Česká zemědělská univerzita v Praze Technická fakulta Katedra technologických zařízení staveb

Analýza zpoždění datové komunikace a jeho závislosti na velikosti dat a komunikačním médiu

Bakalářská práce

Autor: Marek Chmelík Vedoucí práce: Ing. Jan Hart, PhD.

PRAHA

2020

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE

Technická fakulta

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Marek Chmelík

Zemědělské inženýrství Informační a řídicí technika v agropotravinářském komplexu

Název práce

Analýza zpoždění datové komunikace a jeho závislosti na velikosti dat a komunikačním médiu

Název anglicky

Analysis of the data communication delay and its dependence on data size and communication medium

Cíle práce

Bakalářská práce je tematicky zaměřena na problematiku datových přenosů a latence vzniklé v závislosti na objemu přenášených dat a přenosovém médiu. Hlavním cílem je provést popis datových sítí s testováním jejich latence.

Dílčí cíle bakalářské práce jsou:

- vytvořit přehled řešené problematiky,
- definovat základní druhy sítí a přenosových médií,
- provést testování latence dat prostřednictvím různých přenosových médií.

Metodika

Metodika řešené problematiky bakalářské práce je založena na studiu a analýzách odborných informačních zdrojů. Vlastní řešení je realizováno formou vyhodnocení jednotlivých testů zaměřených na latenci dat. Na základě rozboru teoretických poznatků a výsledků hodnocení budou formulovány závěry bakalářské práce.

Doporučený rozsah práce

30 až 40 stran textu včetně obrázků, grafů a tabulek

Klíčová slova

latence, velkokapacitní data, počítačové sítě

Doporučené zdroje informací

BEZPALEC, P. – BOHÁČ, L. – ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. ELEKTROTECHNICKÁ FAKULTA. Datové sítě : přednášky. V Praze: České vysoké učení technické, 2014. ISBN 978-80-01-04694-4.

- *CONNECT! : odborný měsíčník pro komunikace, počítačové sítě a otevřené systémy.* Praha: ISSN 1211-3085.
- HEŘMAN, J., et al.: Elektrotechnické a telekomunikační instalace. Praha: Verlag Dashöfer, 2008. ISSN 1803-0475.
- HORÁK, J. KERŠLÁGER, M. *Počítačové sítě pro začínající správce.* Brno: Computer Press, 2003. ISBN 80-7226-876-7.

KAUFFELS, F. Osobní počítače a lokální sítě : základy vytváření sítí : struktura a činnost lokálních sítí : LAN – software IBM, 3COM, Microsoft, Novell, Banyan pod DOSem, OS/2 a Unix : testy LAN. Brno: Unis, 1992.

PALEČEK, P. – BENEŠ, P. – VRÁTIL, Z. IBM PC XT + AT ; lokální počítačové sítě. Sokolov: Gethon, 1992.

- PENIAK, P. KÁLLAY, F. *Počítačové sítě LAN/MAN/WAN a jejich aplikace.* Praha: Grada, 2003. ISBN 80-247-0545-1.
- PUŽMAN, J. KUBÍN, B. Veřejné datové sítě. Praha: Nadas, 1989. ISBN 80-7030-033-7.
- PUŽMANOVÁ, R. *Moderní komunikační sítě od A do Z : [technologie pro datovou, hlasovou i multimediální komunikaci].* Brno: Computer Press, 2006. ISBN 80-251-1278-0.
- ROSS, KW. KUROSE, JF. Počítačové sítě. Brno: Computer Press, 2014. ISBN 978-80-251-3825-0.
- SCHATT, S. RUTRLE, T. Počítačové sítě LAN od A do Z. Praha: Grada, 1994. ISBN 80-85623-76-5.

STAUDEK, J. – MOTYČKOVÁ, L. Počítačové sítě. Praha: Kancelářské stroje, 1990. ISBN 80-7018-005-6.

Předběžný termín obhajoby 2019/2020 LS – TF

Vedoucí práce

Ing. Jan Hart, Ph.D.

Garantující pracoviště

Katedra technologických zařízení staveb

Elektronicky schváleno dne 25. 1. 2019

doc. Ing. Jan Malaťák, Ph.D. Vedoucí katedry Elektronicky schváleno dne 15. 2. 2019

doc. Ing. Jiří Mašek, Ph.D. Děkan

V Praze dne 08. 04. 2020

Prohlášení

"Prohlašuji, že jsem bakalářskou práci na téma: "Analýza zpoždění datové komunikace a jeho závislosti na velikosti dat a komunikačním médiu" vypracoval samostatně a použil jen pramenů, které cituji a uvádím v seznamu použitých zdrojů.

Jsem si vědom, že odevzdáním bakalářské práce souhlasím s jejím zveřejněním dle zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů, ve znění pozdějších předpisů, a to i bez ohledu na výsledek její obhajoby. Jsem si vědom, že moje bakalářská práce bude uložena v elektronické podobě v univerzitní databázi a bude veřejně přístupná k nahlédnutí.

Jsem si vědom, že na moji bakalářskou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů, ve znění pozdějších předpisů, především ustanovení § 35 odst. 3 tohoto zákona, tj. o užití tohoto díla."

Marek Chulch

Marek CHMELÍK

Poděkování

Rád bych poděkoval Ing. Janu Hartovi, PhD., za podnětné rady, odbornou pomoc a strávený čas při zpracování této bakalářské práce v tak těžkých časech jako je rok 2020. Dále bych rád poděkoval mjr. Ing. Ivovi Bártovi za propůjčení materiálu k sestavení testovacího polygonu a mému kolegovi nrtm. Petru Karlíkovi za spolupráci během vlastního měření.

Abstrakt

Abstrakt: Tato bakalářská práce se zaměřuje na analýzu zpoždění datové komunikace a jeho závislosti na velikosti dat a komunikačním médiu. Je zde popis základního dělení počítačových sítí a jejich nejčastější použití. Dále se zaměřuje na popis jednotlivých vlastností, výhod a nevýhod přenosových médií, a to zejména kroucené dvojlinky, jednovidového a mnohovidového optického kabelu a bezdrátových médií Je zde uveden i stručný popis protokol TCP a jeho vlivu na celkové zpoždění. V praktické části jsou popsány teoretické předpoklady vlastního měření, postup sestavení, konfigurace a měření testovacích okruhů, krátké představení použitých programů. Každý testovací okruh byl testován z pohledu konektivity a byla proměřena jeho maximální propustnost. Následně byl proveden vlastní přenos souborů v několika různých velikostech, a to pomocí protokolu FTP. Naměřené hodnoty byly zaznamenány, vyhodnoceny a zpracovány do grafu.

Klíčová slova: latence, velkokapacitní data, počítačové sítě

Analysis of the data communication delay and its dependence on data size and communication medium

Summary: This bachelor's thesis is focused on the analysis of data communication delay and its dependence on data size and communication medium. You could find despcription of basic types of computer networks and their usage in this thesis, and also description of individual features, advantages and disadvantages of transmission media, especially twisted pair, single-mode and multi-mode optical cable and wireless media. The practical part describes the theoretical assumptions of measurement, the procedure of setting up, configuring and measuring test circuits, and brief description of the programs used. Each test circuit was tested for connectivity and its maximum throughput was measured. Files transfer was performed in different sizes using FTP protocol. The measured values were recorded, evaluated and processed into a graph.

