
VYSOKÉ UCENI T E C H N I C K E V B R N E
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV MECHANIKY TELES, MECHATRONIKY A
BIOMECHANIKY

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND
BIOMECHANICS

MODELOVÁNÍ, IDENTIFIKACE A ŘÍZENÍ
ROBOTICKÉHO MANIPULÁTORU
MODELLING, IDENTIFICATION AND CONTROL OF ROBOTIC MANIPULATOR

DIPLOMOVÁ PRÁCE
MASTER 'S THESIS

AUTOR PRÁCE Be. MICHAL ŠURANSKÝ
AUTHOR

VEDOUCÍ PRÁCE doc. Ing. ROBERT G R E P L , Ph.D.
SUPERVISOR

BRNO 2013

Abstrakt

Táto diplomová práca sa zaoberá identifikáciou, modelovaním a riadením manipulátoru
s tromi stupňami voľnosti. Diplomová práca je súčasťou projektu [17], ktorého cieľom je
vytvorenie edukačnej platformy. V práci je testované riadenie modelu kyvadla pomocou PID
regulátoru a pomocou PID regulátoru s doprednou kompenzáciou. Ďalej je vytvorený model
jednosmerných motorov, ktoré boli použité na výrobu manipulátoru a taktiež sa vytvoril
model inverznej dynamiky celého manipulátoru. Tento model sa následne použil na riadenie
manipulátoru metódou riadenia s doprednou kompenzáciou. V záverečnej časti bola
vytvorená aplikácia v ktorá umožňuje manipulátoru naučiť sa a neskôr vykonávať rôzne
pohyby. Pre jednoduchšie ovládanie aplikácie bolo naprogramované používateľské rozhranie.

Kľúčové slová

Model, inverzná kinematika, inverzná dynamika, riadenie, dopredná kompenzácia, motor,
grafické používateľské rozhranie

Abstract

Main aim of this master's thesis is to identify, model and control robotic manipulator
with three degrees of freedom. The thesis is a part of major project [17], the aim of which is
to create an educational platform. In the thesis the simple PID control and the PID with
feedforward compensation control is tested on the model of simple pendulum. In the next part
models of DC motors, which are used for construction of the manipulator, are developed and
the inverse dynamics model of manipulator is developed. This model is used for feedforward
control of the manipulator. In the final part the application was developed, which allows the
manipulator to be taught some movements, which can be later on, executed. For the simple
control of the application the graphical user interface was programmed.

Keywords

Model, inverse kinematics, inverse dynamics, control, feedforward compensation, motor,
graphical user interface

Acknowledgement

I would like to thank to my supervisor doc. Ing. Robert Grepl Ph.D. for the leadership of the
whole project and to Ing. Josef Vejlupek for patient answering my questions.

Statutory declaration

With this statement I affirm, that this thesis is my genuine authorial work, which was created
under the leadership of my tutor and with the support of mentioned literature.

Michal Suransky, Brno, 2013

Bibliographic reference

SURANSKY, M . Modelling, identification and control of robotic manipulator. Brno:
University of Technology, Faculty of mechanical engineering, 2013. 72 pages. Tutor: Doc.
Ing. Robert Grepl, Ph.D..

Table of Contents

1. Introduction Chyba! Záložka není definována.
2. Goals Description 13

2.1. Project for educational platform 13
2.2. Motivation for developing the manipulator 13
2.3. Partial project tasks 13
2.4. Goals of the Master Thesis 13
2.5. Team structure 14

3. Literature Review 15
3.1. Feedforward and Feedback control 15
3.2. Trajectory and path planning 18
3.3. Inverse kinematics Model 20
3.4. Inverse dynamics Model . 20
3.5. Methodology for inverse dynamics model development 23
3.6. DC motor modeling . 24
3.7. Methodology for drive modeling . 25
3.8. Communication between Matlab GUI and Simulink 25
3.9. Methodology to set up GUI and Simulink model communication 26

4. Testing of feedforward compensation 27
4.1. Testing Device . 27
4.2. Control without compensation 27
4.3. Control with static compensation 29
4.4. Control with dynamic compensation 29
4.5. Comparison of control types 32

5. Model of the motors and the Manipulator 33
5.1. Model and parameter estimation of motor PI and P2 33
5.2. Model and parameter estimation of motor P3 37
5.3. Inverse kinematics model . 39
5.4. Inverse dynamics model 41

6. Control of manipulator 48
6.1. Control with PID controllers . 48
6.2. Control with PID regulators with feedforward compensation 51
6.3. Comparison of PID and FeedForward Control 54

7. Application 56
7.1. Application description .56
7.2. Application programming . 58
7.3. Application results . 60

8. Conclusion 62
9. References 64
10. List of figures 66
11. List of tables 67
12. List of abbreviations and symbols 68
13. Appendixes 69

1. Introduction

Modeling and analysis enable engineers to test whether specifications are met. System
can be analyzed at different levels such as for example model for design of mechatronic
system, model for control synthesis, finite element based model and many more. For control
synthesis a control engineering based system representation is needed. This can be either
inverse dynamics model for feedforward compensation or linearization of equations of motion
to obtain state space representation. In the thesis state space control is not tested. [10]

Besides feedforward control, models can be used for model based design of products.
This means that engineers use an executable model to find out every bit of information for
validation of the product. Model based design can significantly reduce product development
costs. In addition, the model can be easily shared with other engineers, which creates a
possibility to outsource research and development. Therefore creating a model of the system
is meaningful in many ways for sustainable development in the future.

Control based on FFC algorithm always involves PID regulator with feedback loop. A
feedback control loop is required to track required set point and to suppress unmeasured
disturbances which are always present in the real world system. Even though the most of
industrial applications can be controlled by simple PID regulator with feedback loop,
combined feedforward plus feedback loop can significantly improve performance. In ideal
situations a feedforward loop can almost entirely eliminate effect of disturbance on output of
the process. Even with some model inaccuracies feedforward control is often able to reduce
measured disturbance better than a simple feedback loop could achieve alone. Of course, the
decision whether to use a feedforward control depends on whether the improvement in the
response is good enough compared to additional development and maintenance costs. [4],
[11]

Another possibility how to ensure sustainable development is to create user friendly
applications. For purpose of this, many different frameworks for graphical user interfaces
development were created. One of these is implemented in Matlab and is called Matlab
graphical user interface - GUI. When a GUI application for machine is developed its
readability and popularity rapidly increases. In this thesis a GUI application for manipulator
control is developed.

12

2. Goals Description

2.1. Project for educational platform

This Master Thesis is based on the project ,Platform for education of modeling,
identification and control of dynamic systems [17]. The aim of the project is to create an
educational platform for identification, simulation and control of three axis manipulators,
which are supposed to be similar to the commercially produced ones. The base of the
manipulator is an electromechanical system, which is built from common components since
the aim is to create platform, which is easy to reproduce.

One of the basic tasks is dynamics requirements of the manipulator. Designed platform is
supposed to be able to execute movements dynamic enough to show influence of inertia
torques of parts.

Another goal is a possibility to demonstrate effects of gravity load. Therefore
construction of manipulator must be designed so that joints are not self-locking.

2.2. Motivation for developing the manipulator

The construction is motivated by choosing final functionalities, which are supposed to be
attractive for students. The manipulator construction is therefore designed such a way that the
manipulator is able to write on tablet with the end effector or draw simple pictures. The
manipulator should be able to do typical manipulator actions as to grasp the object and move
the object.

2.3. Partial project tasks

1) Fundamental parameters suggestion based on simple models of manipulator (following
motivation tasks)

2) Design and construction of manipulator parts
3) Design and realization of power and control electronics
4) Identification of manipulator parameters. Model estimation based on the real manipulator
5) Control design: PID control, Feedforward control
6) Application creation. Applications use the manipulator with complementary sensors such

as encoders, accelerometers and vision toolbox

2.4. Goals of the Master Thesis

In the first part of the master thesis control with feedforward compensation is examined
on the simple model of pendulum. Realization of the model and comparison of control
methods is done. This is afterwards used in manipulator regulator design.

In the next part of thesis motors of manipulator and manipulator itself is modeled. Inverse
Dynamics model of the manipulator is done by three different methods and the final model is
extended with model of friction. Some of the parameters (masses, dimensions, inertia
matrices) are gained from Solidworks software and other (friction coefficients) are estimated.
The final model is used for feedforward compensation of dynamic torque.

When the feedforward compensation control is ready it is compared with 3xPID control
and the comparison is evaluated.

13

In the final part a user friendly interface is created for the application to test manipulator
control. The application is T E A C H - E X E C U T E application and the user interface is
supposed to make it more readable and popular for the end user.

2.5. Team structure

In this part a distribution of partial tasks between members of development team is
shown.

Josef Vejlupek

A team leader. Project goals specification and basic suggestions.

Tomas Ripel

A 3D model design. Design and Construction of mechanical part of manipulator.

David Klimes
KLIMES, D. [7] Hardware and software solution for diagnostics and safety operation
for robotic manipulator. Brno: University of Technology, Faculty of Mechanical
Engineering, 2013. 64 p. Master's Thesis supervisor doc. Ing. Robert Grepl, Ph.D.

14

3. Literature Review

3.1. Feedforward and Feedback control

3.1.1. Feedback control

In the process industries feedback control is widely used technique. It has certain
advantages.

1. Corrective action takes place only when control variable differs from set point
regardless on type of disturbance.

2. Feedback control requires only minimal knowledge of controlled plant. Basically
a mathematical model is not required.

And it has certain disadvantages.

1. If it is required that PID controller is universal and robust, then each time the process
conditions change, controller must be retuned.

2. Feedback control does not calculate a predictive control action to compensate
a measureable or a known control disturbances.

3. It is not suitable for systems with large time constant.
4. Controlled variable must be measured online.

3.1.2. Feedforward control

The basic concept of feedforward control is to calculate or measure important disturbance
variables and execute corrective action. [4]

Feedforward
controller

>

Y Feedback u
Process

Y
controller

Process

Feedforward Control Feedback Control

Figure 1, Basic diagram of Feedforward and Feedback control [4]

15

Ysp is required value of controlled input

U is taken action

D represents disturbancies

Y is system output

Feedforward control has certain attributes.

