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Abstract 
Efforts to improve ciassification aigorithms are being siowed down by iack of data required 
for testing. For confidentiality and security reasons it is difficult to obtain real data. G o o d 
rule set generation tools, such as ClassBench-ng, exist. However, in order to evaluate proper 
functioning, throughput, power consumption, and other properties of packet classification 
algorithms, it is necessary to also use network traffic. Subject of this thesis is creating a 
network traffic generator that would allow for testing of such properties using IPv4 , IPv6 , 
and OpenF lowl .O rules created by ClassBench-ng. The work explores different ways to 
achieve this, which resulted i n several versions of the generator. Those were experimented 
wi th and evaluated. Implementation was done using P y t h o n . The pr imary result is a 
generator combining mult iple approaches to achieve the best properties of created header 
traces. Another contr ibution of this thesis is a tool that was necessary to create for analyzing 
rule sets and evaluating generated header traces. 

Abstrakt 
Pokrok př i zdokona lován í klasif ikačních a l g o r i t m ů je z p o m a l o v á n nedostatkem dat p o t ř e b ­
ných pro t e s tován í . R e á l n á data je ob t í žné z íska t z d ů v o d u b e z p e č n o s t i a ochrany ci t l ivých 
informací . Ex is tu j í však g e n e r á t o r y syn te t i ckých sad pravidel, jako n a p ř í k l a d ClassBench-ng. 
K v y h o d n o c e n í s p r á v n é h o fungování , propustnosti , s p o t ř e b y energie a dalš ích v l a s tnos t í 
klasifikačních a l g o r i t m ů je z a p o t ř e b í t a k é v h o d n ý síťový provoz. T é m a t e m t é t o p r á c e je 
tvorba t akového g e n e r á t o r u síťového provozu, k t e r ý by u mo žn i l t e s tován í t ě ch to v l a s tnos t í 
v kombinaci s IPv4 , IPv6 a OpenFlowl .O pravidly vygene rovanými ClassBench-ng. P r á c e 
se zabývá r ů z n ý m i způsoby, jak toho d o s á h n o u t , k t e r é vedly k v y t v o ř e n í někol ika verzí 
g e n e r á t o r u . Vlas tnos t i j edno t l i vých verzí byly z k o u m á n y ř a d o u e x p e r i m e n t ů . Implemen­
tace byla provedena p o m o c í j azyku P y t h o n . N e j v ý z n a m n ě j š í m výs l edkem je gene rá to r , 
k t e r ý využ ívá p r inc ipů někol ika z k o u m a n ý c h p ř í s t u p ů k dosažen í co nej lepších v las tnos t í . 
Da l š ím p ř í n o s e m je n á s t r o j , k t e r ý bylo n u t n é vy tvo ř i t pro a n a l ý z u už i tých sad klasif ikačních 
pravidel a v y h o d n o c e n í v l a s t n o s t í vygene rovaného síťového provozu. 
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Rozšířený abstrakt 
Internet se ve velké čás t i svě t a stal nezbytnou s lužbou , k t e r á v ý z n a m n ě ovlivňuje každo­
denn í ž ivoty lidí. Ačkoliv se Internet od svého zrodu v ý z n a m n ě změni l ve z p ů s o b u využ i t í i 
v jeho dostupnosti, m n o h é zák l adn í principy zůs táva j í i po letech s te jné . J e d n í m t a k o v ý m 
p ř í k l a d e m je klasifikace p a k e t ů , k t e r á je klíčovou ú lohou na síťových zař ízeních . K l a s i ­
fikace p a k e t ů se využ ívá n a p ř í k l a d př i směrování , nebo t ř í d ěn í p a k e t ů , což z n í dě lá jednu 
z nejběžnějš ích síťových operac í . 

I n t e rne tové protokoly, k t e r ý m i se celý Internet ř ídí , se neus t á l e vyvíjejí a s te jně jako 
struktura j edno t l i vých sí t í se s távaj í s loži tějš ími. T y t o faktory a u s t av i čně se zvyšující pro­
pustnost sí t í k ladou zvýšené n á r o k y i na algori tmy sloužící ke klasifikaci p a k e t ů . Nové, 
po t enc i á lně lepší, a lgori tmy je t ř e b a ř á d n ě otestovat p ř e d n a s a z e n í m do o s t r é h o provozu. 
Takové t e s tován í mus í bý t provedeno na m n o ž s t v í a typu dat, k t e r é o d p o v í d á r e á l n é m u 
provozu. Taková data je ovšem ob t í žné z í ska t . Z b e z p e č n o s t n í c h d ů v o d ů a kvůl i o c h r a n ě 
osobních ú d a j ů nechtě j í organizace zveře jňovat de t a i ln í informace o síťovém provozu a 
použ i tých klasif ikačních pravidlech. 

Sku tečná , nebo a l e spoň real is t ická, klasifikační pravidla jsou k t e s tován í p o t ř e b a , pro­
tože výkon a efektivita klasif ikačních a lg o r i tmů je na nich závislá . Existuje několik n á s t r o j ů , 
k t e r é generuj í syn te t i cké sady klasifikačních pravidel . Nejnovější z nich, ClassBench-ng, 
dokáže analyzovat s k u t e č n é sady pravidel a na jejich zák ladě vy tvo ř i t pravidla syn te t i cká . 
To umožňu je zachovat vlastnosti p ů v o d n í c h pravidel bez jejich zveřejnění . 

K v y h o d n o c e n í s p r á v n é h o fungování , propustnosti , s p o t ř e b y energie, efektivity využ ívání 
m e z i p a m ě t i a dalš ích technik klasif ikačních a lg o r i tmů na síťových zař ízeních je z a p o t ř e b í 
t a k é síťový provoz. K o n k r é t n ě hodnoty re levan tn ích hlaviček p a k e t ů . Vy tvořen í g e n e r á t o r u 
t akového síťového provozu je h l a v n í m cí lem t é t o p ráce . 

Exis tu j í t ř i h lavn í n á s t r o j e sloužící k t e s tován í klasif ikačních a lgo r i tmů . Ne js ta r š í z nich 
je ClassBench, k t e r ý umožňu je analyzovat s k u t e č n é sady pravidel, v y t v á ř e t syn te t i cké sady 
pravidel a umožňu je i generovat síťový provoz. Jeho nej vě tš í n e v ý h o d o u je, že u m í praco­
vat pouze s p ě t i c e m i IPv4 (zdrojová a cílová IP adresa, zdro jový a cílový port a protokol 
vyšší vrs tvy) . D r u h ý m n á s t r o j e m je F R u G , k t e r ý je do veliké m í r y p ř i způsob i t e lný uži­
vatelem. Jeho h lavn í v ý h o d o u je, že sady pravidel , k t e r é generuje, nejsou nijak omezeny 
p o č t e m použ i tých hlavičkových pol í . Je ovšem s tá le omezen pouze na IPv4 , a nav íc neu­
možňuje generovat síťový provoz. Nejnovějš ím z n á s t r o j ů je ClassBench-ng. Jak už název 
n a p o v í d á , je to n á s t r o j , k t e r ý do j i s t é m í r y navazuje na p ů v o d n í ClassBench. P ř i cház í s 
někol ika vy lepšen ími a n a l ý z y a generování klasifikačních pravidel . Dá le rozšiřuje funkcional­
i tu o p rác i s IPv6 a h lav ičkovými pol i OpenF lowl .0 .0 . Neobsahuje však g e n e r á t o r síťového 
provozu. Jel ikož zbývající vlastnosti ClassBench-ng p ředč í o s t a t n í nás t ro j e , je g e n e r á t o r 
t vo řený v r á m c i t é t o p r á c e n a v r ž e n tak, aby by l k o m p a t i b i l n í p r ávě s ClassBench-ng. 

P o ž a d o v a n ý g e n e r á t o r m á na vs tupu sadu klasif ikačních pravidel a p o ž a d o v a n ý poče t 
hlaviček. V ý s t u p e m jsou hodnoty j edno t l i vých pol í hlaviček. P ř e d v y t v o ř e n í m g e n e r á t o r u 
síťového provozu, k t e r ý by a d e k v á t n ě testoval klasifikační algori tmy bylo z a p o t ř e b í vy tvo ř i t 
jeho jednoduchou verzi . J e d n á se o gene rá to r , k t e r ý splňuje veškerou z á k l a d n í funkcionalitu, 
ale hodnoty hlaviček generuje bez jakékol iv optimalizace vzhledem k ž á d o u c í m vlastnostem 
generovaného provozu. Je ovšem n u t n é , aby v y t v o ř e n é hlavičky spadaly a l e spoň do ně­
j a k é h o z pravidel v s t u p n í sady. To je zař ízeno tak, že pro k a ž d o u h lavičku je n á h o d n ě 
v y b r á n o jedno z pravidel . Hodnoty hlavičkových pol í jsou p o t é v y b r á n y n á h o d n ě z hodnot 
povolených t í m t o pravidlem. Tento i všechny dalš í verze g e n e r á t o r u jsem implementoval v 
jazyce Py thon . 



V ideá ln ím p ř í p a d ě by g e n e r á t o r mě l vygenerovat a l e spoň jednu h lavičku pro k a ž d o u 
odl i šnou oblast ve v s t u p n í s adě pravidel . Od l i šnou ob las t í se mysl í k a ž d á čás t sady pravidel, 
k t e r á je t v o ř e n a u n i k á t n í kombinac í pravidel . To m ů ž e bý t b u d jedno ind iv iduá ln í pravidlo, 
nebo p ř e k r y v více pravidel . Je m o ž n é provés t k o m p l e t n í a n a l ý z u sady pravidel , k t e r á identi­
fikuje všechny tyto oblasti, a vygenerovat p rávě jednu h lavičku pro k a ž d o u oblast. V závis­
losti na p o č t u pravidel a p ř e k r y v ů mezi n i m i se tento p ř í s t u p m ů ž e s t á t n e u s k u t e č n i t e l n ý m 
kvůl i času p o t ř e b n é m u pro všechny v ý p o č t y a v y ž a d o v a n é m u m n o ž s t v í p a m ě t i . Je tedy 
t ř e b a na j í t r o z u m n ý kompromis mezi p o k r y t í m ob las t í a v ý p o č e t n í ná ročnos t í . 

Au to ř i p ů v o d n í h o n á s t r o j e ClassBench použi l i metodu, k t e r á se jen lehce liší od z m í n ě n é h o 
j e d n o d u c h é h o g e n e r á t o r u . P r o k a ž d o u h lavičku je n á h o d n ě v y b r á n o jedno z pravidel , ale 
hodnoty j edno t l i vých hlavičkových pol í nejsou v y b r á n y ze všech povolených hodnot t í m t o 
pravidlem. Mís to toho je v ž d y v y b r á n a b u d m a x i m á l n í nebo m i n i m á l n í hodnota. Výsled­
kem jsou tedy hlavičky odpovída j íc í ně j akému z " r o h ů " d a n é h o pravidla . Tento p ř í s t u p jsem 
zreplikoval a rozšíři l o fungování s IPv6 a OpenF low h lav ičkami . Ukáza lo se, že p o k r y t í 
ob las t í touto metodou nen í lepší než j e d n o d u c h ý gene rá to r . 

Po vy tvořen í , implementaci a v y h o d n o c e n í ř a d y různých p ř í s t u p ů jsem dospě l ke gen­
e rá to ru , k t e r ý funguje n á s l e d o v n ý m z p ů s o b e m . Nejprve v n á h o d n é m p o ř a d í projde všechna 
pravidla a pro k a ž d é z nich vygeneruje jednu hlavičku s t e j n ý m z p ů s o b e m jako j e d n o d u c h ý 
gene rá to r . To slouží p ř e d e v š í m k p o k r y t í ob las t í t vo řených j e d n í m pravidlem. Zbývající 
h lavičky jsou generovány z p ů s o b e m z a m ě ř e n ý m na p o k r y t í p ř e k r y v ů . Hlavn í myš lenkou 
algori tmu je tvo řen í t a k o v ý c h hlaviček, k t e r é splňuj í p o d m í n k y více pravidel najednou. 

K t e s tován í j edno t l i vých a lgo r i tmů byly využ i t y sady pravidel vygene rované n á s t r o j e m 
ClassBench-ng. T y svými vlastnostmi odpov ída j í r e á l n ý m s a d á m pravidel, jelikož byly 
v y t v o ř e n y na zák l adě jejich ana lýz . K v y h o d n o c e n í výs ledků jsem v jazyce P y t h o n vy tvoř i l 
n á s t r o j , k t e r ý analyzuje danou sadu klasifikačních pravidel a p o t é s p o č í t á její p o k r y t í vy­
generovanými h lav ičkami . 

