Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra analytické chemie

Rigorózní práce

Validace kontroly obsahu Al v CaCl₂.2H₂O, MgCl₂.6H₂O, metodou ICP-OES

Autor práce: Mgr. Viktor Brezovský

2021

Prohlašuji, že jsem svou rigorózní práci vypracoval samostatně pouze s použitím pramenů a literatury uvedených v seznamu literatury.

Prohlašuji, že ve smyslu zákona č. 101/2000 Sb., o ochraně osobních údajů a o změně některých zákonů, ve znění pozdějších předpisů, **souhlasím** se zpracováním svých osobních údajů pro potřeby rigorózního řízení, statistického vykazování a evidence účastníků státních rigorózních zkoušek na Univerzitě Palackého v Olomouci.

V Zátoru dne 2.6.2021

Poděkování

Na tomto místě bych rád poděkoval doc. RNDr. Janu Petrovi, Ph.D. za odborné vedení, ochotu a cenné rady při vypracování této práce. Další mé poděkování patří firmě Macco Organiques s.r.o. za souhlas se zveřejněním mnou naměřené a vypracované Validační zprávy, která je součástí této práce.

Děkuji své rodině, nejvíce pak Markétě a Berenice, za podporu a trpělivost, kterou se mnou měli při samotném experimentu.

Anotace

Chemický průmysl transformuje suroviny na množství nových syntetických látek, které mají široké využití ve všech oborech lidské činnosti. Dlouholetou tradici má chemický průmysl také v Bruntále, městě ležícím na úpatí Nízkého Jeseníku.

Příkladem, jak chemická výroba, za udržování vysoké úrovně kvality, existuje v blízkosti chráněné krajinné oblasti Jeseníků je firma Macco Organiques, s.r.o. – společnost, která je součástí kanadské korporace Lallemand.

Představená firma se majoritně zabývá výrobou anorganických solí používaných při přípravě infuzních a dialyzačních roztoků, kojenecké výživy a farmaceutik.

Výroba anorganických solí probíhá podle nejvyšších standardů pro výrobu léčivých aktivních látek a nadnárodních potravinářských standardů – FDA (U.S. Food and Drug Administration), FCC (Food chemical codex), Ph.Eur. (European Pharmacopoeia), ČL (Český lékopis), aj.

S povinností dodržovať lékopisné normy souvisí tlak na vývoj nových metod pro stanovení účinné složky a balastních látek obsažených v matrici.

Vyvinutí a zvalidování nové metody stanovení hliníku v matricích dihydrátu chloridu vápenatého CaCl₂.2H₂O a hexahydrátu chloridu hořečnatého MgCl₂.6H₂O je předmětem této práce.

Annotation

The chemical industry transforms raw materials into new synthetic substances that are used in all fields of human activity. The well-known tradition of the chemical industry has Bruntál, the town lying near the National park Nízký Jeseník.

There is the Macco Organiques company that is a part of the Canadian corporation Lallemand. This chemical company is a good example that achieves the high level of quality standards and can exist near the protected landscape area.

The production program is focused on the manufacturing of inorganic salts used in the preparation of infusion and dialysis solutions, infant formulas, and pharmaceuticals.

The production of inorganic salts is carried out according to the highest standards for production of medicinal active substances and transnational food standards, e.g., FDA (U.S. Food and Drug Administration), FCC (Food chemical codex), Ph.Eur. (European Pharmacopoeia), ČL (Czech Pharmacopoeia).

There is a pressure to develop new methods for determination of active ingredients and ballast substances contained in matrix due to the obligation to reach the pharmacopeial standards.

The development and validation the new method of determination aluminum (Al) in matrix of calcium chloride dihydrate CaCl₂.2H₂O and magnesium chloride hexahydrate MgCl₂.6H₂O is the subject of this study.

1	Úvod					
2	Teorie ICP-OES					
2.	.1 Indukčně vázaná plazma (ICP)	8				
2.	.2 Optická emisní spektrometrie (OES)	8				
2.	.3 Princip výboje	9				
2.	.4 Excitace částic	9				
	2.4.1 Maxwellovým-Boltzmannovým rozdělením					
	2.4.2 Sahova rovnice					
	2.4.3 Planckův vyzařovací zákon					
2.	.5 Zavádění vzorku					
	2.5.1 Zmlžování vzorku					
	2.5.2 Zmizovaci komora a horak					
2.	.6 Axiální a radiální pohled					
2.	.7 Výběr spektrální čáry					
2.	.8 Spektrální interference					
2.	.9 Nespektrální interference (matricový efekt)					
2.	.10 Instrumentace ICP-OES					
2.	.11 Rozvaha nad experimentem autora					
	2.11.1 ICP-OES nebo GF-AAS					
	2.11.2 Optimalizace metody					
	2.11.3 Charakteristické rysy ICP spektrometru Prodigy 7					
3	Validační zpráva	17				
3.	.1 Schvalovací list					
3.	.2 Předmět validace					
3.	.3 Validační plán					
3.	.4 Validace – rozvaha					
3.	.5 Analytická metoda					
3.	.6 Kritéria přijatelnosti					
3.	.7 Validace obsahu hliníku v matricích					
	3.7.1 Postup					
3.	.8 Vyhodnocení	21				
	3.8.1 Specifita					
	3.8.3 Linearita a rozsah metody pro MgCl ₂ 6H ₂ O	22 عء				
	3.8.4 Správnost					
	3.8.5 Opakovatelnost					
	3.8.6 Vyhodnocení verifikace					

	3.8.7	LOD, LOQ	. 53				
	3.8.8 Reprodukovatelnost						
	3.8.9	Robustnost	. 56				
	3.8.10	Optimalizace metody	. 56				
	3.8.11	Test na kontaminaci	. 57				
	3.8.12	Stabilita standardu a vzorku	. 58				
4	Závě	r	60				
5	Litera	atura	.01				
6	Přílol	hy	62				
	6.1 Pří	loha č. 1 SOP Stanovení Al v CaCl ₂ .2H ₂ O	. 62				
	6.2 Příloha č. 2 SOP Stanovení Al v MgCl ₂ .6H ₂ O						
	6.3 Pří	loha č. 3 Souhlas se zveřejněním Validační zprávy	. 76				

1 Úvod

Hliník (Al) je třetím nejhojněji vyskytujícím se prvkem v zemské kůře a je také přítomen ve vodě a potravinách. Již více než jedno století je řazen mezi neurotoxické prvky¹. Jednou z hlavních cest expozice hliníku u běžné populace je spotřeba potravin, zejména potravinových aditiv obsahujících hliník².

Vyvinout a zvalidovat medodu Stanovení hliníku v matricích chloridu vápenatého a chloridu hořečnatého má základ v reálné potřebě komerční výrobní společnosti stanovit koncentrace hliníku metodou s nižším limitem kvantifikace než dosud validní metodou. Důvodem jsou přísnější požadavky na kvalitu a čistotu vyrobeného materiálu.

Doposud se pro stanovení hliníku používala metoda atomové absorpční spektroskopie (AAS) s limitem stanovitelnosti (LOQ) 0,5 mg/kg. Novým kritériem přijatelnosti validované metody a předmětem této práce je dosažení limitu stanovitelnosti 0,2 mg/kg.

Přijatelnosti vyhověla analytická metoda optické emisní spektroskopie s indukčně vázanou plazmou (ICP-OES). Součástí schvalovací procedury je Validační zpráva a Schvalovací list s Validačním plánem, včetně odpovědných osob.

¹ Zatta P., Ibn-Lkhayat-Idrissi M., Zambenedetti P., Kilyen M., Kiss T. (2000). Brain Res. Bull. 59.

² WHO (World Health Organization) 1989 Thirty-third Report of the Joint FAO/. (nedatováno). WHO Expert Committee on Food Additives. 776 28.

2 Teorie ICP-OES

2.1 Indukčně vázaná plazma (ICP)

Indukčně vázané plazma (ICP) se používá v instrumentaci s optickou emisní spektrometrií (OES) jako budící zdroj. ICP poskytuje pro OES stanovení přibližně 70 prvků periodické tabulky. Technika je s úspěchem používána v analýze roztoků³.

Předpokladem pro analyticky úspěšné měření existuje dvojí pozorování plazmatu – pohled axiální a radiální. Existuje přímá úměra mezi hustotou zářivého toku a absorpčním maximem emitujících částic. Lineární průběh platí pouze pro nízké koncentrace analytu. Při vyšších koncentracích stanovované složky roste emise záření a dochází k rozšiřování spektrální čáry. Vysoký obsah analytu ve vzorku způsobuje nelinearitu koncentrace právě z důvodu nesplnění podmínky opticky tenké vrstvy.

Při měření emise v axiálním pohledu je analytická zóna plazmatu delší a k zakřivení kalibrační závislosti dochází u koncentrací analytu až o řád menších než při radiálním pozorování⁴.

2.2 Optická emisní spektrometrie (OES)

Optická emisní spektrometrie (OES – Optical Emission Spectrometry) je založena na registrování fotonů vzniklých přechody valenčních elektronů z vyšších energetických stavů na stavy nižší. Při OES se měří intenzita záření emitovaného atomy nebo ionty v excitovaném stavu. Emisní spektrum má čárový charakter. Čáry odpovídají přechodům valenčních elektronů a projevují se v oblasti 10-1500 nm.⁵

Metoda Optické emisní spektrometrie je v poslední době na vzestupu, především pro zvýšenou potřebu simultánního, rychlého, selektivního a citlivého stanovení prvků.⁶ Řeší se problém zplynění vzorku, atomizace, ionizace a excitace částic v plynném stavu, spektrální a nespektrální interference v případě složitých matric vzorků a změny pozadí emisního signálu u různých metod emisní spektrometrie⁷.

Pro stanovení prvků skupiny alkalických kovů a alkalických zemin, B, Al, La, Ga, In, Tl, W, Re a některých lanthanoidů je plamenová emisní spektrometrie citlivější metodou než plamenová AAS^{8,9}. Studie Klaus R. Koch (University of Cape Town), zabývající se stanovením Al v biologických vzorcích čaje a kávy a porovnávající metody ICP-OES a GF-AAS (grafitová atomová absorpční spektrometrie, analytická metoda umožňující detekovat extrémně nízké koncentrace prachových částic různých kovů)¹⁰, dospěla k závěru, že pro použité

³ Kanický, V. (2009). Kurz ICP 09. V Kurz Spektroskopické společnosti Jana Marka Marci (str. 1). Brno.

⁴ Otruba, V. (2009). Plazma jako spektroskopický zdroj. V Kurz ICP 09 (str. 10). Brno.

⁵ Sommer, L. (1992). Optická emisní spektrometrie v indukčně vázaném plazmatu a vysokoteplotních plamenech (str. 9). Praha: Academia.

⁶ Santos E. J., Herrmann A. B., Olkuszewski J. L. Pierre T. S., Curtius A. J. (Sept. 2005). Determination of trace metals in electrolytic copper by ICP OES and ICP-MS. Braz. arch. biol. technol. vol.48 no.5 Curitiba.

⁷ Mestek O., Koplík R. (2002). Optická emisní spektrometrie s indukčně vázaným plasmatem. Praha: VŠCHT.

⁸ Pickett E. E., Koirtyohan S. R. (1969). Anal. Chem. 41, No. 14, 28A.

⁹ Prudnikov E. D., Shapkina Y. S. (1986). Warsaw: Chem. Anal., 31, 335.

biologické vzorky (čajové lístky a kávová zrna) ve vodných roztocích poskytuje lepší výsledky při stopových koncentracích Al metoda GF-AAS.

2.3 Princip výboje

Výboj je zažehnut z Teslova transformátoru. Zažehnutím indukčně vázaného plazmatu dochází k výboji a vlivem elektromagnetického pole vytvořeného na indukční cívce dochází k uvolnění volných elektronů. Topografie výboje je popsána na obrázku 2.1.

Zde je nutno dbát na dokonalé vysušení všech komponent hořáku, protože vlivem zbytkové vlhkosti po neúplném vysušení dochází k problémům při samotném zažehnutí výboje, více v kap. Aplikační doporučení.

Obr. 2.1 Topografie výboje ICP 1 – analytický kanál 2 – předehřívací zóna 3 – počáteční zářivá zóna 4 – analytická zóna 5 – chvost výboje 6 – indukční zóna 7 – aerosol 8 – základna výboje $h_p - výška$ pozorování r – vzdálenost od osy výboje ³.

2.4 Excitace částic

V ICP se nejrozšířeněji používá výboj argon-argonové plazma. Stav termodynamické rovnováhy je popsán rozdělovacím zákonem a termodynamickou teplotou. Rozdělovací zákon určuje rozdělení částic (molekul, atomů, iontů a elektronů) do stavů energie, ve kterých se vyskytují ve formě neutrální, ionizované nebo jako součást molekuly.

¹⁰ Koch K. R., Pougnet M. A., Villiers S. (1989). Determination of Aluminium Levels in Tea and Coffee by Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry. Analyst, August 1989, Volume 114.

2.4.1 Maxwellovým-Boltzmannovým rozdělením

Molekuly plynu se neustále pohybují a sráží, každá z nich má při stejné hmotnosti a jiné rychlosti rozdílnou kinetickou energii. Statistické rozdělení rychlostí náhodného pohybu částice plynu je velmi dobře popsáno Maxwellovým-Boltzmannovým rozdělením. Hustota pravděpodobnosti má tvar:

kde m je hmotnost molekuly, k je Boltzmannova konstanta (1,38.10-23 J.K-1 a T je absolutní teplota. Důležitým parametrem je maximum, tedy nejpravděpodobnější rychlost.

pra

Rozdělení rychlostí druhů částic (molekul, atomů, iontů a elektronů) na energetických hladinách popisuje Maxwellova rovnice s určujícím parametrem – kinetická teplota T_{kin}.

2.4.2 Sahova rovnice

Sahovou rovnicí je pak popsána ionizace atomů, molekul a radikálů – s ionizační teplotou T_{ion}. Popisuje ionizační stupeň, který je závislý na rychlosti srážek částic plazmatu a tedy na teplotě. Má následující tvar:

$$P_{+}^{2}/(1-P_{+}) = CT^{3/2} \exp(-Ui/kT),$$

kde C~2,4×1021m-3, P+ je stupeň ionizace, Ui je ionizační potenciál, T je teplota plazmatu a k je Boltzmannova konstanta.

2.4.3 Planckův vyzařovací zákon

Spektrální hustotu energie objasňuje Planckův vyzařovací zákon. Zdroje elektromagnetického záření vyzařují svou energii po kvantech. Na základě kvantové teorie a v souladu se zákony pravděpodobnosti odvodil Planck svůj vyzařovací zákon, který konstatuje:

Zahřátá tělesa vyzařují energii. Záření o frekvenci f může být vyzařováno, nebo pohlcováno jen po kvantech energie o velikosti

 $e = h \cdot f$

kde h = 6, 625.10-34 J.s je Planckova konstanta, c = 3.108 m.s -1 je rychlost světla,

k = 1, 38.10-23 J.K -1 je Boltzmanova konstanta, T je termodynamická teplota

V tomto zákoně představuje h Planckovu konstantu, která má hodnotu $h = (6,6256 \pm 0,0005).10^{-34}$ J.s. Z uvedené formulace Planckova vyzařovacího zákona je možné pro dokonale černé těleso (dokonalý zářič -

těleso, které všechno dopadající záření pohlcuje) ve vakuu odvodit vztah pro spektrální hustotu zářivého toku dokonale černého tělesa E_{ol} jako funkci vlnové délky záření *l* a teploty zářiče *T*

$$E_{s1} = \frac{dE_s}{dE_s} = f(\lambda, T) = c^2$$

kde E_o je hustota zářivého toku dokonale černého tělesa a k je Boltzmannova konstanta, která má hodnotu $k = (1,38054 \pm 0,00018).10^{-23}$ J.K⁻¹.

2.5 Zavádění vzorku

Nejrozšířenějším principem zavádění vzorku do plazmatu je tvorba aerosolů kapalných vzorků viz obrázek 2.2. Kapalný vzorek je nasáván přes peristaltickou pumpu a přes nebulizer zaváděn do zmlžovače. Kritickým parametrem je správné nastavení přítlaku hadiček zavádění vzorku a cesty vzorku do odpadu. Vlivem nesprávného přítlaku na peristaltické pumpě dochází k nekonstantnímu průtoku vzorku do zmlžovače a zhoršené odezvě signálu analytu.

Obr. 2.2 Zavádění vzorku do plazmatu

2.5.1 Zmlžování vzorku

Ve zmlžovací komoře je kapalný vzorek přiváděn přes fritu zmlžovače (nebulizeru) do zmlžovací komory. Nejpoužívanějším a v našem experimentu použitým typem je Meinhardův zmlžovač viz obrázek 2.3. Do nebulizeru vstupuje aerosol se vzorkem spolu s plazmovým plynem. Popsaný princip pneumatického zmlžovače je běžně používaný systém pro zavádění vzorku do plazmy, má však kritické faktory. Kapilára zmlžovače se sacím účinkem má malý průměr (200 až 300 µm) a z toho důvodu se může ucpávat pevnými částicemi nečistot nebo krystaly v případě roztoku vzorků s vysokým obsahem solí.

Obr. 2.3 Schéma skleněného koncentrického zmlžovače (nebulizeru) Meinhardova typu

2.5.2 Zmlžovací komora a hořák

Z nebulizeru vstupuje aerosol vzorku do zmlžovací komory. V našem experimentu byla použita cyklonová mlžná komora s tangenciálním vstupem aerosolu vzorku s nosným plynem viz obrázek 2.4.

Obr. 2.4 Schéma Nebulizeru a Zmlžovací komory

2.6 Axiální a radiální pohled

První systematická studie porovnávající signály na detektoru mezi axiálním a radiálním pohledem byla publikována v r. 1995¹¹. V současné době se používají dva způsoby měření záření vzhledem k výboji ICP.

Axiální pohled - Měření záření podél osy výboje. Při axiálním pozorování je pohled do optiky dán průřezem analytického kanálu. Optimum se získá vystředěním polohy kanálu v souřadnicích x,y vůči poloze clony.

Radiální pohled – Měření záření kolmo k ose výboje. S výhodou se používá v případě vyšších koncentrací analytu než v případě axiálního měření.

2.7 Výběr spektrální čáry

Známe-li stanovovaný prvek, je nutno vybrat konktrétní spektrální čáru prvku. Přihlíží se k poměru emise čar a poměru intenzit emise pozadí, poměru signálu k pozadí S/B. Výběr dané spektrální čáry analytu se stanoví s ohledem na obsah stanovované složky a vliv spektrálních interferencí.

2.8 Spektrální interference

O spektrální interferencí se jedná v případě překryvu spektrálních čar nebo interferenci vyvolané strukturním pozadím. Tuto interferenci je možné eliminovat alternativní čarou analytu, která není spektrálně rušena.

2.9 Nespektrální interference (matricový efekt)

Nespektrální interference označovaný také jako matricový efekt je stav ovlivnění metody ve smyslu citlivosti, linearity, korelačního koeficientu s použitím matrice vzorku, namísto čistého roztoku analytu v rozpouštědle. Nespektrální interferenci je možné korigovat použitím vnitřního porovnávacího prvku, modelováním matrice nebo metodou přídavku standard.

¹¹ Ivaldi, J. C.; Tyson, J. F. . (n.d.). Spectrochim. Acta B 1995, 50, 1207.

