Jihočeská Univerzita v Českých Budějovicích Přírodovědecká fakulta

Molekulární markery pro studium genetické variability forenzně významných druhů mouchovitých (Muscidae)

Bakalářská práce

Markéta Chocholoušková

Školitelka: Školitel: PaedDr. Martina Žurovcová, Ph.D. Školitel specialista: plk. Ing. Hana Šuláková, Ph.D.

České Budějovice 2024

Chocholoušková M., 2023: Molekulární markery pro studium genetické variability forenzně významných druhů mouchovitých (Muscidae). [Molecular markers for study of genetic variation in forensically important species of flies (Muscidae). Bc. Thesis, in Czech.] – 110p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.

Anotace

The aim of this work was to select and test molecular markers for the assessment of genetic variability of forensically important Muscidae flies most commonly found in the Czech Republic. Mitochondrial (*COI*) and nuclear (*ITS*) markers were sequenced and supplemented with the corresponding data from public databases. While *COI* was primarily used to analyze intraspecific variability, the secondary structure of *ITS* was compared between species.

Prohlášení

Prohlašuji, že jsem autorem této kvalifikační práce a že jsem ji vypracovala pouze s použitím pramenů a literatury uvedených v seznamu použitých zdrojů.

České Budějovice, 10.4.2024

.....

Markéta Chocholoušková

Mé poděkování patří především své školitelce PaedDr. Martině Žurovcové, Ph.D. za nekonečnou trpělivost, velikou pomoc a poskytnutí cenných rad, které mi pomohly při tvorbě a psaní celé práce. Dále plk. Ing. Haně Šulákové, Ph.D. za dodání analyzovaného materiálu. Velké poděkování patří také celé má rodině a kamarádům, kteří mi byli obrovskou oporou při psaní této práce. V neposlední řadě bych chtěla poděkovat N. Jánové, která mi v laboratoři poskytovala užitečné rady.

Obsah

1.	Úvod		1
	1.1. For 1.1.1. 1.1.2.	enzní entomologie Post mortem interval (PMI) a sukcese hmyzu Mouchovití (Muscidae) – forenzně významné druhy	1 2 4
	1.2. Mo 1.2.1. 1.2.1. 1.2.2. 1.2.2. 1.2.2. 1.2.3.	 lekulární markery ve forenzní entomologii Mitochondriální markery 1. Cytochromoxidáza I (<i>COI</i>) ("DNA barcoding") Jaderné markery 1. Internal Transcribed Spacer (<i>ITS</i>) Molekulární markery pro studium forenzních druhů mouchovitých (M 	
2.	Cíl prá	ce	14
3.	Materia	ál a metody	15
	3.1. Ma	teriál	15
	 3.2. Lab 3.2.1. 3.2.2. 3.2.3. 3.2.4. 3.2.5. 	poratorní metody Extrakce DNA Polymerázová řetězová reakce (PCR) a optimalizace profilů Gelová elektroforéza Přečištění vzorků a sekvenování Klonování	
	3.3. Prá	ce s databázemi	22
	3.4. Sof	ftware pro analýzu dat	23
4.	. Výsledl	ky	25
	4.1. Op	timalizace DNA izolace a PCR amplifikace	25
	4.2. Mit 4.2.1. 4.2.2. 4.2.3.	tochondriální marker <i>COI</i> Základní vnitrodruhová variabilita Vnitrodruhová genetická variabilita Mezidruhová variabilita	
	4.3. Jad	lerný marker ITS	
	4.3.1.	Nukleotidová variabilita <i>ITS</i>	
	4.3.2. 4.3.3.	Mezidruhová genetická variabilita <i>ITS1</i> a <i>ITS2</i>	
5	. Diskus	e	
-	5.1. Me	etody – extrakce DNA a optimalizace PCR	
	5.2. Mi	tochondriální markery	45
	5.2.1.	<i>CR</i> oblast	

	5.2.2. COI	
	5.3. Jaderný marker ITS	
	5.3.1. Sekundární struktury <i>ITS</i>	
6	5. Závěr	51
7	/. Zdroje	52
8	8. Přílohy	60

1. Úvod

Téma mé bakalářské práce se řadí do oboru forenzní entomologie a navazuje na diplomovou práci (Klojdová, 2018), která se zabývala testováním molekulárních markerů pro studium genetické variability významných druhů much čeledi bzučivkovití (Calliphoridae) a bakalářskou práci (Jánová, 2021), která se zabývala genetickými markery pro druhovou identifikaci a variabilitu forenzně významných druhů masařek (Sarcophagidae). V mé práci byly podobným způsobem otestovány další druhy, které jsou významné pro forenzní entomologii. Konkrétně druhy z čeledi mouchovití (Muscidae), které se běžně nachází na území České republiky.

1.1. Forenzní entomologie

Forenzní entomologie je vědní disciplína, která se zabývá studiem členovců, především forenzního hmyzu dvoukřídlých a brouků, kteří patří v tomto oboru mezi nejvýznamnější a řadí se mezi důkazní materiál při kriminalistických vyšetřováních. Tento obor zahrnuje studium životního cyklu hmyzu, vývojových stádií a chování. Entomologové jsou schopni určit dobu, kdy hmyz začal na tělo přilétat a hmyz posléze analyzují. Pomocí těchto metod dokážeme určit, kdy bezobratlý začali kolonizovat mrtvého (Durden & Mullen, 2002; Amendt et al., 2011). Při získávání důkazů se sbírají vzorky jak z těla mrtvoly, tak z jeho okolí: vajíčka much, larvy much, puparia much, dospělí jedinci atd. (Eliášová & Šuláková, 2012).

Forenzní entomologie se nemusí zabývat pouze mrtvými těly, ale dá se například zjistit zanedbání zvířecí péče, kdy hmyz klade vajíčka do srsti zvířete, které není schopno se larev zbavit, tento problém se nejčastěji vyskytuje v takzvaných množírnách, kde není zvířatům poskytnuta příslušná péče (Šuláková, 2014).

Významným faktem je i to, že pomocí forenzního hmyzu se dá určit místo úmrtí, neboť některé druhy jsou vázány na konkrétní prostředí. Pokud je tělo nalezeno mimo jeho přirozené prostředí, může to být známkou toho, že bylo přemístěno (Greenberg & Kunich, 2002). Vše záleží na mnoha dalších faktorech, jako je například teplota, která může urychlit vývoj hmyzu (při vysokých teplotách se procesy zrychlují a při nízkých se vše zpomaluje), další faktory jsou vlhkost nebo přítomnost dalších organismů. Mezi další důležité aspekty patří stav mrtvoly, a to

především po jaké době bylo tělo nalezeno, věk, pohlaví, přítomnost toxických látek, které mohou ovlivnit vývoj hmyzu, sexuální napadení či způsob usmrcení a s ním spojené různé rány na těle do kterých mohou být poté kladeny vajíčka hmyzu (Grzywacz et al., 2017).

Jako první případ, ve kterém byly použity poznatky z forenzní entomologie, se považuje vyšetření vraždy na rýžovém poli již ve 13. století v Číně. Výzkumy prováděné v 17. a 18. století s cílem vysvětlit vývoj hmyzu na tělech různých druhů živočichů a přijetí systému klasifikace druhů byly klíčovým pokrokem, který umožnil rozvoj této oblasti. Na základě identifikace druhů, pochopení zákonitostí kolonizace těl hmyzu a časového rozvržení mnoha vývojových stadií v životě hmyzu tak mohl být vytvořen systém, který umožnil určit dobu smrti (Gennard, 2007).

Ve 20. a 21. století je již známo mnoho případů, ve kterém forenzní entomologie hrála zásadní roli. Velice rozšířená je například v USA, kde je běžně považována jako součást vyšetřování. Jednou ze zajímavostí jsou například "farmy těl", kam jsou do terénu umísťovány těla zemřelých (jde o darování vlastního těla pro vědecké účely), kde je možné pozorovat těla v různých částech rozkladu (University of Tennessee Knoxville, 2021, <u>The Forensic Anthropology Center - Forensic Anthropology Center (utk.edu)).</u>

1.1.1. Post mortem interval (PMI) a sukcese hmyzu

Forenzní entomologie je hlavním nástrojem stanovení post mortem intervalu (PMI), tedy doby mezi úmrtím a nálezem mrtvého těla (kadaveru). Podle studií patří entomologické postupy k nejpřesnějším pro určení PMI, pokud jsou použity 72 hodin po úmrtí (Daněk, 1990). Je důležité mít na paměti, že může dojít k nesprávným závěrům, protože čas smrti a přístup k tělu hmyzu se ne vždy shodují. Například pokud je mrtvola zakryta nebo pohřbena, nemusí se k ní hmyz dostat hned, což zpozdí sukcesi a způsobí její odlišný vývoj (Greenberg & Kunich, 2002).

Sukcese probíhá v tzv. sukcesích vlnách, kdy dochází ke střídání organismů na mrtvole a kolonizují na těle postupně. Sukcesi popsal F. E. Clements v roce 1916 jako nesezonní, směrovaný a kontinuální proces kolonizace a zániku populací druhů na jednom místě. Uvádí se 4-8 sukcesních vln, jako optimální se uvádí 7 sukcesních fází. Zřetel se musí brát především na místo nálezu (mrtvoly volně exponované, v uzavřeném prostředí, pohřbené nebo ve vodním prostředí). Pro každé prostředí platí jiné podmínky rozkladu a výskyt hmyzu na mrtvém těle (Eliášová & Šuláková, 2012). Jednotlivé fáze jsou podle práce Eliášová a Šuláková (2012) charakterizovány následovně:

První fáze – záleží, zda je tělo netknuté nebo má na sobě krvavé rány. Pokud člověk zemře přirozenou smrtí, udušením nebo mrtvicí (tělo je bez známek zranění), hmyz nerozpozná, že jde o potenciální zdroj a přilákají ho až uvolňované plyny při rozkladu. Pokud má na sobě mrtvola krvavé zranění v první fázi se na čerstvém těle vyskytuje mouchy čeledi bzučivkovitých (Calliphoridae) a kolonizace může začít téměř okamžitě (v těchto případech je čas smrti téměř shodný).

Druhá fáze – tělo začíná páchnout a nadouvat. Tento uvolňovaný plyn přitahuje čeledi bzučivkovitých (Calliphoridae) a masařkovitých (Sarcophagidae).

Třetí fáze – začínají se uvolňovat mastné kyseliny, což je silným atraktantem pro mouchy z čeledi mouchovitých (Muscidae).

Čtvrtá fáze – ve čtvrté fázi se vyskytují především octomilky (Drosophila) a sýrohlodky (Piophila).

Pátá a šestá fáze – v páté fázi to jsou drobné mušky hrbilky (Phoridae). V šesté fázi začíná docházet k vysychání tkání, což přestává být pro hmyz atraktivní, ale stále se vyskytují mouchy z čeledi sýrohlodkovitých (Piophilidae) a hrbilkovitých (Phoridae).

Sedmá fáze – a zároveň poslední fáze neláká žádný hmyz, jelikož z mrtvého těla zůstali pouze kosterní zbytky, na kterých se vyskytují brouci (Coleoptera) a roztoči (Acari).

Nová imaga, které se na mrtvole vyvinou, odlétají dále, protože pro ně končí vhodné podmínky pro přežití a na kladení si vybírají jiný objekt. Samozřejmě se setkáme s případy, kdy dochází k opětovnému kladení a výskytu několika po sobě jdoucích generací, což se vyskytuje především v pozdějších fázích sukcese, a může to být dáno tím, že se rozklad zpomaluje. Všechny zmíněné fáze jsou propojeny, tudíž se na těle vyskytuje více druhů z různých fází. (Eliášová & Šuláková, 2012).

1.1.2. Mouchovití (Muscidae) – forenzně významné druhy

Mouchovití (Muscidae) se řadí do kmene členovci (Arthropoda), třída hmyz (Insecta), řád dvoukřídlý (Diptera). Jedná se o jednu z hlavních dvoukřídlých skupin uznávané pro medicínsko-právní účely. Hrají významnou roli při rozkladu organické hmoty, jsou jedny z nejběžnějších členovců, kteří se vyskytují na lidských mrtvolách nebo zvířecích mršinách. Jedná se o velice různorodou skupinu, kdy bylo popsáno téměř 400 druhů ve více než 100 rodech. Tato skupina je kosmopolitní od arktického pásu až po pás tropický, jedná se o synantropní druhy (žijící v blízkosti člověka a lidských sídel), což bylo zaznamenáno již v dávné historii (Hodacek et al. 2023). V mnoha ohledech se liší jak vzhledově, tak ekologicky (Grzywacz, 2017). Jejich velikost se pohybuje od 2 do 8 mm. Mouchovití se mohou živit dravě, hematofágně či saprofágně. Dále také mohou být přitahovány pomoci různých tělních tekutin a výměšků (např. pot, slzy nebo krev, což souvisí s faktem, že dospělí jedinci mohou být pasivní přenašeči patogenů, jako je například břišní tyfus, úplavice nebo spavá nemoc. (Gennard, 2007; Povolný, 1978).

Ačkoli spojení dospělých much s rozkládajícími se lidskými a zvířecími mrtvolami bylo celosvětově doloženo u přibližně 200 taxonů, kadavery však představují místa rozmnožování pro podstatně méně druhů. Druhy, které kolonizují mrtvá lidská těla, tak mohou činit za různých podmínek prostředí, a za určitých okolností mohou být Muscidae jedinými kolonizátory těla. (Byrd & Castner, 2009). Kvůli obtížím s identifikací byly v mnoha studiích identifikováno nedospělé nebo dospělé muscidy pouze na úrovni rodu nebo čeledi. Tento nedostatek detailní identifikace na druhové úrovni brání podrobnému zkoumání jejich medicínsko-právní využitelnosti odborníky zaměřenými na sukcesi kadaverů. Byl proveden důkladný přehled druhové identifikace třetích instarů forenzně významných Muscidae a užitečnosti morfologických znaků larev pro taxonomické účely (Greenberg & Kunich, 2002). Celkově lze říct, *že* Muscidae jsou významně zastoupeny v kriminalistických případech. Jsou často nalezeny v místě trestného činu, mohou být nalezeny v různých typech prostředí díky jejich adaptaci na prostředí. Jsou často využívány k odhadování době úmrtí (Povolný, 1978).

K nejvýznamnějším forenzním zástupcům čeledi mouchovitých (Muscidae) na území ČR patří následující druhy (**Obr. 1**):

a) moucha lesklá (*Hydrotaea ignava*) - druh se nejvíce vyskytuje v okolí lidských sídel a zemědělských oblastí, kde se může živit exkrementy zvířat a organickým materiálem. Od mouchy domácí se odlišuje menším vzhledem a typickým způsobem letu (Hodacek et al., 2003).

- b) moucha domácí (*Musca domestica*) je kosmopolitní druh, který se vykytuje v okolí člověka a jeho sídlech, zejména v místech, kde jsou potravní zdroje. Samice kladou vajíčka na hnilobné organické látky, hnoje nebo organické zbytky, které se vykytují v okolí nálezu těla. *M. domestica* se vyskytuje nejčastěji na mrtvolách v uzavřených prostorách, jako jsou půdy, byty nebo sklepy, a to především kvůli tomu, že tento druh je synantropní a žije v blízkosti člověka. (Eliášová & Šuláková, 2012; Moon, 2002).
- *c)* Muscina prolapsa tento druh se vyskytuje v okolí lesů, pastvin nebo městských oblastí. Svoje larvy nejčastěji klade na místa jako je hnůj, kompost nebo hnijící materiál (Byrd, 2018).
- d) Muscina pascuorum největší výskyt v oblastech jako jsou pastvy, louky a pole. Jejich larvy se vyvíjí ve vlhké půdě. Dospělí jedinci se především živí nektarem a pylem (Byrd, 2018).
- e) Muscina levida vyskytuje se v okolí luk, polí a lesů. Larvy M. levida jsou saprofágové, což znamená, že se živí rozkládajícími organickými látkami (Moon, 2002).
- f) moucha domovní (*Muscina stabulans*) vyskytuje se v okolí hospodářských zvířat zejména v jejich stájích. Preferuje stinná a temná místa a je považována za jednu z nejvíce významných forenzních much (Benecke, 2001).

Výše zvedené mouchy rodu *Muscina*. (c-f) se často vykytují na mrtvolách, které jsou pohřbené. Samičky tohoto rodu kladou vajíčka na povrch a larvičky prolézají půdou k pohřbenému tělu. (Eliášová & Šuláková, 2012).

Obr. 1: Vybrané druhy forenzně významných mouchovitých (Muscidae); a) *Hydrotaea ignava* (4-6mm) b) *Musca domestica, (7mm) c) Muscina prolapsa, (6-9mm) d) Muscina pascuorum* (9mm) e) *Muscina levida, (9mm)* f) *Muscina stabulans (6-9mm)*. Fotografie převzaty z https://www.biolib.cz/.

1.2. Molekulární markery ve forenzní entomologii

Molekulární marker v nejobecnějším pojetí je molekula, která nám dává informaci o svém původci. Napomáhají při řešení ekologických, fylogenetických či evolučních problémů. Typy genetických markerů můžeme rozdělit na dvě skupiny – proteinové (alozymy) a DNA markery (Loxdale & Lushai, 1998; Nordborg et al., 2002), což mohou to být různé úseky genomu nebo konkrétní sekvence kódujících DNA genů. Markery na úrovni DNA můžeme rozdělit na mitochondriální a jaderné, podle toho odkud vybraný markerový lokus pochází. Techniky používané pro detekci variability pak v podstatě kopírují jejich postupný vývoj a zavádění do molekulární biologie a evoluční genetiky – od PCR-RFLP, RAPD až k sekvenování vybraných genů či SNP a mikrosatelitům (Wells & Stevens, 2008).

Ve forenzní entomologii se molekulární markery používají především k identifikaci druhů hmyzu nalezeného na místě činu, posléze k určení času smrti na základě vývoje larev hmyzu (Loxdale & Lushai, 1998).

V práci Wallmana a Adamse (2001) byla úspěšně využita alozymová analýza ve forenzní entomologii ke spolehlivé identifikaci druhů čeledi *Calliphoridae*. Alozymy mají však řadu nevýhod, zejména potřebu čerstvého biologického materiálu. Další nevýhodou je, že enzymové lokusy mají často jen nízkou míru detekované variace. (Loxdale & Lushai, 1998).

Jako první se o zavedení druhové identifikace forenzně významného hmyzu na základě DNA markerů prosazovali (Sperling et al. 1994). K dalším významným jménům patří například Schroeder et al. (2003), kteří jako jedni z prvních ve forenzní entomologii potvrdili odlišnost tří druhů (*L.sericata, C.vomitoria a C.vicina*), které byly nalezeny na mrtvém těle. K odlišení došlo pomocí využití restrikční endonukleázy, které štěpí molekulu DNA na určitých místech a dochází k tvorbě fragmetu DNA, což můžeme poté sledovat na naneseném gelu (Loxdale & Lushai, 1998).

1.2.1. Mitochondriální markery

Mitochondrie jsou organely, které se nachází v cytoplazmě buněk eukaryotických organismů. V každé buňce je několik mitochondrií a v každé mitochondrii je mnoho kopií mtDNA (Birky, 1978). Mitochondriální DNA má výhodu v tom, že je díky svým četnějším kopiím v buňce následně lépe detekovatelná (Loxdale & Lushai, 1998; Caterino et al., 2000).

Mitochondriální genom je u hmyzu poměrně malý a má velikost zhruba 15-16 kbp (Alberts, 2002). Je tvořen typickou kruhovou molekulou obsahující 13 genů kódující proteiny, 2 ribozomální RNA, 22 transferových RNA a nekódující kontrolní oblasti (**Obr. 2**). Každý z těchto lokusů má jinou úroveň variability, a proto může být markerem pro různé taxonomické úrovně (Ren, 2018; Gemmellaro et al., 2019).

Obr. 2: Schéma mitochondriálního genomu *Hydrotaea spinigera*. zdroj: <u>Characterizationofthecompletemitochondrial genome ofHydrotaeaspinigera (Diptera:</u> <u>Muscidae) withphylogeneticimplications - ScienceDirect</u>

1.2.1.1. Cytochromoxidáza I (COI) ("DNA barcoding")

První zmínka o metodě DNA barcoding byla roku 2003 v časopise Proceeding sof the Royal Society of London Hebert et al. Její podstatou je porovnání vnitrodruhové a mezidruhové variability vybraného lokusu. Marker, který splňuje podmínku, že jeho mezidruhová variabilita je násobně vyšší než vnitrodruhová, pak může být použit pro přiřazení – určení jedince do určitého druhu (Hebert et al., 2003; Meyer & Paulay, 2005).

Hlavním předpokladem je srovnání s referenční knihovnou podobných DNA úseků, která vzniká osekvenováním DNA z morfologicky dobře popsaných druhů (Hebert et al. 2003). Pro hmyz je používána část mitochondriálního genu pro cytochromoxidázu I (*COI*) (Caterino et al., 2000). Tato metoda získala v posledních letech významnou roli i ve forenzní entomologii, protože určuje rychlé a spolehlivé určení druhu hmyzu nalezeného na místě činu, což může hrát klíčovou roli při určení geografického původu oběti nebo času smrti (Chimeno et at., 2018).

1.2.2. Jaderné markery

Při srovnání s mitochondriálním genomem je nukleární genom mnohem větší. Obsahuje více možností než mitochondriální, protože se v něm nachází kódující i nekódující sekvence, které mohou být využity k různým studiím a analýzám. (Parker et al., 1998). Nevýhodou u jaderných markerů může být rychlá degradace. Heterozygotnost jaderných markerů je obvyklá, protože organismy mají dvě kopie každého chromozomu. Tito jedinci jsou důležití pro genetickou variabilitu v populaci (Loxdale & Lushai, 1998).

