
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF ELECTRICAL ENGINEERING 
AND COMMUNICATION 
DEPARTMENT OF RADIO ELECTRONICS 
F A K U L T A E L E K T R O T E C H N I K Y A KOMUNIKAČNÍCH 
TECHNOLOGIÍ 
ÚSTAV RÁDIOELEKTRONIKY 

PROBABILISTIC NEURAL NETWORKS FOR SPE­

CIAL TASKS IN ELECTROMAGNETICS 
P R A V D Ě P O D O B N O S T N Í N E U R O N O V É S Í T Ě P R O S P E C I Á L N Í Ú L O H Y V E L E K ­

T R O M A G N E T I S M U 

DISSERTATION THESIS 
D I S E R T A Č N Í P R Á C E 

AUTHOR: Ing. Vlastimil Koudelka 
A U T O R P R Á C E 

SUPERVISOR: prof. Dr. Ing. Zbyněk Raida 
V E D O U C Í P R Á C E 

B R N O , 2014 



A C K N O W L E D G E M E N T S 

The work described in this thesis has received fund­

ing from E C F P 7 under grant no. 205294 (the HIRF 
SE project). 
Further financing was provided by the Czech Min­

istry of Education (the grant no. 7R09008). 

SEVENTH FRAMEWORK M I N I S T E R S T V O Š K O L S T V Í . 
PROGRAMME M L Á D h Ž b A I b _ C V v G H C V v 

i i iSIX 
^ • ^ • ^ B research centre 
sensor, information and communication systems 

The described research was performed in labora­

tories supported by the SIX project; the regis­

tration number CZ.1.05/2.1.00/03.0072, the oper­

ational program Research and Development for In­

novation. 

EVROPSKÁ UNIE 

EVROPSKÝ FOND PRO R E G I O N Á L N Í ROZVOJ 

INVESTICE DO VAŠI BUDOUCNOSTI OP V ý z k u m a vývoj 
pro inovace 

A support of the project CZ.1.07/2.3.00/20.0007 Wireless Communication Teams financed 
by the operational program Education for Competitiveness is also gratefully acknowledged. 

evropský 
sociální 
fond V ČR EVROPSKÁ UNIE 

INVESTICE DO ROZVOJE VZDĚLÁVÁNI 



A B S T R A C T 
The thesis deals with behavioural modelling techniques capable solving special tasks 
in electromagnetics which can be formulated as approximation, classification, proba­

bil i ty estimation, and combinatorial optimization problems. Concept of the work lies 
in applying a probabilistic approach to behavioural modelling. Examined methods 
address two general problems in machine learning and combinatorial optimization: 
"bias vs. variance dilemma" and N P computational complexity. The Boltzmann ma­

chine is employed to simplify a complex impedance network. The Parzen window is 
regularized using the Bayesian strategy for obtaining a model selection criterion for 
probabilistic and general regression neural networks. 

K E Y W O R D S 
behavioural modelling, Boltzmann machine, combinatorial optimization, impedance 
network simplification, Bayesian regularization, probabilistic neural network, general 
regression neural network 

A B S T R A K T 
Tato práce pojednává o technikách behaviorá ln ího modelování pro speciální úlohy 
v elektromagnetismu, které je možno formulovat jako prob lém aproximace, klasi­

fikace, odhadu hustoty pravděpodobnos t i nebo kombinator ické optimalizace. Zk­

o u m a n é methody se dotýkaj í dvou základních problémů ze strojového učení a com­

binatorické optimalizace: "bias vs. variance dilema" a N P výpoče tn í komplexity. 
Bol tzmanův stroj je v práci navržen ke zjednodušování komplexních impedančních 
sítí. Bayesovský p ř í s tup ke s t rojovému učení je upraven pro regularizaci Parzenova 
okna se snahou o vytvoření obecného kr i tér ia pro regularizaci pravděpodobnos tn í a 
regresní neuronové sítě. 
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P D F Probabil i ty Density Function 

P N N Probabilistic Neural Network 
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R B F Radia l Basis Function network 

S A Simulated Annealing 



S S E Sum Squared Error 

T E Thermal Equi l ibr ium 

T M Touring Machine 

T S P Travelling Salesman Problem 



Symbols 

a(L,T) quasi-stationary distribution 

A acceptance probability 

bi the z-th neuron bias 

C consensus function 

E system energy function 

(E) mean value of the system energy 

fk frequency assigned to the fc-th impedance sample 

G generation probability 

Nq(T) parti t ion function 

0 objective function 

01 the z-th pseudo-objective function 

P transition matrix 

q(T) stationary distribution 

T temperature - control parameter 

tu a maximal running time of the Touring machine 

Wij synaptic connection weight 

X state vector 

Yeq equivalent admittance of an impedance network 

Yeq equivalent admittance of reduced impedance network 

Zeq equivalent impedance of an impedance network 

Zeq equivalent impedance of reduced impedance network 

a reduction coefficient 

^nopt(k) function identifying optimal solutions 

e maximal quasi-stationary distribution deviation 

^s{Zij(fk)} imaginary part of the fc-the frequency sample 
of the z-th impedance network element characterized 
by the j-th. impedance pattern (access) 



real part of the fc-the frequency sample 
of the z-th impedance network element characterized 
by the j-th. impedance pattern (access) 

a smoothing parameter 

X acceptance ratio 

n set of all Bol tzmann machine states 

^opt set of all optimal states 

V set of training patterns 
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C O N T E N T S 

1 Introduction 

A t present, vir tual electro-magnetic compatibility ( E M C ) testing becomes to be 
seriously employed by E M C community. Commercial aspects force developers to 
simulate more and more complex structures like cars or aircrafts. O n the other 
hand, extreme complexities of such systems obviously result in unbearable high 
computation demands. A possible solution to the problem lies in dividing given 
super-complex domain onto the several coupled sub-domains, each one worked out 
by a particular efficient method. Such sub-domains can be represented by problems 
like electromagnetic ( E M ) wave incidence on an aircraft, E M coupling between ex­
ternal environment and aircraft fuselage, E M field distribution inside the fuselage, 
calculation of induced currents in cables, cable structure modelling, or electronic 
equipment simulation on circuit level. 

This approach makes possible to address the crucial sub-domains and search 
alternative solutions which would not be applicable on the whole super-complex do­
main. Behavioural modelling takes an important part in this growing approach due 
to its versatile applicability and efficiency A behavioural model can learn behaviour 
of a particular sub-domain (e.g. shielding effectiveness of composite material), can 
act as a coupling device (e.g. estimation of the transfer function of aircraft fuse­
lage), enables to estimate the probability of occurrence of an observed quantity (e.g. 
dangerous level of field intensity), can classify material structures, or systematically 
simplify a complex system according to its external behaviour (e.g. impedance net­
work simplification). A l l mentioned tasks can be formulated as one of the following 
problems: approximation, probability density estimation, classification, and com­
binatorial optimization. This kind of special E M tasks can be performed using a 
probabilistic approach to machine learning and combinatorial simplification, what 
is the scope of the thesis. 

Various applications of the neural networks and combinatorial optimization in 
E M have been published by the author in [1] - [4]. The present work is focused 
rather on extending theoretical background of the published approaches than illus­
trating all possible applications of the neural networks. The concept of the thesis 
lies in applying the probabilistic approach to behavioural modelling. The crucial 
questions like "bias vs. variance dilemma" in machine learning or non-deterministic 
polynomial time (NP) computational complexity in combinatorial simplification are 
addressed, discussed and possible solutions to the problems are proposed. 

Basically, the thesis can be divided onto two particular parts. The first part 
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1.1. S T A T E O F T H E A R T 

can be assigned to the circuit level domain. It deals wi th simplification of a complex 
impedance network using a stochastic neural network called the Bol tzmann machine 
( B M ) . The main purpose is to simplify an equivalent circuit and simultaneously 
maintain its external behaviour (e.g. equivalent impedance). A n impedance network 
simplification problem is analytically mapped onto the B M which is capable to solve 
the combinatorial problem very efficiently The motivation is to map more versatile 
equivalent circuits to be simplified by the B M . 

The second part covers approximation, classification and kernel density esti­
mation problems. Thus, it should cover the reminder of the special tasks. In all 
of the mentioned problems the "bias vs. variance dilemma" is addressed since it 
strongly influence reliability (generalization) of the models. More specifically, the 
Parzen window is under the scope of the second part of the thesis since it is the core 
of the probabilistic ( P N N ) and general regression neural networks ( G R N N ) . De­
veloped model selection criterion based on Bayesian framework incorporates model 
fitting, generalization, regularization, and structural change in the probabilistic neu­
ral model. 

1.1 State of the art 

Apply ing artificial neural networks (ANNs) in E M C issues is narrowly focused disci­
pline exploiting high computational performances of parallel systems which are built 
in accordance with the structure of the human brain. In open literature, one can not 
find many publications related to this topic. However, exploitation of A N N s in the 
E M C has been already described in several papers. In [6] and [7], the multi-layer 
perceptron ( M L P ) was used to extrapolate signals calculated by a finite difference 
time domain method in order to reduce computing costs of the E M C simulations. 
A method based on M L P used for prediction of electromagnetic fields radiated by 
generators of electrostatic discharges was presented in [8]. In [9], inverse neural 
modelling was used for identification of the parameters of metallic walls, a radial 
basis function ( R B F ) network was applied in order to solve the inverse problem. 

Publications pointed above showed that neural networks are capable to solve 
real E M C problems formulated as an extrapolation, approximation or inverse prob­
lem. However, regarding to the probability based neural networks and their appli­
cations the key work has been done in different research fields. 

1.1.1 Combinatorial computation 

As mentioned in the introduction, impedance network simplification lies in searching 
a reduced network exhibiting similar behaviour like the original one. The idea is 
based on two following assumptions: 

• W i t h i n the impedance network (a complex E M structure), several dominat­
ing elements mainly influence the total current flowing through the network 
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1.1. S T A T E O F T H E A R T 

(external behaviour) so that particular minor elements can be omitted. 

or 

• Pairs of elements influencing the total current can compensate each other so 
that the pairs can be omitted. A s well as pairs, more complex impedance 
network (IN) substructures can also be omitted wi th negligible change in the 
total current. 

Assumptions pointed above imply that impedance network simplification is 
an combinatorial problem. A s wi l l be discussed later, reducing I N complexity be­
longs to a class of N P (non-deterministic polynomial time) problems. Thus, it is 
essential to address the last main contributions in combinatorial optimization. 

Definitions of polynomial time (P) and non-deterministic polynomial time 
(NP) classes can be found in [10] where the P =? N P question is also formu­
lated. In simple words, the P class consists of the problems which can be solved by 
Turing deterministic machine ( T M ) in polynomial time (see Appendix of [10]). A 
problem is solved in polynomial time if a running time of the Turing machine tu 
satisfies 

for arbitrary k, where the n is the number representing the problem size (e.g. the 
number of the elements inside the IN). The N P class consist of the problems which 
can be solved in polynomial time by non-deretministic machine (e.g. Bol tzmann 
machine). 

Basically, there are three possible ways to tackle the N P complexity [11]: 

• The enumerative method is the most t r ivial solution to a combinatorial prob­
lem and consumes a huge amount of computational time. O n the other hand, 
it always returns exact solution to the problem. In the fact, the enumerative 
method is the extreme case of local search approach described in [12]. 

• A n approximation approach lies in substituting the original problem by similar 
one which can be solved in polynomial time. Suitable algorithms can gua­
rantee good agreement between approximated solution and the original one. 
The main disadvantage is that each approximation algorithm specialises on a 
particular problem (e.g. Travelling salesman problem) and it is no longer valid 
for other problems. Theoretical background for approximation algorithms can 
be found in [13]. 

• The last way is to employ a non-deterministic algorithm based on local search 
technique. Typica l and well known members of this class are genetic algo­
rithms (GA) [14] and simulated annealing (SA) [15]. Such stochastic algo­
rithms asymptotically approach the global optimum. The main advantage of 
the stochastic approaches is their versatility and wide applicability. We can 
benefit from this quality and obtain the method solving various simplification 
problem instances. 
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1.1. S T A T E O F T H E A R T 

The first neural network solving NP-complete problem called travelling sales­
man (TSP) , formally "the second order assignment problem", was invented by Hop-
field and Tank [16] in 1985. Hopfield and Tank proposed how to map constrained 
optimization problem onto the Hopfield neural network (HNN) also called the Hop-
field machine ( H M ) . Appropriate inspection of H M performance was done by Wilson 
and Paw ley [17] who found that the deterministic H M is not suitable for problems 
having a real-world scale. Constrains of H M are caused by two following statements: 

• The H M searches a solution space in a local gradient manner which causes 
that the H M can stack in local optimum with poor performance. 

• If a combinatorial problem scale reaches an upper limit of the H M , energy 
function degrades and several artificial minima occur. The H M energy function 
no longer substitutes the objective function of the combinatorial problem. In 
[18] the H M ineffectiveness was explained in sense of aliasing. 

Regarding to the first point, several improvements of the original H M has been 
proposed. In [19] and [20] external noise is injected into the network in order to 
escape from the local minima. A neuron model wi th chaotic dynamics was invented 
in [21] to improve the original deterministic concept. Al though the performance 
of H M solving T S P was increased, parameters of additional noise and its influence 
on the network convergence was not proved properly. The second problem stated 
above always occurs due to the basic structure of H M (see [18]). 

Whi le the H M is naturally deterministic algorithm (each state of H M is fol­
lowed by exactly determined next state) the Bol tzmann machine ( B M ) is naturally 
stochastic neural network (each state can be followed by a finite number of next 
states having various probabilities of transitions). In contrast with H M , the B M 
inspired by statistical physics settles in global minimum of system energy function 
E if the B M is properly simulated. Naturally, stochastic B M doesn't need any ex­
ternal noise to be injected and the network convergence can be clearly investigated. 
It is due to stochastic neuron model used in B M architecture: 

P [ k { i ) = m i ) = 0 } = _ L _ ( 1 . 2 ) 

Here the P{k(i) = l\k(i) = 0} means the probability of transition if the i-th neuron 
output is changed from the value 0 to the value 1, while AE denotes related the 
change in system energy E. Symbol T denotes the system temperature which is 
taken form statistical mechanics [22]. A temperature T can be understood as a 
control parameter of logistic function providing probabilistic activation function of 
the B M neuron. 

The key work related to the B M in combinatorial optimization have been done 
by Aarts and Korst . The most important publication [15] proofs convergence of 
the S A method and deals wi th convergence of B M with optimal cooling schedule. 
In [23] Aarts and Korst proposed the B M as a parallel variant of S A [24] which is 
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1.1. S T A T E O F T H E A R T 

naturally sequential process. In [24] the connection between statistical mechanics 
and combinatorial optimization was clarified. 

The B M was applied to solve T S P in [25]. Further practical investigation of B M 
was published in [26] where the B M was used to solve block placement problem, 
which belongs to NP-complete class. In [27] the B M was employed to solve another 
NP-complete problem: the problem of satisfiability [28]. 

Dealing wi th B M optimizers several following issues should be addressed: the 
mapping problem, the cooling schedule, and the updating scheme problem. Since 
the I N simplification task is to be solved by the Bol tzmann machine the mentioned 
issues have to be addressed. The objective function of simplification task O has to 
be formulated in terms of the B M energy function E [29]. The question how to map 
simplification problem onto the network has to be answered and cooling schedule 
for annealing process [15] has to be properly chosen. Finally, the updating scheme 
should be investigated to guarantee the convergence of B M . In the key work [15], the 
issue of B M parallelism is briefly discussed. It was proposed to distinguish between 
limited and unlimited parallelism. The conclusion of [15] still motivates to further 
investigation of B M convergence properties [30]. 

1.1.2 Probabilistic neural network 

The probabilistic neural network (PNN) originally invented by D . F . Specht [31] 
in 1990 has been recently investigated in power delivery issues. In [32], [33], and 
[34] the P N N was used directly and P N N smoothing parameter was experimen­
tally adjusted. In [35] the smoothing parameter was adjusted by particle swarm 
optimization (PSO) technique improving the P N N accuracy. In [36] fuzzy c-means 
( F C M ) clustering method was used to determine a finite number of desired classes for 
P N N model definition. P N N s where compared wi th M L P and R B F neural networks 
which exhibit lower accuracy in these applications. Further investigation of the 
P N N performance was done in recently published paper [37], where the neural net­
work approach was compared with Hidden Markov Model-based ( H M M ) method 
and decision tree (DT) classifier. 

Mentioned applications usually implement the original concept of P N N pro­
posed by Specht. The original P N N classifier operates on the basis of the Bayesian 
decision strategy (an average risk of misclassification is minimized). Since proba­
bili ty density functions (PDFs) of the classes are unknown, probabilistic functions 
have to be estimated from the training set. The core of P N N is the Parzen P D F 
estimator known as the Parzen window. 