Keywords: latency, mass data, computer networks

Obsah

1.	ÚV0	D1
2.	CÍL	PRÁCE2
3.	MET	CODIKA PRÁCE
4.	PŘE	HLED ŘEŠENÉ PROBLEMATIKY4
	4.1.	ROZDĚLENÍ SÍTÍ
	4.1.1	. Lokální sítě – LAN
	4.1.2	. Metropolitní sítě – MAN
	4.1.3	. Rozsáhlé sítě – WAN
	4.2.	PŘENOSOVÁ MÉDIA
	4.2.1	. Vlastnosti přenosových médií7
	4.2.2	. Metalické kabely9
	4.2.3	. Optické kabely
	4.2.4	. Bezdrátová média
	4.3.	ZPOŽDĚNÍ A PROTOKOL TCP14
	4.3.1	. Zpoždění
	4.3.2	. Protokol TCP
5.	VLA	STNÍ ZPRACOVÁNÍ
	5.1.	SESTAVENÍ TESTOVACÍHO POLYGONU
	5.2.	SESTAVENÍ TESTOVACÍHO OKRUHU A KONFIGURACE PORTŮ
	5.3.	NASTAVENÍ A SPUŠTĚNÍ FTP SERVERU
	5.4.	VYTVOŘENÍ TESTOVACÍCH SOUBORŮ
	5.5.	PŘIPOJENÍ NA FTP SERVER POMOCÍ KLIENTA
	5.6.	VLASTNÍ MĚŘENÍ

6.	ZHODNOCENÍ VÝSLEDKŮ	28
7.	ZÁVĚR	30
8.	SEZNAM POUŽITÉ LITERATURY	I
9.	SEZNAM OBRÁZKŮ	. III

1. Úvod

S příchodem čtvrté průmyslové revoluce (Průmysl 4.0) začíná být kladen čím dál tím větší důraz na informační technologie. Tyto technologie slibují do budoucna časovou a finanční úsporu, menší podíl lidské práce a zvýšení produktivity a efektivnosti. To bude mít za následek vyšší nároky na bezpečnost a spolehlivost informačních systémů. Aby tyto systémy mohly splňovat všechny tyto nároky, je potřeba aby mezi sebou jednotlivé části těchto systému komunikovaly na rychlé, spolehlivé síti a dokázaly přenášet velké objemy dat s co nejnižší odezvou.

Spolehlivá síť se definuje jako síť, která dokáže zabezpečit přenos dat od jednoho komunikačního uzlu k druhému bez jejich ztráty či poškození přenášených dat, nebo je schopná si s těmito problémy poradit například znovu odesláním poškozených či ztracených dat. V každém případě se data dostanou od odesílatele k příjemci. K tomu je zapotřebí přenosový protokol se spojením jako je protokol TCP.

Rychlou sítí se rozumí síť, která přenese data od odesílatele k příjemci v co nejkratším možném čase. Pokud by docházelo k velkým prodlevám v komunikaci, hrozilo by nebezpečí, že jednotlivé části systému nedokáží v čas reagovat na vzniklé krizové situace. Na tento čas může mít vliv spousty faktorů, jako je druh přenosového média, nebo opravné mechanizmy přenosového protokolu, které mají za úkol zaručit spolehlivost přenosu.

2. Cíl práce

Cílem této bakalářské práce je zaměřit se na problematiku zpoždění datových přenosů v závislosti na velikosti přenášených dat a přenosovém médiu. Hlavní cíle lze rozdělit do několika skupin a to následovně:

- Vytvořit přehled řešené problematiky
- Definovat základní druhy sítí a přenosových médií
- Navrhnout schéma a zapojení testovacího polygonu
- Sestavit testovací polygon
- Provést testování latence dat prostřednictvím různých přenosových médií
- Provést měření celkového zpoždění pro jednotlivá média v závislosti na velikosti přenášených dat
- Zhodnotit výsledky měření a jejich následné zpracování

3. Metodika práce

Metodika řešené problematiky bakalářské práce je založena na studiu a analýzách odborných informačních zdrojů. Vlastní řešení je realizováno formou měření celkového průměrného zpoždění na jednotlivých přenosových medií v závislosti na velikosti přenášených dat, a to za pomoci programu ping, respektive jeho celkových statistik. Simulace vlivu velikosti dat bude provedena postupným přenosem souborů s rostoucí velikostí. Budou zpracována tato přenosová média:

- Kroucená dvojlinka
- Jednovidový optický kabel
- Mnohovidový optický kabel

Měření proběhne na testovacím polygonu, který se bude skládat ze dvou počítačů, kdy jeden z počítačů bude v roli serveru a druhý v roli klienta, dvou přepínačů od firmy Cisco a testovacího okruhu, který se bude skládat z dvou SFP modulů (dle přenosového média) a měřeného přenosového média.

Do testovacího polygonu bude vloženo testované přenosové médium, provede se zkouška konektivity a celkové propustnosti bez zatížení linky. Provede se přenos jednotlivých souborů o velikostech 1, 2, 5, 7 GB pomocí protokolu FTP a zaznamenají se naměřené hodnoty. Na základě rozboru teoretických poznatků a výsledků naměřených hodnot budou formulovány závěry bakalářské práce.

4. Přehled řešené problematiky

Přenosová média se využívají v počítačových sítích k přenosu dat. Pro snadnější pochopení jejich aplikace se počítačové sítě dělí do několika skupin. Nejpoužívanějším dělením je dělení sítí podle fyzického tvaru na sítě LAN, MAN, WAN, ve které se vyskytují všechny nejčastěji používané druhy přenosových médií.

Přenosová média jsou volena na základě jejich vlastností, některé mají velký dosah, jiné zase mohou přenášet data vysokou rychlostí na kratší vzdálenosti. Dalším důležitým parametrem může být jejich cena.

Základní dělení přenosových médií:

- Metalická přenosová média
- Optická přenosová média
- Bezdrátová přenosová média

Přenos dat po přenosovém médiu neprobíhá okamžitě, ale s časovou prodlevou. Na tuto časovou prodlevu může mít vliv několik faktorů, jako je kvalit přenosového média či vlastnosti přenosového protokolu.

4.1. Rozdělení sítí

Počítačové sítě lze rozdělit do několika kategorií v závislosti na charakteristikách souvisejících s jejich administrací nebo řešením problémů. Můžeme je rozdělit do několika skupin například podle (1):

- Fyzického tvaru
- Metody administrace
- Síťového operačního systému
- Síťových protokolů
- Topologie
- Architektury

Nejpoužívanější dělení sítí je dle fyzického tvaru, což ve skutečnosti popisuje, jakou síť zahrnuje geografickou rozlohu, a s menší důležitostí, jak je síť celkově veliká. Při tomto pohledu rozdělíme sítě do těchto tří kategorií (1):

- Lokální sítě (LAN)
- Metropolitní sítě (MAN)
- Rozsáhlé sítě (WAN)

Jednotlivé kategorie se mohou rozdělit dle počtu připojených stanic a uživatelů, kde většinou platí, že sítě LAN jsou menší než MAN, a sítě MAN jsou zase menší než sítě WAN. Další odlišujícím faktorem může být i ekonomická stránka výstavby a provozu jednotlivých sítí. Zde by mělo platit, že je nákladnější výstavba a provoz sítí typu WAN než LAN. Nejdůležitějším faktorem však zůstává geografická rozloha, kterou síť pokrývá. (1)

