Olomouc with a room

for 100e” is an example of a ranked data table.

name price eval dist

1.00 Hotel Central 100,00e 8.9 0.5 km

0.90 Hotel ABC 90,00e 9.1 0.8 km

0.85 Pension Angel 115,00e 8.5 1.2 km

0.45 Hotel Paradise 55,00e 6.7 2.5 km

0.30 Hotel Kryton 170,00e 10.0 1.6 km

In the data table we store the following informations: name (name of the hotel), price

(price for the double room), eval (average evaluation), dist (distance from the city

center). The numbers 1.00, . . . , 0.30 in the leftmost column are the ranks from a scale
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of truth values (here [0, 1]). The remaining part of the table can be seen as a classical

data table. Similarities on domains are not shown directly. For the attribute price , we

consider the following similarity on its domain: p1 ≈price p2 = (100 − |p1 − p2|)/100 if

|p1 − p2| < 100, and 0 otherwise.

We will now introduce ranked data tables (RDTs) formally:

Definition 1 ([17]). Let R ⊆ Y be a relation scheme and let 〈Dy,≈y, 〉 be domains with

similarities for attributes y ∈ R. A ranked data table on R over {〈Dy,≈y, 〉 | y ∈ R} is any

map

D :
∏
y∈R

Dy → L, (1.21)

such that the set {r ∈
∏
y∈RDy | D(r) > 0}, called the answer set, is finite. The cardinality

of the answer set of D is called the size of D and is denoted by |D|. D is called nonranked

if D(r) ∈ {0, 1} for any r. Each degree D(r) ∈ L is called a rank of r in D.

Definition 2 ([17]). For each a ∈ L, we denote by a∅ the RDT on ∅ such that a∅(∅) = a.

Therefore, each a∅ is a map which assigns to the empty tuple the degree a ∈ L

a∅ : {∅} → L. (1.22)

Each a∅ is viewed as a relational representation of the rank a ∈ L.

Note that the original Codd’s model is a particular case of the model of RDT over

domains with similarities. If one takes the two-element Boolean algebra for L, then all

RDTs become nonranked and all similarities become identities.

We introduce relational operations for RDTs as given in [17]. For RDTs D1 and D2

on relation scheme R, we put

(D1 ∪ D2)(r) = D1(r) ∨ D2(r), (1.23)

(D1 ∩ D2)(r) = D1(r) ∧ D2(r), (1.24)

(D1 ⊗D2)(r) = D1(r)⊗D2(r). (1.25)

D1∪D2 is called the union of D1 and D2. D1∩D2 and D1⊗D2 are called the ∧-intersection

and the ⊗-intersection.

In order to have a domain independent reisuduum, the authors introduced a ternary

counterpart of → with one of the argument serving as a range [17]. For RDTs D1, D2,

and D3 on relational scheme R we put(
D1 _D3 D2

)
(r) = D3(r)⊗

(
D1(r)→ D2(r)

)
(1.26)

for all r ∈ Tupl(R). D1 _D3 D2 is called a residuum of D1 with respect to D2 which

ranges over D3. It is clear that D1 _D3 D2 ⊆ D3. The RDT D3 serves as a range for the

componentwise application of residuum →, which is more easily seen if one considers D3

as a nonranked RDT. In this case D1 _D3 D2 can be rewritten as follows:

(
D1 _D3 D2

)
(r) =

{
D1(r)→ D2(r), if D(r) = 1,

0, otherwise.
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If we take the first or the second argument of the ternary residuum as a constant degree

from L, we obtain two important binary operations: residuated c-negation and residuated

c-shift. For RDTs D1 and D2 on R and for c ∈ L, we put(
D2 �c D1

)
(r) = D1(r) _D2(r) c, (1.27)(

c_D2 D1

)
(r) = c_D2(r) D1(r), (1.28)

for all tuples r ∈ Tupl(R).

Projections and residuated divisions represent operations which allow users to express

queries with existential and universal quantification.

We start by considering the projection. If D is an RDT on R1, the projection of D
onto R2 ⊆ R1, denoted by πR2(D), is defined as

(πR2(D))(r2) =
∨
r3∈Tupl(R1\R2)D(r2r3) (1.29)

for each r2 ∈ Tupl(R2). Note that (1.29) uses a general suprema
∨

to define the rank of

r2 in πR2(D). If D is interpreted as a result of query Q, then the rank of r2 in πR2(D) can

be understood as the degree to which “there is a tuple matching Q which agrees with r2

on all the attributes from R2”.

Relational expressions involving projections can be utilized in existentially quantified

queries. In the same spirit, relational expressions involving divisions are algebraic coun-

terpart to universally quantified queries, see [62]. Since in residuated logics the existential

and universal quantifiers are not mutually definable [47, 50], the residuated division is

introduced as a fundamental operation. Moreover, the residuated division is considered as

a ternary operation in order to ensure its domain independence.

Let D1 be an RDT on R1, D2 be an RDT on R2 ⊆ R1, and D3 be an RDT on

R3 = R1 \ R2. Then, a division of D1 by D2 which ranges over D3 is an RDT on R3

denoted by D1 ÷D3 D2 and defined by(
D1 ÷D3 D2

)
(r3) =

∧
r2∈Tupl(R2)

(
D2(r2) _D3(r3) D1(r2r3)

)
=
∧
r2∈Tupl(R2)

(
D3(r3)⊗ (D2(r2)→ D1(r2r3))

)
(1.30)

for each r3 ∈ Tupl(R3). It is easily seen that D1 ÷D3 D2 ⊆ D3 and therefore the result of

division is fully contained in D3. Therefore D3 can be seen as a range for the division.

Similarity-based restriction is another fundamental operation and it is a counterpart

to the ordinary restriction. If D is an RDT on relation scheme R, y ∈ R and d ∈ Dy,

the similarity-based restriction of D by y ≈ d is an RDT on R denoted by σy≈d(D) and

defined by

(σy≈d(D))(r) = D(r)⊗ r(y)≈y d, (1.31)

for all r ∈ Tupl(R). The similarity-based restriction that compares values of two attributes

y1, y2 with the same domain is introduced as follows: For an RDT D on relation scheme

R and for y1, y2 ∈ R such that Dy1 = Dy2 and u ≈y1 v = u ≈y2 v for all u, v ∈ Dy1 , we

define

(σy1≈y2(D))(r) = D(r)⊗ r(y1)≈y1 r(y2). (1.32)
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By applying a similarity-based restriction to a nonranked RDT we obtain a ranked RDT.

The (equality-based) natural join is introduced as follows. If D1 is an RDT on relation

scheme R1∪R3 and D2 is an RDT of relation scheme R2∪R3 such that R1∩R2 = R1∩R3 =

R2 ∩R3 = ∅ (i.e., R1, R2, and R3 are pairwise disjoint), then the (equality-based) natural

join of D1 and D2 is an RDT on relation scheme R1 ∪ R2 ∪ R3 denoted by D1 ./ D2 and

defined by (
D1 ./ D2

)
(r1r2r3) = D1(r1r3)⊗D2(r2r3) (1.33)

for each r1 ∈ Tupl(R1), r2 ∈ Tupl(R2), and r3 ∈ Tupl(R3). Natural joins have important

special cases: i) Considering D1 and D2 in (1.33) with R3 = ∅, we get a natural join

D1 ./ D2 of two RDTs on disjoint relation schemes; ii) Considering R1 = R2 = ∅, then

D1 ./ D2 is a ⊗-intersection.

Similarity-based restrictions can be used to define various types of similarity-based

joins. The first type of join we introduce is a similarity-based equijoin. For RDTs D1 on

R1 and D2 on R2 such that R1 ∩ R2 = ∅, the similarity-based equijoin of D1 and D2 by

y1 ≈ y2, denoted by D1 ./y1≈y2 D2, is defined by

D1 ./y1≈y2 D2 = σy1≈y2(D1 ./ D2), (1.34)

provided that y1 ∈ R1, y2 ∈ R2, and both y1 and y2 have the same domain with similarity.

A second type of join can be used when we want to put only a partial emphasis instead of

the full emphasis on the similarity-based condition y1 ≈ y2:

(D1 ./c/y1≈y2
D2)(r1r2) = D1(r1)⊗D2(r2)⊗ (c→ r1(y1)≈y1r2(y2)) (1.35)

for any r1 ∈ Tupl(R1) and r2 ∈ Tupl(R2).

We have seen that similarity-based restriction can produce a ranked RDT from a non-

ranked one. Conversely, operations kernel and support produce a nonranked RDT from

a data table containing ranks. For D, we define RDTs ∆D (a kernel of D) and ∇D (a

support of D) on the same relation scheme as follows:

(∆D)(r) =

{
1, if D(r) = 1,

0, otherwise.
(1.36)

(∇D)(r) =

{
1, if D(r) > 0,

0, otherwise.
(1.37)

The last operation we discuss is renaming, which plays the same role as in the Codd’s

model. Given an RDT D, the renaming ρf (D) produces an RDT with the same contents

(and the same ranks) with attributes renamed by an injective renaming function f : R→ Y

such that attributes y and f(y) have the same domain.

The authors proved in [14, 17] that relational algebra has the same expressive power as

the domain relational calculus (with range declarations). The domain relational calculus

is based on first-order fuzzy logic.

Similarity-based functional dependencies

We now introduce functional dependencies, which are called similarity-based functional

dependencies (SBFDs) and their interpretation in RDTs [9, 12, 15, 18]. For A,B ∈ LR
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the similarity-based functional dependency is an expression of the form A ⇒ B. For an

RDT D on R a degree ||A⇒ B||D to which A⇒ B is true in D is defined by

||A⇒ B||D =
∧

r1,r2∈Tupl(R)

(
(r1(A) ≈ r2(A))∗ → (r1(B) ≈ r2(B))

)
, (1.38)

where

r1(A) ≈D r2(A) = (D(r1)⊗D(r2))→
∧
y∈R

(A(y)→ r1(y) ≈y r2(y)). (1.39)

In what follows, we are interested in the entailment of SBFDs from theories [9, 18]. An

L-set T of SBFDs on R will be called a theory. A theory T is called crisp if T (A⇒ B) ∈
{0, 1} for each SBFD A ⇒ B. We say that an RDT D is a model of theory T whenever

T (A⇒ B) ≤ ||A⇒ B||D for all A⇒ B on R. The collection of models will be denoted as

Mod(T ), i.e.