Mezi jaderné markery, které se často používají ve forenzní entomologii, patří například: mikrosatelity – jedná se o krátké opakování se sekvencemi DNA v jaderném genomu, mohou být využity pro analýzu genetické variability. SNP (single nucleotide polymorphism) – polymorfismy jsou místa v DNA, kde se vyskytuje variabilita v jednom nukleotidu mezi jednotlivci, mohou se používat pro genetické analýzy, VNTR (variable number tandem repeat) – jsou oblasti DNA, ve kterých se opakují krátké sekvence nukleotidů, AFLP (amplified fragment lenght polymorphism) – tato technika umožnuje analýzu genetické variability mezi jednotlivci nebo populacemi na základě rozdílů v délce fragmentů DNA amplifikovaných PCR.

1.2.2.1. Internal Transcribed Spacer (*ITS*)

Lokus *ITS* je u některých druhů používaný pro DNA barcoding (např. houby nebo hlístovky) jindy jako marker pro DNA barcoding komplementární. Jde o je úsek DNA, který se nachází mezi geny pro ribozomální RNA (rRNA) v jaderném genomu eukaryotních organismů, konkrétně v kódující oblasti mezi 18S a 28S. *ITS* zahrnuje oblasti *ITS1*, která se nachází mezi 18S a 5.8S rRNA geny a *ITS2* v oblasti mezi 5.8S a 28S rRNA geny (Gerbi, 1985). U dvoukřídlého hmyzu se dále vyskytuje 2S ribozomální RNA, která je pro tento hmyz typická (Stage & Eickbush, 2015) (**Obr. 3**).

Obr. 3: Schéma ribozomálních genů společně s *ITS*). IGS je úsek mezi dvěma geny v RNA. *ITS* se skládá ze dvou regionů, *ITS1* a *ITS2*, oddělených tímto interním transkribovaným prostorem (IGS). ETS úsek mezi genem rRNA a genem tRNA v ribosomálním RNA (rRNA). ETS se nachází před genem rRNA a je oddělen od něj transkripčním startovním místem (Stage & Eickbush, 2015).

V minulosti byla výzkumná pozornost často zaměřena především na *ITS2*, protože se ukázalo, že tento úsek je často méně konzervovaný a poskytuje vyšší míru variability mezi druhy a jedinci (Douglas & Haymer, 2001). *ITS2* byl také používán pro svou schopnost poskytovat rozlišení mezi blízce příbuznými druhy, což je užitečné pro taxonomické a fylogenetické studie. Avšak, v posledních letech se zvyšuje zájem o *ITS1*, protože se ukázalo, že i tento úsek může být velmi variabilní a obsahuje informace relevantní pro fylogenetické analýzy a taxonomii (Stage & Eickbush, 2015). *ITS1* nebylo dříve sekvenováno pro mouchy z důvodu, že tato oblast je vysoce variabilní a byla amplifikována s velkými obtížemi (vysoká variabilita může být výhodná například pro vnitrodruhové analýzy, ale může představovat problémy při interpretaci dat (Nelson, 2008). Kromě nukleotidové variability může mít *ITS* i délkovou variabilitu. Což se týká rozdílů v délce *ITS* regionů mezi druhy nebo jedinci téhož druhu. Důvodem je fakt, že *ITS* regiony nejsou v jaderném genomu pevně dané délky (například mohou mít různý počet nukleotidů nebo různý počet opakujících se sekvencí).

Shrnutí popsaných výhod a nevýhod tohoto markeru je shrnuto v tabulce 1.

|--|

výhody ITS	nevýhody ITS
vyšší variabilita	přítomnost inverzních opakování při amplifikaci
univerzálnost primeů	heterogenita v rámci <i>ITS</i> regionů u jednoho jedince
Snažíš amplifikace a sekvenování – <i>ITS</i> oblasti jsou obvykle kratší než ribozomální geny	obtížnost porovnat <i>ITS</i> regiony mezi různými taxony, kvůli vysoké variabilitě
<i>ITS</i> geny se mohou měnit rychleji než jiné části genomu	rychlejší degradace jaderné DNA
poskytnutí informací o fylogenetických vztazích mezi různými druhy dvoukřídlých	

Další zajímavostí u *ITS* je tvorba sekundární struktury v **obrázku 4.,** které zviditelňují konzervované oblasti a může nám poskytnout informace o evolučních vztazích a fylogenetickém vývoji. Tato oblast není moc probádána a zajímalo se o ní pouze pár vědců. V práci Schlötterer et *al.* (1994) byly poprvé popsány sekundární struktury u *Drosophila melanogaster*. Analýzou sekundární struktury *ITS* u Dipter se zabývali také Young & Coleman (2004) a Song et al. (2008), ti se však soustředili jen na fragment *ITS2*.

Obr. 4: Graf základních prvků sekundárních struktur *ITS* (upraveno podle Dr. Kevin Weeks: a MaP of RNA structural landscapes. https://misciwriters.com/2021/03/26/dr-kevin-weeks-a-map-of-rna-structural-landscapes/).

1.2.3. Molekulární markery pro studium forenzních druhů mouchovitých (Muscidae)

Prací používajících molekulární markery pro studium Muscidae a zejména forenzní druhy není mnoho a dají se rozdělit na fylogenetické a zaměřené na druhovou identifikaci. S fylogenetickými souvisí především sekvenování celých mitogenomů – např. *M. stabulans* (Lan et al., 2015), *H. ignava* (Karazoglu et al. 2017) a *M. pascuorum* (Huang et al., 2021). Ren et al. (2019) osekvenovali a porovnal 4 mitogenomy vybraných zástupců Muscidae, přitom porovnali fylogenetické vztahy v rámci čeledi s přidáním dříve používaných markerů *ITS2* a elongační faktor 1-alpha (*EF-1* α). Tato kombinace vedla ke zpřesnění dříve nerozlišených skupin, a proto mitogenomiku hodnotili jako velmi žádoucí.

Bez zahrnutí forenzních druhů byla provedena fylogenetická studie Muscoidea i s odvozením evolučních časů Dingem et al. (2015). Obdobná práce na úrovni Muscidae (Li et al., 2023) už zahrnovala forenzně významné zástupce rodů *Hydrotaea* a *Muscina*.

Prací zabývajících se druhovou identifikaci forenzních much z čeledi Muscidae je o něco více. K prvním lze řadit např. Bhakdeenuan et al. (2012), kde byla pro analýzu veterinárně a medicínsky významných druhů v Thajsku použita PCR-RFLP fragmentu *ITS2*. DNA barcoding se standardním markerem *COI* použili Kim et al. (2014) pro identifikaci nekrofágních much v Koreji, Ren et al. (2018) analyzovali tyto mouchy v Číně. Chimeno et al. (2018) sestavili přehled nejvíce zastoupených druhů ve forenzních souvislostech a navrhnul vytvoření referenční knihovny DNA barcodů. Za největší lze považovat studii Hodecek et al., (2023), v níž je shrnuta frekvence výskytu dvoukřídlých v kriminálních případech ve Švýcarsku v letech 1993–2007. Muscidae byly nalezeny ve třetině případů, s největším druhovým zastoupením, což podtrhuje význam jejich studia.

DNA barcoding na základě COI byl také použit pro studium druhové diverzity jako takové. Renaud et al. (2012) se zaměřili na čeleď Muscidae v Nearktickém areálu (Kanada a Aljaška) a potvrdili souhlasnost morfologické a molekulární identifikace. Obdobné mapování druhové diverzity Diptera provedli v Bavorsku Chimeno et al. (2021), kde bylo detekování daleko více druhů, než bylo předpokládáno.

2. Cíl práce

· Na základě publikací a předchozích prací vybrat molekulární markery pro detekci genetické variability u forenzně významných druhů hmyzu z čeledi mouchovitých (Muscidae).

· Analyzovat vybrané markery u zvolených druhů typických pro Českou republiku a vyhodnotit jejich genetickou variabilitu v celém areálu jejich rozšíření.

3. Materiál a metody

3.1. Materiál

V laboratoři jsem pracovala se vzorky, které pochází z České republiky, konkrétně z lokality Praha-Petřín (souřadnice lokality 50,085S 14,386V) a jsou součástí experimentů s prasečími kadavery, které provádí v rámci své výzkumné činnosti Kriminalistický ústav PČR Praha. Odběr a prvotní morfologické určení provedla plk. Ing. Hana Šuláková Ph.D. První část vzorků byla usušena a uskladněna v lednici při teplotě 4 °C, zbylé vzorky byly uloženy v čistém ETOH taktéž v lednici. Celkem bylo analyzováno 42 jedinců z 6ti druhů z čeledi mouchovitých: *Hydrotaea ignava (14 jedinců), Musca domestica (10 jedinců), Muscina stabulans (5 jedinců), Muscna prolapsa (8 jedinců), Muscina levida (5 jedinců).*

3.2. Laboratorní metody

3.2.1. Extrakce DNA

Izolace DNA byla prováděna z nohou a zadečků jednotlivých much. Se vzorky, které byly usušené, se mohlo ihned pracovat. U vzorků uskladněných v etanolu předcházelo jeho odpaření. První způsob je vložení vzorku na filtrační papír a počkat, dokud papír není suchý. Druhý způsob je zahřátí tkáně, kdy je část těla vložena do 1,5 ml zkumavky a zahřívána v termobloku (Thermomixer comfort, Eppendorf), na 40 °C přibližně 5-10 minut, dokud není vzorek zbaven etanolu.

K extrakci DNA byly použity 2 komerční kity, DNeasy Blood & Tissuekit (QIAGEN) pro tkáň ze zadečků a DEP – 25 Extraction Kit (Top – Bio s.r.o.) pro tkáň z nohou. Bylo postupováno přesně podle protokolů výrobců. Pro kontrolu byla měřena koncentrace DNA pomocí Nano Dropu (Thermo Scientific Nano Drop 2000 C Spectrophoto meter). U vzorků, kde vyšla nízká koncentrace, bylo zapotřebí vyextrahovat znovu DNA. V takovém případě byla tkáň ve zkumavce s lyzačním pufrem a proteinázou K ponechána na 24 hodin v termobloku na 40 °C a následná práce probíhala podle protokolu výrobce.

3.2.2. Polymerázová řetězová reakce (PCR) a optimalizace profilů

a) vybrané markery

Na základě literatury a zejména předchozí diplomové a bakalářské práce zabývající se markery pro genetickou variabilitu příbuzných forenzně významných dvoukřídlých druhů jsem se soustředila na markery, u nichž bylo získávání dat nejúspěšnější. Přehled markerů a primerů použitých pro jejich amplifikaci je zaveden v **tabulce 2**.

Tab. 2: Přehled markerů a použitých primerů. mtDNA – mitochondriálních marker, COI – Cytochrom c oxidáza I, CR – kontrolní oblast, nDNA - jaderné markery, ITS – internal transcribed spacer.

marker	lokus	Primery	směr	sekvence $5' \rightarrow 3'$	autor
mtDNA	COI	LCO-1410	F	GGTCAACAAATCATAAAGATATTGG	Folmer et al., 1944
		HCO-2198	R	TAAACTTCAGGGTGACCAAAAAATCA	Folmer et al., 1944
		LCOa	F	TTTCWACAAATCRTAAAGATATYGG	Paul et al., 2003
		HCOb	R	CTCCWGTWGGGATAGCAATAAT	Paul et al., 2003
		LCO-1490L	F	GGTCWACWAATCATAAAGATATTGG	Folmer et al., 1944
		HCO-2198L	R	TAAACTTCWGGRTGWCCAAARAATCA	Folmer et al., 1944
		LCO1490-JJ	F	CHACWAAYCATAAAGATATYGG	Ivanova et al., 2006
		HCO2198-JJ	R	AWACTTCVGGRTGVCCAAARAATCA	Ivanova et. al., 2006
	CR	SR-J-14612	F	AGGGTATCTAATAATCCTAGTT	Simon et al., 1994
		TM-N-193	R	GCTACTGGGTTCATACCCCA	Simon et al., 1994
		SR-J-14753	F	AAGAGCGACGGGCGATGTGT	Simon et al., 1994
		TIN-24	R	ATT TAC CCT ATC AAG GTA A	Simon et al., 1994
		N-2-N-CallR	R	ACTTTAATGAGGCTTCTGTTC	Žurovcová, 2017
nDNA	ITS	ITSf1	F	TACACACCGCCCGTCGCTACTA	Ji, Zhang & He, 2003
		ITSr1	R	CTTTTCCTCCSCTTAYTRATATGC	ji, Zhang & He, 2003
		<mark>1975F</mark>	F	TAACCCAAGGTTTCCGTAGGTG	Retcliffe et al., 2003
		52 R	R	GTTACTTTCTTTTCCTCCCCT	Retcliffe et al., 2003
	18S	18Sa3.5F	F	TGGTGCATGGCCGYTCTTAGT	Whiting et al., 2002
		18S9R	R	GATCCTTCCGCAGGTTCACCTAC	Whiting et al., 2002
	285	28SRd 1.2a	F	CCCSSGTAATTTAAGCATATTA	Whiting et al., 2002
		28SRd3.2b	R	CCTTGGTCCGTGTTTCAAGACGG	Whiting et al., 2002

b) příprava PCR reakce

Veškerá práce s materiálem a komponenty probíhala na ledu ve 0,2 ml zkumavkách. Standardní reakce měla následující složení: 7,25µl ultračisté vody ddH₂O, 1,25µl reakčního pufru (10x PCR Blue buffer nebo Green buffer, Top-Bio s r.o.), 1µl mix deoxyribonukleotidů dNTPs (2,5mM, Top-Bio s r.o.), 0,75µl forward (5µM) a 0,75µl revers primeru (5µM) a 0,1µl DNA polymerázy (TaqUnis , Top-Bio s r.o.). V posledním kroku se přidalo 1.5 µl templátové DNA. Během optimalizace bylo také vyzkoušeno přidávání 0,5µl BSA (5ng/mL, Thermo Fisher Scientific).

c) optimalizace amplifikačních profilů

PCR byla prováděna v termocykleru TProfessional TRIO Thermocycler (Biometra). Profily byly převážně převzaty z předchozích prací (Jánová 2021, Klojdová 2018) nebo z publikací. Pokud tyto profily nevedly k úspěšné amplifikaci, bylo potřeba započít optimalizaci pro jednotlivé druhy mouchovitých. Optimalizace byla prováděna především u teploty nasedání primeru ("annelingu"), kde docházelo k postupnému zvyšování a snižování teploty, dokud nebyla nalezena nejlepší varianta. U markeru *ITS* byla kromě teploty nasedání primeru optimalizována doba elongace. Jednotlivé profily jsou zaznamenány v **tabulce 3**.

Tab. 3: Úspěšně použité PCR profily.

	<i>COI</i> LCO- 1490, HCO-2198	<i>COI</i> LCO- 1490L, HCO2198L	<i>COI</i> 1490- JJ, HCO2198- JJ	<i>ITS</i> f1, r1	<i>ITS</i> 1975F, 82R	CR
1.Predenaturace	94 °C/2 min	94 °C/2 min	94 °C/2 min	95 °C/3 min	95 °C/3 min	94 °C/3 min
2. Denaturace	94 °C/30 s	94 °C/30 s	94 °C/30 s	95 °C/30 s	95 °C/30 s	94 °C/1 min
3. Annealing	49 °C/45 s	47 °C/45 s	43 °C/45 s	57 °C/30 s	55 °C/30 s	40 °C/1 min
4.Elongace	72 °C/1 min	72 °C/1 min	72 °C/1 min	68 °C/3 min	68 °C/3 min	60 °C/ 2 min
5. Postelongace	72 °C/2 min	72 °C/2 min	72 °C/2 min	68 °C/10 min	68 °C/10 min	60 °C/ 10 min
6. Uchování	4 °C/∞	4 °C/∞	4 °C/∞	4 °C/∞	4 °C/∞	4 °C/∞
Počet cyklů 2-4	35	35	35	35	35	35

3.2.3. Gelová elektroforéza

Ověření úspěšnosti amplifikace PCR produktů bylo provedeno pomocí standartní agarové elektroforézy. Příprava a provedení probíhalo podle následujícího postupu:

a) příprava 2 % agarozového gelu:

- Rozpustit 4g agarozy v 200 ml 1x TAE pufru (50x TAE pufr: 2M TRIS, 1M kyseliny octové, 0,05M EDTA) zahřátím v mikrovlnné troubě, zahříváme tak dlouho, dokud nebude agaroza úplně rozpuštěna.
- Po rozpuštění zchladit roztok pod proudem studené vody na teplotu kolem 55 °C za stálého míchání.
- Přidat k roztoku 15 µl ethidium bromidu a dobře promíchat.
- Nalít vychladlý roztok do připravené formy, přidat hřebínky pro vytvoření jamek na nanášení produktů.
- Ponechat gel tuhnout zhruba 30 minut ve tmě a poté rozřezat gel na jednotlivé díly a uskladnit ho do uzavíratelné nádoby s 1x TAE pufrem v lednici při teplotě 4 °C.

b) Elektroforetická separace vzorků a vizualizace:

- Nejprve gel umístit do elektroforetické vaničky tak, aby byl celý ponořený, ve vaničce je nalitý 1x TAE pufr.
- Každý vzorek (3µl PCR produktu) smíchat s 1 µl nanášecího pufru (700 µlddH₂0, 300 µl glycerolu, 0,5 mg bromfenolové modři) a nanést do příslušných jamek v gelu; do první jamky je nanesen velikostní marker ladder (slouží k určení velikosti daného fragmentu, marker Lambda DNA/EcoRI+Hind III (Thermo Fischer Scientific), do ostatních jamek nanést vzorek s pufrem a do poslední jamky negativní kontrola vzorku.
- Spustit elektroforézu na 120 V po dobu 20-30 minut, po doběhnutí elektroforézy gel vložit pod UV světlo, které zobrazí fragmenty.
- Pořídit snímek pomocí CCD kamery (postupujeme podle přiloženého návodu).

3.2.4. Přečištění vzorků a sekvenování

PCR produkty vhodné pro další analýzu byly přečištěny přidáním enzymatické směsi ExoFastAP (0,5 μ IExonukleázaI (20 U/ μ I Thermo Fisher Scientific) a 1 μ I FastAP (1U / μ I Thermo Fisher Scientific) do každého vzorku a následnou inkubací na termobloku15 minut při 37 °C a 15 minut při 80 °C.

Pro sekvenování pak bylo smícháno 5 µl přečištěného PCR produktu s 5 µl primeru použitého prodaný vzorek. Připravené sekvenační reakce byly zaslány buď do laboratoře Kriminalistického ústavu PČR Praha, nebo do firmy Eurofins Genomics.

3.2.5. Klonování

Chromatogramy, které byly získány z přímého sekvenování PCR produktů markeru *ITS* měli příliš malou kvalitu a čitelnost, proto bylo nezbytné jejich zaklonování. Při klonování je velmi důležité pracovat ve sterilním prostřední. Bylo postupováno následujícím způsobem:

a) Příprava agarozových misek pro kultivaci bakterií

Příprava misek s agarovým médiem:

 Smíchat 15 g agaru, 10 g tryptonu, 5 g kvasinkového extraktu a 10 g NaClve 1000 ml destilované vody, potom promíchat a sterilizovat směs klávováním po dobu 60 minut, aby se rozpustili složky agarového media, po uplynutí času nechat směs zchladnout.

- Přidat 100 µl ampicilinu v koncentraci 1 µl amp/1 ml média (což je antibiotikum, které zabraňuje růst bakterií, které neobsahují plazmid s odpovídající rezistencí).
- Nalít agarovou směs do sterilizovaných Petriho misek a ponechat v pokojové teplotě až do ztuhnutí média.
- Na každou misku přidat 64 µl X-galu (12,5 mg/ml) a 3,5 µl IPTG (250 µl/ml) a rozetřít tuto látku pomocí sterilní kličky na povrch agaru.

Takto bylo vytvořeno agarové médium, které obsahuje ampicilin pro selekci bakterií s odpovídajícím rezistence, a X-gal s IPTG pro identifikaci bakterií, které exprimují geny na plazmidu.

b) Ligace PCR produktů do vektoru a transformace do bakteriálních buněk *E.coli* DH5alpha (Thermo Fisher Scientific, Inc.)

V této části jsem použila standardní postup dle protokolů výrobce.

pro ligaci do vektoru byl použit kit pGEM – T Easy Vector SystemsTM (PromegaTM),
 pro transformaci bylo místo SOC média přidáno LB médium ve složení (10 g tryptonu,
 5 g kvasinkového extraktu, 10 g NaCl na 1 litr destilované vody).

c) Modro – bílá selekce a ověření klonů nesoucí inzertní DNA

Při selekci je nutné oddělit klony, které obsahují klonovací vektor s vloženým (inzertním) fragmentem DNA od klonů, které obsahují prázdný klonovací vektor, tedy bez vloženého inzertu. Tzv. modro-bílá selekce, kdy nás zajímají selekce bílé barvy obsahující zmíněný vektor s inzertem, zatímco modré selekce nikoli. Klony bílé bary byly přeneseny pomocí sterilní špičky 50 µl ddH₂O a v termobloku zahřát na 10 minut, 95 °C. Výsledný templát DNA byl zchlazen a mohl se použít pro novou PCR.

3.3. Práce s databázemi

Kromě vlastních dat jsem pro další analýzy použila DNA sekvence z veřejně dostupných zdrojů. Z databáze evidující DNA sekvence markerů pro "DNA barcoding" (BOLD) jsem vybrala sekvence *COI* pro zkoumané druhy mouchovitýchs délkou sekvence >550bp. Vzhledem k tomu, že pro druh *M. Pascuorum* vyskytující se v ČR nebyly k dispozici žádné vzorky z terénu, byly pro další analýzy použity pouze sekvence z databáze. Pro analýzy vyžadující kořen ("outgroup") byla použita *Fannia scalaris* (KY511219.1).