2.10 Instrumentace ICP-OES

Optická emisní spektrometrie s indukčně vázaným plazmatem je technika, která měří intenzitu emitovaného záření excitovaných atomů. Při přechodu atomu z energeticky vyššího stavu do stavu nižšího se vyzáří energie odpovídající rozdílu těchto stavů. K excitace atomu dochází vlivem excitačního zdroje – indukčně vázané plazmě. A při deexcitaci se sleduje emise záření. Vlnová délka vyzářená, odpovídá energii daného přechodu.

ICP-OES se s výhodou používá při analýze nejen kapalných vzorků viz obrázek 2.5. Umožňuje sekvenční i simultánní stanovení až 73 prvků současně při nízkém detekčním limitu. Plazma je ionizovaný plyn složený z elektronů

a nabitých iontů. V plazmatu se vyskytují volné náboje, které vykazují vysokou vodivost a reagují na elektrické a magnetické pole. Volně nabitým částicím je třeba dodat energii na udržení a vytvoření plazmatu. Energii volným elektronům dodává elektromagnetické pole radiofrekvenčního generátoru a tím vzniká trvalý stabilní výboj. K iniciaci plazmatu se používá jiskrový výboj^{12 13} viz obrázek 2.6.

Optický spektrometr separuje záření podle vlnových délek a měří emise spektrálních čar. Jako disperzní člen jsou používány mřížka a odraz. V experimentu je použit ICP-OES s mřížkou typu Echelle a děličem spektrálních řádů hranolem viz obrázek 2.7. Pro Echelle mřížku je typická malá hustota vrypů se schodovitým tvarem. Mřížka Echelle vyžaduje separaci překrývajících se spektrálních řádů. Používá se tzv. zkřížená optika, kde difraktované záření vystupující z Echelle mřížky je podrobeno disperzi hranolem ve směru kolmém na disperzi mřížky.

U sekvenčních přístrojů

Použitým detektorem byl typ CMOC (Complementary Metal Oxide Semiconductor) – senzory transformují signál z nositele náboje na napětí přímo uvnitř kažkého pixelu. To je rozdíl oproti CCD (Charge Coupled Device), kde postupným přesouváním náboje z jednoho místa s určitým potenciálem na místo druhé dochází k vysouvání náboje na okraj čipu, kde je převodníkem transformován na napěťový signál. Hlavní výhodou mřížek Echelle pro ICP-OES je, že poskytují optimální kombinace rozlišení, disperze a vysoké propustnosti světla pro víceprvková detekce na malém detektoru (Practical guide to ICP-OES, Prodigy 7, Teledyne Leeman Labs.).

Obr. 2.5 Instrumentace ICP-OES

¹² Boss B. Ch. (1997). Instrumentation, and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. Perkin-Elmer corporation, USA.

¹³ Otruba V. (2009). 5. kurz ICP spektrometrie, Spektroskopická společnost Jana Marka Marci. Brno.

Obr. 2.6 Schéma ICP plamene a hořáku

Obr. 2.7 Instrumentace ICP-OES s Echelle monochromátorem

2.11 Rozvaha nad experimentem autora

2.11.1 ICP-OES nebo GF-AAS

Při výběru metody je třeba uvážit, jaký vzorek chceme analyzovat, zda jde o multiprvkovou analýzu z jednoho vzorku, a požadovaný koncentrační rozsah analytu. Současné rutinní stanovení Al a zároveň nejcitlivější bylo na GF-AAS s limitem stanovitelnosti LOQ = 0,5 mg/kg. Tento limit však už nestačil požadavkům kontroly kvality a zákaznickým potřebám a bylo nutno zvalidovat novou metodu s předpokládaným limitem stanovitelnosti LOQ = 0,2 mg/kg. Stanovením Al metodou ICP-OES se zabývá také studie Stanovení nečistot v ultračistém CaCl₂ a MgCl₂, ale pro Al s vyšším limitem LOQ = 0,5 mg/kg¹⁴.

Skutečnost, že metoda ICP-OES je vhodná pro stanovení nečistot v matrici ČaČl₂ dává také studie Stanovení anorganických elementů v CaCl₂ metodou ICP-OES¹⁵. Analytické metody ICP-OES se využívá také při stanovení minorit v potravinářských aditivech¹⁶.

2.11.2 Optimalizace metody

Optimalizací parametrů plazmového výboje je nalezení nejlepších hodnot poměru signál/ pozadí (S/B) viz obrázek 2.8 a nejvyššího poměru signál/ šum (S/N) – tedy nejnižší relativní standardní odchylky měření (RSD).

Proces optimalizace metody usnadní software spektrometru. Instalovaný program usnadní nalezení optimálních parametrů metody. Diagnostika umožnuje změřené sekvence vzorků navzájem porovnávat, analyzovat. Měnit lze parametry výboje, průtok pracovních plynů, rychlost peristaltické pumpy, přítlak nasávacích hadiček, vzdálenost hořáku. Po změření analytu lze korigovat vlastní pík signálu spektrální čáry a přepočítat změnu na obsah prvku ve vzorku.

Nejprve byla testována metoda kalibrační křivky s vodnými standardy a stanovovaným analytem Al v matrici CaCl₂.2H₂O a MgCl₂.6H₂O. Metoda však vykazovala nízkou linearitu a opakovatelnost. Zlepšení nepřineslo ani korekce s použitím porovnávacího prvku jako vnitřního standardu Fe λ =167,074 nm., který ovlivňoval blízkou spektrální čáru stanovovaného analytu Al λ = Al 167,079 nm. Určení korekcí navíc vyžaduje další měření na čarách rušivých prvků. Z toho důvodu se od korekce na vnitřní standard upustilo. Ovlivnění interferentním Fe v instrumentaci ICP-OES pojednává také studie B.L.Turner¹⁷

Příčinou nízké linearity se ukázal být matricový efekt vzorků analyzovaných vzorků CaCl₂.2H₂O a MgCl₂.6H₂O. Po tomto zjištění a přípravě matricových kalibračních standardů se linearita, přesnost a opakovatelnost stanovení zlepšila.

Následovalo hledání optimálního nastavení průtoku pracovního a chladícího plynu hořáku, rychlosti nasávání vzorku a zafixování vyčítací zóny píku signálu a pozadí.

¹⁴ Pouzar M., Černohorský T., Krejcová A. (January 2007). Determination of metal impurities in ultrapure CaCl₂ and MgCl₂ by ICP OES. Microchimica Acta, 156(3): 271-275.

¹⁵ Gaikhorst G. A., Temminghoff E. J. M., Houba V. J. G. (May 2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis 31(9).

¹⁶ WHO (World Health Organization) 1989 Thirty-third Report of the Joint FAO/. (nedatováno). WHO Expert Committee on Food Additives, 776, 28.

¹⁷ Turner, B. L. (2016-Issue 21). Interference by Iron in the Determination of Boron by ICP-OES. Journal Communications in Soil Science and Plant Analysis, Volume 47.

2.11.3 Charakteristické rysy ICP spektrometru Prodigy 7¹⁸

- *Stabilní plazma* zajišťuje rychlý start přístroje a výjimečnou dlouhodobou stabilitu. Již po 10 minutách od zapnutí (tzv. cool start) je možné provádět plnohodnotné analýzy.
- Počítačem řízené vstupní zrcátko automaticky optimalizuje nastavení hořáku a umožňuje volbu axiálního nebo radiálního pozorování, resp. dual view.
- Počítačem řízená šířka vstupní štěrbiny umožňuje měnit rozlišení v závislosti na dané aplikaci.
- Velká toroidní zrcadla poskytují vynikající optickou účinnost.
- Nejnovější velkoplošný programovatelný detektor CMOS zaručuje:
 - o Vysokou disperzi a optické rozlišení minimalizace spektrálních interferencí.
 - Kontinuální pokrytí celého vlnového rozsahu univerzální využití (všechny prvky mohou být měřeny na svých primárních spektrálních čarách, a to včetně prvků Na, K, Li, Ba a Sr).
 - Vysoká citlivost vynikající detekční limity (řádově v ppb) i na reálných vzorcích.
 - V kombinaci s dvojitým rozkladem na mřížce a hranolu je dosaženo separace i jinak problematických prvků.
- Teplotně stabilizovaný optický systém zaručuje vynikající dlouhodobou stabilitu nehledě bez ohledu na změny okolní teploty.
- Plynem plněný optický systém znamená citlivost v UV a Vis oblasti spektra a nižší spotřeba inertního plynu.
- Modulární konstrukce spolehlivost, jednoduchost a snadný servis.

¹⁸ Practical guide to ICP-OES, Prodigy 7, Teledyne Leeman Labs. (2013).

3 Validační zpráva

3.1 Schvalovací list

Předmět ověření:

Validace stanovení obsahu Al v krystalu CaCl₂.2H₂O, MgCl₂.6H₂O, dle USP, Ph.Eur., FCC, E509, ACS monografií a regulací na katalytické kovy. Validace bude provedena v plném rozsahu dle požadavků ICH Q2(R1)^{19 20}.

Validační plán:

Validační protokol vypracoval:	Mgr. Viktor Brezovský SPJ	Datum: 30.8.2019
Validační protokol kontroloval:	Ing. Vok Kozelský ŘJ	Datum: 2.9.2019
Validační protokol schválil:	Ing. Vok Kozelský ŘJ	Datum: 2.9.2019

Vypracoval: Mgr. Viktor Brezovský	
Schválil: Ing. Vok Kozelský	Výtisk č.:1

¹⁹ ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1). (1994). Current Step 4 version, Parent Guideline dated 27 October 1994.

²⁰ ICH Harmonised Tripartite Guideline, ICH Q14: Analytical Procedure Development and Revision of Q2(R1) Analytical Validation dated 14 November 2018. (2018).

3.2 Předmět validace

Předmětem validace je měření obsahu hliníku. Měření se bude validovat pro následující matrice: CaCl₂.2H₂O, MgCl₂.6H₂O.

3.3 Validační plán

Validace metody je potvrzení přezkoušením a poskytnutím objektivního důkazu, že jsou jednotlivé požadavky na specifické zamýšlené použití splněny. Provádí se pomocí reálných roztoků pro celý předepsaný koncentrační rozsah a různé matrice. Laboratoř musí validovat takové metody, které nejsou normalizované a vyvinuté. Závěrem je vypracování validačního protokolu, postup využití validace a prohlášení, že metoda vyhovuje zamýšlenému použití ¹⁸.

Plán validace analytické metody

Součástí validace je akční plán s jednotlivými body

- Validační zpráva s prohlášením (kap. 3)
- Úvodní rozvaha (kap. 3.4)
- Standardní Operační Postup (SOP) zavedení do praxe (kap. 6)

3.4 Validace – rozvaha

Validace nové analytické metody se stalo nutností. Výrobní společnost dosud stanovovala hliník Al metodou GF-AAS s LOQ=0,5 mg/kg, ale díky zákaznickým požadavkům byla nucena vyvinout citlivější metodu s akceptačním kritériem LOQ=0,2 mg/kg ve vzorcích matric CaCl₂.2H₂O a MgCl₂.6H₂O. Přístrojové vybavení analytické laboratoře umožnilo validovat na instrumentační technice ICP-OES.

Rozvahou se dospělo k závěru, že stanovení Al na ICP-OES bude finančně méně náročné na spotřební materiál (technika GF-AAS spotřebovává finančně nákladné grafitové kyvety s omezeným počtem odpalů). Naproti tomu ICP-OES, kromě provozních plynů, které používá také GF-AAS nemá jiný spotřební materiál a navíc umožňuje sekvenční měření vzorků v sérii. Rozhodnutím se stalo validovat na přístroji firmy Teledyne Leeman labs, Typ Prodigy 7, s vyhodnocovacím software Salsa viz obrázek 3.4.

Obr. 3.4 Software Salsa

3.5 Analytická metoda

Obsah hliníku byl stanovován v šesti matricích komerční výroby metodou Opticko-emisní spektrometrie s iontově vázaným plazmatem (ICP-OES) na přístroji Prodigy 7, který pracuje na základě integrace vlnových délek. Tato metoda slouží ke stanovení obsahu stopových koncentrací v analyzovaném vzorku. Prodigy 7 je schopen dosahovat nízkých koncentrací při širokém dynamickém rozsahu a umožňuje přístup na skupinu vlnových délek při jakékoliv analýze.

Principem ICP-OES je interakce plazmy se vzorkem, který je v plazmě atomizován. Vybuzené elektrony se vrací zpět na původní energetické hladiny a emitují při tom světlo o přesně definované vlnové délce, určené energetickým rozdílem obou hladin.

$$\delta E = hv \frac{hc}{\lambda}$$

kde ΔE je energetický rozdíl hladin elektronu v atomu, h je Planckova konstanta (6.626 x 10-34 J.s), \mathbf{U} je frekvence světelného vlnění, c je rychlost světla ve vakuu a λ je vlnová délka světla. Emitované světlo je poté vedeno na velmi výkonný monochromátor, který rozdělí zachycené světelné záření podle jeho vlnových délek a fotony tohoto rozděleného světla dopadají na citlivý detektor, který převede intenzitu dopadajícího záření na elektrický signál. Intenzity signálu odpovídá množství prvku, přítomného v analyzovaném roztoku.

Obsah hliníku byl v testovaných matricích CaCl₂.2H₂O a MgCl₂.6H₂O stanoven metodou kalibrační křivky na matricové standardy s přídavkem interního standardu. Kritéria přijatelnosti popisuje tabulka č. 1.

3.6 Kritéria přijatelnosti

Validační parametr	Kritérium přijatelnosti	Ověření
Linearita	1,000	vyhovuje
Správnost (výtěžnost)	70 - 130 %	vyhovuje
Rozsah	LOQ - 150 %	vyhovuje
Výtěžnost	70 - 130 %	vyhovuje
Opakovatelnost (RSD)	max. 15 %	vyhovuje
Reprodukovatelnost (RSD)	max. 25 %	vyhovuje
Limit detekce	0,1 mg/kg	prokázán
Limit stanovitelnosti	0,2 mg/kg	prokázán

Tab. č. 1: Kritéria přijatelnosti jednotlivých validačních parametrů

3.7 Validace obsahu hliníku v matricích

Validace obsahu Al v matricích CaCl₂.2H₂O a MgCl₂.6H₂O.

3.7.1 Postup

Byla proměřena emise standardů a vzorku pro jednotlivé emisní čáry kovu pomocí instrumentace ICP. Po optimalizaci metody byla jako první stanovena linearita ze šesti standardů, do kterých byly přidány interní standardy viz tabulka č. 2. Stanovení bylo provedeno na matricové standardy a blank. Z proměřené linearity byly odhadnuty limity detekce (dále LOD) a stanovitelnosti (dále LOQ) v programu Effi Validation a následně byla testována linearita z blanku a 3 vzorků s přídavkem standardu na úrovních LOD–30 %, LOD a LOQ. Výtěžnost byla proměřena na 3 koncentrační úrovně přídavků standardu ve vzorku po nakalibrování (příprava kalibračních matricových standardů i vzorků viz kap. 6). Pro vyhodnocení validačních parametrů byly porovnány naměřené hodnoty s korekcí a bez korekce na interní standard.

Tab. c. 2: Testovane vinove delky	Al a pouzite interni standardy
Analyt	Vlnová délka (nm)
Al	394,401; 396,152; 167,079
Interní standard	Vlnová délka (nm)
Sc	361,383; 357,253
Y	371,030; 377,433; 410,238

Tab. č. 2: Testované vlnové délky Al a použité interní standardy

3.8 Vyhodnocení

3.8.1 Specifita

Specifita je vyhodnocena při optimalizaci metody a vybrání nejvhodnějších vlnových délek Al. V tabulce č. 3 je seznam kovů, které podle software programu Salsa jsou možnými interferenty signálu hliníku.

Použité vlnové délky Al a IS	Možné interferenty
Al 167,079 nm	Fe 167,074 nm
11204 401	Ce 394,389 nm
AI 394,401 nm	Cm 394,415 nm
Al 396,152 nm	Fe 396,114 nm
Sc 361,383 nm	Mg 361,378 nm
	W 361,379 nm
G	Fe 357,259 nm
Sc 35/,253 nm	Yb 357,250 nm
X 271 020 mm	Fe 371,035 nm
Y 371,030 mm	Yb 371,034 nm
V 277 422 nm	Ti 377,433 nm
1 <i>577</i> ,433 nm	Yb 377,432 nm
Y 410,238 nm	I 410,223 nm

Tab. č. 3: Interferenty ovlivňujíc	í jednotlivé vlnové délky Al, Sc a	Y které byly použité pro validaci

Ze získaných údajů z přístroje je zřejmé, že vybrané vlnové délky Al a IS nejsou ovlivňovány signály žádných kovů, které se teoreticky nachází v matricích. Mohou být tedy použity pro ověřování jednotlivých validačních parametrů. Pouze Sc 361,383 nm je ovlivňováno hořčíkem. Tento interní standard proto nebude brán v úvahu při vyhodnocování výtěžnosti v Mg matrici. V blízkosti vlnové délky Al 167,079 nm se nachází interferent Fe 167,074 nm. Pro tuto vlnovou délku Al je použit vysoký proplach optiky argonem.

3.8.2 Linearita a rozsah metody CaCl2.2H2O

Pro vyhodnocení linearity je připraveno 6 kalibračních standardů o koncentracích Al pokrývajících předpokládaný rozsah metody. Ověřován je interval linearity stanovením spolehlivostního faktoru, jehož podmínkou je $R^2 > 0.995$. Ověřování linearity je prováděno s korekcí na interní standardy viz tabulka č. 2. Každá koncentrační úroveň je 5x opakována. Vyhodnocení je provedeno pro každou použitou vlnovou délku Al zvlášť a s korekcí na interní standard.

Tab. č. 4: Ověřená linearita				
Vlnová délka Al (nm)	Interní standard (nm)	Rozsah (mg/l)	Ověřený spolehlivost ní faktor R ²	RSD (%)
167,079	Sc 357,253 Sc 361,383	0,02 - 1	0,9998 0,9999	5,86128 4,00601
394,401	Sc 357,253 Sc 361,383 Y371,030 Y 377,433 Y 410,238	0,02-1	0,9997 0,9993 0,0995 0,9999 0,9997	1,37116 1,09142 1,23350 1,43964 1,77196
396,152	Sc 357,253 Sc 361,383 Y371,030 Y 377,433 Y 410,238	0,02-1	1,0000 1,0000 1,0000 1,0000 0,9999	1,26365 1,52703 1,21566 1,29685 1,92824

Vyhodnocení linearity se prováděno na základě spolehlivostního faktoru \mathbb{R}^2 , který je výsledkem lineární závislosti v obrázcích č. 1 – 3. Grafické vyhodnocení je vždy provedeno bez korekce a s korekcí na jednotlivé interní standardy. V následujících tabulkách je vyhodnocen parametr RSD z naměřených hodnot linearity, který by neměl přesáhnout 15 %. Tento parametr je kritériem pro opakovatelnost, která byla prováděna pětinásobným proměřením každého standardu v rámci linearity. V tabulkách č. 5 – 7 je vyhodnocena opakovatelnost z linearity pro vlnovou délku Al 167,079, nejprve bez korekce a následně s korekcí na všechny použité interní standardy.