Mod(T ) = {D | for each A,B ∈ LR : T (A⇒ B) ≤ ||A⇒ B||D}, (1.40)

where D is any RDT over R. A degree ||A ⇒ B||T to which A ⇒ B (on R) semantically

follows from T is defined by

||A⇒ B||T =
∧
D∈Mod(T ) ||A⇒ B||D. (1.41)

The degree to which a particular SBFD follows from a given theory (an L-set of SBFDs)

can be expressed using the concepts of entailment to degree 1 and crisp theory. More

precisely: For A,B ∈ LR and theory T on R

||A⇒ B||T =
∨
{c ∈ L | ||A⇒ c⊗B||crisp(T ) = 1}, (1.42)

where crisp(T ) = {A⇒ T (A⇒ B)⊗B |A,B ∈ LR and T (A⇒ B)⊗B 6⊆ A}.
We have introduced the concept of semantic entailment, which is defined in terms of

models. As in the ordinary Codd model there is an alternative type of entailment based

on the notion of provability. The deductive system for SBFDs consists of three rules:

(Ax) infer A∪B ⇒ B,

(Cut) from A⇒ B and B∪C ⇒ D infer A∪C ⇒ D,

(Mul) from A⇒ B infer c∗ ⊗A⇒ c∗ ⊗B

for each A,B,C,D ∈ LR and c ∈ L. The inference system consisting of (Ax), (Cut),

and (Mul) is complete in the following sense: ||A⇒ B||T = 1 iff T ` A⇒ B, i.e., iff there

is a proof of A⇒ B from T . The proof of A⇒ B from T is a sequence of SBFDs ending

with A⇒ B such that each element of the sequence is either from T or is inferred from the

preceding formulas using (Ax), (Mul), or (Cut). This result (ordinary-style completeness)

characterizes SBFDs which follow semantically from T to degree 1. There is also a result

on graded-style (Pavelka-style [68, 69, 70]) completeness saying that

||A⇒ B||T =
∨
{c ∈ L |T ` A⇒ c⊗B}, (1.43)

i.e., the degree to which A⇒ B semantically follows from T is a supremum of degrees c ∈ L
for which A ⇒ c⊗B is provable from T in the ordinary sense. The completeness results

have been established over all finite residuated lattices and general complete residuated

lattices (considering an additional infinitary deduction rule), see [8].



Chapter 2

Overview of similarity-based

functional dependencies

We have seen one particular extension of functional dependencies, namely similarity-based

functional dependencies proposed by Belohlavek and Vychodil. This approach is one of

many extensions that appeared in the past, actually more than one hundred papers dealing

with functional dependencies (FDs) over domain with similarities can be found in the

literature. In our opinion the wide variety of approaches are worthy of an exhaustive

review and comparison.

The name “fuzzy functional dependencies” is often used for various extensions of FDs

which we think is unfortunate for several reasons. First of all, the term “fuzzy functional

dependency” is usually used for functional dependencies defined within “fuzzy relational

model”. But there is no agreement among researchers what the terms “fuzzy relational

model” or “fuzzy database” really mean, compare for example [84] and [73]. Moreover,

although many definitions of so called fuzzy functional dependencies extend the classical

one, the dependency usually remains crisp in the sense that either a given relation satisfies

the dependency or it does not. In this sense the term fuzzy functional dependency is

somehow inadequate. We will therefore use the term generalized functional dependency

(GFD) and generalized relational model (GRM) to prevent misunderstanding.

In this chapter, we intend to concentrate specifically on GFD over domains with simi-

larities and the directly related issues. From the logical point of view, the generalization

of FDs to FDs over domains with similarities may be looked at as replacing two-valued

identity relations by many-valued ones which represent similarities. This step may be

considered as switching from a two-valued logic, as the formal framework in which the

ordinary model is implicitly developed 1, to appropriate fuzzy logic. The switch to fuzzy

logic naturally brings the question of how the concept of validity, entailment etc. should

be dealt with. Should the validity of a GFD in a given relation remains bivalent (true or

false) or should the validity be many-valued (e.g. taking values from [0, 1])?

There are several works which addressed and examined the various proposals to GFDs, [21,

1Codd’s original model was based on two-valued logic, although later Codd himself extended its rela-

tional calculus by considering a three-valued logic to manage missing, non-applicable or unknown informa-

tion via the NULL value [31]. In the further step [32] a four-valued logic was introduced to deal separately

with these different types of uncertainties. Nevertheless, these extensions have been subject to criticism in

the past (see C.J. Date in [37]).

12
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22, 15, 88]. None of the works is trying to unify various approaches or to objectively com-

pare them.

2.1 Generalizations of the relational model

The main goal of this section is to look into generalizations of the relational model involving

similarity relations. The extension of domains with a similarity relation usually does not

stand alone but comes together with ranked data tables, and various data extensions.

1. Similarity-based approaches (from equality to similarity): In most of the

approaches we will consider, the equality relation that is implicitly presented in the

original Codd’s model (domain values are either “equal” or “not equal”) is replaced

by a binary fuzzy relation that maps every pair of domain values to [0, 1] and is

meant to express the similarity (closeness) of domain values [20, 23, 24, 35, 26, 41,

71, 74, 75, 76, 91, 80] and later in [9, 19, 44, 56, 60, 78, 83, 95]. Although the degree

of similarity comes usually from [0, 1], there are extensions considering more general

algebraic structures [49, 9, 33].

2. Rank-based approaches (from relation to fuzzy relation): By rank-based

approaches we mean extensions of the relational model in which the data table is

seen as a fuzzy set of tuples. Thus the data table has an additional column which

contains a rank—also called (membership) grade, score or weight—to express to what

degree a tuple belongs to a data table. First attempts to rank-based approaches can

be found in [2, 53, 74, 85, 96]. Later works include [15, 90, 43, 64, 66, 75, 81, 83].

There are also extensions in which the rank is assigned to every attribute value, e.g.

in [63, 33, 16]. The ranks usually take values from [0, 1], but there are approaches in

which the unit interval is replaced by some general algebraic structure [48, 49, 15].

In one of the pioneering work done by Umano [85] the rank itself is a possibility

distribution on [0, 1].

The meaning of the rank differs among approaches and it is seen as: (i) compatibility

with the relation [2]; (ii) global confidence level [22]; (iii) compatibility with the set

of individual constraints specified on the relation, see [64, 66]; (iv) degree to which

a tuple matches a query, see [15, 43, 75], or the degree to which it is possible that

a tuple matches a query, see [25].

3. Data extensions (from precise to imprecise values):

The third aspect involved in the various generalizations of the relational model is

data extensions, i.e. replacing precise values by imprecise ones. There are several

approaches where the authors are trying to incorporate more complex data, namely

an attribute value is considered to be a set of (possible) values in [24, 26, 79, 91, 89],

a fuzzy set (including linquistic terms) or a possibility distribution in [20, 67, 36, 41,

26, 55, 57, 60, 74, 66, 72, 81, 85], a vague set in [95] or an interval-valued possibility

distribution in [65]. Nevertheless, in Codd’s relational model there are no limitations

in what can and cannot be an attribute value [38].



14 2.2. COMPARISON OF SIMILARITY-BASED GENERALIZATIONS OF FD

2.2 Comparison of similarity-based generalizations of FD

The semantics of classical FD corresponds to the notion of mathematical function. More

precisely: ||A⇒ B||D = 1 iff {〈r(A), r(B)〉| ∀r ∈ D} is a function (from πA(D) to πB(D),

see (1.19)). In this section we will introduce various definitions of GFD and examine how

different approaches correspond to the notion of a fuzzy function. The definition of fuzzy

function was provided by Gottwald in [46] and later studied for example by Demirci [40].

Definition 3 (Fuzzy function). Let L be a residuated lattice, let A and B be crisp sets,

and let ≈A and ≈B be L-equalities. An L-relation ρ : A×B → L (L is a support set of L)

is said to be a fuzzy function iff for all a1, a2 ∈ A and b1, b2 ∈ B we have

ρ(a1, b1)⊗ ρ(a2, b2)⊗ (a1 ≈A a2) ≤ (b1 ≈B b2). (2.1)

A partial fuzzy function [40, 54] is used in [4] in the definition of a degree to which

a given relation is a fuzzy function. We will use the idea from [46] (and later from [4]) to

define a degree to which a ranked data table corresponds to the notion of fuzzy function

given by (2.1).

Definition 4. Let L be a complete residuated lattice and D : Tupl(R) → L be a ranked

data table. Let ≈i be L-similarities on corresponding domains. Let A,B ⊆ R and let the

similarity of two tuples on a set of attributes be given by Equation (2.6). The degree to

which D is a fuzzy function with respect to the sets of attributes A and B is defined as:

Fun(D, A,B) =∧
r1,r2∈Tupl(R)

(
(D(r1)⊗D(r2)⊗ (r1(A) ≈D r2(A)))→ (r1(B) ≈D r2(B))

)
. (2.2)

Definition 4 gives us the degree to which a relation (data table D) captures the notion

of fuzzy function from A to B. The following criterion will give us the degree to which:

“For all relations D: If a GFD A ⇒ B is satisfied in relation D, then D corresponds to

the fuzzy function from A to B.”

S(A⇒ B,Fun) =
∧

D:Tupl(R)→L

(
||A⇒ B||D → Fun(D, A,B)

)
. (2.3)

Similarly, the next criterion will give us a degree to which: “For all relations D: If D
corresponds to the fuzzy function from A to B, then a GFD A⇒ B is satisfied by D.”

S(Fun, A⇒ B) =
∧

D:Tupl(R)→L

(
Fun(D, A,B)→ ||A⇒ B||D

)
. (2.4)

Finally, combining (2.3) and (2.4) we will obtain the degree to which a particular definition

of GFD corresponds to the fuzzy function,

E(Fun, A⇒ B) =
∧

D:Tupl(R)→L

(
Fun(D, A,B)↔ ||A⇒ B||D

)
= S(A⇒ B,Fun) ∧ S(Fun, A⇒ B). (2.5)
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Survey of similarity-based generalizations of FD

If not otherwise stated we assume a relation scheme R = {y1, . . . , yn}, A,B ⊆ R.

Similarity or equivalence relation on domain Di of attribute yi will be denoted as ≈i, ≡i,
respectively. We assume that the similarity of two tuples r1, r2 from some data table D
on R is defined as:

r1(A) ≈D r2(A) = min
yi∈A

r1(yi) ≈i r2(yi). (2.6)

If there is no confusion we will write r1(A) ≈ r2(A) instead of r1(A) ≈D r2(A).

Buckles and Petry (1983): One of the pioneering work was done by Buckles and Petry,

see [24]. The authors introduced a model, in which domains are equipped with fuzzy

equivalence relations (called similarity in the original work) and tuple values are allowed

to be (ordinary) non-empty subsets of the domain.

Generalized functional dependencies (called fuzzy FD) were defined in [1]. Later, the

definition was modified and reformulated using the so called conformance [91, 92]: Let

0 < β ≤ 1. The GFD A ⇒β B holds in the Buckles-Petry model, iff for every pair of

tuples ri, rj :

β ∗ (r1(A) ≈ r2(A)) ≤ (r1(B) ≈ r2(B)), (2.7)

where ∗ is the arithmetic product.

Theorem 5. Let L = [0, 1]Π, let A,B ⊆ R be sets of attributes and let the GFD be defined

as in (2.7). Assuming β ∈ [0, 1] is the parameter from (2.7), then S(A ⇒ B,Fun) = β

and S(Fun, A⇒ B) = β → 0.