1. To make feedforward controller work properly at least an approximate model of the
process must be known. Quality of feedforward control depends on accuracy of plant's
model. Basically it is important to know how measured variables respond to the
change of controlled variables and disturbances.

2. Perfect feedforward controllers which are able of perfect control are not physically
realizable. Even though approximations of these ideal controllers often provide very
powerful control.

In a real world applications feedforward control is usually used in a combination with
feedback control. The feedforward control is used to minimize effects of measureable
disturbances. The feedback control compensates unmeasurable disturbances and inaccuracies
in plant's model. [4]

3.1.3. Example of feedforward control

Common example used in system control education is inverted pendulum mounted on a
motorized cart. Dynamic model of this system is needed for FFC of dynamic torque. [15] Free
body diagram of inverted pendulum and cart is shown in Fig. 2. To get dynamic equations of
inverted pendulum in horizontal and vertical direction following steps have to be done.

Summing the forces of the free body diagram of the cart in the horizontal direction gives
equation (3.1) and summing the forces of free body diagram of the pendulum in the horizontal
direction gives equation (3.2). [15]

Mx+bx + N = F (3.1)
N = mx + mlO cos 6 — mlO1 sin 6 (3.2)

Substituting equation (3.2) into (3.1) brings the first one of two governing equations of
the system (3.3). [15]

(M + m)x + bx + mlO cos 9 - ml92 sin 9 = F (3.3)

To get the second equation of motion, sum the forces perpendicular to the pendulum is
made (3.4). [15]

Psm9 + Ncos9-mgsin9 = ml9 + mxcos9 (3.4)

(3.4) is then combined with equation (3.5), which represents the sum of moments about
the centroid of the pendulum and the second governing equation of the system is obtained
(3.6). [15]

16

-PI sin 6 - Nl cos 6 = 16 (3.5)
(/ + ml2) 6] + mgl sin 6 =-mix cos 6 (3.6)

Control design technique in this example applies only to linear systems and therefor the
set of governing equations needs to be linearized, specifically about the upward equilibrium
position. In this position, which is when 8-TT. For linearization equations (3.7) are taken
into consideration. [15]

T3 Ö L
Figure 2, Inverted pendulum model for FFC compensation, where M is mass of the cart in [kg], m is mass of the

pendulum in [kg], b is friction coefficient for cart in [N/m/sec], 1 is length to pendulum center of mass [m], I is mass
moment of inertia of the pendulum in [kgmA2], F is force applied to the cart, x is cart position coordinate, angles are
in radians [15]

cos 6 = cos (n + <f)» -1

sin 6 - sin in + ̂) » -0
(3.7)

After approximations (3.7) are submitted into nonlinear governing equations (3.3) and
(3.6), two linearized equations of motion are gained. Mark that u has been substituted for the
input F. [15]

(M + m)x + bx- mlifi = u
(i + ml2^<f> -mgl(f) = mix (3-8)

Linearized equations of motion can be used for calculation of compensation torque
around the set point in feedforward control. Control block diagram can be seen in Fig. 3.

17

Torgue
Feedforward

Profile

Prnpoi I-uii.l'. Gain

Derivative Gam
(Kd)

V T

Integral Gain
(Ki)

Taken
action

Figure 3, Control with FFC of inverted pendulum [16]

3.2. Trajectory and path planning

Path is a set of points, which define positions of the system on the way from a starting
point to ending point. Trajectory is a path and for each position is defined time, when system
is in the position.

3.2.1. Trajectory classification

Trajectories can be classified from different points of view. The first viewpoint is space
of definition, which can be either Cartesian or joint. Next is point of view is the task type,
which is trajectory planning or trajectory tracking. Then path geometry can be considered,
which can be either rectilinear or polynomial or exponential. Last point of view is, if a
coordinated or independent trajectory is planned. Trajectory is coordinated if trajectory of all
joints starts and ends at the same time.

3.2.2. Trajectory planning in joint space

One of the basic tasks in manipulator control is to define a trajectory of the end effector
from starting to desired position as a function of time. Some possible functions are cubic
polynomial, fifth order polynomial, 4-3-4 polynomial and higher order polynomials. [5]

3.2.3. Cubic polynomial

A cubic polynomial has the form q(t) = a + bt + ct2 + dt3 and can be used to calculate
trajectory only if four conditions are known. These conditions are

?(°) = &, q{T) = qfm

* (0) = V;.
(3.9)

fin

18

When above conditions are known a system of four equations with four unknowns can be
solved. [1][5] There is a problem with cubic polynomial when a second derivative is supposed
to be calculated, because the second derivative is a straight-line equation. This can cause step
changes in planned acceleration, which are not physically realizable.

„:2+dt3

tin in in in
2 3

Qfi„ =a + bt, + ct, + dt

J-fin fin fin

in " ' ~'in ' in

<lin=a + btin + ctin + dt:
-it

fin

v,=b + 2ct+3dtl (3.10)

vfi„ = b + 2ctin+3dtfn

3.2.4. Fifth order polynomial

Fifth order polynomial has follow
conditions must be defined. These conditions are equations (3.11)

Fifth order polynomial has following form q(t) = a + bt + ct2 + dt3 + et4 + ft5 and six

q(o) = vin Vfin

q(°) = ain •4{T) = "fin

(3.11)

After conditions (3.11) are known a system of six equations with six unknowns can be
solved (3.12). If the second derivative is done, resulting equation is a third order polynomial
equation. [1][5]

Qin = a + b t i n + din + ^ i n + ^ + ft[n

Vfin =a + btfin + ct2

fin + dt\n + et\in + ft5

fm

vin=b + 2ctin + 3dt?n + 4etln + 5ft?n

v,=b + 2 ct, + 3 dt2, + 4 et3, + 5 ft4,
fin fin fin fin J fin (3.12)

ain = 2c + 6dtin+12et?n + 20ft>n

a fin =2c + 6 dtfin + 12et2

n + 20 ft3

fin

3.2.5. Online and offline planning

Online trajectory planning is a method when the controlled variable is calculated during
the program execution and the device operation. In the case of moving arm it means that the
arm is being moved, while trajectory is being calculated. This means that trajectory
calculation algorithm has to be fast enough. To calculate the fifth order polynomial in a real
time requires demanding algorithms.

19

Offline trajectory planning is a method when the controlled variable is calculated before
the program starts its execution. As a result of this more complicated algorithms can be used.

3.3. Inverse kinematics Model

Inverse kinematics model is used to calculate joint coordinates as a function of Cartesian
coordinates of end effector position. A 3xDOF manipulator is relatively simple and it is
possible to make inverse kinematics model analytically. It means to find three equations, each
for one joint coordinate as functions of Cartesian coordinates. [1]

2i =f(x,y,z)
q2 = f(x>y>z)
Q3=f(x,y,z)

3.4. Inverse dynamics Model

Inverse dynamics model is a model of the system which calculates applied torques
needed to achieve given joints positions, velocities and accelerations. Mathematically inverse
dynamics model is a system of equations in the following form (3.14). [1]

Q = M(q)q + C(q,q)q + F(q) + G(q) (3.14)

Symbols in equation (3.14) are described below.

- q, q, q are vectors of joint coordinates, velocities and accelerations respectively

- M (g) i s a joint space inertia matrix. Diagonal elements in this matrix describe inertia
on the joint j and corresponding torque on the joint is equal to Q. = I' Jq.. Non
diagonal elements describe coupling of acceleration from joint j to generalized force
on joint i. [3]

- C(q, q) is Coriolis matrix. Coriolis matrix is used to calculate centripetal torques and
Coriolis torques. [3]

- F (4) is friction force. For most electric drives friction is after gravity load the next
most dominant joint load. [3]

- G(q) is gravity load, which is generally dominant term, it is present even when robot
is stationary or moving slowly [3]

- Q is vector of generalized actuator torques [3]

Inverse dynamics model can be calculated with several methods. Some possible ways to
calculate inverse dynamics model are

(3.13)

20

1) Use Simulink-Simmechanics module to physically model a robot.
2) Describe arm robot with denavit hartenberg parameters.
3) Derive equations of motion using automated calculation method based on

Lagrange equations.

Simmechanics method does not show equations of motion, but it is the least complicated
and easy to set up. Denavit Hartenberg (further referred as DH) parameters is a very common
way how to describe robotic systems. D H parameters method is a more complicated, but
offers greater flexibility. Deriving Lagrange equations can be done either by hand or
automatically using software. Lagrange equations of the second kind are one of the most used
methods in analytical dynamics when constructing equations of motion for bounded systems.
Progress describing calculation of Lagrange equations of the second kind in four steps is
shown below. [1]

1) Select n independent generalized coordinates g,. Considered number of an independent
generalized coordinates is equal to number of system's degrees of freedom.

2) Form equation for kinetic and potential energy and form it to be a function of
generalized coordinates and their derivatives

3) Get n equations of motion by derivation according to Lagrange equations of the
second kind.

4) Form equations of motion into matrix to get equation (3.14)

Considering that 3xDOF manipulator is normally too complicated to be derived by hand
an automatic approach is preferred. With automatic method all matrices from equation (3.14)
can be calculated directly.

3.4.1. Calculation of matrices

Matrix M(g)from equation (3.14) can be calculated using equation (3.16). [1]

d dEk) dEk BE.
= 0, (3.15) dt y dqi J dqj dqt

M (q) = ±m/pTJ{p+jfRi0I\RlJ^ (3.16)
!=1

Symbol in equation (3.16) are described below. [1]
m i is mass of i'th arm.

IT) IT)

JP' ,JR' are geometric Jacobians.

^,0 is rotation matrix from system i to system 0.

l\ is inertia matrix of i'th arm in system i which is fixed with the arm. Geometric jacobians for rotational joint can be calculated according to (3.16.1). [1]

21

(3.16.1)
J™ = z
J Rj

Symbols in equation (3.16.1) are described below. [1]

Zj_i is axis of rotation of (j-l)'th joint.

r is position vector of CoG of Vth arm in coordinate system 0.
rj-\ is position vector of origin of coordinate system (j-l) in CS 0.