22

Tab. č. 5	: Vyhodnoce	ní linearit	y na Al 1	67,079 ni	n
					_

167,079 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	4408	3926	3765	3831	4486	4083,20	338,12379	8,28085
std 2	0,05	5870	6843	6909	6323	7680	6725,00	680,52076	10,11927
std 3	0,10	12756	12738	13492	12377	13085	12889,60	419,71931	3,25626
std 4	0,20	24088	24030	24789	24869	24606	24476,40	393,31196	1,60690
std 5	0,50	58310	59139	58794	58421	59003	58733,40	359,76701	0,61254
std 6	1,00	114913	112769	112875	114721	115420	114139,60	1230,17836	1,07778

Tab. č. 6: Hodnoty linearity pro Al 167,079 nm korigované na Sc 361,383 nm

167,079 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,001404	0,001254	0,001322	0,00143	0,001173	0,001	0,00011	8,06207
std 2	0,05	0,001999	0,002234	0,002061	0,002137	0,002199	0,002	0,00010	4,55236
std 3	0,10	0,003133	0,003139	0,003513	0,003382	0,003231	0,003	0,00016	5,02378
std 4	0,20	0,006093	0,005456	0,006195	0,005879	0,005952	0,006	0,00028	4,80735
std 5	0,50	0,013558	0,0136	0,013681	0,013866	0,013996	0,014	0,00019	1,34993
std 6	1,00	0,026321	0,026239	0,02641	0,026363	0,026351	0,026	0,00006	0,24060

Tab. č. 7: Hodnot	y linearity	pro Al 167,079 nm	korigované na	a Sc 357,253 nm
-------------------	-------------	-------------------	---------------	-----------------

167,079 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,00089	0,000965	0,001238	0,001308	0,001067	0,001	0,00018	16,19806
std 2	0,05	0,002118	0,001673	0,00183	0,001533	0,00195	0,002	0,00023	12,57733
std 3	0,10	0,00308	0,003264	0,003245	0,003171	0,003062	0,003	0,00009	2,91648
std 4	0,20	0,005553	0,005624	0,005794	0,005815	0,005555	0,006	0,00013	2,25612
std 5	0,50	0,012977	0,013052	0,012871	0,012867	0,013013	0,013	0,00008	0,64637
std 6	1,00	0,024882	0,024895	0,024781	0,02456	0,024676	0,025	0,00014	0,57333

Obr. 1: Kalibrace Al 167,079 nm

Obr. 2: Kalibrace Al 167,079 nm s korekcí na Sc 361,383 nm

Obr. 3: Kalibrace Al 167,079 nm s korekcí na Sc 357,253 nm

V tabulkách č. 8 - 13 je vyhodnocena opakovatelnost z linearity pro vlnovou délku Al 394,401, nejprve bez korekce a následně s korekcí na všechny použité interní standardy. Grafické zobrazení linearity a spolehlivostní faktor pro tuto vlnovou délku Al bez korekce a s korekcí na interní standardy je v obrázcích č. 4 - 9.

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	242607	244142	242456	241508	235527	241248,00	3334,62224	1,38224
std 2	0,05	245173	247306	254080	241131	249456	247429,20	4824,77976	1,94996
std 3	0,10	274266	275689	269187	264027	273722	271378,20	4776,43389	1,76007
std 4	0,20	309645	323981	324681	314800	318358	318293,00	6327,57983	1,98797
std 5	0,50	459425	452305	461949	458709	459878	458453,20	3642,14445	0,79444
std 6	1,00	683819	689264	686900	688195	684571	686549,80	2322,12848	0,33823

Tab. č. 8: Vyhodnocení linearity na Al 394,401 nm

Tab. č. 9: Hodnoty linearity pro Al 394,401 nm korigované na Sc 361,383 nm

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,070828	0,07013	0,069216	0,06833	0,070639	0,070	0,00104	1,49641
std 2	0,05	0,071706	0,071904	0,073061	0,0705	0,070629	0,072	0,00105	1,46280
std 3	0,10	0,080001	0,081972	0,080194	0,081705	0,079388	0,081	0,00113	1,39763
std 4	0,20	0,094099	0,09364	0,094314	0,095646	0,093664	0,094	0,00082	0,86967
std 5	0,50	0,133136	0,133211	0,13463	0,133154	0,134314	0,134	0,00072	0,54155
std 6	1,00	0,200509	0,201971	0,204476	0,201069	0,201069	0,202	0,00158	0,78046

Tab. č. 10: Hodnoty linearity pro Al 394,401 nm korigované na Y 377,433 nm

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,104455	0,100624	0,104514	0,10596	0,104013	0,104	0,00198	1,90490
std 2	0,05	0,10995	0,106587	0,112492	0,108842	0,109929	0,110	0,00214	1,94904
std 3	0,10	0,12065	0,124279	0,117007	0,119467	0,116731	0,120	0,00308	2,57531
std 4	0,20	0,140978	0,140734	0,142497	0,146173	0,141607	0,142	0,00222	1,55734
std 5	0,50	0,204561	0,204033	0,203448	0,204343	0,204803	0,204	0,00052	0,25684
std 6	1,00	0,308887	0,310599	0,308637	0,307513	0,307764	0,309	0,00122	0,39439

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,081823	0,084049	0,080688	0,083025	0,081055	0,082	0,00140	1,70170
std 2	0,05	0,08373	0,084995	0,082479	0,083913	0,082758	0,084	0,00100	1,20002
std 3	0,10	0,093271	0,088198	0,088841	0,088784	0,089293	0,090	0,00205	2,28176
std 4	0,20	0,103621	0,105086	0,102884	0,103345	0,099864	0,103	0,00192	1,86166
std 5	0,50	0,14435	0,14632	0,146243	0,145213	0,14416	0,145	0,00102	0,69955
std 6	1,00	0,216919	0,214302	0,214738	0,215848	0,214986	0,215	0,00104	0,48226

Tab. č. 11: Hodnoty linearity pro Al 394,401 nm korigované na Sc 357,253 nm

Tab. č. 12: Hodnoty linearity pro Al 394,401 nm korigované na Y 371,030 nm

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,033284	0,034052	0,033687	0,033478	0,03369	0,034	0,00029	0,85053
std 2	0,05	0,03479	0,035792	0,03534	0,034417	0,034674	0,035	0,00056	1,58624
std 3	0,10	0,039615	0,038501	0,037834	0,039446	0,038492	0,039	0,00074	1,91095
std 4	0,20	0,045696	0,044582	0,044958	0,04593	0,04444	0,045	0,00066	1,47258
std 5	0,50	0,066743	0,064742	0,065177	0,064613	0,065397	0,065	0,00085	1,29969
std 6	1,00	0,098569	0,09807	0,098821	0,098565	0,098617	0,099	0,00028	0,28098

Tab. č. 13: Hodnoty linearity pro Al 394,401 nm korigované na Y 410,238 nm

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	1,066581	1,081199	1,070321	1,068946	1,065747	1,071	0,00622	0,58118
std 2	0,05	1,12501	1,129116	1,078522	1,135808	1,079257	1,110	0,02825	2,54588
std 3	0,10	1,199785	1,225706	1,211625	1,27962	1,233598	1,230	0,03059	2,48722
std 4	0,20	1,458252	1,421035	1,475676	1,506923	1,469506	1,466	0,03107	2,11917
std 5	0,50	2,063379	2,058775	2,124632	2,143149	2,135361	2,105	0,04072	1,93426
std 6	1,00	3,242826	3,229543	3,307046	3,235986	3,244475	3,252	0,03135	0,96407

Obr. 4: Kalibrace Al 394,401 nm

Obr. 5: Kalibrace Al 394,401 nm s korekcí na Sc 361,383 nm

Obr. 6: Kalibrace Al 394,401 nm s korekcí na Y 377,433 nm

Obr. 7: Kalibrace Al 394,401 nm s korekcí na Sc 357,253 nm

Obr. 8: Kalibrace Al 394,401 nm s korekcí na Y 371,030 nm

Obr. 9: Kalibrace Al 394,401 nm s korekcí na Y 410,238 nm

V tabulkách č. 14 – 19 je vyhodnocena opakovatelnost z linearity pro vlnovou délku Al 396,152 nm, nejprve bez korekce a následně s korekcí na všechny použité interní standardy. Grafické zobrazení linearity a spolehlivostní faktor pro tuto vlnovou délku Al bez korekce a s korekcí na interní standardy je v obrázcích č. 10 - 15.

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	150098	151383	158953	158492	154704	154726,00	4020,09956	2,59821
std 2	0,05	193957	187218	190207	182888	199805	190815,00	6458,28278	3,38458
std 3	0,10	253183	257884	252656	254237	256345	254861,00	2202,71821	0,86428
std 4	0,20	396604	389127	394377	392544	388225	392175,40	3517,59183	0,89694
std 5	0,50	789255	796328	783160	786265	794958	789993,20	5610,61420	0,71021
std 6	1,00	1465528	1464063	1460528	1465672	1453832	1461924,60	4975,96521	0,34037

Tab. č. 14: Vyhodnocení linearity na Al 396,152 nm

Tab. č. 15: Hodnotv	linearity pro	Al 396.152 nm	korigované na	Sc 361.383 nm
- 2)

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,026407	0,027867	0,027035	0,027618	0,027479	0,027	0,00057	2,10613
std 2	0,05	0,03607	0,03643	0,03958	0,036813	0,03878	0,038	0,00155	4,13180
std 3	0,10	0,056568	0,056333	0,058612	0,057003	0,057358	0,057	0,00090	1,56571
std 4	0,20	0,092926	0,093277	0,092365	0,091995	0,091597	0,092	0,00068	0,73590
std 5	0,50	0,199922	0,200143	0,198946	0,200077	0,199288	0,200	0,00053	0,26534
std 6	1,00	0,383275	0,382889	0,382134	0,383949	0,380381	0,383	0,00137	0,35731

Tab. č. 16: Hodnoty linearity pro Al 396,152 nm korigované na Y 377,433 nm

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,066929	0,067022	0,068689	0,067407	0,065815	0,067	0,00103	1,53984
std 2	0,05	0,085276	0,08119	0,08436	0,08514	0,08615	0,084	0,00192	2,26923
std 3	0,10	0,116862	0,118114	0,116207	0,118792	0,11333	0,117	0,00212	1,81808
std 4	0,20	0,177676	0,17729	0,176141	0,179142	0,173746	0,177	0,00202	1,14016
std 5	0,50	0,355972	0,355583	0,35699	0,356777	0,353488	0,356	0,00140	0,39215
std 6	1,00	0,662526	0,656805	0,659954	0,652694	0,653982	0,657	0,00409	0,62166

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,045241	0,044446	0,045463	0,042505	0,042855	0,044	0,00136	3 <i>,</i> 07854
std 2	0,05	0,057508	0,054745	0,055641	0,055955	0,054893	0,056	0,00111	1,98310
std 3	0,10	0,077369	0,078557	0,078872	0,077668	0,078519	0,078	0,00064	0,82242
std 4	0,20	0,118369	0,120471	0,121365	0,120175	0,119375	0,120	0,00114	0,94636
std 5	0,50	0,243619	0,24472	0,243772	0,242753	0,245811	0,244	0,00117	0,47852
std 6	1,00	0,450702	0,451639	0,449843	0,450994	0,45314	0,451	0,00123	0,27294

Tab. č. 17: Hodnoty linearity pro Al 396,152 nm korigované na Sc 357,253 nm

Tab. č. 18: Hodnoty linearity pro Al 396,152 nm korigované na Y 371,030 nm

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,022467	0,021892	0,021565	0,021515	0,021826	0,022	0,00038	1,73714
std 2	0,05	0,027726	0,02756	0,028734	0,027503	0,027221	0,028	0,00058	2,09032
std 3	0,10	0,036753	0,037959	0,038449	0,036897	0,038342	0,038	0,00080	2,13136
std 4	0,20	0,057559	0,056626	0,057135	0,056401	0,056706	0,057	0,00046	0,81043
std 5	0,50	0,115096	0,115707	0,114929	0,115709	0,115075	0,115	0,00038	0,32530
std 6	1,00	0,212103	0,211988	0,211377	0,212076	0,212559	0,212	0,00042	0,19941

Tab. č. 19: Hodnoty linearity pro Al 396,152 nm korigované na Y 410,238 nm

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,697693	0,71664	0,714872	0,670422	0,698391	0,700	0,01857	2,65500
std 2	0,05	0,900665	0,887588	0,923582	0,871074	0,849057	0,886	0,02836	3,19930
std 3	0,10	1,156205	1,216797	1,220345	1,211584	1,188072	1,199	0,02684	2,23896
std 4	0,20	1,82602	1,832699	1,86821	1,864387	1,832823	1,845	0,01984	1,07535
std 5	0,50	3,697339	3,645468	3,719038	3,795961	3,739048	3,719	0,05523	1,48487
std 6	1,00	6,966485	6,913526	7,05891	6,896303	6,97575	6,962	0,06377	0,91594

Obr. 10: Kalibrace Al 396,152 nm

Obr. 11: Kalibrace Al 396,152 nm s korekcí na Sc 361,383 nm

Obr. 12: Kalibrace Al 396,152 nm s korekcí na Y 377,433 nm

Obr. 15: Kalibrace Al 396,152 nm s korekcí na Y 410,238 nm

Ze všech naměřených hodnot lze usoudit, že linearita daného rozsahu koncentrací standardů (0,02 - 1 mg/l) byla prokázána na základě splněného spolehlivostního faktoru R² > 0,995, pro všechny použité vlnové délky hliníku i pro korekci na pět vlnových délek interních standardů. Zároveň byla dokázána opakovatelnost linearity vypočítáním relativní chyby RSD, která je ve všech případech menší než 15 %. Al s vlnovou délkou 394,401 nm má použitelnou hodnotu RSD. Avšak s touto vlnovou délkou se nedá pracovat, jelikož výsledky analýzy čisté šarže bez přídavku Al, poskytuje falešně zvýšenou koncentraci Al nad 1 mg/kg vlivem překryvu s jinou spektrální čarou, která tímto zvyšuje příspěvek signálu. Z toho důvodu je nejvýhodnější Al s vlnovou délkou 396,152 nm s korekcí na Sc 361,383 nm.

3.8.3 Linearita a rozsah metody pro MgCl₂.6H₂O

Pro vyhodnocení linearity je připraveno 6 kalibračních standardů o koncentracích Al pokrývajících předpokládaný rozsah metody. Ověřován je interval linearity stanovením spolehlivostního faktoru, jehož podmínkou je $R^2 > 0,995$. Ověřování linearity je prováděno s korekcí na interní standardy viz tabulka č. 20. Každá koncentrační úroveň je 5x opakována. Vyhodnocení je provedeno pro každou použitou vlnovou délku Al zvlášť a s korekcí na interní standard.

Vlnová délka Al (nm)	Interní standard (nm)	Rozsah (mg/l)	Ověřený spolehlivost ní faktor R ²	RSD (%)
167,079	Y 371,030 Y 377,422 Y 410,238	0,02 - 1	0,9998 0,9999 0,9999	9,84338 7,69835 9,30115
394,401	Sc 357,253 Sc 361,383 Y371,030 Y 377,433 Y 410,238	0,02-1	1,0000 1,0000 1,0000 1,0000 1,0000	1,37116 1,09142 1,23350 1,43964 1,77196
396,152	Sc 357,253 Sc 361,383 Y 371,030 Y 377,433 Y 410,238	0,02-1	1,0000 1,0000 1,0000 1,0000 1,0000	0,74473 0,64658 0,55588 0,49228 0,91723

Tab. č. 20: Ověřená linearita

Vyhodnocení linearity je prováděno na základě spolehlivostního faktoru \mathbb{R}^2 , který je výsledkem lineární závislosti v obrázcích č. 16 – 19. Grafické vyhodnocení je vždy provedeno bez korekce a s korekcí na jednotlivé interní standardy. V následujících tabulkách je vyhodnocen parametr RSD z naměřených hodnot linearity, který by neměl přesáhnout 15 %. Tento parametr je důkazem pro opakovatelnost, která je prováděna pětinásobným proměřením každého standardu v rámci linearity. V tabulkách č. 21 – 24 je vyhodnocena opakovatelnost z linearity pro vlnovou délku Al 167,079, nejprve bez korekce a následně s korekcí na všechny použité interní standardy.

167,079 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	1972	2154	1971	2102	2029	2045,60	80,91539	3,95558
std 2	0,05	2296	2763	2638	2609	2269	2515,00	220,19650	8,75533
std 3	0,10	3747	4102	3916	3965	4110	3968,00	149,72809	3,77339
std 4	0,20	7773	7895	7360	7970	7409	7681,40	280,53752	3,65217
std 5	0,50	18704	18707	18438	18840	18385	18614,80	194,44717	1,04458
std 6	1,00	36518	36383	36376	36402	36453	36426,40	59,40791	0,16309

Tab. č. 21: Vyhodnocení linearity na Al 167,079 nm

Tab. č. 22: Vyhodnocení linearity na Al 167,079 nm korigované na Y 371,030 nm

167,079 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,000228	0,000338	0,000325	0,000306	0,000174	0,0003	0,00007	25,68256
std 2	0,05	0,000705	0,000469	0,000584	0,000463	0,000434	0,0005	0,00011	21,25684
std 3	0,10	0,000982	0,000897	0,001078	0,001106	0,001084	0,0010	0,00009	8,55021
std 4	0,20	0,001909	0,001892	0,001828	0,001867	0,001872	0,0019	0,00003	1,62705
std 5	0,50	0,004771	0,004752	0,004619	0,004718	0,004708	0,0047	0,00006	1,24472
std 6	1,00	0,009193	0,009163	0,009213	0,009055	0,009113	0,0091	0,00006	0,69887

Tab. č. 23: Vyhodnocení linearity na Al 167,079 nm korigované na Y 377,433 nm

167,079 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,000826	0,000899	0,000618	0,001021	0,000646	0,001	0,00017	21,24628
std 2	0,05	0,001471	0,001419	0,001719	0,001949	0,001782	0,002	0,00022	13,24954
std 3	0,10	0,003014	0,003335	0,003282	0,003225	0,003008	0,003	0,00015	4,81448
std 4	0,20	0,006245	0,005786	0,006156	0,005611	0,005987	0,006	0,00026	4,38074
std 5	0,50	0,014536	0,014827	0,014656	0,014353	0,014919	0,015	0,00023	1,54290
std 6	1,00	0,028428	0,028329	0,028686	0,027999	0,028618	0,028	0,00027	0,95619

167,079 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,004681	0,004393	0,002947	0,005629	0,003411	0,004	0,00106	25,18749
std 2	0,05	0,009635	0,00942	0,012721	0,012204	0,011541	0,011	0,00150	13,51551
std 3	0,10	0,025357	0,024507	0,028062	0,022711	0,027212	0,026	0,00214	8,35485
std 4	0,20	0,044422	0,050784	0,049033	0,047944	0,048177	0,048	0,00233	4,83715
std 5	0,50	0,117796	0,120627	0,116701	0,123056	0,120015	0,120	0,00249	2,08216
std 6	1,00	0,231387	0,238146	0,237321	0,243573	0,238779	0,238	0,00435	1,82971

Tab. č. 24: Vyhodnocení linearity na Al 167,079 nm korigované na Y 410,238 nm

Obr. 16: Kalibrace Al 167,079 nm

Obr. 17: Kalibrace Al 167,079 nm s korekcí na Y 371,030 nm

Obr. 18: Kalibrace Al 167,079 nm s korekcí na Y 377,433 nm

Obr. 19: Kalibrace Al 167,079 nm s korekcí na Y 410,238 nm

V tabulkách č. 25 - 30 je vyhodnocena opakovatelnost z linearity pro vlnovou délku Al 394,401, nejprve bez korekce a následně s korekcí na všechny použité interní standardy. Grafické zobrazení linearity a spolehlivostní faktor pro tuto vlnovou délku Al bez korekce a s korekcí na interní standardy je v obrázcích č. 20 - 25.