Prade and Testemale(1984): In [72] Prade and Testemale considered so called possi-

bilistic fuzzy data model, i.e. attribute values are allowed to be possibility distribution in

Zadeh’s sense [94]. A model based on the concept of possibility distribution was originally

proposed by Umano [85]. The relation D is defined as:

D ⊆
∏
y∈R

[0, 1]Dy∪{e}, (2.8)

where [0, 1]Dy∪{e} denotes the set of all possibility distributions onDy∪{e}. Moreover, each

domain Dy ∪ {e} is associated with a similarity relation (called fuzzy proximity relation)

∼y which takes values from [0, 1]. The similarity relation is then extended to possibility

distributions on Dy ∪ {e}.
The GFDs were introduced only for singleton sets. Given a fixed threshold λ ∈ [0, 1]

and yi, yj ∈ R, the GFD {yi} ⇒ {yj} is satisfied in D if and only if for all r1, r2 ∈ D

(r1(yi) = r2(yi))→ (r1(yj) ≈j r2(yj) ≥ λ), (2.9)

where → is the ordinary implication.

Theorem 6. Let L be any complete residuated lattice with universe L = [0, 1]. Let A,B ∈
R. Let the GFD be defined by (2.9) and let λ ∈ [0, 1] be the parameter from (2.9). Then

S(A⇒ B,Fun) = 0 and S(Fun, A⇒ B) = λ→ 0.
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Raju and Majumdar (1988): Another generalization of FD was proposed by Raju

and Majumdar [74]. They considered similarity relation on each domain and ranks asso-

ciated to each tuple, but the ranks and similarity degrees come from [0.1]. More precisely,

a relation D is a fuzzy subset on Tupl(R):

D :
∏
y∈R

Dy → [0, 1]. (2.10)

Therefore every tuple r has associated a degree (rank) to which the tuple belongs to

D, denoted as D(r). The meaning of the ranks in not clearly given. The generalized

functional dependency A⇒ B is satisfied by a relation D iff for all r1, r2 ∈ D (r1, r2 ∈ D
means r1, r2 ∈ Tupl(R) with D(r1) > 0 and D(r2) > 0)

r1(A) ≈ r2(A) ≤ r1(B) ≈ r2(B). (2.11)

Theorem 7. Let L be any complete residuated lattice with universe L = [0, 1]. Assume

R is a relational scheme and A,B ⊆ R. For the GFD given by Equation (2.11), S(A ⇒
B,Fun) = 1 and S(Fun, A⇒ B) = 0.

The paper by Raju and Majumdar is probably the most influential one and the defi-

nition of the GFD given by (2.11) inspired many authors [58, 57, 59, 55, 60, 77, 95].

Chen (1991): Another significant proposal of definition of GFD was developed by

Chen [28], see also [27, 26]. Chen used the possibilistic fuzzy data model:

D ⊆
∏
y∈R

[0, 1]Dy , (2.12)

where [0, 1]Dy denotes the set of all possibility distributions over domain Dy. Moreover,

a similarity relation ∼y (originally called closeness relation) is associated with each do-

main Dy, which is then used to express the similarity ≈y of attribute values (possibility

distribution). The GFD A⇒ B holds in D to a degree θ iff for all pair of tuples r1, r2:

if r1(A) = r2(A) then r1(B) = r2(B),

(r1(A) ≈ r2(A)→G r1(B) ≈ r2(B)) ≥ θ otherwise. (2.13)

The fact that ||A ⇒ B||D = θ does not exclude existence of other θ′ > θ for which the

inequality (2.13) holds.

Theorem 8 (Chen et al.). Let L = [0, 1]G, A,B ⊆ R be sets of attributes, θ ∈ [0, 1] and

let the GFD be defined as in (2.13). Then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.

Bhuniya and Niyogi (1993): According to Bhuniya and Niyogi [20] the generalized

functional dependency A⇒ B holds in a Raju-Majumdar’s model (2.10) if and only if for

all r1, r2 ∈ D one of the following conditions holds

r1(A) ≈ r2(A) ≤ r1(B) ≈ r2(B),

r1(A) ≈ r2(A)− r1(B) ≈ r2(B) ≤ 1− β, (2.14)

where r1(A) ≈ r2(A) ≥ α, r1(B) ≈ r2(B) ≥ α, and α < β < 1.
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Theorem 9. Let L = [0, 1]L, A,B ⊆ R. For GFD given by (2.14) we have S(A ⇒
B,Fun) = β and S(Fun, A⇒ B) = 0.

Cubero et al. (1994): Cubero et al. [36] proposed the following definition of an GFD

for a possibilistic fuzzy data model (2.12). Each domain Dy is equipped with similarity

relation (called proximity in the original work) and a fixed threshold cy. GFD A ⇒ B is

satisfied iff for all r1, r2 ∈ D:

(r1(A) ≈ r2(A) ≥ α)→ (r1(B) ≈ r2(B) ≥ β). (2.15)

The parameters α and β are vectors, α = (cy)y∈A, β = (cy)y∈B, where values cy ∈ [0, 1], y ∈
R, are fixed and common to all GFDs.

Theorem 10. Let L be any complete residuated lattice with universe L = [0, 1]. For the

GFD given by Equation (2.15) and for fixed thresholds cy, y ∈ R:

S(A⇒ B,Fun) =
( ∨
y∈A

cy → 0
)
∧
∧
y∈B

cy, (2.16)

S(Fun, A⇒ B) =
( ∧
y∈A

cy →
∨
y∈B

cy
)
→ 0. (2.17)

Ben Yahia et al. (1999): The authors considered the Raju-Majumdar’s model with

uncertain data (fuzzy sets) and ranks coming from [0, 1]. The GFD is defined as follows:

A determines B to degree β, denoted as A ∼>β B, β, θ ∈ [0, 1] in D if for all tuples r1 and

r2 we have:

(r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)) ≥ θ, (2.18)

where

β = min
r1,r2

(r1(A) ≈ r2(A)→ r1(B) ≈ r2(B)), (2.19)

and → is the  Lukasiewicz implication. The threshold θ is fixed by the database designer.

Theorem 11. Let R be a relational scheme and A,B ⊆ R. For GFD given by (2.18) we

have S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.

Bosc et al. (1999): Another generalization was done by Bosc, Pivert, and Ughetto, see

[23]. They were the first that used residuated implication corresponding to some t-norm.

A GFD is defined as:

∀r1, r2 ∈ D : r1(A) ≈ r2(A)→ r1(B) ≈ r2(B). (2.20)

Unfortunately, the authors presented only those definitions and did not go any further

by showing properties of such FD or presenting inference rules. Nevertheless, our crite-

rion (2.5) is satisfied to degree 1.

Tyagi et al. (2005): Later Tyagi et al. [83] introduced another generalization of func-

tional dependencies using the framework of fuzzy functions (3) The authors developed GFD

for Raju and Majumdar’s model. Relation D satisfies the GFD A ⇒ B if its projection

over A∪B (denoted as DAB) is a partial fuzzy function. That is, if ∀r1, r2 ∈ Tupl(A∪B):

(DAB(r1) ∧ DAB(r2) ∧ r1(A) ≡ r2(A)) ≤ r1(B) ≡ r2(B), (2.21)

where DAB(r) = sup{D(r′) | r′ ∈ Tupl(R) such that r′(A ∪B) = r}.
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Theorem 12 (Tyagi et al.). Let L = [0, 1]G, A,B ⊆ R be sets of attributes and let the

GFD be defined as in (2.21). Then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.

Kiss (1991): The idea that the rank should influence the validity of FD can be already

found in [53]. The truth value to which the fuzzy relation D satisfies a given FD was given

by

||A⇒ B||D = 1− sup{inf(D(r1),D(r2))| r1(A) = r2(A) and r1(B) 6= r2(B))}. (2.22)

It is clear from (2.22) that the higher the degree of D(r1) and D(r2) when r1, r2 violate

the classical FD, the lower the the truth degree of FD A⇒ B.

Theorem 13. Let L = [0, 1]L, A,B ⊆ R be sets of attributes and let the GFD be defined

as in (2.22). Then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 0.5.

Cordero et al. (2011): The last extension we want to mention in this section was

presented by Cordero et al. in [34]. The authors worked with a generalization of Codd’s

relational model called fuzzy attribute table. The basic idea is that tuple value has assigned

a rank coming from complete residuated lattice. More precisely, the fuzzy attribute table

is understood as a map

D :
∏
y∈R

Dy → LR. (2.23)

This means that for each tuple r: D(r) ∈ LR, i.e. D(r) is a tuple of truth values. For all

y ∈ R, D(r)(y) is the truthfulness of tuple r in the value r(y).

The authors introduced the following definition: a fuzzy attribute table D is said to

satisfy a generalized functional dependency A⇒ B with θ degree iff

θ ≤
∧

r1,r2∈Tupl(R)

(r1(A) ≈D r2(A))→ (r1(B) ≈D r2(B)), (2.24)

where → is a residuated implication. In [34] the authors considered supremum of degrees

to which the GFD is true. That is:

||A⇒ B||D = sup{θ ∈ [0, 1] | θ satisfies (2.24)}.

Theorem 14 (Cordero et al. case). Let R be a relational scheme and A,B ⊆ R. If the

GFD is defined by Equation (2.24), then S(A⇒ B,Fun) = 1 and S(Fun, A⇒ B) = 1.

The summary of results established in this chapter can be found in Table 2.1. We want

to emphasize several points:

1. As it is shown in Table 2.1, many approaches reduce the new (generalized) concept

of FD to a bivalent one.

2. In some cases the interpretation of a rank is not very clear.

3. The ranks are not usually involved in the definition of GFD. This fact yields to odd

behavior: tuples with very low ranks may caused the GFD to be satisfied to low

degree (even 0).
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Authors/approach GFD [Imp] [TrGFD] [Rank] E(Fun, A⇒ B)

Buckles and Petry

[24]
(2.7) R-G imp. {0, 1} No β ∧ (β → 0)

Prade and Testemale

[72]
(2.9) R-G imp. {0, 1} No 0

Raju and Majumdar

[74]
(2.11) R-G imp. {0, 1} Yes 0

Chen et al. [45] (2.13)
Classical or

Gödel
{0, 1} No 0

Bhuniya and Niyogi

[20]
(2.14) R-G imp. {0, 1} Yes 0

Cubero et al. [36] (2.15) R-G imp. {0, 1} No (2.16)∧(2.17)

Tyagi et al. [83] (2.21) R-G imp. {0, 1} Yes 0

Kiss [53] (2.22)  Lukasiewicz [0, 1] Yes 0.5

Ben Yahia et al. [90] (2.18)  Lukasiewicz [0] ∪ [θ, 1] Yes 0

Bosc, Pivert and

Ughetto [23]
(2.20) Residuum [0, 1] No 1

Belohavek and

Vychodil [15]
(2.18) Residuum

Complete

residuated

lattice

Yes 1

Cordero et al. [34] (2.24) Residuum [0, 1] Yes 1

Table 2.1: Review of similarity-based functional dependencies.
In the [Imp] column the implication used in definition of a GFD is highlighted. The choice of the

implication influences the degree to which a GFD is true, column [TrGFD]. The column [Rank] indicates

if a GFD is defined for data table with ranks. In the last column the degree to which a GFD corresponds

to fuzzy function is presented.

