ŠKODA AUTO VYSOKÁ ŠKOLA, O.P.S.

Studijní program: B6208 Ekonomika a management
Studijní obor: 6208R087 Podniková ekonomika a management obchodu

PŘÍNOSY METODY TPM VE ŠKODA AUTO a.s.

Luděk PIESCHE

Vedoucí práce: Ing. David Holman, Ph.D.
Tento list vyjměte a nahraďte zadáním bakalářské práce
Prohlašuji, že jsem bakalářskou práci vypracoval samostatně s použitím uvedené literatury pod odborným vedením vedoucího práce.

Prohlašuji, že citace použitých pramenů je úplná a v práci jsem neporušil autorská práva (ve smyslu zákona č. 121/2000 Sb., o právu autorském a o právech souvisejících s právem autorským).

V Mladé Boleslavi dne
Děkuji Ing. Davidu Holmanovi, Ph.D. za odborné vedení bakalářské práce, poskytování rad a informačních podkladů.
Obsah

Seznam použitých zkratk a symbolů... 6

Úvod.. 7

1 Štíhlý podnik, štíhlá výroba ... 8
 1.1 Cíle štíhlého podniku.. 8
 1.2 TPS – Systém výroby firmy Toyota ... 9

2 TPM - Totálně produktivní údržba... 11
 2.1 Základní principy a cíle TPM... 11
 2.2 Základní pilíře TPM ... 13
 2.3 Zavedení TPM do praxe ... 15
 2.4 Přínosy TPM .. 16
 2.5 Organizace a řízení údržby ... 17
 2.6 Hodnocení výkonnosti údržby .. 18
 2.7 Vývojové etapy údržby ... 20

3 TPM ve firmě ŠKODA AUTO a.s. ... 25
 3.1 Profil společnosti .. 25
 3.2 Výrobní systém Škoda, program TPM ... 25
 3.3 Výroba komponentů ... 27
 3.4 Zavedení TPM ve výrobě komponentů .. 28
 3.5 Analýza programu TPM v závodě VK ... 33
 3.6 Návrhy na optimalizaci TPM ... 35

Závěr ... 37

Seznam literatury .. 38

Seznam příloh .. 41
Seznam použitých zkratek a symbolů

<table>
<thead>
<tr>
<th>Č.</th>
<th>Číslo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEZ</td>
<td>Celková efektivnost zařízení</td>
</tr>
<tr>
<td>ČSN</td>
<td>Česká technická norma</td>
</tr>
<tr>
<td>ČSN EN</td>
<td>Převzatá Evropská norma</td>
</tr>
<tr>
<td>KVP</td>
<td>Kontinuální vylepšovací proces</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
</tr>
<tr>
<td>SaZ</td>
<td>Stroje a zařízení</td>
</tr>
<tr>
<td>Sb.</td>
<td>Sbírky</td>
</tr>
<tr>
<td>Str.</td>
<td>Strana</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Productions System</td>
</tr>
<tr>
<td>USA</td>
<td>Spojené státy Americké</td>
</tr>
<tr>
<td>VK</td>
<td>Výroba komponentů</td>
</tr>
<tr>
<td>VKT</td>
<td>Technický servis v závodě VK</td>
</tr>
<tr>
<td>VSŠ</td>
<td>Výrobní systém Škoda</td>
</tr>
</tbody>
</table>
Úvod

Zvětšující se konkurenční prostředí nutí především firmy v automobilovém průmyslu k zavádění nových principů, které vedou ke zvyšování produktivity, efektivnosti a snižování nákladů. Evropské automobilky se na počátku devadesátých let inspirovaly výrobním systémem firmy Toyota a začaly implementovat do svých organizací metody štíhlého podniku.

Jeden z nástrojů štíhlého podniku je metoda TPM, neboli Total Productive Maintenance, kterou se zabývá tato bakalářská práce. Zavedením této metody usilují podniky o propojení všech pracovníků firmy a zavedení takových činností, které povedou ke zvýšení efektivnosti zařízení a redukci neplánovaných prostopávů.

Cílem práce je, porovnat fungování programu TPM ve firmě ŠKODA AUTO a.s. s tím, jak tuto metodu popisuje citovaná odborná literatura a posoudit její praktické přínosy. Součástí jsou vlastní doporučení k optimalizaci TPM v oblasti výroby komponentů ve firmě ŠKODA AUTO a.s.

V úvodu této práce jsou popsané pojmy štíhlý podnik, štíhlá výroba a jejich hlavní cíle. Dále je charakterizován výrobní systém firmy Toyota, jako vzor pro zavádění štíhlých principů v evropských automobilkách.

Další část bakalářské práce se zaměřuje na metodu TPM. Podrobně popisuje její filozofii, přínosy, cíle a činnosti neboli pilíře, pomocí kterých firmy naplňují podstatu TPM. Součástí teoretické části práce je i zmapování činností údržby, jejích úkolů, organizace a historického vývoje systémů údržby.

V praktické části práce je podrobně popsané zavedení a fungování metody TPM v oblasti výroby komponentů ve firmě ŠKODA AUTO. Popis se zabývá organizací programu TPM a používanou dokumentaci. V závěru kapitoly je provedena analýza fungování pěti základních pilířů a sepsané vlastní návrhy na optimalizaci TPM v tomto oddělení.
1 Štíhlý podnik, štíhlá výroba

S pojem „štíhlý podnik“ se dnes člověk ve výrobní sféře setkává takřka denně, ale přesto si pod ním každý může představit něco jiného. Literární zdroje se v definicích klíčových pojmů štíhlé výroby doplňují. „Štíhlý systém zdůrazňuje prevenci ztrát: jakýkoli navíc potřebný čas, pracovní síly nebo materiály na výrobu výrobku nebo služeb, které nepřidávají hodnotu“ (MacInnes, 2006, str. 6).

„Štíhlý systém umožňuje výrobu širokého sortimentu výrobků nebo služeb, podle potřeby účinné a rychlé změny sortimentu, účinnou reakci na proměnlivou poptávku a zvýšenou kvalitu“ (MacInnes, 2006, str. 6). Z uvedených definic vyplývá, že se vždy jedná o eliminaci ať už časových či materiálových ztrát, zefektivnění procesů a především čisté přidávání hodnoty.

1.1 Cíle štíhlého podniku

Zeštíhlování organizačních postupů a principů se koná z určitých důvodů a za dosažením konkrétních cílů. Richard MacInnes ve své publikaci Štíhlý podnik uvádí čtyři hlavní cíle štíhlého podniku:

- **Zlepšit kvalitu** - kvalita vyjadřuje schopnost výrobků a služeb plnit požadavky zákazníků. Zároveň představuje primární cestu, jak si zachovat konkurenceschopnost na trhu.

- **Eliminovat ztráty** - „ztráta znamená jakoukoli činnost, která vyžaduje čas, zdroje nebo prostor, avšak nepřidává hodnotu výrobku nebo službě. Primárním cílem štíhlé organizace je dodávat kvalitní výrobky a poskytovat kvalitní služby, a to napoprvé a pokaždé“ (MacInnes, 2006, str. 8).

- **Zkrátit dobu potřebnou k realizaci** - doba potřebná k realizaci je celková doba, která uplyne od okamžiku zadání objednávky do okamžiku přijetí
platby od zákazníka za službu či produkt. Zkracování této doby se docílí již výše zmiňovaným odstraněním ztrát, které nepřidávají hodnotu.

- **Snižit celkové náklady** - celkové náklady se skládají z přímých a nepřímých, které souvisí s produkci výrobku nebo s poskytováním služeb. „Aby organizace byla úspěšná, musí neustále porovnávat ceny svých výrobků a služeb a své provozní náklady. Aby štíhlý podnik snížil své celkové náklady, musí eliminovat ztráty a redukovat doby potřebné k realizaci.“ (MacInnes, 2006, str. 9).