Matrix C(g,4)and its coefficients can be calculated according to equation (3.16.2). [1]

1
C-, = —

ljk 2

dM.. dM, dM
ik jk

dqk dqj

n

k=\

(3.16.2)

Symbols in equation (3.16.2) are described below. [1]

M ^ i s corresponding element of matrix M (g).

tfx are steering angles.

Cijk are Christoffel symbols.

are corresponding elements of matrix C(q,q).

Matrix G(g)can be calculated according to equation (3.16.3), which calculates i'th

element of the matrix. [1]

Si=-Tm^ojf] (3.16.3)

Symbols in equation (3.16.3) are described below. [1]

g0 is vector of gravitational acceleration and is equal to gQ = [0,0,-g].

Mj is weight of j 'th arm.

jy' are jacobians as shown in calculation of matrix M [q).

22

3.4.2. Friction

For rotating machinery or gearboxes a characteristics of friction torque versus speed is
similar to that shown in Fig. 5. On the zero speed we observe stiction effect. Value of the
torque has to be over a certain level in order to the rotation can start. Once the rotation has
started, stiction torque decreases and viscous friction dominates. Viscous friction (straight and
dotted line) is normally modeled by equation (3.17). [3]

F(q) = Bq + Qc (3.17)

In (3.17) B is viscous friction coefficient, which represents slope of the line. Offset Qc is
Coulomb friction coefficient. In general the friction value depends on direction of rotation,
but this is more due to coulomb friction than to viscous friction. Viscous friction is generally
a constant, in some cases provided by motor manufacturer. [3]

Q,

>

friction
stiction ^ S

Cl- : ; , \ - ">; : ' friction £ -

• &

Figure 4, Dependence of friction torque vs. speed [3]

When friction coefficients are known, then equation (3.17) is simply added to equation
(3.14).

3.5. Methodology for inverse dynamics model development

3xDOF manipulator is modeled by all three different ways without friction. To calculate
motion equations in form of equation (3.14) a matrix method based on kinematic description
and Lagrange equations of the second kind is used. Using kinematic description is possible to
calculate velocities. Using geometric Jacobian, Inertia matrices, friction coefficients and
masses of links it is possible to calculate matrices M, C, F, G from equation (3.14). [1] Than
gained equations of motion will be used in feedforward control to drive the manipulator.
Because the friction is ignored, it is assumed that the movement will be too ,weak'. Then

23

friction coefficients will be experimentally tuned to get better robot movement based only on
model.

3.6. DC motor modeling

3.6.1. Model description

To identify system ,engine and gear we need to know every constant in the equation
(3.18), which represent mechanical equation of the system.

In equation (3.18) / is rotor inertia, me is electric torque of drive, b is viscous friction
constant, T is Coulomb friction constant, Mi is external torque load and q>,q>dXQ angular
velocity and acceleration respectively. The schematic representation of DC motor is given in
Fig. 5. For DC motor in steady state, the current is is constant and the torque M s generated at
the shaft is given by (3.19).

In (3.19) kp is motor torque constant. DC motor voltage induced in the armature due to
armature rotation is proportional to speed of rotation. This relationship can be described by
equation (3.20).

In equation (3.20) c<p is motor voltage constant. Both friction constants depend only on
angular velocity of the motor shaft.

(3.19)

(3.20)

R

AAAAA

+
<P T

Gear
Box

Figure 5, Schematic representation of DC motor [6]

24

3.7. Methodology for drive modeling

Constants c<p and k<p will be calculated according to (3.20) and (3.19). Friction constants
will be calculated according to formula (3.17) and the fact that they are affected only by
velocity of rotation. Inertia of rotor is fitted according to transient state measurements.

3.8. Communication between Matlab GUI and Simulink

There are more possibilities how to set communication between a Matlab graphical user
interface and Simulink model. Some of these are:

1) Change model parameter with S E T _ P A R A M commands.
2) Use Matlab S-Function.

3) Use Simulink event listeners.

Each of these approaches connects GUI to Simulink model differently. [12]

3.8.1. SET_PARAM API approach

Some of the basic attributes of these approaches are listed below.

1) It does not require another Simulink block.
2) It needs callback function to be programmed.
3) It allows only limited access to signal values during simulation.

The control of parameters and file exchange from GUI to Simulink blocks is handled by
S E T _ P A R A M command in Matlab GUI m-file.

set_param([bdroot '/Manual Switch'] , 'Manual Switch', value)

And control form Simulink blocks to Matlab GUI by block's callback functions. [13]

JUT
Pulse

Generator •
S c ; : : t

Manual Switch

I Block PropertiesiManual Switcl
General Block Annotation Callbacks

Usage

To create or edit a callback function for this block, select it in the callback list
(below, left). Then enter MATLAB code that implements the function in the
content pane (below, right). The callback name's suffix indicates its status:
*(has saved content).

Callback functions list: Content of callback function: "OpenFcn"

ClipboardFcn
CloseFcn
ContinueFcn
CopyFcn
DeleteChiklFcn
DeleteFcn
DestroyFcn
InitFcn
LaadFen
ModelCloseFcn
Hove Fen
NameChangeFcn

ParentCloaeFcn
Pau-seFcn
PostSaveFcn
PreCopyFcn
PrsnglpteFrn

% Get the value- of the switch checkbox,

myvalue =

get(findobj(h_5ynch_gui.Tag-.'checkbox_s

witch'), Value');

% Reassign the value

set(fin d o bj(h_sy n ch_g u i, Ta g",'ch eckbox_s
witch'J.Value'.absCmyvalue-l}}

U
Help Apply

Figure 6, Block properties and callbacks [13]

25

3.8.2. Alter Matlab S-Function

In this method GUI is programmed as Simulink sink or source block using S-Function.
Execution of the GUI process occurs during Simulink simulation.

Some of the basic attributes of this approach are listed below.

1) It does require another Simulink block.
2) It only sometimes needs callback function to be programmed.
3) It allows access to signal values during simulation.

Each figure has a property called ,Userdata\ which keeps all stored information even
after figure is closed and each Simulink block has a field in Object Parameters called
,Userdata\ which keeps all stored information even when block is closed. The figures have a
handle called ,hObject', by means of which all figure properties can be accessed and each
Simulink block has a handle by which all block properties can be accessed. Following figure
shows how the data flow takes place. [14]

GUI

User DATA }
J hObject J

S-function access GUI
userdata a pass to Model

S-Function set GUI
properties based on
From Model data

MODEL

Handles of GUI figure are stored in block userdata

Figure 7, S-Function data flow diagram [14]

3.8.3. Use Simulink event listeners

Event listeners execute a function when actual event in the model happens. This method
allows setting very tight connection between GUI and model without the need to program
callback functions. However to set up event listeners is much more complicated than other
two methods. [12]

3.9. Methodology to set up GUI and Simulink model communication

S E T _ P A R A M commands are used, because they provide higher flexibility for the
application.

26

4. Testing of feedforward compensation

4.1. Testing Device

The motor used to drive the FFC testing device is Transmotec DC motor. Detailed of the
motor description is shown in Table 1. On the motor a universal testing holder is fastened.
This can be seen in Fig. 8. After holder is fastened on the motor, whole system is fastened in
the vise.

Testing Motor parameters

Brand Transmotec
Model WLD43B3-OE

Voltage 24 V
No Load 4000 RPM

Gear Ratio 1 31
Table 1, Testing motor parameters

Figure 8, Testing device: 1 - holder, 2 - vise, 3 - DC motor

4.2. Control without compensation

At first a control without compensation is set up and a PID controller is programmed in
Simulink. For a real time communication with the testing device M F 624 card is used.
Required position is calculated offline and stored as a structure. Simulink model can be seen
in Fig. 9.

27

error

req_pos

'real_posrtion'

error PIDout FICc-u: - K j a c t i o n valuel

PID1 P W M and DIR

error ca lc

Figure 9, Control without compensation

PID constants are tuned experimentally and used with same values in all tests. An
unusual is that D constant is ten times bigger than I constant. The constants can be seen in the
table 2. When constants are tuned the testing movement can be chosen.

FED constants
P 10
I 0.03
D 0,3

Table 2, PID Constants for testing device

The Testing movement is prepared to start from zero position, what is when the holder
points down to the ground and to continue up to position one radian in turn, then two and
three radians and back. The accuracy of control only with PID regulator can be seen in the
Fig. 10.

Motor 1

G O
•m
o

1

Real position

Required Position

i i

Real position

Required Position

2 3
Time [s]

Action Value

3 4
Time [s]

Figure 10, Control with PID regulator only

28

4.3. Control with static compensation

A static compensator is set to compensate gravity load of the holder. Its Simulink
implementation can be seen in the Fig. 11.

position
K T)

action

sin_phi

Figure 11, Static compensator Simulink model

Unknown constants in Fig. 11 are described in (4.1).

g = 9,81ms 2

m_T = 0,884 &g

x_T = 0,075 m
(4.1)

Expression x_T is the x coordinate of the Center of Gravity and the gain block with value
1/31 reduces compensation torque in ratio of gear constant. This compensation is able to keep
the holder in the set position without any other effort. Its connection to PID regulator is
shown in the Fig. 12.

p-c-s
sin_phi

Static compensation

srrc-r

r&q_poB

real_position]

error PI Dout
1

error PI Dout
J *

FICsu: 3". *<Jaction_value]

PID1 P W M and DIR

error calc

Figure 12, Control with static compensation

Testing movement is the same as for control without compensation and the accuracy of
control with static compensation is shown in Fig. 16.

4.4. Control with dynamic compensation

To create a dynamic compensator the static compensator is extended with compensation
of viscous friction and compensation of inertial torque. A structure of dynamic compensator
can be seen in the Fig. 13. The inertia of holder is calculated with Solidworks software and
viscous friction coefficient b is found out experimentally.