None of these problems appears in approaches which are built on fuzzy logic in narrow

sense [15, 34]. Among conceptual clarity, the connection to fuzzy logic in narrow sense

enables us to generalize many concepts form the original Codd’s relational model (which

is connected to the first order logic). In the next chapter we will provide a generalization

of derivation graphs [61] which can be seen as an alternative prove system.



Chapter 3

Derivation digraphs for graded

if-then rules

In this chapter we present a graph-based method of reasoning with graded if-then rules,

by which we mean rules of the form A ⇒ B, where A,B are fuzzy sets of attributes.

Rules of this form describe dependencies between attributes in ordinal and similarity-based

data and have two basic interpretations: 1) Similarity-based functional dependencies, see

Section 1.2.3, which are interpreted in ranked data tables; 2) Attribute implications (AIs)

in formal concept analysis with grades [7]. The notion of semantic entailment for SBFDs

coincide with the notion of semantic entailment for AIs in FCA with grades in the following

sense: The degree to which a graded if-then rule A ⇒ B follows from a theory (L-set of

graded if-then rules) is the same under both interpretations [7]. As a consequence, on may

use single Armstrong-like axiomatization, for example the rules (Ax), (Cut) and (Mul)

from Section 1.2.3.

Looking for a graph-based inference system for graded if-then rules is interesting from

several viewpoints. First, the notion of semantic entailment of the rules we consider is

graded, i.e., the entailment expresses a degree to which a rule follows from other rules. It

is therefore interesting to find a graph-based inference system that is able to infer rules

from other ones including the entailment degrees. Second, there is an Armstrong-like

axiomatization of the semantic entailment for the graded rules (see Section 1.2.3, or the

original papers [9, 7]), i.e., one might be interested in finding a corresponding graph-based

inference method. Third, the Armstrong-like proofs can be formalized to form particular

sequences (so-called MRAP-sequences, see [11]). It is therefore interesting to observe

whether the graph-based proofs can be constructed according to the normalized proofs

and vice versa.

In what follows the graded if-then rules will be called fuzzy attribute implications

(FAIs). We will first introduce derivation digraphs as particular labeled acyclic digraphs

constructed from an input theory (collections of FAIs).

3.1 Derivation acyclic digraphs for FAIs

We now introduce derivation digraphs as particular acyclic digraphs where vertices are

labeled by attributes from R and degrees from L. The arcs of the digraphs will correspond

20
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to FAIs from an input theory and indicate which formulas from the theory are used in

the process of inference. In what follows, L is a complete residuated lattice. In order to

denote that ∗ is a hedge on L, we write L∗.

Definition 15 (T -based L∗-derivation DAG). Let T be a set of FAIs over R.

1. Any D = 〈V, ∅〉 such that ∅ 6= V ⊆ R × L and for every y ∈ R there is at most one

a ∈ L such that 〈y, a〉 ∈ V , is a T -based L∗-derivation DAG;

2. If D = 〈V,A〉 is a T -based L∗-derivation DAG and there are E ⇒ F ∈ T , attribute

y ∈ R, and vertices 〈y1, a1〉 ∈ V, . . . , 〈yk, ak〉 ∈ V such that for

s0 =
∧
{E(y)→ 0 | y ∈ R and y 6∈ {y1, . . . , yk}}, (3.1)

s1 =
∧
{E(yi)→ ai | i = 1, . . . , k}, (3.2)

m =
∨
{a ∈ L | 〈y, a〉 ∈ V }, (3.3)

d =
(
(s0 ∧ s1)∗ ⊗ F (y)

)
∨m, (3.4)

we have d > m, then D′ = 〈V ′, A′〉, where

V ′ = V ∪ {〈y, d〉}, (3.5)

A′ = A ∪ {〈〈yi, ai〉, 〈y, d〉〉 | i = 1, . . . , k}, (3.6)

is a T -based L∗-derivation DAG.

If D is a T -based L∗-derivation DAG, we put

D(y) =
∨
{a ∈ L | 〈y, a〉 ∈ V }, (3.7)

and call D(y) the yield of D on y. Clearly, the yield of D corresponds to (3.3), i.e., we

can interpret it as the degree to which y is assumed to be valid according to D. Moreover,

〈y, a〉 ∈ V is called an initial vertex of D if 〈y, a〉 has no incoming arcs (i.e., no arc in D

enters 〈y, a〉).
Notice that for each y ∈ R such that D(y) > 0 there is 〈y, a〉 ∈ V such that a = D(y).

This is a consequence of Definition 15. Furthermore, it follows that for any y ∈ R, the set

Ly = {a ∈ L | 〈y, a〉 ∈ V } (3.8)

has a greatest element provided that Ly 6= ∅. Another direct consequence of Definition 15

is that Ly is either empty or it is a finite subchain (if equipped with the restriction of ≤ to

Ly) of the lattice part of L. The latter observation is of course trivial if L is a chain but it

pertains to all complete residuated lattices taken for L. We make use of these observations

later in the proofs.

The following notion introduces derivation digraphs related to FAIs:

Definition 16 (T -based L∗-derivation DAG for E ⇒ F ). Let D = 〈V,A〉 be a T -based

L∗-derivation DAG. Then D is called a T -based L∗-derivation DAG for E ⇒ F if the

following conditions are all satisfied:

1. D(y) ≥ F (y) for all y ∈ R;
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0.6/y1

0.3/y4

0.7/y2

0.6/y3
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0.3/y4

0.7/y2

0.6/y3
0.5/y4

Figure 3.1: Construction of T -based L∗-derivation DAG.

2. if E 6= ∅ then the set of initial vertices of D is

{〈y,E(y)〉 | y ∈ R and E(y) > 0}; (3.9)

3. if E = ∅, then the set of initial vertices of D is {〈y], 0〉},

where y] ∈ R is a designated attribute.

By the designated attribute in the previous definition we mean a fixed attribute that

has been selected from R (no particular role or intended interpretation of the attribute is

assumed).

Example 1. In this example, we utilize the residuated lattice with L = [0, 1] given by the

 Lukasiewicz operations together with hedge ∗ defined as follows: For each a ∈ L we put

a∗ =


1, for a = 1,

0.6, for 0.6 ≤ a ≤ 0.9,

0.2, for 0.2 ≤ a ≤ 0.5,

0, for 0 ≤ a ≤ 0.1.

Figure 3.1 depicts a single step of the process of construction of a T -based L∗-derivation

DAG for FAI {0.6/y1,
0.7/y2,

0.3/y4} ⇒ {0.5/y4}, where T is the following set of FAIs:

T = {{0.7/y1,
0.5/y4} ⇒ {0.7/y2,

1/y3}, {0.7/y3} ⇒ {0.8/y5},
{0.7/y2,

0.9/y3} ⇒ {0.9/y4}}.

The DAG on the right-hand side of Figure 3.1 results from the DAG on the left-hand side

by adding vertex 〈y4, 0.5〉 and two arcs leading from 〈y2, 0.7〉 and 〈y3, 0.6〉.

3.2 Completeness

We now turn our attention to the completeness by which we mean a characterization of the

semantic entailment by existence of L∗-derivation DAGs. We prove the claim by showing

that a FAI is provable from a theory T iff it has a T -based L∗-derivation DAG. We now

show that T -based L∗-derivation DAGs are in a correspondence with normalized proofs

called MRAP-sequences [11].

Recall from [11] that the following three rules can be derived from (Ax), (Cut) and

(Mul), which were introduced in Section 1.2.3:

(Ref) infer A⇒ A,
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(Acc) from A⇒ B∪C and C ⇒ D∪E infer A⇒ B∪C∪D,

(Pro) from A⇒ B∪C infer A⇒ B,

for all A,B,C,D,E ∈ LY . The rules are called reflexivity, accumulation and projection,

respectively. By a derivable rule we mean that for all A,B,C,D,E ∈ LY , from the part

preceding “infer”, we can derive using (Ax), (Mul), and (Cut), the part succeeding “infer”.

By an MRAP-sequence for A⇒ B from T (see [11]), we mean a sequence of formulas

such that it

(a) starts with A⇒ A;

(b) continues with FAIs from T ;

(c) continues with FAIs which result from using (Mul) on FAIs from (b);

(d) continues with FAIs which result from using (Acc) on FAIs from (a), (b), (c), (d);

(e) ends with a single application of (Pro), on the last FAI in (d);

(f) the FAI which results by (e) is A⇒ B.

Theorem 17. Let T be a theory. If there is an MRAP-sequence for A⇒ B from T , then

there is a T -based L∗-derivation DAG for A⇒ B.

In the opposite direction, we have the following characterization.

Theorem 18. Let T be a theory. If there is a T -based L∗-derivation DAG for A ⇒ B,

then there is an MRAP-sequence for A⇒ B from T .

The following assertion provides the ordinary-style completeness:

Theorem 19. If L is finite, then ||A ⇒ B||T = 1 iff there is a T -based L∗-derivation

DAG for A⇒ B.

Furthermore, we can express the graded-style completeness as follows:

Theorem 20. If L is finite, then ||A⇒ B||T is the greatest degree a ∈ L such that there

is a T -based L∗-derivation DAG for A⇒ a⊗B.

In abstract fuzzy logic (also known as Pavelka’s fuzzy logic [50, 68, 69, 70]), theories

as considered as L-sets of formulas. T (ϕ) is interpreted as a degree to which T prescribes

ϕ valid. Even in this case, we can show that T -based L∗-derivation DAGs are capable of

describing degrees of semantic entailment as it is shown by the following theorem.

Theorem 21. If L is finite and T is an L-set of FAIs, then ||A ⇒ B||T is the greatest

degree a ∈ L such that there is a T ′-based L∗-derivation DAG for A ⇒ a⊗B, where

T ′ = {A⇒ T (A⇒ B)⊗B |A,B ∈ LY and T (A⇒ B)⊗B * A}.

3.3 Computing closures

Considering the construction of T -based L∗-derivation DAGs as an alternative proof tech-

nique not only can help visualize the inference from if-then rules but in addition, the con-

struction of such DAGs yields algorithms for checking whether (and to what degree) A⇒ B

semantically follows from a theory. Indeed, in order to check whether ||A⇒ B||T = 1, we

may proceed as follows:
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Procedure 22 (Checking of full entailment). For any T and A⇒ B:

1. Construct a T -based L∗-derivation DAG D = 〈V, ∅〉 with

V = {〈y,A(y)〉 |A(y) > 0};

If V = ∅, put V = {〈y], 0〉}, where y] is the designated attribute, see Definition 16.