4.1.1. Lokální sítě – LAN

Lokální sítě neboli Lokal Area Network – LAN, se skládají z koncových zařízení, jako jsou například uživatelské stanice, tiskárny, servery a síťová úložiště, která jsou mezi sebou propojena aktivními prvky a přenosovými médii – typicky pomocí strukturované kabeláže. V současné době se jako aktivní prvky pro LAN nejvíce používají přepínače, někde mohou být použity i rozbočovače, a jako přenosové medium se používá kroucená dvojlinka (pro propojení vzdálenějších aktivních prvků je nutné použít optické kabely) nebo bezdrátový přenos. (2) (3)

Sítě typu LAN se vyskytují na omezeném vyznačeném prostoru (v rámci jedné budovy, podniku – může být označováno jako Campus network), kde poskytují možnost všem uživatelům sdílet jednotlivé zdroje. Mohou být postaveny samostatně, nejčastěji jsou však připojeny pomocí směrovače do WAN. Příklad zapojení sítě LAN nám ukazuje Obrázek 1. (2)

Obrázek 1 - Schéma zapojení sítě LAN pomocí přepínače (1)

4.1.2. Metropolitní sítě – MAN

Metropolitní sítě – Metropolitan Area Network, někdy také označované jako městské sítě, vznikají propojením více LAN v rámci většího geografického celku (např. v rámci města). Jejím primárním účelem je propojení těchto sítí mezi sebou, ne však přístup do WAN. Rozlohou jsou větší než sítě LAN, ale menší než sítě WAN. K propojení jednotlivých LAN do MAN se nejčastěji používají optické kabely (podle vzdálenosti jednotlivých poboček). Můžou být také propojeny pomocí bezdrátových technologií. Schéma MAN viz Obrázek 2. (2) (4)

Obrázek 2 - Příklad zapojení sítě MAN pomocí přepínačů (1)

4.1.3. Rozsáhlé sítě – WAN

Rozsáhlé sítě – Wide Area Network, jsou rozlehlé sítě umožňující propojení většího množství LAN (MAN) pomocí směrovačů (routerů), které jsou od sebe geograficky velmi vzdálené. Největší a nejznámější WAN sítí na světě je pochopitelně Internet. WAN sítě nemusí být vždy sítě veřejné, ale například nadnárodní společnosti, které mají své pobočky v různých zemí, mohou mít svojí podnikovou síť WAN. (1) (2)

Kvůli velkým vzdálenostem se používají mezi jednotlivými lokalitami optické kabely, zejména jednovidové, anebo také bezdrátový přenos (jak pozemní, tak satelitní). Příklad zapojení takové sítě ukazuje Obrázek 3. (2)

Obrázek 3 - Schéma zapojení WAN pomocí směrovačů (1)

4.2. Přenosová média

Přenosová média dělíme podle toho, jakým prostředím se šíří. Mohou se šířit podél určité struktury, potom mluvíme o šíření ve vlnovodech, nebo ve volném prostoru (typicky ve vzduchu). U vlnovodů rozeznáváme struktury metalické nebo dielektrické. (4)

Každé přenosové médium je specifikováno určitými vlastnostmi, například jakou maximální rychlostí lze po přenosovém médiu přenášet data, nebo na jakou maximální vzdálenost lze tyto data přenášet. Přenosová média lze rozdělit do tří kategorií a to:

- Metalická přenosová média
- Dielektrická (optická) přenosová média
- Bezdrátová média

4.2.1. Vlastnosti přenosových médií

Mezi nejčastěji uváděnými vlastnostmi přenosových medií jsou měrný útlum, přenosová rychlost a maximální vzdálenost. Vlastnosti přenosového média nám určují, na jakou aplikaci jsou nejvhodnější. Například pokud je potřeba přenášet data na velkou vzdálenost je nutné přihlédnout k údaji o měrném útlum a maximální vzdáleností.

4.2.1.1. Útlum a měrný útlum

Pro výpočet měrného útlumu je zapotřebí znát celkový útlum. Definice útlumu je dána jako "schopnost přenosového média přenést signál představovaný elektrickým výkonem ze vstupu na výstup". (4) Vzorec [4.1] pro výpočet útlumu:

$$A = 10 \cdot \log\left(\frac{P_1}{P_2}\right) [\text{dB}]$$
 [4.1]

Kde P_1 je výkon na vstupu vedení, a P_2 je výkon na výstupu vedení. (4) Pokud známe celkový útlum, lze spočítat měrný útlum vedení (α), který je definován jako útlum na 1 km vedení (u UTP se udává útlum na 100 m). Výpočet měrného útlumu uvádí vzorec [4.2]:

$$\alpha = \frac{A}{l} [dB/km]$$
 [4.2]

Kde A je útlum a *l* je délka vedení. (4) Tabulka 1 uvádí typické měrné útlumy optických vláken.

Tabulka 1 - Typické útlumy optických kabelů (5)

	Mnohovidové vlákno (62,5 μm)		Jednovidové vlákno (9 µm)	
Vlnová délka [nm]	850	1300	1310	1550
Měrný útlum [dB/km]	3,5	1	0,5	0,4

4.2.1.2. Přenosová rychlost

Dalším zajímavým parametrem přenosových médií je přenosová rychlost. Ta určuje, jakou rychlostí lze data na daném přenosovém médiu přenášet. "*K vyjádření, jakou rychlostí se mohou data na přenosovém médium vysílat, slouží jednotka bit za sekundu (angl. bits per second). Zkratka této jednotky je bps nebo b/s (bit za sekundu). Běžně se používají násobky této jednotky – kpbs, Mbps, Gbps.*" (2) Například maximální přenosovou rychlost pro optické sítě uvádí Tabulka 2.

Standard	Rychlost	Typ vlákna	Vzdálenost
10BaseFL	10 Mb/s	Mnohovidové	2000 m
100BaseFX	100 Mb/s	Mnohovidové	400 m
100BaseSX	100 Mb/s	Mnohovidové	300 m
1000BaseSX	1 Gb/s	Mnohovidové	$250 - 500 \text{ m}^*$
1000BaseLX	1 Gb/s	Mnohovidové / jednovidové	$450 - 550 \text{ m}^* / 5 \text{ km}$
1000BaseSLX	1 Gb/s	Jednovidové	10 km
10GBase-LR	10 Gb/s	Jednovidové	10 km

Tabulka 2 - Standardy pro optické sítě (5)

^{*}Závisí na průměru vlákna

4.2.1.3. Propustnost

Oproti přenosové rychlosti, která udává maximální rychlost přenosu, nám propustnost udává, jakou rychlostí je v daném okamžiku možno data přenášet, tato hodnota se muže dynamicky měnit v závislosti na vytíženosti linky. Tato rychlost se uvádí v Bytech za sekundu, zkratka B/s a jejich násobkách.

4.2.1.4. Vzdálenost

Tento parametr určuje, na jakou maximální vzdálenost jsme schopni po daném přenosovém mediu přenášet data. Tato vzdálenost je u každého média definovaná dle příslušných standardů jako například uvádí Tabulka 2, kde jsou uvedeny standardy pro optické sítě.

4.2.2. Metalické kabely

Nejčastěji používanou kabeláží v sítích LAN je nestíněná kroucená dvojlinka (UTP). Skládá se z X párů (podle kategorie kabelu, viz Tabulka 3) měděných vodičů, které jsou kolem sebe obtočeny a vloženy do vnější plastické izolace. Jednotlivé páry nejsou mezi sebou izolovány. V drtivé většině případů je zakončena konektorem RJ 45 (Obrázek 4), u telefonních instalací konektorem RJ 11.