Inertia = 0,0044 kgm

Nm
b = 5,5

(4.2)
rads 1

29

Figure 13, Dynamic compensator structure

When dynamic compensator is being tuned, there is a problem when the holder moves in
the direction of gravity. Therefore effect of static compensation is strengthened by a factor of
5,6 so that movement shown in Fig. 14 is achieved. Movement shown in Fig. 14 is based only
on the model without control. After the satisfactory accuracy of the model is achieved, the
dynamic compensator is connected to the PID regulator as shown in Fig. 15. Accuracy of the
movement with dynamic compensator can be seen in Fig. 17.

d
i-i

C
o
•m
o

* req_poB

Motor 1
1 Real position

Required Position

i i Real position
Required Position

i
2 3 4

Time [s]
Action Value

Time [s]

Figure 14, Movement based only on dynamic compensator

ddq ddq •
acc dq

•
acc dq
vel

q
vel

q pas „

ddph i j

dphi_k

ph _k

:c-rquss -+< [torques]

Dynamic_compensatior

[reaLposition

error PIDout
i

error PIDout F L ; / [actio n_value]

PID1 PWM and DIR

error calc

Figure 15, Control with dynamic compensator

30

Motor 1

Real position
Required Position
Real position
Required Position

—
1 i

2 3 4
Time [s]

Action Value

Time [s]

Figure 16, Control with static compensation

Motor 1

Real position
Required Position
Real position
Required Position

——1

2 3 4
Time [s]

Action Value

Time [s]

Figure 17, Control with dynamic compensation

31

4.5. Comparison of control types

To compare accuracy of movements regulated with pure PID control, with PID control
and static compensation and with PID control and dynamic compensation ten movements are
recorded for each type of control. Mean square error is calculated for each movement and
then overall mean square error is calculated. Results are shown in table 3.

Regulator PID

M S E in positi

PID with Static
Compensation

on

FED with Dynamic
Compensation

Measurement 1 ?.SQlE-04 ?.008E-04 3.376E-0?
Measurement 2 5.S01E-04 4.985E-04 3.398E-05
Measurement 3 5.805E-04 4.934E-04 3.455E-0?
Measurement 4 5.S4SE-04 4.979E-04 3.508E-05
Measurement 5 5.SS1E-04 5.014E-04 3.433E-05
Measurement 6 5.S9SE-04 5.017E-04 3.290E-05
Measurement 7 ?.907E-04 ?.012E-04 3.222E-0?
Measurement 8 5,96"E-04 4.993 E-04 3.056E-05
Measurement 9 5,964E-04 5.038E-04 3.015E-05
Measurement 10 5,938E-04 ?.019E-04 3.003E-0?

Mean MSE 5,881E-04 5,003E-04 3.276E 05

Table 3, Comparison of movements' accuracies in squared radians

As can be seen in table 3 the biggest error is produced by pure PID regulator. Error is
slightly smaller with static compensation and markedly smaller with dynamic compensation
of torque applied to motor. This result proves that when model is modeled correctly, it is
possible to achieve better accuracy of movement.

But sadly the biggest advantage of FFC, what is ability to avoid oscillations when system
gets unstable could not be demonstrated, because the motor used in the test has too big gear
ratio and is to powerful. Therefore it is impossible to make the system oscillate. This proves
that for the system the PID control is absolutely sufficient. It the test the same motor is used
as the one used in manipulator as motor P3. But on the manipulator is the motor much less
loaded, what indicates that the motor is going to be stable on the manipulator as well.

32

5. Model of the motors and the Manipulator

5.1. Model and parameter estimation of motor PI and P2

Based on equations (3.18), (3.19) and (3.20), following experiment to obtain a guess of
constant k<p is done. A pole of length 720 mm is fastened on the rotor and the motor is fixed
to the vise. Different voltages are applied on the motor and forces at the end of the pole are
measured. Rotor is not turning, so all elements in equation (3.18) which are dependent on <p
or q> are equal to zero. Considering the fact the motor is not turning equations (5.1) and (5.2)
can be written.

0 = koi+M1

M ,
(5.2)

(5.1)

^ 0

Average guess of constant
table 4.

fc0 is equal to 0,905. Calculation of the guess is shown in

Calculation of kphi constant for drive PI arid P2
I [A] press [g] press [kg] m [Nin] JL, [Nm/A]

2.1 272 0,272 1,921 0,915
2,2 285 0,235 2,013 0,915
4,6 550 0.55 3,885 0,845
5?2 690 0.69 4,874 0,937
6,9 900 0,9 6,357 0.921

Average 0.907

Table 4, Calculation of constant for drive PI and P2

Next step is to define constants of viscous and coulomb friction b and T. Therefore
position and speed of the turning motor with no load are measured. Motor is turning at a
constant speed, what means that elements dependent on <p equal to zero. So from the equation
(3.18) the following equation is obtained.

0 = k0i -b<p- Tsign((p) (5.3)

Sign function is function which changes its sign with respect to direction of rotation. Its
sign must always act in opposite manner to electric moment. If we consider, that motor is
turned only in one direction, sign function can be omitted and simply its sign is minus. So the
equation (5.3) alters to (5.4).

0 = kJ-b(p-T (5.4)

Now we need to measure at two different voltage levels to obtain coefficients b and T. In
equations (5.5) measured velocities from motor rotation with no load and corresponding
torques are substituted and so coefficients b and T can be calculated according to (5.6) and
(5.7). These can be calculated with any variation of two measurements. Done calculations can
be seen in table 5.

33

Mx=bcox+T

M2 = ba2 +T

b =
(Ml-M2)

{cox -co2)

T = M2-bco2

(5.5)

(5.6)

(5.7)

Calculation of friction constant b and T for drives PI and P2

w [rads-1] | | l(A] U[V] V [N n \ D[Nm lad s]| T[Nm]

Equation system 1

14,50 ;: 'ffererce 1,05 difference I S 0,950 ^'r'erence 0,032 0,486

21,30 6,80 1,29 -0,24 26 1,167 0,217

Equation system 2

12,80 ;: f fererce 0,99 difference 16 0,896 ^'r'ert'u-e 0,029 0,477

16,20 3,40 1,10 -0,11 20 0,996 0,100

Equation system 3

12, SO difference 0,98 difference 16 0,887 difference 0,035 0,468

9,40 -3,40 0,35 0,13 12 0,769 -0,118

Equation system 4

17,90 difference 1,17 difference 22 1,059 difference 0,032 0,486

21,30 3,40 1,29 -0,12 25 1,167 0,109

| Average 0,032 0,479

Table 5, Calculation of friction constants of drive PI and P2

From equation (3.18) we see that we need only one more coefficient and it is inertia of
rotor I. This coefficient is going to be guessed by trying different values until calculated curve
fits measured curve. Of course it is needed to measure curve while motor accelerates. In
equation (3.18) function sign is going to be omitted again and torque M t i s going be zero.
Equation (5.8) is obtained.

I(p = me-b(j)-T (5.8)

i f we think of electric torque according to equation (3.18), it is needed to calculate c<p
constant in order to be able to calculate current continuance. To calculate c<p from
measurements of motor rotation following formulas can be used:

u = Ri + c(J)(p (5.9)

u — Ri
'CD (5.10)

In equations (5.9) and (5.10) R is rotor resistance and is equal to 0,8Q. Results of
calculation of c<p are shown in table 6.

34

cphi constant calculation

w [rads-l] l[A] U[V] R [ohm]
9,40 0,85 12,00

0,80

1,204
12,80 0,98 16,00

0,80

1,189
14,50 1,05 18,00

0,80
1,183

16,20 1,10 20,00
0,80

1,180
17,90 1,17 22,00

0,80

1,177
21,30 1,29 26,00

0,80

1,172
Average 1,134

Table 6, Calculation of constant of drive PI and P2

Current flow is described by equation (5.11).

u-c0<p
I

R

-k i-k U ~ C ^
R

(5.11)

(5.12)

Using equation (5.11) the equation (5.12) can be altered into final form (5.13). Motor can
be simulated in Simulink using equation (5.13).

Best inertia guess for motors PI and P2 is 0.4 kgm2. Calculated parameters are shown in
table 7 and comparison of real and simulated run ups is shown in Fig. 18. To improve model
accuracy all calculated guesses of parameters are improved in parameter estimation toolbox in
Simulink and more accurate results are achieved. Simulated movement with more precisely
estimated parameters is shown in figure 19. Improved estimates of parameters are show in
table 7. To check the quality of the model, steady state speeds of the motor at different
voltage levels are compared to steady state speeds of rotation at same voltage levels achieved
by the model. Comparison can be seen in table 7 on the right.

35

Comparison of run-ups
25 I 1 1 1 1 r

t[s]
Figure 18, Comparison of simulated and real drive run-ups of PI and P2

PI, P2 Speed of Rotat ion [rad/s]

original a l tered Vo l tage [V] meassured s imulated

kfi [Nm/A] 0,905 1,07 14 11 11,2

b [Nm/rads-1] 0,032 0,025 18 14,5 14,6

T [Nm] 0,47 0,38 22 17,9 18

cfi [V/rads-1] 1,18 1,18 26 21,3 21,3

1 [kgm2] 0,4 0,45 28 23,2 23

Table 7, Comparison of original and altered parameters on the left and comparison of measured and simulated speed
of rotation on the right, More precise estimated parameters are used for comparison.

36

5.2. Model and parameter estimation of motor P3

To obtain k<p this time a pole of length 240 mm is fastened on the rotor. According to
equations (5.1) and (5.2) five measurements are done at voltage level 10V. Results can be
seen in table 8.

Ca l cu la t i on of k^ c on s t an t f o r dr ive P3

l [A] press [g] press [kg] m [Nm] t s [Nm/A]

1,33 1023 1,023 2,409 1,811
1,42 1050 1,05 2,472 1,741
1,34 989 0,989 2,329 1,738
1,35 1020 1,02 2,401 1,779
1,35 1050 1,05 2,472 1,831

Average 1,780

Table 8, Calculation of constant for drive P3

To define friction coefficients, measurements at ten different voltage levels are done. An
average b and T coefficients are calculated. Calculation of b and T constants according to
equations (5.5), (5.6) and (5.7) is shown in table 9.