Výs ledný g e n e r á t o r síťového provozu poskytuje lepší p o k r y t í ob las t í než všechny o s t a t n í 
t e s tované metody. V tomto ohledu je v ý r a z n ě lepší než metoda z n á s t r o j e ClassBench, 
což bylo h l a v n í m cílem. Z hlediska výkonu je g e n e r á t o r p o d s t a t n ě pomale jš í . Jeho časová 
složitost je v šak l ineární , což je uspokojuj íc í . 
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Chapter 1 

Introduction 

In many places i n the world, the Internet has become one of v i t a l services that people 
can hardly imagine l iv ing without . A n d even though it has changed significantly since 
its inception, a lot of its core functionality remains working on the same principles. One 
such example is packet classification. It is used for routing, packet filtering and other 
applications, which makes it one of the most common operations in computer networks. 

Internet protocols, that govern the Internet, and the structure of ind iv idua l computer 
networks are constantly becoming more complex, which raises requirements on packet clas­
sification algorithms. Tha t is further amplified by continuously increasing throughput of 
computer networks. New, potential ly better, algorithms cannot be s imply deployed to live 
traffic. Tha t could have disastrous consequences. They need to be properly tested first. 
Testing them on realistic amounts and types of data is complicated. The absence of envi­
ronment that would allow this contributes to so called ossification of Internet infrastructure. 

The first problem wi th testing packet classification algorithms is that it is not easy to 
get rule sets that are being applied to real traffic [17]. Organizations do not want to publ ish 
this data for confidentiality and security reasons. Rea l , or at least realistic, rule sets are 
needed because capacity and efficiency of packet classification algorithms are subject to 
the structure of the rule sets [9]. There already are some existing tools that set out to 
combat this by generating synthetic rule sets. The other problem is the lack of the actual 
traffic. A s a matter of fact, it is not the traffic that is needed. It is only some of the header 
fields of the packets. These are needed for evaluation of proper functioning, throughput, 
power consumption, and effectiveness of caching and other techniques of devices employing 
the classification algori thm [17]. Aga in , there have been attempts to solve this, but these 
solutions are not sufficient considering current demands. 

The first goal of this thesis is to create a header trace generator, which could be used 
for dynamic analysis of the packet classification a lgor i thm ut i l iz ing a rule set generated by 
ClassBench-ng. ClassBench-ng is currently the best tool for creating synthetic rule sets, 
but it has no network traffic generation functionality. The header generator is aimed to be 
compatible w i th ClassBench-ng, so that it could eventually be incorporated in it. 

The second goal is to optimize the generator to achieve the best possible coverage for 
various rule sets while maintaining reasonable computat ional demands. A rule is considered 
to be covered if at least one generated header satisfies the rule's conditions. For proper 
testing of classification algorithms it is not enough to cover ind iv idua l rules. Instead, it is 
desirable to also generate at least one header for a l l distinct regions in the rule set that are 
formed by overlaps between the rules. 
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The following chapter, Chapter 2, introduces information regarding computer networks 
wi th focus on topics that are most relevant to the thesis. A l l protocols that contain header 
fields that ClassBench-ng works wi th , and therefore that this generator works wi th , are ex­
plained there. Chapter 3 is devoted to packet classification. It defines the term and presents 
a brief overview of different approaches. Last section of the chapter, section 3.2, examines 
existing tools that can be used for testing classification algorithms. The process of making 
the first version of the network traffic generator is described in Chapter 4. Th is chapter 
further discusses ways to analyze and evaluate the generated header trace i n section 4.2, 
which is necessary in order to optimize the generator. A l l of the major improvements that 
lead to better properties of the generated trace are described i n Chapter 5. F i n a l section of 
the chapter, section 5.7, outlines possible future work that could be done to further advance 
the generator. The thesis is concluded i n Chapter 6. 

3 



Chapter 2 

Computer Networks 

The main a i m of this chapter is to introduce the area of computer networking and discuss 
its parts that are most relevant to the thesis i n detail . F i r s t , the chapter defines computer 
network and presents basic terminology. Tha t is followed by origins and brief history of 
computer networks along wi th the dr iv ing forces behind their evolution. The rest of the 
chapter contains more detailed information about current state of computer networking. 
It focuses on the T C P / I P architecture which is the most widely used. It discusses its 
structure, components, and some important protocols. B o t h versions of Internet Pro tocol , 
and the OpenFlow protocol are discussed i n greater detail , as they are the most significant 
for this thesis. 

Computer network is a communications network that interconnects a variety of devices 
and provides a means for information exchange among them [15]. The connected devices 
are called hosts or end systems. They are identified by an IP address. Interconnection is 
done through communicat ion links and packet switches. There are many types of commu­
nication links, consisting of different types of physical media and radio spectrum. A packet 
switch takes a packet ar r iv ing on one of its incoming interfaces (links) and forwards it to 
an outgoing interface toward its destination. Packets are essentially packages containing 
information that is being sent and information necessary for successful communicat ion (e.g. 
sender's and receiver's IP addresses). E n d systems access the Internet through Internet 
service providers (ISPs). E a c h ISP is i n itself an independently managed network. It inter­
connects a l l of its customers' networks, and also connects to other ISPs. These connections 
ul t imately form the Internet [7]. 

The most common networks are local area networks ( L A N s ) . They are present in 
v i r tua l ly a l l office buildings and homes. A L A N consists of a shared transmission medium 
and a set of hardware and software for interfacing devices to the medium [15]. Whole 
L A N is often owned by a single organization or person. Its scope is small , usually a single 
bui lding. W i d e area networks ( W A N s ) , on the other hand, extend over larger geographical 
areas. They mostly serve as a connection of L A N s and other types of networks. 

A special case of L A N is v i r tua l local area network ( V L A N ) . It is a logical network that 
can group devices even from different physical locations. Hosts wi th in a V L A N commu­
nicate w i t h each other as i f they were connected to the same switch. Conversely, V L A N s 
can be used to create mult iple networks on just one switch, which allows, for example, to 
create a network for each department i n a company without having to buy more network­
ing hardware and changing topology of the physical network. This can also be useful for 
security and performance of the network [7]. Communica t ion between different V L A N s is 
s t i l l possible using system of V L A N tagging. A s the name suggests, a tag, that identifies 
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V L A N to which the frame belongs, is added to the frame. Structure of the tag is discussed 
further i n subsection 2.1.1. Interconnection of two V L A N s , over which tagged frames are 
sent, is called a trunk. 

The origins of computer networking can be traced to early 1960s [7]. A t the time, a tele­
phone network was the world's dominant communicat ion network. It used circuit switching 
to transmit information, which is suitable for voice communicat ion since it transmits at a 
constant rate between a sender and a receiver. Information exchange i n a computer net­
work of those times was likely to come i n bursts followed by periods of inactivi ty. Packet 
switching was invented as an efficient and robust alternative to circuit switching. The first 
packet-switched computer network was designed i n 1969 at the Advanced Research Projects 
Agency ( A R P A ) in the Uni t ed States [7]. It was the first direct ancestor of today's Internet. 

It is clear that i n order for two computers to communicate through a complex telecom­
municat ion network, there must be a high degree of cooperation between them, and also 
between each of them and the network. Generally, it is required that even devices from dif­
ferent vendors must be capable of communicat ing wi th each other. These and many other 
factors lead to creation of Internet standards. Standards assure that there w i l l be a large 
open market for equipment and software wi th a wide variety of vendors, whose products can 
interface and communicate w i th each other. There are also a few downsides to standards. 
Most notably, they slow down the development of new technologies. It takes a lot of t ime to 
create, specify and review a standard. B y the t ime it is finished, a better alternative might 
already exist. M a n y different groups take interest in Internet standards and participate in 
their creation. The i r goals are often not fully aligned. Negotiat ing between these groups 
results i n more delays. If things go well, a compromise is reached. In the opposite case, mul­
tiple conflicting standards might be created for the same thing, which can lead to further 
confusion and complications [15]. E a c h distinct version of an Internet-related standard is 
published as part of the Request for Comments ( R F C ) document series. The R F C series of 
documents on networking began i n 1969 as part of the original A R P A wide-area networking 
project [1]. Nowadays, it is managed by the Internet Engineering Task Force ( E I T F ) . In 
addi t ion to Internet standards, R F C s also cover other topics related to the Internet. Other 
organizations also specify standards for network components. For example, the I E E E 802 
L A N / M A N Standards Commit tee specifies the Ethernet and wireless W i F i standards [7]. 

A l l ac t ivi ty taking place i n the Internet that involves mult iple communicat ing parties 
is governed by protocols. They can be implemented as software, hardware or combination 
of both . A protocol is a set of rules defining the communicat ion and the structure of its 
messages. Because the Internet is an incredibly complex system, network designers organize 
protocols, and their implementations, into layers [7]. In a protocol architecture, the layers 
are arranged i n a vert ical stack. Each layer performs certain tasks independently on the 
other layers. Lower layers provide services to higher layers, but the implementat ion is 
hidden to them. Tha t allows for making changes i n a layer without interfering wi th the 
rest of them. For a successful communication, the same set of layered functions must exist 
in a l l par t ic ipat ing systems [15]. 

2.1 T C P / I P Architecture 

The T C P / I P architecture is named after its two most important protocols - Transmission 
Cont ro l P ro toco l and Internet P ro toco l [12]. The ma in goal dur ing its creation was to 
bu i ld an interconnection of networks that would provide universal communicat ion services 
over heterogeneous physical networks. Th is should allow communicat ion between different 
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networks spread across the entire world. Th is worldwide set of interconnected networks is 
called the Internet. 

Like most networking software, the T C P / I P architecture consists of layers. T C P / I P ' s 
layers are Appl i ca t ion , Transport , Internet and Network Interface layer. The term protocol 
stack refers to the stack of layers. It can be used for posi t ional comparison wi th other 
models, such as the Open Systems Interconnection (OSI) model, which consists of seven 
layers [12]. The comparison of these two models can be seen in Figure 2.1. 

TCP/ IP mode l 

Application Layer 

OSI mode l 

Application Layer 

Presentation Layer 

Session Layer 

Transport Layer Transport Layer 

Internet Layer Network Layer 

Datalink Layer 
Network Interface 

Layer 
Physical Layer 

Figure 2.1: Compar ison of T C P / I P and OSI models 

Separation of functionality into layers allows for easier implementation, testing, and 
provides space for possible extensions or alternative implementations. Work done by layers 
is independent, but lower level layers provide functionality for those above them. They 
communicate through concise interfaces. 

W h e n an applicat ion wants to send data over a network, first, an applicat ion protocol 
creates a message containing the data. For example, the message can be a H T T P response 
and its data is H T M L code of a website. Next , a transport layer protocol header is added 
in front of the message to form a packet. Most common are T C P and U D P packets, more 
on that i n subsection 2.1.3. A n I P header is placed in front of the packet and the newly 
formed structure is called I P datagram. Fina l ly , Ethernet frame is created by placing 
Ethernet header in front of the datagram and frame check sequence, sometimes also called 
frame footer, behind the end of the datagram. This process is called encapsulation. A n 
example of encapsulation can be seen in Figure 2.2. The entire operation is done i n reverse 
when the frame reaches its destination, where a header is removed at each layer and its 
information used to get the message to intended applicat ion. 

2.1.1 N e t w o r k Interface L a y e r 

The network interface layer is at the lowest posit ion i n the stack. It interfaces wi th the 
network hardware and allows the traffic to flow over various kinds of physical networks. 
The most widely used protocol at this layer is Ethernet . There are many reasons for its 
success. It was the first widely deployed wired L A N technology. Most network adminis-
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Figure 2.2: Example of data encapsulation 

trators became familiar w i th it and were reluctant to switch to other L A N technologies 
when they came about. Most other technologies, such as token ring, F D D I , or A T M , were 
more complex and expensive than Ethernet, which further discouraged from transit ioning 
to them [7]. Ethernet also d id not remain stagnant. W h e n new technologies were providing 
better features and properties, Ethernet adapted through new versions and never stayed 
behind for long. 

Ethernet uses media access control ( M A C ) addresses for identifying devices participat­
ing in communicat ion. M A C address has 48 bits. It serves as a unique identifier of a 
network interface card ( N I C ) . A p a r t from some special addresses, the first 24 bits are or­
ganizationally unique identifier (OUI) , which is used to identify manufacturer of the card. 
The other 24 bits are assigned by the manufacturer to the specific N I C . 

Ethernet frame consists of a preamble, destination and source addresses, type field, data 
field (payload), and frame check sequence, in that order. Structure of the whole frame is 
shown i n Figure 2.3. Descr ipt ion of its fields can be seen i n the list bellow. 