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	25386	25371	25261	22550	23108	24335,20	1389,88550	5,71142
std 2	0,05	35342	35171	37076	35765	33900	35450,80	1144,01735	3,22706
std 3	0,10	59105	58567	61006	58955	59618	59450,20	947,77355	1,59423
std 4	0,20	117031	114892	114213	113837	113062	114607,00	1507,66061	1,31550
std 5	0,50	268142	273994	279466	280445	280289	276467,20	5358,34683	1,93815
std 6	1,00	557243	549312	539758	543565	541991	546373,80	7029,21814	1,28652

Tab. č. 25: Vyhodnocení linearity na Al 394,401 nm
394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,007943	0,007865	0,007827	0,007811	0,007926	0,008	0,00006	0,74384
std 2	0,05	0,015399	0,015495	0,015964	0,015347	0,016328	0,016	0,00042	2,70324
std 3	0,10	0,025758	0,025422	0,026684	0,025766	0,026302	0,026	0,00050	1,92940
std 4	0,20	0,05009	0,049726	0,049343	0,049979	0,050544	0,050	0,00044	0,89050
std 5	0,50	0,12071	0,119338	0,119296	0,119016	0,119226	0,120	0,00068	0,56745
std 6	1,00	0,234998	0,234456	0,235591	0,23538	0,235859	0,235	0,00055	0,23260

Tab. č. 26: Vyhodnocení linearity na Al 394,401 nm korigované na Sc 357,253 nm

Tab. č. 27: Vyhodnocení linearity na Al 394,401 nm korigované na Sc 361,383 nm

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,004482	0,004613	0,00461	0,004385	0,004555	0,005	0,00010	2,13040
std 2	0,05	0,009232	0,009943	0,010435	0,010209	0,009285	0,010	0,00054	5,52262
std 3	0,10	0,019208	0,019266	0,019499	0,019983	0,019471	0,019	0,00031	1,56735
std 4	0,20	0,036674	0,036938	0,03715	0,037141	0,03773	0,037	0,00039	1,04775
std 5	0,50	0,094599	0,094606	0,094736	0,094531	0,093871	0,094	0,00034	0,36224
std 6	1,00	0,186978	0,18718	0,187624	0,187223	0,188282	0,187	0,00052	0,27583

Tab. č. 28: Vyhodnocení linearity na Al 394,401 nm korigované na Y 371,030 nm

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,002627	0,003075	0,002789	0,002751	0,002605	0,003	0,00019	6,78951
std 2	0,05	0,00596	0,005924	0,005687	0,006089	0,005978	0,006	0,00015	2,49573
std 3	0,10	0,011209	0,011425	0,01124	0,011069	0,011185	0,011	0,00013	1,14787
std 4	0,20	0,021534	0,021354	0,021305	0,02141	0,021289	0,021	0,00010	0,46297
std 5	0,50	0,053804	0,053458	0,053646	0,053122	0,053507	0,054	0,00025	0,47478
std 6	1,00	0,106586	0,106687	0,107074	0,106887	0,106315	0,107	0,00029	0,27150

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,005	0,005457	0,005573	0,005455	0,004931	0,005	0,00029	5,58256
std 2	0,05	0,013806	0,013824	0,013382	0,01433	0,013891	0,014	0,00034	2,43216
std 3	0,10	0,027341	0,02716	0,027636	0,026751	0,026312	0,027	0,00052	1,91606
std 4	0,20	0,05143	0,051255	0,051995	0,051718	0,051157	0,052	0,00034	0,66865
std 5	0,50	0,130757	0,130993	0,130464	0,130788	0,130753	0,131	0,00019	0,14428
std 6	1,00	0,261156	0,259644	0,258248	0,258161	0,259388	0,259	0,00122	0,47123

Tab. č. 29: Vyhodnocení linearity na Al 394,401 nm korigované na Y 377,433 nm

Tab. č. 30: Vyhodnocení linearity na Al 394,401 nm korigované na Y 410,238 nm

394,401 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,062006	0,063327	0,071704	0,054957	0,0567	0,062	0,00658	10,66075
std 2	0,05	0,124198	0,130761	0,131775	0,126883	0,130063	0,129	0,00313	2,42936
std 3	0,10	0,245441	0,244064	0,234775	0,231086	0,24371	0,240	0,00645	2,69009
std 4	0,20	0,48287	0,47478	0,474371	0,475579	0,477028	0,477	0,00347	0,72853
std 5	0,50	1,149532	1,170065	1,148829	1,161657	1,144718	1,155	0,01055	0,91320
std 6	1,00	2,289726	2,297342	2,336343	2,283891	2,301529	2,302	0,02049	0,89027

Obr. 20: Kalibrace Al 394,401 nm

Obr. 21: Kalibrace Al 394,401 nm korigované na Sc 357,253 nm

Obr. 22: Kalibrace Al 394,401 nm korigované na Sc 361,383 nm

Obr. 23: Kalibrace Al 394,401 nm korigované na Y 371,030 nm

Obr. 24: Kalibrace Al 394,401 nm korigované na Y 377,433 nm

Obr. 25: Kalibrace Al 394,401 nm korigované na Y 410,238 nm

V tabulkách č. 31 - 36 je vyhodnocena opakovatelnost z linearity pro vlnovou délku Al 396,152 nm, nejprve bez korekce a následně s korekcí na všechny použité interní standardy. Grafické zobrazení linearity a spolehlivostní faktor pro tuto vlnovou délku Al bez korekce a s korekcí na interní standardy je v obrázcích č. 26 - 31.

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	85664	84414	82995	81580	80781	83086,80	1999,93792	2,40705
std 2	0,05	126204	126388	125415	126123	126350	126096,00	395,57995	0,31371
std 3	0,10	222425	220710	221484	221535	219601	221151,00	1058,11176	0,47846
std 4	0,20	424496	419312	421779	416615	417079	419856,20	3306,78374	0,78760
std 5	0,50	996550	1006572	1021945	1032364	1025746	1016635,40	14690,80542	1,44504
std 6	1,00	2041942	2005846	1977137	1985073	1970059	1996011,40	28964,45239	1,45112

Tab. č. 31: Vyhodnocení linearity na Al 396,152 nm

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,025687	0,024573	0,024657	0,025312	0,024828	0,025	0,00047	1,89463
std 2	0,05	0,048488	0,048543	0,049206	0,049344	0,04999	0,049	0,00062	1,26608
std 3	0,10	0,086227	0,087194	0,086965	0,086744	0,086979	0,087	0,00037	0,42460
std 4	0,20	0,167836	0,167184	0,16875	0,168867	0,167888	0,168	0,00070	0,41687
std 5	0,50	0,409155	0,409343	0,409855	0,409606	0,412144	0,410	0,00122	0,29662
std 6	1,00	0,808555	0,806249	0,806113	0,809084	0,808201	0,808	0,00137	0,16959

Tab. č. 32: Vyhodnocení linearity na Al 396,152 nm korigované na Sc 357,253 nm

Tab. č. 33: Vyhodnocení linearity na Al 396,152 nm korigované na Sc 361,383 nm

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,01813	0,018422	0,017788	0,018504	0,017896	0,018	0,00031	1,73209
std 2	0,05	0,036591	0,036603	0,036174	0,036527	0,036134	0,036	0,00023	0,63754
std 3	0,10	0,068791	0,067985	0,069263	0,068222	0,06867	0,069	0,00050	0,72941
std 4	0,20	0,130034	0,131103	0,131016	0,131258	0,131074	0,131	0,00049	0,37485
std 5	0,50	0,324897	0,325658	0,325366	0,325856	0,326478	0,326	0,00059	0,18009
std 6	1,00	0,645211	0,643685	0,643173	0,645197	0,64686	0,645	0,00145	0,22550

Tab. č. 34: Vyhodnocení linearity na Al 396,152 nm korigované na Y 371,030 nm

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	59910	60518	59252	57577	60109	59473,20	1154,46381	1,94115
std 2	0,05	120294	119553	119720	119336	119880	119756,60	361,84361	0,30215
std 3	0,10	221094	221615	223031	223271	222428	222287,80	924,18921	0,41576
std 4	0,20	420804	422776	420331	421001	419743	420931,00	1139,78046	0,27078
std 5	0,50	1053730	1052522	1050687	1048357	1048651	1050789,40	2353,12777	0,22394
std 6	1,00	2081413	2081271	2077918	2072699	2075402	2077740,60	3770,56021	0,18147

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,027111	0,027517	0,027733	0,027137	0,027735	0,027	0,00031	1,12096
std 2	0,05	0,052767	0,05242	0,053112	0,052	0,052447	0,053	0,00042	0,79205
std 3	0,10	0,096935	0,097115	0,097022	0,097743	0,097815	0,097	0,00042	0,43069
std 4	0,20	0,182478	0,18259	0,182348	0,182113	0,18245	0,182	0,00018	0,09871
std 5	0,50	0,443193	0,441749	0,44148	0,441003	0,440941	0,442	0,00091	0,20683
std 6	1,00	0,877396	0,870056	0,872609	0,873293	0,874138	0,873	0,00266	0,30442

Tab. č. 35: Vyhodnocení linearity na Al 396,152 nm korigované na Y 377,433 nm

Tab. č. 36: Vyhodnocení linearity na Al 396,152 nm korigované na Y 410,238 nm

396,152 nm	konc. [mg/l]	1	2	3	4	5	prům	sm. odch	RSD (%)
std 1	0,02	0,236587	0,244117	0,239898	0,2445	0,243051	0,242	0,00335	1,38615
std 2	0,05	0,500626	0,506343	0,51715	0,505744	0,507204	0,507	0,00602	1,18594
std 3	0,10	0,939929	0,955461	0,941115	0,942261	0,940706	0,944	0,00652	0,69081
std 4	0,20	1,853608	1,84244	1,852931	1,828474	1,846222	1,845	0,01022	0,55402
std 5	0,50	4,509031	4,56519	4,507249	4,537171	4,521563	4,528	0,02397	0,52946
std 6	1,00	8,968744	8,966185	9,205361	8,966949	9,065481	9,035	0,10453	1,15702

Obr. 26: Kalibrace Al 396,152 nm

Obr. 27: Kalibrace Al 396,152 nm korigované na Sc 357,253 nm

Obr. 28: Kalibrace Al 396,152 nm korigované na Sc 361,383 nm

Obr. 29: Kalibrace Al 396,152 nm korigované na Y 371,030 nm

Obr. 30: Kalibrace Al 396,152 nm korigované na Y 377,433 nm

Obr. 31: Kalibrace Al 396,152 nm korigované na Y 410,238 nm

Ze všech naměřených hodnot lze usoudit, že linearita daného rozsahu koncentrací standardů (0,02 - 1 mg/l) je prokázána na základě splněného spolehlivostního faktoru R² > 0,995 pro všechny použité vlnové délky hliníku i pro korekci na pět vlnových délek interních standardů. Zároveň byla dokázána opakovatelnost linearity vypočítáním relativní chyby RSD, která je ve všech případech menší než 15 %.

3.8.4 Správnost

Pro vyhodnocení parametru správnosti jsou proměřovány 3 koncentrační úrovně u obou matric, které byly měřeny jako vzorek po kalibraci ze 3 kalibračních standardů a blanku. Z naměřených hodnot byla vypočítána výtěžnost, která by měla odpovídat rozsahu 70 - 130 %. Od každé matrice byly takto proměřeny vždy 2 šarže.

Výtěžnost byla měřena zároveň s korekcí na pět výše zmíněných interních standardů. Opět byly použity tři vlnové délky hliníku. Hodnoty byly mezi sebou porovnány a byly vybrány nejvhodnější vlnové délky hliníku a interních standardů, které by mohly být následně použity pro stanovování Al v komerčních vzorcích. Vybrané vlnové délky, tj. ty, jejichž výsledky co nejvíce odpovídaly koncentracím vnesených standardů do vzorku, byly následně vyhodnoceny na výtěžnost a opakovatelnost. Vyhodnocené výsledky byly opět srovnány a na jejich základě byla vybrána nejvhodnější kombinace vlnových délek hliníku a interního standardu.

V tabulkách č. 37 – 39 jsou vypočítány hodnoty výtěžnosti a RSD pro matrici CaCl₂.2H₂O. Ze všech tří vlnových délek Al byla na základě výsledků vybrána pouze Al 396,152 nm, která byla vyhodnocena na interní standardy Sc 361,383 nm, Sc 357,253 nm a Y 377,433 nm.

Vyhodnocení správnosti měření zahrnuje také výsledky z měření šesti vápníkových a hořčíkových šarží. Tyto šarže byly měřeny na AAS a ICP v rámci verifikace metody PhEur, USP, viz kap. 3.8.6.

			CaCl2.	2H2O + Sc 361 nn	n		
Šarže C3842	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
		0,2603	1,0633	80,30			
		0,3960	1,1805	78,45			
	1	0,3881	1,1190	73,09	10 37062	85 17000	12 17638
	-	0,3821	1,2377	85,56	10,37002	85,17000	12,17038
		0,2259	1,2449	101,90			
		0,2102	1,1274	91,72			
		0,2603	2,3443	104,20			
		0,3960	2,2924	94,82			
206 152 pm	2	0,3881	2,2791	94,55	4 06756	00 21 5 8 2	4 00559
390,132 1111	Z	0,3821	2,3699	99,39	4,00750	99,51565	4,09558
		0,2259	2,2918	103,30			
		0,2102	2,2030	99,64			
		0,2603	5,5596	105,99			
		0,3960	5,5538	103,16			
	-	0,3881	5,5746	103,73	2 4 6 6 7 5	105 15000	2 2 2 2 4 5
	5	0,3821	5,5298	102,95	2,16675	105,15933	2,06045
		0,2259	5,5849	107,18			
		0,2102	5,6077	107,95			
	Vnesená	c bez	X(
Šarže C3977	koncentrace	přídavku	c s pridavkem	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
	(mg/kg)	(mg/kg)	(mg/kg)	, , ,	Sm. Odch.	riumer	
		0,1046	1,2780	117,34			
		0,1455	1,2897	114,42			
		0,1364	1,2992	116,28	6 4 9 7 9 7		5 50077
	1	0,1357	1,2387	110,30	6,13707	111,16333	5,52077
		0,1510	1,2250	107,40			
		0,1636	1,1760	101,24			
		0,1046	2,2418	106,86			
		0,1455	2,2053	102,99			
	_	0,1364	2,1926	102,81			
396,152 nm	2	0,1357	2,1523	100,83	- 2,37391 -	102,62833	2,31311
		0,1510	2,1517	100,04			
		0.1636	2.2085	102.25			
		0,1046	5,2957	103,82			
		0,1455	5,5688	108,47			
	1	0.1204	5 5240	107 75	2,41666		2,24686
	_	0,1364	J,JZ40	1 107,75			
	5	0,1364	5.6063	109,41	2,41666	107,55700	2,24686
	5	0,1364 0,1357 0,1510	5,6063 5,4329	109,41 105,64	2,41666	107,55700	2,24686

Tab. č. 37: Stanovení výtěžnosti u Ca matrice s 0,3 mg/l Sc 361,383 nm pro Al 396,152 nm

	CaCl2 . 2H2O + Sc 357 nm						
Šarže C3842	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
		0,4775	1,1804 1,0608	70,29 65,02			
		0.4451	1.2745	82.94			
	1	0.3140	1.0641	75.01	8,44637	76,11167	11,09734
		0.3609	1.2448	88.39			
		0.4709	1.2211	75.02			
		0.4775	2.3357	92.91			
		0.4106	2.2854	93.74			
		0.4451	2.2872	92.11			
396,152 nm	2	0.3140	2.3786	103.23	4,14075	95,95000	4,31552
		0.3609	2.3189	97.90			
		0.4709	2.3872	95.82			
		0.4775	5,4496	99.44			
		0.4106	5.5341	102.47			
	_	0.4451	5.3551	98.20		100,62533	1,67183
	5	0.3140	5.3950	101.62	1,68229		
		0.3609	5.4636	102.05			
		0,4709	5,4692	99,97			
	Vnesená	c bez	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Šarže C3977	koncentrace	přídavku	c s přídavkem	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
	(mg/kg)	(mg/kg)	(mg/kg)	, , ,			
		0,1674	1,3363	116,89			
		0,2352	1,1885	95,33	1		
		0,2165	1,1121	89,56	11 50115	100 07000	10.00705
	1	0,1112	1,2210	110,98	11,59145	106,07833	10,92725
		0,1741	1,3542	118,01			
		0,1947	1,2517	105,70			
		0,1674	2,3668	109,97			
		0,2352	2,3853	107,51	1		
206.452		0,2165	2,4019	109,27		107 00750	0.07467
396,152 nm	2	0,1112	2,2442	106,65	2,44909	107,66750	2,27467
		0,1741	2,3591	109,25			
		0,1947	2,2619	103,36			
		0,1674	5,3103	102,86			
		0,2352	5,4671	104,64			
		0,2165	5,4679	105,03	1 10070	104 00400	1.00000
	5	0,1112	5,4155	106,09	1,10972	104,60400	1,06088
		0,1741	5,3696	103,91			
		0,1947	5,4499	105,10			

Tab. č. 38: Stanovení výtěžnosti u Ca matrice s 0,3 mg/l Sc 357,253 nm pro Al 396,152 nm

