

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ

FACULTY OF CIVIL ENGINEERING

ÚSTAV STAVEBNÍ MECHANIKY

INSTITUTE OF STRUCTURAL MECHANICS

STUDIE DYNAMICKÝCH ÚČINKŮ NA MOSTNÍ KONSTRUKCI OD POHYBLIVÉHO ZATÍŽENÍ

STUDY OF DYNAMIC EFFECT ON A BRIDGE STRUCTURE WITH MOVING LOADS

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Michaela Zavřelová

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Zbyněk Vlk, Ph.D.

BRNO 2024

Zadání diplomové práce

Ústav:	Ústav stavební mechaniky
Studentka:	Bc. Michaela Zavřelová
Vedoucí práce:	Ing. Zbyněk VIk, Ph.D.
Akademický rok:	2023/24
Studijní program:	N0732A260026 Stavební inženýrství – konstrukce a dopravní stavby

Děkan Fakulty Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Studie dynamických účinků na mostní konstrukci od pohyblivého zatížení

Stručná charakteristika problematiky úkolu:

Pohyblivé zatížení vyvolává na konstrukcích dynamické účinky. Tyto účinky lze zahrnout do výpočtu buď dynamickým součinitelem ve statickém výpočtu a nebo provést dynamickou analýzou modelu konstrukce, která je vyžadována na železničních mostech, pokud jsou navrhovány pro pojiždění vlakových souprav o rychlostech větších než 200 km/h.

Cíle a výstupy diplomové práce:

Úkolem této práce je dynamická studie modelu železničního mostu na dynamické účinky vznikající při přejezdu vysokorychlostních vlakových souprav různými rychlostmi.

Pro zadanou analýzu těchto účinku bude vytvořen zjednodušený výpočetní model železničního rámového mostu ve zvoleném výpočetním softwaru. Dále budou vytvořeny vhodné modely zatížení pro vybrané vysokorychlostní vlakové soupravy tak, aby bylo možné provést dynamické analýzy pro různé rychlosti těchto souprav.

V rámci této práce bude provedena parametrická studie závislosti maximálních deformací na typu a rychlosti jednotlivých vlakových souprav.

Seznam doporučené literatury a podklady:

[1] ČSN EN 1991-2 - Zatížení mostů dopravou

[2] ČSN EN 1992-2 - Betonové mosty - Navrhování a konstrukční zásady

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku.

V Brně, dne 24. 3. 2023

L. S.

prof. Ing. Drahomír Novák, DrSc. vedoucí ústavu Ing. Zbyněk Vlk, Ph.D. vedoucí práce

prof. Ing. Rostislav Drochytka, CSc., MBA, dr. h. c. děkan

ABSTRAKT

Cílem diplomové práce je dynamická parametrická studie železničního mostu na dynamické účinky přejezdu vysokorychlostních vlakových souprav pomocí modelu zatěžovacího vlaku HSLM-A po železničním mostě. Výpočtový model je zpracován v softwarech RFEM 5.29.01 s modulem RF-MOVE a v prereleasové verzi RFEM 6 a RSTAB 9 jako 2D prutový v rovině XZ. Dále jsou vytvořeny statické zatěžovací stavy a modely zatížení LM 71 a HSLM-A. Model zatížení HSLM-A je zpracován pro universální vlaky A1-A10, jež každý přejede železniční most celkem 15 rychlostmi v rozmezí 120 km/hod – 400 km/hod. V rámci diplomové práce je provedena detailní parametrická studie závislosti maximálních deformací a zrychlení uzlu ve směru Z na rychlostech jednotlivých vlakových souprav. V parametrické studii je použita modální a časová analýza. Součástí diplomové práce je určení oblasti rezonance.

KLÍČOVÁ SLOVA

Dynamická analýza, dynamické účinky, pohyblivé zatížení, železniční most, model zatížení, zatěžovací vlak, RFEM, RSTAB, modální analýza, vlastní tvary, vlastní frekvence, vlastní perioda, časová analýza, kombinace zatížení, vlaková souprava, universální vlak, Raileighův model útlum, Lehrova tlumicí konstanta, deformace, zrychlení, lineární modální metoda, lineární implicitní Newmarkova metoda

ABSTRACT

The goal of the master thesis is a dynamic parametric study on the dynamic effects of high-speed train using the HSLM-A load model on a railway bridge. The calculation model is processed, in RFEM 5.29.01 with RF-MOVE module and prerelease versions RFEM 6 and RSTAB 9, as a 2D member in the XZ plane. Furthermore, static load cases and load models LM 71 and HSLM-A are created. The HSLM-A load model is processed for universal trains A1-A10, which each cross the railway bridge at a total of 15 speeds ranging from 120 km/h to 400 km/h. A detailed parametric study of the dependence of the maximum deformation and acceleration in the Z direction on the speeds of each train set is performed. Modal and time history analysis is used in the parametric study. Part of the work is to determine the resonance region.

KEYWORDS

Dynamic analysis, dynamic effects, moving load, railway bridge, load model, load train, RFEM, RSTAB, modal analysis, mode shapes, eigenfrequency, eigenperiod, time analysis, load combination, train set, universal train, Raileigh damping model, Lehr damping constant, deformation, acceleration, linear modal method, linear implicit Newmark method

BIBLIOGRAFICKÁ CITACE

ZAVŘELOVÁ, Michaela. *Studie dynamických účinků na mostní konstrukci od pohyblivého zatížení*. Brno, 2023. Diplomová práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav stavební mechaniky. Vedoucí Ing. Zbyněk Vlk, Ph.D.

PROHLÁŠENÍ O PŮVODNOSTI ZÁVĚREČNÉ PRÁCE

Prohlašuji, že jsem diplomovou práci s názvem *Studie dynamických účinků na mostní konstrukci od pohyblivého zatížení* zpracovala samostatně a že jsem uvedla všechny použité informační zdroje.

V Brně dne 15.12. 2023

Bc. Michaela Zavřelová

autor

PODĚKOVÁNÍ

Tímto bych ráda poděkovala mému vedoucímu diplomové práce Ing. Zbyňku Vlkovi, Ph.D. za vedení k mojí bakalářské práci a nyní i diplomové. Jeho pozitivního přístupu, odborných znalostí, ochoty, trpělivosti, konzultací a předávání informací při zpracování nejen této práce si velmi vážím a je radost s ním spolupracovat.

Dále bych chtěla poděkovat Ing. Ondřeji Šupčíkovi, pod jehož vedením působím ve firmě Dlubal Software s.r.o., a který mi poskytnul další užitečné informace v oblasti dynamiky. Související poděkování míří i k uvedené firmě, která mi umožnila použít vývojovou verzi softwaru pro samotné zpracování.

Jeden z největších díků patří celé mé rodině, především rodičům, kteří mi umožnili studovat a podporovali mě nejen finančně během celého studia, ale také drželi palce při každé zkoušce a mají tak obrovský podíl na cestě za mým snem k titulu, který budu již za pár dní obhajovat.

Poděkování patří také mému příteli za podporu a trpělivost v mém závěru vysokoškolských let.

V neposlední řadě bych chtěla poděkovat všem v mém okolí, kteří sehráli důležitou část mé studentské i osobní životní kapitoly během vysokoškolských let.

Jedním slovem...

DĚKUJI!

Obsah

1.	Úvod		
2.	Vysokory	chlostní tratě (VRT)	
2	.1. Spe	cifikace návrhu železničních mostů pro vysokorychlostní tratě	
	2.1.1.	Model zatížení LM 71	
	2.1.2.	Model zatížení "Nezatížený vlak"	
	2.1.3.	Roznos nápravových zatížení	
	2.1.4.	Dynamika a její účinky	
3.	Dynamick	á analýza	17
3	.1. Zákl	ady dynamiky	17
	3.1.1.	Kmitání	17
3	.2. Para	ametry mostu	
	3.2.1.	Hmotnost konstrukce	
	3.2.2.	Tuhost konstrukce	
	3.2.3.	Útlum konstrukce	
4.	Modelová	ní přejezdu vlakových souprav	
4	.1 Přej	ezdy vlakových souprav v časech	
4	.2. Ově	ření přejezdu	
5.	Popis mo	delu	27
6.	Zatížení v	ýpočetního modelu	
7.	Zatěžova	cí model LM 71	
8.	Dynamick	á část výpočtového modelu	
8	8.1. Mod	ální analýza	
8	8.2. Čas	ová analýza	
	8.2.1.	RF-MOVE a vlakové soupravy	
	8.2.2 G	enerování časových diagramů	
	8.2.3.	Kombinace zatížení pro přejezd vlakové soupravy	
8	3.3. Tlun	není	
9.	Výstupy a	ı analýza výsledků	
g).1. RF-I	MOVE	
g	.2. Mod	ální analýza	
	9.2.1.	Ověření vlastní úhlové frekvekce	
g).3. Čas	ová analýza	51
	9.3.1.	Tlumená a netlumená konstrukce	51
	9.3.2.	Grafy zrychlení a deformací	
	9.3.3.	Srovnání metod časové analýzy	57
	9.3.4.	Závěrečné zhodnocení grafů	
10.	Závěr.		64
11.	Sezna	m použité literatury	65
12.	Sezna	m tabulek	
13.	Sezna	m obrázků	67

DIPLOMOVÁ PRÁCE

Bc. Michaela Zavřelová

14.	Seznam zkratek	. 69
15.	Seznam příloh	. 70

1. Úvod

Cílem diplomové práce je provést dynamickou parametrickou studii, která se zaměřuje na dynamické účinky přejezdu vysokorychlostních vlakových souprav přes železniční most, jehož konstrukčním řešením je polorámová konstrukce s plošným založením bez přesypávky. Pro analýzu vysokorychlostních vlakových souprav je využit model zatěžovacího vlaku HSLM-A (High speed load model).

Výpočtový model je vytvořen v softwaru RFEM 5.29.01 s modulem pro pohyblivá zatížení RF-MOVE a v prereleasové verzi softwaru RFEM 6 a RSTAB 9. Model je implementován jako 2D prutový model v rovině XZ. Následně jsou vytvořeny statické zatěžovací stavy a modely zatížení LM 71 a HSLM-A.

Model zatížení LM 71 s využitím modulu RF-MOVE simuluje přejezd zatěžovacího vlaku přes mostní konstrukci, kde hledáme nejnepříznivější polohu vlaku pro maximální deformaci a zrychlení konstrukce. Jedná se o statickou analýzu s dynamickým součinitelem.

Model zatížení HSLM-A je zpracován pro universální vlaky A1-A10, z nichž každý přejede železniční most při celkem 15 různých rychlostech v rozmezí od 120 km/hod do 400 km/hod.

V rámci diplomové práce je provedena detailní parametrická studie, která zkoumá závislost maximálních deformací a zrychlení uzlu především ve směru Z při různých rychlostech jednotlivých vlakových souprav.

Výsledky pro universální vlak A1 jsou zpracovány podrobně. Kromě směru Z je provedena analýza i pro podélný směr X. Pro universální vlak A1 jsou vyhotoveny grafy závislostí globálních deformací a zrychlení na všech projížděných rychlostech. Pro universální vlaky A2-A10, vzhledem k množství dat, jsou ze všech provedených analýz graficky zpracovány do diplomové práce pouze rychlosti 120 km/hod, 200 km/hod, 300 km/hod a 400 km/hod.

Tato studie zahrnuje využití modální (metoda Kořen charakteristického polynomu) a časové analýzy pro podrobné zhodnocení dynamických účinků přejezdu vysokorychlostních vlakových souprav přes železniční most. V první fázi je časová analýza provedena metodou lineární modální a ve druhé fázi rozšířena o metodu lineární implicitní Newmarkovu. Následně jsou metody porovnány. Srovnání metod je provedeno pomocí maxim a průměrů směrodatných odchylek, přičemž jako výchozí je zvolena metoda časové analýzy – lineární modální, pro její větší přesnost. Pro největší směrodatné odchylky jsou vytvořeny grafy, ve kterých lze vidět časové průběhy.

Pro zhodnocení rezonančních účinků jsou určeny frekvence projíždějících vlakových souprav a je tak vyhodnocena oblast rezonance na základě vlastní úhlové frekvence.

V samotném závěru diplomové práce jsou souhrnné výsledkové grafy, včetně výstupu zatěžovacího modelu LM 71.

2. Vysokorychlostní tratě (VRT)

Vysokorychlostní železniční tratě jsou tvořeny dopravní sítí, která má za cíl zkrátit dobu cestování. To je umožněno systémem vlakových spojů, který je páteřní. Vysokorychlostní tratě jsou již ve vyspělých zemích běžnou součástí denního života. V evropských zemích je rychlost vlaků schopna dosáhnout až 320 km/hod a zrychluje tak překonání trasy ze vzdálených regionů.

V České republice bude v provozu systém Rychlých spojení (RS). V systému jsou zahrnuty novostavby VRT, modernizace tratí s vysokorychlostními parametry, vozidlové parky a v neposlední řadě provozní koncept. Dle *Programu rozvoje rychlých železničních spojení* bylo identifikováno 5 hlavních směrů pro rozvoj: [1]

- **RS1** Praha -> Brno -> Přerov -> Ostrava -> Katowice
- RS 2 Brno -> Břeclav -> Wien / Bratislava
- RS 3 Praha -> Plzeň -> Domažlice -> Bavorsko
- **RS 4** Praha -> Ústí nad Labem -> Dresden
- RS 5 Praha -> Wrocław

Obrázek 1: Systém Rychlých spojení v ČR [1]

Obrázek 2: Transevropská dopravní síť [1]

Cílem této práce je parametrická studie železničního rámového mostu, na kterém bude provedena statická analýza s vlivem dynamického součitele a dynamické analýzy vysokorychlostních vlakových souprav HSLM – High Speed Load Model, neboli model vysokorychlostního zatížení.

2.1. Specifikace návrhu železničních mostů pro vysokorychlostní tratě

Modely, které definuje norma ČSN EN 1991–2 ed. 2 Eurokód 1: Zatížení konstrukcí - Část 2: Zatížení mosťů dopravou [2] pro zatížení kolejovou dopravou nepopisují skutečná zatížení, ale byly zvoleny tak, aby reprezentovaly účinky od dopravy s dynamickými zvětšeními uvažovanými odděleně. Norma [2] uvažuje pouze s tratěmi s normálním (1435 mm) a širokým rozchodem. V normě [2] jsou uvedena od železniční dopravy svislá zatížení, dynamické účinky, odstředivé síly, boční rázy, rozjezdové a brzdné síly a aerodynamika od projíždějících souprav. Svislá zatížení můžeme rozdělit na modely zatížení:

- LM 71 běžná železniční doprava, případně SW/0 pro spojité konstrukce
- SW/2 těžká železniční doprava
- HSLM vlaky překračující 200 km/hod
- "nezatížený vlak" účinek nezatíženého vlaku

V rámci diplomové práce jsou modelována svislá zatížení – model zatížení LM 71 a HSLM.

2.1.1. Model zatížení LM 71

V modelu je zahrnut statický účinek svislého zatížení. Zatížení působí od běžné železniční dopravy. Analýza zatěžovacího modelu LM 71 je včetně dynamického součinitele Δ.

Obrázek 3: Uspořádání zatížení LM 71 v charakteristických hodnotách [2]

2.1.2. Model zatížení "Nezatížený vlak"

Tento typ zatížení se používá pro specifická ověření a skládá se z rovnoměrného svislého zatížení o hodnotě 10,0 kN/m (charakteristická hodnota).

2.1.3. Roznos nápravových zatížení

Platí obecně pro modely zatížení LM 71, nezatížený vlak a HSLM.

Obrázek 4: Podélný roznos osamělé síly kolejnicí (LM 71/HSML-A) [2]

Obrázek 5: Podélný roznos zatížení pražci a kolejovým ložem (LM 71) [2]

Pro koleje bez převýšení a s kolejovým ložem by měl být zahrnut roznos zatížení v příčném směru.

Obrázek 6: Příčný roznos zatížení pražci a kolejovým ložem [2]

Excentricity a roznosy nebyly pro účely diplomové práce uvažovány.

2.1.4. Dynamika a její účinky

Snižování a vzrůstání namáhání konstrukce a deformací je ovlivněno účinky od dopravy. V našem případě od pohyblivého zatížení. Se statickým namáháním a deformacemi souvisí i zrychlení nosných části mostní konstrukce. Nárůst či pokles je založen na vlivech rychlých změn v zatěžování od pohyblivých zatížení nebo přejezdech soustav, která mají síly (zatížení) přibližně ve stejných vzdálenostech od sebe. [2]

V dynamické analýze jsou zahrnuty faktory, které ovlivňují dynamické chování konstrukce. Důležitými prvky, které uvažujeme v diplomové práci, jsou rychlosti projíždějících vlakových souprav, rozpětí mostní konstrukce a její hmotnost, vlastní tvary kmitání (uvažujeme především v globálním směru Z, u podrobnějšího zkoumání i směr jízdy X – pro universální vlak A1) a související vlastní frekvence konstrukce. Dále také informace o vlakové soupravě, u které je nutno znát nápravové zatížení, počet náprav a jejich vzdálenost.

Dalšími faktory můžou být například útlum konstrukce a nerovnosti koleje.

Nutnost dynamické analýzy závisí na kritériích vývojového diagramu [Obr 7]. Po vyhodnocení vývojového diagramu je pro naši konstrukci a ostatní kritéria dynamická analýza požadována. Po provedení dynamické analýzy jsou její výsledky srovnány s výsledky statické analýzy s dynamickým součinitelem. V našem případě s výsledky modelu zatížení LM 71 vynásobenými dynamickým součinitelem Δ . V dynamickém součiniteli Δ nejsou uvažovány rezonanční účinky, ale pouze dynamické zvětšení účinků kmitání a namáhání. Statické analýzy neurčují rezonanční účinky. Rezonanční účinky jsou určeny na základě dynamické analýzy, ve které je provedena modální analýza a časová analýza s modely HSLM.

Dynamická analýza odhalí rezonanci či velké zrychlení konstrukce, které by mohlo způsobit nestabilitu, případně nadměrné deformace. Ve finální verzi se navrhuje na nejméně příznivou hodnotu od účinků od dopravy. V diplomové práci je provedena studie dynamických účinků několika vysokorychlostních vlakových souprav a rychlostí, proto návrhová kritéria nejsou dále zohledňována.

Redukci $red\Delta_{2,3}$ součinitele Δ zavádíme na konstrukce s nejvíce jednou převáděnou kolejí. V našem případě není provedena žádná redukce dynamických účinků.

Výpočet dynamického součinitele Δ je proveden v *kapitole* 7 – Zatěžovací model LM 71.

V diplomové práci je zpracována statická analýza s vlivem dynamického součinitele Δ a samotná, již podrobná, dynamická analýza.