8 B 6 B 6 B 2 B 4 6 - 1500 B 4 B 

Preamble 
Destination 

address 
Source 
address 

Type/Length Data 
Frame check 

sequence 

Figure 2.3: Ethernet frame structure 

• Preamble (8 bytes) This field is always set to the same value: first seven bytes 
are set to a decimal value of 170, and the last byte to 171. Preamble is used for 
synchronization and as a "wake up" ca l l for receiving adapters [7]. 

• Destination address (6 bytes) M A C address of network interface card of a receiv­
ing device. 
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• Source address (6 bytes) M A C address of network interface card of a sending 
device. 

• T y p e / l e n g t h (2 bytes) The type field is used to indicate which protocol is encapsu­
lated i n the payload of the frame. It is also used to specify the size of certain Ethernet 
frames. 

• D a t a (46 - 1500 bytes) The data field, often referred to as payload, can be anywhere 
between 46 and 1 500 bytes long. It consists of the information being sent and headers 
of higher layer protocols included in the frame. If the payload's size is below the 
min imum required size, then it has to be padded to reach the 46 bytes. 

• Frame check sequence (4 bytes) The frame check sequence field is a type of cyclic 
redundancy check ( C R C ) . It allows receiver of the message to detect bit errors i n the 
frame. 

Ethernet technology provides an unreliable connectionless service to the internet layer. 
D a t a that needs to be sent is encapsulated by the sender into an Ethernet frame, which is 
then sent without prior handshaking, or connecting i n any other way, w i th the receiver. A 
receiving device runs a C R C check, but does not inform sending device about its result. If 
C R C check fails, the receiver s imply discards the frame [7]. 

Networking standard I E E E 802.1Q defines an extended Ethernet frame format for 
frames crossing V L A N trunks. The I E E E 802.1Q frame is created by inserting 802.1Q 
header between the source M A C address field and the type field of a normal Ethernet 
frame. Frame check sequence also has to be recalculated. A s shown i n figure Figure 2.4, 
the 802.1Q header consists of tag protocol identifier ( T P I D ) and tag control information 
( T C I ) . The T C I is further split into three fields - priority, drop eligible indicator, and V L A N 
identifier [6, 7]. 

16b 3 b 1 b 12 b 

Tag protocol identifier Priority DEI 
VLAN 

identifier 

T 
Tag control 
information 

Figure 2.4: 802.1Q header structure 

• Tag protocol identifier (16 bits) The T P I D field is used to identify the frame as 
a tagged frame. It is set to a fixed hexadecimal value of 81-00. 

• Pr ior i ty (3 bits) P r io r i t y is a quali ty of service parameter. Frames wi th high prior i ty 
may be given precedence. 

• D r o p eligible indicator (1 bit) The D E I field is used to indicate i f a frame is 
eligible to be dropped during traffic congestion. 

• V L A N identifier (12 bits) This field contains a number identifying V L A N from 
which the frame has been sent. 
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2.1.2 Internet L a y e r 

The internet layer, sometimes also called inter-network or network layer, shields the higher 
layers from the physical form of networks [12]. Instead, it provides their v i r tua l view. It 
implements host-to-host communicat ion service and contains functions for forwarding and 
routing. The internet layer is one of the most complex in the protocol stack. 

W h e n a packet arrives at a router's input interface, it determines on which output 
interface the packet should be sent. Th i s is called forwarding. Rou t ing is a process of 
determining route from a sender to a receiver through an entire network [7]. Algor i thms used 
for calculat ing these routes are referred to as routing algorithms. Routers make decisions 
based on information i n their routing and forwarding tables. Those can be set up by 
administrators or by already mentioned rout ing algorithms. The main advantage of using 
algorithms is that routers can exchange rout ing information wi th each other and because 
of that react to changes in network topology. 

A n internet layer packet is referred to as a datagram. Its structure differs based on 
the protocol that is being used. The most common is Internet P ro toco l (IP), which comes 
in two versions, IPv4 and IPv6 . IPv6 was created to replace IPv4 , but the t ransi t ion is 
taking some time. These two protocols are, due to their complexity, discussed further 
i n section 2.2. 

Internet layer provides connectionless best-effort services. Rel iabi l i ty , flow control, and 
error recovery, if needed, must be provided by higher level layers [12]. 

2.1.3 T r a n s p o r t L a y e r 

The transport layer builds on functionality provided by the internet layer and plays a 
central role i n network architecture. It delivers data direct ly to applications on different 
hosts using ports and sockets. It can provide addi t ional functionality such as congestion 
control, reliable data delivery, duplicate data suppression, and flow control [12]. 

Ports and sockets are used to determine which process, at a given host, is communicat­
ing. E a c h process that wants to communicate w i t h another identifies itself by one or more 
ports. Por t is a 16-bit number which provides us w i th a range from 0 to 65 535. The first 
1 024 numbers are reserved for privileged services and designated as so-called well-known 
ports [12]. Wel l -known ports belong to standard services, such as Telnet or F T P (File 
Transfer Protocol) . They are controlled and assigned by the Internet Assigned Number 
Author i ty ( I A N A ) and allow clients to find services without further configuration informa­
t ion. Processes access network services through sockets. A socket is a special type of file 
handle, which is requested by processes from an operating system. 

The two most important protocols operating on the transport layer are User Datagram 
Pro tocol ( U D P ) and Transmission Cont ro l P ro toco l ( T C P ) . U D P is essentially an applica­
t ion interface to IP. It provides an unreliable, connectionless service to the invoking appli­
cation. N o functionalities such as reliability, flow control, or error correction are present. 
U D P s imply maps incoming traffic based on port numbers to correct processes. Similarly, 
it assigns port numbers to outgoing traffic based on the processes. Tha t allows one appli­
cation to communicate w i th another. Thanks to its simplicity, U D P is very efficient, but 
it requires the applicat ion to take responsibility for any other needed functionality, such as 
error recovery [12]. Each U D P segment (packet) is sent w i th a single I P datagram. U D P 
packets have an 8-byte header that is shown i n Figure 2.5 It contains source and destination 
port numbers, length of the packet including the header, and checksum. 
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Destination 
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Figure 2.5: U D P header structure 

Transmission Con t ro l Protocol , on the other hand, provides reliable, connection-oriented 
service to the invoking applicat ion. It also provides facilities, such as error recovery and flow 
control. Before applications start communicat ing wi th each other, they have to establish a 
connection. They do that by exchanging prel iminary segments to establish parameters of 
the ensuing data transfer. Th is process is called a "handshake" [7]. A T C P connection is 
always point-to-point and provides a full-duplex service, which means that data can flow 
in both directions simultaneously. 

Since T C P provides more functionality than U D P , its header needs to carry more infor­
mation. It can be seen i n Figure 2.6. Individual header fields are explained i n the following 
list. 

Source port Destination port I 32 +32 b 

Sequence number 64 b 

Acknowledgement number 64 b 

Offset Reserved Flags Window size [ 4 + 6 + 6 + 1 6 b 

Checksum Urgent pointer [ 16+ 16b 

Options and padding 

Figure 2.6: T C P header structure 

• Source port (32 bits) Source port number. 

• Destination port (32 bits) Dest inat ion port number. 

• Sequence number (64 bits) If the S Y N control bit (one of flags discussed under 
the Flags field) is set, the sequence number is the in i t i a l sequence number. Otherwise 
it is the sequence number of the first data byte i n this segment. 

• Acknowledgement number (64 bits) The acknowledgement number field is only 
relevant i f the A C K control bit (one of flags also discussed under the Flags field) is 
set. In that case this field contains the value of the next expected sequence number. 

• Offset (4 bits) The offset field indicates the posit ion of the beginning of data. 
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• Reserved (6 bits) These six bits are reserved for possible future use and should 
always be set to zero. 

• Flags (6 bits) The flags field consists of six control bits, also commonly called flags. 
Purpose of two of them ( S Y N and A C K ) was already mentioned. The other four are 
U R G , P S H , R S T , and F I N . If U R G is set, then the urgent pointer field is significant in 
this segment. The P S H flag is an option that allows the sending applicat ion to start 
sending data even if its size is smaller than the m i n i m u m transmission unit . R S T is 
used to reset the connection. F ina l ly , i f F I N is set, then the sender has no more data 
to send. 

• W i n d o w size (16 bits) The window size contains a number representing the amount 
of bytes that the sender is wi l l ing to accept. 

• Checksum (16 bits) In T C P checksum is calculated using both header and data 
while the checksum itself is considered to be zero. 

• Urgent pointer (16 bits) The urgent pointer field is only significant i f the U R G 
flag is set, and it points to data that is urgently required. 

• Options (multiple of 8 bits) and padding (variable) Options may occupy space 
at the end of the T C P header and must be a mult iple of 8 bits in length. They are 
used for specific features enhancing the T C P protocol. Padding is used to ensure 
that the T C P header ends, and data begins, on a 32-bit boundary. The padding is 
composed of zeros. 

2.1.4 A p p l i c a t i o n L a y e r 

The applicat ion layer lies at the very top of the T C P / I P model . It contains logic needed 
to support various network applications and builds on everything provided by the lower 
level layers. A n applicat ion is a user process, usually cooperating wi th another process on 
a different host. There are also use cases for communicat ing applications on the same host. 
The interface between the applicat ion and the transport layers is defined by port numbers 
and sockets [12]. Those are described i n subsection 2.1.3. 

2.2 Internet Layer Protocols 

Internet P ro toco l was designed for use i n interconnected systems of packet-switched com­
puter communicat ion networks [14]. It provides means for t ransmit t ing blocks of data 
called datagrams. Source and destination hosts of such communicat ion are identified by 
fixed-length addresses. Currently, two versions of Internet P ro toco l are being used - version 
4 and 6. 

The purpose of Internet P ro toco l is to move datagrams through an interconnected set 
of networks. Tha t is done by passing the datagrams from one point to another un t i l the 
destination is reached. The route of the datagrams is determined based on their addresses. 
It can happen that a network might have its m a x i m u m packet size smaller than the size of 
the datagram. To overcome this, the datagram has to be fragmented (split) into smaller 
parts. Those two functions, addressing and fragmentation, are the two most fundamental 
functions of Internet P ro toco l [14]. 
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2.2.1 I P v 4 

IPv4 utilizes fixed-length addresses of 32 bits. A n address consists of two parts. The first 
part is a number representing a network. The other part is a number representing a host 
in the given network. The number of bits that belong to each part can differ. It is specified 
by a network mask in case of classless addressing or by a class of the address in the original 
classful addressing scheme which is not being used anymore. There are also address ranges 
reserved for special purposes. 

The protocol's header contains a l l the information required for its functionality. Struc­
ture of an IPv4 header is shown i n Figure 2.7. Indiv idual header fields are explained i n the 
following list. 

Version 
Header 
length Type of service Total length J- 4 + 4 + 8 + 16b 

Identification Flags Fragment offset 16 + 3 + 13b 

Time to live 
Upper layer 

protocol 
Header checksum 8 + 8 + 16b 

Source address 32 b 

Destination address 32 b 

Options and padding 

Figure 2.7: IPv4 header structure 

• Version (4 bits) Th is field specifies the version of a ut i l ized protocol of the datagram. 
It is used by routers and other devices to determine how to interpret the remainder 
of the header. 

• Header length (4 bits) Because the length of the IPv4 header is not fixed, it is 
necessary to specify where the header ends and data begins. That is determined, in 
part, by this value specifying the length of the header i n bytes. 

• T y p e of service (8 bits) The type of service header field is an 8-bit value introduced 
to allow and identify different types of I P datagrams. 

• Total length (16 bits) The to ta l length field indicates a to ta l length of the I P 
datagram in bytes. Tha t is the length of the header plus the length of data. Since 
it is 16 bits long, the theoretical m a x i m u m size is 65 535, but datagrams are usually 
not larger than 1 500 bytes. 

• Identification (16 bits) The identification field is used to uniquely identify a group 
of fragments belonging to a single IP datagram. 

• Flags (3 bits) The first of the three flag bits is reserved and must always be set to 
zero. The second bit is set if a sender wants to prevent fragmentation of the datagram. 
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The last bit , i f set, signals that this is not the last part of an incoming fragmented 
datagram. 

• Fragment offset (13 bits) The fragment offset field identifies the fragment location, 
relative to the beginning of the original unfragmented datagram. 

• T i m e to live (8 bits) The t ime to live ( T T L ) field is a number which ensures that 
there w i l l be no datagrams circulat ing i n a network forever, regardless of network's 
topology. T T L is decremented by one every t ime the datagram is processed by a 
router. If it reaches zero, then the datagram must be discarded. 