Tyto obecné cíle jsou vzájemně provázané a tvoří jakýsi systém. Určitou synergií a zářným příkladem systému pro štíhlou výrobu a *Lean Management*, jak se odborně štíhlé řízení výroby nazývá, se stal systém TPS japonského výrobce automobilů Toyota.

1.2 TPS – Systém výroby firmy Toyota

Systém výroby TPS (Toyota Production System) odráží dlouholetou filozofii společnosti Toyota. Základem pro tento rozsáhlý soubor metod a přístupů byly již dříve ve světě známé nástroje „štíhlé“ výroby. Rozšířen je však o firemní kulturu, v níž každý neustále usiluje o zlepšení a tím tvoří celkovou koncepci řízení výroby.

„TPS je dalším významným vývojovým krokem efektivních podnikatelských procesů po systému hromadné výroby, s nímž přišel Henry Ford a který byl dokumentován, důkladně rozebrán a uplatněn ve firmách působících ve všech možných odvětvích po celém světě“ (Liker, 2004, str. 40).

Podstatou systému TPS je odstraňování ztrát. Společnost Toyota vymezovala přidanou hodnotu přezkoumáním výrobního procesu z hlediska zákazníka. „Očima zákazníka je možné pozorovat proces a oddělit kroky přidávající hodnotu od kroků, které hodnotu nepřidávají. Tento pohled je možné aplikovat na každý proces – výrobní, informační nebo proces poskytování služby“ (Liker, 2004, str. 54). V rámci podnikatelských nebo výrobních procesů firma Toyota určila sedm významných typů ztrát, jež nepřidávají hodnotu:

- **Nadvýroba** - představuje produkci položek, na něž nejsou objednávky.
- **Čekání** - dohlížení na automatizovaná zařízení nebo čekání na další krok procesu z důvodu zpoždění zásob, prostořů, poruch zařízení apod.
- **Doprava nebo přemisťování** - pracovní proces ve velkých vzdálenostech vyvolává potřebu neefektivní přepravy či přesunu materiálu.

- **Nadměrné či nepřesné zpracovávání** - podnikání nepotřebných kroků ke zpracovávání dílů i vinou špatných nástrojů a chybného konstrukčního řešení výrobku.

- **Nadbytečné zásoby** - nadbytečné zásoby surovin, rozpracované výroby či hotového zboží, které zabírají skladovací plochy a vážou kapitál.

- **Zbytečné pohyby** - každý ztrátový pohyb, který zaměstnanec musí vykonat při práci, jako je vyhledávání nástrojů, předpříprava montáže, seřízení přípravku a jiné.

- **Vady** - výroba vadných dílů či jejich úpravy. Opravy, zmetky a náhradní výroba znamenají ztrátovou manipulaci a časovou ztrátu.

- **Nevyužitá tvořivost zaměstnanců** – „ztráty času, nápadů, dovedností, nových zlepšení a přiležitostí k učení v důsledku toho, že se zaměstnavatel nezajímá o své zaměstnance nebo jim nenaslouchá“ (Liker, 2004, str. 55).
2 TPM - Totálně produktivní údržba

Tato filozofie pochází ze 70. let minulého století, vznikla v Japonsku a jejím autorem je Seichi Nakajima, který studoval principy preventivní údržby v Evropě a v USA. Nabyla znalosti převedl do jednotné koncepce, které dal název totálně (nebo také komplexní) produktivní údržba.

TPM má především za cíl potlačit tradiční rozdělení pracovníků na ty, kteří obsluhují stroje a ty pracovníky, kteří je opravují. Princip TPM spočívá v zapojení všech profesí v podniku do jednotného procesu. Pomocí tohoto postupu se snižují poruchy a krátkodobé prostory, zvyšuje se produktivita.

Filozofie TPM předpokládá, že právě pracovník obsluhy zařízení je jediný, který může zaznamenat drobné poruchy na stroji a neočekávané chování zařízení, které mohou vést k neplánovaným poruchám a prostoje. Jedním ze záměrů TPM je, zodpovědnost za malé opravy a zásahy přenést přímo na pracovníky výroby, kteří budou na tyto zásahy proskoleni a v údržbě ponechat odborné a na kvalifikaci náročné činnosti. (Rakyta, 2015).

2.1 Základní principy a cíle TPM

Hlavní podstata TPM je, začlenění všech pracovníků výrobního podniku do procesu, který vede k minimalizaci ztrát a ke zvýšení efektivity SaZ. Netýká se tedy pouze pracovníků výroby a údržby, ale musí zasahovat i do managementu a ostatních technických úseků podniku. Největší problém při zavádění této metody ve firmách je, změnit myšlení lidí a léta zavedené dělení lidí na pracovníky výroby a pracovníky údržby. TPM funguje pouze za předpokladu, že se pracovníci spojí v jeden tým a naplánované činnosti budou provádět společně. V dnešní době jsou principy TPM implementovány ve většině podniků, kde jsou stroje obsluhovány lidmi. (Košturiak, 2006).
Mnoho výrobních podniků se potýká s poruchami a neefektivním využití výrobních kapacit. To je způsobeno tím, že nedochází k analýzování důvodů těchto ztrát. V rámci TPM je proto důležité přenést zodpovědnost na pracovníky, kterých se tyto problémy bezprostředně týkají. Je důležité inicializovat a podporovat změny týkající se myšlení lidí, přístupu k údržbě a péči o stroje a v další fázi je nutné změnit i pracovní prostředí (Mašín, 2000).

Zdroj: Mašín, Vytlačil, 2000

Obr. 1 Potřebné změny na pracovišti

TPM je možné formulovat také jako „soubor aktivit vedoucích k provozování strojního parku v optimálních podmínkách a ke změně pracovního systému, který udržení těchto podmínek zajišťuje“ (Mašín, 2000, str. 237).

Konkrétní cíle TPM vychází ze strategie podniku a jsou definovány strategickým plánem managementu. Filozofie TPM vychází z tzv. nulových cílů výrobních zařízení, což jsou nulové prostoje, závady a nehody. Nulové neplánované prostoje lze dosáhnout, pokud všechny činnosti údržby a obsluhy budou prováděné pouze
v předem naplánovaných časech. Pouze zlepšením stavu strojů je možné docílit nejvyšší kvality a tím i nulových vad. Poslední se zaměřuje na zvýšení pracovních časů strojů a tedy zvýšení produktivity (Mašín, 2000a).

Definice a cíle TPM podle Japonského institutu pro podnikovou údržbu:

- maximalizace celkové efektivnosti zařízení
- využití celopodnikového systému produktivní údržby ke zlepšení stavu zařízení
- implementace do všech oddělení podniku
- aktivní zapojení všech zaměstnanců od výroby až po management
- TPM je založeno na práci produktivní údržby, která je podporovaná činnostmi výrobních týmů a managementem (Legát, 2013)

2.2 Základní pilíře TPM

Prioritní činnosti v rámci TPM se týkají prevence, tzn. předcházení poruchám. Program TPM se zaměřuje také na omezení chyb, redukce krátkodobých prostořů a zrychlení přeseřizování strojů. Činnosti, které povedou ke splnění těchto cílů, jsou součástí 5 pilířů TPM:

1) **Zvyšování celkové efektivnosti zařízení** – maximalizace efektivního využití strojů. Identifikace a snížení podstatných typů plýtvání při provozu strojů, jako jsou ztráty při seřizování stroje a změně sortimentu, krátkodobé výpadky, snížení rychlosti a ztráty způsobené špatnou kvalitou výrobků nebo vstupních polotovarů. Na odstranění těchto ztrát se podílí především zaměstnanci výrobních útvarů s podporou údržby a dalších technických oddělení.

Vyhodnocení je prováděno pomocí OEE. Výpočet vychází ze zjištěných hodnot o dostupnosti zařízení, jeho výkonu a o kvalitě výrobků. Podrobněji je rozvedeno v kapitole 2.3.