Pro zkoumání sekundární struktury markeru *ITS* byly využity genomy vybraných druhů čeledi Muscidae a pro porovnání i z čeledi Calliphoridae (**Tab.4**). Jelikož nejsou genomy zcela anotované, sekvence *ITS* byly vyhledány pomocí algoritmu BLAST a sekvence *L. caesar* (KP940391). Druhy *H. irritans* a *S. calcitrans* nepatří mezi forenzně významné druhy, ale byly k mé práci přidány pro jejich významnost ve veterinární medicíně.

Druh	Čeleď	Genom
Musca domestica	Muscidae	GCA_000371365.1
Musca vetustissima	Muscidae	GCA_032173495.1
Stomoxys calcitrans	Muscidae	GCA_963082655.1
Hydrotaea diabolus	Muscidae	GCA_963513945.1
Haematobia irritans	Muscidae	GCA_003123925.1
Stomoxys calcitrans	Muscidae	GCA_963082655.1
Lucilia caesar	Calliphoridae	KP940391 (sekvence)
Lucilia sericata	Calliphoridae	GCA_015586225.1
Calliphora vicina	Calliphoridae	GCA_958450345.1
Phormia regina	Calliphoridae	GCA_001735585.1

Tab. 4: genomy	v čeledí Muscidae a	Calliphoridae.
----------------	---------------------	----------------

3.4. Software pro analýzu dat

U všech získaných sekvencí byla nejprve vizuálně vyhodnocena jejich kvalita a použitelnost, následně bylo pomocí databáze Blast Search (https://blast.ncbi.nlm.nih.gov) zkontrolováno, zda odpovídají konkrétnímu druhu. Následovala práce v programech:

Chromas 2.6.6 (TechnelysiumPty Ltd, Tewantin, Australia, https://technelysium.com.au/)

 úprava sekvencí pro následnou práci (odstřihnutí nečitelných píků a primerů na začátku a konci sekvence).

Mega X 6 (Kumar et al., 2018)

- metodou "Muscle" bylo vytvořeno seřazení "aligment"
- kontrola čtecího rámce ORF (ORF-open readingframe)
- vyhodnocení nukleotidového složení COI a ITS sekvencí
- stanovení počtu konzervovaných, variabilních a parsimoniálně informativních míst
- výpočet genetické vzdálenosti (dvouparametrový Kimurův model, K2p) na několika úrovních (jedinci, populace, země, druhy)
- vytvoření souborů ve formátu "fasta" pro navazující analýzy
- vytvoření celkového fylogenetického stromu Muscidae

PhyML(ATGC: PhyML (atgc-montpellier.fr)

-konstrukce fylogenetických stromů společně s výběrem nejvhodnějších evolučních modelů

Figtree, (Rambaut, 2009).

- grafická úprava fylogramů

DnaSP 6 (Rozas et al., 2017)

- stanovení stanovení haplotypové a nukleotidové diverzity
- -test neutrality Fuův a Tajimův test

GeoDist (Geographic Distance Matrix Generator, Ersts, 2006)

- -výpočet geografické vzdálenosti pomocí geografických souřadnic

GenAlex 6.5 (Peakall & Smouse, 2012)

ověření hypotézy izolace vzdáleností (Isolation By Distance, IBD) pomocí Mantelova testu

 vyšetření genetické vzdálenosti analýzou hlavních koordinát (Principal Coordinate Analysis, PCoA)

PopArt 1.7 (Leigh & Bryant, 2015)

- sestrojení haplotypových sítí metodou median-joining (Bandelt, Forster & Röhl, 1999)

RNAfold (Lorenz et al., 2011)

- -vytvoření sekundární struktury fragmentů *ITS1* a *ITS2* (na webovém serveru The Vienna RNA Web Services
 (http://rna.tbi.univie.ac.at/cgibin/RNAWebSuite/RNAfold.cgi).
- vizualizace byla provedena v modulu Forna (Kerpedjiev, Hammer & Hofacker, 2015) na stejném serveru.

ABGD

- ověření druhové identifikace metodou porovnávání vnitro – a mezidruhových genetických distancí (Automatic Barcode Gap Discovery, Puillandre et al., 2011), https://bioinfo.mnhn.fr/abi/public/abgd/

4. Výsledky

4.1. Optimalizace DNA izolace a PCR amplifikace

Veškerá izolace DNA byla prováděna z nohou much, které byly uskladněné v ethanolu. Jelikož u druhu *Muscina prolapsa* se nedařila izolace DNA, byly vzorky nechány 24 hodin při teplotě 40 °C v termobloku s proteinázou K. Tento postup byl úspěšný pro získání DNA z tohoto druhu.

Na marker *COI* se nejvíce osvědčila teplota "annealingu" v rozmezí 47-49 °C, přičemž jsem z každého druhu získala kvalitní PCR a počet sekvencí: *Musca domestica* (9 sekvencí), *Hydrotaea ignava* (10 sekvencí), *Muscina stabulans* (2 sekvence) *a Muscina prolapsa* (5 sekvencí). U druhu *Muscina levida* byly použity pouze sekvence z databáze BOLD, neboť chromatogramy byly nekvalitní nebo jen velmi krátké.

U markeru *ITS* byla zapotřebí větší teplota u nasedání primeru (53-55 °C). Tento marker však nebyl tak úspěšný jako *COI*. Ačkoliv se PCR produkt povedlo získat ze všech druhů kromě *M. prolapsa*, výsledné chromatogramy ze sekvenování byly většinou nekvalitní. Výjimkou jsou *H. ignava* a *M. domestica*, u nichž se sekvence získat podařilo.

CR oblast vyžadovala největší optimalizaci teploty, které byla ve výsledku 40-45 °C. PCR produkty byly získány pouze u druhu *M. domestica*, avšak výsledné chromatogramy opět kvalitní nebyly. Nadále jsem se rozhodla s touto oblastí více nepracovat, jelikož se stejné problémy vyskytovaly v předchozích bakalářských pracích.

Optimalizace zahrnovaly i dvě varianty reakčních pufrů o různé koncentraci MgCl₂, případně přidání hovězího sérového albuminu (BSA) pro lepší stabilizaci reakce. Přehled nejúspěšnějších kombinací pro jednotlivé druhy je uveden v **tabulce 5**. U většiny druhů se nakonec nejvíce osvědčilo použití pufru s vyšší koncentrací MgCl₂ bez přidání albuminu.

Tab.5: Nejúspěšnější kombinace použitého pufru (zelený –15 mM MgCl₂, modrý -25 mM MgCl₂) a BSA (+ přidán, - nepřidán) u jednotlivých druhů.

Druh/Marker	COI	ITS
H. ignava	zelený/+, modrý/-	modrý/-, zelený-
M. prolapsa	modrý/-	zelený/-
M. stabulans	modrý/-	modrý/-
M. levida	modrý/-	modrý/-
M. domestica	modrý/-	modrý/-, zelený+

4.2. Mitochondriální marker COI

4.2.1. Základní vnitrodruhová variabilita

Ze 42 vzorků se povedlo zhruba polovinu amplifikovat a osekvevat. Vzhledem k malému počtu vzorků, které by byly pro následující analýzy nedostačující, byly přidané sekvence z BOLD databáze z různých států světa. Tyto sekvence museli obsahovat místo sběru s přesnými souřadnicemi a alespoň 600 bp (viz. přílohy I-VI). Výsledné soubory pak také byly upraveny tak, aby měly v rámci druhů stejné délky sekvencí a co nejmenší počet chybějících bazí. Pro každý druh pak byly spočteny základní parametry nukleotidové variability, které jsou souhrnně uvedeny v tabulce 6.

Tab. 6: Genetická variabilita mitochondriálního *COI* markeru, N – délka sekvence, h - počet haplotypů, Hd - haplotypová diverzita, π – nukleotidová diverzita, C – počet konzervativních míst, V – počet variabilních míst, T, C, A, G – frekvence nukleotidů

Druh	počet	N (bp)	C	V	π	h	Hd	A+T[%]	G+C [%]
	jedinců								
H. ignava	47	630	556	74	0,011	14	0,502	71	29,1
M. prolapsa	68	618	606	12	0,005	5	0,115	64,8	35,3
M. pascuorum	92	600	595	5	0,003	3	0,043	67	33,1
M. stabulans	58	612	568	44	0,005	11	0,582	67,6	32,4
M. levida	191	657	617	40	0,003	11	0,633	67,4	32,6
M. domestica	178	632	463	166	0,012	43	0,602	68,4	31,7

Nejvíce haplotypů bylo nalezeno u *M. domestica* (43) a nejméně u *M. pascuorum* pouhé 3. Nejvyšší haplotypová diverzita a to 0,633 byla zjištěna u druhu *M. levida*, který měl největší počet jedinců, nejnižší haplotypová diverzita byla naměřena u *M. prolapsa* 0,115. Nukleotidová variabilita byla opět nejvyšší u druhu *M. domestica*. Z frekvence nukleotidů lze vyčíst u všech druhů vyšší zastoupení A+T než G+C.

4.2.2. Vnitrodruhová genetická variabilita

Vzhledem k tomu, že zastoupení vzorků z různých lokalit a zemí nebylo rovnoměrné, bylo vyšetření možné struktury v rámci druhů provedeno buď na úrovni celého druhu, nebo s pod rozdělením na jednotlivé země.

Hypotéza o izolaci populací na základě geografické vzdálenosti byla testována na základě párových geografických a genetických vzdáleností (Kimurův dvouparametrový model, K2p) pomocí Mantelova testu, jehož výsledky jsou shrnuty v **tabulce 7**.

Tab.7: Test izolace vzdáleností (Mantelův test), Rxy – korelační koeficient, p – hodnota signifikance.

Druh	Rxy	Р
H. ignava	0,214	0,042
M. prolapsa	-0,067	0,104
M. pascuorum	-0,017	0,465
M. stabulans	0,070	0,121
M. levida	0,084	0,001
M. domestica	0,092	0,030

Hodnota korelačního koeficinetu byla nejnižší u *M. pascuorum* a nejvyšší u *H. ignava*, pohybovala se v rozmezí -0,017 až 0,214. Signifikantní pozitivní korelace byla zjištěna u druhů *M. levida, M. domestica* a *H. ignava*. Sklon přímky na grafu korelace a rozptyl hodnot umožňuje posoudit, jaký je u daného druhu vztah migrace a genetického driftu. Nejvýraznější pozitivní korelace naznačující rovnováhu mezi uvedenými parametry byla nalezena u *H. ignava* (**Obr. 5**), v ostatních případech je pravděpodobnější vliv driftu (**Příloha VII**).

Obr. 5: Grafické znázornění korelace mezi geografickou a genetickou (K2p) vzdáleností u druhu *H. ignava*.

Analýza genetické vzdálenosti (K2p) pomocí metody hlavních koordinát (PCoA) byla provedena na úrovni zemí původu. K výraznějšímu rozdělení na klastry došlo u *M. levida* (**Obr. 6a**), kdy se populace z Kanady a USA dostaly k sobě blízko a do jednoho kvadrantu, zatímco populace z evropských zemí jsou rozprostřeny v ostatních třech kvadrantech. Zajímavé jsou také dva oddělené klastry u *M. stabulans* (**Obr. 6 b**), kdy klastr napravo od osy y tvoří evropské populace, zatímco klastr nalevo tvoří populace z více kontinentů. U ostatních druhů byl vytvořen jeden větší shluk zahrnující populace napříč kontinenty a několik populací stojí vzdáleněji (**Přílohy VIII**) *M. pascuorum* nešlo vytvořit díky malým vzdálenostem mezi jedinci.

b)

Obr. 6: Graf výsledku analýzy genetické vzdálenosti metodou PCoA. a) *Muscina levida* b) *Muscina stabulans*. Barevně jsou vyznačeny kontinenty (červená – Asie, modrá – Evropa, zelená –USA a Kanada), zkratky zemí v **příloze XVIII**.

Rozdělení sekvencí podle zemí původu bylo také použito pro sestrojení haplotypových sítí (Haplotypové sítě jsou grafy, které se používají pro zobrazení vztahů mezi holotypy), které zobrazují vztahy mezi haplotypy a jejich zastoupení v jednotlivých zemích. Většina druhů má jeden dominantní haplotyp zastoupený téměř všude (**Přílohy VII**). Výjimkou je *M. levida*, kde byly nalezeny dominantní haplotypy dva (**Obr. 7**) Analýza byla provedena pro jednotlivé druhy samostatně, přičemž bylo použito zastoupení haplotypů v jednotlivých zemích.

Obr. 7: Haplotypová síť pro *M. levida*. Spojnice vyznačují příbuznost haplotypů, značky na spojnicích počet mutací. Barevně jsou vyznačeny kontinenty (modrá – Evropa, zelená – USA a Kanada), zkratky zemí v **příloze XVIII**.

Geografické hledisko bylo také zohledněno ve fylogramech, které vyjadřují evoluční vztahy mezi jedinci daného druhu. Podobně jako v předchozích analýzách je rozdělení na dva klastry s vysokou statistickou podporou zjevné u *M. stabulans*, kde jsou v obou klastrech zastoupeni jedinci z různých zemí (**Obr. 8**). U ostatních druhů je patrné, že je zastoupení zemí mezi druhy promícháno.

Obr. 8: Fylogram na základě fragmentu *COI* (GTR model, Maximal Likeli Hood, podpora větví a LRT-SH) pro *M. stabulans*. Kořen je *Fannia scalaris*, barevně vyznačen původ jedinců (červená – Asie, modrá – Evropa, zelená – USA a Kanada), zkratky zemí v **příloze XVIII**.
Na závěr byly provedeny tzv. testy neutrality Tajimovo D a FuovoFs, které mohou poukázat buď na selekci působící na daný lokus, případně demografický jev. Výsledky testů provedených pro jednotlivé druhy jsou v **tabulce 8**.

Tab. 8: Testy neutrality pro jednotlivé druhy: N - počet jedinců, S - počet segregujících míst, p - hodnota signifikance, testy neutrality se vzhledem k malým počtům vzorků museli provádět na celou populaci, nikoli na jednotlivé země.

Druh	N	S	Tajimovo D	p hodnota	Fuovo FS	p hodnota
H. ignava	47	50	-2,552	0,001	-2,216	0,007
M. prolapsa	67	3	-1,662	0	-4,879	0
M. stabulans	57	29	0,745	0,015	5,133	0,015
M. domestica	177	161	-2,834	0,011	-26,562	0,011
M. levida	190	12	-1,447	0,002	-3,954	0,002

Oba testy vyšly signifikantní, a u většiny druhů mají parametry zápornou hodnotu. To znamená, že byla detekována nižší genetická variabilita, než by se předpokládalo. Naopak u *M. stabulans* byla nalezena hodnota kladná, svědčící o variabilitě vyšší. V prvním případě by to znamenalo, že u většiny druhů je marker *COI* pod vlivem purifikační selekce nebo populace procházejí růstem, naopak u *M. stabulans* by selekce byla balancovaná nebo je druh rozdělen na subpopulace.

4.2.3. Mezidruhová variabilita

Druhové určení je založeno na předpokladu, že mezidruhová genetická variabilita je mnohem vyšší než genetická variabilita vnitrodruhová. Tyto hodnoty vypočtené pro jednotlivé druhy jsou uvedeny v **tabulce 9**. Nejnižší mezidruhová hodnota je detekována mezi *M. stabulans* a *M. levida*, zatímco nejvyšší byla dosažena u páru *H. ignava* a *M. prolapsa*. Všechny hodnoty jsou však téměř 4x vyšší než hodnoty vnitrodruhové, takže je dosaženo podmínky markeru pro druhové určení.

Tab. 9: Hodnoty mezidruhové genetické vzdálenosti (K2p) jsou pod diagonálou, nad diagonálou jsou hodnoty SE (stanoveno 1000x bootstrap). VD – hodnoty vnitrodruhové genetické vzdálenosti (K2p), SE – hodnoty SE (stanoveno 1000x bootstrap)

	H.ignava	M.domestica	M.pascuorum	M.prolapsa	M.stabulans	M.levida	VD	SE
H. ignava		0.016	0.017	0.019	0.016	0.018	0,013	0,002
M. domestia	0.127		0.017	0.019	0.016	0.019	0,007	0,001
M. pascuorum	0.141	0.151		0.018	0.014	0.015	0	0
M. prolapsa	0.178	0.171	0.153		0.015	0.017	0,001	0
M. stabulans	0.158	0.148	0.122	0.121		0.013	0,027	0,005
M. levida	0.158	0.163	0.109	0.137	0.103		0,002	0,001

Pro druhové porovnání byl také sestrojen celkový fylogram, a to standardním postupem pro " DNA barcoding", tedy pomocí genetické distance K2p a metodou Neigbour-Joining (**Obr.9**).

Obr. 9: Fylogram (K2p, Neigbour-Joining, 1000x bootstrap) znázorňující evoluční vztahy vybraných druhů Muscidae. Zakořenění bylo provedeno pomocí druhu *Fannia scalaris*. Pro zjednodušení schématu byly druhové klastry shloučeny do trojúhelníků (horizontální rozměr je úměrný počtu jedinců, horizontální vnitrodruhové genetické vzdálenosti).

Z fylogramu je zřejmé jednoznačné rozdělení na klastry představující jednotlivé druhy. Výjimku tvoří *M. stabulans*, kdy se s vysokou podporou oddělily dvě menší skupiny, obdobně jako na fylogramu zkonstruovanému pro tento druh samostatně (**Obr. 8**). S přihlédnutím k vysoké vnitrodruhové variabilitě (**Tab. 8**), mnohem vyšší než u ostatních druhů, se nabízí vysvětlení, zda tento soubor nereprezentuje dva druhy.

Tuto možnost jsem vyšetřila pomocí programu ABGD (Automatic Barcode Gap Discovery, <u>https://bioinfo.mnhn.fr/abi/public/abgd/</u>) pro soubor obsahující jen *M. stabulans*. I v tomto případě bylo rozdělení na dvě skupiny zřetelné s jednoznačným oddělením vzdáleností uvnitř predikovaných skupin a mezi těmito skupinami (tzv. gap distance = 0.023, **Ob. 10**).

)		
Rozdělení	N	jedinci
Skupina A	11	Mst_CA_M1 Mst_CA_N1 Mst_ES1 Mst_Ger_BA1 Mst_CZ_P1 Mst_CZ_P2 Mst_FI_H1 Mst_FI_M1 Mst_BY_M1 Mst_BY_M2 Mst_BG_G1
Skupina B	40	Mst_CA_B1 Mst_CA_B2 Mst_CA_B3 Mst_CA_E1 Mst_CA_G1 Mst_CA_L1 Mst_CA_L2 Mst_CA_L3 Mst_CA_P1 Mst_CA_S1 Mst_CA_St1 Mst_CA_W1 Mst_CA_YN1 Mst_CA_YN2 Mst_US_DC1 Mst_US_F1 Mst_US_J1 Mst_BR1 Mst_EC_S1 Mst_EG_M1 Mst_EG_S2 Mst_EG_S3 Mst_EG_S4 Mst_EG_S5 Mst_EG_S6 Mst_PT_M1 Mst_PT_P1 Mst_PT_Ca1 Mst_CHN_G1 Mst_CHN_2 Mst_CHN_3 Mst_CHN_4 Mst_CHN_5 Mst_CHN_G6 Mst_CHN_7 Mst_CHN_8 Mst_KLDR1 Mst_KLDR2 Mst_KLDR3 Mst_NZ_1

Obr. 10: Výsledky druhové identifikace metodou ABGD. a) histogram genetických vzdáleností uvnitř a mezi predikovanými skupinami, b) rozdělení jedinců do predikovaných skupin (N – počet jedinců), zkratky zemí v **příloze XVIII**.

I zde se opakuje rozdělení jako na druhovém fylogramu. Posledním testem bylo provedení analýzy genetických vzdáleností metodou PCoA a to na úrovni jedinců (**Obr. 11**).

Obr. 11: Graf analýzy genetických vzdálenosti metodou PCoA u *M. stabulans*. Zkratky zemí v příloze XVIII .

V tomto případě se vytvořily 4 skupiny, opět napříč geografickými lokalitami. Nejvýraznější je však jejich rozdělení do dvou větších celků, kdy na pravé straně od osy y jsou všichni jedinci ze skupiny A na levé jedinci ze skupiny B, jak bylo pozorováno i v předchozích analýzách.

4.3. Jaderný marker ITS

PCR amplifikace *ITS* fragmentů byla úspěšná u většiny druhů, ale následné sekvenování nikoli. U většiny chromatogramů nebyla čitelné velká část sekvence. Díky nepříznivým výsledkům bylo nutné PCR produkty zaklonovat. Ani klonování nepomohlo k úspěšnému získání kvalitních sekvencí. Ze získaných fragmentů se podařilo sestavit kompletní sekvence pro *ITS1* a *ITS2* u dvou druhů (*M. domestica* a *H. ignava*). Pro porovnání sekundárních struktur byly proto adekvátní sekvence vyhledány pomocí BLAST v genomech vybraných zástupců čeledí Muscidae a Calliphoridae.

4.3.1. Nukleotidová variabilita ITS

Nejprve byly porovnáním s anotovanou sekvencí *L.caesar* stanoveny hranice jednotlivých úseků RNA (*18S, 5,8S, 2S, ITS1 a ITS2*) a pak vypočteny základní charakteristiky nukleotidové variability (**Tab, 10**). Úsek 2S RNA o délce 30bp se ukázal být identický u všech druhů *L.caesar, L. sericata, C. vicina, P. regina.* Uvedeno v **tabulce 10**.