2. If D(y) ≥ B(y) for all y ∈ R, stop and return “YES”; otherwise continue with step

3.

3. If D can be enlarged according to Definition 15 (case 2.), then enlarge D and continue

with step 2.; otherwise return “NO”.

Theorem 23. Assuming L finite, for any A⇒ B and theory T , Procedure 22 terminates

after finitely many steps and it returns “YES” iff ||A⇒ B||T = 1.

The previous observations enable us to extend the procedure for computing syntactic

closures for L-sets of attributes. Let us recall that by a closure of A under T , denoted A+
T ,

we mean the largest L-set such that T ` A⇒ A+
T , see [7]. For every A and T , A+

T always

exists, is uniquely given and has the following important property [7] provided that L is

finite:

||A⇒ B||T = S
(
B,A+

T

)
. (3.10)

The closure A+
T can be obtained from the yield of a final T -based L∗-derivation DAG:

Definition 24 (Final T -based L∗-derivation DAG). A T -based L∗-derivation DAG is

called final if there are no E ⇒ F ∈ T , attribute y ∈ R, and vertices 〈y1, a1〉 ∈
V, . . . , 〈yk, ak〉 ∈ V such that for s0, s1,m, d given by (3.1)–(3.4) we have d > m.

Theorem 25. Let L be finite and D be a T -based L∗-derivation DAG for A⇒ B. Then

D is final iff D(y) = A+
T (y) for all y ∈ R.

Owing to Theorem 25, in order to compute the degree ||A⇒ B||T , it suffices to find a

single final T -based L∗-derivation DAG D for A⇒ B, and apply (3.10) for A+
T determined

from the yield of D. We may formalize this computation by a modification of Procedure 22:



Chapter 4

Sensitivity analysis for

similarity-based functional

dependencies

In this chapter we look at similarity estimates for SBFDs (given by Equation (1.38))

in ranked data tables (RDTs) over domains with similarities (see Section 1.2.3). We

answer some natural questions such as: What is the relationship between ||A⇒ B||D1 and

||A ⇒ B||D2 in terms of similarity of RDTs D1 and D2? Or what can we say about the

truth degrees ||A⇒ B1||D and ||A⇒ B2||D in terms of similarity of B1 and B2. The first

problem we discuss in this chapter is how to assess similarity of two ranked data tables.

4.1 Rank-based similarity

In this section, we introduce a notion of a similarity and a related notion of a graded

containment (subsethood) of RDTs on the same relation scheme R. As in the case of

domain similarities, the similarity of RDTs is expressed by degrees from the complete

residuated lattice L.

The rank-based similarity of RDTs which is based on the idea that RDTs D1 and D2

(on the same relation scheme R) are similar iff for each tuple r ∈ Tupl(R), ranks D1(r)

and D2(r) are similar degrees from L. Similarity of degrees from L can be expressed by

a biresiduum (1.2). Since we are interested in assessing similarity of D1(r) and D2(r) for

all possible tuples r, we may define the similarity E(D1,D2) of RDTs D1 and D2 as an

infimum which goes over all tuples:

E(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)↔ D2(r)

)
. (4.1)

An alternative (but equivalent) way to define similarity of RDTs is the following:

S(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→ D2(r)

)
, (4.2)

E(D1,D2) = S(D1,D2) ∧ S(D2,D1). (4.3)

25
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4.2 Similarity estimates for FD

We have seen how to define the similarity of two RDTs on the same relation scheme. An

interesting question regarding the validity of SBFDs is: What can we say about the truth

degree of A⇒ B in similar RDTs? Recall from (1.3) that a2 = a⊗ a.

Theorem 26. For RDTs D1, D2 on the same relation scheme R we have

(S(D1,D2)∗)2 ⊗ S(D2,D1)2 ≤ ||A⇒ B||D1 → ||A⇒ B||D2 , (4.4)

(E(D1,D2)∗)2 ⊗ E(D2,D1)2 ≤ ||A⇒ B||D1 ↔ ||A⇒ B||D2 . (4.5)

If we take an identity for a hedge, the left hand side of the Equation (4.5) can be

simplified.

Corollary 27. For RDTs D1, D2 on the same relation scheme R and for hedge being

identity we have

E(D1,D2)4 ≤ ||A⇒ B||D1 ↔ ||A⇒ B||D2 .

We now turn our attention to hedges. Since a hedge is used as a parameter in the

definition of SBFD, the natural question is how the truth degree of SBFD A ⇒ B when

hedge ∗1 is used differs from the truth degree of the same SBFD when hedge ∗2 is used. In

order to emphasize the hedge used in the definition of SBFD, we will employ the following

notation: ||A⇒ B||∗D. First of all, we need to capture the similarity of two hedges:

Definition 28 ([10]). For hedges ∗1, ∗2 on L put

(∗1 � ∗2) =
∧
a∈L

(a∗1 → a∗2), (4.6)

(∗1 ≈ ∗2) =
∧
a∈L

(a∗1 ↔ a∗2). (4.7)

The Equation (4.7) can be interpreted as a degree to which hedges ∗1 and ∗2 yield

similar results. More precisely, (4.7) is a true degree of of the following formula: “for

each a ∈ L: the result of a∗1 is similar to the result of a∗2 .” Analogously, (4.6) can be

interpreted as a degree to which ∗1 is stronger than ∗2.

Theorem (29) shows that “if A⇒ B is true using hedge ∗2 and if hedge ∗1 is stronger

than ∗2, then A⇒ B is true using hedge ∗1” and that “if the hedges ∗1 and ∗2 are similar,

then the degrees to which A⇒ B is true using hedge ∗1 and hedge ∗2 are similar”.

Theorem 29. Let A,B ∈ LR and let ∗1, ∗2 be two hedges on L. Then for any RDT D
on R we have:

(∗1 � ∗2) ≤ ||A⇒ B||∗2D → ||A⇒ B||∗1D , (4.8)

(∗1 ≈ ∗2) ≤ ||A⇒ B||∗2D ↔ ||A⇒ B||∗1D . (4.9)

The next problem we want to tackle is how the truth degree of A⇒ B depends on the

truth degrees prescribed by the L-sets A,B.
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Lemma 30. Let A,B1, B2 ∈ LR be fuzzy sets of attributes. For any RDT D on R we

have

S(B2, B1)⊗ ||A⇒ B1||D ≤ ||A⇒ B2||D. (4.10)

Lemma 31. Let A1, A2, B ∈ LR be fuzzy sets of attributes. For any RDT D on R we

have

S(A1, A2)∗ ⊗ ||A1 ⇒ B||D ≤ ||A2 ⇒ B||D. (4.11)

To sum up, we obtain the following Theorem.

Theorem 32. Let A1, A2, B1, B2 ∈ LR. For any RDT D on R and for fixed hedge ∗ we

have:

S(A1, A2)∗ ⊗ S(B2, B1)⊗ ||A1 ⇒ B1||D ≤ ||A2 ⇒ B2||D, (4.12)

E(A1, A2)∗ ⊗ E(B2, B1) ≤ ||A1 ⇒ B1||D ↔ ||A2 ⇒ B2||D. (4.13)



Chapter 5

Similarity estimates of query

results

In this chapter we will show that relational operations from Section 1.2.3 are robust because

they are insensitive to slight changes in data: (very) similar input data cannot yield (very)

different results under the notions of similarity defined by (4.1). This has many practical

implications. For instance, if two experts are asked to assign ranks in a datatable based

on their knowledge of particular problem domain, they can come up with different ranks.

If the assigned ranks are sufficiently close, we know that we can take either of the ranked

data tables and it will produce similar results as the other one when used in subsequent

queries. Later in this chapter we will provide an alternative measure of similarity of RDTs

based on ranks and tuple values, and we will introduce related relational operation—a

similarity-based closure.

5.1 Similarity estimates for relational operations

We describe the similarity estimates for relational operations from Section 1.2.3.

1) Boolean-like operation:

The following assertion shows that ∪ and ∩ preserve subsethood degrees and similarity

degrees given by (4.2) and (4.1), respectively.

Theorem 33. For any D1, D′1, D2, and D′2 on relation scheme R,

S(D1,D′1) ∧ S(D2,D′2) ≤ S(D1 ∪ D2,D′1 ∪ D′2), (5.1)

S(D1,D′1) ∧ S(D2,D′2) ≤ S(D1 ∩ D2,D′1 ∩ D′2), (5.2)

E(D1,D′1) ∧ E(D2,D′2) ≤ E(D1 ∪ D2,D′1 ∪ D′2), (5.3)

E(D1,D′1) ∧ E(D2,D′2) ≤ E(D1 ∩ D2,D′1 ∩ D′2). (5.4)

The estimates we will investigate further in this section employ ⊗ instead of ∧ for

combining subsethood degrees. Since ∧ is an upper bound for ⊗ in L we have

S(D1,D2)⊗ S(D′1,D′2) ≤ S(D1,D2) ∧ S(D′1,D′2)

and analogously for E. Therefore the Corollary 34 immediately follows from Theorem 33.

28
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Corollary 34. For any D1, D′1, D2, and D′2 on relation scheme R,

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ∪ D2,D′1 ∪ D′2), (5.5)

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ∩ D2,D′1 ∩ D′2), (5.6)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ∪ D2,D′1 ∪ D′2), (5.7)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ∩ D2,D′1 ∩ D′2). (5.8)

Let us note that inclusion estimates like those from Theorem 33 do not have a nontrivial

interpretation in the original Codd’s model of data.

2) Ternary residuum:

Theorem 35. For any D1, D′1, D2, D′2, D3, and D′3 on R, we have:

S(D′1,D1)⊗ S(D2,D′2)⊗ S(D3,D′3) ≤ S(D1 _D3 D2,D′1 _D
′
3 D′2), (5.9)

E(D1,D′1)⊗ E(D2,D′2)⊗ E(D3,D′3) ≤ E(D1 _D3 D2,D′1 _D
′
3 D′2). (5.10)

Corollary 36. For any D1,D′1,D2,D′2 on R:

S(D′1,D1)⊗ S(D2,D′2)⊗ (c→ c′) ≤ S(D2 �c D1,D′2 �c′ D′1), (5.11)

E(D1,D′1)⊗ E(D2,D′2)⊗ (c↔ c′) ≤ E(D2 �c D1,D′2 �c′ D′1), (5.12)

S(D1,D′1)⊗ S(D2,D′2)⊗ (c′ → c) ≤ S(c_D2 D1, c
′ _D

′
2 D′1), (5.13)

E(D1,D′1)⊗ E(D2,D′2)⊗ (c↔ c′) ≤ E(c_D2 D1, c
′ _D

′
2 D′1). (5.14)

3) Projection and division:

Theorem 37. Let D and D′ be RDTs on relation scheme R1 and let R2 ⊆ R1. Then

S(D,D′) ≤ S(πR2(D), πR2(D′)), (5.15)

E(D,D′) ≤ E(πR2(D), πR2(D′)). (5.16)

Now we turn our attention to residuated division (1.30), which was also introduced

in the Section 1.2.3. First, let us note that residuated division can be used to express

containment and similarity degrees of RDTs. Consider the borderline case of residuated

division when R1 = R2 (and thus R3 = ∅) and D3 = 1∅:(
D1 ÷1 D2

)
(∅) =

∧
r2∈Tupl(R2)

(
1⊗ (D2(r2)→ D1(r2))

)
=
∧
r2∈Tupl(R2)(D2(r2)→ D1(r2)) = S(D2,D1).