2) **Autonomní údržba** – tradičně zakořeněný model, kdy se o stroje starali pouze pracovníci údržby, nepříznášel dostatečné efekty v preventivní údržbě a v kategorii kontrolních činností. Na základě těchto poznatků je potřebné část činností údržby přenést na operátory výroby. Tito pracovníci
v rámci programu TPM provádí tzv. autonomní (samostatnou) údržbu, do které patří čištění, mazání, seřizování strojů a různé drobné opravy.

Tab. 1 Procentuální vyjádření příčin prostojů SaZ

<table>
<thead>
<tr>
<th>Opotřebení 25 %</th>
<th>Člověk 33 %</th>
<th>Znečištění 42 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tření</td>
<td>Chybné chování</td>
<td>Prach</td>
</tr>
<tr>
<td>Opotřebení</td>
<td>Neznalost</td>
<td>Třísky</td>
</tr>
<tr>
<td>Teplota</td>
<td>Nedostatečný trénink</td>
<td>Zalepení</td>
</tr>
<tr>
<td>Tlak</td>
<td>Žádná motivace</td>
<td>Kyselost / Zásaditost</td>
</tr>
<tr>
<td>Lomy</td>
<td>Bezmyšlenkovitost</td>
<td>Laky / Olej / Mazivo</td>
</tr>
</tbody>
</table>

Zdroj: zpracováno dle LEGÁT, V. a kol. *Management a inženýrství údržby*

Začíná se čištěním a odstraněním zdrojů znečištění a autonomním mazáním. V dalším kroku po absolování tréninku inspekce zahajují operátoři samostatnou inspekcí strojů. Poslední činnosti se týkají samostatného řízení pracoviště, jeho správy s cílem zlepšení efektivnosti stroje (Mašín, 2000a).

3) **Plánovaná údržba** – pro správné provádění činností údržby je nutné vytvořit, na základě získaných informací a doporučení výrobčů zařízení, program a systém plánovaných zásahů a oprav, který má za cíl zajistit efektivní a bezporuchový chod výroby. Do těchto činností patří stanovení priorit údržby, odbourání slabých míst, zprovoznění informačního systému údržby, periodické prohlídky, plánování oprav, zajišťování náhradních dílů,
řízení a optimalizace nákladů, provádění diagnostiky strojů, předpovídání životnosti dílů, analýza poruch, zahájení realizace plánovaných prací, vzestup výkonnosti a zkvalitnění procesů údržby (Legát, 2013).

4) **Preventivní údržba a program plánování pro nová zařízení** – zapojení TPM týmu do přípravy nákupu nových technologií již v počáteční fázi projektu. Vychází se z faktu, že údržba a výroba, jako budoucí uživatel a správce těchto zařízení, umí upozornit na nedostatky, případně dát návrhy na zlepšení vlastnosti stroje. V době, kdy je prováděna přejížděna stroje do provozu ve firmě, již není možné většinu technických nedostatků odstranit. Aktivity týmu se orientují na takové činnosti, pomocí kterých bude docházet k vyšší spolehlivosti strojů a ke snížení počtu poruch. Do tohoto systému také patří odhadování nákladů na údržbu nových strojů po dobu jejich životnosti, plánování generálních oprav, a spolupodílení se údržby na obnově strojů a na investiční politice firmy (Mašín, 2000a).

5) **Vzdělávání a trénink pracovníků** – program TPM je založen především na rozvoji pracovníka a jejich schopnostech. Z tohoto důvodu je nutné zavést v podniku systém vzdělávání údržbářů, ale i operátorů výroby. V první fázi se pracovníci seznámi s fungováním štíhlého podniku, včetně procesů zlepšování a standardizace. Dále je důležité lidem vysvětlit, jak funguje samotná metoda TPM a její principy. Další prohlubování kvalifikace se orientuje na stroje a zařízení. Pracovníci získávají znalosti o obsluze strojů, jejich fungování a principů, postupech preventivní údržby a opravách strojů (Stöhr, 2012).

2.3 Zavedení TPM do praxe

Prvním krokem po rozhodnutí managementu o realizaci programu TPM v podniku musí být jeho jasná specifikování a záměr představit a prezentovat všem zaměstnancům. Prezentace by měla zahrnovat cíle, předpokládané přínosy, stanovené strategie a důvody, které přiměly firmu implementovat program TPM. Současně s tímto krokem je účelné zahájení školení zaměstnanců. Management podniku by měl vyjádřit jasnou podporu tomuto programu, pravidelně se informovat o stavu a fungování od koordinátora TPM a určovat další strategie.
Po ukončení školení a tréninku zaměstnanců musí být vytvořena funkční struktura programu TPM v celém podniku, která je následně členěna do jednotlivých týmů. Při práci na plnění programu TPM se aplikují podstaty týmové práce. Podnikový tým je řízený koordinátorem TPM, pod kterého spadají jednotlivé provozní týmy. Mezi činnosti podnikového koordinátora patří rozvoj cílů a metod TPM v podniku, spolupráce s jednotlivými provozy, koordinace činností týmů, vyhledávání dalších příležitostí a prezentace výsledků a průběhu TPM managementu firmy.

Další postup zavádění programu TPM je zahájení pilotního projektu, tzn. vytipovat stroj nebo skupinu strojů, u kterých bude popsán jejich aktuální stav, sestaven plán TPM a zahájen samotný program. Na základě výsledků tohoto pilotního projektu dojde k vyhodnocení a k úpravám standardů v podniku pro implementaci TPM v celé firmě.

V další etapě se provádí audit TPM, aby se zhodnotilo plnění stanovených cílů, dosažené přínosy, fungování organizace TPM, úroveň kvalifikace zaměstnanců, dodržování standardů a čistoty zařízení (Mašín, 2000a).

2.4 Přínosy TPM

TPM jako proces zasahuje do všech oblastí výrobních podniků a podporuje růst jeho konkurenceschopnosti. Jeho přínosy se týkají především redukce nákladů spojených s údržbou, zkracování výrobních časů, minimalizace ztrát a prostojů, navýšování kapacity strojů, zkvalitňování procesů a motivace zaměstnanců.

První výsledky se dají předpokládat po zhruba půl roce od implementace TPM, kdy by po počátečních krocích měly přerušení poklesnout o cca 30 až 50 %. Dále se uvádí, že OEE by mělo stoupnut až o 6% za rok a technické využití by se mělo zvýšit o 3 až 5 % za rok (Legát, 2013).

Další efekt zavedení TPM by mělo být snížení času na opravu zmetků o 50 – 70 %. Očekává se optimalizace nákladů na náhradní díly a redukce zásob náhradních dílů. Prodloužení životnosti strojů jejich lepším využívání může znamenat potenciál úspor v řádech desítek milionů na dalších investicích (Košturiak, 2006).
2.5 Organizace a řízení údržby

Údržba je dle ČSN EN 13306 definována jako „kombinace všech technických, administrativních a manažerských opatření během životního cyklu objektu, zaměřených na jeho udržení ve stavu nebo jeho navrácení do stavu, v němž může vykonávat požadovanou funkci“ (Legát, 2013, str. 21).

Vedle výrobních oblastí podniku přispívá i dobře zvládnutá organizace údržby strojů a zařízení k růstu produktivity. Ztráty produktivity mohou vzniknout výrobními chybami, špatným provozovaním zařízení a svou roli hraje i lidský faktor. Hlavním cílem údržby je tyto ztráty minimalizovat, případně zcela odstranit (Mašín, 2000).

Cílem údržby je zajistit, aby zařízení při efektivním vynaložení nákladů zůstalo v dobrém technickém a provozuschopném stavu. Management údržby má za úkol pomocí správné organizace a analýzy hmotných a finančních dat zajišťovat plynulou, spolehlivou a především rychlou údržbu strojů a zařízení (Voštová, 2002).