• U p p e r layer protocol (8 bits) The upper layer protocol field is relevant only in 
packet's final destination. Its value identifies the specific transport layer protocol. 

• Header checksum (16 bits) The header checksum field is used to detect bit errors. 
Routers check it and usually discard faulty datagrams. 

• Source address (32 bits) IP address of the original source of the datagram. 

• Destination address (32 bits) I P address of the final destination of the datagram. 

• Options and padding (variable) The options field is optional . There might be 
zero or more options i n an IPv4 datagram. They can be used to convey some extra 
information about the traffic. If the options do not end on a 32-bit boundary, then 
padding (octets of zeros), is appended to the end of header to make it so. 

2.2.2 I P v 6 

Internet P ro toco l version 6 was designed as the successor to IPv4 . A prime motivat ion 
for this effort was the realization that the 32-bit IP address space was beginning to be 
depleted. That makes IPv6 's expanded addressing capabilities one of the most important 
improvements. I P address size is increased from 32 to 128 bits, which allows support of 
more levels of addressing hierarchy and a much greater number of unique addresses. Several 
header fields have been removed or made optional . Some other fields have also been added, 
but overall the header format was simplified and allows for faster processing and handling 
of packets. IPv6 encodes header options i n a different way which allows for more efficient 
forwarding. There are also less strict l imits on the length of options and greater flexibili ty 
for introducing new options in the future. Extensions to support authentication, data 
integrity, and data confidentiality have also been added to IPv6 [3]. 

Addressing i n IPv6 is much less complicated than the one i n IPv4 . IPv6 addresses are 
assigned to interfaces, not nodes. There are three types of addresses: unicast, anycast, and 
multicast. A unicast address identifies a single network interface. A packet sent to such 
address is delivered to the interface specified by that address. Every interface is required 
to have at least one unicast address. A n anycast address identifies a set of interfaces. A 
packet sent to such address is delivered to the closest one of the interfaces identified by 
that address. The definition of distance depends on a used routing protocol. A multicast 
address identifies a set of interfaces. A packet sent to such address is delivered to a l l of the 
interfaces identified by that address. Typical ly , unicast and anycast addresses are composed 
of two logical parts. The first 64 bits define a network prefix used for routing. The other 
64 bits identify specific interface in the given network. Mul t icas t addresses are formed in 
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a different way dependent on the applicat ion. Several of them are predefined for special 
purposes [5]. 

Opt iona l internet layer information is encoded i n separate headers. Those are called 
extension headers and they are placed between the IPv6 header and the upper layer header 
in a datagram. The type of an extension header is identified by a distinct value of the next 
header field. Values identifying extension headers and upper layer protocols do not overlap, 
which means that the next header field can also be used to indicate if the next i tem in the 
datagram is an extension header or not. A special "no next header" value is used if there 
is no upper layer header [3]. 

Structure of an IPv6 header is shown i n Figure 2.8. A list of ind iv idua l header fields 
w i th explanations can be found below. 

Version Traffic class Flow label 4 + 8 + 20 b 

Payload length Next header Hop limit 16 + 8 + 8 b 

Source address 128 b 

Destination address 128 b 

Figure 2.8: IPv6 header structure 

• Version (4 bits) This field specifies the version of a ut i l ized IP protocol. In case 
of IPv6 that number is, unsurprisingly, 6. It is used by routers and other devices to 
determine how to interpret the remainder of the header. 

• Traffic class (8 bits) The traffic class field is used by the network devices for traffic 
management. 

• Flow label (20 bits) The flow label field is used by a source of traffic to label 
sequences of datagrams that should be treated i n the network as a single flow. 

• Payload length (16 bits) The payload length field is a number specifying the length 
of datagram's payload i n octets. The length of the payload is specified as everything 
in the datagram following this IPv6 header, which includes any present extension 
headers. 

• Next header (8 bits) The next header field serves as an identifier of the type of 
header immediately following the IPv6 header. It is essentially the same as the upper 
layer protocol field i n IPv4. 

• H o p limit (8 bits) H o p l imi t works like T T L i n IPv4 . It is a positive number that 
is decremented by one on each node that forwards the datagram. A datagram is 
discarded if its hop l imi t reaches zero. A node that is the destination of a datagram 
should not discard a datagram wi th hop l imi t equal to zero, it should process it 
normally instead. 

• Source address (128 bits) A n IPv6 address of the originator of the datagram. 
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• Destination address (128 bits) A n IPv6 address of the intended recipient of the 
datagram. 

2.2.3 I C M P 

The Internet Con t ro l Message Pro toco l ( I C M P ) is an auxi l iary protocol to IP. Its purpose 
is to provide feedback about problems i n the communicat ion environment [13]. It does 
not guarantee that a datagram w i l l be delivered or a control message w i l l be returned, 
higher level protocols must be used in order to achieve that. The I C M P messages usually 
report errors i n processing of a datagram. For example when a datagram cannot reach 
its destination, or when the router does not have enough buffering capacity to forward a 
datagram. In order to avoid creating infinite loops of messages, no I C M P messages are sent 
about other I C M P messages. Funct ional i ty provided by I C M P is used i n several common 
network util i t ies, such as traceroute or ping. P i n g uses echo request and echo reply I C M P 
messages to measure the round-trip t ime for messages sent from one device to another. 
Traceroute is a tool used to determine the path datagrams follow to reach a specified host. 
For that, it utilizes I C M P time exceeded messages sent by routers when received datagram's 
T T L value reaches zero. 

I C M P messages are sent using the normal IP header. The information that they convey 
is indicated by the message's type and code. Type represents the main piece of information, 
while code can be used for further clarification. For example, let's have an I C M P message 
wi th type 3 and code 3. The type tells us the destination is unreachable and the code 
tells us that it is so because the port i n the destination is unreachable [13]. Note that this 
information does not always have to be completely correct due to usage of firewalls and 
other systems interacting wi th the traffic. 

I C M P v 6 

The Internet Con t ro l Message Pro toco l for the Internet Pro toco l Version 6 ( I C M P v 6 ) is 
an integral part of IPv6 and must be fully implemented by every IPv6 node. Just like its 
predecessor, I C M P v 6 is used to report errors encountered in processing datagrams [2]. It 
was created by taking the original I C M P and applying it to IPv6 wi th a number of changes. 
I C M P v 6 messages are grouped into two classes. These are error messages, w i th types from 
0 to 127, and informational messages wi th types from 128 to 255. I C M P v 6 has an IPv6 
next header value of 58. 

2.3 OpenFlow 

OpenFlow is a protocol that allows remote administrat ion of switches and routers of dif­
ferent vendors. It does that by programming flow tables in these devices. Even though 
each vendor's flow tables are different, the devices have a set of common functions that 
run i n them. One of main motivations behind OpenFlow was to allow a pract ical way for 
experimentation wi th new network protocols i n realistic settings [10]. This is needed to give 
new ideas a chance to break through and be widely deployed. W i t h OpenFlow, researches 
can control their own network traffic flows and experiment w i t h them without influencing 
other traffic. 

The remote adminis t ra t ion of switches and routers is done using another device called 
controller. A controller is a process running on a computer that is connected to the net-

15 



working device v ia a secure channel. Packets sent between them are using the OpenFlow 
protocol, which provides an open and standard way of communicat ion. There can be dedi­
cated OpenFlow switches that do not support normal Internet Layer and Network Interface 
Layer processing, but also general-purpose commercial switches and routers interfacing wi th 
the OpenFlow protocol [10]. 

The original version of the OpenFlow protocol worked wi th twelve header fields [11] 
that are shown i n Figure 2.9. F r o m Ethernet, these include source and destination M A C 
addresses and the type field. F r o m IP, it utilizes source and destination IP addresses, 
type of service, and upper layer protocol fields. The Transport layer provides source and 
destination port numbers. O n top of these, OpenF low also works w i t h the ingress port 
number and V L A N information, specifically V L A N i d and V L A N priority. Ingress port is 
s imply the number of the port on which a packet arrived. V L A N information is included 
in special I E E E 802.1Q Ethernet frames which are discussed i n subsection 2.1.1. Newer 
versions of OpenF low include more header fields. The generator of network traffic that is 
the product of this thesis works only wi th those from version 1.0.0, as they are the ones 
that ClassBench-ng works wi th . 

Ingress port 

Source 
MAC address 

Destination 
MAC address Ethernet type VLAN id VLAN priority 

Source IP 
address 

Destination IP 
address 

Upper layer 
protocol 

Type of 
service 

Source 
port number 

Destination 
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Figure 2.9: OpenF low 1.0.0 header fields 

16 



Chapter 3 

Packet Classification 

This chapter serves as an introduct ion to packet classification. Fi rs t , it explains the term 
and presents reasons why it is needed. Tha t is followed by a short list of some of the most 
common approaches to packet classification i n section 3.1. F ina l ly , section 3.2 focuses on 
tools that can be used for testing of packet classification algorithms. These tools are capable 
of creating synthetic rule sets that imitate properties of real rule sets. 

The process of packet classification is determining a class that a packet belongs to [8]. 
The class is determined using selected header fields of the packet and a set of used classi­
fication rules. E a c h rule represents one class. Packet belongs to a class that is represented 
by a rule whose conditions are satisfied by the packet. A s classes may overlap, it is possible 
for one packet to satisfy conditions of mult iple rules. In that case, the rule w i th the highest 
priori ty is usually selected. Match ing conditions of header fields can be defined as one 
concrete value, a range of allowed values, or as a wi ldcard. W i l d c a r d means that any value 
is accepted. 

Packet classification is v i t a l for proper functioning of the Internet. It is, in some way, 
implemented i n most networking devices serving several key purposes. The most common 
use cases of packet classification are rout ing and packet filtering. 

Rou t ing is a process of determining packet's route to its destination. It can be done 
simply by matching I P addresses, also known as I P routing [8]. Alternat ively, more header 
fields can be used to determine the route i n order to allow routing based on more complex 
policies. 

Packet filtering is mostly used i n the area of networking security. It is used to decide 
which traffic is allowed. Mal ic ious or unwanted traffic is filtered out and prevented from 
going through. The most common example of this is firewall, which is often present on a 
border of a network and also at ind iv idua l stations. 

3.1 Approaches 

There are many ways to approach packet classification, just like there are many different 
algorithms that can be used for this purpose. O n l y some of those approaches and algorithms 
are discussed i n this thesis. The simplest, naive approach to packet classification is to 
compare values from the packet sequentially against classification rules. The first matching 
rule is selected as the output. That is correct behavior in case the rules are ordered according 
to their pr ior i ty (also called impl ic i t pr iori ty) . 
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Another approach to packet classification is to use a special k ind of memory called 
Ternary Content-Addressable Memory ( T C A M ) . It is based on Content-Addressable M e m ­
ory ( C A M ) , which consists of rows addressed by their content. The output of C A M is the 
address of a row that matches the input value. T C A M extends matching functionality to 
so-called ternary matching. A p a r t from the bit values 0 and 1, it introduces the th i rd value 
" X " . Compar ing this value to another one always results in a match. Th is is useful when 
creating rules that do not care about a certain value. Wi thou t this functionality, it would 
be necessary to specify the same rule for bo th options (0 and 1). Us ing the same naive 
approach as before, but w i th T C A M , results i n significantly smaller number of required 
entries for the same functionality [8]. Para l le l i sm can be used to compare values from the 
packet against multiple, or even a l l , present rules. W h i l e this can lead to very fast search 
time, it also requires more resources and consumes a lot of power. T C A M also suffers from 
l imi ted scalabili ty to longer search keys due to its exhaustive search approach [16]. 

It is possible to represent classification rules using tuples. Elements of a tuple represent 
the number of bits used for the specification of corresponding rule's conditions. R e a l rule 
sets often contain only a few combinations of specification lengths, which makes the tuple 
approach viable. The number of bits used i n the value, wildcard, and prefix specifications 
is clear, but the value of tuple elements corresponding to the range specification is not. 
The representation of ut i l ized ranges is based on a hierarchy of non-overlapping ranges. In 
the hierarchy, ranges are organized i n levels from the most general to the most specific. 
Each range is then represented by a pair consisting of nesting level and range I D . This pair 
characterizes posit ion of the range wi th in the hierarchy [8]. 

The packet classification problem can be represented i n mult idimensional space, where 
each dimension corresponds to one header field. E a c h condit ion of a classification rule 
can be represented as an interval i n the corresponding dimension. The whole rule is then 
represented as a geometric body formed by those intervals [8]. It has as many dimensions 
as there are ut i l ized header fields. A packet is represented as a singular point i n the space, 
as it has a single value in each dimension. If the point is inside a body representing a rule, 
then the packet satisfies conditions of that rule. W h i c h rule is selected as the output, i f the 
packet matches more than one of them, is decided by priority, which can be impl ic i t (given 
by order of the rules). 