The main disadvantage of methods employing the original approach is a huge 
number of the Gaussian kernels (hidden neurons) used for the P D F estimation which 
causes computational inefficiency. Dealing with this issue, several papers in neural 
journals were published. The letter [38] direcly responding to the [31] emphasized 
mentioned disadvantage of the original P N N and proposed possible solution employ­
ing cluster technique. The learning vector quantization (LVQ) used in [38] requires 
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1.1. S T A T E O F T H E A R T 

preliminary definition of desired number of clusters. The optimal number of clus­
ters remains unknow as well as the optimal value of smoothing parameter. In [39] 
advanced training technique defining both the number of pattern units (hidden neu­
rons) and the optimal smoothing parameter was proposed and directly compared 
wi th [38]. The algorithm developed in [39] exhibited better classification and sim­
plification performances in comparison with [38]. The genetic algorithm ( G A ) was 
employed to adjust the smoothing parameter. Obviously, employing global opti­
mization methods can dramatically increase computation time required for precise 
network training. The impact of G A on the total computational time was not in­
vestigated in [39]. The most promising contribution [40] exploited deterministic 
approach to clustering problem proposed by Berthold and Diamong in [41] to avoid 
computationally expensive global optimization. The algorithm utilized adjusting 
each Gaussian kernel variance individually to continually cover the whole input 
space by reduced number of hidden neurons (Gaussian kernels). O n the other hand, 
papers [40] and [41] consider symmetric multi-scale Gaussian kernels which disabled 
an adaptive normalization of the input-space proposed by Specht in [42]. 

To conclude this section, recent publications [32]-[37] are mostly aimed to ap­
plying the P N N s . However, one can find a lack of advance methods proposed in 
many neural journals pointed above. Consequently, the developed applied models 
are not validated in a proper way. In most cases the number of testing patterns is 
smaller than the number of the training ones which does not allow a proper model 
validation. 

O n the other hand, theoretical papers [38]-[42] deal wi th specific problems 
related to the P N N separately. Each contribution proposes its original point of view 
which usually doesn't cover the functionalities of the other papers (i.e. methods [41] 
and [42]). 

It is essential to develop a robust training approach to the P N N providing 
probabilistic modelling of complex electromagnetic ( E M ) structures. Investigated 
methodology should also examine a validation procedure of developed models and 
discuss computation demands of developed training an selection algorithms. We 
argue that a clustering technique has to be connected wi th sufficient kernel width 
estimator and visa-versa since both of the tasks deal wi th model complexity and 
contributes to the model bias and variance [44] in the similar way. For such a 
complex approach we can see a lack of suitable criterion which can evaluate models 
having various numbers of the neurons and different kernel widths. 
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1.2. O B J E C T I V E S 

1.2 Objectives 

The purpose of this section is to formulate the main work objectives and also to 
summarize all challenges resulting from the investigated problem. 

Dealing wi th simplification task, the first objective results from the fact that 
there is no general method how to map combinatorial problems onto B M . 

Objective 1 

The impedance network simplification has to be formulated in accordance 
to the Boltzmann machine energy function E and appropriate mapping 
method O —> E has to be developed. 

Generally, the cooling schedule has to be chosen properly according to a par­
ticular problem. Since the B M was intended for efficient simulation of annealing 
process known from statistical mechanics, the parallel implementation influencing 
the B M dynamics should be studied. 

Objective 2 

The methodology of cooling schedule definition and suitable updating scheme 
have to be developed to guarantee the BM convergence to the closely op­
timal solution. 

Regarding to probabilistic modelling, it is essential to decrease the number of 
hidden neurons and increase the performance both the P N N and G R N N models 
(see section 1.1.2). A clustering technique has to be connected wi th sufficient kernel 
width estimator and visa-versa since both of the tasks deal with model complexity 
and contribute to the model bias and variance in the similar way. 

Objective 3 

An accurate PDF estimation has to be implemented in PNN and GRNN 
to increase their accuracy and computational efficiency. 

The last objective is to evaluate probability-based neural networks in a proper 
way. 

Objective 4 

The proper validation technique has to be developed to measure qualities 
of stochastic neural optimizers and probabilistic neural approaches. 
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2.1. M A P P I N G S T R A T E G Y 

2 Mapping problem 

2.1 Mapping strategy 

As mentioned above, a combinatorial problem has to be mapped onto the neural 
network so that the neural network state related to the highest system energy E 
equals the problem solution. Note that the Bol tzmann machine maximizes its en­
ergy function and its maximum has to be related to the minimum of the objective 
function. One should distinguish between the training of a feed forward neural net­
work and a mapping problem. In Figure 2.1 a scheme of an impedance network 
simplification task (top) and a scheme of the B M (bottom) can be seen. 

Firstly, the combinatorial problem in hand has to be defined. Each cable from 
the bundle in Figure 2.1 is characterized by input impedance of a circuit (access) 
interfacing the aircraft electronic equipment. Let us suppose, that these impedances 
Zij mainly influence the total current Ic flowing through the bundle. Than, each 
i - t h cable is connected wi th one of the accesses identified by symbol j in Figure 2.1. 
In this approximative form, input impedances interfacing the bundle (accesses) form 
impedance network (IN) which describes a particular cable bundle configuration so 
that the cable bundle simplification can be formulated as an impedance network 
simplification problem (see Figure 2.1): 

0(Zeq, Zeq. r,a) = ar + SSE(Zeq,Zeq). (2.3) 

Here, we have to minimize a number of elements r appearing in the reduced 
I N characterized by an equivalent impedance Zeq. Simultaneously, a sum squared 
error (SSE) between equivalent impedances Zeq and Zeq representing original and 
reduced networks has to be minimized. Zeq and Zeq are vectors each one containing 
K frequency samples of equivalent impedances whose derivation is described later. 
Since these two criteria are obviously conflicting, the coefficient a is proposed to 
balance the objectives. 

Secondly, the B M machine is required to have exactly the same number of 
neurons L as the number of elements in the I N . Each input impedance Z j j is repre­
sented by an individual binary neuron in the B M . If the neuron is "on", the related 
element appears in a simplified bundle; if the neuron is "off", the related element is 
omitted. This is the proposal how to represent an I N using the Bol tzmann machine. 
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2.1. M A P P I N G S T R A T E G Y 

I n j e c t e d c u r r e n t B u l k c u r r e n t 
measurement i n j e c t i o n 

Figure 2.1 Schematic description of the mapping problem 

A n I N simplification task has to be encoded into the B M via the network 
weights Wij. In order to provide this mapping the system energy function of the 
B M has to be defined. The system energy E{k) is a monotony increasing function of 
the B M neuron states k changing in time. From an analogy wi th thermodynamics, 
the energy function of the B M can be expressed as follows [22] 

L L 

i=l j=l 
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2.1. M A P P I N G S T R A T E G Y 

where Wij is the symmetric connection weight between the z-th and j—th neuron, 
k(i) is the output of the z-th binary neuron, and L is the number of neurons. 
A network bias is represented by weight Wij if % = j. The system energy E{k) is in 
area of neural networks called consensus function and its usually denoted by C(k). 

Since the mapping problem is based on the equality E = —0,the cost func­
tion of the I N simplification problem has to be defined. In the following formula­
tion we assume that particular access impedance is represented by two functions 
of frequency: the real $t.{Zitj(fk)} and the imaginary ^s{Zij(fk)} parts. Than the 
equivalent impedance for each frequency sample Z(fk) can be simply calculated: 

Here k denotes the number of the impedance frequency sample. Notice that in (2.5), 
values of the access identifier j define the aircraft equipent configuration. In other 
words, the symbol j assigns an impedance characteristic to a particular I N element. 

Since the objective is to reduce I N complexity some criteria evaluating the per­
formance of a particular solution to the problem (particular state of the B M ) have 
to be defined (see (2.3)): 

• Since our first objective is to simplify impedance matrix complexity the first 
criterion is the number of elements r in the impedance network. 

• The second objective is the I N model accuracy which is represented by the 
mean squared error (MSE) between reduced equivalent impedance Zeq and 
the original one Zeq over all frequency samples fk. 

W i t h respect to both of the criteria pointed above, one can express objective 
function O in such a way as to obtain all of the B M weights from the equality 
E = —O. This task is called the mapping problem. 

To conclude this introduction to mapping strategy, the simplification task is a 
combinatorial optimization problem having the following characteristics: 

• In general, all of the configurations of reduced I N are allowed. Thus, we are 
dealing with an unconstrained optimization problem. 

• The criteria pointed above are obviously conflicting. The simplification prob­
lem is naturally multi-criterial. 

• From the computational complexity point of view, it belongs to the class of 
N P problems because the running time of the Turing machine tu is rather 
an exponential function of problem complexity L (number of elements in the 

(2.5) 

I N ) : i M = 2 L (see (1.1)). 
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2.2 Mapping procedure 

The mapping approach is based on the derivation of connection weights of the Boltz-
mann machine from the objective function defining a simplification problem. If 
proper mapping is provided the energy function of the Bol tzmann machine is called 
order-preserving and satisfies the following condition: 

Vk,leQ: E{k) > E(l) => 0{k) < 0(1). (2.6) 

Here k and / denote two states of the Bol tzmann machine belonging to the set of 
all possible B M (Boltzmann Machine) states Q. Since, the state of the B M directly 
defines a configuration of reduced I N the objective function O can be evaluated 
directly as it is on the right side of expression 2.6. 

In order to provide sufficient mapping, the objective function (see (2.3)) has 
to be more precisely defined. For that propose, let us define a binary vector X = 
{xi,x2, • • -xn}T identifying omitted elements. Simultaneously, let us consider that 
equivalent admittances Yeq and Yeq are used instead of impedances to simplify (2.5) 
to sum the Yitj(fk) samples. Then, the objective function defined by equation 2.3 
can be rewritten into the form suitable for our mapping strategy: 

2 

0(X,a) = ^2[^2x^{Yitk}-^2^{Yitk} 
k=l 

SSE over the real parts 

+ f 2 ( i ^ x M Y ^ } - ^ { Y ^ } ) (2-7) 
k=l \i=l i=l J 

SSE over the imaginary parts 
L 

+ a ^2 xi 
i=l 

degree of reduction 

Here, K is the number of frequency samples, symbol L denotes the number of I N 
elements and X{ states as the activator of the z-th I N element. The symbol j is 
an index pointing onto a particular load impedance from a bank of possible loads. 
It is obvious, if the vector X consists of ones, the SSE wi l l be zero, while the 
last term in (2.7) (a reduction criterion) reaches its maximum value and visa-versa. 
Thus, the proposed equation (2.7) satisfies our requirements defined in (2.3) and it 
is simultaneously suitable for transformation in (2.4). Furthermore, due to the form 
of equation 2.7, we avoid complex numbers which cannot be dealt by the Bol tzmann 
machine. 

The following part of this chapter is focused on the exact derivation of the 
B M weights from the formulated objective function O. In order to describe our 
mapping strategy in a transparent way three pseudo-objective functions O1-O3 wi th 
increasing level of generality are defined: 
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First , only one frequency sample of each I N element is assumed (K = 1) 
and only the imaginary part S { Y i } of each I N element is taken into account. 
Since the function 0\ involves no reduction criterion it doesn't represent a 
simplification task. However, it is a good starting point for the mapping 
procedure. Let us define the first pseudo objective function as follows: 

O i 

\ 

i=l 

\ 

(2.8) 

7 
where constant c denotes a negative value of the imaginary part of the original 
matrix equivalent admittance. 

In the second step, only the reduction criterion is added. Notice that, in spite 
of this simplification the pseudo-objective function O2 could lead to simplified 
I N since the imaginary parts of Y$ can both vanish. Obviously, I N would be 
simplified according to the only one frequency sample observation. 

0-2 

\ 

i=l i=l 

\ 

(2.9) 

7 
The third pseudo-objective function 0 3 extends function O2 such that the K 
frequency samples are incorporated: 

/ 
K 

o 3 = E 
fe=i 

\ 

i=l 

\ / 

(2.10) 

It is obvious that the last extension, incorporating the real part 3^(1^} of each 
I N element, leads to the original objective function O. 

The artificial simplification of objective function O proposed above suggests 
that the mapping strategy wi l l be described in four steps each one increasing in 
degree of generality. Before we start wi th mapping it is suitable to rewrite expression 
2.4 into the following form: 

£ ( x ) = t t (2.11) 
i=i 

which holds the form of the energy function since the output of the i - t h neuron 
equals the z-th entry of vector X (k(i) = xi) and x\ = Xj. A bias of the i - t h neuron 
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is denoted by symbol bi instead of w^. We don't introduce a weight vector in the 
brackets on the left side of (2.11) to emphasize that connection weights are fixed 
during the optimization process. Notice that, one can observe a similarity between 
the objective function in (2.7) and the recently rewritten energy function in (2.11), 
where the reduction term is represented as the sum of neuron states multiplied by 
their biases and the accuracy of reduced I N is denoted by sums of the mutual neuron 
states (pairs of I N elements). 

Now, we have everything prepared to map the first pseudo-objective function: 

O i = x1(%{Y1}2 + 2c%{Y1}) + ... + xL(%{YL}2 + 2c%{YL}) 
v ' 

E i i ^ ( s { ^ } 2 + 2 c S { y i } ) 
L L 

V ' 

L L L 

= ( ^ { y i } 2 + 2c3{Y;}) + Y XixMYi}%{Yj} + <?-
i=l i=l j=\j+i 

Now, the similarity between (2.11) and the derived pseudo-objective function is even 
more transparent. Condit ion (2.6) is satisfied because c 2 is a constant value. 

Once we have mapped the fundamental objective, the reduction criterion can 
be involved: 

L L L L 

1=1 1=1 j=ljy^i 1=1 
L L L 

= {^iYi}2 + 2cQ{Yi} + a)+Y xixj^{Yi}^s{Yj} + (ii. 
i=l i=l j=l,j& 

The reduction coefficient a occurs in the first term of 0<i- This means, a influences 
only the neural network biases bi, which is important to find and it wi l l be discussed 
later. 

A s mentioned before, the thi rd pseudo objective function 0 3 incorporates K 
frequency samples. The following expression illustrates, how it could be added into 
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the form of the B M energy function: 

K L 

k=l i=l 
L L 

{%{Yhl}2 + 2 c 1 3 { Y i , 1 } ) + {%{YhK}2 + 2cKZ{YijK}) 
i=l i=l 

Uti xi E f (sm,fe} 2+2c f es{y i i f e}) 
L L L L 

+ X ! E • + E E xixMYi,K}%{Yjjc} 
i=l j=l,j^i i=l j=l,j& 

S i L i Ylf=ij^i xixj EfcLi s{ î,fe}s{ î,fe} 
A ' 

+ E ^ + ^ E ^ ' 
fe=l i=l 

this expression can be finally rewritten according to the particular terms in braces 
and incorporate the reduction criterion in function 0 2 : 

o. 
i=l 

A 
E ( 3 { Y , f c } 2 + 2 C f c 3 { Y i i f c } ) + 

L L K 

+ E E ^ E ^ } ^ } -
i=l j = l,jy^i k=l 

(2.12) 

Notice that, the sum of constants was omitted since it has no effect on criterion 
(2.6) as mentioned above. 

The last modification of the expressions above leads to the objective function 
(2.7) . One can easily clarify that extending the function O3 by the real parts of 
admittance leads to the following equation: 

A 
0(X,a) = ^ x J ^ ^ { r i , 4 2 + 3 { F l , 4 2 + 2 ( ^ { ^ f c } 4 + 3 { n f c } C f c ) ] + ft 

i=l {k=l 
L L A 

+ E E ^ E ( ^ y ^ } ^ y ^ } + ^ f e } ^ y ^ } ) 
1=1 j=ljy^i k=l 

(2.13) 

where symbol dk has a similar meaning as symbol c&. The only difference is that 
is the sum of the imaginary parts of the equivalent admittances and dk is the sum 
of real ones. 

Since al l of the criteria from (2.7) are involved in (2.13), which holds the form 
of the energy function in (2.11), the mapping procedure is ended. According to the 
equality O = —E, the B M weights and biases can be simply expressed by comparing 
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(2.11) and (2.13): 

K 
w ^ = + (2­14) 

k=l 
K 

h = ­ ^ [ 3 f ř { F l , 4 2 + 3 { F l , f c }
2 + 2 ( 5 ř { F l , f c } 4 + S{F l , f c }c f c )] ­2­K­a 

k=l 
(2.15) 

Equations 2.14 and 2.15 are the original results obtained by mapping of a 
simplification task onto the B M . Here, 2 • K (the number of frequency samples) was 
introduced to hold a sufficient range for the coefficient a. The proposed coefficient 
is derived from the mean squared error over the frequency samples 
MSE = (SSEx + SSEc5)/(2 • K). It is obvious from equations (2.7) and (2.15) 
that, M S E is finally minimized instead of SSE, which was used for the simplicity 
of the mapping expressions. If the B M weights and biases are defined according to 
(2.14) and (2.15) the neural network wil l converge to the minimum of function O. 
The chapter 2.5 is dedicated to the study of B M convergence characteristics. A n 
interpretation of the results and its further exploitation is under the scope of the 
following section. 