Kategorie	Maximální propustnost	Počet	Aplikace
_		párů	
Cat 1 (UTP)	< 1 Mb/s	2	Analogová data, klasické telefonování, ISDN
Typ 1 (STP)		2	Sítě typu Token Ring
Cat 2 (UTP)	4 Mb/s	2	Sítě typu Token Ring
Typ 2 (STP)		4	Hlas/data
Cat 3 (UTP)	16 Mb/s	4	Hlas/data, 10Base-T, telefonování
Cat 4 (UTP)	20 Mb/s	4	Sítě typu Token Ring
Cat 5 (UTP)	100 Mb/s – 1 Gb/s	4	10Base-T, 100Base-T, Gigabitový ethernet
Cat 5e (UTP)	100 Mb/s	4	Sítě ATM a FDDI
Cat 6 (UTP)	> 100 Mb/s	4	Širokopásmové spoje
Typ 6 (STP)		2	Sítě typu Token Ring
Cat 7 (UTP)	1,2 Gb/s	4	Gigabitový ethernet, vysokorychlostní propojení
Typ 8 (STP)		2	Data
Typ 9 (STP)		2	Páteřní spoje

Tabulka 3 - Kategorie kabelů, propustnost, aplikace (6)

*STP – Shielded Twisted Pair – Stíněná kroucená dvojlinka

Kroucená dvojlinka se nejčastěji vyrábí ve dvojím provedení a to jako:

- Nestíněná kroucená dvojlinka (UTP Unshielded Twisted Pair)
- Stíněná kroucená dvojlinka (STP Shielded Twisted Pair)

Obrázek 4 - Konektor RJ 45 (14)

STP se liší od UTP pouze kovovým opletením – stíněním okolo každého páru u STP (Obrázek 5), které zvyšuje ochranu proti vnějšímu rušení. Existuje i varianta FTP – Folied Twisted Pair, což je kroucená dvojlinka chráněná metalickou folií. (3) (6)

Obrázek 5 - Kroucená dvojlinka UTP a STP (7)

Kroucená dvojlinka je nejpoužívanější kabeláží hlavně díky nízkým pořizovacím nákladům, relativně vysoké propustnosti a maximální rychlosti (v závislosti na kategorii kabelu Tabulka 3 a Tabulka 4) a relativně snadné instalaci. Její hlavní nevýhodou je poměrně krátký dosah (do 100 m) a náchylnost na vnější rušení.

Standard	Kategorie kabelů	Rychlost přenosu	Konektor	Šířka pásma
100 Base – T	Cat 5	100 Mb/s	RJ 45	100 MHz
1000 Base – T	Cat 5e	1000 Gb/s	RJ 45	125 MHz
1000 Base – TX	Cat 6	1000 Gb/s	RJ 45	250 MHz
1000 Base – TX2	Cat 7	1000 Gb/s	GC 45, TERA	600 MHz

Tabulka 4 - Standardy pro metalické sítě (3)

Používá se nejčastěji ve strukturované kabeláži (propoj datový rozvaděč – zásuvka), k propojení strukturované kabeláže a aktivních prvků a k propojení strukturované kabeláže a koncového bodu (pracovní stanice, tiskárny atd.). Může být využita i k propojení aktivních prvků mezi sebou, pouze na krátkou vzdálenost cca do 100 metrů.

4.2.3. Optické kabely

Na rozdíl od metalických kabelů optické kabely nepřenášejí data elektricky v kovových vodičích, ale dielektricky pomocí světelných impulzů o určitých vlnových délkách v optických vláknech.

Optická vlákna mohou být vyrobena z oxidu křemičitého, skla nebo plastu. Tyto vlákna jsou vložena do sekundární ochranné vrstvy, která chrání vlákna pro mikroohybům a makroohybům. Vše je následně zabaleno do konstrukční vrstvy a pro větší ochranu do vnějšího obalu. Konstrukci optického kabelu ukazuje Obrázek 6. (3) (6)

Obrázek 6 - Řez optickým kabelem (8) 1. Optické vlákno, 2. Sekundární ochranná vrstva, 3. Konstrukční vrstva, 4. Vnější obal

Mezi největší výhody optických vláken je jejich dosah (jednovidová vlákna) a vysoké přenosové rychlosti. Optické kabely nejsou ovlivněny elektromagnetickými ani rádiovými interferencemi. Další výhodou je, oproti metalickým a bezdrátovým sítím, vyšší bezpečnost (např. proti odposlechu). Jejich hlavní nevýhodou je křehkost vláken, složitější a nákladnější instalace oproti metalickým kabelům. (2) (6)

V praxi najdeme optická vlákna nejčastěji pro propojení sítí WAN, jelikož se jedná o propojení na větší vzdálenosti. V menší míře najdeme optické kabely zastoupeny i v sítích MAN a LAN pro překonání větších vzdáleností, které nelze zprostředkovat pomocí metalických kabelů nebo bezdrátově, případně tam, kde je zapotřebí dosáhnout vysokých přenosových rychlostí.

Podle konstrukce optického vlákna rozeznáváme dva druhy vláken:

- Jednovidová vlákna (Single mode fiber)
- Mnohovidová vlákna (Multi mode fiber)

4.2.3.1. Jednovidová vlákna

Jednovidovým vláknem prochází jen jeden paprsek (jeden vid) bez lomů a ohybů. Jednovidové kabely mají lepší optické vlastnosti (viz Tabulka 1 – Měrný útlum), vyšší přenosovou kapacitu a dokážou přenést signál na delší vzdálenost než mnohovidové (desítky kilometrů). Jsou ale výrazně dražší a je za potřebí drahého a kvalitního zdroje světla – laseru. Schéma jednovidového vlákna ukazuje Obrázek 7. (2)

Obrázek 7 - Jednovidové optické vlákno (9)

4.2.3.2. Mnohovidová vlákna

Jestliže se u jednovidových vláken se používá pouze jeden paprsek světla, u mnohovidových je tomu přesně naopak. Vláknem prochází více paprsků (mnoho vidů), které jsou do vlákna vysílány v určitém omezeném kuželu, který zajistí absolutní odraz zpět do vlákna při dopadu na rozhraní obalu a jádra (2). Mnohovidová vlákna mají nižší dosah a dosáhneme v nich nižších maximálních přenosových rychlostí, jak nám ukazuje Tabulka 2. Dále je můžeme rozdělit na dvě skupiny:

- Vlákna se skokovým indexem lomu
- Vlákna s plynulou změnou indexu lomu

Zatímco ve vláknech se skokovým indexem lomu se světlo odráží pod jedním úhlem (Obrázek 8), u vláken s plynulou změnou indexu lomu má sinusoidní průběh (Obrázek 9). (5)

Obrázek 8 - Mnohovidové vlákno se skokovým indexem lomu (9)

Obrázek 9 - Mnohovidové vlákno s plynulou změnou indexu lomu (9)

4.2.4. Bezdrátová média

V poslední době se stávají čím dál víc populárnější bezdrátová média, zejména pak v lokálních sítích LAN. Jedná-li se o bezdrátovou sít LAN hovoříme též o sítí WLAN. Bezdrátová média jsou dobrou volbou zejména tam, kde by bylo natažení jakéhokoliv "kabelového" média ne-hospodárné, případně zcela nemožné. Obvykle se ale bezdrátová síť používá v kombinaci s tradiční kabelovou sítí, kterou využívá jako přístup do WAN. (1)

Metody přenosu bezdrátové komunikace můžeme rozdělit do následujících kategorií (1):

- Laserové
- Infračervené
- Rádiové

4.2.4.1. Laser

Obrázek 10 - FSO – Bezdrátové pojítko (15)

Laserové sítě, někdy označované jako sítě s bezdrátovou optikou, anglicky FSO – Free Space Optics "pracují tak, že používají pulsy laserového světla, které představují datové signály. Laser je technologií "čáry vidění", což znamená, že musí existovat nerušená cesta mezi vysílajícím a přijímacím zařízením. Tato potřeba nerušeného spojení je nedostatkem bezdrátové komunikace založené na laseru." (1) Teoreticky laserové sítě umožňují rychlý přenos dat na poměrně velké vzdálenosti, bohužel za předpokladu příznivých povětrnostních podmínek. Laserové pojítko Obrázek 10.