Calculation of friction constant b and T for drives P3

w [rads-1] | [A] | _.[v; | M[Nrn] |b[Nrn rad-s] T[Nm]

Equation system 1

2,70 difference 0,18 difference 6 0,320 difference 0,028 0,231

3,95 1,25 0,20 -0,02 8 0,356 0,036

Equation system 2

5,10 difference 0,22 difference 10 0,392 difference 0,015 0,290

6,30 1,20 0,25 -0,01 12 0,409 0,018

Equation system 3

6,30 difference 0,23 difference 12 0,409 difference 0,014 0,234

7,55 1,25 0,24 -0,01 14 0,427 0,0 IS

Equation system 4

7,55 difference 0,24 difference 14 0,427 difference 0,015 0,280

8,70 1,15 0,25 -0,01 16 0,445 0,018

Equation system 5

8,70 difference 0,25 difference 16 0,445 difference 0,015 0,275

9,90 1,20 0,26 -0,01 18 0,463 0,018

Equation system 6

9,90 difference 0,26 difference 18 0,463 difference 0,016 0,272

11,00 1,10 0,27 -0,01 20 QA31 0,015

Equation system 7

11,00 difference 0,27 difference 20 0,481 difference 0,015 0,267

12,20 1,20 0,28 -0,01 22 0,^9 S 0,018

Average 0,017 0,278

Table 9, Calculation of friction constants of drive P3

37

Calculation of c<p constant and guess of rotor inertia are shown below. The same advance
as for motor PI and P2 is used. But this time motor resistanceR = 12,2Q. Best inertia guess
for P3 is 0.05 kgm2

cphf consta nt calculation

w [rad/s] ha: LTV] ^ [oh i t - ; c- [Vt-id=;

2,70 0,18 6 1,409

0,20 8 1,408

5,10 0,22 10 1,435

6,30 0,23 12 1,459

7,55 0,24 14
12,2

1/-Gt5

3,70 0,25 16
12,2

1,489

9,90 0,26 18 1,498

11,00 0,27 20 1,519

12,20 0,28 22 1,523

13,30 0,31 24 1,520

| Ave rage 1,473

Table 10, Calculation constant of drive P3

Comparison of run-ups

real run-up

simulated run-up

1.5 2 2.5 3
t[s]

Figure 20, Comparison, simulated and real drive run-ups of P3

Parameters of P3 drive and comparison of measured angular velocities and simulated
angular velocities can be seen in table 11.

38

P3 parameters

kfi [Nrn/A] 1,78

b [Nm/rads-1] 0,018

T [Nm] 0,028

cfi [V/rads-1] 1,473

1 [(gm2] 0,05

— Speed of Rotation [rad/s]

Voltage [V] meassured simulated

10 5,0 5,0

14 7,6 7,6

IS 8,7 8,8

13 9,9 10,0

20 11,0 11,3

22 12,2 12,5

Table 11, Parameters of P3 drive on the left and comparison of measured and simulated speed of rotation on the right

5.3. Inverse kinematics model

In equations (3.13) in this case $i = qi, $ 2 = q2 and $ 3 = q3. To be able to solve equations
(3.13) it is necessary to define another two angles a and P, meaning of which is clear from
Fig. 21. Calculation of q2 and q3 is more complicated. Firstly parameter c needs to be
evaluated.

P V- v • -v

(5.14)

In equation (5.14) p stands for the projection of L 2 and L 3 arms into xy plane. Dimensions
for arms were obtained from drawings of manipulator and are shown in table 12. After p is
evaluated, it is possible to calculate angles a and p. Calculation of P angle is done by cosine
theorem.

P
a = arctg

J3 = arc cos
('L^+c2-^

2L2c

(5.15)

When angles a and /3 are known second and third steering angles can be calculated.

32=a + J3

3, 71 - arccos
V 24Z,

(5.16)

j j

Calculation of first steering angle is easier because of known Cartesian coordinates x and
y. $1 can be simply calculated using inverse tangent function.

<9j = arctg —
y

(5.17)

39

When using inverse kinematics model some restrictions are important. [1] It must be
secured that if condition described in (5.18) is true, then second and third steering angles are
assigned values as shown in (5.19).

C = L2+L3

33=0

32=a

Condition 0 = 1^ + 1^ should be satisfied as a range.

c < ((L, + L,) + lim) a c > ((Lj + L,) - lim)

(5.18)

(5.19)

(5.20)

In (5.20) Urn is a small number. This can help to avoid noise disturbances. Also when
robot moves from zero position, some rules should be obeyed in order to avoid rapid changes
in required position. From zero position movement should be suggested in the way, that it
moves only a little either in x coordinate or in y coordinate. After this, further movement is
arbitrary.

E[x,y,z]

Figure 21, Inverse kinematics - model for calculations

A r m Length [mm]

485

h 180

h 180

Table 12, Lengths of arms for inverse kinematics calculation

40

5.4. Inverse dynamics model

To make an inverse dynamics model of the system certain parameters are important to be
known. These parameters are rotational matrix for each arm, position of center of gravity of
each arm in arm's CS, position of each arm's CS origin in CSO and friction coefficients.
These parameters can be seen in tables below. In order to be sure, that modeled system is
modeled correctly, three different methods are used. A l l the results are supposed to match
each other. Some of the parameters correspond to another axis in another method.

5.4.1. Model of 3DOF manipulator using Simmechanics

Links coordinate systems defined for inverse dynamics model calculations for
Simmechanics and LR2 method are shown in Fig. 22. CSO is fixed coordinate system. This
system does not move at all. CSl is coordinate system attached to arml. CS2 is coordinate
system attached to arml. And respectively CS3 is coordinate system attached to arm3.

Figure 22, Coordinate systems for LR2 and Simmechanics methods

41

Inverse dynamics model block diagram made in Simmechanics is shown in Fig. 23.

In this block diagram DriveQl, DriveQ2, DriveQ3 are required positions, velocities and
accelerations for each joint. Output of this model is SM_idyn where required torques are
stored. Color blocks are bodies of the system. These represent arms. In table 13 defined
inertia matrices gained from Solidworks model are shown.

Inertia matrix for Simmechanics and LR2 method

Arm 1 [kgmA2] Arm 2 [kgmA2] Arm3 [kgmA2]

Ixx 0,2324 Ixx 0,0025 Ixx 0,0021

Ixy 0 Ixy 0 Ixy 0

Ixz 0 Ixz 0 Ixz 0

Ixy 0 Ixy 0 Ixy 0

lyy 0,236 lyy 0,0024 lyy 0,0021

lyz 0 lyz 0 lyz 0

Ixz 0 Ixz 0 Ixz 0

lyz 0 lyz 0 lyz 0

Izz 0,0232 Izz 0,00001 Izz 0,00001
Table 13, Inertia matrices of arms for Simmechanics and LR2 method

Only moments of inertia are taken into consideration. A l l products of inertia are ignored,
because they are much smaller then moments of inertia. Positions of centers of gravity in
coordinate systems of arms are shown in table 14. Positions of origins of coordinate systems
in fixed coordinate system CSO are set in Simmechanics body block as described further.
Translated from origin tag is set as adjoining and the distance between input and output
coordinate system of the arm is set. Position with respect to CSO is then calculated auto
matically. Used setting is show in table 15.

42

Position of COG with respect to link coordinate system

Simmech method [m] LR2 method [m] DH met iod [m]

X_arml -0,0101 X_arml -0,0101 X_arml -0,0125

Y_arml -0,0125 Y arml -0,0125 Y arml -0,2383

Z_arml -0,2383 Z arml -0,2383 Z arml -0,0101

X_arm2 -0,0069 X_arm2 -0,0069 X_arm2 -0,0987

Y_arm2 0 Y_arm2 0 Y_arm2 0

Z_arm2 0,0987 Z_arm2 0,0987 Z_arm2 0

X_arm3 0,0242 X_arm3 0,0242 X_arm3 -0,1367

Y_arm3 -0,0136 Y arm3 -0,0136 Y arm3 -0,0136

Z arm3 0,1367 Z arm3 0,1367 Z arm3 0,0242

Table 14, Positions of arms COGs for all methods

Position of arms CS origin in

CSOfor Sim mechanics
x position 0

E y position 0

< z position LI

rsi x position 0
E
i y position 0

< z position -L2

no x position 0
E y position 0

< z position -L3
Table 15, Position of arms' CS origins with respect to CSO in Simulink

5.4.2. Model of 3DOF manipulator using DH parameters

To calculate equations (3.14) in Matlab robotic toolbox using D H parameters convention,
recursive Newton-Euler algorithm is used. Defined parameters are shown in table 16 and
illustrated in Fig. 24.

a [rad] a [m] 9 [rad] r [m]

A r m 1 -7T/2 0 7T/2 0 , 4 8 5

A r m 2 0 0 ,18 -7T/2 0

A r m 3 0 0 , 1 8 5 0 0
Table 16, DH parameters

D H parameters are a, a, 6, r. In Fig. 24. parameters a and r are illustrated. CSO, CS1,
CS2, CS3 are coordinate systems oriented for D H calculation. Axes of these coordinate
systems are turned with respect to each other. Angles of these rotations are parameters a and
6. These are not show in the figure because of lucidity. Parameters r and 6 are also
parameters which represent rotation angles or translation movements of joints. For more
detail about D H parameters and information how to define D H parameters see [3].

Inertia matrices for all arms and positions of centers of gravity have changed when
compared to those ones used in Simmechanics method. Positions of centers of gravity are

43

shown in table 14. Inertia matrices are shown in table 17. Origins of coordinate systems of
arms are derived automatically from D H parameters.

Figure 24, DH parameters

Inertia matrix for DH parameters method

Arm 1 [kgmA2] Arm 2 [kgmA2] Arm3 [kgmA2]

Ixx 0,236 Ixx -0,00001 Ixx -0,00001

Ixy 0 Ixy 0 Ixy 0

Ixz 0 Ixz 0 Ixz 0

Ixy 0 Ixy 0 Ixy 0

iyy 0,0232 Iyy 0,0024 Iyy 0,0021

lyz 0 lyz 0 lyz 0

Ixz 0 Ixz 0 Ixz 0

lyz 0 lyz 0 lyz 0

Izz 0,2324 Izz 0,0025 Izz 0,0021
Table 17, Inertia matrices of arms for DH parameters method

44

5.4.3. Model 3DOF manipulator using LR2 - automated calculation method

Calculation of motion equations is made according to equations in calculation of matrices
section and is made in Maple and Matlab - Symbolic Toolbox as well. In Maple all results are
much more complicated than those ones calculated in Matlab - Symbolic Toolbox. Calculated
results are too long to be shown but can be found in Appendixes. Only equation that describes
movement of P3 drive calculated in Matlab - Symbolic Toolbox takes approximately half of a
page.