3.2 Exist ing Tools for Packet Classification Testing 

Packet classification is crucial networking technology and often a performance bottleneck 
i n routers. There are some publ ic ly available performance evaluation tools for packet clas­
sification, but their functionality is s t i l l quite l imi ted . The most notable ones are discussed 
further i n this section. 

3.2.1 C l a s s B e n c h 

ClassBench is a set of tools for benchmarking packet classification algorithms and devices. 
Its overview is shown i n Figure 3.1. There are three tools i n total . The first is F i l t e r Set 
Analyzer , which analyzes real rule sets and produces filter set parameter files. These files 
contain statist ical properties of the analyzed data. The created parameter files are then 
used i n the next tool called F i l t e r Set Generator, which is probably the most important piece 
in the tool suit. It produces synthetic rule sets. A p a r t from a parameter file, it also takes as 
input a set of parameters that allow to adjust high-level parameters of the generated rule set 
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by a user. The final tool in the chain is Trace Generator that produces a sequence of packet 
headers wi th respect to the given filter set. ClassBench is probably the most used tool for 
these purposes. The greatest weakness of this tool suite is that it only operates w i t h IPv4 
headers. Specifically, a 5-tuple consisting of source and destination I P addresses, source 
and destination port numbers and the upper layer protocol field i n an IPv4 header [17]. 
Tha t was sufficient for the research community at the t ime of ClassBench's creation, but 
it is not anymore. More recent tools, that are discussed i n the following sections, have 
expanded rule set generation to include other header fields and protocols. 
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Figure 3.1: B lock diagram of the ClassBench tool suite, taken from [17]. 

3.2.2 F R u G 

Flexible Rule Generator ( F R u G ) is an entirely user-controlled benchmarking tool for eval­
uating forwarding algorithms. It allows its users to define distributions, composit ion, size 
and a l l other parameters related to the rule set generation. W h a t makes the tool even more 
flexible is that rule generation is not restricted to a fixed number of fields, which makes 
it potential ly useful even for future algorithms that the authors could not predict. IPv6 , 
which has a different header structure, is not supported by this tool . 

F R u G consists of the IPv4 prefix analyzer and generator, the M A C address analyzer 
and generator, the configuration file parser, and the F R u G engine. The entire structure 
is shown i n Figure 3.2. Input parameter files provide an interface for the user to interact 
w i th the tool . There are three types of input files: a configuration file, a class file, and a 
descriptor file. The configuration file allows the user to define how each protocol field should 
appear i n the generated rule set and the composit ion of each class of rules. In the class file 
the user specifies required parameters for the fields that w i l l appear i n the generated rules. 
The descriptor file can be used to further alter the structure of the generated rule sets. 
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Figure 3.2: F R u G framework overview, taken from [4]. 

There are two modes of operation i n F R u G . One is the IPv4 prefix generation mode, 
which runs the IPv4 prefix analyzer and the generator. The other mode is flexible rule 
generation, which is used when a configuration file and class files are specified. However, 
it might also require assistance of the IPv4 generator [4]. The output of the F R u G engine 
is a table of rules that follow the properties described i n the input parameter files. Unl ike 
ClassBench, F R u G does not provide a tool capable of generating network traffic. 

3.2.3 C l a s s B e n c h - n g 

ClassBench-ng is an open source tool that follows in footsteps of ClassBench. Compared to 
the original ClassBench, the rule set generation is improved and it is capable of generating 
synthetic rule sets not only for IPv4 , but also for IPv6 and OpenFlow 1.0.0. 

It utilizes one input file that can specify the statist ical behavior for a l l fields that need 
to be generated. The authors of ClassBench-ng analyzed real rule sets to understand their 
properties. Based on this analysis, they defined the structure of input seeds that accurately 
reflect characteristics of different operational scenarios. Some input seeds are provided wi th 
the tool . ClassBench-ng is capable of creating input parameter files from real rule sets as 
well . Input parameter files created in this way can then also be used to generate synthetic 
rule sets. Since the parameter files only contain statist ical properties of the original real 
rules, they can be shared among researchers while keeping their anonymity. For that reason, 
no sensitive information regarding the original real data is revealed to the public . 

ClassBench-ng tries to improve the rule set generation process by iteratively bui lding an 
output rule set w i t h characteristics as close as possible to the input seed. Just like F R u G , 
ClassBench-ng currently does not provide a tool for network traffic generation [9]. Consid­
ering the precision of generated synthetic rule sets, ClassBench-ng on average outperformes 
both ClassBench and F r u G [8]. 
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Comparison of functionality of the three mentioned tools is shown i n Table 3.1. Class-
Bench provides a l l functionality, but only for IPv4 5-tuples. F R u G is capable of generating 
rule sets w i th up to 12 header fields chosen by a user. Therefore, it can be used to generate 
OpenFlowl .O . rules, but it is capable of analyzing only some of the header fields. Overa l l 
the characteristic of generated rule sets is more user driven. F R u G does not work wi th 
IPv6 addresses and does not have a trace generator. ClassBench-ng can analyze rules con­
sisting of 5-tuples (only those wi th IPv4 addresses) and OpenFlowl .O header fields. It can 
create rule sets even for 5-tuples w i th IPv6 addresses, but does not contain a header trace 
generator. 

Analysis 
Rule set 

generation 
Trace 

generation 
Note 

ClassBench / / / IPv4 5-tuples only 
F R u G part ly / X no IPv6 
ClassBench-ng par t ly (no IPv6) / X IPv4 , IPv6 , O F 

Table 3.1: Funct ional i ty comparison of tools for packet classification testing 
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Chapter 4 

Network Traffic Generation 

Based on the description of existing tools, it is clear that the most current of them, 
ClassBench-ng, provides the best functionality. However, compared to the original Class-
Bench, it lacks the network traffic generator. In general, there is no existing trace generator 
for IPv6 5-tuple and OpenFlow header values. The lack of such tool is the motivat ion behind 
this thesis. 

A s input, the generator must take a l l classification rules that can be created by ClassBench-
ng. Tha t is, rules consisting of OpenF lowl .0 .0 headers and 5-tuple headers made up of 
source and destination I P addresses (either IPv4 or IPv6) , source and destination port 
numbers, and the upper layer protocol field for IPv4 or the next header field for IPv6 . 
Those fields are marked wi th green color in figures that display structure of a protocol 
in Chapter 2. Header fields present in OpenF lowl .0 .0 that are not included i n the 5-tuples 
are marked wi th yellow. 

The simplest way to generate network traffic is to generate random headers w i t h values 
wi th in the permit ted ranges. Th is technique is undesirable, because it does not ensure that 
every header is covered by at least one rule. Th is problem can be solved by using random 
values wi th in a rule, i.e., for each generated header, use random values that are wi th in 
ranges specified by a rule's conditions. Th is method is further discussed in section 4.1. The 
opposite approach is to perform a complete analysis of the rule set, find a l l intersections 
between rules, and then generate a header for each unique case. Depending on the size of a 
rule set and the amount of overlaps, this calculation may become vi r tua l ly impossible due to 
its memory requirements and t ime complexity. Therefore, it is necessary to find a reasonable 
compromise between opt imiz ing for rule coverage and opt imiz ing for performance. For 
example, the authors of the original ClassBench tool decided to use "corner" values. That 
means selecting either the smallest or the largest value from the range specified by each 
condit ion of a rule [17]. Headers generated in this manner should have higher chance of 
matching mult iple rules, which means a higher chance of covering an overlap. 

4.1 Simple Network Traffic Generator 

Before creating an opt imized network traffic generator that would be able to adequately test 
classification algorithms, it is useful to create its simplified version. Since the generator is 
designed wi th ClassBench-ng i n mind , it should be compatible w i th the rule sets generated 
by this tool . Tha t automatical ly makes it compatible w i th ClassBench's rule sets as well. 
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In order to keep backward compatibil i ty, the structure of generated IPv4 headers is the 
same as in the original ClassBench. 

The first version of the generator could also be described as a naive version. Implemented 
in Python3.8, it works w i th a l l required protocols. In a way, the naive version implements 
al l desired functionality, but no opt imizat ion for smarter generation, which would lead to 
better testing of classification algorithms, is performed. The way this tool works can be 
seen in Figure 4.1. W h e n generating a packet header, a random rule from the input rule 
set is selected (line 3). T h e n the generator assigns values matching that rule to the newly 
created header (line 5). If a field in the rule is a range, a completely random value wi th in 
this range is picked. F ina l ly , the rule is sent to output (line 7). Th is repeats unt i l required 
number of headers is generated. 

function TRACEGEN(rwZes, size) 
for i 4— 0 to size do 

rule 4- GETRANDOMRuLE(ruZes) 
for each field i n rule do 

header [field] 4- G E T R A N D O M VALUE(ru/e [/ie/d]) 
end for 
PRiNTHEADER(/ieaefer) 

end for 
end function 

Figure 4.1: Pseudocode of Naive Trace Generator 

Some results of testing this generator's version using IPv4 5-tuple rule set can be seen 
in Table 4.1 and using OpenFlow 1.0.0 i n Table 4.2. B o t h rule sets consist of 1000 rules. 
A l l presented data are averages from 10 runs. The results clearly show how increasing the 
number of generated headers does not increase memory consumption. Th is is due to the fact 
that the headers are sent to output immediately after creation and not stored anywhere. 
Rules have to be stored, therefore the memory consumption is driven almost exclusively by 
the size of the rule set. Execut ion t ime is not increasing exactly in proport ion to the number 
of generated headers. Th is is because a considerable por t ion of execution t ime is taken by 
loading the rule set. Since the loading t ime remains static, generating more headers leads to 
more efficient generation (larger proport ion of execution t ime is spent on the actual process 
of generating headers). Th is is why more headers per second are generated when more 
headers are required. The generator creates IPv4 5-tuples faster than OpenFlow, because 
of the smaller number of header fields. 

Number o f headers 10 100 1000 2 000 5 000 
Ru le coverage [%] 0,98 9,55 63,01 86,19 99,26 
O v e r l a p coverage [%] 0,18 1,27 9,22 12,32 14,13 
R e g i o n coverage [%] 0,78 7,41 49,13 67,13 77,30 
Peak r e a l memory [kB] 151288 151 544 151800 152188 152188 
Peak v i r t u a l memory [kB] 9136 9 396 9 667 9 969 9 994 
E x e c u t i o n t i m e [ms] 43 52 96 143 178 
Headers per second 233 1928 10 367 13 966 28169 

Table 4.1: Results of testing naive trace generator using IPv4 5-tuple rule set w i t h 1000 
rules. 
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Number of headers 10 100 1000 2 000 5 000 
Rule coverage [%] 1,00 9,52 62,72 86,34 99,31 
Overlap coverage [%] 0,00 0,00 0,00 0,00 0,00 
Region coverage [%] 0,02 0,23 1,50 2,07 2,38 
Peak re a l memory [kB] 151288 151288 151800 151932 151932 
Peak v i r t u a l memory [kB] 9136 9136 9 683 9 696 9 856 
Execution time [ms] 75 91 165 199 308 
Headers per second 133 1097 6 049 10 044 16 247 

Table 4.2: Results of testing naive trace generator using OpenFlow rule set w i t h 1 000 rules. 

4.2 Analyzing Generated Network Traffic 

A mandatory step i n creating an efficient network traffic generator is to analyze its outputs. 
There are several cri teria that can be used to evaluate the results. The overarching goal is 
to provide the best possible coverage of the provided rule set. 

A decent por t ion of the work on this thesis was spent on creating a P y t h o n script to 
analyze the generated network traffic. In order to do that, the script has to analyze the 
rule set first. Therefore, two most important parameters of this tool are paths to files 
containing generated headers and the used rule set. These classification rules are generated 
by ClassBench or ClassBench-ng. Another parameter specifies i f the rules are tuples or 
OpenFlow 1.0.0 rules. Tuples can be either IPv4 or IPv6 . Since ClassBench does not 
support IPv6 or OpenFlow, those rules w i l l always come exclusively from ClassBench-ng. 
The final parameter can be used to make the script run i n an experimentation mode, 
which suppresses normal output and provides results i n a way that allows for further easy 
automatic processing. 

The first step of the evaluation tool is to load rules from the provided file into a list. For 
each rule an instance of class representing a rule is created. The rules are analyzed after 
al l of them are loaded. Several different approaches can be taken to do this. The ones that 
were ut i l ized are further discussed in subsection 4.2.1. The next step is to check coverage 
of those rules and overlaps by the generated header trace. Tha t is done as the header fields 
are being loaded, one by one, without saving them. This means that only one header at 
a t ime is loaded i n memory and it gets overwritten by the next one when it is no longer 
needed. This significantly improves memory consumption of the script, especially for large 
header traces. The final step is to calculate and output the results. 