4.2.4.2. Infračervené světlo

Infračervené technologie jsou většině lidí známé především z dálkových ovladačů TV. IR technologie využívají k přenosu dat, světelných kuželů či paprsků v infračerveném frekvenčním spektru, jsou to velmi vysoké frekvence, které jsou těsně pod spektrem viditelnosti. Přenosové rychlosti v rozsahu od 4 Mb/s do 16 Mb/s. (1) Bohužel k jejich bezproblémovému chodu je nutná přímá viditelnost. Zařízení využívající k přenosu IR jsou navržena tak, že pokud dojde k přerušení spojení, jsou tato zařízení schopna spojení opětovně navázat. Limitující jsou ovšem vlastnosti této technologie, zejména kvůli omezené vzdálenosti, která se udává maximálně do 1600 metrů, běžněji však do vzdálenosti cca 30 metrů. (1)

4.2.4.3. Rádiové vlny

Přenos dat vzduchem (vakuem) lze uskutečnit pomocí elektromagnetického pole, respektive pomocí radiových vln. V současnosti se k přenosu dat nejvíce využívají frekvenční pásmo tzv. mikrovlnné od 1 GHz a výše, zejména pak 2,4 a 5 GHz pro bezdrátové sítě standardu 802.11, více známé jako WiFi sítě. Jejich frekvenční pásma a maximální datový tok ukazuje Tabulka 5.

Standard	Frekvenční pásmo	Datový tok
802.11	2,4 GHz	1 a 2 Mb/s
802.11b	2,4 GHz	1; 2; 5,5 a 11 Mb/s
802.11g	2,4 GHz	(b) plus 6 – 54 Mb/s
802.11n	2,4 a 5 GHz	(g) plus 108 – 135 Mb/s
802.11a	5,2 GHz	6-54 Mb/s

Tabulka 5 - Režimy provozu IEEE 802.11 (5)

4.3. Zpoždění a protokol TCP

Přenos dat mezi odesílatelem a příjemce neprobíhá okamžitě, ale probíhá s určitou časovou prodlevou. Této časové prodlevě se říká zpoždění. Na tuto prodlevu může mít vliv mnoho faktorů, například opravné a řídící mechanizmy protokolu TCP.

4.3.1. Zpoždění

Je časový interval mezi vysláním dotazu a příjmem odpovědi (angl. Round Trip Time, zkratka RTT). Tento interval se udává v milisekundách a k jeho testování lze použít například příkaz PING (příklad použití Obrázek 11), který se dnes již nachází ve většině operačních systémech. Parametrem programu ping je doménové jméno nebo IP adresa. (4)

C:\iperf>ping www.seznam.cz
Pinging www.seznam.cz [77 75 75 172] with 32 butes of data:
Parally from 77 75 75 172: https://www.source.com/ $TL = 56$
vehtä 11.0m (1.12.12.11.5. näres-27 rime-time 110-20
Reply from 77.75.75.172: bytes=32 time=13ms TTL=56
Reply from 77.75.75.172: bytes=32 time=14ms TTL=56
Reply from 77.75.75.172: bytes=32 time=14ms TTL=56
Ping statistics for 77.75.75.172:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 13ms, Maximum = 14ms, Average = 13ms

Obrázek 11 - příklad použití programu PING

4.3.2. Protokol TCP

K zabezpečení spolehlivého přenosu dat je nutné využít transportní protokol s potvrzením, jako je například protokol TCP. "Protokol TCP je spojovanou službou (connection oriented), tj. službou která mezi dvěma aplikacemi naváže spojení – vytvoří na dobu spojení virtuální okruh. Tento okruh je plně duplexní (data se přenášejí současně na sobě nezávisle oběma směry). Přenášené bajty jsou číslovány. Ztracená nebo poškozená data jsou znovu vyžádána. Integrita přenášených dat je zabezpečena kontrolním součtem. " (10) Právě proces znovu vyžádání poškozených nebo ztracených dat má velký vliv na celkové zpoždění.

4.3.2.1. Navázání, ukončení TCP spojení a přenos dat

Prvotní výměně dat mezi jednotlivými uzly TCP komunikace se říká navázání spojení. Po navázání spojení následuje přenos dat a po jeho uskutečnění dojde k jeho ukončení. (4)

4.3.2.2. TCP segment a segmentace

Základní jednotkou přenosu v protokolu TCP je TCP segment. Protokol TCP poskytuje mnoho různorodých funkcí, což je zřejmé ze složitosti hlavičky TCP segmentu. Hlavička TCP segmentu (Obrázek 12) obsahuje následující pole (11):

Obrázek 12 - Hlavička TCP segmentu (10)

- Zdrojový port
- Cílový port
- Pořadové číslo
- Číslo potvrzení
- Příznaky (flags)
- Délku okna
- Kontrolní součet
- Ukazatel naléhavých dat
- Volitelné položky záhlaví

TCP segment je posléze zapouzdřen do IP paketu. IP paket má délku hlavičky zpravidla 20 bajtů, z toho vyplývá, že maximální velikost TCP segmentu je 65 535 bitů mínus TCP-záhlaví. Přenášíme-li např. 1 GB soubor, není možné ho vměstnat celý do TCP segmentu, proto je

Obrázek 13 – Segmentace (10)

potřeba ho rozdělit do většího množství TCP segmentů, tomuto procesu se říká segmentace (Obrázek 13). (10)

4.3.2.3. Technika okna

Potřebuje-li odesílající strana odeslat větší množství dat, může odesílat data druhé straně bez potvrzení až do velikosti okna, které určuje strana serveru (angl. Window – WIN). Tato velikost se může dynamicky měnit, v závislosti na rychlosti přenosu a zpracování dat. Takovýto případ ukazuje Obrázek 14. Server při odeslání osmého TCP segmentu nastavuje velikost okna na nula Bajtů a tím pozastavuje komunikaci, aby měl čas na zpracování přijatých dat. Devátý TCP segmentem nastavuje okno na velikost 2048 Bajtů a komunikace pokračuje (10).

Obrázek 14 - Technika okna (10)

Pokud by nedocházelo k dynamické změně velikosti okna, mohla by nastat situace, kdy je odesílající strana na rychlé síti posílá data rychleji, než je příjemce na pomalé síti schopen zpracovat (Obrázek 15).

To by způsobilo zahlcení sítě a následnou ztrátu paketů. Tomuto zahlcení se snažení protokol
TCP vyhnout pomocí zavedení okna i na straně odesílatele tzv. Congestion Window (zkratka
CWND). K určení velikosti okna CWND, zahajuje odesílatel komunikaci tzv. pomalým startem. Začne s odesláním jednoho TCP segmentu, následují dva TCP segmenty a tento počet
postupně navyšuje exponenciálně 2ⁿ (viz Obrázek 16) dokud nedojde ke ztrátě (nepotvrzení)
TCP segmentu. V tomto okamžiku se nastaví hodnota CWND na polovinu a dále se nastaví

další veličina SSTRESH na tuto hodnotu.