2.3 Additional criteria 

In the previous section, B M weights and biases were derived according to the formu­

lation of our simplification problem in (2.3). Basically, the B M minimizes expected 
deviance between equivalent impedance of the original and reduced impedance net­

works. The expected error can be calculated over more frequency samples so that 
frequency dependent load impedance is incorporated. Thus, the resulting reduced 
impedance network exhibits similar behavior to the original network within a finite 
frequency interval. 

Similarly as was done for frequency dependent impedance, we can incorpo­

rate more quantities e.g. temperature. The expected deviance has to be calculated 
over various reference temperatures and frequencies simultaneously. Then, the i ­ th 
particular load impedance from the I N is represented by a matrix of the complex 
admittance values Yi^k.i­ Each column of the admittance matrix acts as a frequency 
pattern while each row represents temperature dependence. Minimiz ing expected 
deviance over a matrix of equivalent impedance leads to a simplified I N whose be­

haviour can be guaranteed within a closed interval of temperature and frequency 
values. Objective function in (2.7) can be easily modified to incorporate additional 
dependence (see (2.16)). Here, M denotes the number of temperature samples and 
Yifci is the i ­ th I N element admittance measured or simulated for the k­th value of 
frequency and the Z­th value of temperature. 
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M K / L L \ 

0(X,a) = ^ x ^ } ­ ^ ^ } 
1=1 k=l \i=l 1=1 J 

SSE over the real parts 
M K / L L 

1=1 k=l \i=l i=l 

SSE over the imaginary parts 
L 

+ a Xi 

i=l 

degree of reduction 

Obviously, the modified objective function expressed above leads to a change 
in values of the weights and biases. The modification in weights and biases can 
be easily provided by adding one extra sum incorporating the new observable ­

temperature. 

M K 

+ ^ { W ^ V , , , } ) (2­17) 
1=1 k=l 
M K 

h = + 3 { > W 2 + 2 ( K { Y i i f c i i H + 3ř{^i,fc,i}cfc)] ­ 2MK • a 
1=1 k=l 

(2.18) 

The expression above illustrates two advantages of our approach. The first 
one lies in simplicity of incorporating an extra objective. Since the B M works with 
samples of load impedance, it can simplify an arbitrary IN , whose elements are 
characterized by measurement or numerical simulation. 

The second advantage is the computational efficiency One would expect in­

creased computational complexity of a simplification algorithm if some new be­

haviour is encountered. It is the case of simulated annealing or genetic algorithm 
techniques, where it is required to evaluate the objective function in (2.16) in each 
iteration. The B M fixes its weights and biases within the annealing process. The 
extended objective function leads to a more complex expression for weight values 
which are calculated at the beginning. The remaining process of B M annealing is 
based on difference in energy (3.36) which is not effected by complexity of the ob­

jective function. A comparative study of the B M computational efficiency versus 
conventional optimization routines is given in chapter 4.6. 
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2.4 Intuitive aspect 

Expressions 2.17 and 2.18 can be interpreted in an intuitive way motivating further 
investigation of the designed B M model. In order to give an intuitive picture about 
the obtained results, synaptic weights and biases are described in relation to the 
B M energy function. 

Synaptic weight witj can be understood as the level of desirability that the z-th 
and the j - t h neurons wi l l be activated simultaneously. If the connection weight 
Wij < 0 the Boltzmann machine wi l l tend not to activate both of the neurons 
simultaneously since this activation would lead to decreasing the energy function in 
(2.11). Those weights are called inhibitory weights or inhibitory connections. O n 
the other hand, if witj > 0 it is desirable to activate this connection because it wi l l 
increase the energy function. In this case the weight is called excitatory weight. 

Each particular neuron activation desirability is defined by neuron bias. If 
bi < 0 the z-th neuron wi l l tend to be switched off and visa-versa (see (2.11)). Let 
us further investigate equations 2.14 and 2.15 in connection wi th energy function in 
(2.11) and our objectives formulated in (2.3). 

The neural network weight Wij w i l l be excitatory if imaginary parts of the 
admittance samples Q{Yijk} and ^s{Yjjk} have different signs and the real parts 
3t{Yijk} and $t.{Yjk} are as small as possible over the K frequency samples (see 
equation 2.14). It is obvious that only admittances wi th different signs can cancel 
each other (see equation 2.5). Thus, the z-th and the j - t h neurons are encouraged 
to be switched on by weight Wij to maintain the SSE criterion. O n the other hand, 
the i - t h and the j - t h neurons are forced to be switched off by the negative biases 
bi and bj. 

The situation described above illustrates how the B M tackles the conflicting 
criteria. The most important finding here is, that one can increase the influence of 
reduction criterion simply by increasing coefficient a which leads to decreasing all 
biases (see equation 2.15). In other words, we can change the priorities between our 
two conflicting criteria simply by changing values of biases. This is promising result 
since it should be possible to force the B M to find a pareto-optimal set of solutions. 
In that case we would obtain a highly parallel multi-criteria combinatorial optimizer. 

2.5 Conclusions on the mapping problem 

A combinatorial approach to I N simplification was published by the author in [3]. 
Here, the mapping problem was solved via exact derivation of the weights and 
biases - parameters of an equivalent Bol tzmann machine. A s mentioned above, the 
found expressions maps the simplification problem onto the Boltzmann machine 
annealing. Naturally, the mapping procedure leads to a fast B M combinatorial 
solver since the B M energy function is computationally cheaper than the original 
objective function. Moreover, we showed that more criteria can be incorporated 
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in the objective function wi th preserving the same computational complexity of 
annealing which is also superior to the conventional approaches. 

From an intuitive point of view, the trade-off between two conflicting criteria 
(fitting and complexity) can be straightly driven v ia B M biases. This is an impor­
tant result for further exploration of this approach in the field of multi-objective 
optimization. 
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3 Neural dynamics 

3.1 Boltzmann machine characteristics 

In the previous chapter, mapping the simplification task onto the B M was formu­
lated. Once all of the weights of B M are defined its required to simulate annealing 
by B M in a proper way to obtain the highest system energy E. Thus, it is essential 
to investigate the Bol tzmann machine dynamics. 

A model of the stochastic neuron was defined in section 1.1.1 and the proba­
bili ty of the change of the binary neuron value was expressed in (1.2). Considering 
a sequential updating scheme, only one neuron % is updated according to equation 
(1.2) at each iteration step. It is required to calculate a system energy difference 
AE and set a system temperature T in order to obtain the desired probabilistic acti­
vation function P{k(i) = l\k(i) = 0}. A related energy difference can be calculated 
using expression 2.4 as follows 

AEk(i) = E(ki) - E(k), (3.19) 

where hi denotes a state of the B M obtained from a configuration k by changing the 
state of the z-th neuron. 

The system temperature T is defined by the cooling schedule. During the 
optimization process the parameter T is decreased which is analogue to the annealing 
process. It is required to let the B M reach the thermal equilibrium (maximum of 
energy function E) at each temperature T (each iteration of the annealing process). 
If the T is decreased slowly the B M mostly reaches its thermal equilibrium (TE) 
and the final B M state corresponds to the optimum solution to the problem. The 
B M asymptotically settles in the global optimum of the E once the temperature 
satisfies T = 0 . 

A cooling schedule is defined by: the starting temperature T 0 , the lowest system 
temperature Tmin, the cooling function, and the time step Ts. A l l of the parameters 
and the optimal cooling function have to be defined in order to guarantee B M 
convergence to the desired sub-optimal (close to optimal) solution. 

Let us scope an asymptotic convergence of the Bol tzmann machine. The con­
vergence proof of the B M is similar to the convergence proof for the S A (Simulated 
Annealing) method. The main idea, how to formalize S A and B M , was invented 
by Aarts and Korst in [15]. Considering the stochastic nature of the B M , one can 
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operate wi th the probability distribution of solutions k during the optimization pro­
cess. The goal of the convergence proof is to express that only the optimal solutions 
exhibit non-zero probabilities at the end of the optimization process. Aarts and 
Korst proposed to use Markov chains for the formal expression of S A and B M . 

3.2 Asymptotic Convergence 

As mentioned in previous section, if the optimization problem is mapped properly 
onto the B M , then the energy function E{k) equals the negative of the objective 
function O(k). From the analogy of statistical mechanics, a stationary distribution 
q(T), also called Bol tzmann distribution, serves that the probability of the k-th 
B M state can be expressed as follows [15] 

This the is so called partition function. The parti t ion function is the enumeration 
of the Lagrange multiplier used in deriving the Bol tzmann distribution in statistical 
mechanics. Here Q denotes the configuration space of the B M (set of all possible 
B M states). 

The convergence proof lies in two main points: 

• It has to be derived that the Bol tzmann machine equipped by stochastic neu­
rons (see equation (1.2)) settles in a stationary distribution q(T) after an 
infinite number of performed iterations. The stationary distribution has to be 
reached in each value of control parameter T and it must be independent of 
ini t ial state of the B M . 

• The probabilities in (3.20) have to be zero for non-optimal solutions if T —> 0 
and have to be uniformly distributed over a set of optimal solutions. 

The first point is satisfied if a Markov chain represented by the B M (Boltzmann 
Machine) is irreducible, aperiodic and the B M stationary distribution satisfies the 
so called detailed balance equation. 

Irreducibility 

A Markov chain wi th transition matrix P is irreducible, if for each pair of configu­
rations k,l G Q there is a non-zero probability of transition from k to I in a finite 
number of iterations [15]: 

(3.20) 

where 

(3.21) 

Vk,l 3n > 1 : ( P n ) M > 0. (3.22) 
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In the case of the Boltzmann machine, elements of transition matrix P can be 
expressed as follows 

P y ( T ) 

( G(i)Ak(i,T) iil = k 

1 - E t i P M i C O i f* = * • (3-23) 

0 otherwise 

Here Pkji(T) denotes the probability that B M wi l l change its configuration k to 
configuration / under given temperature T . The symbol G(i) denotes the probability 
that the z-th neuron is proposed to be switched (uniform distribution is usually 
used), ki is the state of B M obtained by switching the z-th neuron and Ak(i,T) is 
an the acceptance probability where the proposed transition wi l l be provided. 

The acceptance probability is determined by the probabilistic activation func­
tion of the B M neuron model 

M ' ' T ) ^ T ^ t W ) < 3 ' 2 4 ) 

Equations (3.24) and (3.19) implies that Ak(i,T) > 0 if T > 0, which means that if 
the temperature is not zero, B M can change its state wi th the non-zero probability. 
This serves to prove irreducibility of B M : 

-Pfc,z(-0 — ^ ] ^ ] ^ ] • • • ^ ] Pfe,riPri,r2-f>r2,r3 • • • Pr„-i,l 
riGflk r2efiri r3efir2 r „ _ i e n r n _ 2 

> G(i1)Ak(i1,T)G(i2)ASl(i2,T)G(i3)AS2(i3,T).. . G ^ A ^ i ^ T ) 

> 0, (3.25) 

where Qrj is a set of B M configurations (neighbourhood) which can be obtained by 
switching one neuron of B M in the state Tj, Si is the B M configuration which is 
obtained from state s by switching the z-th neuron. Generation probability G(i) is 
the same for all neurons and it is grater than zero. 

Aperiodicity 

A n irreducible Markov chain with transition matrix P is aperiodic if [15] 

3k e tt : Pfc,fc > 0. (3.26) 
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Regarding to transition probability (3.23) the condition 3.26 can be rewritten as 
follows 

Pkjk(T) = 1 - G(i)Ak(i,T) 
ki 

= l-G(j)Ak(j,T)- J2 G(i)Ak(i,T) (3.27) 

> I- E G(») = °-
ki 

We can write this, since there exists acceptance probability Ak(j,T) < 1 if D,k is not 
the set of optimal solutions (see equations (3.24) and (3.19)). 

Balance equation 

A Markov chain with transition matrix P has stationary distribution q if such a 
distribution satisfies the following equation 

Vkjett: qkPktl = q i P h k . (3.28) 

The detailed balance equation above can be expressed as in [15] 

qk(T)G(i)Ak(t,T) = qki(T)G(i)Aki(i,T) 

qk(T)Ak(t,T) = qki(T)Aki(i,T), (3.29) 

then equation (3.29) can be verified using equations (3.19), 3.20 and 3.23 as follows 

qk{T)Ak(i,T) = 1 exp ' > N0(T) \ T J i + e x p { - ^ M 

N0(T) *\ T j 1 + e x p { _ ^ m 

qK(T)Ak(i,T) = 1 exp' ^ 
N0(T) V T J e x p ^ ^ ) + e x p ^ ) - ^ ) ) 

qk(T)Ak(i,T) = —^—exp ( J 1 = qk(T)Ak(i, T). 
N0{T) V T J i + e x p ( _ f ^ i W ) 

Optimal distribution 

The final step which ensures an asymptotic convergence of the Boltzmann machine 
is to prove that qnonoPt(T) = 0 if T —> 0. A s mentioned above, the probability of B M 
in state k after an infinite number of the iterations is independent from its ini t ial 
state. It is to be proven that stationary probabilities in (3.20) are greater than zero 
only for set of optimal solutions 

hmqk(T) = -^—TQopt(k), (3.30) 
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where q is the stationary distribution of the B M . Function Tnopt(k) equals 1 if 
k G flopt and 0 otherwise. The symbol \Qopt\ denotes a number of optimal states. It is 
possible to express the condition stated above in terms of B M stationary probabilities 
(3.20) and objective function O as follows 

equals to 1 if k 6 opt 

Oopt - 0(k) 

equals to n if \fiopt\ = n 

This holds because 

Vk # nopt : l im = exp (9^L_^1\ = 0, 

where O o p < is a value of the objective function in the optimal solution and 0(k) is a 
value of the objective function related to the fc-th state of B M . 

The asymptotic convergence proof stated above ensures that if the Bol tzmann 
machine is properly simulated, it wi l l converge to set of optimal solutions. In prac­
tical words, given proof of convergence, B M is capable to simplify an impedance 
network if a simplified network exists. 

Obviously, a simulation of B M over infinity of the iterations is impractical. Our 
aim is to employ the B M to simplify given I N in the shortest possible time. This 
is the reason for exploiting suitable asymptotic cooling approximation previously 
called "a cooling schedule". 

3.3 Finite-Time approximation 

In the previous section, convergence of the optimization process has been proven for 
an infinite number of Bol tzmann machine transitions (iterations). In this section an 
approximation of asymptotic behaviour is to be employed without losing versatility 
of the method. The approximation does not depend on a particular combinatorial 
problem but it is based on approximating the stationary distribution described in 
the previous section. The idea lies in substituting a quasi equilibrium state to the 
exact equilibrium state characterized by the stationary distribution q(T). Quasi 
equilibrium is defined by the following expression: 

\\a(Nt,Ti) - q(Ti)\\ < e, (3.31) 

where a(Nt,Ti) is a quasi-stationary distribution obtained after NL iterations (tran­
sitions) of B M under the temperature TJ in the Z-th iteration. A s mentioned above, 
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a cooling schedule is defined by three parameters and another parameter arises with 
finite-time approximation. A l l of the cooling schedule parameters can be summa­
rized in the following four points: 

• A n initial value of temperature T 0 has to be defined. 

• A suitable decrement function for cooling has to be found. 

• A finite number of iterations JVj leading to quasi-equilibrium state has to be 
expressed. 

• A final value of temperature has to be chosen as a stop criterion 

A l l of the points defining the finite-time cooling schedule are addressed in the 
following part. A conceptually simple cooling schedule proposed by Aarts and Van 
Laarhoven is investigated for our simplification algorithm. The reason for choosing 
a simpler scheme lies in the fact that it can be easily modified for parallel imple­
mentation of the B M . Our approach is to modify the schedule proposed in [15] for 
simulated annealing onto the form suitable for the Bol tzmann machine. A s it wi l l be 
clear from the following paragraphs, the conceptually simple schedule is represented 
by an exponential temperature profile. 

A set of simulation results is provided inside each paragraph denoted to a 
particular parameter . The Boltzmann machine was assumed to operate sequentially. 
In order to illustrate influences of all parameters, the simulations are executed in the 
same init ial conditions (an I N to be reduced is always the same). More simplification 
problem instances can be found in chapter 4.6. 