	ITS	ITS1			5.8S			ITS2		
Čeleď/druh	N (bp)	A-T (%)	G-C (%)	N (bp)	A-T (%)	G-C (%)	N (bp)	A-T (%)	G-C (%)	N (bp)
Calliphoridae										
Lucilia caesar	1059	78,5	21,4	518	50	50	122	81,5	18,5	309
Lucilia sericata	1487	76,1	23,9	897	50	50	122	79,3	20,7	319
Calliphora vicina	1232	83,1	16,9	616	50	50	122	81	19	322
Phormia regina	1441	43,8	22,8	823	50	50	122	82,7	17,3	324
Muscidae										
Musca domestica	1155	71,9	28,1	515	49,1	50,8	122	75,2	24,8	347
Musca vetustissima	1170	74,5	25,5	530	49,1	50,8	122	78,1	21,9	347
Muscina prolapsa	1034	74,6	25,5	401	48,3	51,6	122	79,7	20,3	340
Heamatobia irritans	1102	75,9	24,5	465	50	50	122	75,9	24,1	344
Stomoxys calcitrans	1030	70,8	29,2	418	49,1	50,8	122	74,6	25,4	319
Hydrotaea diabolus	1626	71,3	28,8	936	51,7	48,4	122	74	25,9	397
Hydroteae ignava	1298	77,9	22,1	689	50	50	122	76,3	23,8	400

Tab. 10: Frekvence A-T a C-G nukleotidů, N – délka ITS sekvencí

Z tabulky je patrné, že u čeledí Calliphoridae i Muscidae je největší zastoupení A-T nukleotidů jak u *ITS1*, tak i u *ITS2*. U čeledi Calliphoridae je zajímavé, že u 5.8S je počet A-T i G-C stejný a to samé s délkou sekvence, které je u všech druhů včetně rodu Muscidae 122 pb. *ITS1* u Muscidae má poměrně rozmanitou délku sekvence, nejkratší sekvenci má *M. prolapsa* (401pb) zatímco nejdelší má *H. diabolus* (936pb). Čeleď Calliphoridae má sekvence dlouhé od 518 do 823pb. *ITS2* má oproti *ITS1* poměrně krátkou délku, o obou čeledí je to od 309 do 400pb.

4.3.2. Sekundární struktury ITS

Modely sekundární struktury *ITS1* a *ITS2* byly zkonstruovány pro každý z vybraných druhů čeledí Muscidae a Caliphoridae. U všech modelů byly nalezeny 4 základní prvky. Počet a typ strukturních prvků u jednotlivých druhů je vyhodnocen v **tabulkách 11-12**. Diagramy pro jednotlivé druhy jsou v **Příloze XVI**.

Druh	kmínek	smyčka	nespárované	vlásenka
		větvená	báze	
M. domestica	10	2	18	8
M. prolapsa	9	3	12	6
M. vetustissima	11	2	18	8
H. irritans	12	2	13	10
H. ignava	16	4	15	12
H. diabolus	23	4	26	19
S. calcitrans	10	1	13	9
Průměr Muscidae	13	2,6	16,4	10,2
C. vicina	19	3	13	16
P. regina	21	3	14	18
L. sericata	21	6	17	15
L. cuprina	21	3	22	18
Průměr Calliphoridae	20,5	3,75	16,5	16,75

Tab. 11: Počet prvků v sekundární struktuře u *ITS1*.

druh	kmínek	smyčka větvená	nespárované báze	vlásenka
M. domestica	9	2	13	6
M. prolapsa	11	2	6	9
M. vetustissima	10	2	18	8
H. irritans	9	2	10	7
H. ignava	5	1	21	4
H. diabolus	7	2	18	5
S. calcitans	9	2	10	7
Průměr Muscidae	8,6	1,9	13,7	6,6
C. vicina	6	1	13	5
P. regina	7	1	11	5
L. sericata	7	1	10	6
L. cuprina	7	2	10	5
průměr Calliphoridae	6,75	1,25	11	5,25

Tab. 12: Počet prvků v sekundární struktuře u *ITS2*.

U všech porovnávaných druhů byly nalezeny všechny 4 prvky (**Obr. 4**) Na **obrázku 12 a-d** jsou uvedeny diagramy zástupců obou čeledí – *Musca domestica* (Muscidae) a *Calliphora vicina* (Calliphoridae). Ostatní diagramy jsou v **přílohách XIV – XVII.**

Obr. 12: Diagram sekundární struktury fragmentů *ITS*. a) *ITS1 M. domestica* b) *ITS2 M. domestica*, c) *ITS1 C. vicina*, d) *ITS2 C. vicina*

U sekundární struktury *ITS1* je z tabulky patrné, že největší počet tvoří kmínek a nespárované báze u všech druhů. Pokud se zaměříme na jednotlivé druhy u *ITS1* čeledi *Muscidae* druh *H*. *diabolus* má největší počet kmínků, nespárovaných bazí, větvené smyčky a vlásenky. U čeledi

Calliphoridae není jeden určitý druh, který by převažoval nad ostatními, počty mezi prvky nejsou tolik rozdílné.

I u *ITS2* převažují počty kmínků a nespárovaných bazí. U čeledi Muscidae má největší počet kmínků druh *M. prolapsa* a nespárovaných bazí druh *H. ignava*. Čeleď Calliphoridae je i u *ITS2* více vyrovnaná v počtech mezi druhy.

Při porovnání prvků u Muscidae a Caliphoridae u *ITS1* bylo vyhodnoceno – dominantní strukturou u Muscidae jsou nespárované báze, zatímco u Calliphoridae kmínek. U *ITS2* jsou u obou čeledí dominantní nespárované báze.

Při porovnání aritmetického průměru obou čeledí u *ITS1* jsem zjistila, že hodnoty jsou u všech částí přibližně stejné (**Tab.11**). Větší výchylka se vyskytuje u *M. propalsa*, kdy u kmínku jsou u všech ostatních druhů hodnoty nad 10, zatímco u tohoto druhu pod 10. Větvené smyčka a nespárované báze vyšli u obou takřka stejně, u kmínku a vlásekny má větší počet čeleď Calliphoridae. *ITS2* se u obou čeledí téměř neliší a aritmetický průměr vyšel podobně.

4.3.3. Mezidruhová genetická variabilita ITS1 a ITS2

Pro posouzení možného použití markeru *ITS* pro studium druhů byla vypočtena také genetická vzdálenost mezi druhy, a to pomocí základního modelu p-distance (**Tab.13-18**).

	H. ignava	M. domestica	M. pascourum	M. prolapsa	M. stabulans	M. levida
H. ignava		0,016	0,017	0,019	0,016	0,018
M. domestica	0,127		0,017	0,019	0,016	0,019
M. pascourum	0,141	0,151		0,018	0,014	0,015
M. prolapsa	0,178	0,171	0,153		0,015	0,017
M. stabulans	0,158	0,148	0,122	0,121		0,013
M. levida	0,158	0,163	0,109	0,137	0,103	

Tab. 13: Genetické vzdálenosti mezi druhy Muscidae u COI, modře znázorněny odchylky

Tab. 14: Genetické vzdálenosti mezi druhy *Calliphoridae* u *COI*, modře znázorněny standardní odchylky.

	L. caesar	L. sericata	C. vicina	P. regina
L. caesar		0,008	0,009	0,012
L. sericata	0,044		0,009	0,012
C. vicina	0,061	0,062		0,011
P. regina	0,100	0,096	0,092	

U Muscidae se vyskytuje větší variabilita, která je ve všech případech větší než 0,1 oproti Callihporiade, kde jsou všechny hodnoty menší než 0,1 kromě *P. regina*, kde je hodnota rovna 0,1.

Tab. 15: Genetické vzdálenosti (p-distance) mezi druhy *Muscidae* u *ITS1*, modře znázorněny standardní odchylky.

	M. domestica	M. vetustissima	M. prolapsa	H. irritans	S. calcitrans	H. diabolus	H. ignava
M. domestica		0,025	0,045	0,042	0,040	0,055	0,045
M. vetustissima	0,218		0,044	0,041	0,036	0,052	0,045
M. prolapsa	0,414	0,401		0,046	0,046	0,046	0,047
H. irritans	0,444	0,422	0,423		0,034	0,042	0,040
S. calcitrans	0,359	0,310	0,392	0,298		0,042	0,045
H. diabolus	0,596	0,600	0,430	0,435	0,400		0,046
H. ignava	0,491	0,514	0,439	0,399	0,422	0,586	

M. domestica	M. vetustissima	M. prolapsa	H. irritans	S. calcitrans	H. diabolus	H. ignava	0,049
M. vetustissima	0,219		0,043	0,036	0,031	0,040	0,047
M. prolapsa	0,391	0,347		0,045	0,044	0,050	0,047
H. irritans	0,273	0,270	0,358		0,033	0,046	0,048
S. calcitrans	0,269	0,211	0,335	0,228		0,048	0,047
H. diabolus	0,351	0,317	0,397	0,370	0,403		0,055
H. ignava	0,428	0,394	0,406	0,407	0,395	0,492	

Tab. 16: Genetické vzdálenosti mezi druhy *Muscidae* u *ITS2*, modře znázorněny standardní odchylky.

Největší variabilita u čeleďi Muscidae se vyskytuje u *ITS1* v rozmezí od 0,218 do 0,586. *ITS2* se od *ITS1* o tolik neliší, rozmezí se pohybuje od 0,219 do 0,492. U *COI* markeru se variabilita lišili nejméně od 0,121 po 0,171.

Tab. 17: Genetické vzdálenosti mezi druhy Calliphoridae u ITS1, modře znázorněny odchylky.

	L. caesar	L. sericata	C. vicina	P. regina
L. caesar		0,037	0,031	0,044
L. sericata	0,365		0,044	0,048
C. vicina	0,278	0,501		0,047
P. regina	0,438	0,633	0,539	

	L. caesar	L. sericata	C. vicina	P. regina
L. caesar		0,026	0,035	0,031
L. sericata	0,146		0,031	0,029
C. vicina	0,239	0,209		0,029
P. regina	0,196	0,190	0,191	

Tab. 18: Genetické vzdálenosti mezi druhy Calliphoridae u ITS2, modře znázorněny odchylky.

U čeledi Calliphoride lze z tabulky vyčíst větší variabilitu u *ITS1* v rozmezí 0,365 až 0,633 u *ITS2* je variabilita o něco menší oproti *ITS1* 0,146 až 0,239. Největší variabilita u čeledi Muscidae se vyskytuje u *ITS1* v rozmezí od 0,218 do 0,586. *ITS2* se od *ITS1* o tolik neliší, rozmezí se pohybuje od 0,219 do 0,492. U *COI* markeru se variabilita lišili nejméně (od 0,121 po 0,171).

5. Diskuse

5.1. Metody – extrakce DNA a optimalizace PCR

Pro mou práci jsem měla k dispozici dva typy vzorků – konzervované sušením a v ETOH, přičemž pro DNA extrakci jsem používala nohy z jednotlivých vzorků. Přestože jsem použila standardní způsoby extrakce (Renaud et al., 2012 aj.) – pomocí kitů, ze sušených vzorků byla úspěšnost extrakce neúspěšná. I v případě vzorků z etanolu byla úspěšnější extrakce pomocí kolonkového kitu DNeasy Blood & Tissue kit (QIAGEN), zatímco jednoduchý kit DEP – 25 Extraction kit (Top – Bio) založený na postupné inkubaci tkáně ve dvou roztocích se neosvědčil (Je otázka, zda byly vzorky příliš staré (zhruba dva až tři roky), nebo v průběhu jejich odběru a uchovávání nedošlo k nějaké degradaci. V práci Chimeno et al., 2018 je uvedeno, že úspěšnější byla práce s čerstvými vzorky, oproti vzorkům, které byly staršího původu, což by mohlo vysvětlovat i mé zkušenosti. Čerstvější vzorky jsem však k dispozici neměla.

Během optimalizace PCR profilů jsem vyzkoušela přidávání BSA pro stabilizaci enzymu, v žádném případě však toto aditivum nevedlo k lepším amplifikacím. Další možností byla změna reakčního pufru. Pufr obsahující vyšší koncentraci MgCl₂ (modrý) by měl fungovat lépe s horší kvalitou templátové DNA, zatímco pufru s nižší koncentrací MgCl₂ (zelený) snižuje tvorbu nespecifických produktů. Modrý pufr fungoval obecně lépe a na více vzorků, zajímavé však bylo, že na určité druhy fungovaly pufry oba. I přes to se nepodařilo určité lokusy amplifikovat ani po změně teplotního profilu, přidání BSA nebo změně pufru.

5.2. Mitochondriální markery

5.2.1. CR oblast

Kontrolní oblast obsahuje vysokou variabilitu, která je podle literatury u dvoukřídlých různorodá (Oliveira et al., 2007; Duarte et al., 2008). Využití *CR* pro identifikaci nižších taxonomických úrovní než druhu bylo studováno pro různé živočichy (McMillen-Jackson & Bert, 2004; Diniz et al., 2005), avšak jeho úspěšnost pro odlišení geografických populací nebyla v těchto pracích potvrzena.

Z CR oblasti se mi nepodařilo získat žádnou sekvenci. PCR amplifikace se zdařila je u druhu *Musca domestica*, ale sekvence byly nekvalitní. To je výsledek podobný jako u druhů rodu Sarcophaga (Jánová 2021) s nimiž jsem pro srovnání také pracovala. V práci Klojdová (2018)

jde ovšem o opačný výsledek, bylo získáno celkem 41 sekvencí z CR oblasti u druhů: *Calliphora vicina, Lucilia casear, Lucilia sericata a Phormina regina.* Pravděpodobně tedy šlo o důsledek nukleotidové složení této oblasti u čeledí Muscidae a Sarcophagidae– tedy velký počet A a T bazí, které pokud tvoří delší řadu za sebou, ovlivňují negativně účinnost sekvenázy.

5.2.2. COI

Po vyzkoušení mnoha primerů, které byly vybrány pomocí publikací nebo byly použity v předchozích dvou bakalářských pracích (Klojdová 2018, Jánová 2021) se nejvíce osvědčily tyto tři primery: LCO - 1490 a HCO - 2198 (Folmer et al., 1994), LCOa – HCOb (Folmer et al., 1994), LCO – 1490l a HCO 2189l. Primery LCO – 1490JJ a HCO 2189JJ se také ukázal jako úspěšný, ale nezískala jsem s jeho použitím tolik kvalitních sekvencí jako u třech zmíněných. Pomocí těchto markerů se povedla amplifikace DNA u téměř všech jedinců. Celkově byl získáno PCR produkt z každého vzorku, ale následné sekvence nebyly kvalitní a nedaly se všechny použít. Získaných sekvencí bylo celkem 26: *Musca domestica (9 sekvencí), Hydrotaea ignava (*10 sekvencí), *Muscin astabulans* (2 sekvence), *Muscina prolapsa* (5 sekvencí). Ze vzorků *Muscina levida* jsem nezískala žádnou kvalitní sekvenci (nekvalitní chromatogramy).

DNA barcoding byl použit především k identifikaci druhů a pro porovnání mezidruhové a vnitrodruhové variability u vybraných druhů. Mé vzorky byly nachytány všechny z jedné lokality v České republice, ale pro robustnější analýzy bylo nutné datový soubor sekvencí rozšířit. U markeru *COI* se v databázi BOLD nacházely sekvence z různých zemí po celém světě, které byly po pečlivé redukci přidány k mým sekvencím. Redukce z databáze BOLD závisela především na délce kolem 600 bp, podobnému počtu sekvencí z různých lokalit a přesným souřadnicím z místa nálezu. Nejvíce sekvencí se v databázi BOLD nacházely sekvence z ČR. Většina sekvencí pocházela z hromadného DNA barcodingu, avšak v práci Chimeno 2018 byly publikovány sekvence pro forenzní druhy.

Renaud et al., 2012 uvádí, že Muscidae byly z pohledu DNA barcodingu prozkoumány velmi málo. Několik málo studijí provádělo fylogenetické analýzy, porovnávali diverzitu mezi populacemi nebo identifikovali nekrofágní druhy ve forenzní entomologii, ale bohužel se tyto studie zaměřili na fragmenty *COI* jiné než standartní oblasti používanou pro DNA barcoding. Navíc tyto studie zahrnovaly pouze několik druhů, kdy každý z nich je často reprezentován

1 jedincem, takže vnitrodruhovou variabilitu nešlo stanovit. S tímto problémem jsem se setkala při své studii. Kvůli malému počtu jedinců z konkrétních lokalit (tedy i z databáze) musely být jedinci seskupeni do větších skupin podle kontinentů, což může vést k ne tolik přesným výsledkům.

COI se ukázala jako účinný druhový identifikační marker, avšak k oddělení podle geografických populací nedošlo, neboť byly různé holotypy promíchány mezi kontinenty. Tuto skutečnost potvrdila analýza PCoA, haplotypové sítě i fylogramy. Toto zjištění je poměrně odlišné od práce Cummings a Krafsur (2005), v níž byla u *M. domestica* nalezena populační struktura, ovšem použit byl mnohem kratší fragment (pouze 348bp) v návaznosti na předchozí studii používající SSCP. Je tedy otázkou, zda je *COI* vhodný pro populační studii u tohoto druhu, případně zda uvedený fragment nebyl příliš krátký.

Kim et al. (2014) provedl druhovou identifikaci několika jedinců čeledí Muscidae a Sarcophagidae z korejských lokalit, a uvádí, že zatímco vnitrodruhová variabilita Muscidae byla do 0,3%, mezidruhová dosahovala až hodnoty 15%. Dále v jeho práci 3 druhy Muscina vykazovaly velmi nízké vnitrodruhové vzdálenosti 0,1-0,2 %, což se potvrdilo i v mé studii. Tyto hodnoty však u nich zahrnovaly i *M. stabulans*. Ovšem při porovnání tohoto druhu se sekvencí z Japonska byla dosažena hodnota 5 %, což autoři vysvětlovali jako chybu při morfologické identifikaci.

V mé práci se jeví výsledek analýz variability *COI* markeru u *M. stabulans* také velmi zajímavý. Všechny poukazují na to, že haplotypy se rozdělují do dvou skupin, a to napříč zeměmi původu. To by mohlo znamenat, že daný druh je tvořen dvěma sympatrickými poddruhy, morfologicky nerozlišitelnými. Při porovnání genetických distancí mezi těmito dvěma skupinami (vnitrodruhová K2p u obou skupin je 0,001, mezi nimi pak 0,059) a mezidruhovou variabilitou ostatních druhů 0,103 až 0,178 (**Tab. 9**) však nelze tyto skupiny označit za kryptické druhy. DNA barcoding je pro odhalování takových druhů dobrým nástrojem (Hebert et al., 2003), je však jen jedním parametrem a měl by být podpořen i dalšími analýzami (např. detailnější morfologická studie, další fenotypové charakteristiky – fyziologie). Je také třeba zohlednit, že mé analýzy byly provedeny na souboru 58 jedinců, který představuje spíš náhodné vzorkování a zastoupení jedinců z různých zemí bylo velmi nerovnoměrné (**Obr. 11**) Pro potvrzení mých analýz by tedy bylo potřeba provést systematické vzorkování v rámci celého areálu rozšíření

M. stabulans, rozšířit genetické analýzy o skrínink dalších lokusů a zaměřit se také na další fenotypové znaky i ekologické charakteristiky.

5.3. Jaderný marker ITS

Stejně jako markeru *COI*, byly pro *ITS* vybrány primery stejným způsobem. Nejvíce se osvědčily kombinace primerů *ITS*f1 – *ITS*r1 (Zhang & He, 2003) a 1975F – 52R (Ratcliffe et al., 2003). Získání *ITS* sekvencí je velmi obtížné, což se potvrdilo v mé práci – pouze ze dvou druhů (*Musca domestica*, *Hydrotaea ignava*) jsem získala úplné sekvence. PCR produkty, z nichž byly chromatogramy nekvalitní, jsem zaklonovala, což nevedlo ke zlepšení kvality chromatogramů, a tak nebyly další pokusy nadále prováděny. S obdobným problémem se u čeledi Calliphoridae setkala ve své práci Klojdová (2018), na rozdíl od Jánové (2021), které se podařilo zaklonovat a následně osekvenovat všech 9 druhů čeledi Sarcophagidae. Potíže tohoto rázu se pravděpodobně nevyhýbají ani jiným týmům – např. Zaidi et al. (2010) uvádí v seznamu vzorků i *M. domestica*, ale nikde v práci se o získání sekvencí nezmiňuje a pro analýzy použil sekvence z GenBanku.

Pro další analýzu jsem proto ke svým sekvencím vyhledala odpovídající lokusy z publikovaných genomů. Jednalo se o *ITS* sekvence čeledi Muscidae (*Musca vetustissima, Heamatobia irritans, Stomoxys calcitrans, Hydrotaea diabolus*). Zahrnula jsem i druhy Calliphoridae (*Lucilia caesar, Lucilia sericata, Calliphora vicina, Phormina regina*), s nimiž Klojdová (2018) neuspěla.

Při porovnání genetické vzdálenosti druhů v rámci čeledí Muscidae, Calliphoridae a Sarcophagiadae. Obecně by to mělo odrážet dobu divergence mezi porovnávanými druhy, ale v našem případě hodnoty spíš sloužily k porovnání rychlosti divergence, resp. variability jednotlivých markerů. U čeledi Muscidae byla nejméně variabilní *COI* (0,103 – 0,198), zatímco *ITS1* a *ITS2* měly variabilitu vyšší a obdobnou (*ITS1*: 0,218 – 0,596; *ITS2*: 0,219 – 0,492). Calliphoridae měly hodnoty *COI* také nižší (0,044 – 0,100), ale hodnoty pro *ITS1* se jevila jako mnohem vyšší (0,278-0,633) než pro *ITS2* (0,146 – 0,239). Čeleď Sarcophagidae má sice vzorec obdobný jako Calliphoridae (tedy nejméně variabilní *COI* a nejvíce *ITS1*), ale rozmezí hodnot je mnohem nižší než u obou předcházejících čeledí (*COI*: 0,008 – 0,088; *ITS1*: 0,010 –

0,234; *ITS2*: 0,003 – 0,093) (Jánová, 2021). Ačkoliv z tohoto nelze vyvozovat mnoho, ale zjevně je skutečně možné oba fragmenty *ITS* považovat za komplementární k obvyklému DNA barcodingu v případě, kdy je nutno přidat variabilnější marker. V případě, že je variabilita vyšší jde o komplementární marker pro DNA barcoding.