Obrázek 16 - Pomalý strat k určení velikosti CWND (10)

Po nastavení hodnoty SSTRESH pokračuje protokol TCP dál v komunikaci a snaží se vyhýbat zahlcení pomocí odesílání většího množství segmentů než je SSTRESH, ale menšího než je dvojnásobná hodnota SSTRESH (hodnota při které došlo ke ztrátě (nepotvrzení segmentu)). Hodnotu, v tomto případě CWND zvyšuje pouze o (MSSxMSS/CWND + MSS/8), kde MSS je maximální velikost segmentu, jak ukazuje Obrázek 17.

Obrázek 17 - Vyhýbaní se zahlcení (10)

4.3.2.4. Funkce oprav chyb a řízení toku protokolu TCP

Tedy si uvedeme vlastnosti protokolu TCP, které mají vliv na celkové zpoždění přenosu. Jsou to hlavně (11):

- Pakety opakovaného přenosu, ke kterému dochází, pokud klient zjistí, že server přijímá jeho odeslaná data
- Duplicitní pakety ACK, se odesílají tehdy, zjistí-li server ztrátu paketů od komunikujícího klienta
- Pakety s nulovou velikostí okna a pakety Keep Alive, funkce posuvného okno generuje situace, kdy server nemůže přijímat a zpracovávat data

5. Vlastní zpracování

Po zhodnocení teoretických poznatků se nepředpokládá, že by mělo dojít ke ztrátám paketů během přenosu soborů, vzhledem k jednoduchosti a konfiguraci testovacího polygonu. Největší vliv na celkové zpoždění by měla mít segmentace a mechanizmus posuvného okna, který bude generovat takové situace, ve kterých klient nebude schopen přijímat a dále zpracovávat data. Fáze nepřijímání a zpracovaní dat by měla mít zásadní vliv na velikost celkového zpoždění, čím více těch fází proběhne, tím větší bude celkové zpoždění. Z tohoto důvodu lze předpokládat, že větší soubory budou mít větší celkové zpoždění.

K vlastnímu zpracování byla vybrána tato přenosová média:

- Kroucená nestíněná dvojlinka kategorie 5e s koncovkami RJ-45
- Jednovidový optický kabel 9/125 µm s koncovkami LC-LC
- Mnohovidový optický kabel 50/125 μm s koncovkami LC-LC

A k jejich otestování bylo potřeba:

- Sestavit testovací polygon
- Sestavit testovací okruh a nakonfigurovat porty přepínačů
- Spustit a nakonfigurovat FTP server na PC 1
- Připojit se k FTP serveru jako klient pomocí PC 2
- Provést vlastní měření
- Zapsaní výsledků

A toto vše zopakovat pro další měřená přenosová média uvedená výše.

5.1. Sestavení testovacího polygonu

K sestavení testovacího polygonu bylo potřeba dvou pracovních stanic, dvou přepínačů, celkem šesti SFP modulů o maximální rychlost 100 Mbps, z toho dvou metalických (100Base-TX) a čtyř optických (dvě pro jednovidový optický kabel (100Base-LX) a dva pro mnohovidový optický kabel (100Base-SX)). Schéma testovacího polygonu ukazuje Obrázek 18.

Obrázek 18 - Schéma testovacího polygonu

5.2. Sestavení testovacího okruhu a konfigurace portů

K sestavení testovacího okruhu bylo zapotřebí do každého přepínače vložit patřičný SFP modul a oba tyto moduly navzájem propojit měřeným přenosovým médiem. Na obou přepínačích bylo nutné vytvořit testovací vlanu, po které probíhala veškerá komunikace.

Pro testovací polygon byla zvolena vlan číslo 10, pojmenovaná jako TESTOVACI_VLAN. Konfigurace bylo nutné provést na přepínači 1 i 2 (12) (Obrázek 19).

Obrázek 19 - Konfigurace testovací vlany

Následovalo přiřazení jednotlivých portů na každém přepínači do testovací vlany. Na přepínači 1 to byly porty FastEthernet 0/24 a GigabitEthernet 0/1, na Přepínači 2 porty FastEthernet 0/48 a Gigabitethernet 0/1. Konfigurace portu (12) ukazuje Obrázek 20.

Obrázek 20 - Konfigurace portu do vlan 10

Následně bylo zapotřebí ověřit konektivitu všech portů na obou přepínačích pomocí příkazu (12). Show interface [název_a_číslo_portu] – výpis ukazuje Obrázek 21.

Obrázek 21 - Konektivita portu Fa0/24

Posledním krokem bylo otestování konektivity mezi PC 1 a PC 2 příkazem ping.

Měření maximální propustnosti pomocí programu iperf3

Dalším krokem bylo testovaní maximální propustnosti celé trasy (včetně přenosového média) od PC 1 k PC 2. K tomuto testu byl použit program iperf3. Program se spouští z příkazové řádky, nemá grafické uživatelské rozhraní. Pro správnou funkcionalitu programu je nutné být v aktuální pracovním adresáři s programem iperf3.

Na straně serveru (PC 2) byl program spuštěn příkazem iperf3.exe -s.

Na straně klienta bylo nutné upřesnit IP adresu serveru a patřičným přepínačem se připojit jako klient. Toho bylo dosaženo příkazem **iperf3.exe -c 192.168.0.2**

Výstup toho příkazu ukazuje Obrázek 22, který ukazuje změřenou maximální propustnost na metalickém přenosovém médiu 94,6 Mb/s v obou směrech (v tomto případě se jednalo o kabel UTP kategorie 5e s koncovkami RJ 45).

_							
¢	::\ipe	erf>iperf3.exe	-c 1	192.168.0.2			
10	Connea	cting to host :	192.1	168.0.2, port	5201		
I	: 41	local 192.168	.0.1	port 54145 co	nnected to 192.168.0.2	port 5201	
I	[]]]	Interval		Transfer	Bandwidth		
t	: 4]	0.00-1.01	sec	11.4 MBytes	94.7 Mbits/sec		
I	: 4]	1.01-2.01	sec	11.2 MBytes	94.4 Mbits/sec		
I	: 4]	2.01-3.01	sec	11.2 MBytes	94.4 Mbits/sec		
I	: 41	3.01-4.01	sec	11.2 MBytes	94.4 Mbits/sec		
0	: 41	4.01-5.01	sec	11.4 MBytes	95.4 Mbits/sec		
I	: 41	5.01-6.01	sec	11.2 MBytes	94.7 Mbits/sec		
I	: 41	6.01-7.01	sec	11.2 MBytes	94.4 Mbits/sec		
I	: 41	7.01 - 8.01	sec	11.2 MBytes	94.4 Mbits/sec		
t	: 4]	8.01-9.01	sec	11.4 MBytes	95.4 Mbits/sec		
1	: 4]	9.01-10.01	sec	11.2 MBytes	94.4 Mbits/sec		
I	[]]]	Interval		Transfer	Bandwidth		
0	: 41	0.00-10.01	sec	113 MBytes	94.6 Mbits/sec	sen	der
I	: 41	0.00-10.01	sec	113 MBytes	94.6 Mbits/sec	rec	eiver
i	perf	Done.					
l	perf	Done.					