Initial temperature 

The only criterion for the starting temperature To is that 50 percent of proposed 
transitions from an init ial state ko should be accepted by the Bol tzmann machine. 
This probability corresponds to the B M neuron model 3.24. In this way, we can 
avoid stacking the B M in a local minimum of E . Initial acceptance probability (see 
a neuron acceptance probability in (3.24)) is closely connected wi th the maximum 
energy difference caused by possible transition. The worst case (the lowest transition 
probability) occurs if a transition from the highest level of energy function Emax to 
the lowest value E m i n is proposed. Our approach is based on calculating the maximal 
negative difference AEmin^max = E m i n — Emax and incorporating expression 3.24 to 
determine T 0 for Ako(i,T0) w 0.5. If we chose T 0 = —10 • AEmin^max the resulting 
acceptance probability is: 

Since the transition leading to a maximal negative difference AEmin^max occurs wi th 
a very low probability, we consider that Ak0(i,T0) = 0.475 is appropriate for a 

(3.32) 
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practical application. Obviously, the B M reaches its maximal energy E m a x if all of 
the excitatory connections (positive weights) are activated while the minimal energy 
Emin can be measured if all of the inhibitory connections are activated (negative 
weights). A connection is called activated if two connected neurons are "on". Thus, 
the maximal negative energy difference can be expressed as: 

AE, 
mm,max E E w m - E E w h31 (3.33) 

i=l j=l,{i,j}£N --1 3=l,{i,J}£P 

where TV and P are sets of the index pairs corresponding to negative and positive 
weights respectively. Notice that, the AEmin^max is overestimated by 3.33 since we 
deal wi th fully connected B M . This means that there are neurons which can not 
be activated by respecting both the negative and positive weights. This is obvious 
since our simplification task is formulated as a multi-criterial optimization. 

Figure 3.2 A state of the BM corresponding to the first term in (3.33) 
(left); a state of the BM corresponding to the second term 
in 3.33 (right) 

In Figure 3.2, an exemplar B M is depicted. The dashed connections denote 
negative weights while the positive weights are represented by solid lines. The 
minimum energy state Emin can be reached in the case of our exemplar B M (see 
Figure 3.2 left). O n the other hand, if we force the B M (Boltzmann Machine) 
to activate al l of the positive weights, the maximal energy E m a x does not appear 
since we also activate the inhibitory connections. This phenomenon implies that the 
maximal difference AEmin^max w i l l be probably overestimated in the case of large 
B M . However, equation (3.33) is a good estimation to preserve a proper search of 
the entire solution space. 

Figure 3.3 was obtained by a computer simulation of the B M simplifying an 
I N consisting of L = 100 elements. The reduction factor was set to a — 0.5 and the 
I N was finally reduced by 39% . Please refer to chapter 4.6 dedicated to simulations 
for more detail. In figure 3.3, we demonstrate appropriate estimation of the ini t ial 
value of parameter To. It can be clearly observed that the energy function defined 
in (2.4) (denoted by black thin line) has a large variance at high temperatures, thus 
B M can search the solution space properly. This corresponds to equation (3.20) for 
stationary distribution. A s the B M is cooled down the variance approaches zero. 
This behaviour is illustrated in Figure 3.3 since actual values of the energy function 
approach their expected values (red thick line) at low temperatures. The expected 
values were estimated from sets of transitions proposed at each value of temperature 
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Figure 3.3 Simulated BM convergence to the optimal distribution; an 
initial temperature TQ was set according to 3.33 

1.05 

0.95 

0.85 

0.75 

0.7 

i i i 

X' 

r f 
j 

I 

X' 

1 J 
'•' / / / 

/ 

/ 

/ 

X' /•/ 
/ 

1 
1 J 

J. I< 
Vi > 

V 

i> 

1 JL J 

l 1 » :' 1 

Expected energy; T = 10T 
e b J o estim 

Expected energy; T = T . 

Expected energy; T =0.1T 
F & -" 0 estim 

Expected energy; T =0.01T 
F & J 0 estim 

0 25 50 75 100 125 150 175 200 225 250 
iteration 

Figure 3.4 A parametric study of initial temperature values; expected 
values of the energy function evolve in different ways; the 
BM run employing our estimation TQ is depicted by black 
thick line 

Notice that, the energy function rather oscillates around its expected value 
than maximizes the consensus function over the iterations in Figure 3.3. It should be 
noted, that the B M doesn't search a solution space in the steepest descent manner. 
Convergence of the B M lies in the convergence of its stationary distribution as was 
mentioned above. 
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In Figure 3.4, four runs of the B M are depicted. Each simplification process was 
executed wi th respect to a different ini t ial temperature: T 0 = 10-TESTIM, T 0 = T E S T I M . 

T0 = 0.1 • Testim and T 0 = 0.01 • T E S T I M . Here, T E S T I M is the value estimated in (3.33). 
In order to depict the parametric study in a transparent way, expected values of 
energy functions are depicted in Figure 3.4 rather than their actual values over 
the iterations. It is a sufficient approach providing that the energy state variances 
approach zero at low temperatures (see Figure 3.3). Since cooling was started in 
various melting temperatures T0JI, the convergence curves are compared according 
to the number of iterations needed to reach the optimal distribution ((E)optim = 1). 

Regarding the work of Aarts and Korst we obtained very similar curves in 
Figure 3.4 like they did for simulated annealing. The criterion for the init ial 
value of T 0 states that all of the proposed transitions should be accepted wi th the 
same probability. This means, that the expected value of energy (E)T0 should ap­
proximately equals its expected value for the infinitesimal temperature {E)TX (see 
dashed horizontal line in Figure 3.4). A s can be observed in Figure 3.4, the ex­
pected value {E)10.TESTIRN approximately equals {E)TESTIM. Thus, we can consider that 
(E)TESTIM ~ {E)TX which implies correctness of our approach. 

One could argue that we can reach the same value of energy function (objec­
tive function) after lower number of iterations by employing a much lower ini t ial 
temperature T 0 = 0.01 • T E S T I M (see Figure 3.4 red solid curve). We can say, that it 
is possible to use a lower ini t ial temperature than T 0 = T E S T I M but the result wi l l be 
less reliable since the condition for proper statistical convergence is not satisfied. 

Cooling profile 

In the previous chapter, the asymptotic behavior of the B M was investigated and 
the temperature T of the B M was assumed to decrease smoothly. Moreover, it was 
considered that the stationary distribution of each Markov chain was achieved for 
each value of T . Since the aim is to approximate the asymptotic behaviour in finite 
time, decreasing the temperature and settling a particular Markov chain have to be 
discretized. The discretized process of annealing can be understood as a series of 
homogeneous Markov chains. If a slow cooling schedule is proposed (low difference 
between TJ and T ) + 1 ) then stationary distributions of neighbouring Markov chains 
wi l l be similar. Thus, the propagation of the stationary distribution (3.20) over the 
iterations doesn't need a lot of transitions (settling of a particular Markov chain) at 
each temperature TJ. If the B M is annealed faster (with a high difference between 
7} and 7 ] + 1 ) the situation is opposite. Notice that the faster the cooling the faster 
the optimization algorithm. 

The ideas mentioned above concludes that the steeper the chosen cooling the 
lager the number of transitions required to obtain a quasi equilibrium state. O n the 
other hand, a slow cooling schedule leads to a slow convergence of the stationary 
distribution (3.20) to the optimal distribution (3.30) (see Figure 3.5). Thus, we 
deal wi th two trade-off criteria: speed of cooling and speed of settling. Obviously, 
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Figure 3.5 A parametric study of speed of cooling; expected values of 
the energy function satisfy the initial criterion; the BM 
run related to the previous figure is depicted by black thick 
line 

both of the criteria influence the running time of the optimization process. For this 
reason both parameters (3 and JVj (see expressions (3.34) and (3.31)) are investigated 
in this paragraph. A s mentioned above, the conceptually simple cooling schedule is 
appropriate for our purpose. In this case, a system is cooled down by an exponential 
profile, which can be described by the following recurrent equation: 

Tl+1 = PTh (3.34) 

where the coefficient (3 should vary between (3 =< 0.8,0.99 >. The simulations 
provided in the previous paragraph were done wi th employing a slow cooling schedule 
(3 = 0.95 to ensure sufficiently accurate quasi equilibrium distributions over all 
iterations. 

Four cooling profiles were considered to compose a parametric analysis depicted 
in Figure 3.5. Each curve was obtained by B M annealing which started wi th ini t ial 
temperature T 0 = Testim. If we compare Figures 3.4 and 3.5 we wi l l obviously 
conclude that increasing the speed of cooling leads to faster convergence of the 
optimization process. However, in contrast with the first approach (lowering the 
init ial temperature T 0 ) , we obtain reliable results since the convergence criterion 
E)Testim pa (E)Too holds for each curve in Figure 3.5. 

A l l of the simulations investigated above were provided wi th a sufficiently high 
number of transitions JVj = 500 • L to obtain an accurate estimation of quasi equi­
l ibr ium distribution over all temperatures. Now it is needed to choose a lower JVj to 
increase the B M efficiency. Since the parameters (3 and JVj obviously influence each 
other, we first estimate an appropriate number of transitions JVj for each temperature 
Ti. 
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According to [15], the length of the Z-th Markov chain can equal the number 
of B M neurons if the total number of neurons satisfies L > 100. This condition 
is satisfied since we are simplifying a very complex impedance network. Let us 
note, that the number of load impedances composing an I N equals the number of 
neurons L of the B M . Aarts found an approximation which returns the probability 
of selecting the z-th neuron for transition if Ni transitions are proposed: 

N, 
P{i) = l-exp{—A (3.35) 

LJ 

If Ni = L is chosen, then the probability of choosing the z-th neuron for transition 
equals to P(z) « 2 / 3 . This means, that in 3 iterations of annealing process all of 
the neurons are asked for their transition, which is considered as sufficient in [15]. 
Note that, the distribution selecting neurons for transition remains uniform. 

The Aarts estimation JVj = L take into the account various problem complex­
ities. In Figure 3.6 four simplification instances wi th increasing level of complexity 
are depicted: L\ = 100, L 2 = 200, L 3 = 500 and L 4 = 1000. A t first, each prob­
lem instance z was solved by B M with following the cooling schedule: T 0 = Testim. 
(3 = 0.95 and JVj = 500 • L j . These solutions were taken as the reference. Then, 
much faster annealing was executed:T 0 = Testim, (3 = 0.8 and NL = L j . Each z-th 
run of fast B M was related to the z-th reference solution. A s we can see in Figure 
3.6, our B M s converge properly to the reference solutions in all of the four cases. 
Let us note, that actual levels of energy are depicted in Figure 3.6 instead of their 
expected values. 

Figure 3.6 Validation of cooling schedule parameters; iVj = L, 
j3 = 0.8; each curve is related to a particular run of the 
BM simplifying differently complex INs: L = 100, 200, 
500 and 1000. 

Results depicted in Figure 3.6 show us that the estimation Ni = L can be 
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used for various problem complexities. Since all of the fast B M s converged to their 
reference solutions, we suggest the steepest cooling schedule (3 = 0.8 can be used for 
our simplifier. 

Stopping criterion 

In the previous paragraphs, we defined all of the three main parameters for a suf­
ficient cooling schedule. Since the estimations of the cooling parameters taken into 
account characteristic of a particular simplification problem, we argue that they can 
be used for an arbitrary problem. The last parameter which acts as a stopping 
criterion is to be chosen experimentally. A proper quasi-optimal distribution can be 
recognized by one simple indicator. If the B M rejects all of the proposed transitions 
over m iterations, then its distribution is assumed to be close to the optimal one. 
As expressed above, the optimal distribution assigns zero probability to the states 
which are not optimal (see equation (3.30)). This means that the B M rejects all of 
the proposed transitions. 

A l l of the experiments illustrated above employed the same stopping criterion 
m = 5. Thus, each run of the B M machine was stopped if all of the proposed 
transitions were not accepted in five consecutive temperature decrements. This 
condition was chosen according to Aarts and Korst 's recommendation. Moreover, 
one can easily check the correctness of this approach by observing the saturated 
evolution of the energy function in Figures 3.4 - 3.6. 

In each experiment (see Figures 3.4 - 3.6), we incorporated several t r ial impedance 
patterns representing serial and parallel resonate circuits and one higher order load 
circuit. These tr ial circuits were parametrized to compose a library of impedance 
patterns. Each I N used in a particular computer experiment above was composed 
by a random selection of patterns from the library of load impedances. Since the 
scope of this section was to analyse convergence of the B M in the case of finite-time 
approximation, a detailed description of simplified the INs was omitted. However, a 
more specific description of impedance patterns and comparison of B M with other 
optimization techniques wi l l be given in chapter 4.6 which wi l l be more practically 
oriented. 

In this section, all of the parameters needed for sufficient B M execution were 
determined. The original contribution lies in formulating cooling schedule parame­
ters proposed by Aarts and Korst in terms of the B M annealing. The simulations 
performed, showed good agreement with our expectations. The derived expressions 
can be applied in an arbitrary simplification case. Since B M annealing doesn't 
require computation of the objective function in each iteration, execution time of 
the B M simplifier is naturally smaller in comparison wi th the simulated annealing 
method even in the case of sequential B M implementation. This phenomenon wi l l 
be addressed in the following section. The next section is focused on parallel exe­
cution of the B M . Probabilistic dynamics of parallel B M wi l l be under the scope of 
the next section rather than analysing a particular parallel implementation. 
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3.4 Unlimited parallelism 

Before we discuss the concept of parallel B M we should describe the simulation 
of sequential B M employed in the previous section more specifically. A transition 
process of sequential B M can be described in the following three points: 

The i- th neuron is selected from a set of all neurons according to the generation 
probability G(i) uniformly distributed over the set. 

The calculation of the difference in energy caused by switching the i - th neuron 
if B M is in configuration k can be derived from (3.19): 

AEk(i) 2k(i)) 
L-l 

(3.36) 

where k{i) denotes the state of the i - th unit in configuration k and Qi is 
the set of index pairs defining connections between the i - th neuron and its 
neighbouring units. This expression explains the efficiency of B M . 

The i - th unit is switched with probability of transition given by the acceptance 
probability (activation function of stochastic neuron): 

Ak(i,Ti) 
1 

1 + exp(-
(3.37) 

Here, we can clearly observe, how the temperature TJ influences the accep­
tance probability of each transition. High values of TJ can compensate a high 
negative difference in energy (3.36) which leads to the higher probability of 
the proposed transition. Low temperatures preserve transitions with positive 
difference in energy. 

The routine described above is provided JVj times for each temperature TJ which 
is lowered according to the cooling schedule (see equation (3.34)). The efficiency of 
the B M lies in calculating the energy difference (3.36) which depends on the local 
feature of the B M configuration. For instance, the simulated annealing method or 
the genetic algorithm requires enumerating the entire objective function (2.7) to 
evaluate a solution which is more computationally demanding than equation (3.36). 

Figure 3.7 depicts a fully connected B M trial wi th its connections. The con­
nections of the i- th neuron with its neighbouring units used for the energy difference 
calculation in (3.36) are depicted by solid lines. The dashed connections don't in­
fluence the difference in energy. Obviously, this behaviour is essential for large B M s 
(L > 100). 

A natural step from sequential B M towards its parallel execution is to sort 
B M units into independent sets without any direct connections between them. This 
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Figure 3.7 An illustrative BM in configuration k, the i-th unit is to be 
switched 

approach allows us to provide transitions inside a particular group of units inde­
pendently in parallel, since the differences in energy are independent of each other. 
Aarts and Korst called this approach limited parallelism. The advantage of this l im­
ited form of parallelism is that its asymptotic convergence can be proven [15]. O n the 
other hand, in order to exploit this approach one has to find the minimum number 
of the independent sets. Unfortunately, this task is formulated as an NP-complete 
problem [15]. Moreover, our simplification task is represented by a full-connected 
B M and the limited form of parallelism can not be employed. 

The following part of this section wi l l be aimed at inspecting of the unlimited 
version of parallelism applied on our simplification problem. First , let us summarize 
the transition routine for unlimited parallelism as we did for sequential B M : 

1. Random generation of a set of units which are to be proposed for transition 
simultaneously. In contrast with sequential B M , more than one neuron can 
update its state in one iteration. We wi l l follow recommendations in [?] to fix 
the number of simultaneously selected units to q = 2/3L. This means that in 
each iteration q number of neurons is proposed for transition which is either 
accepted or not according to the following two criteria. 

2. Calculation of the difference in energy is performed in the same way as was 
done for the sequential machine. The differences are independently calculated 
for all of the selected units and the actual B M configuration. Since two neigh­
bouring units can be generated for transition, their energy differences could 
not be valid, due to equation (3.36) holding for one neuron transition in the set 
of neighbouring units. This is what Aarts called erroneously calculated differ­
ences and this is the reason, why rigorous proof of convergences doesn't exist 
for an unlimited version of parallelism. However, intuitive prove of asymp­
totic convergence was provided in [15] and supported by a large number of 
simulations. 