5.3.1. Sekundární struktury ITS

Pro *ITS1 a ITS2* jsem zrekonstruovala sekundární struktury a vyhodnotila počty 4 základních prvků (kmínek, větvená smyčka, nespárované báze a vlásenka) u čeledi Muscidae, Calliphoridae a přidala jsem i hodnoty Sarcophagidae z předchozí práce Jánové (2021). Po porovnání průměrných hodnot u všech čeledí se ukázalo, že hodnoty *ITS1* u Calliphoridae měly ve všech prvcích o něco větší hodnoty než u Muscidae, ovšem Sarcophagidae měly hodnoty ještě vyšší. Opačný závěr se však vyskytuje u *ITS2*, kdy je průměr Calliphoridae větší u čeledi Muscida a Sarcophagidae se pohybují mezi nimi. Z čehož vyplývá, že uvedené čeledi mají svou typickou sekundární strukturu, ve které se od sebe odlišují (**Obr.13**).

Obr. 13: Průměrné počty jednotlivých prvků sekundární struktury *ITS1 a ITS2* u čeledí Muscidae, Calliphoridae a Sarcophagidae.

Při porovnání je z grafu *ITS1* je patrné, že ve všech prvcích převládá Sarcophagidae. Zatímco Muscidae a Calliphoridae mají podobný průměrný počet prvků. Nespárované báze jsou u těchto druhů dokonce vyrovnané. Z čehož lze usoudit, že každá čeleď má svou unikátní sekundární strukturu, přičemž Muscidae a Calliphoridae si jsou více podobné oproti Sarcophagidae. U *ITS2* mají všechny prvky o něco podobnější průměr u všech čtyřech prvků. Variabilita na úrovni nukleotidu i sekundární struktury může být do jisté míry ovlivněna i délkou fragmentů. Při porovnání těchto délek mezi Muscidae a Calliphoridae se ukázalo, že délka *ITS1* u Calliphoridae přesahuje 1000 bp zatímco Muscidae mají nejvyšší počet bazí kolem 800. U *ITS2* jsou oba fragmenty podobně dlouhé kolem 400 bp. Z toho se dá usuzovat, že vliv délky na variabilitu není příliš významný.

6. Závěr

V této práci byly na základě předchozích dvou prací (Klojdová 2018, Jánová 2021) a literatury vybrány a otestovány markery vhodné pro studium genetické variability forenzně významných druhů Muscidae (*Musca domestica, Hydrotaea ignava, Muscina prolapsa, Muscina stabulans, Muscina levida a Muscina pascourum*). Experimentálně bylo analyzováno 42 jedinců z 5ti druhů, které se vyskytují v České republice. Podařilo se získat sekvence z mitochondriální oblasti *COI* u 4 druhů, a u markeru *ITS* se podařilo získat sekvenci u 2 druhů. Pro následné analýzy byly použity sekvence markeru *COI* z databáze BOLD, ze které bylo použito593 sekvencí a pro *ITS* marker z genomů z databáze GenBank, ze které bylo použito 10 genomů.

Podle očekávání bylo potvrzeno, že marker *COI* se ukázal jako vhodný pro identifikaci druhů, ale pro analýzu populací v rámci druhů se příliš nehodí. Haplotypy se ve všech analýzách jevily jako promíchané mezi geografickými oblastmi a nebyl detekován žádný fylogeografický vzorec. Tato skutečnost však může být zkreslená tím, že zastoupení jedinců z různých lokalit bylo velmi nerovnoměrné.

V tomto ohledu se nejzajímavějším výsledkem jeví uspořádání haplotypů druhu *M. stabulans*, kdy byly opakovaně detekovány dvě skupiny, naznačující možnou existenci dvou sympatrických poddruhů. Bylo by vhodné se na populační genetiku forenzních Dipter zaměřit více především kvůli její významnosti ve forenzní entomologii, a to samé platí pro rozšíření studia genomů, kterých je mezi forenzními druhy osekvenováno malé množství.

Marker *ITS* se ukázal být dost problematický, a to především kvůli obtížnému získávání sekvencí. Sekundární struktury tohoto markeru by se však pro druhovou identifikaci použít daly, ovšem bez DNA sekvence se nedají predikovat. Bylo by proto vhodné se zaměřit na optimalizaci technických postupů, které by k úspěšnému sekvenování vedly – tedy od nejvhodnější metody DNA extrakce pro získání co nejčistšího templátu pro PCR, navržení druhově specifických primerů či použití jiného klonovacího systému. Pokud by se podařilo amplifikovat a sekvenovat ITS1, mohla by být více informativní pro studium populací. Tuto problematiku by mohly vyřešit specifické primery.

7. Zdroje

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular Biology of the Cell, 4th edition. New York: Garland Science.

Amendt, J., Campobasso, C. P., Gaudry, E., Reiter, C., LeBlanc, H. N., & Hall, M. J. R. (2007). Best practice in forensic entomology—standards and guidelines. International Journal of Legal Medicine, 121(2), 90-104.

Amendt, J. et al. (2011). 'Forensic entomology: Applications and limitations', Forensic Science, Medicine, and Pathology, 7(4), pp. 379–392. doi: 10.1007/s12024-010-9209-2. doi: 10.1093/oxfordjournals.molbev.a026036.

Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular biology and evolution, 16(1), 37-48.

Benecke, M. (2001). A brief history of forensic entomology. Forensic Science International, 120(1-2), 2-14.

Birky, C. W., (1978). Transmission genetics of mitochondria and chloroplasts. Annual Review of Genetics 12: 471-512.

Bhakdeenuan, P., Siriyasatien, P., Payungporn, S., Preativatanyou, K., Thavara, U.,
Tawatsin, A., Sukontason, K. S., Likitvong Sukontason, K., Choochote, W., Suwannayod,
S., & Sasaki, H. (2012). Molecular Analysis of Medically and Veterinary Important Muscid
Flies (Diptera: Muscidae) in Thailand. Thai Journal of Veterinary Medicine, 42(3), 333-342.

Byrd, J. H., & Castner, J. L. (2009). Forensic entomology: the utility of arthropods in legal investigations. CRC press.

Caterino, M. S., Cho, S., & Sperling, F. A. (2000). The current state of insect molecular systematics: a thriving Tower of Babel. Annual review of entomology, 45(1), 1-54.

Chimeno, C., Morinière, J., Podhorna, J., Hardulak, L., Hausmann, A., Reckel, F. & Haszprunar, G. (2018). DNA Barcoding in Forensic Entomology – Establishing a DNA Reference Library of Potentially Forensic Relevant Arthropod Species. Journal of Forensic Sciences.

Chimeno, C., Hausmann, A., Schmidt, S., Raupach, M. J., Doczkal, D., Baranov, V., Hübner, J., Höcherl, A., Albrecht, R., Jaschhof, M., et al. (2022). Peering into the Darkness: DNA Barcoding Reveals Surprisingly High Diversity of Unknown Species of Diptera (Insecta) in Germany. Insects, 13, 82.

Cummings, M. A., & Kraf, S. E. (2005). Spatial diversity in mitochondrial cytochrome c oxidase in house flies. Medical and Veterinary entomology, 53-59.

Diniz, F. M., Maclean, N., Ogawa, M., Cintra, I. H., & Bentzen, P. (2005). The hypervariable domain of the mitochondrial control region in Atlantic spiny lobsters and its potential as a marker for investigating phylogeographic structuring. Marine Biotechnology, 7(5), 462-473.

Ding, S., Li, X., Wang, N., Cameron, S. L., Mao, M., Wang, Y., et al. (2015). The Phylogeny and Evolutionary Timescale of Muscoidea (Diptera: Brachycera: Calyptratae) Inferred from Mitochondrial Genomes.

Douglas, L. J. and Haymer, D. S. (2001) 'Ribosomal ITS1 Polymorphisms in Ceratitis capitata and Ceratitis rosa (Diptera: Tephritidae)', Annals of the Entomological Society of America, 94(5), pp. 726–731. doi: 10.1603/0013-8746(2001)094[0726:RIPICC]2.0.CO;2.

Durden, A. L., & Mullen, R. G. (2002). Medical entomology. Academic Press. doi: 10.1016/B978-0-12-510451-7.50003-7.

Duarte, G. T., De Azeredo-Espin, A. M. L., & Junqueira, A. C. M. (2008). The mitochondrial control region of blowflies (Diptera: Calliphoridae): a hot spot for mitochondrial genome rearrangements. Journal of medical entomology, 45(4), 667-676.

Eliášová, H., & Šuláková, H. (2012). Forenzní biologie. In Soudní lékařství a jeho moderní trendy. Grada Publishing.

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. doi: https://doi.org/10.1111/j.1755-0998.2010.02847.x.

Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299.

Gemmellaro, M. Denise, George C. Hamilton, and Jessica L. Ware (2019). "Review of Molecular Identification Techniques for Forensically Important Diptera." Journal of Medical Entomology.

Gennard, D. (2007). Forensic entomology: an introduction. John Wiley & Sons.

Gerbi, S. A. (1985) 'Evolution of ribosomal DNA', in MacIntyre, R. J. (ed.) Molecular evolutionary genetics. Springer US, pp. 419–517.

Greenberg, B., & Kunich, J. C. (2002). Entomology and the law: flies as forensic indicators. Cambridge University Press.

Grzywacz, A., Hall, M. J. R., Pape, T., & Szpil, K. (2017). Muscidae (Diptera) of forensic importance—an identification key to third instar larvae of the western Palaearctic region and a catalogue of the muscid carrion community. International Journal of Legal Medicine, 131(4), 855–866. DOI: 10.1007/s00414-016-1495-0.

Hajibabaei, M., Singer, G. A. C., Clare, E. L., & Hebert, P. D. N. (2007). Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biology.

Hebert, P. D. N. et al. (2003). 'Biological identifications through DNA barcodes.', Proceedings. Biological sciences, 270(1512), pp. 313–321. doi: 10.1098/rspb.2002.2218.

Huang, J., Ni, Z., Wang, H., Zhang, L., Yan, J., & Bai, S. (2021). The complete mitochondrial genome of Muscina pascuorum (Diptera: Muscidae). Mitochondrial DNA Part B, 6(1), 110–111.

Hodecek, J., Fumagalli, L., & Jakubec, P. (2023). "All insects matter: a review of 160 entomology cases from 1993 to 2007 in Switzerland—part I (Diptera)." Journal of Medical Entomology, 1–10. DOI: 10.1093/jme/tjad164.

Ji, Y.-J., Zhang, D.-X. and He, L.-J. (2003). 'Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates', Molecular Ecology Notes, 3(4), pp. 581–585. doi: https://doi.org/10.1046/j.1471-8286.2003.00519.x.

Jánová N. (2021). Genetické markery pro druhovou identifikaci a studium genetické variability forenzně významných druhů masařek (Sarcophagidae).

Karagözlü, M.Z., Park, S.H., Shin, S.E., & Kim, C.B. (2017). Complete mitochondrial DNA analysis of Hydrotaea ignava (Insecta, Diptera, Muscidae). Mitochondrial DNA Part B: Resources, 2(2), 825–826.

Kerpedjiev, P., Hammer, S., & Hofacker, I. L. (2015). Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics (Oxford, England), 31(20), 3377–3379. doi: 10.1093/bioinformatics/btv372.

Kim, Y.-H., Shin, S. E., Ham, C. S., Kim, S. Y., Ko, K. S., Jo, T.-H., ... & Hwang, J.-J.
(2014). Molecular Identification of Necrophagous Muscidae and Sarcophagidae Fly Species
Collected in Korea by Mitochondrial Cytochrome c Oxidase Subunit I Nucleotide Sequences.
The Scientific World Journal, Volume 2014.

Klojdová, M. (2018). Molekulární markery pro detekci genetické variability přírodních populací forenzně významných druhů bzučivkovitých (Calliphoridae, Diptera).

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution, 35(6), 1547-1549, doi: 10.1093/molbev/msy096.

Lan, L., Liu, Y., Yan, J., Lin, L., & Zha, L. (2015). The complete mitochondrial genome of the flesh fly, Muscina stabulans (Diptera: Muscidae). Mitochondrial DNA.

Leigh, J., & Bryant, D. (2015). PopART: Full-Feature Software for Haplotype Network Construction. Methods in Ecology and Evolution, doi: 10.1111/2041-210X.12410.

Li, X., Cai, X., Ding, S., Wang, L., Li, W., Liu, & Yang, D. (2023). Phylogeny and Evolutionary Timescale of Muscidae (Diptera: Calyptratae) Inferred from Mitochondrial Genomes. Insects, 14, 286.

Lorenz, R. et al. (2011) 'ViennaRNA Package 2.0', Algorithms for Molecular Biology, 6(1). doi: 10.1186/1748-7188-6-26.

Loxdale, H. D. and Lushai, G. (1998) 'Molecular markers in entomology', Bulletin of Entomological Research, 88(6), pp. 577–600. doi: 10.1017/s0007485300054250.

McMillen-Jackson, A. L., & Bert, T. M. (2004). Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. Journal of Crustacean Biology, 24(1), 101-109.

Meyer, C. P., & Paulay, G. (2005). DNA Barcoding: Error Rates Based on Comprehensive Sampling. PLoS Biology, 3(12), e422.

Modesto Veludo-de-Oliveira, T., Ikeda, A. A., & Campomar, M. C. (2006). Laddering in the practice of marketing research: barriers and solutions. Cardiff Business School, Cardiff

University, Cardiff, UK and University of São Paulo, São Paulo, Brazil, and School of Economics, Business Administration and Accounting, University of São Paulo, São Paulo, Brazil.

Moon, R. D. (2002). Medical and Veterinary Entomology. Academic Press.

Nelson, L.A., Wallman, J.F., Dowton, M., (2008). Identification of forensically important Chrysomya (Diptera: Calliphoridae) species using the second ribosomal internal transcribed spacer (ITS2). Forensic Sci. Int. 177, 238–247.

Nordborg M, Innan H (2002). Molecular population genetics. Curr Opin Plant Biol 5: 69–73.

Oliveira, M. T., Azeredo-Espin, A. M., & Lessinger, A. C. (2007). The mitochondrial DNA control region of Muscidae flies: evolution and structural conservation in a dipteran context. Journal of molecular evolution, 64(5), 519-527.

Paul, D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(Suppl 1), S313-S321. DOI: 10.1098/rspb.2002.2218.

Parker, P. et al. (1998). 'What Molecules Can Tell Us about Populations: Choosing and Using a Molecular Marker', Aspen Bibliography, 79. doi: 10.2307/176939.

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics (Oxford, England), 28(19), 2537–2539.

Povolný, D. (1978). Hmyz v kriminologii. Vesmír, 57, 205-208.

Puillandre N., Lambert A., Brouillet S., & Achaz G. (2011). ABGD Automatic Barcode Gap, Discovery forprimary species delimitation, Mon Ecol.

Ratcliffe, S. T., Webb, D. W., Weinzievl, R. A., & Robertson, H. M. (2003). PCR-RFLP identification of Diptera (Calliphoridae, Muscidae and Sarcophagidae) -a generally applicable method. Journal of forensic sciences, 48(4), 783-785.

Renaud, A. K., Savage, J., & Adamowicz, S. J. (2012). DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limITS. BMC Ecology.

Ren, L., Chen, W., Shang, Y., Meng, F., Zha, L., Wang, Y., & Guo, Y. (2018). The Application of COI Gene for Species Identification of Forensically Important Muscid Flies (Diptera: Muscidae). Journal of Medical Entomology, 1-10.

Ren, L., Shang, Y., Yang, L., Shen, X., Chen, W., Wang, Y., Cai, J., & Guo, Y. (2019). Comparative analysis of mitochondrial genomes among four species of muscid flies (Diptera: Muscidae) and its phylogenetic implications. International Journal of Biological Macromolecules, 127, 357-364.

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular biology and evolution, 34(12), 3299–3302. doi: 10.1093/molbev/msx248.

Schlötterer, C., Amos, B., & Tautz, D. (1991). Conservation of nucleotide sequences of the internal transcribed spacer 2 (ITSITS2) among teleost fishes and ITS implications for phylogenetic analysis. Aquatic Sciences, 53(1), 72-79.

Schlötterer, C. et al. (1994). 'Comparative evolutionary analysis of rDNA ITS regions in Drosophila', Molecular Biology and Evolution, 11(3), pp. 513–522. doi: 10.1093/oxfordjournals.molbev.a040131.

Schröder, J., Klotzbach, H., Elias, S., Augustin, C., & Püschel, K. (2003). Use of PCR– RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Science International, 132(1), 76-81.

Schroeder, H., Klotzbach, H., Elias, S., Augustin, C., & Pueschel, K. (2003). Use of PCR– RFLP for differentiation of calliphorid larvae (Diptera, Calliphoridae) on human corpses. Forensic Science International, 132(1), 76-81.

Schremmer, F., Tawatsin, A., & Sukontason, K. (2007). Biology of the housefly, Musca domestica (Diptera: Muscidae) in Thailand: a review. The Southeast Asian Journal of Tropical Medicine and Public Health, 38(1), 127-131.

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the entomological Society of America, 87(6), 651-701.

Song, Z., Wang, X., & Liang, G. (2008). Species identification of some common necrophagous flies in Guangdong province, southern China based on the rDNA internal transcribed spacer 2 (ITSITS2). Forensic Science International, 175(1), 17-22.

Šuláková, H. (2006). Speciální biologie: využití hmyzu při stanovení post mortem intervalu. Kriminalistický sborník, (3), 36-37.

Šuláková, H. (2014). Forenzní entomologie – když smrt je začátek. Živa, 5, 250–256. Available at:https://ziva.avcr.cz/files/ziva/pdf/forenzni-entomologie-kdyz-smrt-jezacatek.pdf.

Šuláková, H., & Eliášová, H. (2012). Forenzní entomologie. In Soudní lékařství a jeho moderní trendy. Grada Publishing.

Stage, D. E., & Eickbush, T. H. (2015). Sequence variation within the rRNA gene loci of 12 Drosophila species. Cold Spring Harbor Laboratory Press.

Sperling, F. A., Anderson, G. S., & Hickey, D. A. (1994). A DNA-based approach to the identification of insect species used for postmortem interval estimation. Journal of Forensic Science, 39(2), 418-427.

Sperling, F. A., Anderson, G. S. and Hickey, D. A. (1994). 'A DNA-based approach to the identification of insect species used for postmortem interval estimation.', Journal of forensic sciences, 39(2), pp. 418–427.

Stage, D. E., & Eickbush, T. H. (2015). Sequence variation within the rRNA gene loci of 12 Drosophila species. Cold Spring Harbor Laboratory Press.

Veludo-de-Oliveira, T. M., Ikeda, A. A., & Campomar, M. C. (2006). Laddering in the practice of marketing research: barriers and solutions. Cardiff Business School, Cardiff University, Cardiff, UK and University of São Paulo, São Paulo, Brazil, and School of Economics, Business Administration and Accounting, University of São Paulo, São Paulo, Brazil.

Whiting, M. F. (2002). 'Phylogeny of the holometabolous insect orders: molecular evidence', Zoologica Scripta, 31(1), pp. 3–15. doi: https://doi.org/10.1046/j.0300-3256.2001.00093.x.

Wells, J. D. and Stevens, J. R. (2008). 'Application of DNA-based methods in forensic entomology', Annual Review of Entomology, 53, pp. 103–120. doi: 10.1146/annurev.ento.52.110405.091423.

Young, I., & Coleman, A. W. (2004). The advantages of the ITSITS2 region of the nuclear rDNA cistron for analysis of phylogenetic relationships of insects: A Drosophila example. Molecular Phylogenetics and Evolution, 30(1), 236–242.

Zaidi, F. et al. (2011) 'Utility of multi-gene loci for forensic species diagnosis of blowflies', Journal of Insect Science, 11(59), pp. 1–12. doi: 10.1673/031.011.5901.

Zaidi, F., Wei, S. J., Shi, M., Chen, X. X., & Yang, X. L. (2013). Utility of multi-gene loci for forensic species diagnosis of blowflies. Journal of Insect Science, 13(59), 1–12.

Zhang, D. X., & Hewitt, G. M. (1997). Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology, 25(2), 99-120.

Internetové zdroje:

https://www.biolib.cz/

http://www.boldsystems.org/

https://blast.ncbi.nlm.nih.gov/

http://iqtree.cibiv.univie.ac.at/

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi/

https://bugguide.net/node/view/860015

The Forensic Anthropology Center - Forensic Anthropology Center (utk.edu)

8. Přílohy

BOLDkod	země	lokality	souřadnice	zkratka
GBMNE58436 -22	Kanada		49.2442N, - 121.758E	Hig-CA-1
BBDIT1069- 11	USA	Crystal Cove State Park	33.563N, - 117.819E	Hig-US-C1
BBDIT1070- 11	USA	Crystal Cove State Park	33.563N, - 117.819E	Hig-US-C2
BBDIT1071- 11	USA	Crystal Cove State Park	33.563N, - 117.819E	Hig-US-C3
CDFD013-12	Portugalsk o	Lisbon	38.756N, -9.159E	Hig-PT-L1
GBMNA2172 9-19	UK		53.6432N, - 1.77837E	Hig-UK-1
BCFOR1501- 17	Německo		48.0954N, 11.2943E	Hig-GER-1
BCFOR067-15	Německo	Oberbayern	48.165N, 11.497E	Hig-GER-O1
BCFOR087-15	Německo	Oberbayern	48.165N, 11.497E	Hig-GER-O2
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE-P1
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE-P2
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE-P3
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE-P4
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE-P5
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE-P7
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE-P9
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE- P10

Příloha I: Seznam sekvencí COI H.ignava z databáze BOLD.