Šarže C3842	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
		0,3707	1,3438	97,31			
		0,5077	1,3728	86,51			
	1	0,5669	1,3666	79,97	0 00672	99 05222	10.00159
	T	0,4532	1,4546	100,14	8,80075	00,05555	10,00158
		0,4791	1,3324	85,33			
		0,5027	1,2933	79 <i>,</i> 06			
		0,3707	2,4569	104,31			
		0,5077	2,4489	97,06			
396 152 nm	2	0,5669	2,5479	99 <i>,</i> 05	2 807/1	100 82250	2 78/151
590,152 1111	2	0,4532	2,5245	103,57	2,80741	100,82230	2,78431
		0,4791	2,5095	101,52			
		0,5027	2,4913	99,43			
		0,3707	5,5745	104,08			
		0,5077	5,4892	99,63			
	5	0,5669	5,4509	97,68	2 88032	100 54233	2 86478
	5	0,4532	5,5830	102,60	2,00032	100,54255	2,00470
		0,4791	5,5937	102,29			
		0,5027	5,3517	96,98			
	Vnesená	c bez přídavku	c s nřídavkem				
Šarže C3977	Vnesená koncentrace	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
Šarže C3977	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
Šarže C3977	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg) 0,3877	c s přídavkem (mg/kg) 1,3671	Výtěžnost (%) 97,94	Sm. Odch.	Průměr	RSD (%)
Šarže C3977	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg) 0,3877 0,1306	c s přídavkem (mg/kg) 1,3671 1,4945	Výtěžnost (%) 97,94 136,39	Sm. Odch.	Průměr	RSD (%)
Šarže C3977	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765	Výtěžnost (%) 97,94 136,39 117,03	Sm. Odch.	Průměr 112.14167	RSD (%)
Šarže C3977	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184	Výtěžnost (%) 97,94 136,39 117,03 105,71	Sm. Odch. 14,24531	Průměr 112,14167	RSD (%) 12,70296
Šarže C3977	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03	Sm. Odch. 14,24531	Průměr 112,14167	RSD (%) 12,70296
Šarže C3977	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75	Sm. Odch. 14,24531	Průměr 112,14167	RSD (%) 12,70296
Šarže C3977	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85	Sm. Odch. 14,24531	Průměr 112,14167	RSD (%) 12,70296
Šarže C3977	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75	Sm. Odch. 14,24531	Průměr 112,14167	RSD (%) 12,70296
Šarže C3977	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90	Sm. Odch. 14,24531 6.20713	Průměr 112,14167 107.62167	RSD (%) 12,70296
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062 0,3613	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97	Sm. Odch. 14,24531 6,20713	Průměr 112,14167 107,62167	RSD (%) 12,70296 5,76755
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062 0,3613 0,4210	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207 2,3767	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97 97,79	Sm. Odch. 14,24531 6,20713	Průměr 112,14167 107,62167	RSD (%) 12,70296 5,76755
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1 2	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207 2,3767 2,4738	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97 97,79 112,49	Sm. Odch. 14,24531 6,20713	Průměr 112,14167 107,62167	RSD (%) 12,70296 5,76755
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1 2	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,2241 0,3877	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207 2,3767 2,4738 5,6354	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97 97,79 112,49 104,95	Sm. Odch. 14,24531 6,20713	Průměr 112,14167 107,62167	RSD (%) 12,70296 5,76755
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1 2	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3613 0,4210 0,2241 0,3613 0,4210 0,2241 0,3877 0,1306	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207 2,3767 2,4738 5,6354 5,5143	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97 97,79 112,49 104,95 107,67	Sm. Odch. 14,24531 6,20713	Průměr 112,14167 107,62167	RSD (%) 12,70296 5,76755
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1 2 2	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3613 0,4210 0,2241 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207 2,3767 2,4738 5,6354 5,5143 5,5310	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97 97,79 112,49 104,95 107,67 104,50	Sm. Odch. 14,24531 6,20713 1.66484	Průměr 112,14167 107,62167 104.96433	RSD (%) 12,70296 5,76755
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1 2 2 5	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062 0,3062 0,3613	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207 2,3767 2,4738 5,6354 5,5143 5,5310 5,5134	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97 97,79 112,49 104,95 107,67 104,50 103,04	Sm. Odch. 14,24531 6,20713 1,66484	Průměr 112,14167 107,62167 104,96433	RSD (%) 12,70296 5,76755 1,58611
Šarže C3977 396,152 nm	Vnesená koncentrace (mg/kg) 1 2 2 5	c bez přídavku (mg/kg) 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062 0,3613 0,4210 0,2241 0,3877 0,1306 0,3062 0,3613 0,4210	c s přídavkem (mg/kg) 1,3671 1,4945 1,4765 1,4184 1,4213 1,3816 2,5046 2,4455 2,4242 2,5207 2,3767 2,4738 5,6354 5,5143 5,5310 5,5134 5,6050	Výtěžnost (%) 97,94 136,39 117,03 105,71 100,03 115,75 105,85 115,75 105,90 107,97 97,79 112,49 104,95 107,67 104,50 103,04 103,68	Sm. Odch. 14,24531 6,20713 1,66484	Průměr 112,14167 107,62167 104,96433	RSD (%) 12,70296 5,76755 1,58611

Tab. č. 39: Stanovení výtěžnosti u Ca matrice s 0,3 mg/l Y 377,433 nm pro Al 396,152 nm

Výsledky všech tří použitých vlnových délek Al bez korekce na interní standard nemohly být brány v úvahu vzhledem k neadekvátním naměřeným hodnotám z důvodu vlivu matrice. Proto byly porovnávány výsledky s korekcí na interní standardy. Takto byla jako nejvhodnější vybrána vlnová délka Al 396,152 nm. Vyhodnocení výtěžnosti bylo provedeno na tři interní standardy, viz tabulky č. 37 - 39. Zbylé dva interní standardy byly z vyhodnocení vyřazeny opět kvůli neadekvátním výsledkům. Z vyhodnocení výtěžnosti a hodnoty RSD pro matrici CaCl₂.2H₂O lze usoudit, že nejvhodnější kombinace použité vlnové délky Al a interního standardu je Al 396,152 nm s korekcí na Sc 361,383 nm.

V tabulkách č. 40 – 43 jsou vypočítány hodnoty výtěžnosti a RSD pro matrici $MgCl_{2.6}H_{2}O$. Tentokrát byly vyhodnoceny všechny vlnové délky Al s korekcí na různé interní standardy.

MgCl2 . 6H2O + Y 377 nm							
Šarže M3160	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
		0,1198	0,3808	130,50			
		0,1347	0,3913	128,30			
		0.1398	0.3233	91.75			19,19632
	0,2	0,1415	0,3958	127,15	21,01997	109,50000	
		0,1236	0,3024	89,40			
		0,1246	0,3044	89,90			
		0,1198	1,1241	100,43			
		0,1347	1,1414	100,67			
206 152		0,1398	1,0999	96,01	2 4 2 4 6 5	00.07000	2 47252
396,152 nm	1	0,1415	1,1173	97,58	2,13165	98,07333	2,17353
		0,1236	1,1047	98,11			
		0,1246	1,0810	95,64			
		0,1198	5,1396	100,40			
		0,1347	5,1069	99,44			
	_	0,1398	5,1124	99,45	0 20002	99,89500	0,39935
5	5	0,1415	5,1304	99,78	0,39893		
		0,1236	5,1298	100,12			
		0,1246	5,1334	100,18			
Šarže M3168	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
		0,1457	0,4060	130,15			
		0,1515	0,3894	118,95			
	0.2	0,1460	0,3843	119,15	4 70207	122.07500	2.00121
	0,2	0,1449	0,4030	129,05	4,78307	123,87500	3,86121
		0,1619	0,4081	123,10			
		0,1476	0,3933	122,85			
		0,1457	1,2904	114,47			
		0,1515	1,2978	114,63			
200 152		0,1460	1,2998	115,38	0.001.00	444 70000	0 70504
396,152 nm	1	0,1449	1,3023	115,74	0,90160	114,72000	0,78591
		0,1629	1,2944	113,15			
		0,1476	1,2971	114,95			
		0,1457	5,1664	100,41			
		0,1515	5,1467	99,90			
	- -	0,1460	5,1813	100,71	0 401 71	100 21267	0.40000
	5	0,1449	5,1738	100,58	0,481/1	100,21367	0,48068
		0,1629	5,1334	99,41			
		0,1476	5,1611	100,27	1		

Tab. č. 40: Stanovení výtěžnosti u Mg matrice 0,3 mg/l Y 377,433 nm pro Al 396,152 nm

MgCl2 . 6H2O + Sc 361 nm							
Šarže M3160	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
		0,2095	0,3511	70,80			
		0.2057	0.3601	77.20			
		0,2309	0,3917	80,40			25,29448
	0,2	0,2089	0,3960	93,55	24,08667	95,22500	
		0,2297	0,4853	127,80			
		0,2191	0,4623	121,60			
		0,2095	1,2073	99,78			
		0,2057	1,2174	101,17			
206 152	1	0,2309	1,2119	98,10	4 20272	100 24467	1 27002
396,152 nm	1	0,2089	1,2249	101,60	1,38273	100,34167	1,37802
		0,2297	1,2459	101,62			
		0,2191	1,2169	99,78			
		0,2095	5,2678	101,17			
		0,2057	5,2575	101,04			
5	F	0,2309	5,2584	100,55	0 20072	100.07(22	0 29720
	5	0,2089	5,2685	101,19	0,28972	100,87633	0,28720
		0,2297	5,2594	100,59			
		0,2191	5,2551	100,72			
Šarže M3168	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
		0,2771	0,4352	79,05			
		0,2822	0,4524	85,10			
	0.2	0,2885	0,4386	75,05	711517	70 72222	0 02271
	0,2	0,2942	0,4348	70,30	/,1151/	/9,/3333	8,92371
		0,2676	0,4248	78,60			
		0,2899	0,4705	90,30			
		0,2771	1,5010	122,39			
		0,2822	1,4739	119,17			
206 152 mm	1	0,2885	1,5023	121,38	1 75901	121 11500	1 45153
396,152 000	1	0,2942	1,4839	118,97	1,75801	121,11500	1,45152
		0,2676	1,5018	123,42			
		0,2899	1,5035	121,36			
		0,2771	5,3218	100,89			
		0,2822	5,3000	100,36			
	F	0,2885	5,2988	100,21	0.27506	100 22222	0 27472
	5	0,2942	5,2846	99,81	0,37596	100,33233	0,3/4/2
		0,2676	5,2969	100,59			
1		0 2899	5.2971	100.14			

Tab. č. 41: Stanovení výtěžnosti u Mg matrice s 0,3 mg/l Sc 361,383 nm pro Al 396,152 nm