3. Finally, the acceptance probability of the proposed transition is based on the 
same neuron model (3.37) as in the case of the sequential machine. The only 
difference here is that each i - th unit has its own parameter 7]^. Basically, this 
is the reason why we have used the conceptually simple cooling schedule. 

A l l of the three steps pointed above are iterated in the following way. Each unit 
has its own counter for the trials JVj^, temperature T ^ , and stopping criteria wij. 
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Figure 3.8 Convergence of stationary distributions in parallel 
emulation of the BM related to the sequential simulations 

B M is annealed unti l all of the units are deactivated - all of the stopping counters 
nii are zero. 

Figure 3.8 depicts convergences of the parallel Bol tzmann machines to their 
maximal energy states. The B M s were employed to solve four simplification in­
stances which have been used in the previous tests (see Figure 3.7). One can clearly 
observe convergences of the stationary distributions in Figure 3.8: variance decreases 
to zero, and the expected value reaches the maximal energy. The results obtained 
using B M parallel emulation show us that we can exploit an unlimited version of B M 
parallelism even in the case of a fully-connected model which is the worst case for 
erroneously calculated differences. Thus, our application confirms Aarts and Korst 
experimental statements. Notice that rigorous convergence proof for parallel B M 
doesn't exist. 

In the case of parallel B M , each unit has its own starting temperature, which is 
updated according to (3.34). The slope of the temperature decrements (3 = 0.8 was 
kept the same as for the sequential machine. It was the reason why the convergence 
curves were depicted over iterations in Figure 3.8 instead of temperature dependency 
in Figure 3.7. The i - th unit temperature is decreases if the unit was proposed for 
transition JVj = L / 4 times. If the i - th unit is not updated for five consequent 
temperature decrements mi = 5 (all of the transitions are rejected) the unit is 
blocked and its state remains fixed. Annealing is stopped if all of the units are 
blocked. 

Obviously, parallel implementation can reduce a computation time significantly. 
O n the other hand, settling time of the B M can increase due to erroneously calcu­
lated differences. This means that the reduction of execution time is not clearly 
proportional to the number of mutually activated units q. Bo th the sequential and 
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parallel machines are compared from a time consumption point of view in the chapter 
4.6 which dedicated to numerical simulations. 

3.5 Conclusions on neural dynamics 

Proof of B M asymptotic convergence based on the Aarts and Korst approach was 
derived in detail. A finite-time approximation of asymptotic behaviour was then 
examined along with estimating time schedule parameters. The init ial temperature 
value strongly effects computational time of the annealing process and can prevent 
(or cause) settling the B M in a local minimum of the energy function. The equation 
estimating an init ial temperature value was derived, the B M was simulated, and 
excellent agreement with Aarts proposal for simulated annealing was obtained. The 
remainder of the hyper-parameters were estimated according to recommendations 
in [15] and parameter analyses were performed to ensure the convergence of approx­
imated behaviour. Finally, the B M was executed to solve our simplification problem 
in various problem instances and complexities. A l l simulations converged closely to 
the optimal solutions. 

Furthermore, unlimited parallelism was investigated to explore the possibility 
of parallel simplification and speed up the combinatorial search. Parallel Bol tzmann 
machines were emulated and various problem instances and complexities were solved. 
Convergence curves settled in the same solutions as we obtained using sequential 
B M s . O n the other hand, the parallel execution is not clearly the faster approach 
to annealing since erroneously calculated energy differences slow down B M settling 
to its stationary distribution. A more detailed comparison of the sequential and 
parallel B M s is given in the last chapter of this work. 
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4 Probabilistic neural networks 

4.1 PDF estimation 

Dealing wi th a probabilistic approach to machine learning, P D F estimation is the 
key procedure which has to be provided in classification and approximation tasks. 
For instance, concerning a two class classification problem, P D F s are required for 
the Bayesian decision. Each point X{, o u„d lying on the boundary between two classes 
A and B has to satisfy the following equation: 

fA\^-bmmd) = KJB [abound) • (4.38) 

Here the P D F / a ( X ) gives the probability of occurrence of a vector X = {xi, x2, • • •, xp} 
in the case of vector belonging to class A while / b ( X ) denotes the P D F if vector X 
belongs to the class B. The symbol K involves loss functions related to the decisions 
X ^ and X#. This is the key concept of the P N N (Probabilistic Neural Network) 
proposed in [31]. 

Dealing with an approximation problem, paper [44] gives proof that a regres­
sion, also called a conditional mean value, is the best predictor for least-squares 
based learning. A neural network can be generally formulated as a regression esti­
mator. Regression of y on X can be expressed as a conditional mean value using 
the Bayesian rule as follows 

y(X) = E[y\X] = j yf(y\X)dy 

/ ( y , X ) _ fyf(y,X)dy  
V / ( X ) V ff(y,X)dy 

Jyf(y)f(X.)dy 
ff(y)f(X)dy 

(4.39) 

Here / ( X , y) denotes joint P D F of the input vectors X and scalar variable 
measurements y. The f(y) and / ( X ) are marginal densities which are not generally 
known and have to be estimated from a training set. This is the key concept of the 
G R N N (General Regression Neural Network) invented in [43]. The kernel density 
estimation ( K D E ) is a non-parametric estimation method capable of modelling an 
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arbitrary P D F based on a training set. Moreover, the Parzen window is consistent, 
which means that it returns a true P D F if a sufficiently high number of training 
samples is presented. Basically, the Parzen window is the subject of what we are 
focusing on, since it is the base of both P N N and G R N N . 

It is obvious from equations (4.38) and (4.39) that P D F estimation plays an im­
portant role in classification and approximation problems. Moreover, a classification 
task can be expressed in terms of regression. Assuming the previously mentioned 
two class problem, we can define the value yA = 0 as a class A identifier and yB = 1 
as a class B identifier. Hence, regression of y on X can be written as follows [44] 

E[y\X] = Y^yiPfalX) 
i 

= yAP(yA\X)+yBP(yB\X) 

= P(ClassB\X) 

(4.40) 

Thus, in the case of two a class problem, regression is a conditional probability 
of class B. The probability of class A can be easily obtained by 1 — P(ClassB\X). 
Then a decision boundary expressed in (4.38) can be found. 

Coming back to neural networks, the P N N architecture implements the Parzen 
estimator for P D F extraction from the input data [31]: 

/ ( X ) 
(27r)n/2<rn m 

1 m 
exp 

2a2 
(4.41) 

where X is the n-dimensional input vector, P i denotes the i-th. input pattern, 
the kernel variance (smoothing parameter) is represented by a2, and m is the num­
ber of training patterns. The Parzen window belongs to the class of kernel den­
sity estimators and it is usually equipped wi th a multidimensional Gaussian kernel 
function. In this case, the P N N directly employs kernel density estimation ( K D E ) 
method. 

In [43] the G R N N structure was derived by extending the K D E expression, 
defining P N N structure, by one dimension corresponding to the distribution of tar­
gets Y: 

P N N term 

/ ( X , Y ) 
rn E • exp 

( X - P . m - P , : 
2a2 

(4.42) 

• exp 
(Y - K 

2a2 

G R N N term 

where X e R " is the input vector, F e l denotes the output scalar value, { P j , Y } e 
T> is the i-th training pair from the set T>, m denotes the number of patterns, and 
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k = (27r)_ (-n + 1* ) / / 2<7_ (-n + 1* ) normalizes the estimated (n + l)-dimensional distribution. 
Equation (4.42) implies that it is possible to derive a general criterion for P N N and 
G R N N if we are able to construct an objective function for assessing multivariate 
K D E . 

The main disadvantage of the original P N N discussed in section 1.1.2 is clear 
from expression 4.41. The number of training patterns m equals the number of ker­
nel functions required for P D F estimation. Notice that, due to this fact, the P N N 
and G R N N computational complexity can be high in cases of the multi-dimensional 
problems or dense training sets. It is essential to employ some kind of structural 
simplification (reduction of the number of kernels) to increase computational effi­
ciency 

We argue that a clustering technique has to be connected wi th a sufficient 
kernel width estimator and vice-versa since both tasks deal wi th model complexity 
and contributes to the model bias and variance [44] in a similar way. For such a 
complex approach, we can see a lack of suitable criterion which can evaluate models 
having various numbers of neurons and different kernel widths. 

Furthermore, it should be clear now that phenomena occurring in regression 
estimation problems are common for both approximation and classification prob­
lems. We wi l l exploit this generalization in the next section where the " bias vs. 
variance dilemma" wi l l be formulated. Kernel width (smoothing parameter) wi l l be 
considered as regularization valve which sets the amount of the bias and variance in 
the model. 

Finally, if a neural network estimates P D F well, a P N N classifier exhibiting 
minimal expected errors over a testing set or the best G R N N approximation wi l l be 
obtained. We wi l l show in the next section that adjusting kernel width (searching 
of optimal smoothing) a is not a part of the training procedure but it is the model 
selection problem. The model selection problem is strongly tied with the over-fitting 
phenomenon. 

4.2 Bias vs. Variance 

Probabilistic neural networks can be formulated as non-parametric regression es­
timators. We wi l l use this interpretation to express the over-fitting phenomenon 
in the sense of expected squared error. Then, the bias vs. variance dilemma wi l l 
be demonstrated on the probabilistic neural networks P N N and G R N N which are 
under the scope of this chapter. In order to make all of our ideas transparent, terms 
form the area of machine learning and their counterparts from modern statistics are 
listed in the following table. 

The bias vs. variance dilemma says that even a well trained neural network 
can exhibit very high error over the testing set. In the case of noisy data, such 
a network can snap on noise and it doesn't estimate the true regression function. 
Unfortunately, it is difficult to distinguish between contributions of a true original 
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Machine learning M o d e r n statistics 

neural network non-parametric regression estimator 
synaptic weights free parameters 

training least-squares solution 
over-fitting bias vs. variance dilemma 

generalization approximation 
regularization restricting of hypothesis set 

Table 4.1 Terms definition 

function and noise. This is the reason for the dilemma. The same phenomenon can 
be observed on estimators used in P N N and G R N N structures and this is the reason 
for investigating this question. 

A s wi l l be shown, the dilemma is naturally involved in the mean-squared error 
(MSE) formulation of the neural network training criterion. The M S E expression 
can be split into two parts (bias and variance) each one contributing to the overall 
error. 

A s demonstrated in the previous section, the classification problem is a special 
case of regression. In order to express bias and variance terms from the M S E formu­
lation, let us consider an approximation problem. Training data wi l l be denoted by 
symbol T>, the feed forward neural network wi l l be represented by function g(X; T>). 
and the true value of an original measurement wi l l be denoted by y. Then, we can 
investigate the mean squared error MSE = E[(y-g(X; £>)) 2 |X] where the expected 
error is computed with respect to the conditional probability distribution / ( y | X ) as 
follows [44] 

MSE E y E[y\X}) + (E[y\X}-g(X;V))) | X 

E[(y - E[y\X])2\X] + (E[y\X] - g(X;V))2 

+2E[(y - E[y\X}) | X ] • (E[y\X] - g(X; V)) 

E[(y - E[y\X])2\X] + (E[y\X] - g(X;V))2 

+ 2{E[y\X}-E[y\X}) • (E[y\X] - g(X; V)) 
v v ' 

equals to zero 

E[(y - E[y\X])2\X] + (E[y\X] - g(X;V))2. (4.43) 

where i?[y |X] is the true regression function. Equation (4.43) splits the M S E cri­
terion onto two parts (detailed derivation can be found in A . l ) . The first term the 
of decomposed expected error is data and model independent. Thus, the only term 
influencing the M S E which depends on the neural network is the second right part 
(_E[|/|X] — g(X; T>))2 of equation (4.43). This means that a measure of neural network 
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performance can be formulated as a network deviation from the true regression. The 
following derivation (4.44), expresses an expected error MSE-p over an ensemble of 
the training sets T>i which is simply an average over all sets since the probability of 
each set T>i is the same. 

MSEV = R g{X;V) - Ev[g(X;V)\) + (Ev[g(X;V)] - E[y\X] 

Ev[(g(X;V) - Ev[g(X;V)})2] + (Ev[g(X;V)} - E[y\X])2 

+2Ev[g(X;V) - Ev[g(X;V)\] • (Ev[g(K; V)] - E[y\X\) 

(Ev[g(X; V)} - E[y\X\)2 + Ev [(g{X; V) - Ev[g(X; V)})2] 
— V 

bias variance 
(4.44) 

Considering that many various training sets T> are presented to the network, 
the trained neural network should always result in a good estimation of regression. 
In other words, an optimal neural network should be independent of any change of 
training samples if the number of samples in each training set T> is sufficiently high. 
Notice that, the optimal neural network would be noise independent in this case. 

It is clear from (4.44) that the bias measures a deviation of averaged neural 
network output from the true regression, while the variance is a measure of neu­
ral network sensitivity on a change of training set or noise. These two terms are 
conflicting in the sense of expected error minimization. 

Generally, the more free parameters a neural network has, the higher variance 
and lower bias is observed. This is due to high flexibility of the complex neural 
networks - it can learn a huge variety of behaviours. A high number of hypotheses 
is considered for training. Such a model wi l l behave like a high order polynomial. 
O n the other hand, if a neural network employs a lower number of free parameters 
the bias wi l l increase and variance decrease. This is an analogy wi th a lower degree 
polynomial (e.g. linear function) which cannot model very complex (non-linear) 
behaviour. 

In order to give a clear picture about bias and variance, two examples of neural 
estimations are depicted in Figures 4.9 and 4.10. Each particular example considers 
four training sets and two networks: a network wi th high variance and a biased 
network. The first experiment deals wi th the approximation task while the second 
one deals wi th P D F estimation required by the classification task. 

The result of the approximation experiment can be observed in Figure 4.9. 
Four training sets were obtained by sampling a one-dimensional function y = 20 — 
10/[1 + (x)2]. Each training set was corrupted by Gaussian noise wi th standard 
deviation anoise = 2. A smoothing parameter (the width of the Parzen window) a 
was varied to force the network to have a high bias (for a = 5) or high variance (for 
a = 0.5). 
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Figure 4.9 Bias vs. variance demonstrated on mixed kernel density 
estimator used by GRNN; approximation task 

In the case of high bias (black thick curves), the neural network loses its flexi­
bility. O n the other hand the model is not very sensitive to noise. In the case of high 
variance model (blue thin curves), we can observe a high variance of estimations. 
The model better fits the sharp peak of the original function, but it is very sensitive 
to noise. The original function y(x) is depicted by a red dashed line. 
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Figure 4.10 Bias vs. variance demonstrated on the kernel density 
estimator employed by the PNN; classification task 
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The second experiment dealing wi th the classification task was provided in a 
similar way as the first one. Four training sets were drawn from a Gaussian distri­
bution wi th standard deviation aoriginai = 5. This original distribution (depicted by 
a red dashed line in Figure 4.10) was estimated by K D E employed by P N N . The 
estimator was forced to have a high bias (for a = 5) or high variance (for a = 0.5). 

In the case of biased estimator (black thick curves) the deviation from the 
original distribution is relatively high and independent of randomly drawn training 
sets. O n the other hand, the high variance (blue thin curves) causes very unstable 
P D F estimation. 

It should be clear from the two examples, that the bias vs. variance dilemma 
is common for both the approximation and classification tasks. Let us conclude this 
section wi th a general postulate. If we force a network to employ lower free param­
eters, we wi l l systematically over-smooth data. Thus, the bias can be understood 
as a systematic error. O n the other hand, if we let a model adjust a large number 
of free parameters, the network wi l l fit noise in data and error wi l l depend on this 
noise. Thus, the variance is viewed as a random error. 

Selection of the optimal number of free parameters employed by a neural net­
work can be understood as a model selection problem. The framework addressing 
these problems is called regularization. A s we could observe, the P N N and G R N N 
model complexity is driven v ia the width of the Gaussian kernel a. It generally holds 
that the higher a the higher bias (lower variance) and vice-versa. The question is, 
how to find the optimal a? This problem wi l l be addressed in detail in the next 
sections. 