	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE- P12
	Česká Rep.	Praha, Petřín	50,5N, 14,25E	Hig-CZE- P14
BCFOR395-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M1
BCFOR404- 15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M2
BCFOR420-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M3
BCFOR421-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M4
BCFOR422-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M5
BCFOR424-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M6
BCFOR439-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M7
BCFOR441-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M8
BCFOR445-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE-M9
BCFOR446-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M10
BCFOR447-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M11
BCFOR513-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M12
BCFOR514-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M13
BCFOR524-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M14
BCFOR541-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M15
BCFOR543-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M16

BCFOR581-15	Česká Rep.	Morava, Olomouc	49.689N, 17.126E	Hig-CZE- M17
GBMNE29830 -21	Polsko			Hig-PL-1
GBMIN59046 -17	Polsko	Plawin	52.0685N, 19.4357E	Hig-PL-P1
FIDIP996-12	Finsko	Nylandia	60.226N, 24.924E	Hig-FI-N1
GBMNF28293 -22	Turecko			Hig-TR-1
GBDP28014- 19	Indie		23.5863N, 81.173E	Hig-IN-1
GBDP28015- 19	Indie		23.5863N, 81.173E	Hig-IN-2
GBDP15344- 14	Jižní Korea		36.4024N, 127.762E	Hig-KR-1
GBDP15345- 14	Jižní Korea		36.4024N, 127.762E	Hig-KR-2
GBDP15346- 14	Jižní Korea		36.4024N, 127.762E	Hig-KR-3
GBDP28016- 19	Jižní Korea		36.4024N, 127.762E	Hig-KR-4
GBMNA9787- 19	Jižní Korea		36.4024N, 127.762E	Hig-KR-5

Příloha II: Seznam sekvencí COI M. stabulans z databáze BOLD

BOLDkod	země	lokality	souřadnice	zkratka
MBIOA004-	Kanada	Biodiversity Institute of	43.528N, -	Mst-CA-
13		Ontario	80.229E	B1
SMTPB147	Kanada	Bradford	44.1077N, -	Mst-CA-
95-13			79.579E	B2
SMTPI8877	Kanada	Bowmanville	43.912N, -	Mst-CA-
-14			78.709E	B3
JSDIP782-	Kanada	Elizabethtown-Kitley	44.621N, -	Mst-CA-
10			75.773E	E1

SMTPD315 4-13	Kanada	Guelph	43.562N, - 80.247E	Mst-CA- G1
SMTPF2613 -14	Kanada	London	42.9869N, - 81.239E	Mst-CA- L1
SMTPM234 2-15	Kanada	Lucky Lake	50.98N, - 107.135E	Mst-CA- L2
SMTPM234 8-15	Kanada	Lucky Lake	50.98N, - 107.135E	Mst-CA- L3
SMTPB460 5-13	Kanada	Milverton	43.568N, - 80.928E	Mst-CA- M1
SMTPM380 4-15	Kanada	Northport	45.941N, - 63.872E	Mst-CA- N1
SMTPM433 9-15	Kanada	Prince Rupert	54.312N, - 130.303E	Mst-CA- P1
SMTPP5232 -15	Kanada	Salt Spring Island	48.8544N, - 123.501E	Mst-CA- S1
SMTPB276 8-13	Kanada	St. Marys	43.259N, - 81.141E	Mst-CA- St1
SMTPB161 21-13	Kanada	Walkerton	44.1274N, - 81.144E	Mst-CA- W1
BCBEE103- 21	Kanada	Yoho National Park	53.929N, - 122.75E	Mst-CA- YN1
CNYOB101 4-15	Kanada	Yoho National Park	51.365N, - 116.528E	Mst-CA- YN2
BUIC- DIP2192	Spojené státy americké	Pennsylvania, Delaware County	39.872N, - 75.371E	Mst-US- DC1
MPGD3754- 19	USA	Florence	46.694N, - 114.009E	Mst-US- F1
GBDP14137 -13	USA	Joseph D. Grant County Park	37,340N, - 121,721E	Mst-US- J1
GBDP4134- 07	Brazílie	Parana	20,512N, 51,02E	Mst-BR1
FFECU440- 18	Ekvádor	Sierra	0.001N, - 78.354E	Mst-EC- S1
GBMNE574 42-22	Severní Afrika			Mst-SGS1

GMEGA038	Egypt	Mariot	30.9256N,	Mst-EG-
-14			29.7755E	M1
GMESA178	Egypt	Smouha	31.204N,	Mst-EG-
-14			29.9496E	S2
GMESJ1099	Egypt	Smouha	31.204N,	Mst-EG-
-14			29.9496E	S3
GMESJ1103	Egypt	Smouha	31.204N,	Mst-EG-
-14			29.9496E	S4
GMESL070-	Egypt	Smouha	31.204N,	Mst-EG-
14			29.9496E	S5
GMESL072-	Egypt	Smouha	31.204N,	Mst-EG-
14			29.9496E	S6
IBIDP134-	Portugalsko	Mirandela	41.5281N, -	Mst-PT-
19			7.07115E	M1
IBIDP096-	Portugalsko	Porto	41.1496N, -	Mst-PT-
19			8.6266E	P1
CDFD019-	Portugalsko	Lisbon, Campo Grande	38.756N, -	Mst-PT-
12			9.159E	Ca1
GBDP24322	Španělsko		40.365N, -	Mst-ES1
-19			3.65163E	
AMTPF115	Německo	Bavaria, Allgaeu	47.389N,	Mst-Ger-
3-16			10.3485E	BA1
	Praha	Petřín	50,5N, 14,25E	Mst-CZ-
				Pl
	Praha	Petřín	50,5N, 14,25E	Mst-CZ-
				P2
FIDIP1096-	Finsko	Helsinky	60.192N,	Mst-FI-
12			24.894E	HI
FIDIP440-	Finsko	Mynaemaeki	60.615N,	Mst-FI-
11			21.929E	MI
GMBMG09	Bělorusko	Minsk	53.9156N,	Mst-BY-
7-17			27.6062E	MI
GMBMH30	Bělorusko	Minsk	53.9156N,	Mst-BY-
0-17			27.6062E	M2
GMBUB034	Bulharsko	Godech	43.009N,	Mst-BG-
-14			23.058E	GI

GBMNF283 01-22	Turecko			Mst-TR1
GBMNE57 441-22	Irák			Mst-IR1
GBMIN590 72-17	Čina	Guiyang	38.0733N, 104.691E	Mst- CHN-G1
GBMIN590 73-17	Čína		38.0733N, 104.691E	Mst- CHN-2
GBMIN590 74-17	Čína		38.0733N, 104.691E	Mst- CHN-3
GBMIN590 75-17	Čína		38.0733N, 104.691E	Mst- CHN-4
GBMIN590 76-17	Čína		38.0733N, 104.691E	Mst- CHN-5
GBMIN590 77-17	Čína	Guiyang	38.0733N, 104.691E	Mst- CHN-G6
GBMIN590 78-17	Čína		38.0733N, 104.691E	Mst- CHN-7
GBMNA979 0-19	Čína		38.0733N, 104.691E	Mst- CHN-8
GBMND486 18-21	Čína			Mst- CHN-9
GBMND486 19-21	Čína			Mst- CHN-10
GBDP15336 -14	Severní Korea		36.4024N, 127.762E	Mst- KLDR1
GBDP15337 -14	Severní Korea		36.4024N, 127.762E	Mst- KLDR2
GBDP15338 -14	Severní Korea		36.4024N, 127.762E	Mst- KLDR3
GBMNA209 90-19	Austrálie			Mst-AU1
NZIND551- 22	Nový Zéland		`-44.944N, 171.144E	Mst-NZ-1

BOLDkod	země	lokalita	souřadnice	zkratky
ABINP040- 21	Kanada	Ivvavik National Park	69.163N, - 140.151E	Mulev_CAN_I1
ASDMT1330 -11	Kanada	Wilberforce Township	45.509N, - 76.676E	Mulev_CAN_W 1
BARSD059- 16	Kanada	Peterborough	44.271N, - 78.394E	Mulev_CAN_P 1
BARSF182- 16	Kanada	Peterborough	44.271N, - 78.394E	Mulev_CAN_P 2
BCBEE101- 21	Kanada	Prince George	53.929N, - 122.75E	Mulev_CAN_P R2
BCBEE071- 21	Kanada	Central Interior	53.929N, - 122.75E	Mulev_CAN_C 1
BCBEE117- 21	Kanada	Central Interior	53.929N, - 122.75E	Mulev_CAN_C 2
BCBEE499- 22	Kanada	Central Interior	53.929N, - 122.75E	Mulev_CAN_C 3
BUICD1924- 20	Kanada	Delaware County	39.871N, - 75.366E	Mulev_CAN_D 1
BUICD1928- 20	Kanada	Delaware County	39.871N, - 75.366E	Mulev_CAN_D 2
CNBFG005- 15	Kanada	Banff National Park	51.436N, - 116.188E	Mulev_CAN_B 1
CNBPA067- 12	Kanada	Bruce PeninsulaNational Park	45.258N, - 81.655E	Mulev_CAN_B R1
CNFNB147- 14	Kanada	Forillon National Park	48.857N, - 64.376E	Mulev_CAN_F 1
CNGBA118- 13	Kanada	Georgian Bay Islands National Park	44.7418N, - 79.8501E	Mulev_CAN_G 1
CNGBA282- 13	Kanada	Georgian Bay Islands National Park	44.7418N, - 79.8501E	Mulev_CAN_G 2
CNGMA149 4-13	Kanada	Gros Morne National Park	49.5686N, - 57.8302E	Mulev_CAN_G R1
CNGSJ120- 15	Kanada	Gros Morne National Park	49.5686N, - 57.8302E	Mulev_CAN_G R2

Příloha III: Seznam sekvencí COI M.levida z databáze BOLD.

CNIVA053- 14	Kanada	Ivvavik National Park	69.169N, - 140.167E	Mulev_CAN_I V1
CNIVA058- 14	Kanada	Ivvavik National Park	69.169N, - 140.167E	Mulev_CAN_I V2
CNIVB1448- 14	Kanada	Ivvavik National Park	69.169N, - 140.167E	Mulev_CAN_I V3
CNPKD1004 -13	Kanada	Pukaskwa National Park	48.601N, - 86.2893E	Mulev_CAN_P U1
CNPPA1208- 12	Kanada	Point Pelee National Park	41.939N, - 82.516E	Mulev_CAN_P O1
CNPPA2000- 12	Kanada	Point Pelee National Park	41.939N, - 82.516E	Mulev_CAN_P O2
CNPPA2140- 12	Kanada	Point Pelee National Park	41.939N, - 82.516E	Mulev_CAN_P O3
CNPPA235- 12	Kanada	Point Pelee National Park	41.939N, - 82.516E	Mulev_CAN_P O4
CNPPA417- 12	Kanada	Point Pelee National Park	41.939N, - 82.516E	Mulev_CAN_P O5
CNPPA841- 12	Kanada	Point Pelee National Park	41.939N, - 82.516E	Mulev_CAN_P O6
CNPPB2028- 12	Kanada	Point Pelee National Park	41.939N, - 82.516E	Mulev_CAN_P O7
SSPPA5817- 15	Kanada	Point Pelee National Park	41.964N, - 82.529E	Mulev_CAN_P O8
SSPPA6499- 15	Kanada	Point Pelee National Park	41.964N, - 82.529E	Mulev_CAN_P O9
CNRMG548- 12	Kanada	Riding Mountain National Park	50.676N, - 99.898E	Mulev_CAN_R 1
CNRMH260- 12	Kanada	Riding Mountain National Park	50.676N, - 99.898E	Mulev_CAN_R 2
CNWAG017 -15	Kanada	Wapusk National Park	58.723N, - 93.458E	Mulev_CAN_W A1
CNWLP410- 13	Kanada	Waterton Lakes National Park	49.083N, - 113.876E	Mulev_CAN_W AT1
GBMNE584 37-22	Kanada		49.2442N, - 121.758E	Mulev_CAN_1
GBMNE584 38-22	Kanada		49.2442N, - 121.758E	Mulev_CAN_2
-------------------	--------	---------------------	-------------------------	-------------------
GBMNE584 41-22	Kanada		49.2442N, - 121.758E	Mulev_CAN_3
GMCBC501- 16	Kanada	Victoria	48.5197N, - 123.43E	Mulev_CAN_V 1
GMCVA015- 16	Kanada	Victoria	48.5197N, - 123.43E	Mulev_CAN_V 2
GMCVW018 -16	Kanada	Victoria	48.5197N, - 123.43E	Mulev_CAN_V 3
GMCVW118 -16	Kanada	Victoria	48.5197N, - 123.43E	Mulev_CAN_V 4
GMOLF043- 19	Kanada	Inuvik	68.3261N, - 133.634E	Mulev_CAN_I N1
GMOLF048- 19	Kanada	Inuvik	68.3261N, - 133.634E	Mulev_CAN_I N2
GMOLH010- 15	Kanada	Inuvik	68.3261N, - 133.634E	Mulev_CAN_I N3
GMOLJ033- 18	Kanada	Inuvik	68.3261N, - 133.634E	Mulev_CAN_I N4
GMOLJ043- 18	Kanada	Inuvik	68.3261N, - 133.634E	Mulev_CAN_I N5
GMOQB087- 19	Kanada	Whitehorse	60.5954N, - 134.953E	Mulev_CAN_W H1
GMOQF170- 15	Kanada	Whitehorse	60.5954N, - 134.953E	Mulev_CAN_W H2
GMORA601- 21	Kanada	Norman Wells	65.279N, - 126.83E	Mulev_CAN_N 1
JSDIP081-10	Kanada	Leeds and Grenville	44.621N, - 75.773E	Mulev_CAN_L 1
MFDC048- 08	Kanada	Churchill	58.731N, - 93.78E	Mulev_CAN_C H1
MFDC630- 09	Kanada	Churchill	58.731N, - 93.78E	Mulev_CAN_C H2
MFDC633- 09	Kanada	Churchill	58.731N, - 93.78E	Mulev_CAN_C H3

MFDC635- 09	Kanada	Churchill	58.731N, - 93.78E	Mulev_CAN_C H4
MHFLI168- 06	Kanada	Churchill	58.731N, - 93.78E	Mulev_CAN_C H5
MHFLI187- 06	Kanada	Churchill	58.731N, - 93.78E	Mulev_CAN_C H6
MHFLY363- 09	Kanada	Churchill	58.731N, - 93.78E	Mulev_CAN_C H7
NGAAC2267 -14	Kanada	Kamloops	50.672N, - 120.533E	Mulev_CAN_K 1
NGNAA205 6-13	Kanada	Kamloops	50.672N, - 120.533E	Mulev_CAN_K 2
NGNAX218 3-14	Kanada	Kamloops	50.672N, - 120.533E	Mulev_CAN_K 3
HEOCT623- 12	Kanada	Wellington County	43.537N, - 80.134E	Mulev_CAN_W E1
PHDIP1146- 11	Kanada	Wellington County	43.537N, - 80.134E	Mulev_CAN_W E2
PHDIP639- 11	Kanada	Wellington County	43.537N, - 80.134E	Mulev_CAN_W E3
PHDIP838- 11	Kanada	Wellington County	43.537N, - 80.134E	Mulev_CAN_W E4
PHSEP1271- 11	Kanada	Wellington County	43.537N, - 80.134E	Mulev_CAN_W E5
RRMFA202- 15	Kanada	Cambridge	43.3736N, - 80.3652E	Mulev_CAN_C A1
RRMFA213- 15	Kanada	Cambridge	43.3736N, - 80.3652E	Mulev_CAN_C A2
RRMFA214- 15	Kanada	Cambridge	43.3736N, - 80.3652E	Mulev_CAN_C A3
RRMFB1079 -15	Kanada	Cambridge	43.3736N, - 80.3652E	Mulev_CAN_C A4
RRMPB086- 15	Kanada	Cambridge	43.3736N, - 80.3652E	Mulev_CAN_C A5
SMTPB1009 1-13	Kanada	London	42.958N, - 81.203E	Mulev_CAN_L O1

SMTPB1041 3-13	Kanada	London	42.958N, - 81.203E	Mulev_CAN_L O2
SMTPB1298 1-13	Kanada	London	42.958N, - 81.203E	Mulev_CAN_L O3
SMTPF2606- 14	Kanada	London	42.9869N, - 81.239E	Mulev_CAN_L O4
SMTPB1049 0-13	Kanada	Ethel	43.714N, - 81.145E	Mulev_CAN_E T1
SMTPB1130 2-13	Kanada	Kitchener	43.392N, - 80.466E	Mulev_CAN_K I1
SMTPB1316 8-13	Kanada	Tottenham	44.026N, - 79.849E	Mulev_CAN_T 1
SMTPF3286- 14	Kanada	Georgetown	43.6512N, - 79.921E	Mulev_CAN_G E1
SMTPF3786- 14	Kanada	Brampton	43.729N, - 79.815E	Mulev_CAN_B RA1
SMTPF5012- 14	Kanada	Fergus	43.7036N, - 80.358E	Mulev_CAN_F E1
SMTPF6928- 14	Kanada	Brantford	43.143N, - 80.274E	Mulev_CAN_B RAN1
SMTPF6945- 14	Kanada	Brantford	43.143N, - 80.274E	Mulev_CAN_B RAN2
SMTPF8770- 14	Kanada	Whitby	43.8859N, - 78.934E	Mulev_CAN_W HI1
SMTPJ5485- 14	Kanada	Innisfil	44.322N, - 79.546E	Mulev_CAN_I N1
SMTPL9123- 15	Kanada	Valley	45.395N, - 63.203E	Mulev_CAN_V 1
SMTPM4343 -15	Kanada	Prince Rupert	54.312N, - 130.303E	Mulev_CAN_P R1
SMTPM4366 -15	Kanada	Prince Rupert	54.312N, - 130.303E	Mulev_CAN_P R2
SMTPM644- 15	Kanada	Landmark	49.669N, - 96.818E	Mulev_CAN_L A1
SMTPM6654 -15	Kanada	Мауо	63.597N, - 135.895E	Mulev_CAN_M 1

SMTPO1453 -15	Kanada	New Liskeard	47.51N, - 79.679E	Mulev_CAN_N E1
SMTPP359- 15	Kanada	Preeceville	51.959N, - 102.676E	Mulev_CAN_P RE1
CNEIC2864- 12	Kanada	Elk Island National Park	53.685N, - 112.86E	Mulev_CAN_E 1
CNEIC2870- 12	Kanada	Elk Island National Park	53.685N, - 112.86E	Mulev_CAN_E 2
CNEIH1589- 13	Kanada	Elk Island National Park	53.685N, - 112.86E	Mulev_CAN_E 3
CNEII651-13	Kanada	Elk Island National Park	53.685N, - 112.86E	Mulev_CAN_E 4
SSEIA7913- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 5
SSEIA8013- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 6
SSEIA8347- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 7
SSEIB13030- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 8
SSEIB13036- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 9
SSEIB13038- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 10
SSEIB13080- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 11
SSEIB13088- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 12
SSEIB13092- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 13
SSEIB13131- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 14
SSEIB13143- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 15
SSEIB13152- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 16

SSEIB13156- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 17
SSEIB13228- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 18
SSEIB5619- 13	Kanada	Elk Island National Park	53.567N, - 112.841E	Mulev_CAN_E 19
CNJAJ191- 12	Kanada	Jasper National Park	52.867N, - 118.077E	Mulev_CAN_J1
CNJAJ729- 12	Kanada	Jasper National Park	52.867N, - 118.077E	Mulev_CAN_J2
SSJAE10683 -13	Kanada	Jasper National Park	53.193N, - 117.954E	Mulev_CAN_J3
SSJAE11382 -13	Kanada	Jasper National Park	53.193N, - 117.954E	Mulev_CAN_J4
SSJAE11384 -13	Kanada	Jasper National Park	53.193N, - 117.954E	Mulev_CAN_J5
SSJAE1810- 13	Kanada	Jasper National Park	53.193N, - 117.954E	Mulev_CAN_J6
SSJAE5418- 13	Kanada	Jasper National Park	53.193N, - 117.954E	Mulev_CAN_J7
SSJAF7562- 13	Kanada	Jasper National Park	53.193N, - 117.954E	Mulev_CAN_J8
SSJAF7676- 13	Kanada	Jasper National Park	53.193N, - 117.954E	Mulev_CAN_J9
CNROA155- 13	Kanada	Rouge National Urban Park	43.8223N, - 79.1897E	Mulev_CAN_R O1
CNROA156- 13	Kanada	Rouge National Urban Park	43.8223N, - 79.1897E	Mulev_CAN_R O2
RBINA5001- 13	Kanada	Rouge National Urban Park	43.8157N, - 79.207E	Mulev_CAN_R OU1
SMTPB2345 3-13	Kanada	Rouge National Urban Park	43.8223N, - 79.1897E	Mulev_CAN_R OU2
SSROB002- 14	Kanada	Rouge National Urban Park	43.804N, - 79.146E	Mulev_CAN_R OU3
SSROB4188- 14	Kanada	Rouge National Urban Park	43.804N, - 79.146E	Mulev_CAN_R OU4