2.1.4.1. Vývojový diagram

Obrázek 7: Vývojový diagram

2.1.4.2. Zatěžování modelem HSLM

Pro dynamickou analýzu se využívá model zatížení HSLM. Model vysokorychlostního zatížení se provádí na mostech, které jsou navrženy pro mezinárodní tratě. Evropská vysokorychlostní kritéria pro interoperabilitu musí být zde v platnosti. V interoperabilitě je cílem vzájemně dosahovat součinnosti na technické půdě a zajistit tak spolupráci několika systémů.

Model zatížení HSLM zahrnuje modelové vlaky HSLM-A a HSLM-B. Modelové vlaky se liší měnitelnými délkami vagónů. HSLM-A a HSLM-B znázorňují účinky zatížení kloubových, konvenčních a pravidelných vysokorychlostních osobních vlaků. Modely musí dodržovat požadavky na úrovni evropských technických specifikací.

Obecně je nutno dodržet některé požadavky na vlaky. Maximální délka osobního vlaku je omezena délkou 400 m. Celková tíha vlaku musí být maximálně 10 000 kN.

Norma [2] také definuje vysokorychlostním osobním vlakům mezní parametry, které vyhovují modelu zatížení HSLM. Dle typu vlaků jsou předepsány mezní hodnoty pro jednotlivá nápravová zatížení *P* [*kN*], vzdálenost délek vagónů *D* [*m*], vzdálenost náprav přes spojení 2 vlakových souprav e_c [*m*] a délku středního vagónu D_{IC} [*m*].

Konkrétní modelové vlaky HSLM-A a HSLM-B, které jsou předmětem této práce, jsou popsány v následující kapitole.

2.1.4.2.1. Definice HSLM-A

Na modelu je hnací vozidlo, koncový vagón a mezilehlé vagóny. Uvažujeme modely universálního vlaku A1-A10 dle tabulky z [2].

Univerzální vlak	Počet mezilehlých vagónů N	Délka vagónu D (m)	Vzdálenost náprav v podvozku d (m)	Osamělá síla P (kN)
A1	18	18	2,0	170
A2	17	19	3,5	200
A3	16	20	2,0	180
A4	15	21	3,0	190
A5	14	22	2,0	170
A6	13	23	2,0	180
A7	13	24	2,0	190
A8	12	25	2,5	190
A9	11	26	2,0	210
A10	11	27	2,0	210

Obrázek 8: HSLM-A [2]

Tabulka 1: HSLM-A [2]

Jak je vidět v tabulce [1] a obrázku [9], modelový vlak HSLM-A má celkem 10 variant. Odlišnost je v délce vagónů, vzdálenostech souprav, velikostech osamělých sil a počtu mezilehlých vagónů. Hnací vozidlo má stejnou délku i vzdálenost náprav pro všechny varianty modelového vlaku. U koncového vagónu a hnacího vozidla je dvojnáprava.

Na níže uvedeném obrázku je vidět grafické zobrazení pro orientační porovnání celkových délek a vzdáleností náprav universálních vlaků HSLM-A (A1-A10). V místech náprav jsou soustředěny osamělé síly (břemena) pro modelaci situací jednotlivých souprav v programu RFEM.

Model zatížení HSLM - A

Obrázek 9: Universální vlaky HSLM-A (A1-A10)

2.1.4.2.2. HSLM-B

Model je složen z N jednotně rozestoupených osamělých sil o velikosti 170 kN.

Na základě kritérií uspořádání konstrukce dle [2] použijeme pro prostě uložené pole s rozpětím *L*>7 *m* pouze model HSLM-A (A1-A10).

Dále dle [2] pro dvě koleje, s vlaky pojíždějícími v obou směrech, na mostě zatěžujeme pouze jednu z kolejí. V případě, že by byly účinky z dynamické analýzy větší než výsledky od LM 71, kombinují se účinky z dynamické analýzy i s účinky od zatížení na jinou kolej a zároveň by bylo potřeba k účinkům z dynamické analýzy uvažovat dílčí součinitel. Dílčí součinitele není možno uplatnit na zatížení HSLM při zjišťování zrychlení konstrukce. Pro účely této práce je uvažována jedna pojížděná kolej.

Modely by měly být implementovány s řadami rychlostí, konče maximální možnou návrhovou rychlostí. Maximální rychlost uvažujeme obecně 1,2násobek maximální rychlosti v zohledňovaném místě na trati. Vzhledem k povaze práce typu parametrická studie je uvažována řada rychlostí 120 – 400 km/hod pro každý model.

3. Dynamická analýza

Existuje riziko, že přejezd vysokorychlostní vlakové soupravy se stejnými vzdálenostmi zatížení (vagónů) rozkmitá konstrukci a způsobí rezonanci. Kmitání, které je vyvolané přejezdem, je tak nadměrné.

3.1. Základy dynamiky

Mechaniku můžeme rozdělit na statickou a dynamickou část. Statická část řeší rovnováhu vnitřních a vnějších sil, které působí, když je konstrukce v klidu. Ve statice platí vztah (3.1), který říká, že odezva je závislá na velikosti zatížení a tuhosti konstrukce. [7]

$$K * u = f \tag{3.1}$$

K matice tuhosti
 u vektor posunutí
 f vektor zatížení (vnějších sil)

V dynamice se přidá k vnitřním a vnějším silám vliv setrvačných a tlumicích sil. K tuhosti konstrukce a velikosti zatížení je dynamika závislá také na hmotnosti a útlumu konstrukce a na časovém postupu zatížení. Pro n stupňovou soustavu volnosti je popsána soustava pohybových rovnic (3.2). [3]

$$\mathbf{K} * \mathbf{u}(t) + \mathbf{C} * \dot{\mathbf{u}}(t) + \mathbf{M} * \ddot{\mathbf{u}}(t) = \mathbf{f}(t)$$
(3.2)

K	matice tuhosti
u	vektor posunutí/přemístění
С	matice útlumu
Ü	vektor rychlosti
М	matice hmotnosti
ü	vektor zrychlení
f	vektor budicí síly

Počet stupňů volnosti nám určuje, jak složitý a rozsáhlý bude dynamický výpočet. Výpočetní model může mít 1 až nekonečno stupňů volnosti. Stupeň volnosti představuje složku vektoru posunutí, ve kterém je nenulová hmota, čímž zároveň určuje počet vlastních tvarů a jejich frekvencí. Hmotu můžeme soustředit buď do konkrétních uzlů, čímž vznikne omezený (konečný) počet stupňů volnosti. Pro reálné konstrukce je hmota spojitě rozprostřena.

3.1.1. Kmitání

Kmitání se dělí na netlumené a tlumené. Když je tlumeno slabě, tak jsou rozdíly malé a mohou se zanedbat. Proto je dále uvažováno pouze vlastní netlumené kmitání. Níže jsou zpracovány kapitoly vlastního kmitání a vynuceného kmitání. [3], [4], [5]

3.1.1.1. Vlastní netlumené kmitání

Pro vlastní netlumené kmitání se neuvažuje útlum a soustava není buzena žádnou budicí silou. Pohybová rovnice pro vlastní netlumené kmitání má tvar (3.3).

$$\boldsymbol{K} \ast \boldsymbol{u}(t) + \boldsymbol{M} \ast \ddot{\boldsymbol{u}}(t) = 0 \tag{3.3}$$

Cílem je nalezení vlastních tvarů kmitání a vlastních frekvencí. Vektory posunutí a zrychlení lze určit jako harmonické funkce (3.4)(3.5).

$$\boldsymbol{u}(t) = \boldsymbol{\Phi}_{\boldsymbol{n}}[\boldsymbol{A} * \cos(\omega_{\boldsymbol{n}} t) + \boldsymbol{B} * \sin(\omega_{\boldsymbol{n}} t)]$$
(3.4)

$$\ddot{\boldsymbol{u}}(t) = -\boldsymbol{\omega}_n^2 \boldsymbol{u}(t) \tag{3.5}$$

Po dosazení zpět do pohybové rovnice získáme (3.6).

$$(K - \omega_n^2 M) \Phi_n = 0 \tag{3.6}$$

n počet stupňů volnosti Φ_n vlastní tvar ω_n vlastní kruhová frekvence

Rovnici lze také zapsat v maticovém tvaru (3.7) pomocí matice kvadrátů vlastních frekvencí (spektrální matice) a matice vlastních tvarů (modální matice)

$$K\boldsymbol{\Phi} = \boldsymbol{M}\boldsymbol{\Phi}\boldsymbol{\Omega}^2 \tag{3.7}$$

Ω²spektrální maticeΦmodální matice

Vlastní kruhová frekvence a vlastní tvar jsou neznámé. Rovnice naráží na problém vlastních čísel, proto pro nalezení řešení vektoru Φ_n je součástí výpočtu vztah (3.8).

$$\det(K - \omega_n^2 M) = 0 \tag{3.8}$$

Z tohoto vztahu dokážeme určit vlastní kruhové frekvence. V programu RFEM 6, ve kterém je diplomová práce zpracována, byla zvolena metoda Root of characteristic polynomial (Kořen charakteristického polynomu). Tato metoda odpovídá výše uvedenému postupu pro řešení problému vlastních čísel.

V programu RFEM 6 je vlastní netlumené kmitání provedeno v modální analýze.

3.1.1.2. Vynucené tlumené kmitání

Dynamická odezva je stanovena pomocí vynuceného tlumeného kmitání vnějším zatížením. V tomto kmitání budíme konstrukci budicí silou či silami. Budicí síly jsou časově závislé. Pohybová rovnice (3.9) má tvar

$$\boldsymbol{K} * \boldsymbol{u}(t) + \boldsymbol{C} * \dot{\boldsymbol{u}}(t) + \boldsymbol{M} * \ddot{\boldsymbol{u}}(t) = \boldsymbol{f}(t)$$
(3.9)

K * u(t)vnitřní síly $C * \dot{u}(t)$ tlumicí síly $M * \ddot{u}(t)$ setrvačné sílyf(t)budicí síly

Výsledkem je časový průběh odezvy konstrukce, na kterou působí vnější zatížení.

Existuje několik metod řešení, kterými lze vyřešit rovnici:

- Přímá integrace (Metoda Lineární implicitní Newmark) (3.11)
- Rozklad do vlastních tvarů (Metoda Lineární modální) (3.13)(3.14)
- Explicitní metoda

Všechny metody pracují na principu řešení pohybové rovnice v konkrétních časech. Časovou osu ve výpočtu nadělíme na integrační kroky, kde délka časového kroku je dána vztahem (3.10).

$$\Delta t = t_{i+1} - t_i \tag{3.10}$$

Podmínkou Newmarkovy metody je, že integrační krok musí mít konstantní zrychlení. Jedná se o velmi stabilní metodu. Řeší se čas t_{i+1} . Pohybová rovnice (3.11) pro všechny metody vypadá následovně (přičemž u_{i+i} , \dot{u}_{i+i} a \ddot{u}_{i+i} jsou neznámé).

$$\boldsymbol{K} * \boldsymbol{u}_{i+i} + \boldsymbol{C} * \dot{\boldsymbol{u}}_{i+i} + \boldsymbol{M} * \ddot{\boldsymbol{u}}_{i+i} = \boldsymbol{f}_{i+i}$$
(3.11)

Metoda časová analýza – lineární modální rozkládá do vlastních tvarů. Dynamická odezva je výsledkem kombinace vlastních tvarů $\boldsymbol{\Phi}_i$. Vlastní tvary se určují pomocí modálních souřadnic $\boldsymbol{q}_i(t)$. Vztah pro vektor posunutí (3.12) je v základním tvaru jako

$$\boldsymbol{u}(t) = \boldsymbol{\Phi}\boldsymbol{q}(t) \tag{3.12}$$

a po dosazení do pohybové rovnice dostaneme vztahy (3.13) a (3.14).

$$\boldsymbol{K} * \boldsymbol{\Phi} \boldsymbol{q}(t) + \boldsymbol{C} * \boldsymbol{\Phi} \dot{\boldsymbol{q}}(t) + \boldsymbol{M} * \boldsymbol{\Phi} \ddot{\boldsymbol{q}}(t) = \boldsymbol{f}(t)$$
(3.13)

$$\boldsymbol{\Phi}^{T}\boldsymbol{K}\boldsymbol{\Phi}\boldsymbol{q}(t) + \boldsymbol{\Phi}^{T}\boldsymbol{C}\boldsymbol{\Phi}\dot{\boldsymbol{q}}(t) + \boldsymbol{\Phi}^{T}\boldsymbol{M}\boldsymbol{\Phi}\ddot{\boldsymbol{q}}(t) = \boldsymbol{\Phi}^{T}\boldsymbol{f}(t)$$
(3.14)

Za předpokladu normovaných vlastních tvarů platí (3.15).

$$\boldsymbol{\Omega}^{2}\boldsymbol{q}(t) + \boldsymbol{\Phi}^{T}\boldsymbol{C}\boldsymbol{\Phi}\dot{\boldsymbol{q}}(t) + \boldsymbol{I}\ddot{\boldsymbol{q}}(t) = \boldsymbol{\Phi}^{T}\boldsymbol{f}(t)$$
(3.15)

Pro obecný předpoklad platí, že $\Phi^T C \Phi$ není diagonální matice.

Ijednotková maticeΩ²spektrální maticeΩnormalizované vlastní tvary

V programu RFEM 6 je vynucené tlumené kmitání sledováno pomocí časové analýzy.

3.2. Parametry mostu

3.2.1. Hmotnost konstrukce

Při rezonanci se shoduje násobek frekvence zatížení s vlastní frekvencí konstrukce. Rezonance nastává při největších dynamických účincích. Pro situaci, kde nastává rezonance, znamená podhodnocení hmotnosti konstrukce nadhodnocení vlastní frekvence konstrukce a dopravní

rychlosti. Hmotnost konstrukce je nepřímo úměrná maximálnímu zrychlení konstrukce (při rezonanci). [2]

Kolejové lože a kolej se uvažuje odhadem ve 2 variantách:

- Spodní mez hmotnosti za použití minimální objemové hmotnosti $\rho = 1700 \ kg/m^3$ a minimální tloušťky kolejového lože (suché kolejové lože) určení maximálního zrychlení mostovky
- Horní mez hmotnosti za použití maximální objemové hmotnosti (nasycené kolejové lože vodou) – pro určení nejnižších rychlostí.

Pro účely diplomové práce byla použita skutečná hmotnost koleje z projektu.

Rezonanční účinky jsou očekávány právě při nejnižších rychlostech. Rezonanční rychlost je dopravní rychlost v [m/s | km/hod], ve které jsou vlastní frekvence konstrukce a frekvence zatížení, nebo násobky frekvencí totožné.

3.2.2. Tuhost konstrukce

Nadhodnocení tuhosti konstrukce nadhodnotí vlastní frekvence mostu a rychlosti, pro kterou nastává rezonance. Stanovíme předběžnou tuhost celé mostní konstrukce.

3.2.3. Útlum konstrukce

Útlum konstrukce je vlastnost konstrukce, která umožní přeměnit kinematickou energii na jinou, což zajistí snížení výchylek konstrukcí, které kmitají. Útlum je závislý na maximální odezvě konstrukce při rychlosti, která odpovídá rezonančnímu zatížení. Předpokládaný útlum dle [2] pro konstrukce o rozpětích $L \ge 20 m$ a zároveň pro betonové mosty je roven $\zeta = 1,5$.

4. Modelování přejezdu vlakových souprav

4.1 Přejezdy vlakových souprav v časech

Pro určení vstupů do softwarové části RFEM je potřeba dopočítání několika hodnot. Jak již bylo zmíněno, v této práci jsou zpracovávány vlakové soupravy A1-A10 s rychlostmi 120-400 km/hod. Je zpracováno několik tabulek v programu Microsoft Excel, jejichž výsledky jsou následně vstupními hodnotami pro software.

Protože řešíme přejezd vlakových souprav, je nutné určit v první řadě, za jak dlouho přejede jedna síla F_1 náš element a následně celý most. Elementem jsou myšleny části prutu, na jaké je příčel nadělena, v našem případě je příčel rozdělena rovnoměrně po délkách 1,334 m na 16 částí (elementů). Do výpočtu v první tabulce vstupuje naše rozpětí mostu $L_{p,pr} = 21,350 m$ a délka elementu $L_{p,pr,1} = 1,334 m$.

		Přejezd F ₁								
_		T _{F,p,pr,1} [hod]	T _{F,p,pr} [hod]	T _{F,p,pr,1} [S]	T _{F,p,pr} [S]					
-	120	0,000011	0,000178	0,040050	0,640500					
[pot	140	0,000010	0,000153	0,034329	0,549000					
km/h	160	0,00008	0,000133	0,030038	0,480375					
lost [180	0,000007	0,000119	0,026700	0,427000					
rych	200	0,000007	0,000107	0,024030	0,384300					
	220	0,000006	0,000097	0,021845	0,349364					

240	0,000006	0,000089	0,020025	0,320250
260	0,000005	0,000082	0,018485	0,295615
280	0,000005	0,000076	0,017164	0,274500
300	0,000004	0,000071	0,016020	0,256200
320	0,000004	0,000067	0,015019	0,240188
340	0,000004	0,000063	0,014135	0,226059
360	0,000004	0,000059	0,013350	0,213500
380	0,000004	0,000056	0,012647	0,202263
400	0,000003	0,000053	0,012015	0,192150

Tabulka 2: Přejezd síly F1

V uvedené tabulce jsou časy v [hod] a [s], které jsou potřeba pro přejezd jedné jediné síly z počáteční souřadnice X = [0,000; 0,000; 0,000] na konec elementu, který má souřadnice X = [1,334; 0; 0].

Následně jsou spočítány přejezdy celé vlakové soupravy. V přílohách [1] a [2] jsou podrobně rozepsány vzdálenosti mezi jednotlivými silami v místech náprav vlakových souprav. Každý universální vlak A1-A10 má jinou celkovou délku vlakové soupravy:

- L_{train, A1} = 397,525 m
- L_{train, A2} = 401,525 m
- Ltrain, A3 = 385,025 m
- L_{train, A4} = 394,525 m
- L_{train, A5} = 383,525 m

- Ltrain, A6 = 380,525 m
- L_{train, A7} = 395,525 m
- L_{train, A8} = 387,025 m
- L_{train, A9} = 375,525 m
- Ltrain, A10 = 388,525 m

V níže uvedené tabulce je proveden výpočet časů $T_{Ai,p,pr,n1}$ v [s], který potřebuje každá vlaková souprava pro přejezd začátku mostní konstrukce, jinými slovy -> Jak dlouho je potřeba, aby vlaková souprava přejela přes uzel n_1 , který je prvním bodem na konstrukci v souřadnicích

X = [0,000; 0,000; 0,000] při různých rychlostech.