5.4.4. Comparison of calculated inverse dynamics models

To compare quality of models torques calculated with all three methods are compared.
Movement for the comparison is planned in joint coordinates and starts from zero position.
This position is labeled qo Then it continues to positions qi, q2 and q3. Values of positions are
shown below. Note that these models do not take friction torques into consideration.
Simulated torques, which are needed to achieve required positions are composed only from
centripetal torque, coriolis torque and gravity load.

qQ =[0,0,0] ^=[-1.9,0.6,-0.43]

qx =[-1.9,0.6,-0.43] q2 = [-1.9,0.4,0.2]

q2 =[-1.9,0.4,0.2] -> q3 =[1,-0.1,-0.3]

In Fig. 25 simulated torques are shown. Graph labeled Torque 1 corresponds to torque on
drive PI and respectively Torque 2 and Torque 3 corresponds to torques on drives P2 and P3.

o i
Time [S]

Figure 25, Comparison of torques calculated by different methods

45

5.4.5. Adding friction

Firstly only viscous friction is taken into consideration. A real manipulator is supposed to
track some planned movement driven only by torques calculated in model. This method
cannot harm the manipulator, because, action torque with no friction involved is smaller than
with friction.

Viscous friction coefficients are tuned experimentally. Firstly the robot is driven by
computed action torque, which ignores friction load. Afterwards the B; coefficients are added
one by one to the model according to formula (3.17) up to the real movement had satisfactory
correspondence with required movement. Tuned B; coefficients are shown in table 18. on the
left and movement based on these coefficients shown in Fig. 26.

After only viscous friction coefficients are found, than Coulomb friction coefficients can
be found. Firstly viscous coefficients are divided by 2 and Coulomb friction coefficients are
progressively increased until movement in the slow region is fast enough. Then B; coefficients
can be retuned a little. To be able to fit the required movement more precisely a simpler
movement is chosen in comparison with movement used, when only viscous friction
coefficients are guessed.

0 0 . 5

T i m e [s]

Drive 3

Figure 26, Movement modeled with viscous friction

As can be seen in Fig. 26 drive 3 correspond worse to required movement, than other two
motors. This is because the structure of motors is not known exactly. Structure of motors PI
and P2 does not affect the overall movement as much as structure of motor P3.

46

A r m Bt*fs]
A r m 1 5,1

A r m 2 1,45

A r m 3 6,4

A r m 3. L V j l
L

Qc [-Vw]
A r m 1 2,6 1,48

A r m 2 0,77 0,86

A r m 3 4,16 2,3

Table 18, Only viscous friction coefficients on the left and viscous and coulomb friction coefficients on the right

Movement modeled only with viscous friction compensation is easier to model and
precise enough to perform feedforward control strategy. On the other hand action torque,
which is modeled with compensation of both frictions, follows the movement of the real
system better.

0.8

0

R e q u i r e d M o v e m e n t

Drive 1 R e a l M o v e m e n t

~ " ' ' i
0 0 .5 1 1.5 2 2 .5

T i m e [s]

Drive 2
0 I —__-—_i 1 1 1 1

- -0 .2 -

.1 -°-4 -
£ -0 .6 -

T i m e [s]

Drive 3

T i m e [s]

Figure 27, Movement modeled with viscous and Coulomb friction

47

6. Control of manipulator

6.1. Control with PID controllers

6.1.1. Trajectory planning

In order to the planned movement in Cartesian coordinates was smooth, it was planned
offline with fifth order polynomial using jtraj function from Robotic Toolbox. Then it was
online transformed into joint coordinates using inverse kinematic model. Trajectory planning
data flow and Simulink model for control can be seen in Figures 28 and 29.

f Offline Planning s\

Current Requ i red
Car tes ian Car tes ian

Coord inates Coord inates

Online Planning

Inverse
K inemat ics
Modu le

y_in inverse_kin

error •
q1_out •
q2_ojl >
q3 <3Utt>

Smooth
movement in

joint coordinates

Figure 28, Trajectory planning data flow for 3xPID control

6.1.2. Tuning PID regulators

Three different PID regulators, each for one of three motors are separately tuned.
Disturbance caused by movement of other arms is not taken into consideration. This means,
that for example if motor PI movement is disturbed by movements of other motors, this
disturbance is considered as external error and must be handled by the regulator action. Each
regulator has to be tuned properly to be able to handle this error.

P I D parameters for each regulator are tuned experimentally and final gains are shown
in table 19. When tuning regulators, first step is to find P gain which can regulate without
overshoot and with the smallest steady state error possible. Then approximately 10 times
smaller I gain and 100 times smaller D gain are set. Regulator for each motor is tuned with

48

other two motors blocked. When all regulators are tuned, mutual movement can be tested.
Results from mutual movement can be seen in figures 30, 31 and 32.

Motor 1 Motor 2 Motor 3

p 25 10,5 18,3

1 0,6 •,11

D 0,03 0,03 0,01

Table 19, PID constants for control

Pos i t i on , p i

Posit ion_

Pos i t i on , -=3r

error

q1_out

q2_out

q3_out

position

encoderP"

W
e n c o d e r P 2

position

duty

motor P1

PID Motor P1

duty

PID Motor P2

position
duty

PID Pvlotor P 3

6.1.3.

Figure 29, Simulink model for 3xPID control

Results of 3xPID control

A l l three motors tracking required trajectory are shown in this section. Results show
joint coordinates of each motor. As can be seen in Fig. 31, the second drive requires quite
high actions in comparison with action required by feedforward control.

Motor 1

CS 0

C 1
'S
o - l

0

G.5

- 0 . 5

! i

Real position
Required Position

i i 1 i

Real position
Required Position

i i

4 6
Time [s]

Action Value

1 0 1 2

1 I 1 1 1

T i n — i —

i I i i i

4 6
Time [s]

1 0 1 2

Figure 30, Motor 1 position tracking and action value, 3xPID control

49

Motor 2

Real position

Required Position

4 6
Time [s]

Action Value

4 6
Time [s]

10 12

12

Figure 31, Motor 2 position tracking and action value, 3xPID control

Motor 3

Real position

Required Position \
Real position

Required Position \
I I I I I I I
0 2 4 6 8 10 12

Time [s]
Action Value

Time [s]

Figure 32, Motor 3 position tracking and action value, 3xPID control

50

6.2. Control with PID regulators with feedforward compensation

6.2.1. Trajectory planning

Trajectories, velocities and accelerations have to be planned between each two desired
points of movement. After these kinematic properties of the movement are planned
compensation torques can be calculated. This is done by using offline strategy to calculate
trajectories, velocities and accelerations between selected points and online strategy to
calculate compensation torques from these trajectories, velocities and accelerations.
Trajectory planning data flow and Simulink model for control can be seen in Figures 33 and
34. Compensation torque needs to be divided by gear ratio of corresponding drive.

Offline Planning s \

First joint Second joint
coordinates coordinates

Online Planning N\

Compensation
functions
calculates
compensation
torques for
each Motor

qi
02
q3 dq1
dq3
ddql
ddq3

PI COWPESATION

Smooth movement in
joint coordinates with

Feedforward compensation

Figure 33, Trajectory planning data flow for regulator with feedforward compensation

51

6.2.2. PID regulators tuning

Same gains for PID constants are used as for the simple PID control.

Flan

Planner P2

q i

q?

q3

dq1

dq2 f e n Tau1

dq3

d d q l

ddq2

ddq3

P1 C O M P E S A T I O N

q3

dq1

dq2

dq3

d d q l

ddq2

ddq3

Posit ion_P1 Posit ion_P1

position position Tt
PID Motor P1

P2 C O M P E N S A T I O N

q2

q3

dq1

d q 2 f e n Tau3

dq3

d d q l

ddq2

ddq3

Posit ion_P2 Posit ion_P2

position position

Position P S -

PS C O M P E N S A T I O N j^^P Position |

encoder P 3

duty

motor P1

dutv

duty

Figure 34, Simulink model for regulator with feedforward compensation

6.2.3. Results of Feedforward control

Required and real positions and action values for drives PI, P2 and P3 can be seen
respectively in Fig. 35. , Fig. 36. and Fig. 37.

Motor 1

Required Movement
Real Movement

1 1.5

Time [s]
Action Value

1 1.5

Time [s]

2 . 5

2 . 5

Figure 35, Motor 1 position and action value, regulator with feedforward compensation

52

Motor 2

es
i-H

c o
•55
o
P4

-0.B
I

0.4

0.2

0

-0.2

-0.4

• — 1 1
Required Movement
Real Movement

1 1
Required Movement
Real Movement

^ b •—
0.5 1 1.5

Time [s]
Action Value

2.5

0 0.5 1 1.5
Time [s]

2.5

Figure 36 , Motor 2 position and action value, regulator with feedforward compensation

Motor 3
0.8

T3
i-H

C O
•53
o

- — n - s .

-Required Movement -

Real Movement

-Required Movement -

Real Movement

i i
0.5 1 1.5

Time [s]
Action Value

2.5

1 1.5
Time [s]

2.5

Figure 37, Motor 3 position and action value, regulator with feedforward compensation

53

6.3. Comparison of PID and FeedForward Control

6.3.1. Comparison Movement

To compare quality of control methods the movement shown in Fig. 38 is chosen. In
Fig. 38 required positions as functions of time for each drive are shown.

Movement Drive 1

0 1 2 3 4 5 6
Time [s]

Movement Drive 2

0 1 2 3 4 5 6
Time [s]

Movement Drive 3

0 1 2 3 4 5 6
Time [s]

Figure 38, Movement for comparison of quality of control

Movement is repeated ten times with PID control and ten times with PID plus
feedforward compensation control. Using Matlab mse function a mean square error is
calculated for each movement and then, the same technique as for model in chapter four is
used and the mean of mean square errors is computed. Results can be seen in table 20.