Cíle a úkoly údržby

1) Dostupnost a spolehlivost zařízení
2) Efektivní využití zdrojů
3) Dokumentace strojního zařízení a návody k obsluze
4) Pravidelná diagnostika a analýza technického stavu strojů a zařízení
5) Plán oprav a preventivní údržby
6) Management náhradních dílů
7) Plánování interních a externích kapacit a zdrojů
8) Dokumentace všech požadavků na opravy a jejich realizace
9) Zapojení do investiční a inovační politiky podniku
10) Facility management – správa budov a průmyslových areálů
Strategie údržby

V minulosti bylo oddělení údržby v podnicích vnímáno jako nedůležitý vedlejší útvar, který nákladově zatěžuje rozpočet podniku a který má za úkol pouze opravovat stroje tak, aby byly schopné vyrábět bezpečně a ekonomicky. Výkonnost údržby byla hodnocena podle toho, jak dokáže rychle analyzovat a odstranit poruchu. Mnohdy byla údržba vyčleňována, případně byly snížované přidělené rozpočty na údržbu, aniž byly zohledněné možné dopady a rizika.

V současné době se ve vyspělých firmách tato strategie mění a „údržba je jedním z významných procesů, které ovlivňují produktivitu výroby“ (Legát, 2013, str. 21).

Strategie a cíle údržby musí být naplánované a musí být v souladu se strategickými cíli podniku. Podle dnešního pohledu manažerů má údržba za úkol vedle oprav strojů také zvyšování jejich dostupnosti a spolupodílení se na dosahování stanovených cílů. Na vypracování strategie údržby by se měly podílet všechny útvary podniku, na jejichž fungování má údržba vliv. Před schválením strategie údržby je nutné, aby tento koncept akceptoval a schválil management podniku a přezkoumal dostupnost financí na jeho realizaci.

Strategický plán reaguje na výsledky analýzy a zaměřuje se na odstranění slabých stránek a využití příležitostí. V dalším kroku by měl podporovat využití silných stránek údržby, které povedou k minimalizaci rizik.

Součástí kompetencí údržby je její spolupodílení se na investiční a inovační strategii podniku. Vychází ze z toho, že údržba disponuje údaji o kondici a stavu využívaného majetku a strojů. V případě nákupu nových technologií se stává udržovatelem tohoto hmotného majetku a určuje potřebné náklady, které bude nutné vynaložit na zajištění správné činnosti po dobu životnosti zařízení. Údržba se spolupodílí na výběru typu a dodavatele nového zařízení tím, že vypracovává podklady k udržovatelnosti, spolehlivosti a možnostem diagnostiky zamýšleného stroje (Legát, 2013).

2.6 Hodnocení výkonnosti údržby

Primárním cílem každé organizace je dosažení zisku. Je proto nutné sledovat náklady, které je nutné vynákladat na údržbu strojů a zařízení. Mezi sledované náklady patří mzdy a platy zaměstnanců, náklady na náhradní díly, jejich skladování a další spotřební materiál, náklady na nářadí a zařízení potřebné
k provádění oprav, náklady na externě nakupované služby, náklady na prohlubování kvalifikace a náklady na energii a technické vybavení (Legát, 2013).

V případě údržby nelze přesně určit poměr mezi náklady a výnosy. Náklady mohou organizaci vzniknout i z důvodu snížení produktivity a efektivnosti zařízení, které mohou být zapříčiněné neplánovanými poruchami a snížením výkonu strojů. Vliv vynaložených nákladů v údržbě na odstranění poruch a prostoje lze změřit pouze velmi obtížně. Literatura uvádí, že přes 85% nákladů vynaložených na údržbu je skryto. Proto je mnohem smysluplnější sledovat ekonomicko technické ukazatele, jako je např. celková efektivnost zařízení (CEZ) neboli OEE z anglického označení Overall Equipment Effectiveness (Voštová, 2002).

Aby bylo možné správně stanovit proměnné, které slouží pro výpočet technické využitelnosti, bylo nezbytné pojmenovat a rozdělit možné ztráty. V první kategorii jsou prostoje, které vznikají vinou poruch strojů a z důvodu přeřizování strojů, nastavování parametrů a výměnou nářadí. Ve druhé kategorii jsou krátkodobé výpadky strojů a snížená rychlost zařízení z důvodu špatné funkce některých součástí. Třetí skupinu tvoří kvalitativní nedostatky způsobené procesními chybami, případně vadnými polotovary a nižší výkon zařízené při náběhu nové výroby a v období technologických změn.

Celková efektivnost zařízení nevypovídá pouze počtu a trvání poruch a prostoje, ale zohledňuje i další okolnosti, které mají vliv na efektivní provoz zařízení, jako jsou dostupnost zařízení, míra výkonnosti a úroveň kvality (Mašín, Vytlačil, 2000).

Hodnota OEE je nejčastěji používaným ukazatelem v průmyslových podnicích pro posouzení výrobní produktivity. Výsledek OEE se uvádí v procentech a udává využití normované kapacity zařízení. Uvádí se, že pokud OEE dosahuje 85% a více, pracuje stroj efektivně a spolehlivě.

Management podniků považuje koeficient OEE za velmi důležitý, pomocí jeho zvýšování chce dosáhnout lepších ekonomických výsledků. Vyšší hodnoty OEE lze teoreticky dosáhnout navýšením výroby, tedy snížením prostoju a poruch, efektivnějším využitím výrobních časů, zvýšením taktu, optimalizací procesů, zlepšením kvality a technologie výroby (Stern, 2011).
Vzorec pro výpočet OEE se dá odvodit takto:

OEE = Dostupnost zařízení x Výkon zařízení x Kvalita výroby x 100

Zdroj: vlastní zpracování dle www.leanproduction.com

Obr. 2 Celková efektivnost zařízení

K dalšímu porovnání výkonnosti údržby lze využít Benchmarking. Před použitím této metody je nutné stanovit kritéria, podle kterých se bude srovnání provádět. Tyto ukazatele jsou rozdělené do třech kategorií na technické, ekonomické a organizační. Nejčastěji se porovnává OEE, náklady na náhradní díly, prostoje, pracovní výkon, náklady na mzdy pracovníků, přesčasové práce a zásoba prací. Následně je nutné určit, se kterou firmou bude srovnání realizováno, může se jednat o nejlepší firmu v oboru, případně o přímého konkurenta. Informace jsou získávány sběrem dostupných informací z internetu nebo odborných časopisů, případně průzkumem a zjišťováním. Vyhodnocení zjištěných dat přináší nové podněty ke zlepšení výkonu a jakosti údržby (Helebrant, 2013).

2.7 Vývojové etapy údržby

1) **Reaktivní údržba** (Údržba po poruše) – stroje a zařízení jsou provozovány bez jakýchkoliv zásahů obsluhy a údržby. S opravou se začíná, jakmile nastane porucha nebo dojde k poškození stroje. Tuto metodu lze používat pouze u strojů, které mají pouze malý význam pro fungování celého
výrobního procesu. Reaktivní údržba neumožňuje zavést systematický proces údržby (Voštová, 2002).

2) **Preventivní údržba** – tento systém údržby spočívá v plánovaných činnostech, které vycházejí ze znalostí fungování strojů a jejich součástek a také na základě předpisů stanovených výrobcem stroje v jeho dokumentaci. Preventivní údržba se uskutečňuje na základě předem vypracovaného plánu prohlídek, oprav a renovací tak, aby se zamezilo výskytu neplánovaných poruch. V rámci těchto pravidelných činností se provádí obvyklé mazání, čištění a seřizování. Na základě provedených a naplánovaných prohlídek se opravují a vyměňují součástky a díly u kterých hrozí porucha (Valent, 2010).