As a consequence, (4.2) and (4.1) are expressible inside the model of Belohlavek and

Vychodil and thus the similarity estimations are relational per se.

The similarity estimates for residuated division are described by the following theorem.

Theorem 38. Let D1, D′1 be RDTs on R1, D2, D′2 be RDTs on R2 ⊆ R1, and D3, D′3 be

RDTs on R3 = R1 \R2, respectively. Then

S(D1,D′1)⊗ S(D′2,D2)⊗ S(D3,D′3) ≤ S(D1 ÷D3 D2,D′1 ÷D
′
3 D′2), (5.17)

E(D1,D′1)⊗ E(D2,D′2)⊗ E(D3,D′3) ≤ E(D1 ÷D3 D2,D′1 ÷D
′
3 D′2). (5.18)



30 5.1. SIMILARITY ESTIMATES FOR RELATIONAL OPERATIONS

4) Similarity-based restriction:

Theorem 39. Let D and D′ be RDTs on relation scheme R and let y ∈ R and d ∈ Dy.

Then,

S(D,D′) ≤ S(σy≈d(D), σy≈d(D′)), (5.19)

E(D,D′) ≤ E(σy≈d(D), σy≈d(D′)). (5.20)

The similarity estimates in Theorem 39 involve two restrictions using the same constant

d from the domain of y. Intuitively, we may expect that two restrictions that use different

constants d and d′ should yield similar results if d and d′ are similar. This can be shown

if the similarity on the domain of y is ⊗-transitive.

Theorem 40. Let D be an RDT on R, let y ∈ R, d, d′ ∈ Dy, and let ≈y be ⊗-transitive.

Then

d ≈y d′ ≤ S(σy≈d(D), σy≈d′(D)). (5.21)

Corollary 41. Let D and D′ be RDTs on R and let y ∈ R, d, d′ ∈ Dy and ≈y be ⊗-

transitive. Then,

S(D,D′)⊗ d ≈y d′ ≤ S(σy≈d(D), σy≈d′(D′)), (5.22)

E(D,D′)⊗ d ≈y d′ ≤ E(σy≈d(D), σy≈d′(D′)). (5.23)

Further question related to similarity is whether a small change of the definition of do-

main similarities yields a small change of query results. This type of similarity preservation

can also be established in the model.

In order to measure containment and similarity of domain similarities, we introduce

the following notation. If ≈y and ≈′y are similarities on the same domain Dy, we put:

S(≈y,≈′y) =
∧
d1,d2∈Dy

(
d1 ≈y d2 → d1 ≈′y d2

)
, (5.24)

E(≈y,≈′y) =
∧
d1,d2∈Dy

(
d1 ≈y d2 ↔ d1 ≈′y d2

)
. (5.25)

Theorem 42. Let D be RDT on R, y ∈ R, and d ∈ Dy. Furthermore, let ≈y and ≈′y be

similarities on Dy. Then

S(D,D′)⊗ S(≈y,≈′y) ≤ S(σy≈d(D), σy≈′d(D′)), (5.26)

E(D,D′)⊗ E(≈y,≈′y) ≤ E(σy≈d(D), σy≈′d(D′)). (5.27)

Corollary 43. Let D and D′ be RDTs on R, let y ∈ R, and let ≈y and ≈′y be similarities

on Dy. Then,

S(≈y,≈′y) ≤ S(σy≈d(D), σy≈′d(D)), (5.28)

E(≈y,≈′y) ≤ E(σy≈d(D), σy≈′d(D)). (5.29)

5) Natural and similarity-based joins:

We will first explore the similarity preservation for the equality-based natural join, and

utilize observations on similarity preservation of other operations to get estimates for other

joins.
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Theorem 44. Let D1, D′1 be RDTs on R1 ∪ R3 and D2, D′2 be RDTs on R2 ∪ R3 such

that R1 ∩R2 = R1 ∩R3 = R2 ∩R3 = ∅. Then

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ./ D2,D′1 ./ D′2), (5.30)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ./ D2,D′1 ./ D′2). (5.31)

Corollary 45. For any D1, D′1, D2, and D′2 on relation scheme R,

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ⊗D2,D′1 ⊗D′2), (5.32)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ⊗D2,D′1 ⊗D′2). (5.33)

Corollary 46. For any D,D′ on R:

S(D,D′)⊗ (c→ c′) ≤ S(c⊗D, c′ ⊗D′), (5.34)

E(D,D′)⊗ (c↔ c′) ≤ E(c⊗D, c′ ⊗D′). (5.35)

Corollary 47. Let D1 and D′1 be RDTs on R1 and let D2 and D′2 be RDTs on R2 such

that R1 ∩R2 = ∅. Let y1 ∈ R1 and y2 ∈ R2 have the same domain with similarity. Then

S(D1,D′1)⊗ S(D2,D′2) ≤ S(D1 ./y1≈y2 D2,D′1 ././y1≈y2
D′2), (5.36)

E(D1,D′1)⊗ E(D2,D′2) ≤ E(D1 ./y1≈y2 D2,D′1 ./y1≈y2 D′2). (5.37)

Theorem 48. Let D1 and D2 be RDTs on R1 and R2 such that R1∩R2 = ∅. Let y1 ∈ R1

and y2 ∈ R2 have the same domain with similarity and let c, c′ ∈ L. Then

c′ → c ≤ S
(
D1 ./c/y1≈y2

D2,D1 ./c′/y1≈y2
D2

)
, (5.38)

c↔ c′ ≤ E
(
D1 ./c/y1≈y2

D2,D1 ./c′/y1≈y2
D2

)
. (5.39)

Corollary 49. Let D1 and D′1 be RDTs on R1 and let D2 and D′2 be RDTs on R2 such

that R1 ∩R2 = ∅. Let y1 ∈ R1 and y2 ∈ R2 have the same domain with similarity. Then,

S(D1,D′1)⊗ S(D2,D′2)⊗ (c′ → c) ≤ S(D1 ./c/y1≈y2
D2,D′1 ./c′/y1≈y2

D′2), (5.40)

E(D1,D′1)⊗ E(D2,D′2)⊗ (c′ ↔ c) ≤ E(D1 ./c/y1≈y2
D2,D′1 ./c′/y1≈y2

D′2), (5.41)

for all c, c′ ∈ L.

6) Further operations:

So far, we have shown that relational operations introduced in Section 1.2.3 preserve

similarities and as a consequence, pairwise similar arguments to operations yield similar

results. Among the operations we have not considered yet are the operations of renaming,

kernel, and support which also belong to the basic operations in the model.

Since the operation of renaming only changes the names of attributes without altering

the data table as such (i.e. data as well as ranks stay untouched), the renaming preserves

similarity trivially. As we have seen in Section 1.2.3, kernel and support are unary op-

erations that produce a nonranked table from an RDT. It is easily seen that by nature,

neither the kernel nor the support preserve similarity except for the trivial cases. The

negative result on preserving similarity by kernel and support should not be interpreted

as a weakness of the model. For the majority of queries which are free of kernels and sup-

ports, one can utilize all the positive results we have made in this section. In practice, the

kernel and supports are used as the “outermost operations”, so one can always estimate

similarity of the results prior to the application of kernels and supports.
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5.2 Similarity of complex query results

In this section, we extend the previous results from single operations to arbitrarily complex

relational queries.

First, we formalize relational algebra expressions which constitute queries [14, 17].

We assume a fixed database scheme which is given by a finite set of relation symbols

r1, . . . , rn, each relation symbol ri is given its relation scheme. Furthermore, we assume

that all attributes appearing in the schemes of relation symbols have defined their domains.

In this setting, the relational algebra expressions (shortly, RA-expressions) are defined as

follows:

1. If r is a relation symbol on scheme R, then r is RA-expression on scheme R;

2. if a ∈ L, then a∅ is RA-expression on ∅;

3. if Q1 and Q2 are RA-expressions on R, then (Q1 ∩ Q2) and (Q1 ∪ Q2) are RA-

expressions on R;

4. if Q1, Q2, and Q3 are RA-expressions on R, then (Q1 _Q3 Q2) is RA-expression on

R;

5. if Q1 is RA-expression on R1 and Q2 is RA-expression on R2 then (Q1 ./ Q2) is RA-

expression on R1 ∪R2; if R1 ∩R2 = ∅, c ∈ L, y1 ∈ R1, y2 ∈ R2, and both attributes

y1 and y2 have the same domain, then (Q1 ./y1≈y2 Q2) and (Q1 ./c/y1≈y2
Q2) are

RA-expressions on R1 ∪R2;

6. if Q is RA-expression on R1 and R2 ⊆ R1, then πR2(Q) is RA-expression on R2;

7. if Q1 is RA-expression on R1, Q2 is RA-expression on R2 ⊆ R1, and Q3 is RA-

expression on R3 = R1 \R2, then (Q1 ÷Q3 Q2) is RA-expression on R3;

8. if Q is RA-expression on R, y ∈ R, and d ∈ Dy (d is a value from the domain of

y), then σy≈d(Q) is RA-expression on R; if z ∈ R has the same domain as y, then

σy≈z(Q) is RA-expression on R;

9. if Q is RA-expression on R, and f is an injective map such that f(y) has the same

domain as y (y ∈ R), then ρf (Q) is RA-expression on h(R).

In addition, if Q is RA-expression on R, we call R the relation scheme of Q.

As usual, we may evaluate RA-expressions in databases instances to get results of

queries. In our setting, a database instance D consists of RDTs which interpret the

relation symbols and defines similarities on domains. In a more detail, for each relation

variable ri from the database scheme, a database instance D defines its interpretation

denoted rDi (an RDT) so that the relation scheme of ri is the same as the scheme of

rDi . Moreover, for each attribute y, D defines the similarity ≈Dy on its domain. The

notion of database instance is presented here in a simplified form but it is sufficient for

the subsequent considerations.

Given an RA-expression Q on scheme R and a database instance D, we denote by QD

the value of Q in D which is an RDT on scheme R defined recursively by cases (as usual).

Now, we may ask the following question:
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Do similar queries yield similar results when evaluated in similar database in-

stances?