Šarže M3160 Vnesená koncentrace (mg/kg) c bez přídavku (mg/kg) c s přídavkem (mg/kg) vytěžnost (%) mg/kg) Sm. Odch. Průměr RSD (%) 396,152 nm 0,2 0,2297 0,3748 72,55 4,94567 75,76667 6,52750 396,152 nm 0,2 0,2034 0,3502 73,40 4,94567 75,76667 6,52750 0,2034 0,3502 73,40 101,57 102,155 102,55 1,77591 101,83500 1,74391 0,2030 1,2185 102,55 103,99 1,77591 101,83500 1,74391 0,2030 5,1938 99,66 100,60 100,60 0,2034 1,2433 103,99 0,2030 5,1937 99,79 0,2110 5,1938 99,66 0,3936 99,60167 0,13991 5arže M3168 koncentrace (mg/kg) C bez přídavku (mg/kg) r/ 99,71 5m. Odch. Průměr RSD (%) 0,224 0,4823 117,25 0,234 5,1877 99,71 7,9580 113,22500		MgCl2 . 6H2O + Y 371 nm						
Sarze Wishoo Koncentrace (mg/kg) (mg/kg) (mg/kg) (mg/kg) (Č	Vnesená	c bez přídavku	C S) ///t × × = = = t /0/)	Cree Ordek	Daventer	
(mg/rg) (mg/rg) <t< td=""><td>Sarze Wi3160</td><td>Koncentrace</td><td>(mg/kg)</td><td>pridavkem</td><td>vyteznost (%)</td><td>Sm. Odch.</td><td>Prumer</td><td>RSD (%)</td></t<>	Sarze Wi3160	Koncentrace	(mg/kg)	pridavkem	vyteznost (%)	Sm. Odch.	Prumer	RSD (%)
396,152 nm 0,229/ 0,2200 0,3/489 72,55 0,2100 0,34399 70,45 0,2030 4,94567 75,76667 6,52750 396,152 nm 1 0,2030 0,3652 82,60 0,2002 0,3652 82,60 0,2034 1,01,57 0,2110 1,2365 102,55 0,2000 1,2187 101,57 101,83500 1,74391 0,2297 5,2014 99,43 1,77591 101,83500 1,74391 0,2030 5,1927 99,79 0,13936 99,60167 0,13991 0,2034 5,1938 99,54 0,13936 99,60167 0,13991 0,2034 5,1938 99,54 0,13936 99,60167 0,13991 0,2034 5,1938 99,54 0,13936 99,60167 0,13991 0,2034 5,1938 99,54 0,13936 99,60167 0,13991 0,2034 5,1268 99,71 58 0,263 0,4720 104,85 0,2235 0,4807 113,60 0,263 0,4723 102,95 13,22500		(mg/kg)	0.0007	(mg/kg)	70.55			
396,152 nm 0,23 0,233 0,433 70,45 396,152 nm 0,200 0,3652 82,60 4,94567 75,76667 6,52750 396,152 nm 0,2002 0,3652 82,60 0,2001 0,3652 82,60 0,2001 0,3652 73,40 0,2110 0,3652 73,40 0,2297 1,2111 199,14 0,203 1,2187 101,57 0,2110 1,2385 100,55 0,200 1,2060 100,60 0,2002 1,2181 103,16 0,2034 1,2433 103,99 1,77591 101,83500 1,74391 0,2000 1,2060 10,0060 0,2003 5,1927 99,79 0,2110 5,1938 99,64 0,13936 0,13991 0,13991 5arže M3168 Wnesená koncentrace (mg/kg) C C C C C C C 0,2235 0,4807 113,60 0,13991 0,13991 0,13991 0,2355 0,4807 113,60 0,2355 0,4807 113,60 0,2355 0,4807 <td< td=""><td></td><td></td><td>0,2297</td><td>0,3748</td><td>/2,55</td><td></td><td></td><td rowspan="3">6.52750</td></td<>			0,2297	0,3748	/2,55			6.52750
9,2 0,2110 0,3598 74,40 4,94567 75,76667 6,52750 0,2000 0,3652 81,20 0,2034 0,3502 73,40 0 396,152 nm 1 0,2297 1,2187 101,57 0,2110 1,2365 102,55 0,2000 1,2060 100,60 1,77591 101,83500 1,74391 0,2001 1,2187 103,16 0,2034 1,2433 103,99 0,2002 1,2181 103,16 0,2030 5,1927 99,79 0,2000 5,1938 99,66 0,2030 5,1927 99,79 0,2002 5,1768 99,54 0,13936 99,60167 0,13991 0,2034 5,1887 99,71 0,13936 99,60167 0,13991 5arže M3168 Wnesená koncentrace (mg/kg) 0,2623 0,4720 104,85 0,13936 99,60167 0,13991 0,2535 0,4807 113,60 0,2708 0,4233 121,40 0,2355 0,4807 113,60 0,7		0.2	0,2030	0,3439	/0,45			
396,152 nm 0,2000 0,3626 81,20 396,152 nm 0,2034 0,3020 73,40 0,2297 1,2111 99,14 0,2000 1,2187 101,57 0,2100 1,2365 102,55 0,2000 1,2187 101,57 0,2000 1,2187 102,55 0,2000 1,2185 103,16 0,2002 1,2138 103,16 0,2003 5,1927 99,79 0,2100 5,1938 99,66 0,2000 5,1784 99,48 0,2002 5,1744 99,48 0,2002 5,1744 99,48 0,2004 5,1887 99,71 5arže M3168 koncentrace (mg/kg) c bridavkem (mg/kg) Vitěžnost (%) Sm. Odch. Průměr RSD (%) 0,2 0,2634 0,4895 117,25 0,2365 0,4863 112,400 0,2708 0,4753 1102,55 0,2366 0,4753 102,255 <			0,2110	0,3598	74,40	4,94567	75,76667	
396,152 nm 0,2002 0,3626 81,20 0,2034 0,3502 73,40 0,2100 1,2211 99,14 0,2000 1,2187 101,57 0,2100 1,2365 102,55 0,2000 1,2060 100,60 0,2024 1,2318 103,16 0,2020 1,2318 103,99 0,2030 5,1927 99,79 0,2100 5,1938 99,66 0,2000 5,1768 99,71 0,2020 5,1744 99,48 0,2020 5,1744 99,48 0,2020 5,1744 99,48 0,2020 5,1744 99,48 0,2020 5,1744 99,48 0,2020 5,187 99,71 5arže M3168 koncentrace (mg/kg) 0,2532 0,4807 113,60 0,2708 0,4720 104,85 5 7,9580 113,22500 0,2368 0,4763 1120,97 1,5639 1,20,97833 1,29477 <		,	0,2000	0,3652	82,60	,		
396,152 nm 0,2034 0,2397 1,2211 99,14 0,2030 1,2187 101,577 0,2100 1,2165 102,555 1,77591 101,83500 1,74391 0,2034 1,2433 103,99 101,83500 1,74391 0,2004 1,2433 103,99 101,83500 1,74391 0,2034 1,2433 103,99 101,83500 1,74391 0,2034 1,2433 103,99 101,83500 1,74391 0,2034 5,1938 99,66 0,13936 99,60167 0,13991 0,2100 5,1768 99,71 0,13936 99,60167 0,13991 0,2034 5,1784 99,48 0,13936 Noncohn Průměr RSD (%) Šarže M3168 Vnesená koncentrace (mg/kg) c přídavkem (mg/kg) Výtěžnost (%) Sm. Odch. Průměr RSD (%) 0,224 0,2623 0,4720 104,85 113,600 7,06186 0,2365 0,4768 120,00 0,2768 120,588 113,225			0,2002	0,3626	81,20			
396,152 nm 1 0,2030 1,2187 100,57 0,2000 1,2060 100,600 1,77591 101,83500 1,74391 0,2002 1,2318 103,16 1,77591 101,83500 1,74391 0,2004 1,2433 103,99 0,210 1,2318 103,16 0.13339 1,74391 0,2034 1,2433 103,99 0,210 5,1927 99,79 0,13936 99,60167 0,13991 0,2000 5,1927 99,79 0,2104 5,1938 99,66 0,2002 5,1744 99,48 0,2000 5,1744 99,48 0,2034 5,1887 99,71 0,13936 99,60167 0,13991 5 0,2024 5,1887 99,71 5 0,202 5,1744 99,48 117,25 0,2544 0,4889 117,25 0,2544 0,4889 117,25 0,2535 0,4807 113,60 0,2694 0,2395 0,2684 120,000 13,6639 1,20,97833 1,29477 1,29477 1,29477 <td></td> <td></td> <td>0,2034</td> <td>0,3502</td> <td>73,40</td> <td></td> <td></td> <td></td>			0,2034	0,3502	73,40			
396,152 nm 1 0,2030 1,2187 101,57 102,55 102,55 1,77591 101,83500 1,74391 396,152 nm 1 0,2000 1,2040 100,60 100,60 1,77591 101,83500 1,74391 0,2004 1,2433 103,99 9,43 103,99 1,77591 101,83500 1,74391 0,2034 1,2433 103,99 9,43 103,99 1,71591 101,83500 1,74391 0,2030 5,1927 99,79 9,79 9,79 1,71591 99,60167 0,13991 0,2000 5,1748 99,84 9,60167 0,13991 0,13991 0,2034 5,1887 99,71 101,8350 0,13991 0,13991 Sarze M3168 Vnesená koncentrace (mg/kg) 0,2623 0,4720 104,85 5m. Odch. Průměr RSD (%) 0,262 0,4720 104,85 102,25 0,2395 0,4823 112,400 7,06186 0,2708 0,2534 1,4675 120,25 13,			0,2297	1,2211	99,14			
396,152 nm 1 0,2100 1,2365 102,55 1,77591 101,83500 1,74391 0,2000 1,2060 100,60 0,000 1,2060 100,60 1,77591 101,83500 1,74391 0,2002 1,2138 103,16 0,013,16 0,0203 5,1927 99,79 0,13936 99,60167 0,13991 5 0,2000 5,1724 99,74 0,13936 99,60167 0,13991 0,2000 5,1744 99,48 0,01392 0,13936 99,60167 0,13991 5 0,2004 5,1887 99,71 0,13936 0,13991 0,13991 5 0,2004 5,1887 99,71 58.00,0167 0,13991 0,13991 5 0,2002 5,1744 99,48 59.5 0,4829 117,25 0,1393 0,13991 5 0,2535 0,4829 111,260 0,1393 0,2535 0,4829 117,25 0,2535 0,4829 111,260 0,799580 113,22500 7,06186			0,2030	1,2187	101,57			
396,652 mm 1 0,2000 1,2060 100,60 1,7551 105,6536 1,7551 0,2002 1,2318 103,16 0,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 105,6536 1,7551 1,7551 1,7551 1,7551 1,7551 1,7551 1,7551 1,7551 1,7551 1,7551 1,7551 103,951 105,858 105,050 113,22500 7,06186 105,050 113,22500 7,06186 105,050 113,22500 7,06186 105,050 113,22500 7,06186 105,050 113,22500 7,06186 105,050 113,22500 7,06186 105,050 113,22500 113,22500 </td <td>396 152 nm</td> <td>1</td> <td>0,2110</td> <td>1,2365</td> <td>102,55</td> <td>1 77591</td> <td>101 83500</td> <td>1 74391</td>	396 152 nm	1	0,2110	1,2365	102,55	1 77591	101 83500	1 74391
	550,152 mm	-	0,2000	1,2060	100,60	1,77551	101,05500	1,74331
396,152 nm 0,2034 1,2433 103,99 0.030,99,79 0,2030 5,1927 99,79 0,13936 99,66 0,2010 5,1938 99,66 0,13936 99,60 0,2002 5,1744 99,48 0,13936 99,60167 0,13991 Nesená koncentrace (mg/kg) 0,2034 5,1887 99,71 0,13936 99,60167 0,13991 Noncentrace (mg/kg) 0,2034 5,1887 99,71 0,13936 New			0,2002	1,2318	103,16			
			0,2034	1,2433	103,99			
90,2030 5,1927 99,79 90,719 90,710 5,1938 99,66 0,13936 99,60167 0,13991 5 0,2000 5,1744 99,48 99,79 0,13936 99,60167 0,13931 5 0,2002 5,1744 99,48 99,71 0,13936 99,60167 0,13991 5 Vresená koncentrace (mg/kg) Cbez přídavku (mg/kg) C 5 přídavkem (mg/kg) 99,71 Sm. Odch. Průměr RSD (%) 0,2535 0,4720 104,85 0,2535 0,4807 113,60 7,99580 113,22500 7,06186 0,2368 0,4753 102,25 0,2355 1,4517 118,94 7,05186 0,2368 0,4768 120,00 1,56639 1,29778 1,29477 396,152 nm 1 1 1,4673 121,30 1,56639 1,29,783 1,29477 396,152 nm 1 0,2535 1,4653 122,39 1,56639 1,29,783 1,29477 396,152 nm 1 0,2535 <			0,2297	5,2014	99,43			
$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$			0,2030	5,1927	99,79		99,60167	0,13991
396,152 nm 0,2000 5,1768 99,54 0,13330 35,00107 0,13331 Šarže M3168 Vnesená koncentrace (mg/kg) 0,2034 5,1887 99,71 5 5 7 7 8 97 7 7 8 97 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 9 7		5	0,2110	5,1938	99,66	0 13936		
$ \begin{array}{ c c c c c c } \hline 0,2002 & 5,1744 & 99,48 \\ \hline 0,2034 & 5,1887 & 99,71 \\ \hline 0,2036 & 0,470 & 0 \\ \hline 0,100 & 0,000 & 0,000 & 0 \\ \hline 0,208 & 0,4753 & 0,0423 & 121,40 \\ \hline 0,2708 & 0,4753 & 100,25 \\ \hline 0,2368 & 0,4768 & 120,00 \\ \hline 0,2708 & 0,4753 & 102,25 \\ \hline 0,2368 & 0,4768 & 120,00 \\ \hline 0,2708 & 0,4753 & 113,60 \\ \hline 0,2708 & 0,4753 & 102,25 \\ \hline 0,2368 & 0,4768 & 120,00 \\ \hline 0,2708 & 0,4753 & 112,40 \\ \hline 0,2535 & 1,4593 & 120,58 \\ \hline 0,2535 & 1,4593 & 120,58 \\ \hline 0,2368 & 1,4634 & 122,39 \\ \hline 0,2708 & 1,4634 & 122,39 \\ \hline 0,2708 & 1,4638 & 123,00 \\ \hline 0,2708 & 1,4668 & 123,00 \\ \hline 0,2708 & 5,2196 & 99,30 \\ \hline 0,2742 & 9,39200 \\ \hline 0,2742 & 9,39200 \\ \hline 0,27592 & 0,27592 \\ \hline 0,2759 & 0,2759 \\ \hline 0,2759 $			0,2000	5,1768	99,54	0,13930		
Image: constraint of the set of the se			0,2002	5,1744	99,48			
Šarže M3168 Vnesená koncentrace (mg/kg) c bez přídavku (mg/kg) c s přídavkem (mg/kg) výtěžnost (%) Sm. Odch. Průměr RSD (%) Sárže M3168 koncentrace (mg/kg) 0,2623 0,4720 104,85 0,2535 0,2535 0,2623 117,25 0,2355 0,2395 0,4823 121,400 7,99580 113,22500 7,06186 0,2708 0,4768 120,000 0,2368 0,4768 120,000 1,56639 120,97833 1,29477 396,152 nm 1 0,2368 1,4675 121,311 1,56639 120,97833 1,29477 396,152 nm 1 0,2368 1,4673 119,65 1,56639 120,97833 1,29477 396,152 nm 1 0,2368 1,4673 119,65 1,56639 120,97833 1,29477 396,152 nm 0,2368 1,4678 123,00 0,2708 1,4634 122,399 0,2764 5,2196 99,15 0,27424 99,39200 0,27592 5,2298 99,18 <td< td=""><td></td><td></td><td>0,2034</td><td>5,1887</td><td>99,71</td><td></td><td></td><td></td></td<>			0,2034	5,1887	99,71			
Šarže M3168 koncentrace (mg/kg) koncentrace (mg/kg) vičažnost (%) (mg/kg) Sm. Odch. Průměr RSD (%) 9,2623 0,4720 104,85 <td></td> <td>Vnesená</td> <td>c bez přídavku</td> <td>C S</td> <td></td> <td></td> <td></td> <td></td>		Vnesená	c bez přídavku	C S				
(mg/kg) (mg/kg) <t< td=""><td>Šarže M3168</td><td>koncentrace</td><td>(mg/kg)</td><td>přídavkem</td><td>Výtěžnost (%)</td><td>Sm. Odch.</td><td>Průměr</td><td>RSD (%)</td></t<>	Šarže M3168	koncentrace	(mg/kg)	přídavkem	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
9,2623 0,4720 104,85 0,2544 0,4889 117,25 0,2535 0,4807 113,60 0,2395 0,4823 121,40 0,2708 0,4753 102,25 0,2368 0,4768 120,00 0,2535 1,4517 118,94 0,2535 1,4517 118,94 0,2535 1,4593 120,58 0,2535 1,4593 120,58 0,2535 1,4593 120,58 0,2535 1,4634 122,39 0,2535 1,4634 122,39 0,2708 1,4673 119,65 0,2368 1,4668 123,00 0,2368 1,4668 123,00 0,2368 1,4668 123,00 0,2368 1,4668 123,00 0,2535 5,2196 99,15 0,2535 5,2381 99,69 0,2708 5,2286 99,78 0,2708 5,2298 99,18		(mg/kg)	(IIIg/Kg)	(mg/kg)				
0,2 0,2544 0,4889 117,25 0,2395 0,4807 113,60 0,2395 0,4823 121,40 0,2708 0,4753 102,25 0,2368 0,4768 120,00 0,2623 1,4517 118,94 0,2535 1,4517 118,94 0,2535 1,4593 120,58 0,2535 1,4593 120,58 0,2535 1,4593 120,58 0,2535 1,4634 122,39 0,2708 1,4634 122,39 0,2708 1,4634 122,39 0,2708 1,4634 122,39 0,2708 1,4668 123,00 0,2535 5,2196 99,15 0,2544 5,2196 99,30 0,2535 5,2381 99,69 0,2708 5,2286 99,78 0,2708 5,2298 99,18			0,2623	0,4720	104,85			
0,2 0,2535 0,4807 113,60 7,99580 113,22500 7,06186 0,2395 0,4823 121,40 0,2708 0,4753 102,25 0.0000 0.0000 0.0000 <td></td> <td></td> <td>0,2544</td> <td>0,4889</td> <td>117,25</td> <td></td> <td></td> <td></td>			0,2544	0,4889	117,25			
396,152 nm 0,2 0,2395 0,4823 121,40 7,99380 113,22300 7,06186 396,152 nm 0,2368 0,4753 102,25 0.2368 0,4768 120,00 113,22300 7,06186 396,152 nm 1 0,2623 1,4517 118,94 1,56639 120,97833 1,29477 0,2535 1,4593 120,58 1,56639 120,97833 1,29477 0,2368 1,46634 122,39 1,56639 120,97833 1,29477 0,2708 1,4668 123,00 115,22300 1,29477 1,29477 0,2708 1,4668 123,00 1,29477 1,29477 1,29477 5 0,2623 5,2196 99,15 0,2544 5,2196 99,30 5,02355 5,2286 99,78 0,27424 99,39200 0,27592 0,2708 5,2298 99,18 0,27424 99,39200 0,27592		0.2	0,2535	0,4807	113,60	7 005 90	112 22500	7.06196
9,2708 0,4753 102,25 0,2368 0,4768 120,00 396,152 nm 0,2623 1,4517 118,94 0,2535 1,4593 120,58 0,2535 1,4593 120,58 0,2535 1,4634 122,39 0,2535 1,4634 122,39 0,2708 1,4634 122,39 0,2708 1,4668 123,00 0,2623 5,2196 99,15 0,2535 5,2196 99,30 0,2535 5,2286 99,78 0,2708 5,2298 99,18		0,2	0,2395	0,4823	121,40	7,99580	113,22500	7,06186
396,152 nm 0,2368 0,4768 120,00 118,94 0,2623 1,4517 118,94 0,2544 1,4675 121,31 0,2535 1,4593 120,58 0,2395 1,4634 122,39 0,2708 1,4673 119,65 0,2368 1,4668 123,00 0,2623 5,2196 99,15 0,2535 5,2381 99,69 0,2395 5,2286 99,78 0,2708 5,2298 99,18			0,2708	0,4753	102,25			
396,152 nm 0,2623 1,4517 118,94 0,2544 1,4675 121,31 0,2535 1,4593 120,58 0,2395 1,4634 122,39 0,2708 1,4673 119,65 0,2623 5,2196 99,15 0,2535 5,2196 99,30 0,2535 5,2286 99,78 0,2708 5,2298 99,18			0,2368	0,4768	120,00			
396,152 nm 1 0,2544 1,4675 121,31 1,56639 120,97833 1,29477 396,152 nm 1 0,2535 1,4634 122,39 1,56639 120,97833 1,29477 0,2395 1,4634 122,39 1,56639 120,97833 1,29477 0,2708 1,4673 119,65 0,2368 1,4668 123,00 1 0,2623 5,2196 99,15 0,2544 5,2196 99,30 0,27424 99,39200 0,27592 5 0,2395 5,2286 99,78 0,27424 99,39200 0,27592 0,2708 5,2298 99,18 1 1 1 1 1			0,2623	1,4517	118,94			
396,152 nm 1 0,2535 1,4593 120,58 1,56639 120,97833 1,29477 0,2395 1,4634 122,39 1,56639 120,97833 1,29477 0,2708 1,4673 119,65 119,65 123,00 1 1 0,2623 5,2196 99,15 99,30 1			0,2544	1,4675	121,31			
396,152 mm 1 0,2395 1,4634 122,39 1,56639 120,97833 1,29477 0,2708 1,4673 119,65 0,2368 1,4668 123,00 1 0,2623 5,2196 99,15 0,2544 5,2196 99,30 0,27424 99,39200 0,27592 5 0,2395 5,2286 99,78 0,27424 99,39200 0,27592	200 152 mm		0,2535	1,4593	120,58	4 56630	120.07022	4 20 477
0,2708 1,4673 119,65 0,2368 1,4668 123,00 0,2623 5,2196 99,15 0,2544 5,2196 99,30 0,2535 5,2381 99,69 0,2395 5,2286 99,78 0,2708 5,2298 99,18	396,152 nm	1	0,2395	1,4634	122,39	1,56639	120,97833	1,29477
0,2368 1,4668 123,00 0,2623 5,2196 99,15 0,2544 5,2196 99,30 0,2535 5,2381 99,69 0,2395 5,2286 99,78 0,2708 5,2298 99,18			0,2708	1,4673	119,65			
0,2623 5,2196 99,15 0,2544 5,2196 99,30 0,2535 5,2381 99,69 0,2395 5,2286 99,78 0,2708 5,2298 99,18			0,2368	1,4668	123,00			
0,25445,219699,300,25355,238199,690,23955,228699,780,27085,229899,18			0,2623	5,2196	99,15			
0,25355,238199,690,23955,228699,780,27085,229899,18			0,2544	5,2196	99,30			
5 0,2395 5,2286 99,78 0,27424 99,39200 0,27592 0,2708 5,2298 99,18 <td></td> <td>_</td> <td>0,2535</td> <td>5,2381</td> <td>99,69</td> <td></td> <td></td> <td>0.0=====</td>		_	0,2535	5,2381	99,69			0.0=====
0,2708 5,2298 99,18		5	0,2395	5,2286	99,78	0,27424	99,39200	0,27592
			0,2708	5,2298	99,18			
0,2368 5,1992 99,25			0,2368	5,1992	99,25			

Tab. č. 42: Stanovení výtěžnosti u Mg matrice s 0,3 mg/l Y 371,030 nm pro Al 396,152 nm

MgCl2 . 6H2O + Y 410 nm							
Šarže M3160	Vnesená koncentrace (mg/kg)	c bez přídavku (mg/kg)	c s přídavkem (mg/kg)	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
	(116/16/	0.2310	0/1328	100.90			
		0,2010	0,4520	96.25			
		0,2002	0,3927	122.05			10,12577
	0,2	0,1995	0,4430	08.20	10,83457	7 107,00000	
		0,2077	0,4041	36,20 116.05			
		0,2109	0,4528	106.65			
		0,2195	0,4328	100,05			
		0,2310	1,2305	100,55			
		0,2002	1,2194	101,92			
396,152 nm	1	0,1995	1,2241	102,46	1,13929	101,39333	1,12364
		0,2077	1,2336	102,59			
		0,2189	1,2303	101,14			
		0,2195	1,2165	99,70			
		0,2310	5,2253	99,89			
		0,2002	5,2271	100,54		100,14567	0,37329
	5	0,1995	5,1990	99,99	0,37384		
		0,2077	5,2075	100,00	-,		
		0,2189	5,2077	99,78			
		0,2195	5,2539	100,69			
	Vnesená	c bez přídavku	C S				
Šarže M3168	koncentrace	(mg/kg)	přídavkem	Výtěžnost (%)	Sm. Odch.	Průměr	RSD (%)
	(mg/kg)	(116/16/	(mg/kg)				
		0,3031	0,4942	95,55			
		0,2914	0,4636	86,10			
	0.2	0,2801	0,4634	91,65	5 72020	02 60167	6 12562
	0,2	0,2771	0,4620	92,45	5,75920	93,69167	0,12302
		0,2741	0,4812	103,55			
		0,2883	0,4740	92,85			
		0,3031	1,4553	115,22			
		0,2914	1,4601	116,87			
200 152 mm	1	0,2801	1,4569	117,68	1 (2070	117 (2222	1 20462
396,152 nm	T	0,2771	1,4515	117,44	1,62879	117,63333	1,38463
		0,2741	1,4590	118,49			
		0,2883	1,4893	120,10			
		0,3031	5,1832	97,60			
		0,2914	5,2301	98,77			
	_	0,2801	5,2082	98,56			
	5	0,2771	5,1628	97,71	0,97660	98,61800	0,99029
		0,2741	5,2898	100.31			
		0.2883	5.2254	98.74			
L		-,_000	-,	,		L	1

Tab. č. 43: Stanovení výtěžnosti u Mg matrice s 0,3 mg/l Y 410,238 nm pro Al 396,152 nm

Jako nejvhodnější vlnová délka pro stanovování hliníku v matrici MgCl₂.6 H₂O byla zvolena Al 396,152 nm s korekcí na interní standard Y 377,433 nm která byla opět porovnána s ostatními vlnovými délkami na základě vyhodnocení výtěžnosti a opakovatelnosti. Interní standard Y 410,030 nm nemohl být pro vyhodnocení použit, jelikož neposkytoval spolehlivé signály. V blízkosti Sc 361,383 nm se nachází jako interferent Mg 361,378 nm, proto tento IS nebyl vybrán jako vhodný.

3.8.5 Opakovatelnost

RSD z vyhodnocení linearity a výtěžnosti pro Ca a Mg matrice a Al 396,152 nm vyhovělo požadavku na opakovatelnost (RSD < 15 %).

3.8.6 Vyhodnocení verifikace

Tab. c. 44, 45 vysleuky slovnam namelenych nouhot na ter pro ca a wig matrici							
CaCl ₂ .2H ₂ O A	CaCl ₂ .2H ₂ O Al 396,152 nm + Sc 361			MgCl ₂ .6H ₂ O Al 396,152 nm + Y 377			
Čarža	ICP	ALS		Šaržo	ICP	ALS	
Sarze	mg/kg	mg/kg		30120	mg/kg	mg/kg	
1/04/02942	0,2903	∠0 E		22/22/142160	0,1213	<0 E	
1/04/03842	0,1328	<0,5		23/22/1013100	0,1325	<0,5	
01/02/02050	0,1847	-0 F		01/10/102169	0,2184		
01/02/03856	0,0358	<0,5		01/19/1015108	0,2153	<0,5	
20/02/02050	0,1287	-0 F		02/10/12160	0,2087		
20/02/03858	0,1365	<0,5		03/19/1015109	0,1889	<0,5	
01/16/02092	0,0720	<0 F		100/102170	0,1075	<0 E	
01/10/03983	0,1102	<0,5		109/1015170	0,1227	<0,5	
21/12/02077	0,1182	-0 F		105/10172	0,0754	<0 F	
21/15/059/7	0,1061	<0,5		105/1015175	0,0887	<0,5	
111/06/02080	0,0890	<0 E		01/02/112176	0,3155	<0 5	
111/06/03989	0,0927	<0,5		01/02/10131/0	0,2929	<0,5	

Tab & 11 15 V	Vielodky crovnár	ú naměřaných	hadnat na ICP	pro Ca a Ma matrici
1 ab. c. 44, 45 v	vsieukv srovnai	n namerenven	nounot na ICP	DIO Ca a Mg matrici

Tab. č. 46, 47 Výsledky srovnání naměřených hodnot na ICP a AAS pro Ca a Mg ma
--

CaCl2.2H2O Al 396,152 nm + Sc 361			MgCl2.6H	20 Al 396,152 r	nm + Y 377
Šarže	ICP mg/kg	AAS mg/kg	Šarže	ICP mg/kg	AAS mg/kg
40/04/02007	0,3232	0,1841	16/04/142697	0,03828	0,4154
10/01/0388/	0,3814	0,1924	10/04/10/2087	0,3674	0,3262
4/44/62024	0,4176	0,2838	110/10/10/02601	0,9156	0,3864
4/11/03921	0,3002	0,2386	119/10/10/2091	0,9020	0,1789
464/00/02055	0,2886	0,2792	18/02/142605	0,7716	0,1701
161/09/03855	0,3463	0,2591	18/02/102095	0,7810	0,1977
12/10/02055	0,4099	0,3113	15/02/142602	0,1683	0,1220
12/10/03955	0,3512	0,2526	15/05/102095	0,1848	0,2222
01/09/03943	0,3719	0,4052	05/02/142690	0,1135	0,2421
01/08/03842	0,3309	0,4703	03/03/102080	0,1141	0,4546
20/00/02220	0,3878	0,1429	01/06/142692	0,2044	0,2120
30/09/03220	0,3762	0,1109	01/00/102082	0,2007	0,3517

Vzorky byly porovnány s výsledky z externí laboratoře, všechny naměřené výsledky z ICP vyhovují limitu naměřených výsledků v externí laboratoři tj. Al < 0.5 mg/kg viz tabulky 44, 45.

Vyhodnocení verifikace zahrnuje také výsledky z měření šesti vápníkových a hořčíkových šarží. Tyto šarže byly měřeny na AAS a ICP v rámci verifikace metody PhEur, USP viz tabulky 46, 47.