3) **Prediktivní údržba** – má za úkol pomocí diagnostiky a monitorování strojů zavést taková opatření, které povedou k bezporuchovosti a bezporuchovosti a k prodloužení životnosti zařízení. Na rozdíl od preventivních prohlídek lze diagnostiku provádět i během provozu zařízení. V rámci této metody se k monitorování využívá vibrodiagnostika, infračervená termografie, ultrazvukové testování, analýza olejů a testování

Obr. 3 Historický vývoj charakteru údržby

1. **generace**
 - Rychlá oprava po poruše
2. **generace**
 - Vyšší pohotovost
 - Vyšší životnost
 - Nižší náklady
3. **generace**
 - Vyšší spolehlivost a pohotovost
 - Vyšší bezpečnost
 - Vyšší kvalita produkce
 - Nepoškozuje životní prostředí
 - Vyšší životnost zařízení
 - Vyšší efektivnost nákladů

Zdroj: vlastní zpracování dle LEGAT, V. a kol. Management a inženýrství údržby
elektromotorů. Na základě výsledků a analýz těchto pravidelně vykonávaných činností se stanoví další postupy a plány na odstranění závad nedostatků, a tím zamezit nepláновáným prostopášům. Prediktivní údržba je ve fázi zavádění finančně nákladná a její vykonávání kladé velké nároky na kvalifikaci personálu. Problém může spočívat také v tom, že údržba má k dispozici mnoho výsledků měření a faktů, se kterými ale neumí dále pracovat a neumí je analyzovat. Pro správné fungování je nutné, aby tuto metodu podporoval i management firmy (Roether, 2008).

Zdroj: vlastní zpracování dle www.volko.cz

Obr. 4 Vývojové etapy údržby

Organizační formy údržby

1) **Centralizovaná** – veškeré činnosti údržby v podniku jsou vykonávané jedním útvarem. Pracovníci údržby jsou organizováni do specializovaných skupin podle profesí. Přínosem takového uspořádání je soustředění veškerého know how na jednom místě, dobré technické vybavení dílen nářadím a zařízení. Nevýhodou tohoto systému je komplikovaná komunikace uvnitř oddělení a menší znalost svěřených strojů a zařízení.

2) **Decentralizovaná** – v případě této organizace údržby jsou pracovníci údržby podle své specializace zařazeni do jednotlivých výrobních útvarů. Výhoda této organizace spočívá v lepší znalosti zařízení a v lépe fungující komunikaci oproti centralizované formě. V případě tohoto uspořádání není snadné zajistit pracovníkům jednotné odborné vedení a také dostatečný přístup ke zdrojům, jako jsou náhradní díly, přípravky, nářadí a odborné informace.

3) **Kombinovaná** – jedná se o kombinaci centralizované a decentralizované organizace. Jejím uplatněním v praxi se dají využít pozitiva obou forem organizace údržby a naopak poskytuje možnost optimalizovat jejich nedostatky. Využívá se především ve velkých podnicích s rozsáhlou hloubkou výroby. Centralizované zůstávají důležité a odborné činnosti. Decentralizují se profese a činnosti, u kterých se předpokládá rychlá reakce a ty činnosti, kde se předpokládá detailní znalost zařízení a podmíněk provozu (Legát, 2013).
3 TPM ve firmě ŠKODA AUTO a.s.

Tato část bakalářské práce popisuje metodu TPM jako jeden z prvků výrobního systému firmy ŠKODA AUTO a. s., cíle programu TPM ve společnosti a jeho základní pilíře. Dále v této kapitole bude představena Centrální údržba v oddělení výroby komponentů, její organizace, zodpovědnosti a rozdělení činností. Hlavní část této kapitoly se věnuje zavádění metod TPM v oblasti výroby komponentů a zhodnocení fungování a přínosů produktivní údržby.

3.1 Profil společnosti

Společnost ŠKODA AUTO je jedním z největších strojírenských podniků v České republice a největší výrobce automobilů v zemi. Firma byla založena v roce 1895 a od roku 1991 patří do koncernu Volkswagen. Jediný akcionář společnosti ŠKODA AUTO a.s. je VOLKSWAGEN FINANCE LUXEMBURG S. A.

3.2 Výrobní systém Škoda, program TPM

Výrobní systém Škoda je soubor činností, principů a postupů, pomocí kterých jsou ve společnosti ŠKODA AUTO uplatňovány filozofie štíhlého podniku. Tento systém vychází z podnikových cílů, které jsou udržení konkurenceschopnosti, zajištění synchronní výroby se zaměřením na vytváření hodnot a neustálé zlepšování procesů. Štíhlý podnik se dle interního metodického pokynu zaměřuje na efektivnější, kvalitnější, snadnější a levnější výrobu. Na těchto cíchel se podílejí
všichni zaměstnanci společnosti. Zavádění, dohlížení na správné postupy a koordinaci všech souvisejících procesů má ve firmě ŠKODA AUTO na starost útvar VSI – Průmyslové inženýrství.

Realizace vytyčených cílů Výrobního systému Škoda je uskutečňována pomocí deseti základních stavebních prvků, které jsou zobrazeny v logu VSŠ.

Zdroj: VSŠ, prezentace 2011

Obr. 5 Základní stavební kameny Výrobního systému Škoda, logo VSŠ

Metody štíhlého podniku se v největší míře realizují pomocí organizované Kaskády KVP. Tato zkratka převzatá z německého Kontinuirlicher Verbesserungsprozess označuje plynulý proces zlepšování. Kaskády KVP mají za úkol pomocí organizace týdenních workshopů objevit zdroje plýtvání a navrhnout taková opatření, pomocí jejichž realizace dojde ke zlepšení (Prezentace VSŠ - Harmonizace s koncernovým výrobním systémem, 2011).

Jedním z metodických stavebních kamenů Výrobního systému Škoda je TPM. Interní podklady popisují tuto metodu jako souvislý proces, na kterém se podílejí všichni zaměstnanci a který má za cíl pomocí preventivní údržby zvýšit efektivní využívání strojů a zařízení, redukci výrobních nákladů, stálé eliminování zdrojů plýtvání a výrobních ztrát.

Totožně, jako literární zdroje užité v teoretické části této práce, je program TPM ve společnosti ŠKODA AUTO a.s. založen na 5 základních pilířích: snižování počtu poruch a zvyšování OEE, plánovaná údržba, autonomní údržba, vzdělávání zaměstnanců a prevence údržby (Prezentace Metodický stavební kámen TPM, 2013).
3.3 Výroba komponentů

Výroba komponentů je rozčleněna na jednotlivá oddělení podle výrobního portfolia, případně podle vykonávaných činností následovně:

Zdroj: Zpracované dle intranetových stránek Škoda Auto a.s.

Obr. 7 Organizační struktura - Výroba komponentů
Centrální údržba

Součástí technického servisu (VKT) je kromě procesní techniky, technické kontroly, technologie a servisu nářadí i centrální údržba, která má na starost přes tisíc stojů a zařízení v oblasti výroby komponentů, mimo hutních provozů. Oddělení centrální údržby čítá v současné době 160 pracovníků, z nichž je 117 mechaniků, zámečníků a elektrikářů a 43 zaměstnanců na technických pozicích, jako jsou elektronici, pracovníci diagnostiky, speciališti TPM, správce budov, nákupčí a mistři.

Organizace údržby v závodě má centralizovanou formu, tzn., že všichni údržbáři jsou seskupeni organizačně v jednom oddělení a toto oddělení provádí údržbu na všech strojích v závodě. Z důvodu vysoké komplexity zařízení ve VK je údržba členěna do 5 skupin podle specifikace strojů:

1) Montážní linky motorů a převodovek
2) Mechanické obrábění převodovkových dílů
3) Mechanické obrábění dílů pro motory EA 211
4) Mechanické obrábění dílů pro motory EA 111
5) Montáž náprav a tlumičových jednotek

Strategie údržby strojů je založena především na plánovaných preventivních činnostech, které jsou doporučené výrobci strojů v dokumentaci a také stále ve velké míře na opravě po poruše. Několik let na určitých skupinách strojů či v konkrétních výrobních střediscích je využíván a rozvíjen program TPM.