54

— Motor 1 Motor 2 Motor 3
pro FeedForward PID FeedForward PID FeedForward

rr.e •:. o: MSE 4.60E-05 2.00E-G4 1.58E-04 2.38E-05 1.05E-G4 8.42 E-06

Table 20, Comparison of PID and FeedForward control using MSE, MSE is evaluated in [rad2]

As can be seen from table 20, motor 1 is regulated more precise with only PID control.
This can be caused by high toughness of the cable connected to Motor 1. As can be seen from
comparison of Fig. 31 and Fig. 36, FFC control decreased action value requirements.
However FFC control is strictly dependent on quality of the model, which is not the same in
all conditions. PID regulator provides extremely good accuracy as well. Considering the result
from the test from chapter four and results from the chapter six it can be seen that for
manipulator PID control is sufficient. A l l three motors are powerful, has big gear ratios and
are overequipped for the system. Therefore in further development only PID control is going
to be used.

55

7. Application

7.1. Application description

Because the control with only PID regulators shows very precise results, it was decided,
that application will be developed only for PID control strategy. Feedforward controller can
be implemented in GUI handler using derivative calculation of desired positions. Robot
application is teach and execute application. Using the application the robot can be taught
different movements and these movements can be later executed. For better controllability
GUI for this application is created. Frame of this GUI can be seen in Fig. 39. As can be seen
there are two main control areas. Control area for teaching which is set active when teaching
process is supposed to happen and Executing control area. Erasing control area restricts any
other action when some movement is about be erased.

0 intref_2 S3

(») Check if Teaching Check if Executing

Compile Teaching

Start Teaching

Stop Teaching

Save Movement

Compile Execution

Execute Movement

Stop Execution

New Variable Erase Movement © Check if Erasing

Figure 39, GUI frame for application

Each taught movement is stored form Simulink model in variable called Movement in
Matlab workspace. Afterwards this variable can be assigned to another name from Data Store
Handle of GUI. Variables which are currently active in Data Store Handle can be seen in
listbox, shown in Fig. 44.

DS Handle works as variable name Exchange. Other names for variables are created only
in DS handle. Every time a new variable is created a window pops up. Pop up window and
detailed data flow and operation explanation can be seen in Figures 40 and 41.

56

Name

Enter new movement name:

OK Cancel

Figure 40, Popup window for new variable

GUI

Teach handle

set communication

between GUI and

Simulink Teach Model

Data Store
handle

create movemet data
choose data names
erase movement data

Execute
handle

Set communication

between GUI and

Simulink Execute Model

S a v e correct movement
in Movemen t var iable

S a v e other movements with
n ames from D S handle

Compile Code
Connect to Target
Run Simulation
Stop Simulation

Matlab

S a v e Movemen t var iable
with different name

Workspace
Store main variable called Movement

Store variables saved trom Data Store handle

Movement
variable

Movement
I variable

Compile Code
Connect to Target
Run Simulation
Stop Simulation

Simulink

Teach Model
Simulink model which allows to
store enocoder outputs
Save outputs in variable called
Movement

Execute Model
Simulink model which runs stored
encoder outputs as required positions
This required positions are allways
stored in variable called Movement

Figure 41, Description of GUI operation and Data Exchange

57

7.2. Application programming

The two Simulink models, one for teaching and another one for executing robot
movements can be seen in Fig. 42 and Fig. 43. Encoder signals in Teach model need to be
filtered. Appropriate filter is found experimentally. This system does not have big demands
on signal filtering.

posfcn [rati]
1

posfcn [rati]
O.Ss+1

encoder P1 Filter

posfcn [rati]
1

posfcn [rati]
0.5S+1

encoder P2 Filter!

posfcn [rati] 1 k . posfcn [rati]
0.5s+1

encoder P3 Filter3

movement

Figure 42, Simulink model Teach

movement

posfcn [rad]

encoder P1

position [rad)

encoder P2

error 1 action 1

error 2 action 2

error 3 action 3

Regulators

duty

motor_ P1

•Hduty

motor_P2

•Hduty

motor P3

position (rad) -

encoder P3

Figure 43, Simulink model Execute

58

Model inputs from Simulink have always blue foreground color. Inputs from physical
system have cyan color. Outputs either to workspace or to physical system have green color.
Programming GUI required usage of more GUI components and Matlab functions. The most
complicated component was Listbox. Listbox is component, which stores string values in
rows. Indexes of rows start with one. Each string is aligned a number respectively to row
index number. Output of listbox consists of both strings and value. String output contains all
strings and value of row index where pointed string is located. Most important used Matlab
functions are shown and described in table (21).

3 t r =

"Mi. rr.a=la'
•Kr i s t i J i a 1

1 Pet ra 1

•Andrea 1

1 Jozef 1

s t r v a l =

_

Figure 44, Listbox output.

On the left list box with strings and on the right its output when first string is selected

Kristina
Petra
Andrea
Jozef

slbuild'model name.mdľ
Compile a F s i fm i l i n l r model ran in RTWT with
name 'inodel_uame.midl'

get(handler*. lis tboxl, 'value') Return a value of pointed string in Lktbox.

get(handle r>. listbox 1. 'serin ?'); Return all strings in rows from Listbox

set_paramCmo(kl Qamje.mdJVSiî atiooCoiiinimd '̂cQiinect') Connects a simulink model run in RTWT with
name 'inodel_uame.mdl' to target

setjanamCaiodel name.mdlVSimulatiQnConiiii^ Starts a simulink model run in RTWT with
name 'model name.nidi1

Set_panam(,model ™ > iiiriľ 'KÍTTm1aKonr<-iriiriiriiid' 'strip') Stop'* a simulink model mn in RTWT with
name 'model uame.mdl1

evalinCba r

Je'.new_var_ii[une)
Read'; data from Workspace and stores them
in GUI in new_var_name variable

assigning'base'.'movemeut̂ data_from_wr;.):
Assign data stored in GUI variable
dataJJomjB to Workspace variable
Tnovemeut'

Table 21, Main GUI functions used in application

59

7.3. Application results

Application was tested with several movements and worked well. One of the movements
can be seen in figures 45, 46 and 47.

Application Movement - PI
0.4

Time [s]

Figure 45, Application Movement of Motor 1

Application Movement - P2

0 1 2 3 4 5 6 7 8 9

Time [s]
Action Value

0.4

Time [s]

Figure 46, Application Movement of Motor 2

60

Application Movement - P3

g 5 I i i i i i i i i i
0 1 2 3 4 5 6 7 8 9

Time [s]
Action Value

Time [s]

Figure 47, Application Movement of Motor 3

61

8. Conclusion

This project was a team project and therefore my thesis processes only a part of the work
which is necessary to create a functional 3DoF manipulator.

Main aim of this thesis was develop the model of 3xDoF manipulator and test PID
regulator and PID regulation with feedforward compensation. After this is acquired an
application was supposed to be developed in order to improve the manipulator.

In the first part of the thesis, the quality of control with PID regulator was compared with
quality of control with feedforward compensation on a simple pendulum model. Static and
dynamic feedforward compensation was tested. As results of mean square error show, a plain
PID regulator had largest value of mse. A slightly better result had PID regulator with static
compensation. The best result was achieved with dynamic compensation. M S E values show
that feedforward compensation can be used to increase accuracy of the control for systems
with small time constants, but quality of the control depends on the quality of the model.
However the difference in accuracy is very small and sadly the biggest advantage of FFC
could not be tested on the system because it is constructed in such a way, that it is not possible
to make it oscillate. In other words, for the system is control with simple PID regulator
sufficient.

In the next part models of motors, which were used for manipulator construction were
identified. Motor 1 and motor 2 were the same type and motor 3 was different. Therefore two
models were developed. Velocities of motor models in steady state were compared with
velocities of real motors supplied with certain voltage level. Models of motor reached very
accurate results.

Afterwards more complicated system, 3xDoF manipulator was regulated with three
independent PID regulators and with dynamic feedforward compensation. It was more
complicated to create inverse dynamics model, therefore it was modeled with three different
strategies and results from all strategies were compared. Equations of inverse dynamics model
were found out with automated calculation method based on Lagrange equations of second
kind. Next step was to estimate friction coefficients for this system. It was made
experimentally by fitting the graph method. Comparison of regulators shows that for motor 1
there was a more accurate result, when it was regulated only with PID regulator however, for
other two motors this was not the case. This was caused by inaccuracy in the inverse
dynamics model and by the fact, that the inner structure of motors was unknown and that
cables from motor had quite high strength. However the biggest advantage of FFC is that it
can increase the stability of a system. But in the end it turned out, that because motors of the
system are overequipped and have big gear ratios, it is sufficient to control the manipulator
with only 3xPID regulation.

In the last part an application for manipulator was created. Application was developed
only for 3xPID control, because it was sufficient control strategy. It was a T E A C H -
E X E C U T E application in which manipulator was able to repeat any taught movement. A
graphical user interface was created for this application. Due to the fact that only 3xPID
control strategy was taken into consideration, the GUI could be worked out more precisely.
The communication between GUI and Simulink was set and Matlab Workspace was used as
common memory, where all currently available movements were stored. More possibilities
for setting up communication were considered and the simplest and the most suitable was
chosen. Two basic functions E V A L I N and ASSIGNIN which can pass the data as parameters
were used for the communication. Because a Simulink model was programmed in RTWT
mode, also compile and connect to target options were implemented in GUI to achieve better
control comfort. In the end manipulator was able to repeat any memorized movement with
excellent accuracy and memorize as many movements as needed.

62

Almost all tasks from assignment were fulfilled. One was approved by thesis supervisor
to be omitted and other could not be fulfilled, by reason of the PID control strategy was
sufficient. But in the end the 3xDoF manipulator was built, which was able to perform
different tasks as for example to repeat taught movements and draw different geometrical
pictures. A user friendly human machine interface was created, which allows easy control of
manipulator for not trained personnel.