By a similar query, we mean a query which results from other query by modifying some

of its subqueries. For instance, if a query Q1 involves a similarity-based restriction using

constant d, we may consider its modification Q2 by substituting d′ for d and preserving

the rest of this query. Then, considering two database instances D1 and D2, we may be

interested in estimating the similarity degree E
(
QD1

1 , QD2
2

)
, i.e., the degree to which QD1

1

(the result of Q1 in D1) and QD2
2 (the result of Q2 in D2) are similar.

In order to formalize the similarity estimates, for a pair of queries Q1 and Q2, we define

their similarity E(Q1, Q2) as a map of the form

E(Q1, Q2) : I × I → L, (5.42)

where I is a set of all database instances of the considered database scheme. Thus, for

database instances D1 and D2,
(
E(Q1, Q2)

)
(D1,D2) is a degree from L. Our intention is

to define the degree so that it is a lower bound of the similarity of QD1
1 and QD2

2 .

We define (5.42) by cases taking into account the structure of Q1 and Q2. In the

following list, we use
def
= to denote that the left-hand size of assignment expressions with

def
= is defined whenever the right-hand side is defined. Following the definition of RA-

expressions, we distinguish the following cases:

• If Q1 and Q2 are relation symbols r1 and r2 on the same relation scheme, then(
E(Q1, Q2)

)
(D1,D2)

def
= E(rD1

1 , rD2
2 ). (5.43)

• If Q1 and Q2 are a∅ and b∅, then(
E(Q1, Q2)

)
(D1,D2)

def
= a↔ b. (5.44)

• If Q1 = Q2 and D1 = D2, then(
E(Q1, Q2)

)
(D1,D2)

def
= 1. (5.45)

• If Q1 is Q11 opQ12 and Q2 is Q21 opQ22 where op in both RA-expressions is either

of ∩, ∪, ./, then(
E(Q1, Q2)

)
(D1,D2)

def
=
(
E(Q11, Q21)

)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2). (5.46)

• If Q1 is op(Q′1) and Q2 is op(Q′2) where op in both RA-expressions is πR or ρf , then(
E(Q1, Q2)

)
(D1,D2)

def
=
(
E(Q′1, Q

′
2)
)
(D1,D2). (5.47)

• If Q1 is Q11 opQ13 Q12 and Q2 is Q21 opQ23 Q22 where op is _ or ÷, then(
E(Q1, Q2)

)
(D1,D2)

def
=(

E(Q11, Q21)
)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2)⊗

(
E(Q13, Q23)

)
(D1,D2). (5.48)
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• If Q1 is σy≈d1(Q′1) and Q2 is σy≈d2(Q′2) where d1, d2 ∈ Dy, then(
E(Q1, Q2)

)
(D1,D2)

def
=(

E(Q′1, Q
′
2)
)
(D1,D2)⊗

∧
d∈Dy

(
d ≈D1

y d1 ↔ d ≈D2
y d2

)
. (5.49)

• If Q1 is σy≈y′(Q
′
1) and Q2 is σy≈y′(Q

′
2) where y, y′ are attributes with the same

domain, then(
E(Q1, Q2)

)
(D1,D2)

def
=
(
E(Q′1, Q

′
2)
)
(D1,D2)⊗ E

(
≈D1
y ,≈D2

y

)
. (5.50)

• If Q1 is Q11 ./y1≈y2 Q12 and Q2 is Q21 ./y1≈y2 Q22, then(
E(Q1, Q2)

)
(D1,D2)

def
=(

E(Q11, Q21)
)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2)⊗ E

(
≈D1
y ,≈D2

y

)
. (5.51)

• If Q1 is Q11 ./a/y1≈y2
Q12 and Q2 is Q21 ./b/y1≈y2

Q22, then

(
E(Q1, Q2)

)
(D1,D2)

def
=

(a↔ b)⊗
(
E(Q11, Q21)

)
(D1,D2)⊗

(
E(Q12, Q22)

)
(D1,D2)⊗ E

(
≈D1
y ,≈D2

y

)
.

(5.52)

The following theorem shows that similarities as defined above are indeed lower bounds

of similarities of query results.

Theorem 50. Let Q1 and Q2 be RA-expressions such that E(Q1, Q2) is defined. Then,

for any database instances D1 and D2, we have(
E(Q1, Q2)

)
(D1,D2) ≤ E

(
QD1

1 , QD2
2

)
. (5.53)

5.3 Tuple-based similarity

In this section, we show an alternative definition of similarity of RDTs, which is connected

to the notion of similarity-based closure.

While the rank-based similarity (4.1) can be sufficient in many cases there are situations

in which the use of (4.1) seems to be inadequate. For example, take the RDT from

Section 1.2.3, increase the price of every room by 1 euro and keep all other data and ranks

unaltered. Then according to rank-based similarity, the original data table and the new

one are very different, their similarity degree will be 0 for any choice of L. Intuitively,

since the two data tables differ only by a small change in price, one would expect to have

a high degree of similarity. Hence, we wish to consider the values in tuples in addition to

the ranks of tuples in RDTs when assessing similarity. Naturally, D1 and D2 will likely be

considered similar if they pass a test given by the following proposition:

For every tuple in D1, there exists a similar tuple in D2

and for every tuple in D2, there exists a similar tuple in D1.
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That is, one may define

S≈(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→

∨
r′∈Tupl(R)

(
D2(r′)⊗ r ≈R r′

))
, (5.54)

E≈(D1,D2) = S≈(D1,D2) ∧ S≈(D2,D1), (5.55)

where the similarity degree r ≈R r′ of tuples r and r′ is defined by

r ≈R r′ =
∧
y∈R r(y) ≈y r′(y). (5.56)

5.3.1 Similarity-based semijoins and closures

The similarity of RDTs based on (5.54) can be expressed using (4.2) and a derived rela-

tional operation similarity closure, which is a special case of similarity-based semijoin [17].

For nonranked D1 such that D2 ⊆ D1, similarity closure of D2 (with respect to D1) is

defined as:

(C≈D1
(D2))(r) = D1(r)⊗

∨
r′∈Tupl(R2)

(
D2(r′)⊗ r′≈R r

)
(5.57)

for each r ∈ Tupl(R2). Furthermore, since D1 is nonranked, we may write

(C≈D1
(D2))(r) =

∨
r′∈Tupl(R2)

(
D2(r′)⊗ r′≈R r

)
, (5.58)

whenever r ∈ D1 (and = 0 otherwise).

Taking into account (5.57), C≈D(D1) can be seen as a result of query: “Show all tuples

which are in D1 and, in addition, include all tuples which are from D and are similar to

those in D1.” Similarity-based closures and semijoins may be considered as examples of

nontrivial relational operations which do not appear in the classical relational model.

Using similarity-closures, S≈ defined by (5.54) can be restated as

S≈(D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→ C≈D(D2)(r)

)
= S

(
D1,C

≈
D(D2)

)
, (5.59)

where D is nonranked such that D1∪D2 ⊆ D. Clearly, the value of (5.59) does not depend

on the choice of a nonranked D satisfying D1 ∪ D2 ⊆ D.

If ≈R is ⊗-transitive, then C≈D forms an L-closure operator [4, 3]:

Lemma 51. Let D be a nonranked table on R and let ≈R be ⊗-transitive. Then, C≈D is

an L-closure operator, i.e., it satisfies

D1 ⊆ C≈D(D1), (5.60)

S(D1,D2) ≤ S(C≈D(D1),C≈D(D2)), (5.61)

C≈D(D1)) = C≈D(C≈D(D1)), (5.62)

for all D1 and D2 on R such that D1 ∪ D2 ⊆ D.

Based on our observations, we may view S≈ and E≈ as being defined using (4.2), (4.1),

and similarity-based closures of RDTs. The following theorem shows further properties of

C≈D with respect to other relational operations.
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Theorem 52. For any RDTs D1,D2 and nonranked D on R, such that D1 ∪ D2 ⊆ D:

C≈D(D1) ∪ C≈D(D2) = C≈D(D1 ∪ D2), (5.63)

C≈D(D1 ∩ D2) ⊆ C≈D(D1) ∩ C≈D(D2), (5.64)

If D1 and D2 are RDTs on disjoint schemes R1 and R2, respectively, R ⊆ R1, then

C≈D(D1) ./ C≈D′(D2) ⊆ C≈D./D′(D1 ./ D2), (5.65)

πR(C≈D(D1)) ⊆ C≈πR(D)(πR(D1)), (5.66)

for any nonranked D and D′ on R1 and R2, respectively, such that D1 ⊆ D and D2 ⊆ D′.

5.3.2 Tuple-based similarity estimates

As in case of the rank-based similarity introduced in Section 4.1, we may investigate

inequalities which provide tuple-based similarity estimates of query results based on input

data. Unlike the rank-based approach, the tuple-based approach has some limitations. In

this section, we provide an if and only if criterion for general relational operations which

preserve tuple-based similarity.

In the section, we make the following assumptions. We consider relation schemes

R1, . . . , Rn, R and a map f which maps any RDTs D1, . . . ,Dn on R1, . . . , Rn to an RDT

f(D1, . . . ,Dn) on R (called the result of f). The map f represents a general n-ary rela-

tional operation for which we investigate the issues related to preservation of tuple-based

similarity.

Furthermore, let � be a binary operation on L with 1 being its neutral element. The

operation f is called S-compatible with respect to � if for some 0 ≤ j ≤ n, we have⊙j
i=1 S(Di,D′i)�

⊙n
i=j+1 S(D′i,Di) ≤ S

(
f(D1, . . . ,Dn), f(D′1, . . . ,D′n)

)
, (5.67)

for all Di,D′i on Ri (i = 1, . . . , n). Analogously, f is called S≈-compatible with respect

to � if (5.67) holds for S replaced by S≈. Furthermore, f is called E-compatible and

E≈-compatible if (5.67) holds for S replaced by E and E≈, respectively.

Theorem 53. Let f be S-compatible with respect to �. Then, the following statements

are equivalent:

(i) For any D1, . . . ,Dn and nonranked D′1, . . . ,D′n such that D1 ⊆ D′1, . . . ,Dn ⊆ D′n
there is a nonranked D such that f(D1, . . . ,Dn) ⊆ D and

f
(
C≈D′1

(D1), . . . ,C≈D′n(Dn)
)
⊆ C≈D(f(D1, . . . ,Dn));

(ii) f is S≈-compatible with respect to �.

Theorem 53 enables us to simplify proofs for S≈D -compatibility of relational operations.

In order to prove that operation f is S≈-compatible, it is sufficient to show that f is

S-compatible together with (i) of Theorem 53.
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Corollary 54. The following inequalities

S≈(D1,D2) ≤ S≈(πR(D1), πR(D2)),

S≈(D1,D′1) ∧ S≈(D2,D′2) ≤ S≈(D1 ∪ D2,D′1 ∪ D′2),

S≈(D1,D2)⊗ S≈(D3,D4) ≤ S≈(D1 ./ D3,D2 ./ D4),

hold for any RDTs provided that the relations schemes of D1 and D3 (D2 and D4) are

disjoint. Moreover, the same inequalities hold if S≈ is replaced by E≈.