3.4 Zavedení TPM ve výrobě komponentů

Systém totálně produktivní údržby byl v závodě VK zaveden již na konci 90. let. Metoda TPM není ještě v současné době používaná ve všech výrobních střediscích ve výrobě komponentů. V následující kapitole bude podrobně popsán postup zavádění TPM v oddělení výroby převodovek.

1. etapa

V prvních krocích od zavedení tohoto systému bylo nutné definovat údržbářské činnosti, které se budou provádět. První úkol bylo prostudování kompletní dokumentace od každého stroje a vypsat jednotlivé body pro prevenci a inspekční
čištění obráběcích strojů. Postupně vznikl plán údržby pro konkrétní stroje, kde jsou vedle jednotlivých úkonů uvedené ještě četnosti a čas potřebný pro konkrétní činnost. Plán údržby je společný pro operátory výroby, údržbu, procesní techniku a případně externí firmy, které jsou najímané na komplexní čištění strojů, které je prováděno jednou ročně. Jednotlivé body byly pro přehlednost barevně rozlišené podle profesí, modré jsou pro operátory strojů, červené pro údržbu a zelené pro procesní techniku. Při zavádění tohoto projektu bylo potřeba vypsat činnosti pro TPM k cca 300 strojům.

Zdroj: Interní dokumentace ŠKODA AUTO a.s.

Obr. 8 Plán údržby stroje EMAG

Na základě plánů pro jednotlivé stroje byl vytvořen roční plán pro jednotlivá výrobní střediska a stanoveny termíny odstávky jednotlivých strojů pro provádění autonomní a preventivní údržby. Tento plán však nebyl mnohdy dodržován, termíny TMP-směn byly měněné podle operativních potřeb výroby.

Systém nebyl moc účinný vhledem k tomu, že jednotlivé činnosti prováděli pracovníci výroby a údržby odděleně. Evidence o provedených prevencích byly evidovány centrálně u vedoucích středisek. Operátoři výroby zapisovali ručně zjištěné závady do knih oprav. Závady byly odstraňovány se zpožděním, případně po mnoha urgencích. Hlavní cíle, tedy zvýšení efektivnosti strojů a pravidelná péče o stroje, nebyly naplněny. Zjištěné nedostatky nebyly zapracovány do plánů
TPM, nebyla zlepšovaná preventivní údržba. To mělo za následek pokles motivace pracovníků výroby. I přesto, že program TPM ve výrobě převodovek probíhal, zůstal zachován tradiční model, rozdělení zodpovědností na pracovníky údržby a obsluhy.

2. etapa

Pro druhou fázi, která byla nastartovaná během minulého roku, management stanovil cíl, zapojit pracovníky všech oddělení do TPM společně. Jako první úkol bylo nutné jmenovat koordinátora TPM pro celou oblast výroby komponentů, který má na starost standardizaci procesů a dohlíží na jejich dodržování. Ve druhém kroku bylo potřeba sestavit tým pracovníků z oblasti výroby, údržby a procesní techniky, kteří budou společně naplňovat cíle metody TPM. Tým ve výrobě převodovek je složen ze 3 stálých pracovníků výroby, 2 údržbářů, kteří se střídají podle své směnnosti a 18 pracovníků externí firmy, kteří mají na starost inspekční čištění a preventivní kontroly jednotlivých strojů. Třetí důležitý bod, před nastartováním tohoto programu, bylo vytvoření check-listů ke každému stroji.

Zdroj: Interní dokumentace ŠKODA AUTO a.s.

Obr. 9 Rozdělení strojů ve středisku 2142 na úseky
Práce na strojích, které jsou seskupené do jednotlivých úseků, se periodicky opakují vždy čtyřikrát ročně, dle předem stanoveného ročního plánu. Činnosti probíhají v ranní směně po dobu osmi hodin. Dva týdny před plánovanými odstávkami se provádějí prohlídky strojů za provozu a zjištěné závady se zapisují do check-listů jako požadavek na údržbu. To je velice důležité pro další organizaci oprav a včasné zajištění náhradních dílů.

Každý den ráno se u určených strojů schází pracovní skupina TPM. Tento stálý tým je vždy doplněn o obsluhu strojů, na kterých TPM právě probíhá. Tímto způsobem nastavený systém vyhovuje jak výrobě, tak i údržbě. Všichni přesně vědí, kdy a na kterém stroji bude TPM prováděně.

Dokumentace k TPM

Jednotlivé dokumenty a podklady vytváří koordinátor TPM společně s pracovní skupinou. Dokumenty jsou pravidelně zálohovány a aktualizované podle poznatků a zpětné vazby z probíhajících TPM-směn.

1) **Roční plán TPM** – rozdělení strojů do jednotlivých úseků. Stanovení termínu provádění TPM-směn. Za plán zodpovídá koordinátor TPM.

2) **Plán autonomní údržby** – návodka s fotodokumentací, která přesně popisuje, co a s jakou četností mají vykonávat pracovníci obsluhy strojů. Tyto plány jsou umístěné na každém zařízení. Za úplnost zodpovídá koordinátor TPM společně s mistrem výrobního střediska.

3) **Check-list** – v tomto dokumentu jsou předepsané preventivní prohlídky, které provádí údržba. Operátoři výroby společně s týmem TPM při prohlídce 14 dnů předem dopisují nedostatky nebo závady, které zjistili v průběhu výroby nebo při prováděné autonomní údržbě. Tyto závady jsou podle stanovených priorit odstraněné buď při následující TPM-směně, nebo v jiném, předem domluveném termínu. Check-listy jsou rovněž umístěné u každého zařízení. Plán preventivních prohlídek je stanoven na základě doporučení výrobce zařízení. Otevřené body a jejich odstraňování je projednáváno na pravidelných schůzkách týmu TPM.
Zdroj: Interní dokumentace ŠKODA AUTO a.s.

Obr. 10 Check-list, záznamy požadovaných a provedených oprav

4) **Soupis nevyřešených závad** – centrální evidence neodstraněných závad ze všech strojů. Seznam aktualizuje koordinátor TPM na základě informací z check-listů.

Organizace TPM

Velké množství strojů a úkolů, které jsou spojené s jejich údržbou, klade značné nároky na správnou a bezchybnou organizaci. Je proto nezbytné, aby se členové týmu TPM a ostatní pracovníci výroby a údržby pravidelně setkávali. Z tohoto důvodu jsou organizovány tři pravidelné schůzky:

1) **Koordinační schůzka TPM** – se koná jednou za dva týdny. Účastní se jí koordinátor TPM společně s mistrem údržby a zástupci jednotlivých výrobních středisek. Na setkání se vyhodnocuje úspěšnost provedených oprav a prevencí, zopakuje se, které body nebyly odstraněny. Jsou stanovené priority a je zpracován plán na odstranění poruch, které není
možné odložit do další TPM-směny. V případě potřeby jsou upravovány plány preventivních oprav v check-listech a plány autonomní údržby.

2) **Schůzka TPM týmu** – je organizovaná každý den. Cíl je, s čtvrtáctidenním předstihem, naplánovat program TPM v daném úseku. Zároveň se vytipují potřebné náhradní díly, které následně zajišťuje údržba. Plán je po vzájemém odsouhlasení rozeslán na všechny členy týmu.

3) **Zhodnocení TPM směny** – probíhá každý den po uskutečněním TPM. Členové týmu včetně externí firmy, která realizovala čištění, se navzájem informují o stavu strojů a o provedených pracích. Provádí se zpětná kontrola stanovených činností.