						T _{Ai,p,pr}	,n1 [S]				
		A1	A2	A3	A4	A5	A 6	A7	A 8	A9	A10
						L _{train}	,i [m]				
		397,525	401,525	385,025	394,525	383,525	380,525	395,525	387,025	375,525	388,525
	120	11,926	12,046	11,551	11,836	11,506	11,416	11,866	11,611	11,266	11,656
	140	10,222	10,325	9,901	10,145	9,862	9,785	10,171	9,952	9,656	9,991
T	160	8,944	9,034	8,663	8,877	8,629	8,562	8,899	8,708	8,449	8,742
/hoc	180	7,951	8,031	7,701	7,891	7,671	7,611	7,911	7,741	7,511	7,771
[km	200	7,155	7,227	6,930	7,101	6,903	6,849	7,119	6,966	6,759	6,993
>	220	6,505	6,570	6,300	6,456	6,276	6,227	6,472	6,333	6,145	6,358
	240	5,963	6,023	5,775	5,918	5,753	5,708	5,933	5,805	5,633	5,828
	260	5,504	5,560	5,331	5,463	5,310	5,269	5,477	5,359	5,200	5,380

VYSOKÉ UČENÍ FAKULTA TECHNICKÉ STAVEBNÍ V BRNĚ

DIPLOMOVÁ PRÁCE

Bc. Michaela Zavřelová

280	5,111	5,162	4,950	5,072	4,931	4,892	5,085	4,976	4,828	4,995
300	4,770	4,818	4,620	4,734	4,602	4,566	4,746	4,644	4,506	4,662
320	4,472	4,517	4,332	4,438	4,315	4,281	4,450	4,354	4,225	4,371
340	4,209	4,251	4,077	4,177	4,061	4,029	4,188	4,098	3,976	4,114
360	3,975	4,015	3,850	3,945	3,835	3,805	3,955	3,870	3,755	3,885
380	3,766	3,804	3,648	3,738	3,633	3,605	3,747	3,667	3,558	3,681
400	3,578	3,614	3,465	3,551	3,452	3,425	3,560	3,483	3,380	3,497

Tabulka 3: Potřebné časy pro přejezd uzlu n1

V čase $T_{Ai,p,pr,n1}$ je poslední síla vlakové soupravy na začátku mostní konstrukce na uzlu n_1 . Do výpočtu vstupuje vždy celková délka vlakové soupravy $L_{train,}$, dělená každou z rychlostí v. K časům $T_{Ai,p,pr,n1}$ je třeba připočítat čas $T_{F,p,pr}$, který je nutný pro přejezd poslední síly vlakové soupravy F_i na konec mostní konstrukce. Hodnoty $T_{F,p,pr}$ jsme již získali v tabulce [2][3].

V následující tabulce jsou zobrazeny celkové časy $T_{Ai,p,pr}$ (4.1), které potřebuje daná vlaková souprava k přejezdu celé mostní konstrukce za stanovené rychlosti.

$$T_{Ai,p,pr} = T_{Ai,p,pr} + T_{F,p,pr}$$
(4.1)

			T _{Ai,p,pr} [s]								
		A1	A2	A3	A4	A5	A6	A7	A 8	A9	A10
						L _{train}	,i [m]				
		397,525	401,525	385,025	394,525	383,525	380,525	395,525	387,025	375,525	388,525
	120	12,566	12,686	12,191	12,476	12,146	12,056	12,506	12,251	11,906	12,296
	140	10,771	10,874	10,450	10,694	10,411	10,334	10,720	10,501	10,205	10,540
	160	9,425	9,515	9,143	9,357	9,110	9,042	9,380	9,188	8,930	9,222
	180	8,378	8,458	8,128	8,318	8,098	8,038	8,338	8,168	7,938	8,198
	200	7,540	7,612	7,315	7,486	7,288	7,234	7,504	7,351	7,144	7,378
	220	6,854	6,920	6,650	6,805	6,625	6,576	6,822	6,683	6,494	6,707
[po	240	6,283	6,343	6,096	6,238	6,073	6,028	6,253	6,126	5,953	6,148
ų/m	260	5,800	5,855	5,627	5,758	5,606	5,564	5,772	5,654	5,495	5,675
< [k	280	5,386	5,437	5,225	5,347	5,206	5,167	5,360	5,251	5,103	5,270
	300	5,027	5,075	4,877	4,991	4,859	4,823	5,003	4,901	4,763	4,919
	320	4,712	4,757	4,572	4,679	4,555	4,521	4,690	4,594	4,465	4,611
	340	4,435	4,478	4,303	4,403	4,287	4,255	4,414	4,324	4,202	4,340
	360	4,189	4,229	4,064	4,159	4,049	4,019	4,169	4,084	3,969	4,099
	380	3,968	4,006	3,850	3,940	3,836	3,807	3,949	3,869	3,760	3,883
	400	3,770	3,806	3,657	3,743	3,644	3,617	3,752	3,675	3,572	3,689

Tabulka 4: Potřebné časy pro přejezd mostní konstrukce

4.2. Ověření přejezdu

Před samotným modelováním konkrétních vlakových souprav byla vytvořena jednoduchá soustava sil, ve které jsou zkoušeny dvě varianty modelování přejezdu. Cílem je určit, která varianta bude pro použití diplomové práce lepší a přesnější. V obou variantách jsou zadávány osamělé síly do uzlů a vytvořeny časové diagramy, které jsou nezbytné pro vznik kombinace zatížení pro časovou analýzu. Na 5metrové konstrukci je zadána dvojice sil $F_1 = 2 kN$ a $F_2 = 1,5 kN$ ve směru Z od sebe vzdálených 2 m.

Ve všech uzlech je modelováno plné vetknutí a následně sledujeme podporové reakce $P_{z,i}$ v jednotlivých časových krocích, čímž přehledně vidíme, co je děje při přejezdu se silami.

V první variantě jsou zatěžovací stavy s konkrétními silami kombinovány s jednotkovými časovými diagramy. Zobrazení zatížení v zatěžovacích stavech je následující:

Obrázek 11: LC3

Ve variantě 1 se uvažuje jednotkový časový diagram, který je znázorněn na následujícím obrázku. Časový diagram je nastaven na přejezd dvojice sil rychlostí 1 m/s. Časový diagram znázorňuje postupný nájezd síly na uzel, ve vrcholu časového diagramu působící sílu přímo v uzlu a následné odtěžování.

Obrázek 12: Varianta 1 - časový diagram

Time slip, neboli časový posun, nám umožňuje pouze zadání jednoho časového diagramu, který je díky této funkci rovnoměrně posouván o zvolený časový posun, tzn. *TD1* s časovým posunem 1 s, bude vypadat takto -> vrchol bude ve 2 s.

Pro variantu 1 i 2 je definována kombinace zatížení jako časová analýza typu časový diagram (nastavení Lineární implicitní Newmark, hmoty z vlastní tíhy konstrukce).

Assigned to	Assigned for CO1										
Factor	No.	Name	Time Diagram	Time Slip [s]							
1.00	LC1	Method1_n1_F_TD_1m/s	TD1	0.000							
1.00	LC2	Method1_n2_F_TD_1m/s	TD1	1.000							
1.00	LC3	Method1_n3_F_TD_1m/s	TD1	2.000							
1.00	LC4	Method1_n4_F_TD_1m/s	TD1	3.000							
1.00	LC5	Method1_n5_F_TD_1m/s	TD1	4.000							
1.00	LC6	Method1_n6_F_TD_1m/s	TD1	5.000							
1.00	LC7	Method1_n7_F_TD_1m/s	TD1	6.000							
1.00	LC8	Method1_n8_F_TD_1m/s	TD1	7.000							

Obrázek 14: Varianta 1 - CO1

Kombinace zatížení *CO1* reprezentuje přejezd dvojice sil F_1 a F_2 za pomoci jednotkového časového diagramu, který je pomocí funkce časový posun posouván tak, jak se pohybuje zatížení. Kombinace můžeme zadat buď tlačítky, nebo pomocí syntaxe:

Pro porovnání variant byl zvolen výpočetní (ukládací) krok časové analýzy 0,5 s, který je dostatečně přesný pro pochopení variant. Zároveň při náročnějších konstrukcích a výpočtech musíme dbát na optimální volbu ukládacího kroku z hlediska trvání doby výpočtu.

Na následujících grafech jsou vidět podporové reakce při přejezdu dvojice sil na prvních třech uzlech. Dále je přidáno samotné grafické zobrazení výsledků reakcí při přejezdu dvojice sil přes uzel 1 v časech <0,0; 0,5; 1; 1,5; 2,0; 2,5; 3,0; 3,5>. Zde je na reakcích vidět samotné přitěžování, působení síly ve vrcholu a odtěžování uzlu.

Obrázek 20: Varianta 1 – podporová reakce při přejezdu (čas 1,000 s)

Obrázek 24: Varianta 1 – podporová reakce při přejezdu (čas 3,000 s)

Obrázek 25: Varianta 1 – podporová reakce při přejezdu (čas 3,500 s)

Rozdíl varianty 2 je v modelaci jednotkového zatížení, nikoliv časového diagramu. Naopak časový diagram je proveden tak, aby odpovídal hodnotám dvojice sil z varianty 1. Zatěžovací stavy jsou vytvořeny následovně:

•	LC9:	F _{Z,1} = 1,0 kN	uzel 1
•	LC10:	$F_{Z,1} = 1,0 \text{ kN}$	uzel 2
•	LC11:	$F_{Z,1} = 1,0 \text{ kN}$	uzel 3
•	LC12:	F _{Z,1} = 1,0 kN	uzel 4
•	LC13:	F _{Z,1} = 1,0 kN	uzel 5
•	LC14:	F _{Z,1} = 1,0 kN	uzel 6

Obrázek 26: Varianta 2 - časový diagram

Princip výpočtu kombinace CO1 a CO2 je stejný. Kombinace zatížení CO2 reprezentuje přejezd jednotkové síly F_1 za pomoci nejednotkového časového diagramu, který je pomocí funkce časový posun posouván stejně, jako ve variantě první.

Ukázalo se, že obě varianty dávají správné výsledky a jsou srovnatelné, proto jsou přejezdy universálních vlaků modelovány pouze variantou 1.

5. Popis modelu

Parametrická studie je zpracována pro konstrukční řešení polorámové mostní konstrukce s plošným založením bez přesypávky. Výpočtový model byl vytvořen a poskytnut jako 2D prutový v rovině XZ. Pro tuto práci byla zvolena studentská verze softwaru RFEM 5.29.01 s modulem RF-MOVE a prereleasová verze RFEM 6 a RSTAB 9. [8]

Materiál byl použit beton *C30/37* s modulem pružnosti *E*=33 *GPa*. Pro tuto práci byla zvolena varianta s poměrem tloušťky příčle a stojek ku rozpětí 1/15, rozpětí mostu 21,350 m, výška stojky 6,675 m, výška základu 1,500 m. Na následujícím obrázku je vidět obecné schéma polorámové konstrukce a obecné zakótování rozměrů konstrukce.

Pro konstrukci bylo zvoleno převzaté podloží z pokladů. Podloží je modelováno uzlově jako pružina s přiřazenou tuhostí. Pružnostní konstanty byly definovány v projektu. Vliv okolního zemního tělesa a koeficient tlumení zeminového prostředí byly zanedbány. Uzlovým podporám je zabráněno pohybu ve směrech u_y , φ_x a φ_z . Dále byly přidány pružnostní konstanty:

$$\label{eq:cu_x} \begin{split} &C_{u,X} = 1075 \mbox{ MN/m} \\ &C_{u,\ Z} = 1518,1 \mbox{ MN/m} \\ &C_{\phi,Y} = 8217 \mbox{ MN/m} \end{split}$$

Obrázek 27: Obecné schéma polorámové konstrukce

Tabulka a obrázky pod odstavcem zobrazují konkrétní rozměry, které byly uvažovány v této práci spolu s drátěným a objemovým/plným modelem.

Rám								
L _r [m]	B _r [m]	H _r [m]	TI _{r,pr} [m]	TI _{r,s} [m]	L _{r,pr} [m]	H _{r,s} [m]		
20,000	12,400	6,000	1,350	1,350	21,350	6,675		
Základ								
B _z [m]	L _z [m]	H _z [m]	A _b [m2]	I _{b,y} [m ⁴]	I _{b,x} [m ⁴]			
5,000	12,900	1,500	64,500	134,375	894,454			

Tabulka 5: Rozměry konstrukce

Obrázek 28: Průřez rámu

Rectangle 12900/5000

Obrázek 29: Průřez základů

Obrázek 30: Schéma konstrukce

Obrázek 31: Schematický prutový model - Polorámová mostní konstrukce s plošným založením bez přesypávky

6. Zatížení výpočetního modelu

Z důvodu velikostí výpočetních modelů je každá z vlakových souprav počítána v samostatném souboru. Ve výpočetním modelu je vždy vytvořen zatěžovací stav *LC1*, ve kterém je aktivováno generování vlastní tíhy konstrukce. V zatěžovacím stavu *LC2* je ostatní stálé zatížení.

- vlastní tíha generovaná programem RFEM 6
- ostatní stálé zatížení zahrnuje kolejové lože, kolejový rošt a římsy

600 kg/m
/
1200 kg/m
656 kg/m

Hmotnost ostatního stálého zatížení byla převedena na prutové zatížení o velikosti 134,56 kN/m.

- LM 71 statické zatížení od běžné železniční dopravy
- HSLM-A model zatížení vysokorychlostních vlakových souprav

Dále je model zatěžován modelem zatížení LM 71, pro který jsou vytvořeny zatěžovací stavy pomocí modulu RF-MOVE.

Následně jsou již vytvořeny a zkoumány dynamické zatěžovací stavy, jako je modální analýza a časová analýza. Počet zatěžovacích stavů vždy záleží na délce soupravy. Tvorba dynamických stavů je podrobně popsána dále v této práci a věnuje se dynamickému zatížení projíždějících vlakových souprav HSML-A A1-A10, které přejíždí konstrukci mostu rychlostmi 120-400 km/hod s krokem 20 km/hod. Celkem tedy konstrukci přejede každá vlaková souprava patnácti rychlostmi. Zatížení je podrobněji popsáno v *kapitole 7 – zatěžovací model LM 71 a v kapitole 8 – Dynamická část výpočtového modelu*.

7. Zatěžovací model LM 71

LM 71 je referenční model s využitím dynamického součinitele. Zatěžovací model LM 71 reprezentuje statický účinek od svislého proměnného pohyblivého zatížení od železniční dopravy. Schéma zatěžovacího modelu je zobrazeno na obrázku [3]. Zatížení lze modelovat i pomocí spojitého zatížení, což nám zjednoduší zadávání, ale síla má větší a přesnější bodový účinek. Pro stanovení vnitřních sil na příčli od pohyblivého zatížení byl využit modul RF-MOVE v programu RFEM 5. Hodnoty zatížení musí být přenásobeny součiniteli tak, aby výsledný návrh hodnot zatížení byl s dynamickými účinky. Do výpočtu vstupují charakteristické hodnoty zatížení:

$$qk = 80 \ kN/m$$
$$Gk = 250 \ kN$$

Pro návrhové hodnoty s dynamickými účinky uvažujeme několik součinitelů. Prvním ze součinitelů je součinitel α , který označuje těžší/lehčí železniční dopravu než běžnou. Zároveň pro tratě na mezinárodní úrovni je dle normy [2] doporučen součinitel $\alpha > 1,00$. Po přenásobení zatížení součinitelem α se zatížení označuje za *klasifikované svislé zatížení*. Součinitel α volíme z následující řady hodnot:

$$0,75 - 0,83 - 0,91 - 1,00 - 1,10 - 1,21 - 1,33 - 1,46$$

Dále je pro návrhovou hodnotu zohledněn součinitel zatížení pro nepříznivé účinky od železniční dopravy $\gamma_{Q} = 1,45$, který je definován v normě [2]. Pro účely této práce neuvažujeme se součiniteli α a γ_{Q} , protože parametrická studie není návrhová.

Norma [2] požaduje porovnání výsledků dynamické analýzy s výsledky statické analýzy, které jsou vynásobeny dynamickým součinitelem Δ . Na mostech, kde maximální dovolená rychlost překračuje 200 km/hod, by mělo být navrženo zatížení LM 71, případně SW/0, pokud je požadováno. Zatížení se navrhuje na charakteristické hodnoty, nebo klasifikovaná svislá zatížení.

Dynamický součinitel Δ nezahrnuje rezonanční účinky, ale reprezentuje zvětšení dynamického namáhání a účinků kmitání. Pro hrozící nebezpečí vzniku rezonance, či nadprůměrného kmitání mostní konstrukce, je požadována detailní dynamická analýza pro upřesnění rezonančních účinků. Zvětšující se zrychlení konstrukce může vést k nestabilitě koleje, kolejového lože a má za následek nadměrné deformace a namáhání.

Dynamický součinitel Δ se počítá v závislosti na kvalitě koleje. Kolej je udržovaná buď pečlivě Δ_2 (7.1), nebo standardně Δ_3 (7.2).

$$\Delta_{2} = \frac{1,44}{\sqrt{L_{\phi}} - 0,2} + 0,82$$

$$1,00 \le \Delta_{2} \le 1,67$$

$$\Delta_{3} = \frac{2,16}{\sqrt{L_{\phi}} - 0,2} + 0,73$$

$$1,00 \le \Delta_{3} \le 2,00$$
(7.1)
(7.2)

L_{Δ} náhradní délka [m]

Náhradní délka pro betonovou desku mostovky s kolejovým ložem je definována dle tabulky v normě [2] jako rozpětí v hlavním směru.

$$L_{\Delta} = L_{p,pr} = 21,350 \, m$$

Dynamický součinitel je pro pečlivě udržovanou kolej $\Delta_2 = 1,146 [-]$ a pro standardně udržovanou kolej $\Delta_3 = 1,219 [-]$. Do výpočtu byla zvolena pečlivě udržovaná kolej. Hodnoty zatížení se stanovují s vlivem dynamického součinitele dle vzorce (7.3) a (7.4).

$$q_{k,dyn} = q_k * \Delta_2 = 91,660 \frac{kN}{m}$$
(7.3)

$$Q_{k,dyn} = Q_k * \Delta_2 = 286,437 \, kN \tag{7.4}$$

Na následujících obrázcích je screen zadávání zatěžovacího modelu LM 71 v modulu RF-MOVE v programu RFEM 5.