63

9. References

[I] Grepl, R.: Kinematika a dynamika mechatronickým systému. Brno : C E R M , 2007,
156 pages. ISBN 978-80-214-3530

[2] Grepl, R.: Modelování mechatronických systému v Matlab/SimMechanics, B E N , 2007

[3] Corke, P.: Robotics, Vision and Control Fundamental Algorithms in Matlab, Springer,
2011, 570 pages, ISBN 978-3-642-20143-1

[4] National Taipei university of technology, Feedforward and Ratio Control [online].
2011 [cit. 10.4.2013]. Available from:
http://www.cc.ntut.edu.tw/~icieng/Feedforward%20and%20Ratio%20Control.pdf

[5] Sapienza University of Rome, Trajectory Planning [online]. 2011 [cit. 15.4.2013].
Available from:
http://www.dis.uniromal ,it/~deluca/rob 1 en/13 TrajectoryPlanningJoints.pdf

[6] Polytechnic Institute of N Y U , Modeling, Identification,and Control of a DC-
Servomotor [online]. 2011 [cit. 13.4.2013]. Available from:
http://mechanical.poly.edu/faculty/slee/ME3411/Exp3.pdf

[7] KLIMEŠ, D.: Hardwarové a softwarové řešení diagnostiky a bezpečnosti provozu
robotického manipulátoru, [Diplomová práca] Brno: Vysoké učení technické v Brně,
Fakulta strojního inženýrství, 66 s., 2013

[8] Brushed DC motor Dunkermotoren GR/G [online]. 2011 [cit. 19.4.2013]. Available
from:
http://www.dunkermotoren.de/default. asp?id=9&lang=2

[9] DC motor with worm gear WLD43, Transmotec [online]. 2011 [cit. 10.4.2013].
Available from:
http://www.transmotec.com/dc-motors/worm-gear/WLD43-Series.aspx

[9] ŠTĚPÁNEK, J.: Identifikace systému, senzorika a implementace řídicího algoritmu
ne-stabilní balancující vozidlo, [Diplomová práce.] Brno: Vysoké učení technické,
Fakulta strojního inženýrství, 62s., 2011

[10] University of Twente, Prototype modeling of mechanical systems [online]. 2011 [cit.
10.5.2013]. Available from:
http://www.utwente.nl/ctw/wa/software/spacar/201 l/protmod/protmod2011 .pdf

[II] Cork Institute of Technology, Feed-Forward Control in Closed-Loop systems,
[online]. 2011 [cit. 17.4.2013]. Available from:
http://www.tommymoriarty.com/academic/Feedrward%20Control%20in%20ClosedL
oop%20Systems.pdf

[12] MathWorks, Use Matlab GUIs with Simulink Models [online]. 2011 [cit. 10.4.2013].
Available from:
http://blogs.mathworks.com/pick/2012/06/01/use-Matlab-guis-with-Simulink-models/

64

http://www.cc.ntut.edu.tw/~icieng/Feedforward%20and%20Ratio%20Control.pdf
http://www.dis
http://mechanical.poly.edu/faculty/slee/ME3411/Exp3.pdf
http://www.dunkermotoren.de/default
http://www.transmotec.com/dc-motors/worm-gear/WLD43-Series.aspx
http://www.utwente.nl/ctw/wa/software/spacar/201
http://www.tommymoriarty.com/academic/Feedrward%20Control%20in%20ClosedL
http://blogs.mathworks.com/pick/2012/06/01/use-Matlab-guis-with-Simulink-models/

[13] MathWorks, Simulink-GUI Synchronization Example [online]. 2011 [cit. 11.4.2013].
Available from:
http://www.mathworks.com/Matlabcentral/fileexchange/authors/76890

[14] MathWorks, GUI development for Simulink models [online]. 2011 [cit. 10.3.2013].
Available from:
http ://www.mathworks .com/Matlabcentral/fileexchange/328 8 8 - gui-development-for-
Simulink-models

[15] Control Tutorials for Matlab and Simulink, Inverted pendulum: System modeling
[online]. 2011 [cit. 1.4.2013]. Available from:
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=
SystemModeling

[16] Motion control systems, Linear and Rotary positioning stages Engineering reference
[online]. 2011 [cit. 1.4.2013]. Available from:
http://www.parkermotion.com/engineeringcorner/linearmechanics.html

[17] Vejlupek, J., Krejsa, J., Ripel, T.: Platforma pro výuku modelování, identifikace a
řízení dynamických soustav, [Závěrečná zpráva projektu FRVS G l 1984/2012] Brno:
VUT, Fakulta strojního inženýrství, 73s., 2013

65

http://www.mathworks.com/Matlabcentral/fileexchange/authors/76890
http://www.mathworks
http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=
http://www.parkermotion.com/engineeringcorner/linearmechanics.html

10. List of figures

Figure 1, Basic diagram of Feedforward and Feedback control [4] page: 15
Figure 2, Inverted pendulum model for FFC compensation [15] page: 17
Figure 3, Control with FFC of inverted pendulum [16] page: 18
Figure 4, Dependence of friction torque vs. speed [3] page: 23
Figure 5, Schematic representation of DC motor [6] page: 24
Figure 6, Block properties and callbacks [13] page: 25
Figure 7, S-Function data flow diagram [14] page: 26
Figure 8, Testing device: 1 - holder, 2 - vise, 3 - DC motor page: 27
Figure 9, Control without compensation page: 28
Figure 10, Control with PID regulator only page: 28
Figure 11, Static compensator Simulink model page: 29
Figure 12, Control with static compensation page: 29
Figure 13, Dynamic compensator structure page: 30
Figure 14, Movement based only on dynamic compensator page: 30
Figure 15, Control with dynamic compensator page: 30
Figure 16, Control with static compensation page: 31
Figure 17, Control with dynamic compensation page: 31
Figure 18, Comparison of simulated and real drive run-ups of PI and P2 page: 36
Figure 19, Comparison of real and simulated run-ups with altered parameters page: 36
Figure 20, Comparison, simulated and real drive run-ups of P3 page: 38
Figure 21, Inverse kinematics - model for calculations page: 40
Figure 22, Coordinate systems for LR2 and Simmechanics methods page: 41
Figure 23, Model for inverse dynamics calculation in Simmechanics page: 42
Figure 24, D H parameters page: 44
Figure 25, Comparison of torques calculated by different methods page: 45
Figure 26, Movement modeled with viscous friction page: 46
Figure 27, Movement modeled with viscous and Coulomb friction page: 47
Figure 28, Trajectory planning data flow for 3xPID control page: 48
Figure 29, Simulink model for 3xPID control page: 49
Figure 30, Motor 1 position tracking and action value, 3xPID control page: 49
Figure 31, Motor 2 position tracking and action value, 3xPID control page: 50
Figure 32, Motor 3 position tracking and action value, 3xPID control page: 50
Figure 33, Trajectory planning dataflow for regulation with FFC page: 51
Figure 34, Simulink model for regulator with feedforward compensation page: 52
Figure 35, Motor 1 position and action value, regulator with FFC page: 52
Figure 36, Motor 2 position and action value, regulator with FFC page: 53
Figure 37, Motor 3 position and action value, regulator with FFC page: 53
Figure 38, Movement for comparison of quality of control page: 54
Figure 39, GUI frame for application page: 56
Figure 40, Popup window for new variable page: 57
Figure 41, Description of GUI operation and Data Exchange page: 57
Figure 42, Simulink model Teach page: 58
Figure 43, Simulink model Execute page: 58
Figure 44, Listbox output. page: 59
Figure 45, Application Movement of Motor 1 page: 60
Figure 46, Application Movement of Motor 2 page: 60
Figure 47, Application Movement of Motor 3 page: 61

66

11. List of tables

Table 1, Testing motor parameters page: 27
Table 2, PID Constants for testing device page: 28
Table 3, Comparison of movements' accuracies in squared radians page: 32
Table 4, Calculation of k<p constant for drive PI and P2 page: 33
Table 5, Calculation of friction constants of drive PI and P2 page: 34
Table 6, Calculation of c<p constant for drive PI and P2 page: 35
Table 7, Comparison of parameters and comparison of speeds for PI and P2 page: 36
Table 8, Calculation of k<p constant for drive P3 page: 37
Table 9, Calculation of friction constants of drive P3 page: 37
Table 10, Calculation of c<p constant for drive P3 page: 38
Table 11, Parameters for P3 drive and comparison of transient state of P3 page: 39
Table 12, Lengths of arms for inverse kinematics calculation page: 40
Table 13, Inertia matrices of arms for Simmechanics and LR2 method page: 42
Table 14, Positions of arms COGs for all methods page: 43
Table 15, Position of arms' CS origins with respect to CSO in Simulink page: 43
Table 16, D H parameters page: 43
Table 17, Inertia matrices of arms for D H parameters method page: 44
Table 18, Friction coefficients page: 47
Table 19, PID constants for control page: 49
Table 20, Comparison of PID and FeedForward control using M S E page: 55
Table 21, Main GUI functions used in application page: 59

67

12. List of abbreviations and symbols

FFC - Feedforward control
DOF - Degree of freedom
3xDOF - Three degrees of freedom
D H - Denavit Hartenberg
CoG - Center of gravity
CS - Coordinate system
CSO - Coordinate system of the base
CS 1 - Coordinate system of the arm 1
CS2 - Coordinate system of the arm 2
CS3 - Coordinate system of the arm 3
M S E - Mean square error
DC - Direct current
GUI - Graphical user interface
DS - Data store
RTWT - Real time windows target
PI - Motor 1 in manipulator
P2 - Motor 2 in manipulator
P3 - Motor 3 in manipulator
a, a,6>,r- Denavit Hartenberg parameters
LR2 - Lagrange equations of the second kind
L I , L2, L3 - Lengths of manipulator arms
b - Viscous friction constant
T - Coulomb friction constant
J, I - Rotor inertia
R - Resistance
x_T - Position of center of gravity
m_T - Mass of the pendulum
V - Voltage applied across DC motor
v s - Induced voltage
9l,32,3i- Steering angles
a, p- Auxiliary angles

c,, k6 - Motor constants

68

13. Appendixes

Matlab - Simulink
1. PID and feedforward manipulator control models
2. PID and feedforward pendulum control models
3. Application for manipulator - Simulink programs and GUI m-files
4. Inverse kinematics module
5. Simmechanics inverse dynamics model
6. Motor PI, P2 and P3 simulation modules and m-files with constants
7. Equations of inverse dynamics model

Maple
1. Calculation of inverse dynamics model

69