Obrázek 22 - Výstup příkazu "iperf3.exe -c 192.168.0.2"

5.3. Nastavení a spuštění FTP serveru

K realizaci přenosu jednotlivých souborů byl vybrán protokol FTP. Na PC 1 (Obrázek 18) byl spuštěn FTP server pomocí programu FileZilla Server, hlavní okno tohoto programu ukazuje Obrázek 23. Jedná se freewarovou verzi programu pro vytvoření FTP Serveru, pouze pro operační systém MS Windows. Program je možno zdarma stáhnout na domovské stránce aplikace. (13)

File Server Edit ?	
FileZills Server 0.9.60.beta Copylight 2001-2016 by Tim Kosse (tim Kosse @filezilla-project.org) https://filezilla-project.org/ Connected, waiting for authentication Logged on You appear to be behind a NAT router. Please configure the passive mode se Warning, FTP over TLS is not enabled, users cannot securely log in. Retrieving settings, please wal Done retrieving settings	tings and forward a range of ports in your router.
ID 🛆 Account IP Transf	er Progress Speed
Ready	0 hytes received 0 B/s 0 hytes sent 0 B/s 🚳 🍎

Obrázek 23 - Hlavní okno programu FileZilla server

Server FileZilla byl ponechán v defaultním nastavení, bylo potřeba vytvořit pouze uživatele, nasdílet mu adresář s testovacími soubory a nastavit patřičná oprávnění. Pro vytvoření nového uživatele lze využít ikonky viz Obrázek 24 (Display the user accounts dialog), nebo pomocí aplikačního menu Edit – Users.

Obrázek 24 - Ikona správy uživatelů

Po kliknutí na ikonku nebo pomocí aplikačního menu se zobrazí okno pro správu uživatelů. Pro vytvoření nového uživatele je potřeba kliknou na tlačítko Add (Obrázek 25 – bod 1.). Tímto krokem se zobrazí okno s vytvořením nového účtu (viz Obrázek 26). Do volného pole lze zadat libovolné jméno uživatele, spodním rolovacím menu přiřadí uživatele určité skupině.

Dále bylo nutné aktivovat uživatelský účet a nastavit heslo. V okně správa uživatelů je možné vybrat v pravém menu Users uživatele, kterého je nutné aktivovat a nastavit mu heslo (Obrázek 25 – bod 2). Dalším krokem bylo zaškrtnutí voleb Enable account a Password a u pole

Password nastavit požadované heslo (Obrázek 25 – bod 3). Všechny tyto kroky provedeme v záložce General (Obrázek 25 – vlevo červený čtverec).

Users		×
Page: 	Account settings 3.	Users 2. Peta 1. Add Remove Rename Copy
OK Cancel	Tyou can enter some comments about the user	

Obrázek 25 - Okno se správou uživatelů

Add user account	х
Please enter the name of the user account that sh be added:	nould
I	
User should be member of the following group:	
<none></none>	•

Obrázek 26 - Okno se správou uživatelů

Posledním krokem bylo nasdílení testovacích souborů uživateli a nastavení přístupových oprávnění. V okně správa uživatelů (Obrázek 27 – červený čtverec) klikneme na Shared folders, a tím se dostaneme do okna pro nastavení sdílení souborů. Pro sdílení souborů klikneme v pravém menu (Obrázek 27 – bod 1) Users na uživatele, kterému chceme přidělit přístup k testovacím souborům. Pod prostředním menu Shared folders klikneme na tlačítko Add (Obrázek 27 – bod 2), kde ze souborového stromu vybereme složku s testovacími soubory. Dále označíme složku se sdílenými testovacími soubory (Obrázek 27 – bod 3) a přidělíme uživateli patřičné oprávnění (Obrázek 27 – bod 4). V posledním kroku můžeme uživateli vytvořit domovský adresář, za předpokladu, že je sdílených složek víc. To provedeme pomocí tlačítka Set as home dir (viz Obrázek 27 – bod 5).

Users	×
Page: General Shared folders Speed Limits IP Filter	Shared folders Jies Jies<
OK Cancel	

Obrázek 27 - Sdílení testovacích souborů

5.4. Vytvoření testovacích souborů

Aby testovací soubory měli přesnou velikost, byly vytvořeny pomocí příkazového řádku příkazem **fsutil**. Pomocí toho příkazu byly postupně vygenerovány soubory o velikosti 1, 2, 5 a 7 GB. Syntaxe tohoto příkazu je:

fsutil file createnew jméno_souboru délka_v_bajtech

Obrázek 28 - Použití příkazu fsutil

Praktický příklad použití příkazu na generování 1 GB souboru nám ukazuje Obrázek 28, a ověření velikosti bylo provedeno přes vlastnosti souboru, jak ukazuje Obrázek 29.

	test_file1GB
Type of file:	File
Description:	test_file1GB
Location:	C:\Users\pwk
Size:	1,00 GB (1 073 741 824 bytes)
Size on disk:	1,00 GB (1 073 741 824 bytes)

Obrázek 29 - Vlastnosti souboru

5.5. Připojení na FTP server pomocí klienta

K připojení na FTP server byl vybrán program FTP FileZilla Client. Jedná se o freewarovou multiplatformní verzi klienta pro protokol FTP, která je zdarma ke stažení na domovské stránce FileZilla (13). K připojení stačí použít panel pro rychlé připojení (Obrázek 30). Do pole Host byla zadána IP adresa PC 1 (viz Obrázek 18) a do pole Username a Password uživatelské jméno a heslo, které je nastaveno na straně serveru (PC 1) pro přístup.

Ho	st:	192.168.0.1	Username:	peta	Password:	••••	Port:	Quickconnect

Obrázek 30 - Panel rychlého připojení

Po připojení na FTP server je možné vidět všechny dostupné soubory na serveru v pravé části hlavního okna (Obrázek 31 – Okno s popisem Strana serveru). Pro přenos souboru z FTP serveru do námi zvoleného adresáře stačí přetáhnout požadovaný soubor z jednoho okna do druhého (Obrázek 31 – dle směru červené šipky, ze strany serveru na stranu klienta). Tímto zahájíme přenos dat.

Obrázek 31 - Okno klienta po připojení na server

5.6. Vlastní měření

Nejprve byl spuštěn na serveru PC 1 příkaz **ping** s IP adresou PC 2 – tj. **192.168.0.2** s parametrem -t, poté byl zahájen přenos testovacího souboru (1GB) ze serveru PC 1 na PC 2. Po

ukončení přenosu bylo nutné program ping ukončit klávesovou zkratkou "Ctrl + c", na výstupu se objevila stručná statistika, ze které lze zjistit kolik paketů bylo celkem přeneseno, kolik jich bylo cestou ztraceno, jaké bylo maximální zpoždění a jaké byl celkový průměr zpoždění v milisekundách. Statistiku po přenosu 1 GB souboru na nestíněné kroucené dvojlince nám ukazuje Obrázek 32.

Obrázek 32 - Statistika přenosu 1 GB souboru – UTP

Po skončení přenosu byly naměřené hodnoty zaznamenány a pokračovalo se přenosem dalšího souboru. Celkově se přes každé měřené přenosové médium přenesly soubory o velikosti 1, 2, 5 a 7 GB. Všechny hodnoty byly zaznamenány a zpracovány do výsledného grafu, který se nachází v následující kapitole pro každé měřené přenosové médium.

6. Zhodnocení výsledků

Jelikož se od sebe naměřené hodnoty mezi jednotlivými měřeními jinak výrazněji nelišily (rozptyl měření byl 3 milisekundy), proběhlo měření celkového zpoždění u každého přenášeného média jen desetkrát pro každý přenášený soubor. U každého přenosového média se celkové zpoždění zvyšovalo s přibývající velikostí přenášených souborů.