4.3 Likelihood criterion 

In the previous section, neural network performance was formulated in the sense of 
the M S E over various training sets T>i. Let us inspect how the likelihood function 
corresponds to the bias vs. variance dilemma. Outputs of the Parzen window 
employed in P N N and G R N N have the form of probability densities. The likelihood 
p(T>\£, a, H) is a joint probability of all data samples V = {P j}™ 1 assigned by a 
model % (Parzen window). A set of free parameters £ = {Qj}™^ defines coordinates 
of Gaussian kernels (see (4.41)) and a is a well known smoothing parameter: 

p(V\£, a, H) = ( 2 n ) ( m + p ) / 2 ( j ( m + p ) m m I I E exP 
V ' i=l j=l 

( Q , - P , ) T ( Q J 

2a2 
(4.45) 

Notice that we let the window have various Gaussian kernel coordinates Qj, 
since it is considered to be a learning machine and the coordinates can be understood 
as another sample drawn from the original P D F . Obviously, a model 7i wi th maximal 
likelihood is not the most probable model for observed data T>. The model selection 
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problem can be formulated as an estimation of optimal a value which minimizes 
divergence between the true P D F and estimated one: 

crw = ArgMin 
PDF(x) 

PDF(x)ln ™r, \<te v ' PNN{x,a) 
(4.46) 

Here, the PDF(x) is the original (unknown) P D F and PNN(x, a) is the density 
estimated by the neural network. Equation (4.46) is a commonly used criterion called 
Kullback-Leibler divergence or relative entropy. The neural network based on the 
Parzen window maximizes (4.45) if T> = £ and a —> 0 which is an unacceptable result 
as we wi l l see in the next example. A model obtained by maximizing likelihood (a 
probability of the training data) has minimized bias but exhibits very high variance 
and criterion (4.46) is not minimized. This is the case depicted by a blue thin line 
in Figures 4.9 and 4.10. 

Let us consider a three class problem to be solved by the P N N . Each of the 
classes A - C is represented by two samples: T>A = {0,1}, T>B = {1.5,3} and T>c = 
{4,6}. Then, equation (4.45) can be decomposed into the following form 

p(V2\£,a,H) = exp 

+ exp 

{Pl-Ql? + {P2-Q2? 
2a2 

{Pi-Qi)2 + {P2-Qi? 
2a2 

+ exp 

+ exp 

( P i - Q 2 ) 2 + ( P 2 - Q i ) 2 " 
2a2 

( P i - Q 2 ) 2 + ( P 2 - Q 2 ) 2 " 
2a2 

(4.47) 

The third and fourth products in equation (4.47) approach zero if a —> 0 since the 
arguments of the exponentials cannot be zeroed. These components act as Gaussian 
mixtures allowing the Parzen window to produce smooth densities and we wi l l call 
them the inter-products. This is the reason why the only two Gaussians (the first 
two terms in (4.47)) can be observed in Figure (4.11) and P D F estimations in Figure 
4.13 are strongly under-smoothed. 

Figure 4.12 illustrates the evolution of likelihood function (4.45) for class C 
depending on the smoothing parameter ac, where the maximum value of likelihood 
is obtained when a —> 0. In Figure 4.11, a smoothing parameter value is set close to 
zero a = 0.1 in order to closely maximize (4.45) and for practical reasons to visualize 
non-zero components. Obviously, if we set a = 0 only Dirac pulses wi l l be observed 
at T>c = £ = {4,6}. Finally, Figure 4.13 shows the result of density estimation 
and pattern classification. It is clear, that densities estimated by the P N N don't 
represent the classes very well even if the classification result seems to be right. One 
would expect rather smooth density over the entire region of each class. 
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-1 0 1 2 3 4 5 6 7 

Figure 4.13 Three class problem solved by PNN network (classes are 
depicted by filled boxes) maximizing likelihood function; 
PDF functions estimated by PNN are illustrated as sharp 
peaks inside the class regions A-C; training data are 
represented by markers 

Due to the previous arguments the ordinary likelihood function is not suit­
able for the model selection procedure and an alternative likelihood cross-validation 
( C V ) function used to be usually employed [46]. In the next section we wi l l exploit 
Bayesian statistic to derive a more accurate, comprehensive and intuitive model se­
lection criterion for searching the optimal multivariate K D E kernel width, setting 
P N N and G R N N bias/variance equilibrium, and determining a sufficient number of 
radial neurons. 

4.4 Bayesian strategy 

The Bayesian approach to machine learning was comprehensively studied by D . 
M c K a y in his doctoral thesis [47]. The main idea lies in the suggestion that all of 
the quantities connected wi th a learning machine (eq. free parameters S, smoothing 
parameter a, or machine structure TL) are understood as random quantities. In this 
way, all of the characteristic properties of a particular neural model (eg. fitting, 
complexity, sensitivity) can be mapped onto the characteristic probability distribu­
tion - the posterior (p(S\T>, a) in our case). Based on the posterior distribution, a 
particular neural model can be selected -an equilibrium between bias and variance 
can be found. 
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Basic concept 

The posterior distribution for our model % can be written in the following way: 

p(V, £, a, U) p(V\S, a, U) • p(S\a, U) • p(a, U) 
p(£\V,a,H) 

pyLs,u,ri) pyLs,u,ri) 
rn(T)\f. IT %l\ • <n(F 1 liVpliVinnH v nrinr 

(4.48) 
p(T)\a, ri) evidence 

Here, the likelihood function has the form of equation (4.45) and the prior distribu­
tion of network free parameters p(S) = p(S\a, ri) is independent of the chosen model 
and smoothing parameter a. The prior distribution p(S) is our prior knowledge or 
assumption about the original P D F since free parameters of the Parzen window 
£ = { Q j } ^ l 1 can be understood as samples drawn from the unknown density. F i ­
nally, the evidence ( E V ) p(V\a,7i) is the degree of belief that our model % wi th 
defined smoothing a generates training data T>. Notice that the E V doesn't depend 
on a particular configuration of the free parameters £ . This means that the E V 
incorporates all of the possible configurations and can be understood as a measure 
of general model performance for a given value of a. A s we wi l l see, the E V can 
act as a criterion for the model selection task. Firstly, let us explain the connection 
between the E V and bias vs. variance dilemma. 

Figure 4.14 Likelihood function for T>c set depending on PNN free 
parameters Q; oc = 0.7 

A s was shown, likelihood has its maximum at a = 0 (see Figure 4.12). The 
second effect of minimizing a is that posterior density p(£\T), a, ri) becomes higher 
and narrower which can be observed in Figure 4.11. Notice that the likelihood 
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functions depicted in Figures 4.11 and 4.14 exhibits the same shape as the posterior 
distributions if uniform prior distribution p(S) is assumed. The narrower posterior 
density is observed, the more complex and sensitive model we have. This means 
that if we slightly change the configuration of free parameters £ , the model wi l l 
produce very different estimations. Since the Parzen window free parameters can 
be understood as samples of the original P D F , the model with narrow posterior 
distribution wi l l exhibit high M S E variance. 

O n the other hand, if the parameter a takes higher values, the likelihood de­
creases and posterior distribution becomes to be flat (see Figure 4.14) which indicates 
a less complex model. In this neural network is less sensitive on its parameters 
so variance decreases. Unfortunately, as the posterior further expands, the model 
becomes over-smoothed and the bias increases significantly which is indicated by 
the likelihood function decreasing. 

In other words, the E V can increase even if the likelihood decreases (fitting gets 
worst) since the posterior distribution simultaneously expands (model gets simpler). 
This is due to the following formula rewritten from equation (4.48) 

m ^ H ) ^ S B ^ t m , ( 4 . 4 9 ) 

which implies that the E V is a quantity incorporating Occam's razor stating that 
less sensitive models wi th a lower number of the degrees of freedom (DOF) are more 
probable than very complex ones having many of the D O F . 

In order to summarize just the obtained results, we can say the following. 
Smoothing parameter a drives the expansion of posterior density which simultane­
ously results in decreasing likelihood. The E V is the ratio of likelihood to posterior 
densities. So, searching the maximum of the E V function equals searching the equi­
l ibr ium between model fitting (likelihood) and Occam's razor (posterior accessible 
volume). This is a naturally formulated equilibrium between bias and variance. 

Maximiz ing the E V , the posterior distribution of smoothing parameter p(a\T>, ri) 
is also maximized which proves the correctness of the idea: 

model evidence prior 

evidence of Parzen window 

A fundamental example 

The developed neural model estimating probabilities in Figure 4.16 was obtained by 
maximizing the E V for each class A - C independently: a A = 0.5, <JB = 0.75, o~c — 1 
(see Figure 4.15). The first difference from the P N N maximizing likelihood is that 
we obtained smooth class densities. In Figure 4.16, classification areas depicted by 
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filled boxes are kept the same as in Figure 4.13. A second difference can be observed -
decision boundaries between classes (see equation (4.38)) are shifted. This is caused 
by different widths and heights of particular densities A - C . This is an intuitive result 
since one would expect narrower distribution for data T>A than for the set T>c-

Our exemplar P N N (Probabilistic Neural Network) consists of three indepen­
dent Parzen windows. This is the difference from the original P N N structure, which 
operates wi th one global smoothing parameter. We simply exploit the independence 
of Parzen windows in the P N N and optimized each <7j separately. This idea nat­
urally increases flexibility of the original network on the one hand and simplifies 
model selection problem on the other hand. The model selection strategy lies in the 
efficient calculation of the E V , which is to be maximized for each Parzen window 
from a neural network. This issue wi l l be addressed in the next section. 

Figure 4.15 Evolution of the evidence criterion for each training set 
T>A-T>C depending on the PNN smoothing parameter 

4.5 Bayesian procedure 

Obviously, the posterior distribution p(S\T>, a, %) isn't known and the E V has to be 
estimated by marginalizing the likelihood distribution: 

p(V\a,U)= f p(V,S\a,U)d£ = [p(V\S,a,U) • p(S)d£, (4.51) 

where the prior distribution p(S) has to be chosen and we have to integrate over 
the entire space of free parameters. Exemplary results depicted in Figure 4.15 
illustrating evolution of the E V for our classification were obtained by a numerical 
quadrature integration technique. A s we have already mentioned, once the integral 
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Figure 4.16 A three class problem solved using the PNN network 
maximizing the EV; training data are represented by 
markers 

(4.51) is solved we can find optimal smoothing a (bias and variance equilibrium) 
according to the highest E V of the model. The question is, how to calculate the 
marginalization integral more efficiently. 

Generally, the marginalizing procedure is a crucial step in most of the Bayesian 
approaches. Firstly, equation (4.51) cannot be performed analytically due to the 
form of likelihood (see (4.45)). In open literature, there are several commonly used 
approximative integration routines, a brief overview can be found in [48]. Unfor­
tunately, none of those approaches is suitable for our purpose due to high dimen­
sionality of the marginalization integral which destroys the applicability of both the 
Monte Carlo or quadrature approaches. Finally, the posterior distribution exhibits 
multi-modal character (for small a) so that the approach from [47] cannot be used. 
However, a unique efficient integration procedure can be obtained if all of the aspects 
are taken into the account. 

The following part of this section is dedicated to the design of an analyti­
cal approximative integration method specialized to our marginalization problem. 
A uniform prior distribution p(S) is chosen since we have no prior knowledge of 
shape of the original P D F . This is, as we wi l l see, a mathematically convenient 
option. Then, the likelihood function is decomposed as the sum of the products 
and each product is locally approximated by a polynomial. In this way we obtain 
an analytically integrable approximative form of the likelihood. A combinatorial 
simplification technique is designed to decrease the computational complexity of the 
problem. First , a one dimensional P D F estimator is considered to illustrate the 
ideas in a transparent way. Then, the approach is generalized for multivariate cases. 
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Prior distribution 

Prior distribution p{£) occurring in (4.51) can be considered as a uniform distri­
bution of the samples £ . Since we have no prior knowledge about the original 
distribution, the choice of uniform distribution is an intuitive option which is, fur­
thermore, mathematically convenient. If a uniform p(S) is employed, it acts as a 
window defining limits of the integral in equation (4.51) and we can write: 

P(umf)(V\a,n) = a • J^p(V\£,a,H) • d£ (4.52) 

where £ is a subspace of the free parameters whose volume is defined by the uni­
form distribution. The constant a maintains unity volume of the prior distribution. 
Notice that the a can be omitted if the dataset is scaled so that it lies wi thin the 
interval [0,1]. 

This approach simplifies the E V estimation since the prior distribution is 
naturally incorporated within the integral l imits and the problem is simplified to 
marginalizing of the likelihood function over a finite subspace of the free parame­
ters. The following three paragraphs wi l l discuss the effect of the prior assumption. 

Firstly, in Figure 4.17, normalized E V estimations considering Gaussian (blue 
curve) and uniform (red curve) prior distributions are compared in the example 
given in the previous section. A s can be observe, both approaches lead to the same 
E V extrema-the same neural models are selected. Moreover, it generally holds that 
the more training samples, the smaller effect of the prior assumption. 

Figure 4.17 Comparison of the two types of prior distributions; 
uniform distribution exhibit the same coordinates of the 
maximal EVs as it was in the case of Gaussian prior 
distribution 
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The evidence is not very sensitive to choice of the prior distribution width 
since most of the likelihood components usually lie far enough from the limits of 
integration which is demonstrated in Figure 4.18, where the Gaussian P D F was to 
be estimated by the Parzen window based on twenty kernels. A s wi l l be seen later, 
the inter-products (see (4.43)) are more likely placed in between the integral limits 
and simultaneously exhibit narrower bandwidth a i n t e r . Due to these reasons, we 
consider the simplest prior distribution definition: limits are given by the boundary 
samples as in Figure 4.18). 

Figure 4.18 Prior distribution acting as a window for marginalization 
integral; Gaussian kernels are more likely placed in 
between the integral limits: an intuitive illustration 

The last illustrative example deals with two mode density estimation from a 
sparse dataset (for more detail see chapter 4.6). In this case, the prior assumption 
(black thick line) deviates significantly from the original distribution (thick dashed 
line) and even from the estimated one (thin solid line). However, the P D F estimation 
is very close to the reference result obtained by cross-validation ( C V ) criterion. In 
this way, we want to demonstrate robustness of the E V against the prior assumption. 
The example wi l l be further discussed in section 5.3. 

Likelihood decomposition 

The likelihood function to be integrated consists of the product of the sums over 
the entire training set T>: 

kr 

• =i j=i 2a2 
(4.53) 
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Figure 4.19 Kernel density estimation driven by the EV criterion; a 
uniform prior distribution (black thick solid line) is very 
rough assumption on the original PDF (red thick dashed 
line); the EV criterion leads to the similar generalization 
(thin solid line) like the CV criterion (black thin dashed 
line) in the case of all kernels activated (m = 10). 

where each Qj e 8 is to be marginalized out, m denotes the number of the patterns, 
and k = (2ir)~n/2a~n normalizes the estimated n-dimensional distribution. Equation 
(4.53) can be rewritten as the sum of the products so that the marginalization 
integral from equation (4.52) is partitioned as the sum of the product integrals: 

np 

p(V\a,ri) = y2 / G ^ ) ^ (4-54) 
k=i J£ 

Each product Gk{£) is in the form of multivariate Gaussian distribution since 
the k-th product Gk{£) can be expressed in the following way 

Gk{£) =gni(Qi)gna(Q2)---gn.(Qs), (4.55) 

and each particular gni{Qi) has the following form (see A.2) 

9th {Qi exp 
(Pi - Qi)2 + (P 2 - Qi)2 + --- + (Pn-Qi 

2a 2 

= (3ni • exp 
rij • (<E>n - Qj 

2a2 
(4.56) 
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Here, $ „ is an average value over n training samples appearing in a particular inter-
product. Whi le $ „ denotes a coordinate, the constant (3n denotes the height of 
particular impulse and can be easily calculated: 

0r, exp 
(P i - $ „ ) 2 + ( P 2 - $ „ ) 2 + • • • + (P„ 

2a 2 
(4.57) 

Two important facts are to be considered. The first one, we are able to ex­
press al l of the products resulting from equation (4.53) by scaled exponentials in 
standard form. Thus, we are able to find a suitable analytical approximation for 
each inter-product simply by scaling the approximative integrable form of a stan­
dard exponential (see the next section). The second note, since a high number of 
training samples m leads to an extremely high number of products np, it is essential 
to neglect the non-contributing ones. We can assume that a lot of the likelihood 
components do not contribute to the entire integral significantly due to a high vari­
ance between the samples (see equation (4.57)) or small width of the high order 
inter-products (see (4.56)). 

Analytical approximation 

The Local approximation approach can be employed since each integrand of the 
decomposed likelihood function is an impulse which contributes to the entire integral 
only in the vicinity of its coordinates. Then it can be locally approximated by a 
polynomial and analytically integrated over the specific area of a particular impulse 
where the polynomial approximation is always valid. 

In the previous section, we proposed expressing all of the likelihood components 
separately as Gaussians. Thus, the task of this paragraph is to find an efficient local 
approximation of the Gaussian function. Obviously, we can define two conflicting 
criteria: the highest accuracy and the lowest order of an approximating polynomial. 

First , the Taylor series was employed to approximate the Gaussian. This first 
attempt is illustrated in Figure 4.20. The order of the Taylor polynomial was in­
creased up to 12 which significantly improved its accuracy. On the other hand, 
since the products can be represented by relatively wide Gaussians (depending on 
the smoothing parameter a) the Taylor approach is not suitable for our purpose. 