It can be shown by means of simple counterexamples that relational operations from

previous sections excluding those listed in Corollary 54 are not S≈-compatible with respect

to ⊗.

5.3.3 Unifying approach to similarity of RDTs

It was shown in [6] that both (4.2) and (5.59) have a common generalization using truth-

stressing hedge. Let ∗ be truth-stressing hedge on L. For RDTsD1,D2 on R and nonranked

D on R such that D1 ∪ D2 ⊆ D we define a degree S≈∗ (D1,D2) of inclusion of D1 in D2

(with respect to ∗) and a degree of similarity E≈∗ (D1,D2) with respect to ∗ as

S≈∗ (D1,D2) =
∧
r∈Tupl(R)

(
D1(r)→ C≈

∗
D (D2)

)
, (5.68)

E≈∗ (D1,D2) = S≈∗ (D1,D2) ∧ S≈∗ (D2,D1), (5.69)

where C≈
∗
D (D2) is a similarity-based closure of D2 with respect to D and hedge ∗ and is

defined as

(C≈
∗
D (D2))(r) = D(r)⊗

∨
r′∈Tupl(R)

(
D2(r′)⊗ (r′≈ r)∗

)
. (5.70)

If there is no confusion, we will denote C≈
∗
D (D2) by C∗D(D2).

Now, observe that for ∗ being the identity, (5.68) coincides with (5.54). Furthermore

if ≈R is separating (i.e., r1 ≈ r2 = 1 iff r1 is identical to r2) and ∗ is the globaliza-

tion, (5.68) coincides with (4.2). Thus, both rank-based similarity (4.1) and tuple-based

similarity (5.55) are particular instances of (5.69).

By considering two different hedges ∗1, ∗2 on L we obtain for any RDTs two different

subsethood degrees (and two similarity degrees), one using ∗1 and one using ∗2. We will

denote such degree S≈∗1 and S≈∗2 .

Theorem 55. Let ∗1, ∗2 be two hedges on L. Then for any RDTs D1, D2 and any

nonranked RDT D on R such that D1 ∪ D2 ⊆ D we have:

(∗1 � ∗2) ≤ S≈∗1(D1,D2)→ S≈∗2(D1,D2), (5.71)

(∗1 ≈ ∗2) ≤ E≈∗1(D1,D2)↔ E≈∗2(D1,D2). (5.72)

In words, (5.71) says that if D1 is a subset of D2 using ∗1 and if ∗1 is stronger than ∗2,

then D1 is a subset of D2 using ∗2. Analogously, (5.72) says that if hedges ∗1 and ∗2 are

similar, then the degree of similarity of D1 and D2 using ∗1 and ∗2 are similar.



Chapter 6

Conclusions

We have studied a particular rank-aware relational model over domains with similarities,

which was introduced by Belohlavek and Vychodil.

First, we have presented various extensions of the relational model, which have one

in common: the equality relation is replaced by similarity relation. We have focused on

generalizations of functional dependencies (GFDs) and established a criterion which makes

the comparison of various generalizations easier and more objective. The criterion gives

us a degree to which a particular generalization of FD corresponds to the fuzzy function.

We have observed that although the definition of fuzzy function is natural and widely

accepted, many approaches to GFD failed to satisfy the criterion. One reason is that the

validity of GFD usually remains crisp.

Second, we have studied the similarity-based functional dependencies (SBFDs) pro-

posed by Belohlavek and Vychodil and we have presented a graph-based inference meth-

ods. We have introduced a notion of a T -based L∗-derivation directed acyclic graph (DAG)

which generalizes the ordinary notion of a T -based derivation DAG from [61]. The main

results show that degrees of semantic entailment of SBFD from collections of other SBFDs

can be characterized by the existence of such directed acyclic graphs.

Third, we have introduced a similarity measure for ranked data tables (RDTs), called

rank-based similarity. We have presented several estimates for SBFDs.

Fourth, we have investigated the questions related to similarity preservation. We have

shown that if a relational operation (from Section 1.2.3) is applied to pairwise similar

input arguments (i.e., pairwise similar RDTs), it produces similar results. In addition,

the degree of similarity of the results can be estimated based on the degrees of similarity

of the input arguments prior to the evaluation of relational operations, i.e., prior to the

execution of a relational query.

Fifth, we have investigated similarity of ranked data tables, based on pairwise similar

tuple values. We have focused on the role of similarity-based closures of ranked data

tables which are new and nontrivial relational operations. We have shown that tuple-

based similarity can be reduced to rank-based similarity of similarity-based closures.
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Shrnut́ı v českém jazyce

Relačńı databáze, založené na relačńım modelu dat (E. F. Codd 1970 [30]), jsou dnes stan-

dardem pro ukládáńı a manipulaci s daty. Za úspěchem relačńıho modelu stoj́ı, mimo

jiné, jeho pevné matematické základy – teorie množin a (dvouhodnotová) predikátová lo-

gika. To, co je na jednu stranu výhodou, je na druhou stranu limituj́ıćı. Relačńı databáze

založené na klasickém relačńım modelu neumı́ pracovat s koncepty, které nejsou bivalentńı,

ale v́ıcehodnotové, např. s podobnost́ı.

Představme si, že hledáme hotel v Olomouci, který nab́ıźı pokoje za 100e. Klasické

relačńı databáze nám vrát́ı množinu hotel̊u, jejichž cena je přesně 100e. Je ale přirozené,

že vedle hotel̊u stoj́ıćıch 100e nás zaj́ımaj́ı i hotely, jejichž ceny jsou bĺızko naš́ı představě

(např. hotely s cenou 95e nebo 105e). Na úvaze se nic nezměńı, budeme-li hledat hotely

s cenou v nějakém intervalu, např. 95–105e. Opět nás budou zcela určitě zaj́ımat i hotely,

jejichž cena je dostatečně bĺızko (je podobná) našim požadavk̊um, např. hotely s cenou

89e nebo 110e.

Snahy rozš́ı̌rit relačńı model o podobnosti na doménách (doména je množina možných

hodnot pro daný atribut) se objevuj́ı už od roku 1982 [24]. Podobnost na doméně Dy

atributu y lze formalizovat pomoćı binárńı fuzzy relace ≈y: Dy ×Dy → L. Tedy každým

dvěma hodnotám d1, d2 ∈ Dy je přǐrazen stupeň jejich podobnosti (d1 ≈y d2) ∈ L. Často

se voĺı L = [0, 1]. Relačńım model̊um, které uvažuj́ı podobnosti na doménách, budeme

ř́ıkat podobnostńı relačńı modely.

Disertačńı práce je věnována relačńımu modelu dat, který představili Bělohlávek a Vy-

chodil [12], a který rozšǐruje p̊uvodńı relačńı model takto: 1) Na každé doméně je zavedena

relace podobnosti. 2) Relace (databázové tabulky) jsou rozš́ı̌rené o tzv. ranky. Každý řádek

(záznam) obsahuje nav́ıc rank, což je stupeň, ve kterém daný řádek vyhovuje dotazu. Tento

model je založen na predikátové fuzzy logice.

Prvńı část disertačńı práce je zaměřena na funkčńı závislosti v podobnostńıch relačńıch

modelech, které se snaž́ı popsat závislosti typu: Jestliže jsou si dva řádky podobné na atri-

butech A, pak jsou si podobné na atributech B. Př́ıstup̊u k funkčńım závislostem v po-

dobnostńıch relačńıch modelech je několik deśıtek, pozornost je proto věnována porovnáńı

těchto př́ıstup̊u. Je představeno kritérium, které umožňuje rozd́ılné definice objektivně

srovnat. U funkčńıch závislost́ı, které představili Bělohlávek a Vychodil, jsou A,B fuzzy

množiny atribut̊u. Př́ıkladem takové závislosti může být: Jestliže maj́ı hotely podobnou

cenu alespoň ve stupni 0,8, pak maj́ı podobné hodnoceńı od zákazńık̊u alespoň ve stupni

0,7. Formálně lze psát {0,8/cena} ⇒ {0,7/hodnoceńı}. Pravdivost funkčńıch závislost́ı se

uvažuje ve stupńıch. V disertačńı práci je pro tyto funkčńı závislosti vyvinut alterna-

tivńı dokazovaćı systém, který je založen na orientovaných grafech. Je dokázána úplnost
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v následuj́ıćım smyslu: Funkčńı závislost A ⇒ B sémanticky plyne z množiny funkčńıch

závislost́ı tehdy a jen tehdy, existuje-li orientovaný graf pro A ⇒ B. Konstrukci oriento-

vaných graf̊u lze využ́ıt i pro určeńı uzávěru (fuzzy) množiny atribut̊u vzhledem k teorii.

Druhá část práce je věnována citlivosti funkčńıch závislosti a relačńıch operaćı (v mo-

delu Bělohlávka a Vychodila) na vstupńıch datech. Nejprve je diskutováno, jak lze měřit

podobnost databázových tabulek (relaćı s ranky) a jsou představeny dvě mı́ry: podobnost

založená na ranćıch (rank-based similarity) a podobnost založená na datech (tuple-based

similarity). U podobnosti založené na ranćıch řekneme, že dvě relace s ranky jsou si po-

dobné, pokud stejné řádky patř́ı do obou relaćı v podobném stupni. Pro tuto podobnost

je dokázáno, že v podobných relaćıch budou funkčńı závislosti platit v podobném stupni.

Tedy, že definice funkčńıch závislost́ı je robustńı: malá změna na vstupńıch datech zp̊usob́ı

pouze malou změnu v platnosti funkčńıch závislost́ı. Rovněž jsou prezentovány odhady pro

pravdivost funkčńı závislosti A1 ⇒ B1, A2 ⇒ B2 v závislosti na podobnosti fuzzy množin

atribut̊u A1, A2 a B1, B2. Pro podobnost založenou na ranćıch je dále studována citlivost

výsledk̊u relačńıch operaćı na vstupńıch datech. Je ukázáno, že pro libovolný dotaz lze

podobnost výsledk̊u dotazu odhadnout na základě podobnosti vstupńıch dat.

U podobnosti založené na datech řekneme, že dvě relace s ranky jsou si podobné,

jestliže ke každému řádku v jedné relaci existuje řádek v druhé relaci, který je mu po-

dobný a opačně. Ukazuje se, že tuto podobnost lze vyjádřit pomoćı podobnosti založené

na ranćıch a nové relačńı operace: podobnostńıho uzávěru. V disertačńı práci jsou stu-

dovány vlastnosti podobnostńıho uzávěru a jeho vztah k relačńım operaćım. Rovněž je

představena podobnost pro relace s ranky, která zobecňuje obě předchoźı.
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• L. Ježková, P. Cordero, M. Enciso: Codd’s Relational Model of Data Over Domains

With Similarities: A Comparative Survey, Fuzzy Sets and Systems, submitted
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