3.5 Analýza programu TPM v závodě VK

Jak bylo vysvětleno v kapitole 3.3, je program TPM založen na pěti základních pilířích. V této části práce bude provedeno srovnání těchto předepsaných činností.

Celková efektivnost zařízení

V oddělení výroby převodovek je sledování technické využitelnosti, neboli dostupnosti zařízení strojů a výpočet OEE prováděno pomocí systému Distis. V systému je ke každému stroji zadaný plán výroby, obsluha stroje pravidleně po každém směně vyplňuje počet vyrobených kusů a důvody nesplnění plánu jako jsou poruchy, výměna nářadí, přeseřizování stroje na jiný typ výrobku a prováděné TPM. Na základě vyhodnocení těchto údajů je proveden výpočet technické využitelnosti a OEE. Z vypočtených dat jsou vytvářené pravidlené měsíční a čtvrtletní reporty. Cíl technické využitelnosti na obráběcích strojích je stanoven na 96%. Pokud není cíl splněn, měla by údržba stanovit taková opatření, která povedou ke zvýšení.

Nastartováním 2. etapy programu TPM ve výrobě převodovek by mělo docházet k neustálemu zvyšování těchto ukazatelů. Protože tato etapa TPM probíhá teprve od konce loňského roku, nejsou přínosy TPM na zvyšování OEE ve výrobě převodovek zcela prokazatelné. Jak je vidět v následující tabulce, došlo ve středisku 2141 za první čtvrtletí letošního roku přesto ke zvýšení celkové efektivity zařízení.
Tab. 2 Vývoj OEE ve středisku 2141 – obrábění ozubených kol

<table>
<thead>
<tr>
<th>Období</th>
<th>OEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Q 2014</td>
<td>86,90%</td>
</tr>
<tr>
<td>1. Q 2015</td>
<td>87,20%</td>
</tr>
</tbody>
</table>

Zdroj: zpracováno na základě dat ze systému Distis

Autonomní údržba

Pro každé zařízení je zpracována návodka s fotodokumentací. Pracovníci výroby převodovek se postupně zapojují do plánovaných TPM směn a provádějí pravidleně denní činnosti dle stanoveného plánu. Přístup všech pracovníků k těmto činnostem a jejich nasazení nejsou ale ve všech střediscích stejné.

Plánovaná údržba

Zdroj: Interní podklady ŠKODA AUTO a.s.

Obr. 11 Vývoj závad ve výrobě převodovek v roce 2015 a jejich odstraňování
Program plánování pro nová zařízení

Do těchto činností není zapojen TPM tým, ale pouze zástupci jednotlivých oddělení samostatně. Pracovníci výroby a údržby se účastní technických jednání s výrobcí v období výběru a nákupu nových technologií. Dále se účastní také předpřejímek zařízení jak u dodavatelů, tak přejímek po instalaci zařízení ve firmě. Při rozhodování, který stroj koupit, má však ve velké míře prioritu cena. Podněty výroby a údržby mají na rozhodování velmi malý vliv.

Vzdělávání a trénink pracovníků

Firma ŠKODA AUTO má propracovaný systém vzdělávání svých zaměstnanců. Útvar ŠKODA Akademie pořádá pro pracovníky výroby i údržby odborné technické kurzy, na kterých jsou zaměstnanci zaškolování např. do základů elektroniky, hydrauliky, pneumatiky, ovládání robotů a obsluhy obráběcích stojů. Školení principů a procesů v rámci štíhlého podniku, jeho metody a praktické využití zprostředkovává útvar průmyslového inženýrství ve svém Lean Centru (Intranetové stránky firmy ŠKODA AUTO a.s., 2015).

I přesto, že existuje nabídka zúzných školení a na intranetových stránkách firmy je dostupné dostatečné množství informací o štíhlých procesech a o metodě TPM, není část zaměstnanců údržby a výroby informovaná o principech programu TPM a o jeho přínosech.

3.6 Návrhy na optimalizaci TPM

2) Rozšíření programu TPM i do ostatních středisek v rámci závodu VK – v současné době je rozšířené TPM, kterého se společně účastní výroba a údržba, relizované v oblasti obrábění převodovkových dílů a na lince obrábění bloků EA211. Pro ostatní střediska a oddělení je nutné nejprve
zmapovat všechny stroje, aktualizovat plány autonomní údržby a vytvořit check-listy pro plánované preventivní činnosti. Vzhledem k časové náročnosti všech úkolů navrhuji termínový plán, který je znázorněn na obrázku č. 12.

<table>
<thead>
<tr>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mech. obrábění převodovek</td>
<td></td>
</tr>
<tr>
<td>Bloky motoru EA211</td>
<td></td>
</tr>
<tr>
<td>Kalírna, tryskání</td>
<td></td>
</tr>
<tr>
<td>Klikové hřídele R4, EA211</td>
<td></td>
</tr>
<tr>
<td>Ojnice EA211</td>
<td></td>
</tr>
<tr>
<td>Hlavy EA211</td>
<td></td>
</tr>
<tr>
<td>Klikové hřídele R3 EA211</td>
<td></td>
</tr>
</tbody>
</table>

Zdroj: Vlastní zpracování

Obr. 12 Návrh termínového plánu pro zahájení programu TPM v dalších střediscích

3) **Proškolení zaměstnanců** – pro správné a úplné fungování programu TPM a jeho akceptování zaměstnanci je přínosné, vytvořit speciálně pro pracovníky oblasti výroby komponentů školení, na kterém budou seznámeni s organizací, fungováním a přínosy metody TPM.

4) **Audit TPM a zpětná kontrola** – poskytování pravidlených informací o stavu a fungování programu managementu VK. Provádění zpětné kontroly plnění naplánovaných činností, vyžadování důslednosti a zodpovědnosti od zaměstnanců. Zavedený systém pro určité době, např. po 6 měsících nechat posoudit pracovníky průmyslového inženýrství, nebo zaměstnanci jiného koncernového závodu. Pravidleně kontrolovat práci TMP týmu, dodržování standardů, technický stav a čistotu strojů.
Závěr

Záměrem bakalářské práce bylo podrobně charakterizovat metodu TPM jako jeden z nástrojů štíhlého podniku, popsat činnosti, které tato metoda využívá k naplnění cílů podniku, které jsou zvýšení efektivnosti strojů, produktivity, minimalizace prostojů a ztrát. Dalším cílem bylo popsat zavedení a fungování metody TPM ve firmě ŠKODA AUTO a.s., tyto informace analyzovat a stanovit doporučení, která by mohla vést k optimalizaci procesu TPM v oddělení výroby komponentů.

Bylo prokázáno, že pokud chce podnik dosáhnout stanovených cílů, musí být principy metody TPM integrované do všech oddělení společnosti. Cíle TPM musí být v souladu se strategickými cíli firmy a program musí být podporovaný managementem. Výsledky jsou dále závislé na dobré organizaci procesů, vytvoření podrobné dokumentace a na vzájemné spolupráci celého týmu.

Podstata TPM spočívá v tom, že naplánované činnosti jsou prováděné společně všemi zaměstnanci bez rozdílu, zda se jedná o pracovníci výroby či údržby.

Součástí práce jsou návrhy na optimalizaci TPM ve výrobě komponentů: stanovení zodpovědných pracovníků za TPM v jednotlivých střediscích, rozšíření programu TPM do dalších oddělení, školení pracovníků v oblasti TPM a provedení auditu procesů TPM a realizování pravidelných kontrol fungování programu.

Provedená analýza ukázala, že největší překážka při implementaci programu TPM do praxe je změna myšlení lidí a jejich přesvědčení o přínosech této metody. Je proto nutné, v rámci školení, lidem tuto metodu více přiblížit a vysvětlit její přínosy.