CA1 - LM 71 🗸 🗸 🗸	1.1 General Data								
Input Data General Data Moving Loads	Members Members No.: 11-26 Length: 21.350 [m]	ti <i>€</i> ∨	Add set of members						
	First load at: 6.400 [m] Sumber of generated load cases: 21								
	No. No. Load case LC: 5 [19999] Result combination RC: 1 [165000]		RC No. 1 exists, ☑ Overwrite						
	Generated LC Will Be Combined as	For Second and Following Sets of Members							
	Permanent Onditional	First load at:	[m]	Generation of moving					
	Option Moving loads run over end of set of members	1st set of members:	[0.001 -	loads					
	Comment								
9 F F	Generate Check		~	OK Cancel					

Obrázek 32: RF-MOVE: Základní data LM 71

out Data		А	B	C	D	E	F	G	Н
Conoral Data			Load			Load Par	ameters		
- Moving Loads	No.	Туре	Distribution	Direction	P1 [kN]	P2 [kN/m]	A [m]	B [m]	Comment
rioting codds	1	E	5	ZL	91.660		6.400		
	2	E	<u>6</u>	ZL	286.437	4	0.800	1.600	
	3	E	4	ZL	91.660				
	4								
	5								
	5								
	-/								
	9								
	10								
	11								
	12								
	13								
	14								
	15								
	16								
	17								
	18								
	Membe Minimur Maximu	r lengths n: (m: 2	0.000 [m] 1.350 [m]					P • j	Trine a
	Gene	arate	Check						OK Cancel

Obrázek 33: RF-MOVE: Pohyblivé zatížení LM 71

Všechno zatížení zatěžovacího modelu LM 71 je definováno jako typ síla *F*. Rozložení zatížení je definováno kódy 5 (nekonečno vpravo), 4 (nekonečno vlevo) a 6 (síla). Zatížení je modelováno pouze svislé ve směru Z.

Obrázek 34: Úvodní polohy zatěžovacího modelu LM 71 vygenerované modulem RF-MOVE

Výsledná deformace pro uzel, uprostřed rozpětí mostní konstrukce, n19 je 2,9 mm.

Dále byla vyzkoušena teorie převedení statického zatížení LM 71 na dynamické, pomocí časové analýzy – časového diagramu, s pomalým přejezdem 10 km/hod. Pomalý přejezd mostní konstrukce by měl vyvolat nepatrné změny v deformacích oproti statice.

Teorie byla úspěšně ověřena. Globální deformace pro uzel *n19* od dynamického zatížení s pomalým přejezdem je 2,902 mm, což je prakticky stejná deformace, jakou jsme dosáhli při statickém zatěžování.

Obrázek 35: Dynamická kombinace zatížení - LM 71

8. Dynamická část výpočtového modelu

Namáhání, deformace a zrychlení, které v konstrukci vznikají, narůstají nebo klesají s vlivem účinků od přejíždějící vlakové soupravy. Vliv spolupůsobení tíhy souprav byl zanedbán dle normy [2]. Důvodem je snížení špičky odezvy, které hmota způsobuje. Vlivem přejezdu vlakových souprav po mostní konstrukci vznikají dynamické účinky. Působící zatížení je převážně periodické, vyjma oblasti hnacích vozů a koncových vagónů.

8.1. Modální analýza

Výpočetní model byl zatížen vlastní tíhou, která byla vygenerována programem RFEM 6, a ostatním stálým zatížením. Pro modální analýzu a časovou analýzu byly importovány hmoty generované z vlastní tíhy a ostatního stálého zatížení (*LC1 + LC2*). Výstupem modální analýzy je určení vlastních tvarů konstrukce a vlastních frekvencí. Výstup z modální analýzy je vstupem pro správné nastavení časové analýzy. Vlastní frekvence jsou ovlivněny hmotami a tuhostí konstrukce.

Vlastní tvary jsou prostorové tvary (deformace), které na konstrukci vzniknou při jejím kmitání. Závisí na vlastních frekvencích konstrukce.

Vlastní frekvence jsou frekvence, při kterých konstrukce kmitá bez vnějšího zatížení.

Nastavení modální analýzy bylo aplikováno v programu RFEM 6. Metoda řešení byla zvolena *Kořen charakteristického polynomu* (řešení bylo popsáno výše) s počtem vlastních tvarů -> 10. Deset vlastních tvarů je dostatečné pro určení nejzásadnějších vlastních tvarů a chování konstrukce. Dále do výpočtu vstupuje diagonální matice hmot. Primární směr, pro který bylo sledováno chování mostu, je Z. Pro přesnější určení kmitání byl přidán směr X (pouze pro A1). Rotační členy směrů a samotný směr Y byly vzhledem k menšímu významu zanedbány.

Do výpočtu můžeme použít matici hmot diagonální, nebo konzistentní. Diagonální matice má nenulové prvky pouze na hlavní diagonále a představuje matici hmot, ve které jsou všechny hmoty soustředěny do jednotlivých bodů a je zanedbáno vzájemné působení mezi jednotlivými prvky. V konzistentní matici jsou nenulové prvky i mimo hlavní diagonálu. Konzistentní matice zahrnuje hmotnost jednotlivých bodů, spolu s vlivy mezi prvky. V diplomové práci byla použita,

vzhledem k požadavkům parametrické studie a menší náročnosti z hlediska časové dotace výpočtu, matice diagonální.

Soustava pohybujících se osamělých sil reprezentuje dynamické účinky skutečných vlaků. Vliv interakce (vzájemného působení) konstrukce a vlakových souprav lze zanedbat.

偧 Edit Modal Analysis Settings									\times
List MOS1 #10 Root of characteristic	No. MOS1	Modal Analysis Settings Name #10 Root of characteristic polynomial	Assigned to Load Cases / Combinations LC 283				22		
	Main	Settings							
	Eigenval	Eigenvalue Method				Mass Matrix Settings			
	Method	for determining the number of modes			Type of mass matrix				
	User-De	fined	~	/	Diagonal				~
	Number	of modes			In direction	About axis			
	n IV	÷			⊠ ×				
	Method :	for solving eigenvalue problem	\sim		∠ r ∠ z	□ z			
	100101	enandecensite polynomial							
	Options								
	Find	modes beyond frequency							
	f	‡ ▶ [Hz]							
	Commer	t							
			~	ŗ,					
🔎 🚥 📘 🏌						OK Can	cel	Арр	ly .:i

Obrázek 36: Nastavení modální analýzy

8.2. Časová analýza

Přejezd vlakových souprav je modelován s využitím modelu RF-MOVE. Modul RF-MOVE je dostupný pouze v RFEM 5, proto jsou pro účely diplomové práce kombinovány softwary RFEM 5 i RFEM 6. V prvním kroku je generováno zatížení pomocí modulu RF-MOVE v softwaru RFEM 5 a následně je soubor převeden do novější verze softwaru RFEM 6, kde už jsou nastavovány všechny dynamické zatěžovací stavy.

RF-MOVE je přídavný modul, který vytváří statické zatěžovací stavy z pohyblivého zatížení. Za pomoci tabulek je definováno zatížení, které pak po mostě přejíždí. Každou soupravu reprezentuje sada osamělých sil.

Přejezdy vlakových souprav jsou reprezentovány kombinacemi zatížení, ve kterých jsou přiřazeny zatěžovací stavy spolu s časovými diagramy. Časový diagram je funkce času, pomocí které se zadávají dynamická zatížení pro časovou analýzu. Pro přejezdy vlakových souprav byla použita varianta jedna ze srovnání výše – tedy modelování skutečného zatížení s jednotkovým časovým diagramem. Skutečným zatížením jsou myšleny přesné síly a rozestupy, které definuje norma [2].

Vzhledem k náročnosti rozsahu parametrické analýzy, ve které figuruje rozdělení pojížděné příčle na 16 elementů, 10 vlakových souprav A1-A10 s 15 rychlostmi, bylo potřeba postup zadávání zatížení zautomatizovat. V této části byl využit právě zmiňovaný modul RF-MOVE v programu RFEM 5 a v neposlední řadě konzole v programu RFEM 6. V rámci diplomové práce byly znalosti rozšířeny o základy programování, které následně umožnily automatizaci zadání časových diagramů, a především nejrozsáhlejších kombinací zatížení, které jsou výslednou simulací přejezdu vlakových souprav.

V případě ručního zadávání by se jednalo o tvorbu zhruba 320 statických zatěžovacích stavů pro 10 vlakových souprav s přejezdem 15 rychlostmi. Pro každou rychlost by musely být vytvořeny speciální časové diagramy v závislosti na délce časového posunu. Například v našem případě by to znamenalo zadání cca 320 zatěžovacích stavů >>> 320 časových diagramů >>> 15 rychlostí >>> 10 souprav. Celkem tedy 15 360 000 manuálně zadaných vstupů.

Výpočet časové analýzy byl zvolen, pro přejezd vlakových souprav metodou Lineární modální – rozklad do vlastních tvarů. Řešení rozkladem do vlastních tvarů je výpočtově násobně rychlejší než metoda Newmarkova. Pro výpočet časové analýzy rozkladem vlastních tvarů je nutné mít výsledky z modální analýzy, na kterých je metoda závislá.

Nejvyšší potřebný čas pro přejezd mostní konstrukce je 12,686 s a potřebuje ho vlaková souprava A2 při rychlosti 120 km/hod. Maximální čas v nastavení časové analýzy byl s ohledem na nejvyšší čas nastaven na 15,000 s. Pro všechny ostatní kombinace vlakových souprav a rychlostí trvá vždy přejezd mostní konstrukce méně času. Přebývající čas tedy ukazuje dokmitání konstrukce. Maximální čas i výpočetní časový krok je stejný pro všechny vlakové soupravy z důvodu porovnání výsledkových grafů. Volba výpočetního kroku je volena s ohledem na nejmenší periodu vlastního tvaru ve směru Z v modální analýze. Tím dosáhneme výpočetního diagramu, kde jsou znázorněny všechny požadované vlastní tvary v daném směru.

V programu RFEM 6 je výpočetní krok definován zároveň jako ukládací. Pro původní ukládací krok 0,001 s byla z důvodu velkého ukládacího objemu dat provedena editace na ukládací krok 0,100 s. V závislosti na změnu ukládacího kroku je nutno provést další editaci nastavení časové analýzy a zvolit 100násobné rozdělení ukládacího kroku z původní hodnoty rozdělení výpočetního ukládacího kroku jedna, pro hladší průběh diagramu, a zároveň tím dosáhnout 100krát méně uložených hodnot.

🔗 Edit Time History Analysis Settings			-				×
List	No.	Time History Analysis Settings Name			Assigned to Load Cases / Combinations		
THS1 Linear Modal	THS1	Linear Modal		1	LC 319		
THS3 Linear Modal							
	Main	Damping					
	Time His	tory Analysis Method Type					
	Type of A	analysis Method					
	Linear N	fodal	\sim				
	Time Ste	ps					
	Maximun	n time					
	t _{max}	15.000 ÷ • [s]					
	Saved tin	ne step					
	Δt	0.100 + [s]					
	Time step	o for calculation					
	User-De	fined	\sim				
	Split cave	ad time steps by					
	10	0 [±]					
		• •					
	Commen	it	_	_			
1 🗄 💱 🕾 🗙			~ [[
🔎 🚾 📩 fx					OK Cancel	App	ly

Obrázek 37: Nastavení časové analýzy

8.2.1. RF-MOVE a vlakové soupravy

Pro vytvoření časové analýzy bylo využito modulu RF-MOVE v programu RFEM 5. V modulu zadáváme nastavení ve dvou záložkách. V první z nich, v obecných datech, byly vybrány pro přejezd pouze pruty, které představují pojížděnou příčel. Dále je vždy nastavena celková délka vlakové soupravy a přírůstkový vzdálenostní krok, se kterým vlaková souprava pojede, a zároveň tím vytvoří zatěžovací stavy. V nastavení druhé části modulu, v záložce pohyblivé zatížení, byly zadány hodnoty vzdáleností náprav dle příloh [2] a [3] a síly, které určuje norma [2].

Celkem bylo vytvořeno 10 nastavení stavů pohyblivého zatížení -> každá vlaková souprava A1-A10 má svoje konkrétní nastavení v závislosti na výše zmíněných parametrech – délce vlakové soupravy, vzdálenostech náprav a velikosti síly, které soupravu představují.

Pro ukázku nastavení modulu RF-MOVE je použita vlaková souprava A1.

RF-MOVE - [Method1_A1]

 \times

File Settings Help		
CA1 - Train A1 V	1.1 General Data	
Input Data General Data	Members Members No • 11-26	
Moving Loads	Length: 21.350 [m] First load at: -397.525 [m] Number of Increment: 1.335 [m] cases: 314	C - Add set of members
	No. LC No 5 exists, there Load case LC: 5 [19999] Image: Constraint of the second s	fore: RC No. 1 exists,
	Generated LC Will Be Combined as For Second and Foli	lowing Sets of Members
	Permanent Conditional Conditional	[m]
	Option 1st set of members: Moving loads run over end of set of members	; [0.001 loads
	Comment	
9	Generate Check	OK Cancel

nput Data General Data Moving Loads	No.	A Type <u>F</u>	B Load Distribution <u>1</u>	C Direction	D P1 [kN]	E Load Para P2 [kN/m]	F ameters A [m]	G	Comment
General Data Moving Loads	No.	Type <u>F</u>	Load Distribution	Direction 71	P1 [kN]	Load Para P2 [kN/m]	A [m]	B [m]	Comment
Moving Loads	1 2	Type E	Distribution	Direction 71	P1 [kN]	P2 [kN/m]	A [m]	B [m]	Comment
	2	<u>E</u>	<u>1</u>	71					
	2	E			1/0.000		397.525		
		<u> </u>	1	ZL	170.000		394.525		
	3	<u>E</u>	1	ZL	170.000		383.525		
	4	E	1	ZL	170.000		380.525		
	5	E	1	ZL	170.000		377.000		
	6	<u>E</u>	1	ZL	170.000		375.000		
	7	<u>F</u>	<u>1</u>	ZL	170.000		361.763		
	8	E	1	ZL	170.000		359.763		
	9	E	1	ZL	170.000		343.763		
	10	E	1	ZL	170.000		341.763		
	11	E	1	ZL	170.000		325.763		
	12	E	1	ZL	170.000		323.763		
	13	<u>E</u>	1	ZL	170.000		307.763		
	14	E	1	ZL	170.000		305.763		
	15	E	1	ZL	170.000		289.763		
	16	E	<u>1</u>	ZL	170.000		287.763		
	17	E	<u>1</u>	ZL	170.000		271.763		
	18	E	1	ZL	170.000		269.763		

Obrázek 38: RF-MOVE - vlaková souprava A1

8.2.2 Generování časových diagramů

Pro simulace přejezdu vlakových souprav byly použity časové diagramy, které znázorňují působení jednotlivých osamělých sil vlakové soupravy na konkrétní uzel mostní konstrukce. Časové diagramy byly vytvořeny jednotkové a jsou závislé na rychlosti projíždějící soupravy.

Časové diagramy lze definovat několika způsoby. Časový diagram lze zadat funkcí, nebo uživatelsky definovat. Pro účely této práce je zvolen způsob uživatelského definování – tedy definice v tabulce. Byl definován 3bodový jednotkový časový diagram. Protože se jedná o časovou funkci, vrchol jednotkového časového diagramu je pro každou z patnácti rychlostí v jiném čase. Na svislé ose časového diagramu je násobek *k* [-] a na vodorovné ose je čas *t* [s]. Násobek *k* je stejný pro všechny časové diagramy – tedy 1,000 -> jednotkový časový diagram.

Čas, ve kterém je vrchol časového diagramu, není závislý na parametrech vlakového soupravy, ale na rychlostech -> proto například časový diagram pro A1 i A2 s rychlostí 200 km/hod bude mít stejný vrchol, naopak vlaková souprava A1 bude mít vždy již jiný vrchol, protože pojede pokaždé jinou rychlostí.

Výše zmiňované rozdělení pojížděné příčle po 1,334 m je naší délkou elementu a zároveň tím určuje polohu uzlů na konstrukci. V první fázi musel být spočítán čas, za jak dlouho souprava přejede z uzlu 11 na uzel 12. Rozmístění uzlů je vidět na následujícím obrázku. Hodnotu potřebného času máme již spočítanou na *stranách 19 a 20*. Jedná se o hodnoty $T_{F,p,pr,1}$ [s].

 $T_{F,p,pr,1} [s] = [0,04005; 0,03433; 0,03004; 0,02670; 0,02403; 0,02185; 0,02003; 0,01848; 0,01716; 0,01602; 0,01502; 0,01414; 0,01335; 0,01265; 0,0120]$

Všechny vlakové soupravy potřebují pro přejezd mezi dvěma uzly při rychlosti 120 km/hod čas 0,040050 s. Konzole v programu RFEM 6 používá programovací jazyk JavaScript, proto byl vytvořen skript právě v jazyce JavaScript, který zahrnuje již získané hodnoty a který po vložení do konzole v programu RFEM 6 vytvoří 15 časových diagramů dle požadavků definovaných ve skriptu.

Obrázek 39: Rozmístění uzlů na pojížděné příčli

// Time diagrams

Obrázek 40: Skript pro vytvoření časových diagramů

Skript nám vytvořil 15 časových diagramů s ohledem na rychlosti. Časový diagram *TD1* je znázorněn na následujícím obrázku a znázorňuje nájezd síly na uzel, její plné působení na uzlu a odjezd síly z uzlu.

8.2.3. Kombinace zatížení pro přejezd vlakové soupravy

Pro vytvoření modelové situace přejezdu byly vytvořeny takzvané kombinace zatížení typu časová analýzy – časový diagram, do které vstoupily statické zatěžovací stavy jednotlivých vlakových souprav generované v modulu RF-MOVE a časové diagramy, které jsou popsané v předchozí kapitole.

Pro každou vlakovou soupravu vznikne 15 kombinací zatížení. Jednotlivé kombinace zatížení se liší rychlostmi přejezdu po mostě. Byl zpracován skript v programu JavaScript pro automatizaci generování kombinací zatížení.