4.2.1 A n a l y z i n g Ru le s a n d E v a l u a t i n g R u l e Coverage 

The first approach that was taken detects a l l overlaps between ind iv idua l rules and keeps 
track of overlaps as a list of pairs of rules. Th is is the simplest solution. It does not require 
any explicit specification of the overlapping region, thus it is not necessary to compute 
its dimensions. It allows for analyzing the coverage of given rules, rules using impl ic i t 
priority, and overlap pairs. W h e n impl ic i t pr ior i ty is taken into account, then only the first 
matching rule is covered by a header. In the opposite case, a l l rules that match the header 
are considered to be covered. Tha t is, i f the header falls into an overlap, it covers both 
rules from that overlap. B o t h of these variants could be useful for certain applications. 

The ma in problem wi th the overlap pairs approach is that it does not really take into 
consideration the possibil i ty of more than two overlapping rules. O f course, there are 
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pairs representing overlaps for a l l involved rules, but that is not the same as differentiating 
between a l l distinct regions of such overlap. To better explain this, we can represent the 
problem graphically, as described i n section 3.1. Us ing two dimensions and three rules 
we can get a s i tuat ion shown in Figure 4.2. E a c h of the three rules have a part that is 
not overlapping wi th others (red, green, blue), and parts that are overlapping wi th one 
of the other two rules (yellow, cyan, purple). One part is shared by a l l three of them 
(white). Ideally, when determining rule coverage, we want to be able to dist inguish to 
which one of those seven distinct regions a packet belongs to. Tha t is the best way to test 
the classification algori thm. The pairs approach is not able to do that. Presented w i t h the 
situation in Figure 4.2 the pairs approach would discover that rule 1 overlaps wi th rule 2 and 
rule 3, and that rule 2 also overlaps wi th rule 3, but there would be no information about 
the distinct region where a l l of them overlap. Similar ly, this approach does not provide a 
clue whether the overlaps are just par t ia l (like i n the example) or i f one rule forming the 
overlap pair is a subset of the other rule. 

Rule 1 

Rule 2 

Figure 4.2: Example of possible overlaps among three rules 

To achieve a desired level of analysis, it is necessary to not only discover overlaps between 
rules, but also to be able to define them. Tha t is why the final version of the evaluation 
tool , described i n following paragraphs, does not s imply look for overlaps. Instead, it finds 
al l distinct regions and creates a rule for each of them. 

Since some of rule's conditions are ranges (IP prefixes, port numbers, etc.), they can be 
specified by their m a x i m u m and m i n i m u m values, which makes it easy to test i f a packet 
matches the rule. Th is becomes impossible after spl i t t ing the rules into regions, as they 
might take shapes that cannot be specified like this. A n example of such shape is the " L " 
shape of blue and green regions i n the example shown in Figure 4.2. This problem is solved 
in the evaluation tool by what could be described as layering the rules representing regions 
on top of each other using explicit priority. E x p l i c i t pr ior i ty can be used because impl ic i t 
priori ty becomes irrelevant for evaluation using distinct regions (every packet matches at 
most one region rule). Th is way conditions can s t i l l be specified by their m a x i m u m and 
min imum values. 

The evaluation tool finds a l l distinct regions i n rounds. F i rs t round begins wi th round 
number zero. O n l y rules w i th explicit pr ior i ty equal or higher than the rule number partic­
ipate i n each round. Default rule pr ior i ty is zero. W h e n a par t ia l overlap is found, the rules 
that are forming it keep their values and the newly created rule (representing the overlap) 
is assigned prior i ty one higher than the round number (i.e., it goes to the next round). 
This can be demonstrated on the following example where, for simplicity, rules have just a 
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single integer condit ion. Let ' s have two rules w i th the default pr ior i ty (zero): rule A wi th 
condit ion 0 to 10 and rule B wi th condit ion 5 to 15. The evaluation tool w i l l detect the 
overlap and create a new rule C wi th condit ion 5 to 10 and pr ior i ty 1. The original rules are 
not changed, which means that there could be a header that could satisfy a l l three of the 
rules (e.g., w i th field value corresponding to the condit ion set to 8), but only rule C would 
be marked as covered due to the priority. Therefore it works as i f each rule's condit ion was 
specified by a range of numbers that is unique to i t . If one rule is discovered to be a subset 
of another, pr ior i ty of the inner rule is set to one higher than the round number (it becomes 
the overlap). W h e n two rules are found to be the same, one of them is removed. Newly 
created rules are added to the list of a l l rules at the end of the round i n which they were 
created (they do not participate i n this round). Next round is started only if at least one 
new rule has been created in the current round or i f at least one rule's pr ior i ty has been 
changed due to it being a subset of another rule. 

In summary, five different metrics of rule set coverage have been implemented as part of 
the evaluation tool . The first is the percentage of covered rules, where each packet covers 
only the first rule that it matches. Next is the percentage of covered overlap pairs. The 
th i rd is essentially the combination of the previous two. It is the percentage of covered rules, 
where each packet covers every rule it matches (i.e., i f a packet hits an overlap, it covers a l l 
rules forming this overlap). The fourth metric is the percentage of covered distinct region 
overlaps. It is a subset of the final metric, the most important one, which is the percentage 
of covered distinct regions. 

Comparison of a l l rules w i th each other can be done at best w i th quadratic t ime com­
plexity. Each rule has to be loaded into memory during this process. Note that each 
overlapping region is represented by a separate rule that is added to the original rule set. 
Therefore, it is clear that performance is a major issue for large rule sets or rule sets w i th 
a large number of overlaps. F r o m a certain point, memory consumption and execution 
t ime become infeasible. Due to the need for better performance, a l l methods have eventu­
ally been str ipped from the tool , except the distinct regions one, which provides the most 
informative data. 

Other improvements have also been made. One of the most significant yet simple ones, 
which leads to almost five times shorter execution t ime using the same data, is changing 
the order of different header fields' comparisons when looking for an overlap. For example, 
comparing network prefixes is much more expensive operation than comparing protocol 
numbers. Therefore, checking protocol numbers is done earlier and if they do not match, 
it is clear that the rules cannot overlap. In such scenario, the comparison of prefixes is not 
needed, and therefore is never invoked. 

Since many algorithms rely on prefix matching only, the generator is also tested w i t h 
rule sets containing only prefixes (other fields are essentially wildcards). For such cases, a 
lightweight version of the evaluation tool for evaluating generated traffic has been created. 
It ignores a l l the irrelevant fields which significantly decreases memory consumption and 
also improves performance. 
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Chapter 5 

Optimizing Network Traffic 
Generator 

After the completion of the simple generator and the tool for evaluating results, work on 
improving the generator could begin. Star t ing wi th the simplest and least accurate solution 
possible, it was necessary to begin by introducing techniques to improve region coverage. 
M a n y different methods were tr ied and experimented wi th . The more useful ones are listed 
in this chapter. The generator and its results are dependent on its input, specifically the 
provided rule sets. Us ing realistic rule sets is crucial for benchmarking a l l the different ways 
of creating header traces. 

The next section, section 5.1, discusses the used rule sets. Fol lowing sections describe 
the different generator versions and examine their results. F i n a l parts of this chapter are 
devoted to performance of the generator i n section 5.6 and possible future improvements 
i n section 5.7. 

5.1 Rule sets used for testing 

A l l rule sets used for testing the generator were generated using ClassBench-ng. They were 
created according to the parameters extracted from real rule sets and therefore should be 
an accurate representation of rules used i n real applications. A l l of them were analyzed i n a 
way described i n subsection 4.2.1. T h e number of overlaps and distinct regions of each used 
rule set can be seen in Table 5.1. A n exception is the OpenFlow rule set o f l _ g e n b_10000, 
which contains too many overlaps to be analyzed in a reasonable time. For this reason, 
only a part of it was used for testing rule coverage, rule set o f l _ g e n b _ x l 0 0 0 represents 
1000 rules out of the to ta l 10000. Rule sets consisting of rules using only prefixes are also 
commonly used. One for each IPv4 and IPv6 were used for testing. The fifth, and final, 
rule set acl4 gen 1000 consists of rules represented as IPv4 5-tuples. A l l sizes were chosen 
based on sizes of real rule sets that were used for generating the synthetic ones. 

W h e n performing tests w i th the generator, the number of generated headers was often 
established as a certain percentage of the size of the rule set. It is reasonable to expect a 
good coverage when generating for instance five times more headers as there are rules, but 
in case of the OpenFlow rule set, it is necessary to generate way more headers, as there are 
more than forty times more distinct regions than rules. 
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T y p e Name Size Overlaps Regions 
IPv4 prefixes 2015_ r r c 0 0 _ i p v 4 _ £ ?en_b_ 400000 100 000 12 095 100 000 
IPv6 prefixes 2015_ r rcOO_ipv6_ gen_b_ _10000 10 000 1 10000 
IPv4 5-tuples acl4 _gen_ 1000 1000 332 1287 

OF rules of l_gen_b_ _10000 10000 ? ? 

OF rules of l_gen_b_ jxlOOO 1000 40 800 41800 

Table 5.1: Number of overlaps and regions of used rule sets 

Note that the only overlaps i n prefix rule sets are caused by one rule being a subset of 
another, therefore no new regions are created. This stems from the way IP prefixes work. 
They can never overlap without one being fully encapsulated by the other. 

5.2 Corners Version 

The original ClassBench paper acknowledges that there needs to be a compromise between 
generating the perfect trace and a completely random one [17]. The authors came up wi th 
the idea of generating packet headers representing the "corners" of rules. Through their 
analyses, they discovered that such headers are more l ikely to be in an area of overlapping 
rules [17]. W h e n generating header trace, first, a random rule is selected. Then , values of 
ind iv idua l header fields are selected as either the smallest or the largest value of the range 
specified by the rule for a corresponding dimension. The trace generator from ClassBench 
also creates a variable number of copies of the created packet headers. The i r amount is 
sampled from Pareto dis t r ibut ion wi th two input parameters. 

This version was recreated and extended to work wi th OpenF low 1.0.0 as a part of this 
thesis in order to experiment w i th it and use it as a benchmark for future versions. It was 
discovered that the Corners version of the generator does not provide any better coverage 
of overlaps or regions than the naive version as can be seen i n Figure 5.1, which shows 
comparison of coverage of the IPv4 5-tuple rule set by those two versions. The results were 
nearly the same for a l l tested rule sets. It is no surprise when it comes to prefixes, since 
each rule is either a subset/superset of another one, or it does not overlap at a l l . The only 
improvement that corners provide is that when a header is generated based on a rule that 
is a superset of another rule, the header is more likely to not belong to the inner rule. 
Experiments have shown that this is not enough to make a noticeable difference. 

Where an improvement of coverage could have been expected, but d id not happen, is 
the case of IPv4 5-tuples. This is exactly what the original ClassBench worked wi th . It is 
possible that the characteristics of used rule sets have changed since then i n such a way that 
this approach is no longer effective. Table 5.2 shows results of some of the experiments. 

The results of testing the Corners version of the generator using OpenFlow are shown 
in Table 5.3. OpenF low rules contain a large number of wildcards. Those are the main 
contributors to overlaps. Choosing only the most extreme values of a field can actually 
be counterproductive, as the absolute m i n i m u m and m a x i m u m values of specific fields are 
rarely used, but end up i n a generated packet header every t ime a rule containing a wi ldcard 
is used. Overa l l the results are nearly identical w i th the naive version of the generator. 
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Figure 5.1: Coverage of ind iv idua l rules, overlaps and regions of IPv4 5-tuple rule set by 
naive and Corners versions of the generator. 

Number of headers 10 100 1000 2 000 5 000 
Rule coverage [%] 0,97 9,46 63,50 86,39 99,34 
Overlap coverage [%] 0,18 1,12 8,89 12,11 14,07 
Region coverage [%] 0,77 7,30 49,41 67,23 77,34 

Table 5.2: Results of Corners version experiments using IPv4 5-tuple rule set w i t h 1000 
rules. 

5.3 Prevent Rule Reusage 

The idea behind this version is to keep track of the rules that have already been used to 
generate a header and to not reuse them unt i l a certain percentage of a l l rules had been 
used. F r o m the concept, it is clear that this approach only guarantees a good coverage 
of ind iv idua l rules, but not overlaps. Therefore, a proper coverage of regions is achieved 
only if a given rule set contains a smal l amount of overlaps. After some testing it was 
determined that ninety percent is a good amount to use before rules are allowed to be 
reused. It guarantees a decent amount of coverage and it does not hinder performance. 