Přínosy TPM jsou především v lepším organizování a plánování činností, které vedou ke zvýšení efektivity zařízení a produktivity podniku. Zapojení zaměstnanců výroby do autonomní údržby zvyšuje kvalifikaci a motivaci pracovníků. Metoda TPM zavádí do organizace systém, který pokud bude důsledně a všemi pracovníky dodržován, přinese očekávané výsledky.
Seznam literatury

Seznam obrázků a tabulek

Seznam obrázků

Obr. 1 Potřebné změny na pracovišti ... 12
Obr. 2 Celková efektivnost zařízení .. 20
Obr. 3 Historický vývoj charakteru údržby ... 21
Obr. 4 Vývojové etapy údržby .. 22
Obr. 5 Základní stavební kameny Výrobního systému Škoda, logo VSŠ 26
Obr. 6 Pilíře TPM ve firmě ŠKODA AUTO a.s. ... 27
Obr. 7 Organizační struktura - Výroba komponentů ... 27
Obr. 8 Plán údržby stroje EMAG ... 29
Obr. 9 Rozdělení strojů ve středisku 2142 na úseky .. 30
Obr. 10 Check-list, záznamy požadovaných a provedených oprav 32
Obr. 11 Vývoj závad ve výrobě převodovek v roce 2015 a jejich odstraňování.... 34
Obr. 12 Návrh termínového plánu pro zahájení programu TPM v dalších střediscích .. 36

Seznam tabulek

Tab. 1 Procentuální vyjádření příčin prostořů SaZ .. 14
Tab. 2 Vývoj OEE ve středisku 2141 – obrábění ozubených kol 34
Seznam příloh

Příloha č. 1 Systém Distis – měsíční výpis... 42
Příloha č. 2 Plán autonomní údržby .. 43
Příloha č. 3 Soupis nevyřešených závad... 44
Příloha č. 1 Systém Distis – měsíční výpis
Příloha č. 2 Plán autonomní údržby

<table>
<thead>
<tr>
<th>Zařízení:</th>
<th>Pracoviště:</th>
<th>Sídelisko:</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUDERUS</td>
<td>Hnací hřídel</td>
<td>2141</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Popis činnosti - kontrolní body:</th>
<th>Čyklus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Kontrola výrobcem přednastavených tlaků</td>
<td>tři měsíce</td>
</tr>
</tbody>
</table>

Sledování odchylek od standardního stavu.

Závady ihned nablas!
Všechny závady z TPM

<table>
<thead>
<tr>
<th>Datum</th>
<th>Stroj</th>
<th>NS</th>
<th>Popis závady</th>
<th>Ter.odst.</th>
<th>Plán.od.stavka</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>poškozená izolace kabelu u délce</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>těžko hydrostatika - 1 a 2 upnutí</td>
<td>11.2</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>vyvětrání vřetení 1, upnutí</td>
<td>17.12</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>těžko olej (upínání) - 2 upnutí</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>vyvětrání kabeláže od délce</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>doplnit kyt dopravníku, vyn špon</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>doplnit clonu nad osou Q</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>údržba filtre šponohrubu</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>výměna pouzdra oto. stanice</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>výměna okna prac. Prostoru</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>únik oleje na upínání (gufero)</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>špatné otvírání dvoří</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>výměna vělečku ne vstupu</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>výměna tůmice</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>výměna vyhýbácká hadice</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -016</td>
<td>2141</td>
<td>výměna tlačítka</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>únik centrálního mazání</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>údržba těsných gum</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>výměna kabel u pickampu</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>výměna kabel od ventilu 38.2</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>doplnit clonu nad osou Q</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>5.1.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>údržba filtre šponohrubu</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>údržba filtre šponohrubu</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>výměna skla prac. Prostoru</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>výměna pistile prekladače (unik vzduchu)</td>
<td>27.4</td>
<td></td>
</tr>
<tr>
<td>27.4.2015</td>
<td>Emag 43312 -017</td>
<td>2141</td>
<td>oprava kabelu</td>
<td>27.4</td>
<td></td>
</tr>
</tbody>
</table>
ANO TAČNÍ ZÁZNAM

<table>
<thead>
<tr>
<th>AUTOR</th>
<th>Luděk Piesche</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDIJNÍ OBOR</td>
<td>6208R087 Podniková ekonomika a management obchodu</td>
</tr>
<tr>
<td>NÁZEV PRÁCE</td>
<td>Přínosy metody TPM ve ŠKODA AUTO a.s.</td>
</tr>
<tr>
<td>VEDOUCÍ PRÁCE</td>
<td>Ing. David Holman, Ph.D.</td>
</tr>
<tr>
<td>KATEDRA</td>
<td>KLRK - Katedra logistiky a řízení kvality</td>
</tr>
<tr>
<td>ROK ODEVZDÁNÍ</td>
<td>2015</td>
</tr>
<tr>
<td>POČET STRAN</td>
<td>44</td>
</tr>
<tr>
<td>POČET OBRÁZKŮ</td>
<td>12</td>
</tr>
<tr>
<td>POČET TABULEK</td>
<td>2</td>
</tr>
<tr>
<td>POČET PŘÍLOH</td>
<td>3</td>
</tr>
</tbody>
</table>

STRUČNÝ POPIS

Bakalářská práce se zaměřuje na objasnění metody TPM (Total Productive Maintenance), která je jedním z nástrojů štíhlých principů. Cílem práce je provést rešerší odborné literatury a provést srovnání s praktickým využíváním a implementací metody TPM ve firmě ŠKODA AUTO a.s.

V teoretické části práce je detailně popsaná metoda TPM, její hlavní pilíře, přínosy a cíle. Dále se tato část práce zaměřuje na činnosti oddělení údržby, její organizaci a historický vývoj údržbářských systémů.

V praktické části práce je podrobně zmapováno fungování programu TPM v oblasti výroby komponentů ve firmě ŠKODA AUTO a.s., je též provedena analýza základních pilířů TPM. Součástí práce jsou vlastní doporučení na optimalizaci TPM.

KLÍČOVÁ SLOVA

TPM, štíhlý podnik, ŠKODA AUTO a.s., údržba, totálně produktivní údržba, produktivita, efektivnost, OEE

PRÁCE OSAHUJE UTAJENÉ ČÁSTI: Ne
ANNOTATION

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>Luděk Piesche</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIELD</td>
<td>6208R087 Business Management and Sales</td>
</tr>
<tr>
<td>THESIS TITLE</td>
<td>The contributions of the TPM method in ŠKODA AUTO a.s.</td>
</tr>
<tr>
<td>SUPERVISOR</td>
<td>Ing. David Holman, Ph.D.</td>
</tr>
<tr>
<td>DEPARTMENT</td>
<td>KLRK - Department of Logistics and Quality Management</td>
</tr>
<tr>
<td>YEAR</td>
<td>2015</td>
</tr>
<tr>
<td>NUMBER OF PAGES</td>
<td>44</td>
</tr>
<tr>
<td>NUMBER OF PICTURES</td>
<td>12</td>
</tr>
<tr>
<td>NUMBER OF TABLES</td>
<td>2</td>
</tr>
<tr>
<td>NUMBER OF APPENDICES</td>
<td>3</td>
</tr>
</tbody>
</table>

SUMMARY
The bachelor work focuses on the clarification of the TPM method (Total Productive Maintenance), which is one of the tools of the lean principles.

The work objective is to make the research of the professional literature and to make a comparison with the practical use and the implementation of the TPM into the ŠKODA AUTO company.

The theoretical part of the work describes the TPM in detail, its main pillars, contribution and aims. Another part of the work focuses on the activities of the maintenance dept., its organization and the historical development of the maintenance systems.

The practical part of the work describes the function of the TPM program in the component’s production in ŠKODA AUTO, the analysis of the main TPM pillars are also made. The own recommendations for the TPM are included in the work.

KEY WORDS
TPM, lean factory, ŠKODA AUTO a.s., Total productive maintenance, productivity, efficiency, OEE

THESIS INCLUDES UNDISCLOSED PARTS: No