Obrázek 42: Skript pro generování kombinací zatížení pro vlakovou soupravu A1

Vnořený *for cyklus* vygeneruje kombinaci zatížení *CO1* pro soupravu A1 a rychlost 120 km/hod s celkem 313 polohami (statickými zatěžovacími stavy z RF-MOVE) od pohyblivého zatížení a časovým diagramem *TD2*, který potřebuje 0,04005 s pro přejezd elementu o délce 1,334, a tím začne působit plné zatížení na uzlech. Fyzická podoba kombinace zatížení *CO1* a její syntaxe jsou zobrazeny v programu RFEM 6.

or	No.	Name	Time Diagram	Time Slip [s]	^
1.00	LC5	Moving load x = -397.525 m, CA1 - LM 71	TD2	0.000	
1.00	LC6	Moving load x = -396.190 m, CA1 - LM 71	TD2	0.040	
1.00	LC7	Moving load x = -394.855 m, CA1 - LM 71	TD2	0.080	
1.00	LC8	Moving load x = -393.520 m, CA1 - LM 71	TD2	0.120	
1.00	LC9	Moving load x = -392.185 m, CA1 - LM 71	TD2	0.160	
1.00	LC10	Moving load x = -390.850 m, CA1 - LM 71	TD2	0.200	
1.00	LC11	Moving load x = -389.515 m, CA1 - LM 71	TD2	0.240	
1.00	LC12	Moving load x = -388.180 m, CA1 - LM 71	TD2	0.280	
1.00	LC13	Moving load x = -386.845 m, CA1 - LM 71	TD2	0.320	
1.00	LC14	Moving load x = -385.510 m, CA1 - LM 71	TD2	0.360	
1.00	LC15	Moving load x = -384.175 m, CA1 - LM 71	TD2	0.401	
1.00	LC16	Moving load x = -382.840 m, CA1 - LM 71	TD2	0.441	
1.00	LC17	Moving load x = -381.505 m, CA1 - LM 71	TD2	0.481	
1.00	LC18	Moving load x = -380.170 m, CA1 - LM 71	TD2	0.521	
1.00	LC19	Moving load x = -378.835 m, CA1 - LM 71	TD2	0.561	
1.00	LC20	Moving load x = -377.500 m, CA1 - LM 71	TD2	0.601	
1.00	LC21	Moving load x = -376.165 m, CA1 - LM 71	TD2	0.641	
1.00	LC22	Moving load x = -374.830 m, CA1 - LM 71	TD2	0.681	
1.00	LC23	Moving load x = -373.495 m, CA1 - LM 71	TD2	0.721	
1 00	1/224	Moving load y = 272 160 m CA1 114 71	102	0.761	
				-	
1.00	∽ ∓ =1				5
Syntax	input				
LC5 *	TD2 + LC6 * T	D2(+0.040 s) + LC7 * TD2(+0.080 s) + LC8 * TD2(+0.120	0 s) + LC9 * TD2(+0.160 s) + LC1	10 * TD2(+0.200 ^	
s) + L	C11 * TD2(+0.	240 s) + LC12 * TD2(+0.280 s) + LC13 * TD2(+0.320 s) +	+ LC14 * TD2(+0.360 s) + LC15 *	TD2(+0.401 s) +	1

Obrázek 43: CO1 pro vlakovou soupravu A1

TD2 představuje časový diagram pro rychlosti 120 km/hod. Zároveň je zde pomocí funkce časového posunu umožněno použít pouze jeden časový diagram pro jednu rychlost a pouze pomocí funkce časového posunu ho posouvat o předem spočítaný časový krok přejezdu mezi dvěma uzly. Jedná se o myšlenku násobku časového kroku dané rychlosti (8.1).

Hlavní *for cyklus* reprezentuje vytvoření kombinací zatížení CO2 – CO15, které jsou obdoby CO1 se změnou rychlostí pro soupravu A1.

r

Tento postup byl opakován pro všechny vlakové soupravy.

Typ analýzy pro kombinace zatížení je *časová analýza – časový diagram – metoda lineární modální* s importem hmot z vlastní tíhy a ostatního stálého zatížení.

Výše uvedený skript pro automatickou generaci kombinací zatížení pokrývá generování přejezdu pouze vlakové soupravy A1. Pro vlakové soupravy A2-A10 je skript mírně upraven o počty zatěžovacích stavů generovaných modulem RF-MOVE v závislosti na celkové délce universálního vlaku.

8.3. Tlumení

Teorie reprezentace náprav osamělými silami může nadhodnocovat dynamické účinky pro zatěžovací délku menší než 10 m.

Dynamické účinky interakce hmotnosti konstrukce a vlakové soupravy snižují špičku odezvy při rezonanci pro mostní konstrukce o rozpětí *L*<*30 m*. Tlumení lze uvažovat Lehrovo nebo Rayleighovo. V metodě časová analýza – lineární modální byla zvolena metoda výpočtu tlumení Lehrova s tlumicí konstantou $\zeta_{TOTAL} = 1,701173 \% \rightarrow 0,01701173$ [–], která byla určená podle vztahu (8.2) z normy [2].

$$\boldsymbol{\zeta}_{TOTAL} = \boldsymbol{\zeta} + \Delta \boldsymbol{\zeta} = \boldsymbol{\zeta} + \frac{0,0187 * L - 0,00064 * L^2}{1 - 0,0441 * L - 0,0044L^2 + 0,000255 * L^3}$$
$$= 1,5 + \frac{0,0187 * 21,35 - 0,00064 * 21,350^2}{1 - 0,0441 * 21,350 - 0,0044 * 21,350^2 + 0,000255 * 21,350^3}$$
$$= 1,5 + 0,201173 = \mathbf{1},\mathbf{701173} \% = \mathbf{0},\mathbf{01701173} [-]$$

(8.2)

V metodě časová analýza – lineární implicitní Newmark je typ Rayleighovo tlumení, které můžeme v programu RFEM 6 zadat pomocí zadání vlastních frekvencí dvou dominantních vlastních tvarů a Lehrovy tlumicí konstanty. V našem případě se jedná o zadání frekvencí $f_1 = 3,173$ Hz (první vlastní tvar) a $f_2 = 5,307$ Hz (druhý vlastní tvar).

Bc. Michaela Zavřelová

Obrázek 44: Vstupní parametry tlumení - Lineární implicitní Newmark

Rayleighovo tlumení je složitější a zároveň přesnější metoda tlumení a zahrnuje tuhostní i hmotnostní složku ve výpočtu. Má tvar (8.3).

$$C = \alpha * M + \beta * K \tag{8.3}$$

α, β Rayleighovy konstanty tlumení

U Lehrova tlumení vstupuje do výpočtu pouze tuhostní složka.

9. Výstupy a analýza výsledků

9.1. RF-MOVE

Výstupem modulu RF-MOVE je automatické vytvoření několika statických zatěžovací stavů od pohyblivého zatížení. Pro každou vlakovou soupravu se vytvoří jiný počet zatěžovacích stavů v závislosti na délce vlakové soupravy. Krok pro vytvoření zatěžovacích stavů je nastaven na 1,334 m, což je stejná vzdálenost, po které je nadělena pojížděná příčel na elementy. Znamená to tedy, že výchozí poloha soustavy sil bude zobrazena v prvním generovaném zatěžovacím stavu.

Následně bude vygenerován druhý statický zatěžovací stav, ve kterém bude soustava sil posunutá o 1,334 m v kladném směru osy X.

Je důležité říci, že modul RF-MOVE generuje pohyblivé zatížení pouze do statických zatěžovacích stavů, nikoliv dynamických. Jedná se pouze o vytvoření poloh soustavy sil s předepsaným krokem, které se zobrazí ve statických zatěžovacích stavech a jsou nadále převedeny do dynamického výpočtu pomocí časových dynamických kombinací zatížení (pomocí časového diagramu).

Obrázek 45: Vygenerované zatěžovací stavy z modulu RF-MOVE

9.2. Modální analýza

Modální analýza určuje vlastní tvary a frekvence konstrukce. Vlastní tvary znázorňují kmitání konstrukce při každé z frekvencí. Výsledky modální analýzy jsou nezbytné pro nastavení časové analýzy. Výstupy modální analýzy jsou vlastní tvary λ [1/s²], úhlová frekvence ω [rad/s], vlastní frekvence f [Hz], vlastní periody T [s], dále také hodnoty deformací v uzlech – posuny a rotace.

Hlavní výstupy modální analýzy byly zpracovány do tabulek a obrázků. V první tabulce je přehled úhlových frekvencí, vlastních frekvencí a period pro všech prvních dominantních deset vlastních tvarů. V druhé tabulce je vidět efektivní rozložení hmot v jednotlivých vlastních tvarech.

Vlastní tvar	Úhlová frekvence ω [rad/s]	Vlastní frekvence f [Hz]	Perioda T [s]
1	19,938	3,173	0,315
2	33,342	5,307	0,188
3	47,344	7,535	0,133
4	59,495	9,469	0,106
5	70,489	11,219	0,089
6	82,976	13,206	0,076
7	165,377	26,321	0,038
8	302,918	48,211	0,021
9	407,75	64,895	0,015
10	472,605	75,217	0,013

Tabulka 6: Přehled hlavních výstupů z modální analýzy

			Efektivní modáli	ní hmota			
viastni tvar	M [kg]	m _{eX} [kg]	m _{eZ} [kg]	m _{e∳Y} [kg]	f _{meX} [-]	f _{meZ} [-]	f _{me¢Y} [-]
1	1279652,000	1635980,000	0,000	7084520,000	0,845	0,000	0,040
2	751900,000	0,000	1638420,000	0,000	0,000	0,846	0,000
3	1447087,100	16189,200	0,000	15800000,000	0,008	0,000	0,894
4	885698,700	0,000	254510,000	0,000	0,000	0,131	0,000
5	661868,300	282884,000	0,000	11564700,000	0,146	0,000	0,065
6	955968,100	0,000	42896,000	0,000	0,000	0,022	0,000
7	503283,600	767,600	0,000	56376,800	0,000	0,000	0,000
8	469944,500	0,000	109,600	0,000	0,000	0,000	0,000
9	692239,300	0,000	0,000	0,000	0,000	0,000	0,000
10	550781,400	39,600	0,000	1646,270	0,000	0,000	0,000
				Σ	0,999	0,999	0,999

Tabulka 7: Efektivní rozložení hmot ve vlastních tvarech

Ve druhé tabulce je vidět odraz nastavení modální analýzy. Můžeme zde vidět 10 vlastních tvarů s hmotami kmitajícími pouze do směrů X a Z. Ostatní hmoty jsou vždy nulové. Cílem analýzy je, aby nám vykmitalo co největší procento hmot. Požadovaná hranice je dosažení vykmitání 90 % hmot na konstrukci. V prováděné analýze směr X i Z vykmital prakticky na 100,00 % -> žádná hmota nezůstala nevykmitaná. Na obrázcích níže je grafické shrnutí vlastních tvarů (deformace ve směru X a Z).

Protože je cílem vidět v grafech kmitání všech deseti vlastních tvarů, nastavení časové analýzy je vytvořeno na základě vlastního tvaru s nejnižší periodou – tedy desátého vlastního tvaru s periodou T = 0,013 s.

V modální analýze se projevuje vlastní tíha a ostatní stálé zatížení, proto nezávisí na dílčích modelech s jednotlivými vlakovými soupravami, ale pouze na samotné konstrukci pro určení vlastních tvarů a vlastních frekvencí.

Obrázek 47: Druhý vlastní tvar

Obrázek 48: Třetí vlastní tvar

Obrázek 50: Pátý vlastní tvar

Obrázek 51: Šestý vlastní tvar

Obrázek 52: Sedmý vlastní tvar

Obrázek 54: Devátý vlastní tvar

Obrázek 55: Desátý vlastní tvar

9.2.1. Ověření vlastní úhlové frekvekce

V rámci diplomové práci bylo provedeno ruční určení oblasti rezonance pomocí frekvencí vlakových souprav a vlastní úhlové frekvence (9.1). Pro určení a ověření vlastní úhlové frekvence byla vytvořena pravidelná zjednodušená soustava sil bez vlivu hnacích vozidel a koncových vagónů. Tuhost výpočtového modelu mostní konstrukce byla určena pomocí silového zatížení. Vytvořením pomocného zatěžovacího stavu, do kterého byla vložena do uzlu 19 uzlová síla F_z o velikosti 1000 kN, byla získána deformace uzlu $u_{z,19} = 1,456940 \text{ mm}$. Uzel 19 je v polovině rozpětí mostu. Protože tuhost určuje zatížení na metru, potřebujeme sílu, při které bude deformace $u_z = 1000 \text{ mm}$ -> jednoduchou trojčlenkou byla určena síla F = 686 370 063 N.

$$k = 686\ 370\ 063\ \frac{N}{m}$$

$$m_{p\check{r}i\check{c}le} = \frac{1}{2} * \left(A_{p\check{r}i\check{c}le} * L_{p,pr} \right) * \rho_{p\check{r}i\check{c}le} = \frac{1}{2} * (12,4 * 1,350 * 21,350) * 2500 = 446\ 623\ kg$$

$$\omega_0 = \sqrt{\frac{k}{m}} = \sqrt{\frac{686\ 370\ 063}{446\ 623}} = 39,200\ rad/s$$
(9.1)

Spočítaná vlastní úhlová frekvence je porovnána s programem RFEM 6.

$$\omega_0 = 39,200 \ rad/s \ < -> \ \omega_{RFEM} = 33,342 \ rad/s$$

Nižší úhlová frekvence z programu RFEM 6 může být způsobena modelovanými pružnými podporami a rozdílem přesnosti výpočtu vůči ručnímu odhadu uvažovanému jako prostý nosník. Uvažovaná polovina hmotnosti příčle se v reálu ještě sníží vlivem rámové konstrukce a "rohového vetknutí".

Dále byly určeny úhlové frekvence (9.4) a vlastní frekvence přejezdu mezilehlých vagónů. Vzorec pro frekvence je odvozen tak, aby do výpočtu vstupovala vzdálenost mezilehlých vagónů:

$$f = \frac{\omega}{2\pi} \qquad [Hz] \tag{9.2}$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega} \quad [s] \tag{9.3}$$

$$\boldsymbol{\omega} = \frac{2\pi}{T} = \frac{2\pi \nu}{a} \quad [rad/s] \tag{9.4}$$

	Vzdálenosti mezilehlých vagónů [m]											
A1	A1 A2 A3 A4 A5 A6 A7 A8 A9 A10											
2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000			
16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000			

Tabulka 8: Vzdálenosti mezilehlých vagónů

Pro zobrazení oblasti rezonance je vytvořena tabulka úhlových frekvencí a tabulka frekvencí. Červenými odstíny jsou v tabulce zvýrazněny frekvence přejezdu vlakových souprav, které se blíží k frekvenci, kterou kmitá mostní konstukce. Přehledně tak lze vidět, za jakých okolností může nastat rezonance. Pro každou vlakovou soupravu nastává rezonance při jiné rychlosti. Byla přidána i situace, ve které je frekvence mostní konstrukce dvojnásobná – jedná se tedy o násobek frekvence. Přehlednější zobrazení oblasti rezonance je v podobě grafického zpracování.

			Ur	čení oblas	sti rezona	nce - úhla	ové frekve	ence [rad/	's]		
		A1	A2	A3	A4	A5	A6	A7	A 8	A9	A10
	a [m]	18,000	19,000	20,000	21,000	22,000	23,000	24,000	25,000	26,000	27,000
	120	11,6355	11,0231	10,4720	9,9733	9,5200	9,1061	8,7266	8,3776	8,0554	7,7570
od]	140	13,5748	12,8603	12,2173	11,6355	11,1066	10,6237	10,1811	9,7738	9,3979	9,0499
m/hc	160	15,5140	14,6975	13,9626	13,2977	12,6933	12,1414	11,6355	11,1701	10,7405	10,3427
st [k	180	17,4533	16,5347	15,7080	14,9600	14,2800	13,6591	13,0900	12,5664	12,0830	11,6355
/chlc	200	19,3925	18,3719	17,4533	16,6222	15,8666	15,1768	14,5444	13,9626	13,4256	12,9284
ß	220	21,3318	20,2091	19,1986	18,2844	17,4533	16,6945	15,9989	15,3589	14,7682	14,2212
	240	23,2711	22,0463	20,9440	19,9466	19,0400	18,2121	17,4533	16,7552	16,1107	15,5140

VYSOKÉ UČENÍ FAKULTA TECHNICKÉ STAVEBNÍ V BRNĚ

DIPLOMOVÁ PRÁCE

Bc. Michaela Zavřelová

260	25,2103	23,8835	22,6893	21,6088	20,6266	19,7298	18,9077	18,1514	17,4533	16,8069
280	27,1496	25,7206	24,4346	23,2711	22,2133	21,2475	20,3622	19,5477	18,7959	18,0997
300	29,0888	27,5578	26,1799	24,9333	23,7999	22,7652	21,8166	20,9440	20,1384	19,3925
320	31,0281	29,3950	27,9253	26,5955	25,3866	24,2828	23,2711	22,3402	21,4810	20,6854
340	32,9673	31,2322	29,6706	28,2577	26,9733	25,8005	24,7255	23,7365	22,8235	21,9782
360	34,9066	33,0694	31,4159	29,9199	28,5599	27,3182	26,1799	25,1327	24,1661	23,2711
380	36,8458	34,9066	33,1613	31,5821	30,1466	28,8359	27,6344	26,5290	25,5087	24,5639
400	38,7851	36,7438	34,9066	33,2444	31,7333	30,3536	29,0888	27,9253	26,8512	25,8567

Tabulka 9: Určení oblasti rezonance - úhlové frekvence

		Určen	í oblasti r	ezonance	- frekver	nce projíž	dějících v	lakových	souprav [Hz]	
		A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
	a [m]	18,000	19,000	20,000	21,000	22,000	23,000	24,000	25,000	26,000	27,000
	120	1,8519	1,7544	1,6667	1,5873	1,5152	1,4493	1,3889	1,3333	1,2821	1,2346
	140	2,1605	2,0468	1,9444	1,8519	1,7677	1,6908	1,6204	1,5556	1,4957	1,4403
	160	2,4691	2,3392	2,2222	2,1164	2,0202	1,9324	1,8519	1,7778	1,7094	1,6461
	180	2,7778	2,6316	2,5000	2,3810	2,2727	2,1739	2,0833	2,0000	1,9231	1,8519
	200	3,0864	2,9240	2,7778	2,6455	2,5253	2,4155	2,3148	2,2222	2,1368	2,0576
[pc	220	3,3951	3,2164	3,0556	2,9101	2,7778	2,6570	2,5463	2,4444	2,3504	2,2634
m/ha	240	3,7037	3,5088	3,3333	3,1746	3,0303	2,8986	2,7778	2,6667	2,5641	2,4691
st [k	260	4,0123	3,8012	3,6111	3,4392	3,2828	3,1401	3,0093	2,8889	2,7778	2,6749
chlo	280	4,3210	4,0936	3,8889	3,7037	3,5354	3,3816	3,2407	3,1111	2,9915	2,8807
Ry	300	4,6296	4,3860	4,1667	3,9683	3,7879	3,6232	3,4722	3,3333	3,2051	3,0864
	320	4,9383	4,6784	4,4444	4,2328	4,0404	3,8647	3,7037	3,5556	3,4188	3,2922
	340	5,2469	4,9708	4,7222	4,4974	4,2929	4,1063	3,9352	3,7778	3,6325	3,4979
	360	5,5556	5,2632	5,0000	4,7619	4,5455	4,3478	4,1667	4,0000	3,8462	3,7037
	380	5,8642	5,5556	5,2778	5,0265	4,7980	4,5894	4,3981	4,2222	4,0598	3,9095
	400	6,1728	5,8480	5,5556	5,2910	5,0505	4,8309	4,6296	4,4444	4,2735	4,1152

Tabulka 10: Určení oblasti rezonance - frekvence projíždějících vlakových souprav

Obrázek 57: Grafické zobrazení oblasti rezonance

9.3. Časová analýza

Časová analýza sleduje odezvu konstrukce na zatížení v čase. V této analýze již můžeme vidět časový průběh grafů. Analýzou lze vymodelovat různé dynamické události – budicí síly, vítr, zemětřesení. Výstupy časové analýzy jsou především deformace, rychlosti a zrychlení konstrukce v časovém horizontu.