Nearly perfect rule coverage could be achieved by going through the rules i n some orderly 
manner, such as from the first to the last, but that would introduce unwanted regularity 
into the process. It is possible to get around this problem by removing the element of order 
from the process. Fol lowing version of the generator, Prevent Rule Reusage 2, goes through 
the whole rule set i n a random order. There is a reason why the coverage is s t i l l only nearly 

Number of headers 10 100 1000 2 000 5 000 
Rule coverage [%] 1,00 9,55 63,14 86,54 99,36 
Overlap coverage [%] 0,00 0,00 0,00 0,00 0,00 
Region coverage [%] 0,02 0,23 1,51 2,07 2,38 

Table 5.3: Results of Corners version experiments using OpenFlow rule set w i t h 1 000 rules. 

29 



perfect. It is because of situations when one rule is a subset of another. In such cases, it 
is possible that the header generated based on the superset rule w i l l actually belong to the 
subset rule. A s a result, the superset rule w i l l not be covered even though a header was 
created based on it. 

5.4 Smart Random 

Previously mentioned method is useful for covering ind iv idua l rules, which i n itself is not 
a very complicated problem. The real issue is achieving a high degree of overlap coverage 
wi th reasonable performance demands. One of the first ideas to achieve that was to keep 
the random system, but also exploit sizes of different rules. Larger rules should, i n theory, 
be involved i n more overlaps than the smaller ones, because they s imply take up more 
space. Us ing larger rules more often to generate headers should then lead to greater overlap 
coverage. 

The Size of a rule can be defined as the number of possible header field combinations 
that satisfy the rule's conditions. Calcula t ing the exact value is not necessary to sort the 
rules by size though. It is satisfactory to count how many wildcards there are i n each rule 
and calculate the span of ranges for IP prefixes and also port numbers in case of 5-tuples. 
Remaining conditions are defined as a single value and therefore not relevant i n the sorting 
process. 

Different levels of preference of the larger rules have been experimented wi th , in both 
the frequency of preference and the por t ion of rules to be preferred. Nevertheless, none of 
the various setups lead to any significant improvement of overlap coverage. 

Further inspection of various rule sets revealed that overlaps can be as smal l as a single 
value, meaning that the rules which form them intersect in a single point. Th is happens, 
for example, when two rules differ in just two conditions, where the first condit ion is a 
wi ldcard i n one rule and a specific value i n the other rule, and vice versa for the second 
condit ion. Th is si tuation is more common for OpenF low rule sets, which contain many 
wildcards. A s an attempt to tackle this, the next approach was to keep a por t ion of values 
from already generated headers and then reuse them i n another header. O n l y values that 
originated from a non-wildcard field were kept. They were saved in a list and sometimes 
used again i n another header if the alternative was to generate a random value, i.e., when 
a wi ldcard was present. 

This quickly turned out to be insufficient. Due to the low probabil i ty of reusing the 
fitt ing value at the right time, the improvement of overlap coverage was noticeable, but 
meager. Creat ing a generator capable of creating headers that would cover even such 
overlaps without a full analysis of the rule set requires a more complex approach, certainly 
much more complex than randomly selecting values. Yet , it is necessary to not introduce 
too much order into the process, which would create a bias that could skew testing of 
classification algorithms in a certain direction. 

Smart R a n d o m 2.0 

Generating the values for each header based on a rule seemed to be the right way to go 
from the beginning. It guarantees that the header w i l l always match at least one rule and 
no downsides of using it manifested themselves. Further development was mostly based 
around this original idea. 
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1: function T R A C E G E N ( T O ^ C S , size, par_a,par_b) 
2: wc_masks <— G E N E R A T E M A S K S (ritZes) 

3: search_limit <— M I N ( 1 0 0 0 , size) 
4: while gen_num < size do 
5: prim_i <— G E T R A N D O M R U L E ( ™ ^ C , S ) 

6: prim_rule <— rules\prim_i] 
7: sec_i <— S E L S E C O N D A R Y ( p r i m i, rules, search_limit, wc_masks) 
8: sec_rule <— rules[sec_i] 
9: header <— G E N H E A D E R ( p r i m _ r a ^ e , sec_rule) 

10: gen_num + = P R I N T H E A D E R S {header, par a, par b) 

11: end function 

Figure 5.2: Pseudocode of the Smart R a n d o m 2.0 header trace generator. 

It is possible to use more than one rule at a t ime to generate a header. In case of this 
version, there is one extra rule used. The pseudocode of the Smart R a n d o m 2.0 header trace 
generator is shown i n Figure 5.2. For each rule a mask is created, where each condit ion 
is represented by zero i f it is a wi ldcard or one in the opposite case (line 2). The rest of 
the process is repeated un t i l the generated trace reaches the specified size. Fi rs t , a random 
pr imary rule is selected (line 5). A secondary rule is also selected at random, but i f it does 
not meet certain conditions in regards to the pr imary rule, another random rule is selected 
(line 7). Th is could go on forever, as there might be no rules to satisfy the conditions, 
which is why an upper l imi t must exist. Th is is called the search l imi t . After some amount 
of experimentation, the search l imi t is set to one thousand, or the number of rules in a rule 
set, for rule sets smaller than a thousand (line 3 ) . 

The conditions that must be satisfied play a key role i n the whole process. The first 
condit ion that has to be met by the secondary rule is that the logical operation and, between 
its mask and the pr imary rule's mask, results i n a mask that consists of a m a x i m u m amount 
of ones equal to three for 5-tuples and four for OpenFlow. In other words, the number 
of fields where both rules have a non-wildcard value is l imi ted to a max imum, which, i f 
exceeded, results in not using this secondary rule candidate. Th i s serves as a quick filter 
of rules that have an extremely low chance of overlapping wi th the pr imary rule. If a rule 
passes this test, it is checked whether the two rules overlap (masks are used to check only the 
necessary fields). If the secondary rule overlaps wi th the pr imary rule, a fi t t ing secondary 
rule is found. If a suitable secondary rule is not found in the m a x i m u m search l imi t of 
attempts, then the last failed candidate is used. A header is then generated employing 
both rules (line 9). The pr imary rule is used first. A l l of its non-wildcard conditions are 
applied. For the rest of them, values from the secondary rule are used. If a given field 
is wi ldcard for both rules, then a random value is generated. The header is then sent to 
output. M u l t i p l e copies of it may be inserted into the trace, where the number of repetitions 
is sampled form a Pareto dis t r ibut ion taken from the original ClassBench (line 1 0 ) . 

Smart R a n d o m 3.0 

If there were some universally shared properties between rules that form overlaps, they 
could be used to guess which rules overlap. Then, using such rules more frequently would 
lead to better region coverage. In search of such properties, it was discovered that there 
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are not any, but the rules that are a part of at least one overlap, often participate i n more 
of them. 

Version 3.0 builds on the previous one. It does not change how secondary rule is selected. 
Instead, improvements target the selection of the pr imary rule. A new parameter called 
overlap focus is introduced. It determines how often should a pr imary rule be selected from 
rules that are known to overlap instead of being chosen completely at random. 

function T R A C E G E N ( T O ^ C S , size, overlap_focus,par_a,par_b) 
overlap_indices <— 0 
wc_masks <— G E N E R A T E M A S K S (ritZes) 

search_limit <— M I N ( 1 0 0 0 , size) 
while gen_num < size do 

prim_i <— SELPRIMARY(rules, overlap_focus,overlap_indices) 
prim_rule <— rules[prim_i] 
sec_i <— S E L S E C O N D A R Y ( p r i m i, rules, search_limit, wc_masks) 
sec_rule <— rules[sec_i] 
header <— G E N H E A D E R ( p r i m _ r a ^ e , sec_rule) 
gen_num + = PRiNTHEADERS(/iea<ier, par a, par b) 
if OVERLAP (prim_rule, sec_rule) then 

overlap_i <— overlap_i U {prim_i, sec_i} 

end function 

Figure 5.3: Pseudocode of the Smart R a n d o m 3.0 header trace generator. 

The pseudocode of this version of the generator is shown in Figure 5.3. Overlapping 
rules are discovered during the process of selecting a suitable secondary rule (line 8) and 
their indices are added to the set of indices of known overlapping rules. The overlap focus 
is a floating point number ranging from 0 to 0.9. If not specified, the default value of 0.5 is 
used. M u l t i p l i e d by one hundred, the overlap focus direct ly corresponds to the percentage 
of how often the pr imary rule is chosen from the list of known overlapping rules. 

Experiments regarding the overlap focus were mostly done wi th the 5-tuple rule set 
acl4 gen 1000. Figure 5.4 shows effects of varying overlap focus on overlap coverage for 
several trace sizes. Note that the m a x i m u m overlap focus is very useful when not too 
many headers are generated, but things begin to change when there are about as many 
headers as there are rules in the used rule set. Eventually, a higher overlap focus becomes 
counterproductive, as can be seen i n the figure. This happens because the generator ends 
up rediscovering the same overlaps instead of searching for those that are made out of rules 
that have not been found to overlap yet. It is clear that there is no ul t imately best value of 
the overlap focus. It depends on the situation, but overall, the value 0.5 is a good middle-
of-the-road solution, which is why it was selected as the default value. Simi lar experiments 
wi th OpenF low rule sets d id not br ing any useful results, because almost a l l of their rules 
participate in overlaps. For such rule sets, this version is effectively not different from the 
previous one. 

Smart R a n d o m 3.1 

Previously mentioned versions struggle wi th covering overlaps that are made up of more 
than just two rules. This is especially noticeable for OpenF low rule sets, where such overlaps 
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Figure 5.4: Overlap coverage of IPv4 5-tuples using Smart R a n d o m 3.0 wi th various overlap 
focus. 

commonly appear. Version 3.1 set out to address this. It s t r ic t ly focuses on overlaps and 
to a certain extent neglects covering ind iv idua l rules. 

W h e n a pair of overlapping pr imary and secondary rules is found, it is not only used to 
generate a header (and its copies), as described in section 5.4, but the rules are also merged 
to create a new temporary rule. Merging the rules creates a rule describing their overlap. 
This temporary rule is used as a new pr imary rule and a fi t t ing secondary rule is looked for 
in the same manner as previously. If it is found, then a combination of three overlapping 
rules is discovered and used to create another header and, optionally, its copies. The overlap 
focus has to be set to at least 0.2 for this to happen. This process is not repeated again, 
even though it could continue forever, or at least un t i l no more suitable rule pairs could be 
found. Through experiments, it was discovered that repeating it does not lead to better 
overlap coverage. It is possible that it could be advantageous for some other, specific rule 
sets, but not in general. 

Comparison of overlap coverage of the OpenFlow rule set o f l _ g e n _ b _ x l O O O by different 
Smart R a n d o m versions can be seen i n Figure 5.5. A s noted earlier, version 3.0 does not 
bring any improvement over 2.0 due to the nature of the rule set. The graph clearly 
demonstrates how those two versions "cap" when a certain amount of headers is generated. 
Further increases i n trace size lead to very l i t t le increase i n overlap coverage. Version 3.1, 
on the other hand, keeps improving. Used trace sizes were chosen based on the to ta l number 
of distinct regions present i n this rule set, which is 41 800. The overlap focus was set to its 
default value of 0.5 for these and a l l the following experiments. Parameters of the Pareto 
dis tr ibut ion are set to not create any redundant headers. 

The corners method of packet header generation, proposed by the original ClassBench, 
has zero percent coverage of overlaps i n the OpenFlow rule set. Tha t method was designed 
for IPv4 5-tuples and not OpenF low rules, as OpenF low d id not even exist back then. 

The results for 5-tuples are shown i n Figure 5.6. Even there, generating corner values 
provides significantly worse overlap coverage than the other versions. Smart R a n d o m 3.0 
and 3.1 achieve similar results, because the rule set does not contain that many overlaps, 
especially those that are formed by more than two rules. 
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Figure 5.5: Overlap coverage of an OpenFlow rule set using various versions of the generator. 

90 j 

80 -

70 

„ 60 

O) 50 -

g 40 -
O 

° 30 

20 

10 

0 

• Corners Version 

• Smart Random 2.0 

• Smart Random 3.0 

• Smart Random 3.1 

+ 
10 50 100 200 

Header trace size relative to rule set size [%] 

Figure 5.6: Overlap coverage of IPv4 5-tuples using various versions of the generator. 

5.5 Combined Version 

The overarching goal is to provide the best coverage of a l l regions. Ideas described i n sec­
t ion 5.3 lead to a good coverage of ind iv idua l rules, while methods presented i n section 5.4 
focus on achieving the best overlap coverage. Natural ly , the next step was to take the 
advantages of both approaches and combine them together. 