The second attempt was based on Lagrange polynomials. Since we know the 
exact position and width of each particular product, we can sample the local area in 
the sense of a smoothing parameter. Thus, we sampled the original product within 
the interval < —3a; +3o~ > and observed the precision. We argue that the main 
contribution of each pulse lies within this interval. However, the method is not 
restricted by any size of the local area. 

Notice that we compare the estimators relating to our purpose - to approximate 
the Gaussian within a specific interval. A s can be seen, the Lagrange approach has 
better precision and lower order polynomials in our case. St i l l , there are oscillations 
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Figure 4.20 On the precision of Taylor series approximation 

Figure 4.21 On the precision of Lagrange approximation 

recognized for sparse sampling (low order). To suppress these oscillations and si­
multaneously to decrease the order of the polynomial, the Chebyshev approximation 
can be applied. The last parametric study is dictated to the best approximation 
approach which can be justified by observing Figure 4.22. 

Finally, as discussed above, most of the products are distributed wi thin the 
interval defined by the prior. This is due to the mean value $ „ in equation (4.56) 
defining coordinates of the products rather to the center of the prior. Thus, it 
is worthwhile to substitute each particular inter-product integral by the Gaussian 
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Figure 4.22 On the precision of Chebyshev approximation 

integral: 

9n(Qi)dQi a/3, 711 (4.58) 

where Qa and Qb are the integration limits defined by the prior. This approxima­
tive approach avoids the need of the local approximation step and decreases the 
computational demands discussed in the next section. 

Computational issue 

As has been already mentioned, the crucial problem of the proposed approach is the 
high number of the products C7 f c(£) which are to be integrated. Basically, the total 
number of products np = mm to be considered is computationally intractable. This 
is the original problem complexity which wi l l be called Level 0. Fortunately, a lot 
of the possibilities how to reduce the computational demands can be found. 

The first approach employs combinatorial symmetry in the entire set of the 
products obtained by likelihood decomposition. Due to the same integral limits in 
(4.54) for all of the parameters, a smaller number of subsets ns « np consisting 
of the products with the same contribution to the E V is needed to enumerate. For 
instance, in the case of two samples, the likelihood function can be decomposed 
into four products (see (4.47)). Then, it is required to enumerate only two product 
integrals thanks to the following expression 
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p(V2\£,a,rl)-d£ 
1 , 6 fW2,b 

exp 

+ 2 

l,a ° W2,a 
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l,a u W2,a 

( P i - g i ) 2 + ( p 2 - g 2 ) 2 

2 a 2 

( P i - Q i ) 2 + ( P 2 - Q i ) 2 

2 c t 2 

dQidQ2 

dQlC\Q2. 

(4.59) 

The number of identical products in the j - t h sub-set j^Gj can be calculated: 

#Gj ml 

(e:=iK-i))!' 
(4.60) 

where rii is the number of merged training samples assigned to the i - th free parameter 
Qi and s is the number of the inter-products (see equation (4.55)). A l l of the 
simulations given in section 4.6 exploit the mentioned combinatorial symmetry of 
likelihood. This technique (Level 1) leads to an exact simplification of Level 0. The 
unique subsets can be found by backtrack algorithm [49], which is required to be 
executed once for al l training sets wi th fixed m and for all values of smoothing 
parameter a. Then, the E V (evidence) can be calculated according to the following 
expression 

p(V\a,U) = Y,#Gk- / Gk(£)d£, (4.61) 
k=i J i 

where Gk(£) is the product belonging to the k-th. unique sub-set. 

Further simplification (Level 2) can be achieved by restricting the number of 
merged samples rii in a product. According to equation (4.56), an inter-product 
incorporating a high number of samples doesn't contribute significantly to the E V 
so that a particular unique class of products can be omitted in equation (4.61). 

Finally, it is possible to substitute each particular inter-product integral by 
the Gaussian integral which avoids the need of the local approximation step as has 
been mentioned above. Incorporating this approximation, we reach computational 
simplification of Level 3. 

Figure 4.23 depicts, how the described simplification influences E V estimation 
of the model illustrated in Figure 5.33. The E V was computed for all of the ns 
classes first. Then, the number of the unique subsets was reduced by restricting the 
number of merged samples up to max(rii) = 2 according to Level 2. Simultaneously, 
all of the inter-product integrals were approximated by the Gaussian integral (Level 
3) and the computed normalized E V was compared wi th the C V criterion. A s can 
be clearly observed in Figure 4.23, the E V form a smooth function exhibiting one 
global maximum. Furthermore, the maxima for cross-validation and E V criteria 
leads to the same generalization of the K D E (Kernel Density Estimator) model (see 
Figure 5.33) even in the case of the highest level of likelihood simplification (Level 
3). 
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Figure 4.23 The EV criterion calculated by simplified marginalization integral (Level 3) 

considering various degrees of Level 2 approximation; the EV criteria are 
depicted by thin lines, reference cross-validation is denoted by thick dashed 
line. 

To conclude this subsection, let us give a clear picture about the simplification 
efficiency by listing computation time of the E V in Figure 4.23 for all of the levels: 
to-intractable (Level 0), ti = 243 s (Level 1), t2 = 25 s (Level 2), t3 = 2 s (Level 3). 

Dimensionality issue 

One of the advantages of the proposed method is the simplicity of multi-dimensional 
estimation. The ideas mentioned above can be directly applied to general r-dimensional 
case since we can rewrite equation (4.54) as follows: 

p(V\a,ri) = y > G f c - / ^ G M ( £ i , < 7 i ) / ' G k , 2 ( £ 2 , c r 2 ) (4.62) 
J£i JS2 

G/j r (Sr, o~r) • d£\ dS2 • • • dSr. 

where £j is the z-th subspace corresponding to the i - th dimension of parameter vector 
Q and <7j denotes the z-th width of the Gaussian kernel corresponding to the i - th 
dimension of the P D F to be estimated. 

It is possible to integrate each dimension separately so that we can employ our 
strategy derived above. Then, the entire integral is obtained by mult iplying all of 
the particular one-dimensional integrals. Notice that we still need to decompose 
the likelihood function first, process each product separately, and finally sum the 
product integrals. Moreover, within the proposed method, it is possible to consider 
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various kernel widths over the dimensions. Finally, computational complexity grows 
linearly with increasing problem dimensionality due to equation (4.62). 

4.6 Conclusions on probabilistic neural networks 

The previous chapter described a novel comprehensive criterion for evaluating prob­
abilistic neural networks employing the Parzen window. The key concept is based on 
the Bayesian framework which allows us to develop a complex objective incorporat­
ing model fitting, generalization, regularization, and structural change in a neural 
model. 

The procedure of obtaining the E V criterion can be introduced in five funda­
mental points: 

• Selection and the effect of the prior distribution - E V is not very sensitive to 
the prior 

• Likelihood decomposition and its approximation - a proposed approach to 
solving the marginalization integral 

• Local approximation - likelihood can be locally approximated by the Cheby-
shev polynomial or the Gaussian integral can be employed 

• Computational complexity - a crucial point of the Bayesian approach, it can 
be significantly reduced by the presented combinatorial and likelihood approx­
imations 

• Multi-dimensional issue - developed criterion naturally tackles an arbitrary 
dimensional problem. 

Three numerical examples (see 5.3), characterized by different kinds of gener­
alized model selection problem wi l l be further presented to judge the E V criterion. 
In al l of the cases, the developed criterion outperforms the approximated M I S E 
criterion called cross-validation. Neural models selected by the E V exhibit better 
generalization from both the subjective and objective points of the view. 

Although the ini t ial computational complexity is unacceptable, efficient sim­
plistic procedures can be found. The author can see the main contribution of the 
chapter lying in versatility and performance of the method, original integration pro­
cedure, combinatorial approach to the reduction of the computational complexity, 
and local analytical approximation of the decomposed likelihood. 

A l l of the results were submitted for publication in [5] and convince the author 
for further research of this particular k ind of approach to neural inference. 

-68-



5.1. V A L I D A T I O N S T R A T E G Y 

5 Numerical validation 

5.1 Validation strategy 

In this section, validation strategies for both the Bol tzmann machine and the E V 
(evidence) approaches are to be introduced. Described validation approaches wi l l 
be further discussed in sections 5.2 and 5.3, which wi l l be covered by numerical 
simulations and practical examples. 

Boltzmann machine 

Section 5.2 inspects performance and reliability of the I N simplification based on the 
Boltzmann machine. Generally, the goal is to validate all ideas presented in chapters 
1.2 and 2.5. In our case, a validation test-case should fulfil three fundamental 
criteria: 

• The validation test-case should correspond to a real-world problem to inspect 
applicability of a proposed method. Thus, a bank of various impedance pat­
terns is compiled in order to synthesize a versatile set of various impedance 
networks. 

• More various problem instances should be introduced to ensure reliability and 
robustness of the proposed approach. Impedance patterns within the bank are 
randomly combined so that different impedance networks to be simplified are 
synthesized. 

• A reference conventional method should be also applied to compare prac­
tical performance of the novel method. The proposed Boltzmann machine 
is compared wi th the simulated annealing technique and genetic algorithms. 
Unl imited parallelism of the B M (Boltzmann Machine) is emulated and com­
putational time is discussed. 

Evidence criterion 

Section 5.3 demonstrates versatility of the developed E V criterion for probabilistic 
and general regression neural networks. Three different computer experiments are 
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presented. Each particular task listed below is represented by a specific k ind of the 
model selection problem which was solved via the proposed E V criterion: 

• The first example deals wi th probability density estimation and structural 
change of the K D E (Kernel Density Estimator). The model E V is employed 
to search both the optimal smoothing and optimal number of radial neurons 
(kernels). 

• The second problem lies in separation of intertwined spirals using the P N N 
(Probabilistic Neural Network) structure. Here, proposed criterion indicates 
the optimal density estimation incorporated in P N N structure forming the 
optimal class boundaries between intertwined spirals. 

• The last example illustrates generalization capability of the G R N N (General 
Regression Neural Network) in noisy training data. The G R N N complexity is 
driven via the E V criterion. 

5.2 Boltzmann machine simplifier 

5.2.1 Validation test-case 

As mentioned, the aim of this section is to validate the proposed simplification 
method in the most possible objective way. Thus, the bank of the various access 
impedances is compiled using three fundamental electronic circuits: simple connec­
tor model, serial and parallel L - C resonators. Parameters of the elementary circuits 
are varied so that a set of impedance patterns is obtained. Notice that the B M 
operates wi th measured or simulated impedance samples. This is the reason for 
using term pattern. Then a diverse set of impedance networks can be synthesized 
using combination of various impedance patterns and versatile set of simplification 
instances can be obtained. 

Each impedance pattern consists of magnitude and phase sampled over a spe­
cific frequency interval. Three used elementary circuits are summarized in figure 
5.24 and followed by analytical expressions for each particular input impedance. 
The bank of impedance patterns used for the testing procedure is illustrated in fig­
ures 5.25 - 5.27. In figure 5.28 equivalent impedance pattern of an exemplar test I N 
is depicted. Here, all methods were tuned to return a reduce I N consisting of the 
same number of the elements. 
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Type 1 Type 2 

Type 3 

Figure 5.24 Fundamental impedance circuits for an impedance network synthesis 

Type 1: 

Type 2: 

Type 3: 

R1 + s • Lj 

ZT3(s) 

1 + 8- ( C i i ? i ) + s2 • (dLi, 

1+S- (Cližl) + S2 • (CiLy, 
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1 + s- (di? 2) + s2 • ( d L 2 ) 

s2 • (dL2Ri + dLiR*) + s3 • (C1L1L2) 
1 + s- (di? 2) + s2 • ( d L 2 ) 

(5.63) 

(5.64) 

(5.65) 

10 
- 1st pattern 
- 2nd pattern 
- 3rd pattern 
4th pattern 

- 5th pattern 

10 10 
f(Hz) 

Figure 5.25 Type 1 impedance pattern 
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Figure 5.26 Type 2 impedance pattern 

Figure 5.27 Type 3 impedance pattern 

5.2.2 Performance 

Performance of the developed simplifier was compared with the simulated annealing 
(SA), and genetic algorithm ( G A ) techniques. In order to evaluate and compare 
all methods, five INs with increasing level of complexity where examined:L = 100, 
L = 200, L = 300, L = 500, L = 1000. Each particular algorithm was executed 
ten times to measure averaged running time t and maximal /minimal reached cost 
function Omax/Omin. Notice that it is not possible to compare the methods by 
a number of objective function enumerations, since the B M evaluates its unique 
function (energy difference) (see (3.19)). Unfortunately, its ambiguous to compare 
various optimisation methods due to their hyper-parameters. A n expert knowledge 
is required to configure each algorithm in the best way. However, it is possible to 
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f[Hz] f[Hz] 

Figure 5.28 A comparison of the three simplifiers under the test. The original IN 
consisted of 500 elements. 

tune the algorithms for a particular level of simplification and observe the deviation 
of a reduced I N from the original one. Table 5.2 summarizes obtained results over 
the various problem instances. 

B M (ft = 0.8) S A (ft = 0.8) G A 
L t(s) Omin Omax t(s) Omin Omax t(s) Omin Omax 
100 0.1 26.6 26.6 4.5 26.6 70.6 12.8 30.8 39.5 
200 0.3 57.0 57.0 23.6 56.5 92.6 37.9 70.7 225.4 
300 0.6 86.7 86.7 37.2 86.0 88.6 55.0 138.2 222.7 
500 1.4 164.7 164.7 160.3 167.4 208.2 157.1 417.8 583.1 
1000 4.6 348.8 348.8 1216.1 354.8 535.7 1367.5 1747.7 4058.2 

Table 5.2 A comparative study of three combinatorial simplifiers 

Dealing wi th hyper-parameters, the cooling schedule for the B M was defined 
according to results from chapter 3.3. Then, the schedule for the S A method was 
derived such that, similar semi-optimal solution to the B M could be found. Speed 
of cooling ft = 0.8 was held the same for both the B M and S A routines. Comparison 
of the B M and S A is essential due to the similar principals occurring within both 
approaches. However, the same procedure was performed by the G A method. A 
number of individuals was systematically increased from 80 to 300 according to 
increasing the number of elements L. Decimation of population was set as selection 
procedure due to its more reliable behaviour (see section 5.2.3). 

A s can be seen in table 5.2, the fastest and most accurate method is the devel­
oped B M simplifier. Efficiency of proposed B M lies in very simple function (energy 
difference) to be enumerated within the annealing process in comparison wi th the 
objective function required by the other methods. Computational time correspond­
ing to the B M incorporates the mapping procedure expressed in (2.14). Moreover, 
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the B M always converges very close to optimal solution which proves the correctness 
of the proposed cooling schedule. 

In Figure 5.29, computational time required by the B M to converge versus a 
number of the I N elements is depicted. A cubic polynomial fits the measured values 
well. Thus, we can say that the B M annealed according to the proposed cooling 
schedule exhibit approximately 0(L2) computational complexity. 

Figure 5.29 Computational time depending on the number of IN elements 

5.2.3 Reliabili ty 

In order to compare efficiency and robustness of all algorithms, simple statistical 
evaluation was provided. First , all methods were executed 1000 times to simplify 
the same I N . Then, it was possible to estimate a probability distribution of the 
results (see Figure 5.30). It is obvious, the narrower distribution was obtained 
by a more reliable algorithm and the lower mean value was obtained by a more 
efficient algorithm. The statistical experiment was performed on the simple tr ial I N 
consisting of the L = 100 elements. Each particular simulation was executed under 
random init ial conditions. 

Whi le the first test was performed in one particular I N simplified 1000 times, 
the second test dealt with 25 various problem instances (different INs). Each partic­
ular I N was simplified using all three algorithms under the test. In Figure 5.31, the 
most probable results estimated using each algorithm can be observed over the 25 
problem instances. Performance is represented by median values denoted by lines, 
reliability is represented by intervals covering 99% of possible results. In Figure 
5.31, each particular errorbar indicates 99% of observed results obtained by the 
corresponding algorithm. 
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Figure 5.30 Probability distribution of the results provided by the GA, SA, and BM; the 
BM always converges to the same solution which is indicated by the vertical 
dashed line 

Figure 5.31 Most probable values of the objective function reached by a particular 
method (lines); the errorbars indicates 99% of observed results obtained by 
the corresponding algorithm; the results obtained by the BM are denoted by 
cross markers 

Figure 5.31 illustrates both the performance and reliability of the algorithms 
under the test over 25 different problem instances. Generally, the G A algorithm 
exhibits low quality in comparison with both the S A and B M methods. A s can be 
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observed in Figure 5.31, the B M provides solutions exhibiting the same quality as 
0.5% of the best results provided by the S A method, which is convincing proof of 
the B M efficiency 

5.2.4 Parallel emulation 

In section 3.4 parallel execution of the B M was discussed from the theoretical point 
of view. If the B M is executed in parallel, more stochastic neurons can simultane­
ously change their states, which may lead to erroneously calculated difference in the 
energy function. Unfortunately, the simplification problem is represented by the full 
connected pattern (see Figure 2.1). Thus, the l imited version of parallelism can not 
be applied since no independent set of neurons can be found. In the case of the full 
connected B M , full parallelism lead to significant deceleration in convergence due to 
high occurrence of the erroneous calculations. The parallel B M was simulated using 
the same test-case as used in section 5.2.1. Computational time was measured over 
the annealing process and the mapping procedure was excluded to emphasize the 
time of convergence. Both the parallel and sequential machines retuned the same 
solution to the problem as listed in table 5.2. Thus, table 5.3 compares execution 
time of the sequential and parallel B M . The total simulation time measured for 
parallel B M was divided by L 2 / 3 to take into account the parallel activation of the 
L 2 / 3 neurons and judge efficiency of the parallel approach. 

sequential parallel 
L t (ms) t (ms) 
100 12.4 36.0 
200 29.9 2100.1 
300 45.8 415.0 
500 90.0 1236.1 
1000 214.7 2604.0 

Table 5.3 A comparative study of the parallel and sequential execution of the BM; the 
computational time of sequential execution is listed in milliseconds. 