Všechny výpočtové diagramy jsou zpracovány především pro hlavní sledovaný směr Z. Rozkmitání konstrukce v podélném směru mostní konstrukce (směr X) probíhá také. Obecně lze dle sledovaných hodnot říci, že most kmitá ve směru X přibližně s desetkrát nižším zrychlením než směr Z -> podélný směr X je pro svou nedominantní složku dále podrobněji sledován pouze pro vlakovou soupravu A1.

9.3.1. Tlumená a netlumená konstrukce

Mostní konstrukce bývají vždy tlumené. Pro úplnost pochopení byla namodelována konstrukce prvně plně netlumená a následně až zpracována s vlivem tlumení. Vliv tlumení na globální deformace a zrychlení je vidět ve výpočtových diagramech. Porovnání tlumení bylo vypracováno pouze na vlakové soupravě A1, která jede rychlostí 120 km/hod.

Níže můžeme vidět dva výpočtové diagramy. První graf se týká srovnání netlumené a tlumené konstrukce a lze tak vidět vliv tlumení na globální deformace. Druhý graf znázorňuje vliv tlumení na zrychlení uzlu.

Pro netlumenou konstrukci můžeme vidět četnější a výraznější kmitání konstrukce. Rozdíl netlumené a tlumené konstrukce je také vidět v poslední části sledovaného přejezdu. Bez tlumení je vidět i časově delší dokmit konstrukce. Pro zrychlení mostní netlumené konstrukce můžeme vidět, že konstrukce zrychluje prakticky stejným zrychlením i několik sekund po přejezdu vlakové soupravy.

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_338_CO1 - TH: TimeSteps\Data.RT0003	19	3	A1 - 120 km/hod - tlumená	1	0	1	•	(
solver\RT_353_CO16 - TH TimeSteps\Data.RT0003	19	3	A1 - 120 km/hod - netlumená	1	0	1	1	(

Obrázek 59: Srovnání netlumené a tlumené konstrukce pro zrychlení

9.3.2. Grafy zrychlení a deformací

Pro všechny vlakové soupravy A1-A10 byly sledovány globální deformace a zrychlení uzlu v závislosti na čase. Průběhy sledovaných veličin jsou graficky vyobrazeny ve zpracovaných grafech.

Vlaková souprava A1 byla zkoumána podrobně s každou rychlostí. Pro globální deformace i zrychlení jsou vždy zpracovány 3 grafy dle sousedících rychlostí:

- 120 200 km/hod
- 220 300 km/hod
- 320 400 km/hod

Důvodem rozdělení do tří grafů je extrémní počet hodnot, který za použití všech hodnot v jednom grafu znemožňoval přehlednost. Cílem zpracování všech hodnot byla ukázka, jak moc se od sebe liší globální deformace a zrychlení uzlu sousedících rychlostí.

Po zpracování a vyhodnocení všech vlakových souprav a rychlostí bylo z důvodu velkého množství dat rozhodnuto, že další vlakové soupravy budou do diplomové práce podrobně graficky zpracovány pouze pro každou pátou rychlost – 120 km/hod, 200 km/hod, 300 km/hod, 400 km/hod.

Grafy zrychlení a deformací uzlu jsou pro vlakové soupravy A2-A10 přiloženy v příloze [5].

Pro zobrazení grafů zrychlení a deformací byl využit program *ResultView,* který je napojen na software RFEM 6 a umožňuje tak efektivnější zpracování výsledkových grafů skrze soubory *RT*.

Po načtení souborů *RT* bylo zvoleno číslo sledovaného uzlu a směr (3 = směr Z). Na svislé ose jsou zobrazeny sledované veličiny ve zvolených jednotkách [m] a [m/s²]. Na vodorovné ose je časový krok [-], nikoliv samotný čas.

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000338	19	3	A1 - 120 km/hod					8
THS1 - TimeSteps \Data.RT000339	19	3	A1 - 140 km/hod					8
THS1 - TimeSteps \Data.RT000340	19	3	A1 - 160 km/hod					8
THS1 - TimeSteps \Data.RT000341	19	3	A1 - 180 km/hod					8
THS1 - TimeSteps \Data RT000342	19	3	A1 - 200 km/hod				-	8

Obrázek 60: Globální deformace ve směru Z pro universální vlak A1 (120-200 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000338	19	3	A1 - 120 km/hod				1	8
THS1 - TimeSteps \Data.RT000339	19	3	A1 - 140 km/hod				1	۲
THS1 - TimeSteps \Data.RT000340	19	3	A1 - 160 km/hod				1	8
THS1 - TimeSteps \Data.RT000341	19	3	A1 - 180 km/hod				1	8
THS1 - TimeSteps \Data.RT000342	19	3	A1 - 200 km/hod				1	8

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000343	19	3	A1 - 220 km/hod	1	0	1		۲
THS1 - TimeSteps \Data.RT000344	19	3	A1 - 240 km/hod	1	0	1	•	۲
THS1 - TimeSteps \Data.RT000345	19	3	A1 - 260 km/hod	1	0	1	•	۲
THS1 - TimeSteps \Data.RT000346	19	3	A1 - 280 km/hod	1	0	1	7	۲
- THS1 - TimeSteps \Data.RT000347	19	3	A1 - 300 km/hod	1	0	1	•	8

Obrázek 62 Globální deformace ve směru Z pro universální vlak A1 (220 - 300 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000343	19	3	A1 - 220 km/hod	1	0	1		۲
THS1 - TimeSteps \Data.RT000344	19	3	A1 - 240 km/hod	©1.1	0	1	>	۲
THS1 - TimeSteps \Data.RT000345	19	3	A1 - 260 km/hod	<u>:1</u>	0	1	•	8
THS1 - TimeSteps \Data.RT000346	19	3	A1 - 280 km/hod	<u>ः</u> 1	0	1	•	8
- THS1 - TimeSteps \Data.RT000347	19	3	A1 - 300 km/hod	1	0	1	•	۲

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
- THS1 - TimeSteps \Data.RT000348	19	3	A1 - 320 km/hod	1	0	1	•	8
- THS1 - TimeSteps \Data.RT000349	19	3	A1 - 340 km/hod	1	0	1	•	8
- THS1 - TimeSteps \Data.RT000350	19	3	A1 - 360 km/hod	1	0	1	•	8
- THS1 - TimeSteps \Data.RT000351	19	3	A1 - 380 km/hod	1	0	1	•	۲
- THS1 - TimeSteps \Data RT000352	19	3	A1 - 400 km/hod	1	0	1	~	8

Obrázek 64: Globální deformace ve směru Z pro universální vlak A1 (320 - 400 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
- THS1 - TimeSteps \Data.RT000348	19	3	A1 - 320 km/hod	1	0	1		۲
- THS1 - TimeSteps \Data.RT000349	19	3	A1 - 340 km/hod	1	0	1	•	۲
- THS1 - TimeSteps \Data.RT000350	19	3	A1 - 360 km/hod	1	0	1		۲
- THS1 - TimeSteps \Data.RT000351	19	3	A1 - 380 km/hod	1	0	1		۲
- THS1 - TimeSteps \Data RT000352	19	3	A1 - 400 km/hod	1	0	1	•	۲

Results of DEF

9.3.3. Srovnání metod časové analýzy

Po provedení analýz metodou časové analýzy – lineární modální byly všechny vlakové soupravy zpracovány i pro metodu časové analýzy – lineární implicitní Newmark. Byly zpracovány grafy odchylek pro globální deformace a zrychlení. Jako výchozí metoda byla zvolena lineární modální metoda, od jejíchž výsledných deformací a zrychlení ve směru Z jsou odečteny výsledné deformace a zrychlení ve směru Z Newmarkovy metody.

Ze souboru všech výsledných hodnot obou metod byly pro každou vlakovou soupravu a pro každou rychlost vybrány maxima a průměry globálních deformací i zrychlení, ze kterých jsou zpracovány přehledné grafy pro určení, která vlaková souprava při jaké rychlosti vyvozuje v metodě Newmark největší odchylku deformace, či zrychlení.

Cílem této části diplomové práce je porovnání shodnosti metod v programu RFEM 6. Přesnost, stabilnost a menší časová náročnost metody lineární modální byla hlavním důvodem zvolení metody za výchozí pro porovnání odchylek.

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000342	19	3	A1 - 200 km/hod - časová analýza -				>	8
- THS2 - TimeSteps \Data.RT000375	19	3	A1 - 200 km/hod - časová analýza -				~	8

Obrázek 66: Grafické zobrazení deformací metod časové analýzy (A1-200 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000342	19	3	A1 - 200 km/hod - časová analýza -				>	۲
- THS2 - TimeSteps \Data.RT000375	19	3	A1 - 200 km/hod - časová analýza -				-	۲

Obrázek 67: Grafické zobrazení zrychlení metod časové analýzy (A1-200 km/hod)

58

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000345	19	3	A1 - 260 km/hod - časová analýza -				•	8
- THS2 - TimeSteps \Data.RT000378	19	3	A1 - 260 km/hod - časová analýza -				~	8

Obrázek 68: Grafické zobrazení deformací metod časové analýzy (A1-260 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000345	19	3	A1 - 260 km/hod - časová analýza -				•	۲
- THS2 - TimeSteps \Data.RT000378	19	3	A1 - 260 km/hod - časová analýza -				•	۲

Results of ACC

Obrázek 69: Grafické zobrazení zrychlení metod časové analýzy (A1-260 km/hod)

Obrázek 70: Porovnání metod časových analýz - globální deformace - MAXIMUM

Obrázek 71: Porovnání metod časových analýz - zrychlení - MAXIMUM

Obrázek 72: Porovnání metod časových analýz - globální deformace - PRŮMĚR

Obrázek 73: Porovnání metod časových analýz - zrychlení - PRŮMĚR

Výrazné odchylky jsou vidět pro další vlakové soupravy v příloze 6.

9.3.4. Závěrečné zhodnocení grafů

Pro závěrečné zhodnocení grafů je vyhodnocení znázorněno na následujících grafech, kde jsou vyneseny závislosti maximálních deformací (zrychlení) pro každou vlakovou soupravu a každou rychlost. Pro zobrazení všech zatěžovacích vlaků je vytvořen graf závislosti deformací na vlakových soupravách A1-A10 a rychlostech, včetně vynesené výsledné deformace od statického modelu zatěžovacího vlaku LM 71 -> $u_{z,71} = 2,9 mm$. V rámci vyhodnocení závěrečného grafu deformací lze vidět, že výsledné deformace universálních vlaků se v naší analýze pohybují i pod samotnou hodnotou deformace statického modelu zatěžovacího vlaku $u_{z,71} = 2,9 mm$.

		Т	abulka m	naximální	ch defor	nací ve s	měru Z [ı	nm]		
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
120	0,970	1,073	1,027	1,028	0,970	1,027	1,084	1,039	1,198	1,198
140	0,957	1,061	1,012	0,981	0,955	1,034	1,093	0,998	1,180	1,286
160	1,146	1,074	1,064	1,109	0,906	0,907	0,980	0,959	1,039	1,101
180	0,933	1,194	0,988	1,067	1,147	0,988	1,043	1,096	1,153	1,197
200	0,842	1,170	1,033	0,972	0,868	0,939	0,941	1,081	1,221	1,045
220	0,934	1,092	1,001	1,011	0,909	1,693	1,550	1,095	1,486	1,436
240	0,999	1,064	1,022	1,052	0,884	1,096	1,289	1,261	1,277	1,432
260	0,849	1,217	0,899	1,154	1,021	1,097	1,114	1,054	1,341	1,287
280	0,857	1,064	0,907	1,095	0,857	1,106	1,198	1,210	1,059	1,150
300	0,788	0,993	1,009	0,978	0,994	1,115	1,216	1,181	1,311	1,305
320	0,957	0,969	0,940	1,069	0,824	1,171	1,230	1,076	1,256	1,193
340	0,946	1,308	1,264	1,104	1,104	1,002	1,084	1,068	1,422	1,462
360	1,055	1,581	1,213	1,202	1,144	1,117	1,180	1,108	1,492	1,544
380	1,104	1,512	1,980	1,703	1,776	1,168	1,233	1,175	1,541	1,472
400	1,089	1,212	1,245	2,476	2,155	1,613	1,648	1,556	1,388	1,402

Tabulka 11: Tabulka maximálních deformací ve směru Z [mm]

Obrázek 74: Souhrnný graf maximálních deformací

DIPLOMOVÁ PRÁCE

Bc. Michaela Zavřelová

		Tab	ulka max	kimálních	n zrychle	ní ve sm	ěru Z [m/	/s²]		
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
120	0,338	0,475	0,340	0,257	0,372	0,380	0,305	0,263	0,346	0,296
140	0,309	0,236	0,296	0,257	0,424	0,381	0,382	0,269	0,302	0,355
160	0,552	0,493	0,666	0,459	0,487	0,442	0,417	0,458	0,461	0,461
180	0,538	0,728	0,552	0,222	0,310	0,312	0,350	0,270	0,364	0,364
200	0,552	0,314	0,598	0,349	0,334	0,315	0,437	0,257	0,332	0,397
220	0,299	0,428	0,473	0,378	0,425	0,958	1,159	0,728	1,075	1,120
240	0,320	0,458	0,310	0,536	0,535	0,388	0,533	0,590	0,606	0,809
260	0,438	0,625	0,683	0,672	0,575	0,611	0,463	0,680	0,924	0,763
280	0,613	0,489	0,586	0,430	0,518	0,539	0,474	0,423	0,580	0,602
300	0,000	0,478	0,632	0,316	0,424	0,440	0,349	0,312	0,483	0,474
320	0,515	0,683	0,777	0,396	0,678	0,599	0,618	0,332	0,474	0,302
340	0,574	0,578	0,839	0,632	0,752	0,487	0,653	0,504	0,516	0,503
360	0,493	1,408	0,707	0,756	0,581	0,616	0,721	0,544	0,694	0,834
380	0,608	1,075	1,796	1,214	0,983	0,485	0,620	0,918	0,922	0,724
400	0,723	0,580	1,454	2,430	1,718	1,234	1,291	0,841	1,069	0,992

SOKÉ UČENÍ FAKULTA

TECHNICKÉ STAVEBNÍ V BRNĚ

Tabulka 12: Tabulka maximálních zrychlení ve směru Z [m/s2]

V grafu zrychlení jsou vyneseny srovnávací limitní hodnoty *Limit 1* a *Limit 2*. Dle doporučení normy [2] jsou limitní hodnoty pro zrychlení 3,5 a 5,0 m/s².

Obrázek 75: Souhrnný graf maximálních zrychlení

10. Závěr

V rámci diplomové práce byla analyzována polorámová mostní konstrukce s plošným založením bez přesypávky. Na konstrukci byl proveden výpočet modelu zatížení LM 71 a zatěžovacího vlaku HSLM-A ve variantách universálních vlaků A1-A10. Na mostní konstrukci pro každou vysokorychlostní vlakovou soupravu byl simulován přejezd celkem 15 rychlostí v rozmezí 120 – 400 km/hod pomocí kombinací zatížení statických poloh vygenerovaných modulem RF-MOVE a časových diagramů. Generování dynamických stavů bylo zautomatizováno skriptem v programu JavaScript.

Ve vertikálním směru Z bylo provedeno celkem 150 časových analýz typu lineární modální a následně odpovídajících 150 časových analýz metodou lineární implicitní Newmark, přičemž vlaková souprava A1 je graficky zpracována v diplomové práci kompletně a vlakové soupravy A2-A10 jsou graficky zpracovány pro rychlosti 120 km/hod, 200 km/hod, 300 km/hod a 400 km/hod.

Analýzy v horizontálním směru X byly detailně provedeny pro vlakovou soupravu A1, ve které se vyhodnotila nedominantnost kmitání, která se pohybuje mezi 15-60 % oproti vertikálnímu směru.

Z výsledků souhrnného grafu maximálních deformací lze vidět, že limitní hodnotu 2,9 mm, která byla získána provedením analýzy modelu zatížení LM 71, nepřekročí žádná z vysokorychlostních vlakových souprav během podrobné dynamické časové analýzy. Protože účinky z dynamické analýzy jsou nižší než výsledky od LM 71, není třeba kombinovat dále tyto účinky s účinky od zatížení na jinou kolej.

Stejný závěr lze usoudit ze souhrnného grafu maximálních zrychlení uzlu. Limitní hodnoty vertikálního zrychlení uzlu 3,5 m/s² a 5,0 m/s², které definuje norma *[2]*, nebyly taktéž překročeny pro zkoumaný model polorámové mostní konstrukce s plošným založením bez přesypávky s rozpětím mostu 21,350 m.

Vzhledem k povazu parametrické studie je nutné brát výsledkové hodnoty jako orientační. Parametrické výpočty byly provedeny na jednom ze zjednodušených modelů z projektu [8]. Vliv okolního zemního tělesa byl zanedbán.

Na základě manuálního ověření vlastní úhlové frekvence s programem RFEM 6 a shodnosti hodnot byla diplomová práce rozšířena o nalezení oblasti rezonance. Pro každou vlakovou soupravu a rychlost byl proveden výpočet úhlových frekvencí a samotných frekvencí přejezdu mezilehlých vagónů přes uzel uprostřed rozpětí mostní konstrukce. Na základě hodnoty vlastní úhlové frekvence $\omega_{RFEM} = 33,342 \ rad/s$ byly vyhodnoceny přejezdy, které by mohly způsobit rezonanci mostní konstrukce. V rezonanční oblasti lze očekávat zvýšený nárůst sledovaných deformací a zrychlení konstrukce. Přestože existuje riziko rezonance z důvodu působícího periodického zatížení od přejezdu vysokorychlostních vlakových souprav, hnací vozidla a koncové vagóny by měly tuto periodicitu narušit.

Po vyhodnocení rezonanční oblasti, viz *Tabulka 9: Určení oblasti rezonance - úhlové frekvence*, lze konstatovat, že pouze přejezd vlakových souprav A5 a A7 nezpůsobí rezonanci při žádné modelované rychlosti dle kritérií porovnání s vlastní úhlovou frekvencí $\omega_{RFEM} = 33,342 \ rad/s$ a $\omega_{RFEM} = 16,671 \ rad/s$.

11. Seznam použité literatury

- [1] Správa železnic. *Správa železnic* [online]. [cit. 2024-01-01]. Dostupné z: https://www.spravazeleznic.cz/web/guest
- [2] Evropský výbor pro normalizaci. ČSN EN 1991 2 ed. 2 Eurokod 1: Zatížení konstrukcí Část 2: Zatížení mostů dopravou. 2018.
- [3] Salajka, Vlastislav. Dynamika stavebních konstrukcí [přednášky]. Ústav stavební mechaniky Fakulty stavební VUT v Brně: Salajka Vlastislav, 2021
- [4] Máca, Jiří. Dynamika stavebních konstrukcí 1 [přednášky]. Katedra mechaniky Fakulta stavební ČVUT v Praze: Máca Jiří
- [5] Máca, Jiří. Dynamika stavebních konstrukcí 2 [přednášky]. Katedra mechaniky Fakulta stavební ČVUT v Praze: Máca Jiří
- [6] Nečas, Radim. Betonové mosty 1 [přednášky]. Ústav betonových a zděných konstrukcí Fakulty stavební VUT v Brně: Nečas Radim, 2021
- [7] Kadlčák, Jaroslav a Kytýr, Jiří. Statika stavebních konstrukcí. 3. vyd. Brno: Vutium, 2010 [i. e. 2007]. ISBN 978-80-214-3419-6.
- [8] Vlk, Zbyněk, Zavřelová, Michaela, Šoupalová, Kristýna, Novák, Drahomír a Lehký, David. Parametrická studie statické a dynamické odezvy železobetonových rámových mostních konstrukcí menších rozpětí na vysokorychlostních tratích s návrhovou rychlostí do 350 km/hod.