3.8.7 LOD, LOQ

Limit detekce a stanovitelnosti byl odhadnut ze signálů kalibračních standardů a velikosti šumu blanku. Vyhodnocení LOD, LOQ bylo provedeno z kalibrační křivky naměřené linearity prostřednictvím programu Effi Validation viz obrázky č. 32 - 33. Následně byl LOD a LOQ ověřen kalibrací na sadě vzorků s přídavkem standardu o koncentraci pohybující se kolem stanoveného limitu.

Vyhodnocení LOD, LOQ z kalibrační přímky z programu Effi Validation je zde uvedeno pro vlnovou délku Al 396,152 nm s korekcí na interní standard viz obrázky č. 32 – 33, Sc 361,383 nm viz obrázek č. 33 a Y 377,433 nm viz obrázek č. 32, jelikož tyto kombinace byly vybrány jako nejvhodnější v rámci vyhodnocení výtěžnosti.

6	Meze - Z kalibrační přímky - ALICP - Validace ALy MgCl2 6STD - List -	Macco Organiques,
(Maccu		s.r.o.
man		Bruntál

Vstupní data

Popis	Val.Vlastnost [1]	Měření 1 [1]	
blank	0	0,011292	
STD1	0,02	0,027447	
STD2	0,05	0,052549	
STD3	0,1	0,097326	
STD4	0,2	0,182396	
STD5	0,5	0,441673	
STD6	1	0,873498	

Vyhodnocení

Měření na mezi detekce	Měření na mezi stanovitelnosti	Validovana vlastnost na mezi	Validovana vlastnost na mezi	
		detekce	stanovitelnosti	
0,0145	0,0184	0,0048	0,0093	

Obr. 32: Vyhodnocení LOD a LOQ z kalibrační křivky matrice MgCl₂ pro Al 396,152 nm s interním standardem Y 377,433 nm.

Podle vyhodnocení z linearity v programu Effi Validation viz obrázek 32, byl limit detekce matrice MgCl₂ 0,0048 mg/l a limit kvantifikace MgCl₂ 0,0093 mg/l. Po přepočítání na dvacetinásobné zředění vzorku je hodnota LOD rovna 0,096 mg/kg a LOQ rovna 0,186 mg/kg.

Vstupní data

Popis	Val.Vlastnost [1]	Měření 1 [1]	
Blank	0	0,01925	
STD1	0,02	0,027281	
STD2	0,05	0,037535	
STD3	0,1	0,057175	
STD4	0,2	0,092432	
STD5	0,5	0,199675	
STD6	1	0,382526	

Vyhodnocení

Měření na mezi detekce	Měření na mezi stanovitelnosti	Validovana vlastnost na mezi detekce	Validovana vlastnost na mezi stanovitelnosti
0,0246	0,0292	0,0134	0,0261

Závěr: Mez det./stanovitel. je 0,0246 resp. 0,0292. Val.vlastnost na mezi det./stanovitel. je 0,0134 resp. 0,0261.

Obr. 33: Vyhodnocení LOD a LOQ z kalibrační křivky matrice CaCl₂ pro Al 396,152 nm s interním standardem Sc 361,383 nm.

Podle vyhodnocení z linearity v programu Effi Validation, respektující pravidla statistického zpracování dat²¹ viz obrázek č. 33, byl limit detekce matrice CaCl₂ 0,0134 mg/l a limit kvantifikace CaCl₂ 0,0261 mg/l. Po přepočítání na dvacetinásobné zředění vzorku je hodnota LOD rovna 0,268 mg/kg a LOQ rovna 0,522 mg/kg.

²¹ Meloun, M., Militký J. (2006). Kompendium statistického zpracování dat. Praha: Academia.

3.8.8 Reprodukovatelnost

Je vyhodnocena změřením 5 vzorků připravených 2 různými lidmi v různých dnech.

V tabulce č. 48 a 49 jsou uvedeny naměřené výsledky vzorku MgCl₂.6H₂O a CaCl₂.2H₂O. Mezi výsledky změřenými interně odchylka nepřesahuje 20 %. Naměřené výsledky byly porovnány s výsledky z externí laboratoře, viz kapitola 3.8.6.

	MgCl ₂ .6H	I2O, Al 39	6,152 nm + Y .	377 nm		CaCl ₂ .2H ₂	O, Al 396,1	52 nm + Sc 36	l nm
	1. Série vzorků [mg/kg]		2. Série vzorků [mg/kg]	Odchylka [%]		1. Série vzorků [mg/kg]		2. Série vzorků [mg/kg]	Odchylka [%]
1	0,2165	7	0,2115	-0 7952	1	0,2903	7	0,1821	0 3079
1.	0,2362	/.	0,2376	-0,7552	1.	0,1328	/.	0,2389	-0,5078
2	0,2729	8	0,2898	5 4523	2	0,4024	0	0,4861	0 (055
2.	0,2886	0.	0,2967	3,4323	2.	0,4315	8.	0,4279	9,6055
3	0,2254	9	0,2507	4 8651		0,0308	0	0,0461	110055
5.	0,2268		0,2235	1,0001	3.	0,0168	9.	0,0083	14,2857
4	0,1371	10	0,1293	-5 1724		0,0693		0.0669	
т.	0,1355	10.	0,1292	-3,1724	4.	0,0212	10.	0.0346	12,1547
5	0,1667	11.	0,1270	-15.8179	5	0,3386	11	0 2604	
	0,1298		0,1226	10,0177	5.	0,1602	11.	0,2467	1,3340
6.	0,4120	12.	0,4017	-4,8094	6.	0,1890	12.	0,1570	-4,7681
	0,4197		0,3900	Í		0,1927		0,2065	.,

Tab. č. 48 a 49: Výsledky reprodukovatelnosti vzorků MgCl₂.6H₂O a CaCl₂.2H₂O

3.8.9 Robustnost

Robustnost metody je ověřena úmyslnou změnou podmínek oproti metodě, viz optimalizace metody v kap. 3.8.10. Optimalizace byla prováděna pro všechny matrice stejně jako u Ca a Mg matrice a nastavení parametrů metody v programu SALSA je také u všech matric stejné. V rámci robustnosti je také proveden test na kontaminaci vzorku znečištěným vzorkem.

3.8.10 Optimalizace metody

Je prováděna pro získání co nejpřesnějšího signálu (co nejnižší intenzita pozadí a co nejvyšší intenzita signálu). Největší vliv na intenzitu má nastavení výkonu plazmy, se kterým se zároveň nastavuje i průtok chladícího argonu. Rovněž důležité je zmlžování vzorku, které je nastavováno rychlostí otáčení peristaltické pumpy. Pumpa zavádí vzorek do zmlžovače, současně proudí do zmlžovače také argon, jehož průtok je nastaven. Je důležité, aby vzorek po průchodu kapilárou nebulizéru neskapával, musí tvořit hustou mlhu ve zmlžovací komoře, aby se do plazmy dostalo co nejvíce vzorku. Tyto parametry byly postupně nastaveny a vybrány ty, které poskytovaly nejlepší naměřené výsledky. Vybrané nastavení metody bylo poté použito pro měření všech matric.

Pro optimalizaci byly připraveny a proměřeny vzorky:

- blank (čištěná voda + 5 ml zřed. HNO₃ + 3 ml Y,Sc (10 mg/l)/100 ml)
- čistý vzorek (5 g vzorku + čištěná voda + 5 ml zřed. HNO₃ + 3 ml Y,Sc (10 mg/l)/100 ml)
- vzorek s přídavkem standardu (5 g vzorku + čištěná voda + 5 ml zřed. HNO₃ + přídavek standardu Al 1 mg/kg + 3 ml Y,Sc (10 mg/l)/100 ml)

Doba oplachu dávkovače v kyselině byla nastavena na 40 s, doba nástřiku vzorku, neboli uptake time, byla nastavena na 80 s (40 s se vzorek dostává do zmlžovače, 40 s se stabilizuje).

Parametr	Nastavená hodnota
Výkon plazmy	1,2 kW
Průtok chladícího plynu	15 l/min
Rychlost peristaltické pumpy	20 rpm
Tlak nebulizéru	45 psi
Průtok pomocného argonu	1,2 l/min
Pozice hořáku	8mm (MgCl ₂) ; 12 mm (CaCl ₂)
Integrační čas pro axiální snímání	40 s
Uptake time	80 s
Rinse (oplach v kyselině)	40 s

Tab. č. 50: Parametry poskytující nejvyšší citlivost

V tabulce č. 50 jsou hodnoty parametrů, které byly vybrány na základě naměřených dat jako nejvhodnější pro proměření všech validovaných matric.

3.8.11 Test na kontaminaci

V rámci robustnosti byl prováděn test na kontaminaci, při kterém bylo zjišťováno, zda doba oplachu vzorku v kyselině je dostatečná. Byl měřen čistý vzorek a vzorek s přídavkem standardu 10 mg/kg. Po kalibraci byl první změřen čistý vzorek, následně byl dávkovač poslán na 30 sekund do oplachu, poté byl změřen vzorek s přídavkem 10 mg/kg, opět proběhl oplach po dobu 30 sekund a nakonec byl změřen znovu čistý vzorek a byly porovnány výsledky. Validní výsledky dokázaly, že v metodě je oplach nastavený na 40 sekund dostatečný. Pro názornost byl jako čistý vzorek brán vzorek s přídavkem standardu 1 mg/kg, jelikož koncentrace Al v reálných vzorcích je pro porovnatelnost nízká.

MgCl ₂ .6H ₂ O, Al 396.152 nm + Y 377 nm			CaCl ₂ .2H ₂ O, Al 396.152 nm $+$ Sc 361 nm		
Přídavek Al [mg/kg]	Měřená koncentrace [mg/kg]	Průměr [mg/kg]	Přídavek Al [mg/kg]	Měřená koncentrace [mg/kg]	Průměr [mg/kg]
	1,1454			1,1991	
	1,1281			1,3084	
1	1,1225	1,12955	1	1,2008	1.26578
	1,1176	1,12,00		1,3238	1,20070
	1,1348			1,2852	
	1,1289			1,2774	
	9,8541			9,7045	9,74927
	9,8519		9,85430 10	9,7553	
10	9,8534	9,85430		9,7751	
	9,8796			9,6982	
	9,8233			9,6933	
	9,8635			9,8692	
	1,1348			1,2443	
	1,1150			1,3097	
1	1,1350	1.12722	1	1,3117	1.32108
-	1,1170		-	1,3606	1,0 = 100
	1,1321		1,3432		
	1,1294			1,3570	
	odchylka %	-0,2066		odchylka %	4,3688

Tab. č. 51 a 52: Vyhodnocení testování kontaminace

V tabulce č. 51 a 52 je vyhodnocena odchylka z měření vzorku před a po změření znečištěného vzorku (vzorku s přídavkem standardu 10 mg/kg). Odchylka nepřesahuje 10 %, doba oplachu 40 sekund nastavená v metodě je dostatečná.

3.8.12 Stabilita standardu a vzorku

Proměřena je stabilita standardu 1 mg/kg a 10 mg/kg cca po 1 měsíci při skladování v plastové uzavřené nádobě na světle při laboratorní teplotě. Proměřená byla stabilita vzorku po 48 hodinách viz tabulka č. 53, 54. Vyhodnocena byla také stabilita standardů MgCl₂.6H₂O a CaCl₂.2H₂O v koncentracích Al 1 mg/kg a 10 mg/kg viz tabulky č. 55.-58.

STD MgCl₂.6 Al 396,152 nn	H₂O+1 mg/kg A l n + Y 377 nm	STD CaCl₂.2H₂(Al 396,152 nm +	D+1 mg/kg A l - Sc 361 nm
Start [mg/kg]	Po 2 dnech [mg/kg]	Start [mg/kg]	Po 2 dnech [mg/kg]
1,0232	1,1729	1,1287	1,1858
1,0248	1,1606	1,1365	1,2714
Odchylka %	13,4364	Odchylka %	8,4761

Tab. č. 53, 54: Vyhodnocení stability vzorku Ca a Mg matrice po 48 hod

Z vyhodnocení odchylky proměřeného vzorku po 2 dnech lze usoudit, že vzorek je stabilní po dobu 48 hodin.

Tab. č. 55, 56: Vyhodnocení stability standardů MgCl₂.6H₂O po 1 měsíci

STD MgCl ₂ .6H ₂ O+1 mg/kg A			STD MgCl ₂ .6	H ₂ O +10 mg/kg A
Al 396,152 nm + Y 377 nm			Al 396,152 nm + Y 377 nm	
Start	Po 1 měs.		Start	Po 1 měs.
[mg/kg]	[mg/kg]		[mg/kg]	[mg/kg]
1,0046	1,0467		9,6708	9,4419
1,0041	1,0470		9,6723	9,4240
Odchylka %	4,2316		Odchylka %	-2,4670

Tab. č. 57, 58: Vyhodnocení stability standardů CaCl₂.2H₂O po 1 měsíci

STD CaCl ₂ .2H ₂ O+1 mg/kg A				
Al 396,152 nm + Sc 361 nm				
Start	Po 1 měs.			
[mg/kg]	[mg/kg]			
1,0365	0,9787			
1,0442	0,9774			
Odchylka %	-5,9884			

STD CaCl ₂ .2H	STD CaCl ₂ .2H ₂ O +10 mg/kg A				
Al 396,152 nr	Al 396,152 nm + Sc 361 nm				
Start	Po 1 měs.				
[mg/kg]	[mg/kg]				
10,2061	9,6720				
10,1920	9,6655				
Odchylka %	-5,1995				

4 Závěr

Zadáním práce bylo nalézt validní metodu, použitelnou v rutinní práci analytické laboratoře. Vyvinutá metoda stanovení hliníku na ICP-OES splňuje všechna kritéria na novou validovanou metodu. Stanovení hliníku v matricích chloridu vápenatého dihydrátu a chloridu hořečnatého hexahydrátu je od září r. 2019 uvedená do praxe analytické laboratoře výrobního závodu.

Ověření na reálných a modelových roztocích prokázalo, že metoda je vhodná k zamýšlenému účelu pro všechny analyty. Stanovení splňuje požadovaná kritéria validace. Pro dosažení optimálního poměru linearity a koncentrace roztoku je roztok vzorku zředěn dvacet krát.

Metoda poskytuje analyticky správné výsledky, je lineární, splňuje požadavky na opakovatelnost a správnost. Metoda je robustní vůči kontaminantu předchozím vzorkem a proměnné koncentraci vzorku. Roztoky pracovních standardů je možno použít po dobu minimálně jednoho měsíce. Zvalidovaná metoda umožňuje měřit vzorky v sérii a je pro komerční sektor finančně udržitelná.

Validace metody a vydání Standardního operačního postupu byly napsány podle standardů ICH (International Council for Harmonisation), ICH Q2(R1) Validace analytických procesů, ICH Q2(R2)/Q14 Proces vývoje analytických postupů.

5 Literatura

- 1. Zatta P., Ibn-Lkhayat-Idrissi M., Zambenedetti P., Kilyen M., Kiss T. (nedatováno). 2000 Brain Res. Bull. 59.
- WHO (World Health Organization) 1989 Thirty-third Report of the Joint FAO/. (nedatováno). WHO Expert Committee on Food Additives. 776 28.
- 3. Kanický, V. (2009). Kurz ICP 09. In Kurz Spektroskopické společnosti Jana Marka Marci (p. 1). Brno.
- 4. Otruba, V. (2009). Plazma jako spektroskopický zdroj. In Kurz ICP 09 (p. 10). Brno.
- 5. Sommer, L. (1992). Optická emisní spektrometrie v indukčně vázaném plazmatu a vysokoteplotních plamenech (str. 9). Praha: Academia.
- Santos E. J., Herrmann A. B., Olkuszewski J. L. Pierre T. S., Curtius A. J. (Sept. 2005). Determination
 of trace metals in electrolytic copper by ICP OES and ICP-MS. Braz. arch. biol. technol. vol.48 no.5
 Curitiba.
- 7. Mestek O., Koplík R. (2002). Optická emisní spektrometrie s indukčně vázaným plasmatem. Praha: VŠCHT.
- 8. Pickett E. E., Koirtyohan S. R. (1969). Anal. Chem. 41, No. 14, 28A.
- 9. Prudnikov E. D., Shapkina Y. S. (1986). Warsaw: Chem. Anal., 31, 335.
- Koch K. R., Pougnet M. A., Villiers S. (1989). Determination of Aluminium Levels in Tea and Coffee by Inductively Coupled Plasma Optical Emission Spectrometry and Graphite Furnace Atomic Absorption Spectrometry. Analyst, August 1989, Volume 114.
- 11. Ivaldi, J. C.; Tyson, J. F. (n.d.). Spectrochim. Acta B 1995, 50, 1207.
- 12. Boss B. Ch. (1997). Instrumentation, and Techniques in Inductively Coupled Plasma Optical Emission Spectrometry. Perkin-Elmer corporation, USA.
- 13. Otruba V. (2009). 5. kurz ICP spektrometrie, Spektroskopická společnost Jana Marka Marci. Brno.
- Pouzar M., Černohorský T., Krejcová A. (January 2007). Determination of metal impurities in ultrapure CaCl₂ and MgCl₂ by ICP OES. Microchimica Acta, 156(3): 271-275.
- Gaikhorst G. A., Temminghoff E. J. M., Houba V. J. G. (May 2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis 31(9).
- WHO (World Health Organization) 1989 Thirty-third Report of the Joint FAO/ WHO Expert Committee on Food Additives, 776, 28.
- 17. Turner, B. L. (2016-Issue 21). Interference by Iron in the Determination of Boron by ICP-OES. Journal Communications in Soil Science and Plant Analysis, Volume 47.
- 18. Practical guide to ICP-OES, Prodigy 7, Teledyne Leeman Labs. (2013).
- 19. ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1). (1994). Current Step 4 version, Parent Guideline dated 27 October 1994.
- ICH Harmonised Tripartite Guideline, ICH Q14: Analytical Procedure Development and Revision of Q2(R1) Analytical Validation dated 14 November 2018. (2018).
- 21. Meloun, M., Militký J. (2006). Kompendium statistického zpracování dat. Praha: Academia.

6 Přílohy

6.1 Příloha č. 1 SOP Stanovení Al v CaCl₂.2H₂O

Macco Organiques s. r.o., divize 501

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 162/501/19

Stanovení obsahu Al

v krystalu dihydrátu chloridu vápenatého CaCl₂.2H₂O

(ICP spektrofotometr Prodigy 7)

1. CÍL

Cílem tohoto SOP je stanovení zásad pro stanovení obsahu Hliníku v krystalu chloridu vápenatého, v souladu s požadavky na rozsah zkoušení a laboratorní techniku danou tímto předpisem

2. ROZSAH PLATNOSTI

- (1) SOP platí pro zkoušení krystalů chloridu vápenatého (dihydrátu CaCl₂.2H₂O).
- (2) Dodržení SOP je závazné pro všechny pracovníky laboratoře společnosti Macco Organiques, s.r.o.

3. POJMY A ZKRATKY

(1) SOP standardní operační postup

4. ZKUŠEBNÍ A KALIBRAČNÍ POSTUPY

4.1. Stanovení obsahu Al

Obsah Hliníku se stanoví na ICP spektrometru Prodigy 7 (obsluha přístroje dle SOP 009/501/15).