SSROC5286- 15	Kanada	Rouge National Urban Park	43.804N, - 79.146E	Mulev_CAN_R OU5
TTMDI067- 08	Kanada	Puslinch	43.4464N, - 80.2512E	Mulev_CAN_P US1
TTMDI069- 08	Kanada	Puslinch	43.4464N, - 80.2512E	Mulev_CAN_P US2
TTMDI108- 08	Kanada	Puslinch	43.4464N, - 80.2512E	Mulev_CAN_P US3
USDIP028- 09	Kanada	Yuma Co	32.6924N, - 114.498E	Mulev_CAN_Y 1
USDIQ1121- 09	Kanada	Yuma Co	32.6924N, - 114.498E	Mulev_CAN_Y 2
USDIQ1122- 09	Kanada	Yuma Co	32.6924N, - 114.498E	Mulev_CAN_Y 3
USDIQ1134- 09	Kanada	Yuma Co	32.6924N, - 114.498E	Mulev_CAN_Y 4
GMFAF402- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 1
GMFAF403- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 2
GMFAF410- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 3
GMFAF419- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 4
GMFAF437- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 5
GMFAF452- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 6
GMFAF462- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 7
GMFAF480- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 8
GMFAF491- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 9
GMFAG339- 15	USA	Warren County	38.892N, - 78.167E	Mulev_USA_W 10

GBDP14139- 13	USA	Joseph D. Grant County Park	37,340N, - 121,721	Mulev_USA_J1
MPGA3097- 19	USA	Missoula County	46.693N, - 114.045E	Mulev_USA_M 1
MPGA3119- 19	USA	Missoula County	46.693N, - 114.045E	Mulev_USA_M 2
MPGA711- 19	USA	Missoula County	46.693N, - 114.045E	Mulev_USA_M 3
MPGD3756- 19	USA	Missoula County	46.693N, - 114.045E	Mulev_USA_M 4
MPGH1650- 19	USA	Missoula County	46.693N, - 114.045E	Mulev_USA_M 5
IBIDP059-19	Portugal sko	Estarreja	40.7138N, - 8.58591E	Mulev_POR_E1
CDFD016-12	Portugal sko	Lisbon	38.756N, - 9.159E	Mulev_POR_L1
BCFOR720- 15	Francie	Nord-Pas-de-Calais	50.5132N, 3.03043E	Mulev_FRA_N 1
BCFOR740- 15	Francie	Nord-Pas-de-Calais	50.5132N, 3.03043E	Mulev_FRA_N 2
AMTPF1065 -16	Německ o	Allgaeu	47.4227N, 10.3573E	Mulev_GER_A 1
AMTPF1181 -16	Německ o	Allgaeu	47.4227N, 10.3573E	Mulev_GER_A 2
AMTPF1228 -16	Německ o	Allgaeu	47.4227N, 10.3573E	Mulev_GER_A 3
AMTPF1236 -16	Německ o	Allgaeu	47.4227N, 10.3573E	Mulev_GER_A 4
AMTPF1261 -16	Německ o	Allgaeu	47.4227N, 10.3573E	Mulev_GER_A 5
AMTPF1270 -16	Německ o	Allgaeu	47.4227N, 10.3573E	Mulev_GER_A 6
BCFOR596- 15	Německ o	Oberbayern	48.165N, 11.483E	Mulev_GER_O B1
GMGMB144 4-14	Německ o	Kreis Ahrweiler	50.552N, 7.17E	Mulev_GER_K 1

GMGMB775	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
-14	o		7.17E	2
GMGMD125	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
2-14	o		7.17E	3
GMGMG164	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
-14	o		7.17E	4
GMGMG176	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
-14	o		7.17E	5
GMGMG237	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
-14	o		7.17E	6
GMGMG246	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
-14	o		7.17E	7
GMGMJ715-	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
14	o		7.17E	8
GMGMJ757-	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
14	o		7.17E	9
GMGML240	Německ	Kreis Ahrweiler	50.552N,	Mulev_GER_K
-14	o		7.17E	10
GMGRF2796	Německ	Niederbayern	48.951N,	Mulev_GER_N
-13	o		13.422E	1
GMGRF3242	Německ	Niederbayern	48.951N,	Mulev_GER_N
-13	o		13.422E	2
MFDC1095- 11	Německ o	Waldsleversdorf	52.4N, 12.56E	Mulev_GER_W 1
GBDP28360- 19	Norsko		64.9778N, 16.6703E	Mulev_NOR_1
GMNWB085 -14	Norsko	Trondheim	63.405N, 10.383E	Mulev_NOR_T 1
GMNWB089 -14	Norsko	Trondheim	63.405N, 10.383E	Mulev_NOR_T 2
FIDIP2665- 12	Finsko	Nylandia	60.183N, 24.882E	Mulev_FIN_N1
FIDIP454-11	Finsko	Regioaboensis	60.615N, 21.929E	Mulev_FIN_R1
FIDIP518-11	Finsko	Regioaboensis	60.615N, 21.929E	Mulev_FIN_R2

FIDIP555-11	Finsko	Regioaboensis	60.615N, 21.929E	Mulev_FIN_R3
GMBMG035	Bělorus	Minsk	53.9156N,	Mulev_BLR_M
-17	ko		27.6062E	1
GMBMG045	Bělorus	Minsk	53.9156N,	Mulev_BLR_M
-17	ko		27.6062E	2
GMBMG052	Bělorus	Minsk	53.9156N,	Mulev_BLR_M
-17	ko		27.6062E	3
GMBMG058	Bělorus	Minsk	53.9156N,	Mulev_BLR_M
-17	ko		27.6062E	4
GMBMG068	Bělorus	Minsk	53.9156N,	Mulev_BLR_M
-17	ko		27.6062E	5
GMBMG103	Bělorus	Minsk	53.9156N,	Mulev_BLR_M
-17	ko		27.6062E	6
GMBMG117	Bělorus	Minsk	53.9156N,	Mulev_BLR_M
-17	ko		27.6062E	7
GBDP25458-	Rumuns		44.45N, 26.08E	Mulev_ROM_1
19	ko			
GMBUG367-	Bulhars	Godech	43.009N,	Mulev_BGR_G
14	ko		23.058E	1
GMBUG376-	Bulhars	Godech	43.009N,	Mulev_BGR_G
14	ko		23.058E	2

Příloha IV: Seznam sekvencí COI M.pascourum z databáze BOLD.

BOLDkod	země	lokalita	souřadnice	zkratka
NCCA2540-	Kanada		44.349N, - 76.895F	Mupas_CAN_
	Vanada	Caralah	10.095L	1 Manage CAN
17	Kanada	Gueiph	43.5187N, - 80.1709E	GU1
AGAKQ040 -17	Kanada	Guelph	43.5187N, - 80.1709E	Mupas_CAN_ GU2
AGAKR019 -17	Kanada	Guelph	43.5187N, - 80.1709E	Mupas_CAN_ GU3
ASDMT605 -11	Kanada	Guelph	43.5187N, - 80.1709E	Mupas_CAN_ GU4

ASDMT627 -11	Kanada	Windy Bluff	42.861N, - 79.703E	Mupas_CAN_ W1
OPPWA186 -17	Kanada	Wallacetown	42.6059N, - 81.4424S	Mupas_CAN_ W2
SMTPB465 4-13	Kanada	Waterdown	43.331S, - 79.894E	Mupas_CAN_ WA1
PHDIP1147- 11	Kanada	Wellington County	43.537N, - 80.134S	Mupas_CAN_ WE1
PHOCT722- 11	Kanada	Wellington County	43.537N, - 80.134S	Mupas_CAN_ WE2
SMTPR458 8-16	Kanada	Winnipeg	49.8459N, - 97.139S	Mupas_CAN_ WIN1
SMTPI7726- 14	Kanada	Williamstown	45.146N, - 74.573S	Mupas_CAN_ WIL1
SMTPI434- 14	Kanada	Hamilton	43.258N, - 79.927S	Mupas_CAN_ WI1
SMTPO404 4-15	Kanada	Essex	42.135S, - 82.875N	Mupas_CAN_ WH1
TTMDI072- 08	Kanada	Puslinch	43.4464N, - 80.2512S	Mupas_CAN_ P1
BARSD063- 16	Kanada	Peterborough	44.271N, - 78.394E	Mupas_CAN_ P2
BARSE261- 16	Kanada	Peterborough	44.271N, - 78.394E	Mupas_CAN_ P3
BARSL396- 16	Kanada	Peterborough	44.338N, - 78.351E	Mupas_CAN_ P4
CNPPD265- 12	Kanada	Point PeleeNational Park	41.939N, - 82.516E	Mupas_CAN_ PO1
BARSG456- 16	Kanada	Kawartha Lakes	44.365N, - 78.464E	Mupas_CAN_ KA1
BARSI413- 16	Kanada	Kawartha Lakes	44.365N, - 78.464E	Mupas_CAN_ KA2
CNBFN007- 15	Kanada	Banff National Park	51.436N, - 116.188E	Mupas_CAN_ BAN1
CNBF0020- 15	Kanada	Banff National Park	51.436N, - 116.188E	Mupas_CAN_ BAN2

CNBFP013- 15	Kanada	Banff National Park	51.436N, - 116.188E	Mupas_CAN_ BAN3
SMTPR420 9-16	Kanada	Grand Bay-Westfield	45.3117N, - 66.1965S	Mupas_CAN_ G1
CNGBB704-	Kanada	Georgian Bay Islands	44.7418N, -	Mupas_CAN_
14		National Park	79.8501E	GE1
CNGSH184 2-15	Kanada	Grasslands National Park	49.001N, - 106.557E	Mupas_CAN_ GR1
CNGSI435- 15	Kanada	Grasslands National Park	49.001N, - 106.557E	Mupas_CAN_ GR2
CNGSI437- 15	Kanada	Grasslands National Park	49.001N, - 106.557E	Mupas_CAN_ GR3
CNGSI442- 15	Kanada	Grasslands National Park	49.001N, - 106.557E	Mupas_CAN_ GR4
CNRMG066	Kanada	Riding Mountain National	50.676N, -	Mupas_CAN_
-12		Park	99.898E	RI1
CNRMG105	Kanada	Riding Mountain National	50.676N, -	Mupas_CAN_
-12		Park	99.898E	R2
CNRMG123	Kanada	Riding Mountain National	50.676N, -	Mupas_CAN_
-12		Park	99.898E	R3
CNRMG539	Kanada	Riding Mountain National	50.676N, -	Mupas_CAN_
-12		Park	99.898E	R4
CNRMG573	Kanada	Riding Mountain National	50.676N, -	Mupas_CAN_
-12		Park	99.898E	R5
CNRMH098	Kanada	Riding Mountain National	50.676N, -	Mupas_CAN_
-12		Park	99.898E	R6
CNSIA658-	Kanada	Riding Mountain National	43.933N, -	Mupas_CAN_
15		Park	60.008E	R7
CNSIB933-	Kanada	Riding Mountain National	43.933N, -	Mupas_CAN_
15		Park	60.008E	R8
SMTPD287 4-13	Kanada	Tottenham	44.026N, - 79.849S	Mupas_CAN_ TO1
SMTPD287 5-13	Kanada	Tottenham	44.026N, - 79.849S	Mupas_CAN_ TO2
CNSLA223-	Kanada	Thousand Islands National	44.475N, -	Mupas_CAN_
12		Park	75.865E	TH1

SMTPF6776 -14	Kanada	Toronto	43.6725N, - 79.392E	Mupas_CAN_ TOR2
SMTPP1004 -15	Kanada	Truro	45.369N, - 63.28S	Mupas_CAN_ T1
CNTIE013- 15	Kanada	Thousand Islands National Park	44.475N, - 75.865E	Mupas_CAN_ T2
CNTIG006- 15	Kanada	Thousand Islands National Park	44.475N, - 75.865E	Mupas_CAN_ T3
CNYOB897 -15	Kanada	Yoho National Park	51.365N, - 116.528E	Mupas_CAN_ Y1
ELPCH1801 -17	Kanada	South Frontenac	44.5634N, - 76.5524S	Mupas_CAN_ S1
NGNAA204 0-13	Kanada	Kamloops	50.643N, - 120.517S	Mupas_CAN_ K1
OPPZA307- 17	Kanada	Lion`sHead	44.9886N, - 81.241S	Mupas_CAN_ L1
SMTPB129 83-13	Kanada	London	43.033N, - 81.248S	Mupas_CAN_ LO1
SMTPB129 83-13	Kanada	London	43.033N, - 81.248S	Mupas_CAN_ LO2
SMTPB871 5-13	Kanada	Fergus	43.704S, - 80.358E	Mupas_CAN_ F1
SMTPD429 4-13	Kanada	Barrie	44.387N, - 79.719S	Mupas_CAN_ B1
SMTPI2753- 14	Kanada	Burlington	43.348N, - 79.78S	Mupas_CAN_ BA1
SMTPI5901- 14	Kanada	Windsor	42.318N, - 83.007S	Mupas_CAN_ H1
SMTPI5912- 14	Kanada	Windsor	42.318N, - 83.007S	Mupas_CAN_ H2
SMTPI5918- 14	Kanada	Windsor	42.318N, - 83.007S	Mupas_CAN_ H3
SMTPL5397 -15	Kanada	Smith Falls	44.8839N, - 76.0102S	Mupas_CAN_ SM1
SMTPL9026 -15	Kanada	Miscouche	46.432N, - 63.864S	Mupas_CAN_ M1

SMTPO102 24-15	Kanada	OakLake	49.767N, - 100.628S	Mupas_CAN_ O1
SMTPO102 25-15	Kanada	OakLake	49.767N, - 100.628S	Mupas_CAN_ O2
SMTPO102 26-15	Kanada	OakLake	49.767N, - 100.628S	Mupas_CAN_ O3
SMTPO102 27-15	Kanada	OakLake	49.767N, - 100.628S	Mupas_CAN_ O4
SMTPO102 29-15	Kanada	OakLake	49.767N, - 100.628S	Mupas_CAN_ O5
SMTPO102 63-15	Kanada	OakLake	49.767N, - 100.628S	Mupas_CAN_ O6
SMTPO102 64-15	Kanada	Onanole	50.623N, - 99.97S	Mupas_CAN_ ON1
SMTPO102 91-15	Kanada	Onanole	50.623N, - 99.97S	Mupas_CAN_ ON2
SMTPO150 6-15	Kanada	New Liskeard	47.51N, - 79.679S	Mupas_CAN_ N1
SMTPO304 5-15	Kanada	Ancaster	43.816N, - 79.342S	Mupas_CAN_ AN1
SMTPF8106 -14	Kanada	Addison	44.6961N, - 75.851S	Mupas_CAN_ A2
SMTPO404 1-15	Kanada	Essex	42.135S, - 82.875N	Mupas_CAN_ E1
SMTPO967 1-15	Kanada	Whitewood	50.327N, - 102.266S	Mupas_CAN_ E2
USDIP063- 09	USA	Callaway Co.	38.832N, - 92.138E	Mupas_US_C1
BUICD2100 -21	USA	Delaware County	39.872N, - 75.371S	Mupas_US_D 1
GMFAF496- 15	USA	Warren County	38.892N, - 78.167E	Mupas_US_W AR1
GMGDD083 -13	USA	Great Smoky Mountains National Park	35.6859N, - 83.4986E	Mupas_US_G S1
GMGDD084 -13	USA	Great Smoky Mountains National Park	35.6859N, - 83.4986E	Mupas_US_G S2

IBIDP060-	Portugal	Estarreja	40.7138N, -	Mupas_GER_
19	sko		8.58591E	2
CDFD017-	Portugal	Lisabon	38.756N, -	Mupas_POR_
12	sko		9.159E	L1
AMTPF102	Německ	Allgaeu	47.4227N,	Mupas_GER_
7-16	0		10.3573E	A1
AMTPF106	Německ	Allgaeu	47.4227N,	Mupas_GER_
6-16	0		10.3573E	A2
AMTPF114	Německ	Allgaeu	47.4227N,	Mupas_GER_
9-16	0		10.3573E	A3
AMTPF121	Německ	Allgaeu	47.4227N,	Mupas_GER_
5-16	0		10.3573E	A4
AMTPF123	Německ	Allgaeu	47.4227N,	Mupas_GER_
4-16	0		10.3573E	A5
AMTPF126	Německ	Allgaeu	47.4227N,	Mupas_GER_
0-16	0		10.3573E	A6
AMTPF128	Německ	Allgaeu	47.4227N,	Mupas_GER_
6-16	0		10.3573E	A7
AMTPF129	Německ	Allgaeu	47.4227N,	Mupas_GER_
0-16	0		10.3573E	A8
BCFOR587-	Německ	Allgaeu	47.4227N,	Mupas_GER_
15	0		10.3573E	A9
GMGMJ716	Německ		50.552N, 7.17E	Mupas_POR_
-14	0			E1
FIDIP3620-	Finsko	Nylandia	59.84N,	Mupas_FIN_N
13			23.209E	1
FIDIP4341-	Finsko	Kareliaborealis	62.561N,	Mupas_FIN_K
14			29.149E	1

Příloha V: Seznam sekvencí COI M.domestica z databáze BOLD.

Bold kód	Země	Lokalita	Souřadnice	Zkratky
MFDC645-09	Kanada	Churchill	58.737N, - 93.819E	Mdo_CAN_ C1
MFDC646-09	Kanada	Churchill	58.756N, - 94.088E	Mdo_CAN_ C2

MFDC647-09	Kanada	Churchill	58.737N, - 93.819E	Mdo_CAN_ C3
MFDC648-09	Kanada	Churchill	58.737N, - 93.819E	Mdo_CAN _C4
TTDFW315- 08	Kanada	Grasslands NP	49.152N, - 107.516E	Mdo_CAN_ G1
TTDFW316- 08	Kanada	Grasslands NP	49.152N, - 107.516E	Mdo_CAN_ G2
TTDFW319- 08	Kanada	Grasslands NP	49.152N, - 107.516E	Mdo_CAN_ G3
TTDFW324- 08	Kanada	Grasslands NP	49.152N, - 107.516E	Mdo_CAN_ G4
TTMDJ732- 10	Kanada	Puslinch	43.4464N, - 80.2512E	Mdo_CAN_ P1
SMTPS889- 16	Kanada	Waterloo	43.4961N, - 80.622E	Mdo_CAN_ W1
UAIC1850-22	USA	Pima Co.	32.195N, - 110.99E	Mdo_USA_ P1
DIPUS458-10	USA	Cave Creek Regional Park	33.831S, -112E	Mdo_US_ C1
GBMIN2009 4-13	USA	Kern Co. ,CA	35.29N, - 118.51E	Mdo_US_K1
DIRTT007-10	USA	Riverside County	33,48N, 115,558E	Mdo_US_ R2
BBDIT1531- 12		Contra Croals		
	USA	Gentry Creek	35.494S, - 95.671E	Mdo_US_ G1
BBDIV111- 12	USA	Mono Lake State Park	35.494S, - 95.671E 38.016S, - 119.15E	Mdo_US_ G1 Mdo_US_ M1
BBDIV111- 12 BBDIT1578- 12	USA	Mono Lake State Park Palo Duro Canyon State Park	35.494S, - 95.671E 38.016S, - 119.15E 34.945S, - 101.66E	Mdo_US_ G1 Mdo_US_ M1 Mdo_US_P1
BBDIV111- 12 BBDIT1578- 12 BBDIV003- 12	USA USA USA	Mono Lake State Park Palo Duro Canyon State Park Palo Duro Canyon State Park	35.494S, - 95.671E 38.016S, - 119.15E 34.945S, - 101.66E 34.945S, - 101.66E	Mdo_US_ G1 Mdo_US_ M1 Mdo_US_P1 Mdo_US_P2
BBDIV111- 12 BBDIT1578- 12 BBDIV003- 12 AGIRI228-51	USA USA USA USA	Mono Lake State Park Palo Duro Canyon State Park Palo Duro Canyon State Park Sarasota County	35.494S, - 95.671E 38.016S, - 119.15E 34.945S, - 101.66E 34.945S, - 101.66E 27.264S, - 82.308E	Mdo_US_ G1 Mdo_US_ M1 Mdo_US_P1 Mdo_US_P2 Mdo_US_S1

DIRTT041-11	USA		38.8208S, - 96.3316E	Mdo_US_2
DIRTT042-11	USA		38.8208S, - 96.3316E	Mdo_US_3
DIRTT043-11	USA		38.8208S, - 96.3316E	Mdo_US_4
GBMIN1877 0-13	Brazílie		11.5246N, - 54.3552E	Mdo_BRA_ 1
FBCTW045- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo ECU S1
FBCTW046- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S2
FBCTW047- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S3
FBCTW048- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S4
FBCTW064- 14	Ekvádor	Oriente	0.67131S, - 76.4005E	Mdo_ECU_ S5
FBCTW227- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S6
FFECU132- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S7
FFECU133- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S8
FFECU134- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S9
FFECU135- 14	Ekvádor	Sierra	0.17627S, - 78.4277E	Mdo_ECU_ S10
FFECU430- 18	Ekvádor	Sierra	0.001S, -78.354E	Mdo_ECU_ S11
FFECU431- 18	Ekvádor	Sierra	0.176S, - 78.427E	Mdo_ECU_ S12
FFECU437- 18	Ekvádor	Sierra	0.001S, -78.354E	Mdo_ECU_ S13
FFECU331- 16	Ekvádor	Oriente	0.67131S, - 76.4005E	Mdo_ECU_ O1