12. Seznam tabulek

Tabulka 1: HSLM-A [2]	15
Tabulka 2: Přejezd síly F1	21
Tabulka 3: Potřebné časy pro přejezd uzlu n1	22
Tabulka 4: Potřebné časy pro přejezd mostní konstrukce	22
Tabulka 5: Rozměry konstrukce	28
Tabulka 6: Přehled hlavních výstupů z modální analýzy	44
Tabulka 7: Efektivní rozložení hmot ve vlastních tvarech	45
Tabulka 8: Vzdálenosti mezilehlých vagónů	49
Tabulka 9: Určení oblasti rezonance - úhlové frekvence	50
Tabulka 10: Určení oblasti rezonance - frekvence projíždějících vlakových souprav	50
Tabulka 11: Tabulka maximálních deformací ve směru Z [mm]	62
Tabulka 12: Tabulka maximálních zrychlení ve směru Z [m/s2]	63

13. Seznam obrázků

Obrázek 1: Systém Rychlých spojení v ČR [1]	. 11
Obrázek 2: Transevropská dopravní síť [1]	. 11
Obrázek 3: Uspořádání zatížení LM 71 v charakteristických hodnotách [2]	. 12
Obrázek 4: Podélný roznos osamělé síly kolejnicí (LM 71/HSML-A) [2]	
Obrázek 5: Podélný roznos zatížení pražci a kolejovým ložem (LM 71) [2]	. 12
Obrázek 6: Příčný roznos zatížení pražci a kolejovým ložem [2]	. 13
Obrázek 7: Vývojový diagram	. 14
Obrázek 8: HSLM-A [2]	. 15
Obrázek 9: Universální vlaky HSLM-A (A1-A10)	. 16
Obrázek 10: HSLM-B [2]	. 16
Obrázek 11: LC3	. 23
Obrázek 12: Varianta 1 - časový diagram	. 23
Obrázek 13: Časový posun	. 24
Obrázek 14: Varianta 1 - CO1	. 24
Obrázek 15: Nájezd dvojice sil	. 25
Obrázek 16: Nájezd dvojice sil	. 25
Obrázek 17: Nájezd dvojice sil	. 25
Obrázek 18: Varianta 1 – podporová reakce při přejezdu (čas 0,000 s)	. 25
Obrázek 19: Varianta 1 – podporová reakce při přejezdu (čas 0,500 s)	. 25
Obrázek 20: Varianta 1 – podporová reakce při přejezdu (čas 1,000 s)	. 25
Obrázek 21: Varianta 1 – podporová reakce při přejezdu (čas 1,500 s)	. 26
Obrázek 22: Varianta 1 – podporová reakce při přejezdu (čas 2,000 s)	. 26
Obrázek 23: Varianta 1 – podporová reakce při přejezdu (čas 2,500 s)	. 26
Obrázek 24: Varianta 1 – podporová reakce při přejezdu (čas 3,000 s)	. 26
Obrázek 25: Varianta 1 – podporová reakce při přejezdu (čas 3,500 s)	. 27
Obrázek 26: Varianta 2 - časový diagram	. 27
Obrázek 27: Obecné schéma polorámové konstrukce	. 28
Obrázek 28: Průřez rámu	. 29
Obrázek 29: Průřez základů	. 29
Obrázek 30: Schéma konstrukce	. 29
Obrázek 31: Schematický prutový model - Polorámová mostní konstrukce s plošným založe bez přesypávky	ním . 29
Obrázek 32: RF-MOVE: Základní data LM 71	. 32
Obrázek 33: RF-MOVE: Pohyblivé zatížení LM 71	. 32
Obrázek 34: Úvodní polohy zatěžovacího modelu LM 71 vygenerované modulem RF-MOVE	. 33
Obrázek 35: Dynamická kombinace zatížení - LM 71	. 34
Obrázek 36: Nastavení modální analýzy	. 35
Obrázek 37: Nastavení časové analýzy	. 37
Obrázek 38: RF-MOVE - vlaková souprava A1	. 38
Obrázek 39: Rozmístění uzlů na pojížděné příčli	. 39
Obrázek 40: Skript pro vytvoření časových diagramů	. 40
Obrázek 41: Uživatelsky zadaný časový diagram TD1 pro rychlost 120 km/hod	. 40
Obrázek 42: Skript pro generování kombinací zatížení pro vlakovou soupravu A1	. 41

Obrázek 43: CO1 pro vlakovou soupravu A1	41
Obrázek 44: Vstupní parametry tlumení - Lineární implicitní Newmark	43
Obrázek 45: Vygenerované zatěžovací stavy z modulu RF-MOVE	44
Obrázek 46: První vlastní tvar	45
Obrázek 47: Druhý vlastní tvar	46
Obrázek 48: Třetí vlastní tvar	46
Obrázek 49: Čtvrtý vlastní tvar	46
Obrázek 50: Pátý vlastní tvar	46
Obrázek 51: Šestý vlastní tvar	47
Obrázek 52: Sedmý vlastní tvar	47
Obrázek 53: Osmý vlastní tvar	47
Obrázek 54: Devátý vlastní tvar	47
Obrázek 55: Desátý vlastní tvar	48
Obrázek 56: Zatížení konstrukce silou F=1000 kN pro určení tuhosti	48
Obrázek 57: Grafické zobrazení oblasti rezonance	51
Obrázek 58: Srovnání netlumené a tlumené konstrukce pro globální deformace	52
Obrázek 59: Srovnání netlumené a tlumené konstrukce pro zrychlení	52
Obrázek 60: Globální deformace ve směru Z pro universální vlak A1 (120-200 km/hod)	54
Obrázek 61: Zrychlení ve směru Z pro universální vlak A1 (120-200 km/hod)	54
Obrázek 62: Globální deformace ve směru Z pro universální vlak A1 (220 - 300 km/hod)	55
Obrázek 63: Zrychlení ve směru Z pro universální vlak A1 (220 - 300 km/hod)	55
Obrázek 64: Globální deformace ve směru Z pro universální vlak A1 (320 - 400 km/hod)	56
Obrázek 65: Zrychlení ve směru Z pro universální vlak A1 (320 - 400 km/hod)	56
Obrázek 66: Grafické zobrazení deformací metod časové analýzy (A1-200 km/hod)	58
Obrázek 67: Grafické zobrazení zrychlení metod časové analýzy (A1-200 km/hod)	58
Obrázek 68: Grafické zobrazení deformací metod časové analýzy (A1-260 km/hod)	59
Obrázek 69: Grafické zobrazení zrychlení metod časové analýzy (A1-260 km/hod)	59
Obrázek 70: Porovnání metod časových analýz - globální deformace - MAXIMUM	60
Obrázek 71: Porovnání metod časových analýz - zrychlení - MAXIMUM	60
Obrázek 72: Porovnání metod časových analýz - globální deformace - PRŮMĚR	61
Obrázek 73: Porovnání metod časových analýz - zrychlení - PRŮMĚR	61
Obrázek 74: Souhrnný graf maximálních deformací	62
Obrázek 75: Souhrnný graf maximálních zrychlení	63

14. Seznam zkratek

Lp,pr	rozpětí mostu
Lp,pr,1	délka elementu pojížděné příčle
Ltrain, i	celková délka universálního vlaku
TAi,p,pr,n1	čas potřebný pro přejezd uzlu n1 [0,000; 0,000; 0,000]
TF,p,pr	čas potřebný pro přejezd síly F přes celou mostní konstrukci
TAi,p,pr	čas potřebný pro přejezd vlakové soupravy přes celou mostní konstrukc
F	síla
TD	Time diagram = časový diagram
СО	Load combination = kombinace zatížení
К	matice tuhosti
и	vektor posunutí
f	vektor zatížení (vnějších sil)/ vektor budicí síly
С	matice útlumu
ù	vektor rychlosti
Μ	matice hmotnosti
ü	vektor zrychlení
n	počet stupňů volnosti
Φ_n	vlastní tvar
ω_n	vlastní kruhová frekvence
Ω^2	spektrální matice
Φ	modální matice
Ι	jednotková matice
Ω	normalizované vlastní tvary
Δt	délka časového kroku
E	modul pružnosti
Cu,i	pružnostní konstanta
Cφ,i	pružnostní konstanta
H _{r,s}	výška stojky
Hz	výška základu
qk	hodnota charakteristického spojitého zatížení
Gk	hodnota charakteristického zatížení – síla
α	součinitel pro těžkou železniční dopravu
γQ	součinitel zatížení
Δ	dynamický součinitel
L_{Δ}	náhradní délka
$q_{k,dyn}$	charakteristické spojité zatížení s vlivem dynamického součinitele
$G_{k,dyn}$	silové charakteristické zatížení s vlivem dynamického součinitele
ζτοται	tlumicí konstanta
α, β	Rayleighovy konstanty tlumení
f	frekvence
Т	perioda
V	rychlost
т	efektivní modální hmota

15. Seznam příloh

Příloha č. 1: Přehled universálních vlaků

Příloha č. 2: Vzdálenosti sil universálních vlaků od x=0,000 m

Příloha č. 3: Vzdálenosti sil universálních vlaků - vstupy pro RF-MOVE [m]

Příloha č. 4: Skript pro generování kombinací zatížení na přejezd jednotlivých vlakových souprav

Příloha č. 5: Přehled deformací a zrychlení uzlu pro vybrané rychlosti a směry

Příloha č. 6a: Porovnání metod časové analýzy

Příloha č. 6b: Grafické zobrazení porovnání metod časové analýzy pro vybrané vlakové soupravy a rychlosti

Příloha č. 1 - Přehled universálních vlaků

A1 A2 A3 A4 A5 A6 A7 A8 A9 P [k8] 170 200 180 190 21 22 23 24 25 26 k [m] 13.28 11.988 15.28 14.738 17.238 18.238 19.288 19.488 21.00 2.500 24.00 2 X [m] 15.00 11.000 11.000 11.000 11.000 11.000 11.000 11.000 10.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 2.000 2.500 2.000 1 1.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 11.000 2.000 2.000 3.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000			Universální vlak HSLM - A									
P [M] 170 200 180 190 21 22 23 24 25 26 x [m] 13.03 11.988 15.238 14.738 18.238 19.438 21.338 2 20.000 21.000 22.000 22.500 24.000 2 2 20.000 3.000 2.000<			A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
0 m 18 19 20 21 22 23 24 25 26 1 </th <th></th> <th>P [kN]</th> <th>170</th> <th>200</th> <th>180</th> <th>190</th> <th>170</th> <th>180</th> <th>190</th> <th>190</th> <th>210</th> <th>210</th>		P [kN]	170	200	180	190	170	180	190	190	210	210
<		D [m]	18	19	20	21	22	23	24	25	26	27
X im 16,000 15,500 18,000 30,000 20,000 30,000 30,000 20,000 30,000 20,000		x [m]	13,238	11,988	15,238	14,738	17,238	18,238	19,238	19,488	21,238	22,238
 3,000		X [m]	16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
Image: part of the section of the s			3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Normal Part of the sector of			11,000	11,000	11,000	11,000	11,000	11,000	11,000	11,000	11,000	11,000
Proof 13,5253,5253,5253,5253,5253,5253,5253,5253,5253,5253,5253,5262,0002,0002,0002,0002,0002,5002,0002,0002,5002,0002,000 <th></th> <th></th> <th>3,000</th>			3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Proof 13,2381,9802,0003,0002,00			3,525	3,525	3,525	3,525	3,525	3,525	3,525	3,525	3,525	3,525
Image: part of the state independence of the state ind			2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
Image: basis of the section			13,238	11,988	15,238	14,738	17,238	18,238	19,238	19,488	21,238	22,238
Increase 16,000 15,500 18,000 20,000 21,000 22,000 24,000 2 2 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 2,500 2,000 2,500 2,000 2,500 2,000 2,500 2,000 2,500 2,000 2		1	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
Part 1 2,000 3,500 2,000 3,000 2,000 <t< th=""><th></th><th></th><th>16,000</th><th>15,500</th><th>18,000</th><th>18,000</th><th>20,000</th><th>21,000</th><th>22,000</th><th>22,500</th><th>24,000</th><th>25,000</th></t<>			16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
16,000 15,000 18,000 20,000 21,000 22,000<		2	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
3 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,500 2,6			16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
16.000 15.500 18,000 20,000 21,000 22,000 22,500 24,000 2 4 2,000 3,500 2,000 3,000 2,000 2,000 22,500 2,000 3 5 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 2 6 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 3 16,000 15,500 18,000 18,000 2,000 2,000 2,500 2,000 3 2,000 2,000 2,500 2,000 2,000 2,500 2,000 3 2,000 2,000 2,500 2,000 2,000 2,500 2,000 3 2,000 3,000 2,000 2,000 2,500 2,000 3,000 2,000 2,500 2,000 3,000 2,000 2,000 2,500 2,000 3,000 2,000 2,000 2,500 2,000 3,000 2,000		3	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
4 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,0			16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
16.000 15,500 18,000 20,000 21,000 22,000 22,500 24,000 2 5 2,000 3,500 2,000 3,000 2,000 2,000 22,500 2,000 2 6 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 2 6 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 2 7 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 2 16,000 15,500 18,000 18,000 20,000 2,000 2,500 2,000 3 16,000 15,500 18,000 18,000 2,000 2,000 2,500 2,000 3 2,000 2,000 2,000 2,500 2,000 2,000 2,500 2,000 2,000 2,000 2,000 2,500 2,000 2,000 2,000 2,000 2,000 2,0		4	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
5 2,000 3,500 2,000 3,000 2,0			16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
Image: base of the section o		5	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
0 2,000 3,000 2,000 3,000 2,0			16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
10,000 13,000 13,000 13,000 20,000 2,000		6	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
1 2,000 3,500 2,000 3,000 2,0		7	2 000	2 500	2 000	2 000	20,000	21,000	22,000	22,500	24,000	25,000
1000 13,00 16,000 16,000 16,000 20,000 2,000		/	2,000	15 500	2,000	18 000	2,000	2,000	2,000	2,500	2,000	2,000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		2 000	2 500	2 000	2 000	20,000	21,000	22,000	22,500	24,000	23,000
1 1	góní	0	16,000	15 500	18 000	18 000	2,000	2,000	2,000	2,500	2,000	25,000
1000000000000000000000000000000000000	h va	q	2.000	3.500	2.000	3.000	2.000	2.000	2.000	2.500	2.000	2.000
10 2,000 3,500 2,000 3,000 2,000 3,000 3,000 3,000 3,	hlýcl		16.000	15.500	18.000	18.000	20.000	21.000	22.000	22.500	24.000	25.000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ezilel	10	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
11 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 3,	t me		16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	oče	11	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
12 2,000 3,500 2,000 3,000 2,000 2,000 2,500 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,1238 2 13 2,000 3,500 2,000 3,000 2,000 3,000 2,000 2,000 2,000 3,000 2,000 2,000 3,000	NF		16,000	15,500	18,000	18,000	20,000	21,000	22,000	22,500	24,000	25,000
16,000 16,000 15,500 18,000 18,000 21,000 22,000 21,238 2 13 2,000 3,500 2,000 3,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 3,000 2,000 2,000 2,000 19,488 3,525 3,000 3,000 2,000 2,000 2,000 3,000 3,000 2,000 2,000 2,000 3	2	12	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
13 2,000 3,500 2,000 3,000 2,000 3,000 2,000 2,000 2,000 2,000 2,000 3,000 1 16,000 16,000 15,500 18,000 17,238 3,525 3,525 11,000 3,00			16,000	16,000	15,500	18,000	18,000	20,000	21,000	22,000	21,238	22,238
16,000 16,000 15,500 18,000 18,000 20,000 21,000 19,488 3,525 3 14 2,000 3,500 2,000 3,000 2,000 2,000 2,000 2,000 3,000 1 16,000 16,000 15,500 18,000 18,000 18,238 19,238 3,525 11,000 1 15 2,000 3,500 2,000 3,000 2,000 2,000 3,000		13	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	2,000	2,000
14 2,000 3,500 2,000 3,000 2,000 2,000 2,000 2,000 2,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 10,000 10,000 11,0			16,000	16,000	15,500	18,000	18,000	20,000	21,000	19,488	3,525	3,525
16,000 16,000 15,500 18,000 18,238 19,238 3,525 11,000 1 15 2,000 3,500 2,000 3,000 2,000 2,000 3,0		14	2,000	3,500	2,000	3,000	2,000	2,000	2,000	2,500	3,000	3,000
15 2,000 3,500 2,000 3,000 2,000 2,000 3,			16,000	16,000	15,500	18,000	18,000	18,238	19,238	3,525	11,000	11,000
Image: 16,000 16,000 15,500 18,000 17,238 3,525 3,525 11,000 375,525 3 16 2,000 3,500 2,000 3,000 2,000 3,000		15	2,000	3,500	2,000	3,000	2,000	2,000	2,000	3,000	3,000	3,000
16 2,000 3,500 2,000 3,000 2,000 3,000 3,000 3,000 16,000 16,000 15,500 14,738 3,525 11,000 11,000 387,025 17 2,000 3,500 2,000 3,000 3,000 3,000 3,000 16,000 16,000 15,238 3,525 11,000 380,525 395,525 18 2,000 3,500 2,000 3,000 3,000 3,000 16,000 11,988 3,525 11,000 383,525 11,000 383,525			16,000	16,000	15,500	18,000	17,238	3,525	3,525	11,000	375,525	388,525
16,000 16,000 15,500 14,738 3,525 11,000 11,000 387,025 17 2,000 3,500 2,000 3,000 3,000 3,000 3,000 16,000 16,000 15,238 3,525 11,000 380,525 395,525 18 2,000 3,500 2,000 3,000 3,000 3,000 16,000 11,988 3,525 11,000 383,525 11,000 383,525		16	2,000	3,500	2,000	3,000	2,000	3,000	3,000	3,000		
17 2,000 3,500 2,000 3,000 3,000 3,000 3,000 16,000 16,000 15,238 3,525 11,000 380,525 395,525 18 2,000 3,500 2,000 3,000 3,000 3,000 16,000 11,988 3,525 11,000 383,525 11,000 383,525			16,000	16,000	15,500	14,738	3,525	11,000	11,000	387,025		
16,000 16,000 15,238 3,525 11,000 380,525 395,525 18 2,000 3,500 2,000 3,000 3,000 3,000 16,000 11,988 3,525 11,000 383,525 395,525		17	2,000	3,500	2,000	3,000	3,000	3,000	3,000			
18 2,000 3,500 2,000 3,000 3,000 16,000 11,988 3,525 11,000 383,525			16,000	16,000	15,238	3,525	11,000	380,525	395,525			
16,000 11,988 3,525 11,000 383,525		18	2,000	3,500	2,000	3,000	3,000	-				
I A ANA I A ANA I A ANA I A ANA I			16,000	11,988	3,525	11,000	383,525					
2,000 3,500 3,000 3,000			2,000	3,500	3,000	3,000						
13,238 3,525 11,000 394,525			13,238	3,525	11,000	394,525						
2,000 3,000 3,000			2,000	3,000	3,000							
3,525 11,000 385,025			3,525	11,000	385,025							
3,000 3,000			3,000	3,000								
11,000 401,525			11,000	401,525								
3,000	1	1	3,000									