Measured execution time is much higher in the case of the parallel machine. 
Unfortunately, we have to conclude that any parallelism is not suitable for our 
purpose due to the full connected type of the B M and erroneously calculated energy 
differences. 

5.3 Probabilistic neural networks 

5.3.1 A structural change of K D E 

A set consisting of ten samples (circles in figure 5.33) was drawn from a two mode 
probability distribution formed by two Gaussian distributions aorig = 0.3. The 
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Figure 5.32 Evolution of the EV criterion for various numbers of the kernels 
m = {1, 2, • • • 10}; EV maxima are denoted by markers, each one 
corresponding to a particular KDE. 

task was to simultaneously tune the smoothing parameter and adjust the sufficient 
number of the kernels (radial neurons) so that the bias/variance equilibrium would 
be found. Figure 5.32 illustrates evolution of the E V according to a particular 
number of the kernels. Obviously, a single kernel m = 1 can not fit the data well 
due to a two modal character of the sample. This is also the reason for significantly 
higher value of the smoothing parameter am=\ = 1.08 resulting in the model with 
high bias. O n the other hand, as the number of neurons increases m > 2 the 
maximum of E V decreases since the model exhibit higher variance as observed in 
Figure 5.33. The highest E V was observed in the case of the two kernels m — 2, 
which is convincing result since the original distribution consists of two Gaussians. 
If the number of the kernels increases the estimated a decreases since more kernels 
cover the input space more easily. 

Figure 5.33 summarizes three approaches to the kernel density estimation: ev­
idence ( E V ) based selection, cross-validation ( C V ) , and evidence based structural 
change. If the number of the kernels m — 10 equals the number of samples in the 
training set the E V selection criterion and cross-validation technique lead to a model 
wi th similar generalization. Notice that the Level 3 simplification was employed in 
this simulation. 

If structural change is incorporated, the proposed criterion selects the model 
wi th significantly better generalization: M S E c y = 11.1 • 10" 3 , MSEEV = 2.9 • 10" 3 . 
Here, the mean squared error was measured over the estimated and original P D F s 
in Figure 5.33. Furthermore, the selected model consist of five times less kernels in 
comparison wi th the original one. 

X m = l ; a = 1.08 

0 m = 2; a = 0.26 
A m = 3; a = 0.25 
O m = 4; a = 0.23 

V m = 5; a = 0.22 

* m = 6; a = 0.21 
• m = 7; a = 0.21 

+ m = 8; a = 0.19 

* m = 9; a = 0.19 

• m = 10; a = 0.18 
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X 

Figure 5.33 Kernel density estimation driven by the EV criterion; a uniform prior 
distribution (black thick solid line) is very rough assumption on the original 
PDF (red thick dashed line); the EV criterion leads to the similar 
generalization (thin solid line) like the CV criterion (black thin dashed 
line) in the case of all kernels activated (m = 10); a model consisting of 
two kernels (m = 2) selected by the EV exhibits the best generalization 
(blue thick solid line). 

5.3.2 Classification task 

The second experiment lies in separation of intertwined spirals which have been 
already used as an illustrative classification problem in [45]. The reason for address­
ing this particular task lies in its three characteristic points: strongly non-linearly 
separable problem, high variance in mutual distances of the neighbouring samples, 
clearly non-uniform distribution of the samples (strongly against the prior assump­
tion in equation (4.52)). 

A complete training set consisted of 4 x 10 training samples belonging to four 
classes. The training set for the first class is depicted in Figure 5.34 (left). The 
remaining three sets have been obtained rotating the ini t ial spiral by (i — 1)TV/2, 

where % indicated a particular class. A s mentioned, density of the training sam­
ples increases as we follow a spiral towards its center. Thus, the E V criterion was 
employed to find a compromise between precisely shaped density within area close 
to the center and smooth density within distant area, see Figure 5.34 (left). This 
equilibrium is strongly connected with shape of the decision boundaries formed by 
the P N N . 

According to Figure 5.34 (right), one can argue that the obtained model wi l l 
classify wrongly even the training samples wi thin the spiral center. In this case, 
three points should be considered: a global smoothing parameter a was considered, 
the E V approach incorporates uncertainty in training samples, and, generally, a 
model with worst fitting can exhibit better generalization. 
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Figure 5.34 A probability distribution estimated by PNN belonging to a particular spiral 
(left) and decision boundaries provided on the output of the PNN (right); 
each particular spiral training set is denoted by a unique type of marker; 
EV (evidence) based PNN model produces decision boundaries 
compromising between over-smoothed (CV) and over-fitted (NN) solutions. 

^ 
{ * / ^ ° \ ^ \ \ 1 

0 / ( J \ (° 

* \ o\ 

Figure 5.35 Decision boundaries formed by two reference estimations: over-smoothed 
CV based PNN (left), over-fitted nearest neighbour (NN) estimate (right). 

In order to evaluate the proposed criterion, two more computations were pro­
vided. Figure 5.35 depicts decision boundaries formed by cross-validated P N N and 
by the nearest neighbour estimator. The nearest neighbour estimator exhibits very 
high complexity, precise fitting, and, consequently, very rough decision boundaries. 
O n the other hand, if P N N complexity is driven via C V criterion, the obtained clas­
sifier leads to smooth boundaries but also to misclassification close to the center. 

Two lines were created in parallel with decision boundaries in the center of 
each spiral so that the trend of the boundaries could be observed. A s we can see 
in Figures 5.34 and 5.35, the E V solution [pev < acv) fits better the data than 
the C V approach and simultaneously exhibits worst fit than the nearest neighbour 
estimator. This is important conclusion, since one would expect rather smoother 
model in the case of E V criterion due to the effect of prior assumption (an uniform 
distribution). Despite of the prior, proposed E V criterion selected an equilibrium 
between over-fitting (too high complexity) and over-smoothing (too low complexity). 
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5.3.3 Approximation task 

A training set for approximation test case consists of 50 samples obtained by sam­
pling an original function depicted in Figure 5.36 (thick dashed line). The target 
is a noisy [pnoise = 0.75) composite function including both of the smooth and 
rough parts, which is crucial for all model selection criteria. More specifically, an 
original function can be expressed: f(x) = —20/(1 + x2) on the interval [—12,3), 
f(x) =sin[0An-(x-3)] wi thin the range [3,10.5), and f(x) = - 2 0 / [ l + (x- 13.5)2] 
within [10.5,13.5]. 

The training set was partitioned onto five neighbouring sections and sufficient 
smoothing for each particular section was estimated. Basically, this approach to 
the G R N N simulation is similar to the one used in [45]. The E V was employed to 
find all smoothing parameters for the G R N N estimator while the cross-validation 
criterion was used as a reference method. Figure 5.36 shows that both criteria lead to 
compromise between fitting the rough parts of the original function and suppressing 
noise. The E V approach applies less smoothing than the C V criterion. Notice that 
this statement holds for all numerical examples given above and it always leads to 
better generalization. 

Figure 5.37 depicts amount of bias and variance in the E V based and C V based 
models. Ten training sets were randomly generated to depict model complexities 
in Figure 5.37. A s can can be observed, the C V criterion systematically selects 
smoother models exhibiting higher bias, which is not desirable if a function to be 
approximated exhibits complex behaviour. 

In order to evaluate the E V criterion for the G R N N in a rigorous way, one 
hundred noisy training sets were generated and average M S E over all sets was mea­
sured for both of the E V and C V criteria. Each particular M S E measured deviance 
between the original function f(x) and particular G R N N estimate over the entire 
approximated interval and for dense testing set, see Figure 5.37. The resulting errors 
clearly indicates that E V criterion selects more probable models: M S E c y = 1.73, 
MSEEV = 1.02. 
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5.3. P R O B A B I L I S T I C N E U R A L N E T W O R K S 

-10 -5 0 5 10 

Figure 5.36 Comparison of the EV based (solid thin line) and the CV based (dashed 
thin line) GRNN estimators recovering the original function (dashed thick 
line) from a training set corrupted by Gaussian noise (crosses). 
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Figure 5.37 Illustration of the bias and variance via ten training sets; the EV based 
estimation (left) results in lower bias (better fit of the rough parts) and 
more variance (more sensitive to noise), the CV based model (right) 
exhibits exactly the opposite behaviour. 



5.4. D I S C U S S I O N O N N U M E R I C A L R E S U L T S 

5.4 Discussion on numerical results 

Let us to briefly discuss the obtained numerical results. Dealing wi th the B M 
combinatorial simplifier, experimental observation can be summarized: 

• The mapping procedure was provided appropriately since the B M searched 
the minimum of cost function defined by the simplification task (see Figure 
5.28). 

• Execution time needed for convergence of the B M is approximately 200 times 
lower than the SA. Notice that the main portion of execution time is consumed 
by the mapping procedure (see Table 5.2). 

• Computational complexity of the B M is approximately 0(L2). This means 
that execution time rises with a square of the problem complexity and the 
developed B M can solve the simplification problem in polynomial time (see 
Figure 5.29). 

• The B M always returns a solution better than 0.5% of the results provided by 
the S A method. The B M is the most reliable algorithm in comparison with 
S A and G A techniques (see Figure 5.31). This also proves correctness of the 
proposed cooling schedule. 

• Parallel emulation of the B M exhibits much lower performance than the se­
quential form. It is due to fully connected pattern causing high occurrence of 
erroneously calculated difference in energy (see Table 5.3). 

The E V criterion was tested on three different task incorporating the model 
selection problem: 

• First , all kernels were used for the kernel density estimation. In this case the 
E V criterion leads to the similar model as the C V (cross-validation) criterion. 
Then, the kernels were iteratively removed and the highest level of the E V 
was estimated. The reduced K D E estimator leads to significant improvement 
in generalization in comparison with C V decision: M S E ^ y = 11.1 • 1 0 - 3 , 
MSEEV = 2.9 • 10" 3 . 

• Referring to the classification task, the E V criterion selected the classifier equi­
librating between over-fitting (nearest neighbour criterion) and over-smoothing 
(cross-validation criterion) (see 5.34). 

• The last experiment dealt wi th the approximation task. The E V and C V 
criteria were compared in terms of the mean squared error over multiple train­
ing sets. It is the criterion expressed in (4.44). The proposed E V criterion 
leads objectively to better generalization in comparison wi th C V criterion: 
M S E c y = 1.73, MSEEV = 1.02. 
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6 Conclusion 

Even though all objectives and results have been independently discussed above, it 
is worthwhile to present a general point of the view. The author finds interesting to 
remark some positive and promising features of the ideas as well as their limitations 
and disadvantages. 

First , its obvious that the simplification task can be solved very efficiently us­
ing the mapping procedure and the Bol tzmann machine. Estimated computational 
complexity promises high efficiency of the developed method in solving large prob­
lems. The B M incorporates measured values of the impedance elements, which is an 
important practical feature. O n the other hand, the proposed method was demon­
strated on a simple circuit topology which makes the mapping not so complicated. 
The future research should be mainly focused on generalizing the mapping proce­
dure to enable simplifying an arbitrary topology of an equivalent circuit. This step 
wi l l probably require some change in the energy function of the B M and some struc­
tural change of the machine itself. However, if the generalized mapping problem was 
solved a robust synthesiser of equivalent circuits could be obtained. Such a method 
would incorporate both the equivalent circuit model performance (fitting) and the 
model complexity (generalization). 

The main motivation for developing the evidence criterion was given by need 
of some comprehensive approach to the model selection problem. This problem is 
not usually addressed by the behavioural modellers but its crucial from the model 
generalization point of the view. A s demonstrated above, the proposed criterion can 
address a wide spectrum of machine learning problems if its applied on the Parzen 
estimator. A s mentioned above, the most crucial problem of the proposed method is 
its computational complexity. Even if some simplistic methods were proposed and 
discussed, the computational time rises to rapidly wi th extent of training data. This 
should be the first step in future research. A possible way is to find an alternative 
form of the kernel leading to analytically integrable likelihood. The positive result 
is the robustness of the criterion against the prior assumption, which was verified 
by numerical simulations. This aspect makes possible to use the evidence for reg­
ularizing solutions to the inverse tasks (e.g de-blurring problem, linearised inverse 
scattering problem) since the same phenomena occur wi thin the field of these prob­
lems. Moreover, optimal and efficient selection of the K D E smoothing parameter is 
still open question in statistics and the evidence is a possible solution to the problem. 
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Appendix A 

Probabilistic neural networks 

A . l Mean squared error decomposition 

A detailed decomposition of M S E is based on the assumption that conditional mean 
value of every function of y is computed with respect a conditional probability 
density function / ( y | X ) 

E[<f>{y,x)\x] = f <t>(y,x)f(y\X)dy, ( A . l ) 

then we can rewrite expression 4.43 as follows 

E[(y - g(X;V))2\X] = E[(y - E[y\X])2\X] + (E[y\X\ - g(X; V)f 

+2E[(y - E[y\X])\X] • {E[y\X} - g(X;V)), 

which can be decomposed in the sum of three following integrations: 

a) 

j{y- E[y\X]f • f(y\X)dy = E[(y - E[y\X})2\X] 

b) 

J' [E[y\X] - g{X;V))2 • f(y\X)dy = (E[y\X] - g(X; V))2 j f(y\X)dy 

= (E[y\X]-g(X;V))2 

since i?[y |X] is deterministic function (see expression 4.39) as well as g{X\T>) 

c) 

J 2(y - E[y\X}) • (E[y\X] - g(X; V)) • f{y\X)dy = 2(E[y\X] - g(X; V)) 

•f(y- E[y\X}) • f(y\X)dy 
V v ' 

equals to zero 
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since 

(y - E[y\X]) • f(y\X)dy yf(y\X)dy - E[y\X] \ f(y\X)dy 

E[y\X] - E[y\X] 

0 

Now it is clear that if we take all of the right sides from expressions a) - c) we wi l l 
obtain equation 4.43. 

A.2 Likelihood decomposition 

Form of the likelihood function (see 4.45) to be marginalized lets grow a lot of various 
components which are not, basically, in the standard exponential form (Gaussian). 
The following idea makes each component possible to be expressed in the standard 
form. Let us to consider a function f(x) in the form: 

f(x) = exp [a — x) 
2a2 

exp 
2a2 

x ( 2ax 

e x p i ^ J exp^ 2 ( j 2 

(A.2) 

shift and scale pure exponential 

Then, we can express an inter-product gi{x) in the same way: 

(a — x)2 + (b — x)2' 
92{X) exp 

exp 

2cr2 

a2 \ ( IP 
exp 2a2 2a2 

exp 
2 ax 2bx 

2a2 ) e X P \2c72 ] 6 X P 

2-x2 

l^2 

shift and scale pure exponential 

h2(x) • exp 
2-x2 

' 2a2 

/32 • exp 
2 ( $ 2 - x ) 

2cr2 
(A.3) 

Following this idea, an arbitrary complex inter-product can be represented by the 
Gaussian exponential: 

9n{X) exp 
(ai - x)2 + (a 2 — x)2 H h (a„ - x)2 

hn(x) • exp n • x 

2a2 

(3n • exp 
n • ($„. - x] 

2a2 ) " l "V 2cr2 

In the following part we wi l l proof our statements by ensuring that 

(A.4) 

92(x) = h,2(x) • exp 
2-x2 

Hc^2 

• exp 
2 ( $ 2 - x ) 

2 a 2 
(A.5) 
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In according to expression 4.57 we can write 

/32 = exp 

and 

a - $2)2 + (b - $2)2 

2a 2 

a + b 

then 

-a2 - b2 + 2ax + 2bx - 2x2 = -(a - $2)2 - (b - $ 2 ) 2 - 2{x - $2 

(A.6) 

(A.7) 

(A.8) 

is to be proven, which is t r ivial . 
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