Obrázek 33 - Měření nestíněná kroucená dvojlinka

U nestíněné kroucené dvojlinky byl zaznamenán (Obrázek 33) zajímavý "skok" mezi přenosem 1 GB a 2 GB velkého souboru, rozdíl ve zpoždění byl 24 milisekund, oproti tomu na obou optický kabelech byl rozdíl v přenosu 1 GB a 2 GB velkého souboru jen 9–10 milisekund. Přenos 1 GB velkého souboru proběhl nejrychleji právě na kroucené dvojlince.

Měření na jednovidovém kabelu (Obrázek 34) nezaznamenalo nějaké výraznější výkyvy, v celkovém pohledu nebylo dosaženo ani nejlepších, ani nejhorších výsledků. Nejvíce se lišilo zpoždění mezi přenosem 1 GB a 2 GB velkého souboru.

Obrázek 34 - Měření jednovidový optický kabel

Mnohovidový optický kabel (Obrázek 35) měl u přenosu 7 GB velkého souboru nejvyšší zpoždění, avšak nárůst zpoždění mezi přenosy 5 GB a 7 GB byl pouze 3 milisekundy, u jednovidového kabelu to bylo o 5 milisekund.

Obrázek 35 - Měření mnohovidový optický kabel

7. Závěr

Z vlastního měření a teoretických předpokladů lze předpokládat, že velikost přenášených souborů má vliv na celkové zpoždení přenosu. Velikost zpoždění se zvyšovala s většími přenášenými soubory.

Měření neprokázalo, že by na celkové zpoždění mělo jakýkoliv vliv přenosové médium, i když lze pozorovat rozdíly mezi jednotlivými přenosovými médii, zvláště pak u přenosu 1 GB velkého souboru, kde byl rozdíl přibližně 13 milisekund mezi metalickým kabelem a oběma optickými kabely. S přibývající velikostí souborů se hodnota zpoždění lišila maximálně o 3 milisekundy, což je hodnota rozptylu měření.

Nejrychleji byl přenesen 1 GB soubor přes nestíněnou kroucenou dvojlinku a s nejvyšším zpoždením 7 GB velký soubor přes mnohovidový optický kabel. Proto se doporučuje pro aplikace přenášejicí menší soubory pomocí protokolu TCP využít právě nestíněnou kroucenou dvojlinku, pokud to limitujicí faktory přenosového média dovolí.

8. Seznam použité literatury

1. Shinder, Debra Littlejohn. Počítačové sítě: nepostradatelná prírucka k pochopení sítové teorie, implementace a vnitrních funkcí [sic]. 1. Praha : SoftPress, 2003.

 Spurná, Ivona. Počítačové sítě: praktická příručka správce sítě. Vyd. 1. Kralice na Hané : Computer Media, 2010.

3. Horák, Jaroslav a Keršláger, Milan. *Počítačové sítě pro začínající správce*. 5., aktualiz. vyd. Brno : Computer Press, 2011.

4. Boháč, Leoš a Bezpalec, Pavel. *Datové sítě: přednášky.* 1. vyd. V Praze : České vysoké učení technické, 2011.

5. Trulove, James. Sítě LAN: hardware, instalace a zapojení. 1. vyd. Praha : Grada, 2009.

6. Sosinsky, Barrie A. *Mistrovství - počítačové sítě: [vše, co potřebujete vědět o správě sítí].*Vyd. 1. Brno : Computer Press, 2010.

7. FEISU. FOMSN. Shielded vs Unshielded Ethernet Cable: Which Should You Use?[Online]
4. leden 2019. [Citace: 19. březen 2020.]

https://www.fomsn.com/copper_cabling_solutions/sun2002/shielded-vs-unshielded-ethernet-cable-which-should-you-use/.

8. ELUC - Elektronická učebnice. *Optická vlákna*. [Online] [Citace: 20. březen 2020.] https://eluc.kr-olomoucky.cz/verejne/lekce/629.

9. SAHA, Rony. *TELECOMMUNICATIONS ENGINEERING - Technical Note*. Rony Kumer Saha, 2016.

10. Dostálek, Libor a Kabelová, Alena. *Velký průvodce protokoly TCP/IP a systémem DNS*.2. aktualiz. vyd. Praha : Computer Press, 2000.

11. Sanders, Chris. *Analýza sítí a řešení problémů v programu Wireshark.* 1. vyd. Brno : Computer Press, 2012.

12. Lammle, Todd. *CCNA: výukový průvodce přípravou na zkoušku 640-802.* Vyd. 1. Brno : Computer Press, 2010.

13. FileZilla. *Domovská stránka FileZilla.* [Online] [Citace: 4. březen 2020.] https://filezilla-project.org/.

14. EURO ALARM. *RJ-45 konektor*. [Online] EURO ALARM. [Citace: 13. březen 2020.] https://www.euroalarm.cz/bezpecnostni-kamerove-systemy-cctv/prislusenstvi/konektory/rj-45-konektor-s593830230.

15. EC SYSTEM. *FREE SPACE OPTICS.* [Online] [Citace: 3. březen 2020.] http://www.ecsystem.cz/en/products/free-space-optic-equipment.

9. Seznam obrázků

Obrázek 1 - Schéma zapojení sítě LAN pomocí přepínače (1)	5
Obrázek 2 - Příklad zapojení sítě MAN pomocí přepínačů (1)	6
Obrázek 3 - Schéma zapojení WAN pomocí směrovačů (1)	7
Obrázek 4 - Konektor RJ 45 (14)	10
Obrázek 5 - Kroucená dvojlinka UTP a STP (7)	10
Obrázek 6 - Řez optickým kabelem (8)	11
Obrázek 7 - Jednovidové optické vlákno (9)	12
Obrázek 8 - Mnohovidové vlákno se skokovým indexem lomu (9)	12
Obrázek 9 - Mnohovidové vlákno s plynulou změnou indexu lomu (9)	12
Obrázek 10 - FSO – Bezdrátové pojítko (15)	13
Obrázek 11 - příklad použití programu PING	15
Obrázek 12 - Hlavička TCP segmentu (10)	16
Obrázek 13 – Segmentace (10)	16
Obrázek 14 - Technika okna (10)	17
Obrázek 15 - Rychlá vs. Pomalá síť (10)	18
Obrázek 16 - Pomalý strat k určení velikosti CWND (10)	18
Obrázek 17 - Vyhýbaní se zahlcení (10)	18
Obrázek 18 - schéma testovacího polygonu	21
Obrázek 19 - Konfigurace testovací vlany	21

Obrázek 20 - Konfigurace portu do vlan 10	21
Obrázek 21 - Konektivita portu Fa0/24	22
Obrázek 22 - Výstup příkazu "iperf3.exe -c 192.168.0.2"	22
Obrázek 23 - Hlavní okno programu FileZilla server	23
Obrázek 24 - Ikona správy uživatelů	23
Obrázek 25 - Okno se správou uživatelů	24
Obrázek 26 - Okno se správou uživatelů	24
Obrázek 27 - Sdílení testovacích souborů	25
Obrázek 28 - Použití příkazu fsutil	25
Obrázek 29 - Vlastnosti souboru	25
Obrázek 30 - Panel rychlého připojení	26
Obrázek 31 - Okno klienta po připojení na server	26
Obrázek 32 - Statistika přenosu 1 GB souboru – UTP	27
Obrázek 33 - Měření nestíněná kroucená dvojlinka	
Obrázek 34 - Měření jednovidový optický kabel	29
Obrázek 35 - Měření mnohovidový optický kabel	29