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 162/501/19

4.1.1 Parametry metody

Označení metody CaCl₂-Al/xxxx, kde xxxx je pořadové číslo

Podmínky metody ICP Prodigy 7

Pozice hořáku	12 mm
Průtok chladícího plynu (Ar)	15 l/min
Průtok pomocného plynu (Ar)	1,2 l/min
Výkon na budícím zdroji (trioda)	1,20 kW
Tlak nebulizeru (zmlžovače)	45 psi
Rychlost peristaltické pumpy	20 ot./min.
Integrační časy snímání	axiálně - 40 s, radiálně - 0 s

Tabulka č. 1: Shrnutí parametrů stanovení

Analyt Vlnová délka	linearita standardů [mg/l]	Koncentrace Kalibr. std. 1-2-3 [mg/l]	Akceptační meze pro Control 80-120 % [mg/l]	faktor R	LOQ [mg/kg]
Al 396,152	0,02-1	0,02 - 0,1 - 1	80-120	Min 0,995	0,2

4.1.2 Použité chemikálie

- (1) <u>řeď. HNO3</u>: 50 ml konc.65 % HNO3 suprapur a 50 ml destil. vody
- (2) Zásobní standard Al (1 g/l): Komerční referenční materiál
- (3) <u>Zásobní směsný standard Y, Sc (10 mg/l)</u>: Do odměrné baňky o objemu 100 ml odpipetovat 1 ml Y (1 g/l) a 1 ml Sc (1 g/l) a doplnit po rysku destilovanou vodou
- (4) <u>Zásobní standard Al (10 mg/l)</u>: Do odměrné baňky o objemu 100 ml odpipetovat 1 ml Al (1 g/l) a doplnit po rysku destilovanou vodou.
- (5) <u>40% matrice CaCl</u>: 400 g CaCl₂.2H₂O (prokazatelně neobsahující stanovované prvky, rozpustit v dest. vodě a kvantitativně převést do 1000 ml odměrné baňky a doplnit po rysku.
- (6) <u>Kalibrační standard STD 1 (0,02mg/l)</u>: Do odměrné baňky o objemu 250 ml odměřit 30 ml 40% matrici CaCl₂ a 12,5 ml zředěné HNO₃. Do roztoku přidat podle tabulky č. 2, 0,5 ml Al 10 mg/l a 7,5 ml Y, Sc 10mg/l. Doplnit po rysku destilovanou vodou.

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Macco Organiques s. r.o., divize 501

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 162/501/19

Tabulka č. 2		
Standard č. 1	Koncentrace std. [mg/l]	Přídavek std.
Hliník	0,02	0,5 ml std. 10mg/l
Yttrium, Scandium	0,3	7,5 ml std. 10mg/l

(7) <u>Kalibrační standard – STD 2 (0,1 mg/l)</u>: Do odměrné baňky o objemu 250 ml odměřit 30 ml 40% matrice CaCl₂ a 12,5 ml zředěné HNO₃. Do roztoku odpipetovat podle tabulky č. 3, 2,5 ml Al 10mg/l a 7,5 ml Y,Sc 10mg/l. Doplnit po rysku destilovanou vodou.

Tabulka č. 3		
Standard č. 2	Koncentrace std. [mg/l]	Přídavek std.
Hliník	0,1	2,5 ml std. 10mg/l
Yttrium, Scandium	0,3	7,5 ml std. 10mg/l

(8) <u>Kalibrační standard – STD 3 (1,0 mg/l)</u>: Do odměrné baňky o objemu 250 ml odměřit 30 ml 40% Matrice CaCl₂ a 12,5 ml zředěné HNO₃. Do roztoku odpipetovat podle tabulky č. 4, 25 ml Al 10mg/l a 7,5 ml Y, Sc (10mg/l). Doplnit po rysku destilovanou vodou.

Tabulka č. 4

Standard č. 3	Koncentrace std. [mg/l]	Přídavek std.
Hliník	1	25 ml std. 10mg/l
Yttrium, Scandium	0,3	7,5 ml std. 10mg/l

(9) <u>Kontrolní vzorek- Control:</u> std č. 3

(10) <u>Blank:</u> je 5% roztok rekrystalizované matrice CaCl₂.2H₂O s přídavkem řed. HNO₃. Do 250 ml odměrné baňky přidat 30 ml 40% matrice, 12,5 ml zředěné HNO₃ a 7,5 ml Y,Sc (10 mg/l), doplnit po rysku destilovanou vodou.

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 162/501/19

4.2 Pracovní postup

- (1) Do suché kádinky o objemu 100 ml navážit 5 g vzorku krystalu, přidat asi 60 ml destilované vody a řádně promíchat, po rozpuštění roztok kvantitativně převést do 100 ml odměrné baňky, přidat 5 ml řeď. HNO₃ a 3 ml Y, Sc (10 mg/l) a 0,5 ml Al (10 mg/l), doplnit po rysku destilovanou. vodou. Získáme tak roztok vzorku pro měření.
- (2) Vzorek měřit na ICP spektrometru (obsluha přístroje dle SOP 009/501/15), za použití metod označených CaCl₂-Al/xxxx.
- (3) Pro kontrolu kalibrace přístroje (pro danou metodu) měřit s každou řadou vzorků Control, po kalibraci, každých 8 vzorcích a na konci sekvence. Výsledky se musí pohybovat ve stanovených akceptačních mezích viz tabulka č. 5, v opačném případě se musí provést nová kalibrace (případně konzultovat odchylku s SPJ).

Tabulka č. 5

Standard č. 3 (Control)	Koncentrace std.	Přídavek std.
Hliník	1 mg/l	80-120 % 0,8 – 1,2 mg/l

4.3 Měření na ICP spektrometru

4.3.1 Peakování zdroje

Před samotným měřením je nutné **peakovat zdroj**, pokud už nebylo peakování provedeno před předchozím měřením stejné matrice (SOP 009/501/15, kap. 4.7.4.1). Při měření na ICP spektrometru postupovat podle SOP 009/501/15 Měření na spektrometru Prodigy 7.

4.3.2 Kontrola vlnové délky

Spektrometr využívá pro určení polohy spektrální čáry na detektoru informací z knihovny čar. Poloha se může v čase měnit, proto by měly být spektrální čáry před měřením zkontrolovány. Při kontrole čáry postupovat podle postupu SOP v kap. 4.3.2.1.

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Macco Organiques s. r.o., divize 501

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 162/501/19

Kontrola Echelle snímku spektrální čáry

- a) V základní obrazovce kliknout na záložku **Method**, vybrat v **Element Selection** vlnovou délku, která je kontrolována Al 396,152 nm.
- b) Kliknout na horní záložku Align Wavelength a vybrat v okně Echelle Images snímek pro Al 1 ppm.
- c) Načtený obrázek porovnat s Echelle snímkem (obr. 1).

Obrázek č.1: Echelle snímek CaCl2

4.3.2.1 Kontrola scanů naměřených vzorků

Před tiskem výsledků je nutné zkontrolovat scany naměřených vzorků.

- a) V záložce **Analysis** vybrat na horní liště položku **Scans**, kliknout na ikonu změřeného vzorku, v nabídce **Line** vybrat Al 396,152 nm.
- b) Načtený scan porovnat se scanem (obr. 2).

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 162/501/19

Obrázek č.2: Scan snímek CaCl₂

4.4 Výpočty

Získaný výsledek je uveden v jednotkách mg/kg (krystal).

Měření je provedeno sekvenčně za pomocí autosampleru. Pro výpočet je zapotřebí zadat v sekvenci vzorky a jejich přepočtový koeficient do pole ředění "dilution".

Koeficient ředění pro krystal – 20 (tj. 5g/100ml)

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Macco Organiques s. r.o., divize 501

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 162/501/19

5. Záznamy a související dokumentace

5.1 Záznamy

- (1) Provozní kniha spektrofotometru Prodigy 7
- (2) Laboratorní deníky
- (3) Protokol o zkoušce
- (4) Průvodní listy jakosti
- (5) Zápis do LIMS (Labsys)

5.2 Související dokumentace

- (1) OS-Q-01/04 Řízení dokumentů a údajů
- (2) SOP 08/04 Řízení a tvorba SOP
- (3) OS-Q 13/04 Kontrola a zkoušení
- (4) SOP 009/501/15 Měření na spektrometru Prodigy 7

6. ZMĚNY

- (1) Správce tohoto SOP je samostatný pracovník jakosti. Změny musí být v souladu s ustanovením OS-Q Řízení dokumentů a údajů.
- (2) Revize tohoto SOP bude prováděna ve lhůtě jednou za tři roky od data vydání, dále na základě vzniklé potřeby změny.

7. ZÁVĚREČNÁ USTANOVENÍ

Všichni pracovníci, pro které tento SOP platí, musí být seznámeni s jeho obsahem

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

6.2 Příloha č. 2 SOP Stanovení Al v MgCl₂.6H₂O

Macco Organiques s. r.o., divize 501

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 161/501/19

Stanovení obsahu Al

v krystalu hexahydrátu chloridu hořečnatého MgCl₂.6H₂O

(ICP spektrofotometr Prodigy 7)

1. CÍL

Cílem tohoto SOP je stanovení zásad pro stanovení obsahu Hliníku v krystalech chloridu hořečnatého v souladu s požadavky na rozsah zkoušení a laboratorní techniku danou tímto předpisem

2. ROZSAH PLATNOSTI

- (1) SOP platí pro zkoušení krystalů chloridu hořečnatého (hexahydrátu MgCl₂.6H₂O).
- (2) Dodržení SOP je závazné pro všechny pracovníky laboratoře společnosti Macco Organiques, s.r.o.

3. POJMY A ZKRATKY

(1) SOP standardní operační postup

4. ZKUŠEBNÍ A KALIBRAČNÍ POSTUPY

- 4.1 Stanovení obsahu Al
- (1) Obsah Hliníku se stanoví na ICP spektrometru Prodigy 7 (obsluha přístroje dle SOP 009/501/15).

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 161/501/19

4.1.1 Parametry metody

Označení metody MgCl2-Al/xxxx, kde xxxx je pořadové číslo měření

Podmínky metody ICP Prodigy 7

Pozice hořáku Průtok chladícího plynu (Ar) Průtok pomocného plynu (Ar) Výkon na budícím zdroji (trioda) Tlak nebulizeru (zmlžovače) Rychlost peristaltické pumpy Integrační časy snímání **8 mm** 15 l/min 1,2 l/min 1,20 kW 45 psi 20 ot./min. axiálně - 40 s, radiálně - 0 s

Tabulka č. 1: Shrnutí parametrů stanovení

Analyt Vlnová délka	linearita standardů [mg/l]	Koncentrace Kalibr. std. 1-2-3 [mg/l]	Akceptační meze pro Control 80-120 % [mg/l]	faktor R	LOQ [mg/kg]
Al 396,152	0,02-1	0,02-0,1-1	80-120	Min 0,995	0,2

4.1.2 Použité chemikálie

- (1) <u>řeď. HNO3</u>: 50 ml konc.65 % HNO3 suprapur a 50 ml destil. vody
- (2) Zásobní standard Al (1 g/l): Komerční referenční materiál
- (3) <u>Zásobní směsný standard Y, Sc (10 mg/l)</u>: Do odměrné baňky o objemu 100 ml odpipetovat 1 ml Y (1 g/l) a 1 ml Sc (1 g/l) a doplnit po rysku destilovanou vodou
- (4) <u>Zásobní standard Al (10 mg/l)</u>: Do odměrné baňky o objemu 100 ml odpipetovat 1 ml Al (1 g/l) a doplnit po rysku destilovanou vodou.
- (5) <u>25% matrice MgCl₂</u>: 250 g MgCl₂.6H₂O prokazatelně neobsahující stanovované prvky, rozpustit v dest. vodě a kvantitativně převést do 1000 ml odměrné baňky a doplnit po rysku.

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Macco Organiques s. r.o., divize 501 Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 161/501/19

(6) <u>Kalibrační standard – STD 1 (0,02mg/l)</u>: Do odměrné baňky o objemu 250 ml odměřit 50 ml 25% matrice MgCl₂.6H₂O a 12,5 ml zředěné HNO₃. Do roztoku přidat podle tabulky č. 2, 0,5 ml Al 10 mg/l a 7,5 ml Y, Sc 10mg/l. Doplnit po rysku destilovanou vodou.

Tabulka č. 2

Standard č. 1	Koncentrace std. [mg/l]	Přídavek std.
Hliník	0,02	0,5 ml std. 10mg/l
Ytrium, Scandium	0,3	7,5 ml std. 10mg/l

(7) <u>Kalibrační standard – STD 2</u>: Do odměrné baňky o objemu 250 ml odměřit 50 ml 25% matrice MgCl₂.6H₂O a 12,5 ml zředěné HNO₃. Do roztoku přidat podle tabulky č. 3, 2,5 ml Al 10mg/l a 7,5 ml Y,Sc 10mg/l. Doplnit po rysku destilovanou vodou.

Tabulka č. 3		
Standard č. 2	Koncentrace std. [mg/l]	Přídavek std.
Hliník	0,1	2,5 ml std. 10mg/l
Ytrium, Scandium	0.3	7.5 ml std. 10mg/l

(8) <u>Kalibrační standard – STD 3</u>: Do odměrné baňky o objemu 250 ml odměřit 50 ml 25% matrice MgCl₂.6H₂O a 12,5 ml zředěné HNO₃. Do roztoku přidat podle tabulky č. 4, 25 ml Al 10mg/l a 7,5 ml Y, Sc (10mg/l). Doplnit po rysku destilovanou vodou.

Tabulka č. 4		
Standard č. 3	Koncentrace std. [mg/l]	Přídavek std.
Hliník	1	25 ml std. 10mg/l
Ytrium, Scandium	0,3	7,5 ml std. 10mg/l

- (9) Kontrolní vzorek-Control: std č. 3
- (10) Blank: je 5% roztok rekrystalizované matrice MgCl₂.6H₂O s přídavkem řed. HNO₃. Do 250 ml odměrné baňky přidat 50 ml 25% matrice MgCl₂, 12,5 ml zředěné HNO₃ a 7,5 ml Y,Sc (10 mg/l), doplnit po rysku destilovanou vodou.

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 161/501/19

4.2 Pracovní postup

- (1) Do suché kádinky o objemu 100 ml navážit 5 g vzorku krystalu MgCl₂.6H₂O, přidat asi 60 ml destilované vody a řádně promíchat, po rozpuštění roztok kvantitativně převést do 100 ml odměrné baňky, přidat 5 ml řeď. HNO₃ a 3 ml Y, Sc 10 mg/l a doplnit po rysku destilovanou vodou. Získáme tak roztok vzorku pro měření.
- (2) Vzorek měřit na ICP spektrometru (obsluha přístroje dle SOP 009/501/15), za použití metod označených MgCl₂-Al/xxxx.
- (3) Pro kontrolu kalibrace přístroje (pro danou metodu) měřit s každou řadou vzorků Control, po kalibraci, každých 8 vzorcích a na konci sekvence. Výsledky se musí pohybovat ve stanovených akceptačních mezích (viz tabulka č. 5), v opačném případě se musí provést nová kalibrace (případně konzultovat odchylku s SPJ).

Tabulka č. 5

Standard č. 3 (Control)	Koncentrace std.	Přídavek std.
Hliník	1 mg/l	80-120 % 0,8 – 1,2 mg/l

4.3 Měření na ICP spektrometru

4.3.1 Peakování zdroje

Před samotným měřením je nutné **peakovat zdroj**, pokud už nebylo peakování provedeno před předchozím měřením stejné matrice (SOP 009/501/15, kap. 4.7.4.1). Při měření na ICP spektrometru postupovat podle SOP 009/501/15 Měření na spektrometru Prodigy 7.

4.3.2 Kontrola vlnové délky

Spektrometr využívá pro určení polohy spektrální čáry na detektoru informací z knihovny čar. Poloha se může v čase měnit, proto by měly být spektrální čáry před měřením zkontrolovány. Při kontrole čáry postupovat podle postupu SOP v kap. 4.3.2.1.

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Macco Organiques s. r.o., divize 501

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 161/501/19

4.3.2.1 Kontrola Echelle snímku spektrální čáry

- d) V základní obrazovce kliknout na záložku **Method**, vybrat v **Element Selection** vlnovou délku, která je kontrolována Al 396,152 nm.
- e) Kliknout na horní záložku Align Wavelength a vybrat v okně Echelle Images snímek pro Al 1 ppm.
- f) Načtený obrázek porovnat s Echelle snímkem (obr. 1).

Obrázek č.1: Echelle snímek MgCl₂

4.3.2.2 Kontrola scanů naměřených vzorků

Před tiskem výsledků je nutné zkontrolovat scany naměřených vzorků.

- a) V záložce **Analysis** vybrat na horní liště položku **Scans**, kliknout na ikonu změřeného vzorku, v nabídce **Line** vybrat Al 396,152 nm.
- b) Načtený scan porovnat se scanem (obr. 2).

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 161/501/19

4.4 Výpočty

Získaný výsledek je uveden mg/kg (krystal).

Měření je provedeno sekvenčně za pomocí autosampleru. Pro výpočet je zapotřebí zadat v sekvenci vzorky a jejich přepočtový koeficient do pole ředění "dilution".

Koeficient ředění pro krystal – 20 (tj. 5g/100ml)

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

Macco Organiques s. r.o., divize 501

Výtisk číslo STANDARDNÍ OPERAČNÍ POSTUP SJ č.: SOP 161/501/19

5. ZÁZNAMY A SOUVISEJÍCÍ DOKUMENTACE

5.1 Záznamy

- (1) Provozní kniha spektrofotometru Prodigy 7
- (2) Laboratorní deníky
- (3) Protokol o zkoušce
- (4) Průvodní listy jakosti
- (5) Zápis do LIMS (Labsys)

5.2 Související dokumentace

- (1) OS-Q-01/04 Řízení dokumentů a údajů
- (2) SOP 08/04 Řízení a tvorba SOP
- (3) OS-Q 13/04 Kontrola a zkoušení
- (4) SOP 009/501/15 Měření na spektrometru Prodigy 7

6. ZMĚNY

Správce tohoto SOP je samostatný pracovník jakosti. Změny musí být v souladu s ustanovením OS-Q Řízení dokumentů a údajů.

6.1. Revize tohoto SOP bude prováděna ve lhůtě jednou za tři roky od data vydání, dále na základě vzniklé potřeby změny.

7. ZÁVĚREČNÁ USTANOVENÍ

Všichni pracovníci, pro které tento SOP platí, musí být seznámeni s jeho obsahem.

Datum vydání	09.09.2019	Vypracoval: Mgr. Viktor Brezovský	Podpis
Platnost od	10.09.2019	Schválil: Ing. Vok Kozelský	Podpis

6.3 Příloha č. 3 Souhlas se zveřejněním Validační zprávy

Macco

Macco Organiques, s.r.o.

Souhlas

Tento souhlas opravňuje Mgr. Viktora Brezovského k použití Validační zprávy č. VR 055-501/19 Validace obsahu Al v matricích CaCl₂.2H₂O a MgCl₂.6H₂O vypracované společností Macco Organiques, s.r.o., k přípravě a publikaci dizertační práce výše jmenované osoby.

Povolil: Charis Stambolidis, Generální ředitel

Dne: 1.6.2021

Macco Organiques, s.r.o. | Zahrachil 46c, 792 Ol Brunzal | Czech Republic Phone 4420 555 530 300 | Fac: 4420 555 530 300 | E-mail macco@macco.cz Website: www.macco.cz || ICO: 256 19 210 | DIC: CZ2561920 Spectronic zapaźna v Oltwadeniem ulkrzębeło soudu v Oszrzek, dołł IC, vłożes 27609