The combined version of the trace generator first applies principles from the Prevent 
Rule Reusage 2 generator. It randomly iterates over the rules provided as input and gen­
erates a matching header (and its copies) for each of them, or stops earlier i f the required 
trace size is reached. If the required trace size has not been reached, then the rest of the 
headers is generated using Smart R a n d o m 3.1. 

34 



100 T 

1 10 50 100 200 500 

Header trace size relative to rule set size [%] 

Figure 5.7: Region coverage of IPv4 5-tuples using different versions of the generator. 

Comparison of region coverage of the IPv4 5-tuple rule set acl4_gen 1000 achieved by 
different versions of the generator is shown i n Figure 5.7. The Combined version provides 
the best region coverage for a l l trace sizes. Smart R a n d o m 3.1 trails behind the other 
versions at first, as it focuses on overlaps and struggles to cover ind iv idua l rules. A t header 
trace size equal to 500 % of the rule set's size, a l l versions, except Smart R a n d o m 3.1, 
have covered almost a l l ind iv idua l rules. The Corners version and Prevent Rule Reusage 2 
provide poor coverage of overlaps and therefore also worse coverage of a l l regions than the 
Combined version. 

Experiments w i th OpenF low rule sets resulted i n the greatest disparities between dif­
ferent generators. This is because a l l versions of the generator that use only one rule's 
conditions to create a header provide extremely poor coverage of overlaps, often none at 
a l l . Figure 5.8 shows region coverage of the OpenFlow rule set o f l _ g e n _ b _ x l O O O by dif­
ferent generator versions. The number of generated headers was chosen based on the total 
number of regions present i n the rule set. The Corners version and Prevent Rule Reusage 2 
are not able to cover any overlaps, but they do cover a l l ind iv idua l rules, even wi th just 
41 800 headers, which results i n region coverage of 2,39 %. Smart R a n d o m 3.1 covers only 
8.6 % of the ind iv idua l rules when generating 418 000 headers. Tha t is what makes it lack 
behind the Combined version which provides the best overall coverage. 

Since the IPv6 prefix rule set 2015_r rc00_ ipv6_gen_b_10000 contains only a single 
overlap, the set of distinct regions is almost equal to the set of ind iv idua l rules. Tha t results 
in the difference between region coverage by the different versions being rather small , as 
shown i n Figure 5.9. The header trace size equal to 500 % of the rule set's size is enough 
to almost always fully cover regions for a l l versions. In case of Prevent Rule Reusage 2, 
and thus also for the Combined version, generating as many headers as there are rules is 
usually enough to cover a l l regions. 
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Figure 5.8: Region coverage of the OpenFlow rule set using different versions of the gener­
ator. 
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Figure 5.9: Region coverage of the IPv6 prefix rule set using different versions of the 
generator. 

Results of region coverage for IPv4 prefixes are shown i n Figure 5.10. They are nearly 
identical to those of IPv6 prefixes. The 2015_r rc00_ipv4_gen_b_100000 rule set contains 
more overlaps. Due to their nature, that was explained earlier, it is more l ikely for this 
rule set that a header generated based on a superset rule w i l l actually belong to the subset 
rule. Over the 10 runs, this resulted i n a few hundredths of percent lower coverage than 
was achieved wi th the IPv6 prefixes. 
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Figure 5.10: Region coverage of the I P v 4 prefix rule set using different versions of the 
generator. 

5.6 Performance 

The evaluation of trace generators' performance is based on two metrics: memory consump­
t ion and run t ime. R u n time can be used to calculate how many headers are generated 
per second, which allows for comparison of performance between rule sets of different sizes. 
Introducing a similar metric for memory consumption, such as headers per k B of memory, 
would not be useful, because memory consumption is not dependant on the size of the 
generated header trace. 

A l l performance experiments were conducted on a Scientific L i n u x server w i th Intel 
X e o n E5-2670 processing unit running at a base frequency of 2,6 G H z . A tota l of about 
300 M B of R A M were available for the experiments. Just like the experiments w i th rule set 
coverage, a l l experiments were run ten times and the provided values are averages of those 
runs. 

Table 5.4 shows the number of headers that each version generated per second for 
different input rule sets. In these experiments, the generator was instructed to create a 
header trace ten times larger than the input rule set's size and to not create any redundant 
headers (which would lead to shorter execution times). Used rule sets are presented in 
section 5.1. Results for the two OpenFlow rule sets were almost identical . To prevent 
repetition, only results obtained using the o f l _ g e n _ b _ 1 0 0 0 0 rule set are displayed i n the 
table. 

The advanced versions of the generator that provide very good coverage are, as expected, 
significantly slower than the simple generators. Smart R a n d o m 3.0 is faster than Smart 
R a n d o m 2.0, most l ikely because it randomly selects some rules from the list of known 
overlapping rules, which is smaller than the list of a l l rules. Th is appears to be the case, 
because 3.0 is evidently faster only when the input rule set contains some overlaps, but 
at the same t ime not a l l rules participate i n them. Prevent Rule Reusage 2 is faster 
than its previous version, because it prepares the random order i n which it uses rules to 
generate headers and then continues generating completely randomly. The previous version 
is selecting rules completely at random from the start, but un t i l a certain point outputs 
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5-tuples OpenF low IPv4 prefixes IPv6 prefixes 
Naive Version 24 969 18 947 27510 28130 
Corners Version 27 964 18 432 29 004 28418 
Prevent Rule Reusage 12 305 5 276 870 5 043 
Prevent Rule Reusage 2 34 438 19 999 34 005 30 553 
Smart Random 2 . 0 264 1032 126 146 
Smart Random 3 .0 335 1018 132 147 
Smart Random 3 .1 73 124 138 145 
Combined Version 80 138 131 156 

Table 5.4: Number of generated headers per second by different generators. 

only the headers generated based on a rule that has not yet been used. The Combined 
version is slightly faster than Smart R a n d o m 3.1, because it generates some headers using 
the much faster Prevent Rule Reusage 2. 

Get t ing a high number of headers generated per second was not the goal of this thesis. 
Instead, it was important to achieve the best possible coverage of a l l present regions, while 
keeping the performance at a level which allows even common machines to generate a header 
trace in a reasonable t ime. This means that the actual number of headers per second is 
not that important , but the t ime complexity of the a lgor i thm is. Smart R a n d o m 3.1, 
which is also used in the Combined Version, is the slowest of the algorithms. It is s t i l l 
satisfactory, because it has a linear t ime complexity O(n) , where n is the required trace 
size. The complexity is linear due to the fact that the i teration of the main loop has a 
constant worst-case t ime complexity and it is repeated at most once per each generated 
header. Th is has been confirmed through experiments. 

5-tuples OpenF low IPv6 prefixes 
realfkB] vir t [kB] real [kB] vir t [kB] real [kB] vir t [kB] 

Naive Version 151 800 9 667 161 948 19 844 164 240 22 098 
Corners Version 151 800 9 668 161 948 19 830 164 240 21 984 
Prevent Rule Reusage 152 060 9 928 163 740 21 700 166 774 24 699 
Prevent Rule Reusage 2 152 188 9 978 164 680 22 449 167 952 25 844 
Smart Random 2 . 0 152 056 9 945 163 970 21 930 165 264 23 250 
Smart Random 3 .0 151 800 9 656 163 919 21 876 165 264 23 258 
Smart Random 3 .1 151 800 9 660 163 484 21 428 165 264 23 250 
Combined Version 152 364 10156 165 832 23 684 168 636 26 496 

Table 5.5: Memory consumption of different generators. 

Memory consumption of a l l versions of the generator is mostly driven by the size of a 
provided rule set. Peak values of real and v i r tua l memory were measured. The reference 
machine, on which a l l performance tests were conducted, has insufficient main memory 
for the largest used rule set (IPv4 prefixes 2015_r rc00_ipv4_gen_b_100000) . Tha t lead 
to extensive v i r tua l memory usage and, therefore, completely meaningless results when 
it comes to observing real memory consumption. Th is rule set is thus not included in 
Table 5.5, which shows real and v i r tua l memory consumption of each generator's version. 
The more sophisticated versions have slightly higher demands on memory due to some extra 
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variables that they use. The 5-tuple rule set consists of 1 000 rules and therefore requires 
less memory than the other two rule sets, which have 10 000 rules. 

5.7 Possible Future Improvements 

The Combined version has proven itself to be the most useful. Therefore, a l l future work 
would focus on it , unless an overall better a lgori thm would be found. 

W h e n wr i t ing the code of the generator, it was important to implement proposed al­
gorithms quickly and without errors, so that they could be tested and evaluated as fast as 
possible. T i m e played a key role, because the results of experiments w i th each algori thm 
were needed before I could come up w i t h new algorithms or improve the existing ones. 
Dur ing development, effectiveness of the code was secondary. For a l l of those reasons I 
decided to implement the algorithms in P y t h o n . Since the code is finished now, it could 
be further opt imized to be more effective. More importantly, it could be rewrit ten in a 
different language, like C + + , which should lead to faster execution speed and significantly 
more efficient memory management. 

Advancing the code itself is not the only way to improve the generator. Currently, 
the execution t ime mostly hinges on the search limit constant. Decreasing this constant 
would lead to better execution time, but worse region coverage. The worsening of coverage 
is largely dependent on the rule set. W h i l e the current default value of search limit was 
chosen based on experiments w i t h various values, it was selected rather conservatively in 
regard to preserving a high coverage. F iner tuning of the constant could potential ly achieve 
a better compromise between execution t ime and coverage. Alternat ively, it could be turned 
into a parameter of the generator and different users could use values that work best for 
them. 

Similar balancing act could be done wi th in the function that selects a secondary rule. 
Specifically, altering the m a x i m u m l imi t of fields where pr imary and secondary rules must 
have a non-wildcard value for the secondary rule to be selected. Just like the search limit, 
the current l imi t has been chosen based on a series of experiments w i th the main motivat ion 
to improve execution time, but to not hinder region coverage. Decreasing the l imi t would 
lead to faster run time, but worse coverage. Another possibil i ty is to remove this condit ion 
entirely, which would guarantee the best possible coverage wi th this algori thm, but also the 
worst execution time. Depending on the circumstances, bo th approaches could be seen as 
improvements. 

Last but not least, it is also possible to achieve better performance without sacrificing 
coverage through parallel ization. The entire main loop of the Combined version could be 
fully parallelized. If the generator was rewrit ten in C + + , I believe that it would be possible 
to create an effective parallel solution in a short period of t ime by using O p e n M P . 
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Chapter 6 

Conclusion 

Packet classification is one of the most common operations i n computer networks. It is often 
a performance bottleneck i n routers. Creat ion of new, more efficient packet classification 
algorithms is being slowed down by a lack of proper rule sets and packets to test wi th . 

ClassBench-ng is a synthetic rule set generating tool capable of generating realistic IPv4 , 
IPv6 and OpenFlow 1.0.0 rules. However, there is no easy way to obtain packet header 
traces that are also needed for proper evaluation of the classification algorithms and devices 
that employ them. M a i n goal of this thesis is creation of a tool that would generate such 
header traces based on rules provided by ClassBench-ng. 

A n ideal header trace for such testing should contain at least one header values combi­
nation for every rule and each overlap of rules i n a provided rule set. It is possible to achieve 
this, but only for rule sets up to a certain size. Memory consumption and computat ional 
demands become unfeasible for larger rule sets or rule sets containing many overlaps. The 
opposite approach is to generate the header values randomly, which is guaranteed to be very 
fast, but the resulting coverage of rules and their overlaps is very poor. The core of my 
work was to find a good compromise between those two approaches, that is, a compromise 
between performance and coverage. 

A s a part of this thesis I devised several different approaches to header trace generation, 
implemented them, and evaluated their properties. The evaluation was performed using a 
tool I had made specifically for that purpose. Creat ion of the different generator versions 
was an iterative process, where obtained results usually determined the direction of further 
improvements. F i n a l version, the Combined version, achieved the best properties of a l l the 
implemented generators. It combines methods from two previous versions. 

The two main contributions of this thesis are the evaluation tool and the final version 
of the generator. 

There was no specific target value that the thesis should reach. Instead, the Corners 
version served as a benchmark which should be surpassed i n terms of coverage, as it is the 
only previously used method of this k ind of header trace generation. Tha t was successfully 
achieved. Coverage provided by the final version of my generator is significantly better 
compared to the Corners version. The difference is most severe wi th OpenFlow rule sets. 
Performance-wise, the Combined version generator is considerably slower, but it has linear 
t ime complexity, which is satisfactory. Memory consumption of the two is comparable. 
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