FFECU334- 16	Ekvádor	Oriente	0.67131S, - 76.4005E	Mdo_ECU_ O3
FFECU335- 16	Ekvádor	Oriente	0.67131S, - 76.4005E	Mdo_ECU_ O4
ETKD1000- 13	Jižní Afrika	Outer West Durban	30.2842S, 31.0464E	Mdo_ZAF_ O1
ETKD999-13	Jižní Afrika	Outer West Durban	30.2842S, 31.0464E	Mdo_ZAF_ O2
KMPFT015- 19	Jižní Afrika	Kruger National Park	24.783N, 31.859E	Mdo_ZAF_ K1
GBMND4862 4-21	Jižní Afrika			Mdo_ZAF_ 1
GBMND4862 5-21	Jižní Afrika			Mdo_ZAF_ 2
GBMND4862 6-21	Jižní Afrika			Mdo_ZAF_ 3
GBMND4862 7-21	Jižní Afrika			Mdo_ZA_F 4
GBMND4862 8-21	Jižní Afrika			Mdo_ZAF_ 5
GMSAP015- 13	Jižní Afrika		26.026N, 27.545E	Mdo_ZAF_ 6
GMSAT046- 13	Jižní Afrika		26.026N, 27.545E	Mdo_ZAF_ 7
GMSAW114 6-14	Jižní Afrika		26.026N, 27.545E	Mdo_ZAF_ 8
GMSAW116 0-14	Jižní Afrika		26.026N, 27.545E	Mdo_ZAF_ 9
GMSAY683- 14	Jižní Afrika		26.026N, 27.545E	Mdo_ZAF_ 10
GMKMA605- 15	Kenya	Laikipia	0.293N, 36.899E	Mdo_KEN_ 1
GMEGA043- 14	Egypt	Alexandria	30.9256N, 29.7755E	Mdo_EGY_ 1
GMEGA044- 14	Egypt	Alexandria	30.9256N, 29.7755E	Mdo_EGY_ 2

GMEGA068-	Egypt	Alexandria	30.9256N,	Mdo _EGY_
14			29.7755E	3
GMEGA073-	Egypt	Alexandria	30.9256N,	Mdo_EGY_
14			29.7755E	4
GMEGA079-	Egypt	Alexandria	30.9256N,	Mdo_EGY
14			29.7755E	_3
GMEGA508-	Egypt	Alexandria	30.9256N,	Mdo_EGY_
14			29.7755E	0
GMEGA668-	Egypt	Alexandria	30.9256N,	Mdo_EGY_
14			29.7755E	/
GMEGB086-	Egypt	Alexandria	30.9256N,	Mdo_EGY_
14			29.7755E	8
GMESO036-	Egypt	Alexandria	30.9256N,	Mdo_EGY_
14			29.7755E	9
IBIDP130-19	Portugalsko	Macedo de Cavaleiros	41.5804N, -	Mdo_POR_
			6.91064E	MI
CDFD015-12	Portugalsko	Lisbon	38.756S, -9.159E	Mdo_POR_
GBDP24342-	Španělsko		40.365N, -	Mdo_ESP_1
19			3.65163E	
GBDP24343-	Španělsko		40.365N, -	Mdo_ESP_2
19			3.65163E	
GBDP24344-	Španělsko		40.365N, -	Mdo_ESP_3
19			3.65163E	
GBDP24345-	Španělsko		40.365N, -	Mdo_ESP_4
19			3.65163E	
GBDP24346-	Španělsko		40.365N, -	Mdo_ESP_5
19			3.65163E	
GBDP24347-	Španělsko		40.365N, -	Mdo_ESP_6
19			3.65163E	
GBDP24348-	Španělsko		40.365N, -	Mdo_ESP_7
19			3.65163E	
GBDP24349-	Španělsko		40.365N, -	Mdo _ESP_ 8
19			3.65163E	
GBDP24350-	Španělsko		40.365N, -	Mdo_ESP_9
19			3.65163E	

GBDP24351- 19	Španělsko		40.365N, - 3.65163E	Mdo _ESP_ 10
BCFOR1049- 16	Německo	Munich	48.1333S, 11.5667E	Mdo_GER_ MU1
BCFOR1032- 16	Německo	Oberbayern	47.506S, 12.967E	Mdo_GER_ O1
BCFOR1033- 16	Německo	Oberbayern	47.506S, 12.967E	Mdo_GER_ O2
BCFOR1050- 16	Německo	Oberbayern	47.506S, 12.967E	Mdo_GER_ O3
BCFOR1051- 16	Německo	Oberbayern	47.506S, 12.967E	Mdo_GER_ O4
BCFOR1052- 16	Německo	Oberbayern	47.506S, 12.967E	Mdo_GER_ O5
BCFOR1055- 16	Německo	Oberbayern	47.506S, 12.967E	Mdo_GER_ O6
BCFOR1057- 16	Německo	Oberbayern	47.506S, 12.967E	Mdo_GER_ O7
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P1
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P2
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P3
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P4
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P5
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P6
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P7
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P9
	Česká Republika	Praha	50,5N, 14,25E	Mdo_CZE_ P10

GBMNE2984 5-21	Polsko			Mdo_PL_1
FIDIP272-11	Finsko	Regioaboensis	60.615S, 21.929E	Mdo_FIN_ R1
FIDIP298-11	Finsko	Regioaboensis	60.615S, 21.929E	Mdo_FIN_ R2
FIDIP439-11	Finsko	Regioaboensis	60.615S, 21.929E	Mdo_FIN_ R3
GBMNF2832 7-22	Turecko			Mdo_TUR_ 1
GBMNF2832 8-22	Turecko			Mdo_TUR_ 2
GBMNF2832 9-22	Turecko			Mdo_TUR_ 3
GBMNF2833 0-22	Turecko			Mdo_TUR_ 4
AGIRI228-40	Saudská Arábie			Mdo_SAU_1
GBDP19592- 19	Saudská Arábie		24.258, 39.28E	Mdo_SAU_ 1
GBDP23728- 19	Saudská Arábie		17.81S, 42.37E	Mdo_SAU_ 2
GBDP24003- 19	Saudská Arábie		28.28N, 36.35E	Mdo_SAU_ 3
GBMIN4705 0-17	Saudská Arábie		24.44N, 46.33E	Mdo_SAU_ 4
GBMIN4705 1-17	Saudská Arábie		24.44N, 46.33E	Mdo_SAU_ 5
GBMIN4705 2-17	Saudská Arábie		24.44N, 46.33E	Mdo_SAU_ 6
GBMIN4705 3-17	Saudská Arábie		30.59N, 41.23E	Mdo_SAU_ 7
GBMIN5912 4-17	Saudská Arábie		24.25N, 39.28E	Mdo_SAU_ 8
GBMIN5912 5-17	Saudská Arábie		24.44N, 46.33E	Mdo_SAU_ 9

GBMIN5912 6-17	Saudská Arábie		26.13N, 50.11E	Mdo_SAU_
GBMIN5912 7-17	Saudská Arábie		26.92N, 44.2E	Mdo_ SAU_ 11
GBMIN5912 8-17	Saudská Arábie		30.59N, 41.23E	Mdo_SAU_ 12
GMPBF002- 18	Pákistan	Chakwal	32.9396N, 72.6813E	Mdo_PAK_ C1
GMPBF003- 18	Pákistan	Chakwal	32.9396N, 72.6813E	Mdo_PAK_ C2
GMPQG010- 19	Pákistan	Quetta	30.1909N, 66.9612E	Mdo_PAK_ Q1
GMPQG016- 19	Pákistan	Quetta	30.1909N, 66.9612E	Mdo_PAK_ Q2
MADIP1213- 13	Pákistan	AARI	31.405N, 73.048E	Mdo_PAK_ A1
MADIP495- 12	Pákistan	Bahawalpur	29.22N, 71.57E	Mdo_PAK_ B1
MADIP839- 12	Pákistan	Faisalabad	31.397N, 73.027E	Mdo_PAK_ F1
MAIMB186- 09	Pákistan	T.T. Singh	31.1333N, 72.6833E	Mdo_PAK_ T1
AGIRI228-17	Indie			Mdo_IN_B1
AGIRI228-38	Indie			Mdo_IN_1
AGIRI228-39	Indie			Mdo_IN_2
AGIRI228-41	Indie			Mdo_IN_3
AGIRI228-42	Indie			Mdo_IN_4
AGIRI228-43	Indie			Mdo_IN_5
AGIRI228-45	Indie			Mdo_IN_6
AGIRI228-47	Indie			Mdo_IN_7
AGIRI228-48	Indie			Mdo_IN_8
AGIRI228-49	Indie			Mdo_IN_9
AGIRI228-50	Indie			Mdo_IN_10
GBDP28345- 19	Bangladéš		23.8862N, 90.2714E	Mdo _BGD_ 1

GBDP28346- 19	Bangladéš		23.8862N, 90.2714E	Mdo_BGD_ 2
GBDP28348- 19	Bangladéš		23.8862N, 90.2714E	Mdo_BGD _3
GMBCC1985 -15	Bangladéš		22.4685N, 91.7808E	Mdo_BGD_ 4
GMBCC2005 -15	Bangladéš		22.4685N, 91.7808E	Mdo_BGD_ 5
GMBCE2885 -15	Bangladéš		22.4685N, 91.7808E	Mdo_BGD_ 6
GMBCE2954 -15	Bangladéš		22.4685N, 91.7808E	Mdo_BGD_ 7
GMBCE3751 -15	Bangladéš		22.4685N, 91.7808E	Mdo_BGD_ 8
GMBCE556- 15	Bangladéš		22.4685N, 91.7808E	Mdo_BGD_ 9
GMBCE622- 15	Bangladéš		22.4685N, 91.7808E	Mdo_BGD_ 10
GBDP13125- 13	Malaysie		3.67166S, 114.633E	Mdo_MYS_ 1
ENTJR422- 08	Thajsko	Central	13.78S, 100.71E	Mdo_THA_ 1
ENTJR423- 08	Thajsko	Central	13.78S, 100.71E	Mdo_THA_ 2
ENTJR424- 08	Thajsko	Central	13.78S, 100.71E	Mdo_THA_ 3
ENTJR425- 08	Thajsko	Central	13.78S, 100.71E	Mdo_THA_ 4
ENTJR430- 08	Thajsko	Central	13.78S, 100.71E	Mdo_THA_ 5
ENTJR431- 08	Thajsko	Central	13.78S, 100.71E	Mdo_THA_ 6
AGIRI228-18	Čína			Md_CHN_Y1
AGIRI228-19	Čína			Mdo-CHN- X1
AGIRI228-20	Čína			Mdo_CHN_1
AGIRI228-21	Čína			Mdo_CHN_2

AGIRI228-22	Čína			Mdo_CHN_3
AGIRI228-23	Čína			Mdo_CHN_4
AGIRI228-24	Čína			Mdo_CHN_5
AGIRI228-25	Čína			Mdo_CHN_6
AGIRI228-26	Čína			Mdo_CHN_7
AGIRI228-27	Čína			Mdo_CHN_8
AGIRI228-28	Čína			Mdo_CHN_9
AGIRI228-29	Čína			Mdo_CHN_1 0
AGIRI228-30	Čína			Mdo_CHN_1 1
AGIRI228-31	Čína			Mdo_CHN_1 2
AGIRI228-32	Čína			Mdo_CHN_1 3
AGIRI228-33	Čína			Mdo-CHN-14
AGIRI228-34	Čína			Mdo_CHN_1 5
AGIRI228-35	Čína			Mdo_CHN_1 6
AGIRI228-36	Čína			Mdo_CHN_1 7
AGIRI228-37	Čína			Mdo_CHN_1 8
AGIRI228-44	Čína			Mdo_CHN_1 9
AGIRI228-46	Čína			Mdo_CHN_2 0
DIQT841-10	Austrálie	Townsville	19.3811S, 146.449E	Mdo_AUS_ T1
DIQTB217- 10	Austrálie	Townsville	19.3811S, 146.449E	Mdo_AUS_ T2
DIQTB495- 12	Austrálie	Townsville	19.3811S, 146.449E	Mdo_AUS_ T3
DIQTB581- 12	Austrálie	Townsville	19.3811S, 146.449E	Mdo_AUS_ T4

DIQTB602- 12	Austrálie	Townsville	19.3811S, 146.449E	Mdo_AUS_ T5
SYC982-14	Franc. Polynesie	Moorea Island	-17.49N 149.826E	Mdo_PYF_ M1

Příloha VI: Seznam sekvencí COI M. prolapsa z databáze BOLD.

Boldkod	země	lokality	souřadnice	zkratka
SMTPB17422- 13	Kanada	Whitby	43.886S, - 78.934E	Mpr_CA_W1
SSROB5734-14	Kanada	Rouge National Urban Park	43.804S, - 79.146E	Mpr_CA_R1
SSROC5261-15	Kanada	Rouge National Urban Park	43.811S, - 79.162E	Mpr_CA_R2
TTMDI011-08	Kanada	Puslinch	43.4464S, - 80.2512E	Mpr_CA_P1
TTMDI217-08	Kanada	Puslinch	43.4464S, - 80.2512E	Mpr_CA_P2
LYMAB1835- 15	Kanada		45.5528, - 73.334E	Mpr_CA_1
LYMAB1836- 15	Kanada		45.5528, - 73.334E	Mpr_CA_2
LYMAB1837- 15	Kanada		45.5528, - 73.334E	Mpr_CA_3
LYMAB1839- 15	Kanada		45.5528, - 73.334E	Mpr_CA_4
LYMAB1840- 15	Kanada		45.5528, - 73.334E	Mpr_CA_5
LYMAB1841- 15	Kanada		45.5528, - 73.334E	Mpr_CA_6
LYMAB1842- 15	Kanada		45.5528, - 73.334E	Mpr_CA_7
LYMAB1843- 15	Kanada		45.5528, - 73.334E	Mpr_CA_8
CNYOB1014- 15	USA	Mono LakeState Park	38.016S, - 119.15E	Mpr_US_M1

GBDP14138-13		USA		Joseph D. Grant M CountyPark		Mpr_US_J1
BUICD1921-20	US.	A	Delawar County	re	39.871S, - 75.366E	Mpr_US_D1
BUICD1923-20	US	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D2
BUICD1929-20	US.	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D3
BUICD1930-20	US.	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D4
BUICD1931-20	US.	A	Delawar County	·e	39.871S, - 75.366E	Mpr_US_D5
BUICD2093-21	US.	A	Delawar County	re	39.871S, - 75.366E	Mpr_US_D6
BUICD2094-21	US	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D7
BUICD2097-21	US.	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D8
BUICD2103-21	US.	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D9
BUICD2106-21	US.	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D10
BUICD2108-21	US.	A	Delawar County	e	39.871S, - 75.366E	Mpr_US_D11
CDFD018-12	Por	tugalsko	Lisbon		38.756S, - 9.159E	Mpr_PT_L1
GBDP24281-19	Špa	nělsko			40.365S, - 3.65163E	Mpr_ES_1
GBDP24282-19	Špa	nělsko			40.365S, - 3.65163E	Mpr_ES_2
BCFOR728-15	Fra	ncie	Nord-Pa Calais	ıs-de-	50.5132S, 3.03043E	Mpr_FRA_N1
NICC049-13	Bel	gie	Brussels		50.759S, 4.414E	Mpr_BE_B1
NICC050-13	Bel	gie	Brussels		50.759S, 4.414E	Mpr_BE_B2

NICC051-13	Belgie	Brussels	50.828S, 4.344E	Mpr_BE_B3
NICC052-13	Belgie	Brussels	50.828S, 4.344E	Mpr_BE_B4
NICC053-13	Belgie	Brussels	50.759S, 4.414E	Mpr_BE_B5
GMGMG171- 14	Německo		50.552S, 7.17E	Mpr_GER_1
	Česká rep.	Praha	50,5N, 14,25E	Mpr_CZE_P1
	Česká rep.	Praha	50,5N, 14,25E	Mpr_CZE_P2
	Česká rep.	Praha	50,5N, 14,25E	Mpr_CZE_P3
	Česká rep.	Praha	50,5N, 14,25E	Mpr_CZE_P4
	Česká rep.	Praha	50,5N, 14,25E	Mpr_CZE_P5
	Česká rep.	Praha	50,5N, 14,25E	Mpr_CZE_P6
NSMTP119-15	Švédsko	Smaland	56.435S, 16.071E	Mpr_SE_S1
GMBMA014- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M1
GMBMG010- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M2
GMBMG026- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M3
GMBMG040- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M4
GMBMG059- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M5
GMBMG065- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M6
GMBMG075- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M7
GMBMG114- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M8
GMBMG115- 17	Bělorusko	Minsk	53.9156S, 27.6062E	Mpr_BY_M9
GBDP25452-19	Rumunsko		44.45S, 26.08E	Mpr_RO_1
GBDP25453-19	Rumunsko		44.45S, 26.08E	Mpr_RO_2

GBDP25455-19	Rumunsko	44.45S, 26.08E	Mpr_RO_3
GBDP25456-19	Rumunsko	44.45S, 26.08E	Mpr_RO_4
GBDP25459-19	Rumunsko	44.45S, 26.08E	Mpr_RO_5
GBDP25460-19	Rumunsko	44.45S, 26.08E	Mpr_RO_6
GBDP25465-19	Rumunsko	44.45S, 26.08E	Mpr_RO_7
GBDP25467-19	Rumunsko	44.45S, 26.08E	Mpr_RO_8
GBMIN59066-	Čína	38.0733S,	Mpr_CHN_1
17		104.691E	
GBMIN59067-	Čína	38.0733S,	Mpr_CHN_2
17		104.691E	
GBMIN59068-	Čína	38.0733S,	Mpr_CHN_3
17		104.691E	
GBMIN59069-	Čína	38.0733S,	Mpr_CHN_4
17		104.691E	
GBMIN59070-	Čína	38.0733S,	Mpr_CHN_5
17		104.691E	
GBMIN59071-	Čína	38.0733S,	Mpr_CHN_6
17		104.691E	
GBMNF28300-	Čína	38.0733S,	Mpr_CHN_7
22		104.691E	

Příloha VII: Haplotypové sítě pro oblast COI (a – Hydrotaea ignava, b – Musca domesica, c
– Musca prolapsa, d – Muscina stabulans, e-Muscina pascourum). Země rozdělené barevně podle kontinentů (červená – Asie, modrá – Evropa, zelená – USA a Kanada), zkratky zemí v
příloze XVIII.

b)

フノ

d)

Příloha VIII: Grafické znázornění mantelova testu. Genetické vzdálenosti byly spočítány pomocí Kimura 2 parametru (K2P), a – *Musca domesica*, b – *Musca prolapsa*, c – Muscina *levida*, d- *Muscina pascourum*, e – *Musca stabulans*.

d)

c)

e)

Příloha IX: Klastrová analýza PCoA, (a – Hydrotaea ignava, b – Musca domesica, c – Musca prolapsa, d – Muscina pascourum), země rozdělené barevně podle kontinentů (červená – Asie, modrá – Evropa, zelená – USA a Kanada), zkratky zemí v příloze XVIII.

a)

b)

d) Díky malé vzdálenosti mezi vzorky nevznikly na grafu žádné parametry.

Maximal Likeli Hood, GTR model, podpora větví ve fylogramech a LRT-SH (Shimodaria-Hasegawa approximate Likeli Hood ratio test), zakořeněno pomocí *Fannia scalaris*, země rozdělené barevně podle kontinentů (červená – Asie, modrá – Evropa, zelená – USA a Kanada), zkratky zemí v **příloze XVIII**.
Příloha XI: Fylogram pro druh Musca domestica.

Maximal Likeli Hood, GRT+G model, podpora větví ve fylogramech a LRT-SH (Shimodaria-Hasegawa approximate Likeli Hood ratio test), zakořeněno pomocí *Fannia scalaris*, země rozdělené barevně podle kontinentů (červená - Asie, modrá – Evropa, zelená – USA a Kanada), zkratky zemí v **příloze XVIII**.

Příloha XII: Fylogram pro druh Musca prolapsa

Maxumim Likeli Hood, GRT model, podpora větví ve fylogramech a LRT-SH (Shimodaria-Hasegawa approximate Likeli Hood ratio test), zakořeněno pomocí *Fannia scalaris*, země rozdělené barevně podle kontinentů (červená – Asie, modrá – Evropa, zelená – USA a Kanada), zkratky zemí v **příloze XVIII**.

Příloha XIII: Fylogram pro druh Muscina levida

Maximal Likeli Hood, GRT model, podpora větví ve fylogramech a LRT-SH (Shimodaria-Hasegawa approximate Likeli Hood ratio test), zakořeněno pomocí *Fannia scalaris*, země rozdělené barevně podle kontinentů (červená – Asie, modrá – Evropa, zelená – USA a Kanada), zkratky zemí v **příloze XVIII**.

Příloha XIV: Fylogram pro druh Muscina pascourum

Maximal Likeli Hood, GRT model, podpora větví ve fylogramech a LRT-SH (Shimodaria-Hasegawa approximate Likeli Hood ratio test), zakořeněno pomocí *Fannia scalaris*, země rozdělené barevně podle kontinentů, zkratky zemí v příloze (červená - Asie, modrá – Evropa, zelená – USA a Kanada).

P_CHLOU

Příloha XVI: Sekundární struktury ITS1.

C. vomitoria

H. irritans

H. diabolus

L. cuprina

L. sericata

M. vetustissima

P. regina

S. calitans

Příloha XVII: Sekundární struktury ITS2.

C. vomitoria

H. irritans

H. ignava

H. diabolus

L. sericata

M. prolapsa

M. vetustissima

P. regina

S. calcitrans

Příloha	XVII	I: Zkratky	zemí.
---------	------	------------	-------

Kanada	CAN
Spojené státy	USA
americké	
Brazílie	BRA
Ekvádor	ECU
Jižní Afrika	ZAF
Egypt	EGY
Portugalsko	POR
Španělsko	ESP
Francie	FR
Německo	GER
Norsko	NOR
Finsko	FIN
Bělorusko	BLR
Rumunsko	ROM
Bulharsko	BGR
Velká Británie	UK
Česká republika	ČR
Polsko	PL
Saudská Arábie	SAU
Pákistán	PAK
Turecko	TR
Indie	IN
Bangladéš	BGD
Thajsko	THA
Severní Korea	KLDR
Čína	CHN
Jižní Korea	KR
Austrálie	AUS
Nový Zéland	NZ