Příloha č. 2 - Vzdálenosti sil universálních vlaků od x=0,000 m

	Vzdálenosti sil universálních vlaků od x=0,000 m										
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	
F ₁	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
F ₂	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	
F ₃	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	
F ₄	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	
F ₅	20,525	20,525	20,525	20,525	20,525	20,525	20,525	20,525	20,525	20,525	
F ₆	22,525	24,025	22,525	23,525	22,525	22,525	22,525	23,025	22,525	22,525	
F ₇	35,763	36,013	37,763	38,263	39,763	40,763	41,763	42,513	43,763	44,763	
F ₈	37,763	39,513	39,763	41,263	41,763	42,763	43,763	45,013	45,763	46,763	
F ₉	53,763	55,013	57,763	59,263	61,763	63,763	65,763	67,513	69,763	71,763	
F ₁₀	55,763	58,513	59,763	62,263	63,763	65,763	67,763	70,013	71,763	73,763	
F ₁₁	71,763	74,013	77,763	80,263	83,763	86,763	89,763	92,513	95,763	98,763	
F ₁₂	73,763	77,513	79,763	83,263	85,763	88,763	91,763	95,013	97,763	100,763	
F ₁₃	89,763	93,013	97,763	101,263	105,763	109,763	113,763	117,513	121,763	125,763	
F ₁₄	91,763	96,513	99,763	104,263	107,763	111,763	115,763	120,013	123,763	127,763	
F ₁₅	107,763	112,013	117,763	122,263	127,763	132,763	137,763	142,513	147,763	152,763	
F ₁₆	109,763	115,513	119,763	125,263	129,763	134,763	139,763	145,013	149,763	154,763	
F ₁₇	125,763	131,013	137,763	143,263	149,763	155,763	161,763	167,513	173,763	179,763	
F ₁₈	127,763	134,513	139,763	146,263	151,763	157,763	163,763	170,013	175,763	181,763	
F ₁₉	143,763	150,013	157,763	164,263	171,763	178,763	185,763	192,513	199,763	206,763	
F ₂₀	145,763	153,513	159,763	167,263	173,763	180,763	187,763	195,013	201,763	208,763	
F ₂₁	161,763	169,013	177,763	185,263	193,763	201,763	209,763	217,513	225,763	233,763	
F ₂₂	163,763	172,513	179,763	188,263	195,763	203,763	211,763	220,013	227,763	235,763	
F ₂₃	179,763	188,013	197,763	206,263	215,763	224,763	233,763	242,513	251,763	260,763	
F ₂₄	181,763	191,513	199,763	209,263	217,763	226,763	235,763	245,013	253,763	262,763	
F ₂₅	197,763	207,013	217,763	227,263	237,763	247,763	257,763	267,513	277,763	287,763	
F ₂₆	199,763	210,513	219,763	230,263	239,763	249,763	259,763	270,013	279,763	289,763	
F ₂₇	215,763	226,013	237,763	248,263	259,763	270,763	281,763	292,513	303,763	314,763	
- 28	217,763	229,513	239,763	251,263	201,703	2/2,/03	283,703	295,013	305,763	310,703	
F ₂₉	233,763	245,013	257,763	269,263	281,763	293,763	305,763	317,513	329,763	341,763	
г ₃₀	235,703	248,513	259,703	272,203	283,703	295,763	307,703	320,013	331,703	343,703	
' 31 F	251,705	204,313	275,205	290,203	301,703	217 762	320,703	342,013	355,000	368,000	
Faa	269 763	284.013	292 763	311 263	321 763	337 763	351 763	364 000	358 525	371 525	
- 55 F	205,705	207,013	201 762	214 262	222 762	220 762	252 762	366 500	261 525	274 525	
- 34 F25	271,703	303 513	310 263	332 263	341 763	358,703	373,000	370 025	372 525	385 525	
	289 763	307.013	312 263	335 263	343 763	360,000	375,000	373 025	375 525	388 525	
	305 763	323 013	327 763	353 263	361,000	363 525	378 525	384 025	373,323	300,323	
	307 763	326 513	329 763	356 263	363,000	366 525	381 525	387.025			
 F20	323 763	342 513	345 263	371 000	366 525	377 525	392 525	307,023			
E40	325 763	346.013	347 263	374 000	369 525	380 525	395 525				
- 40 E41	3/1 763	362 013	362 500	377 525	380 525	300,323	333,323				
E ₄₁	2/2 762	265 512	364 500	280 525	282 525						
E co	350 762	377 500	368 025	300,323	303,323						
F ₄₃	361 762	377,500	300,023	301 235							
E ar	375 000	381 575	371,023	554,525	l						
- 45 E	277.000	207 525	205 025								
- 46 E	377,000	307,525	305,025								
47 F	380,525	398,525									
- 48 E	383,525	401,525									
F 49	394,525										
F ₅₀	397,525										
			Vzdále	enosti sil uni	versálních v	laků - vstupy	pro RF-MO	VE [m]			
-------------------------	-------------------	---------	---------	----------------	---------------	---------------	-----------	---------	---------	---------	
	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	
F ₁	397,525	401,525	385,025	394,525	383,525	380,525	395,525	387,025	375,525	388,525	
F ₂	394,525	398,525	382,025	391,525	380,525	377,525	392,525	384,025	372,525	385,525	
F ₃	383,525	387,525	371,025	380,525	369,525	366,525	381,525	373,025	361,525	374,525	
F ₄	380,525	384,525	368,025	377,525	366,525	363,525	378,525	370,025	358,525	371,525	
F ₅	377,000	381,000	364,500	374,000	363,000	360,000	375,000	366,500	355,000	368,000	
F ₆	375,000	377,500	362,500	371,000	361,000	358,000	373,000	364,000	353,000	366,000	
F ₇	361,763	365,513	347,263	356,263	343,763	339,763	353,763	344,513	331,763	343,763	
F ₈	359,763	362,013	345,263	353,263	341,763	337,763	351,763	342,013	329,763	341,763	
F ₉	343,763	346,513	327,263	335,263	321,763	316,763	329,763	319,513	305,763	316,763	
F ₁₀	341,763	343,013	325,263	332,263	319,763	314,763	327,763	317,013	303,763	314,763	
F ₁₁	325,763	327,513	307,263	314,263	299,763	293,763	305,763	294,513	279,763	289,763	
F ₁₂	323,763	324,013	305,263	311,263	297,763	291,763	303,763	292,013	277,763	287,763	
F ₁₃	307,763	308,513	287,263	293,263	277,763	270,763	281,763	269,513	253,763	262,763	
F ₁₄	305,763	305,013	285,263	290,263	275,763	268,763	279,763	267,013	251,763	260,763	
F ₁₅	289,763	289,513	267,263	272,263	255,763	247,763	257,763	244,513	227,763	235,763	
F ₁₆	287,763	286,013	265,263	269,263	253,763	245,763	255,763	242,013	225,763	233,763	
F ₁₇	271,763	270,513	247,263	251,263	233,763	224,763	233,763	219,513	201,763	208,763	
F ₁₈	269,763	267,013	245,263	248,263	231,763	222,763	231,763	217,013	199,763	206,763	
F ₁₉	253,763	251,513	227,263	230,263	211,763	201,763	209,763	194,513	175,763	181,763	
F ₂₀	251,763	248,013	225,263	227,263	209,763	199,763	207,763	192,013	173,763	179,763	
F ₂₁	235,763	232,513	207,263	209,263	189,763	178,763	185,763	169,513	149,763	154,763	
F ₂₂	233,763	229,013	205,263	206,263	187,763	176,763	183,763	167,013	147,763	152,763	
F ₂₃	217,763	213,513	187,263	188,263	167,763	155,763	161,763	144,513	123,763	127,763	
F ₂₄	215,763	210,013	185,263	185,263	165,763	153,763	159,763	142,013	121,763	125,763	
F ₂₅	199,763	194,513	167,263	167,263	145,763	132,763	137,763	119,513	97,763	100,763	
F ₂₆	197,763	191,013	165,263	164,263	143,763	130,763	135,763	117,013	95,763	98,763	
¹ 27	181,763	1/5,513	147,263	146,263	123,763	109,763	113,763	94,513	/1,/63	/3,/63	
F ₂₈	1/9,763	172,013	145,263	143,263	121,763	107,763	111,763	92,013	69,763	/1,/63	
г ₂₉	163,763	156,513	127,263	125,263	101,763	86,763	89,763	69,513	45,763	46,763	
г ₃₀	101,705	127,012	125,205	104 262	99,705	64,705	66 762	45 012	45,705	44,705	
Faa	1/12 762	122 512	107 762	104,203	70 763	62 762	64 763	43,013	22,525	22,525	
	127 762	117 512	02 262	92 262	61 763	42 762	12 762	22,015	17,000	17.000	
- 55 E ₂₄	125 762	114 012	92,203	80,203	E0 762	42,703	43,703	23,025	14,000	14,000	
- 54 Far	100 762	09 012	74 762	62 262	<i>33,703</i>	40,703	41,703	17,000	2 000	2 000	
Fac	107 762	Q/ 512	72 762	50 262	30 762	22,323	22,525	1/ 000	0.000	0 000	
	107,703 01 762	78 513	57 762	A1 262	23,703	17 000	17 000	3 000	0,000	0,000	
	80 760	75 012	55 762	38 262	22,323	1/ 000	1/ 000	0,000			
Fac	72 762	50 012	30 762	20,203	17 000	3 000	3 000	0,000	l		
	71 760	55,013	37 762	20,525	1/ 000	0,000	0,000				
- 40 F41	FE 762	20 512	22 525	17,000	2 000	0,000	0,000				
E41	52 762	36,012	22,323	1/ 000	0,000						
E e e	27 762	24 025	17 000	2 000	0,000	l					
	25 762	24,023	14 000	0,000							
E ar	35,703	20,525	2 000	0,000	l						
F	22,525	14,000	5,000								
F	20,525	2 000	0,000	l							
F	14,000	3,000									
- 48	2 000	0,000	l								
F	3,000										
• 50	0,000										

Příloha č. 3 - Vzdálenosti sil universálních vlaků - vstupy pro RF-MOVE [m]

Příloha č. 4 - skript pro generování kombinací zatížení na přejezd jednotlivých vlakových souprav

```
// Vlakova souprava A1
SpeedTimes = [0,04005, 0,03433, 0,03004, 0,02670, 0,02403, 0,02185, 0,02003, 0,01848, 0,01716, 0,01602,
              0,01502, 0,01414, 0,01335, 0,01265, 0,0120];
indexOfCO = 0
for (var TD = 2; TD <= 16; ++TD) {</pre>
       indexOfCO += 1;
       load_combinations,create(indexOfCO);
        load combinations[indexOfCO], analysis type = load combinations, ANALYSIS TYPE TIME HISTORY TIME DIAGRAM;
        load_combinations[indexOfCO],time_history_analysis_settings = 1;
        load_combinations[indexOfCO],import_modal_analysis_load_case = 320;
        for (var i = 0; i <= 313; i++) {</pre>
            load_combinations[indexOfCO],items[i + 1],load_case = i + 5;
            load_combinations[indexOfCO],items[i + 1],time_diagram = TD;
            load_combinations[indexOfCO],items[i + 1],time_slip = SpeedTimes[TD-2] * i
        }
}
// VLakova souprava A2
SpeedTimes = [0,04005, 0,03433, 0,03004, 0,02670, 0,02403, 0,02185, 0,02003, 0,01848, 0,01716, 0,01602,
              0,01502, 0,01414, 0,01335, 0,01265, 0,0120];
index0fC0 = 0
for (var TD = 2; TD <= 16; ++TD) {</pre>
       indexOfCO += 1;
        load_combinations,create(indexOfCO);
        load_combinations[indexOfCO],analysis_type = load_combinations,ANALYSIS_TYPE_TIME_HISTORY_TIME_DIAGRAM;
        load_combinations[indexOfCO],time_history_analysis_settings = 1;
        load_combinations[indexOfCO],import_modal_analysis_load_case = 323;
        for (var i = 0; i <= 316; i++) {</pre>
            load_combinations[indexOfCO],items[i + 1],load_case = i + 5;
            load_combinations[indexOfCO],items[i + 1],time_diagram = TD;
            load combinations[indexOfCO],items[i + 1],time slip = SpeedTimes[TD-2] * i
        }
}
// VLakova souprava A3
SpeedTimes = [0,04005, 0,03433, 0,03004, 0,02670, 0,02403, 0,02185, 0,02003, 0,01848, 0,01716, 0,01602,
              0,01502, 0,01414, 0,01335, 0,01265, 0,0120];
index0fC0 = 0
for (var TD = 2; TD <= 16; ++TD) {</pre>
        index0fC0 += 1;
```

```
IndexOfCO += 1,
load_combinations,create(indexOfCO);
load_combinations[indexOfCO],analysis_type = load_combinations,ANALYSIS_TYPE_TIME_HISTORY_TIME_DIAGRAM;
load_combinations[indexOfCO],time_history_analysis_settings = 1;
load_combinations[indexOfCO],import_modal_analysis_load_case = 311;
for (var i = 0; i <= 304; i++) {
    load_combinations[indexOfCO],items[i + 1],load_case = i + 5;
    load_combinations[indexOfCO],items[i + 1],time_diagram = TD;
    load_combinations[indexOfCO],items[i + 1],time_slip = SpeedTimes[TD-2] * i
}
```

```
}
```

// VLakova souprava A4

```
load_combinations[indexOfCO],items[i + 1],time_slip = SpeedTimes[TD-2] * i
}
```

```
// VLakova souprava A5
```

```
// VLakova souprava A6
```

// Vlakova souprava A7

```
}
```

// VLakova souprava A8

```
for (var i = 0; i <= 294; i++) {
    load_combinations[indexOfCO],items[i + 1],load_case = i + 5;
    load_combinations[indexOfCO],items[i + 1],time_diagram = TD;
    load_combinations[indexOfCO],items[i + 1],time_slip = SpeedTimes[TD-2] * i
}</pre>
```

```
}
```

// VLakova souprava A9

}

```
// Vlakova souprava A10
```


Obrázek 1: Globální deformace ve směru X pro universální vlak A1 (120-200 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000338	19	1	A1 - 120 km/hod	· · · · · ·			•	۲
THS1 - TimeSteps \Data.RT000339	19	1	A1 - 140 km/hod				•	۲
THS1 - TimeSteps \Data.RT000340	19	1	A1 - 160 km/hod				•	۲
THS1 - TimeSteps \Data.RT000341	19	1	A1 - 180 km/hod				1	۲
THS1 - TimeSteps \Data.RT000342	19	1	A1 - 200 km/hod				1	۲

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000343	19	1	A1 - 220 km/hod	1	0	1		8
THS1 - TimeSteps \Data.RT000344	19	1	A1 - 240 km/hod	1	0	1		۲
THS1 - TimeSteps \Data.RT000345	19	1	A1 - 260 km/hod	1	0	1	•	۲
THS1 - TimeSteps \Data.RT000346	19	1	A1 - 280 km/hod	1	0	1		۲
- THS1 - TimeSteps	19	1	A1 - 300 km/hod	1	0	1	~	8

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
THS1 - TimeSteps \Data.RT000343	19	1	A1 - 220 km/hod	1	0	1		8
THS1 - TimeSteps \Data.RT000344	19	1	A1 - 240 km/hod	1	0	1		8
THS1 - TimeSteps \Data.RT000345	19	1	A1 - 260 km/hod	1	0	1		8
THS1 - TimeSteps \Data.RT000346	19	1	A1 - 280 km/hod	1	0	1		8
- THS1 - TimeSteps \Data.RT000347	19	1	A1 - 300 km/hod	1	0	1		۲

Obrázek 4: Zrychlení ve směru X pro universální vlak A1 (220 - 300 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
- THS1 - TimeSteps \Data.RT000348	19	1	A1 - 320 km/hod	्य	0	1	8	۲
- THS1 - TimeSteps \Data.RT000349	19	1	A1 - 340 km/hod	ો	0	1	8	۲
- THS1 - TimeSteps \Data.RT000350	19	1	A1 - 360 km/hod	्य	0	1	N	۲
- THS1 - TimeSteps \Data.RT000351	19	1	A1 - 380 km/hod	्य	0	1	>	۲
- THS1 - TimeSteps	19	1	A1 - 400 km/hod	1	0	1	1	(2)

Obrázek 5: Globální deformace ve směru X pro universální vlak A1 (320 - 400 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
- THS1 - TimeSteps \Data.RT000348	19	1	A1 - 320 km/hod	:1	0	1	•	
- THS1 - TimeSteps \Data.RT000349	19	4	A1 - 340 km/hod	31	0	1	7	8
- THS1 - TimeSteps \Data.RT000350	19	1	A1 - 360 km/hod	:1	0	1	•	۲
- THS1 - TimeSteps \Data.RT000351	19	1	A1 - 380 km/hod	31	0	1	1	۲
- THS1 - TimeSteps \Data.RT000352	19	4	A1 - 400 km/hod	:1	0	1	7	۲

Obrázek 6: Zrychlení ve směru X pro universální vlak A1 (320 - 400 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A2 - 120 km/hod	1	0	1	1	8
solver\RT_6_CO5 - THS TimeSteps\Data.RT0000	19	3	A2 - 200 km/hod	1	0	1	1	8
olver\RT_11_CO10 - TH TimeSteps\Data.RT0000	19	3	A2 - 300 km/hod	1	0	1	7	
olver\RT_16_CO15 - TH TimeSteps\Data.RT0000	19	3	A2 - 400 km/hod	1	0	1	~	0

Obrázek 7: Globální deformace ve směru Z pro universální vlak A2 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A2 - 120 km/hod	1	0	1	1	8
solver\RT_6_CO5 - THS TimeSteps\Data.RT0000	19	3	A2 - 200 km/hod	1	0	1	•	8
solver\RT_11_CO10 - TH TimeSteps\Data.RT0000	19	3	A2 - 300 km/hod	1	0	1	1	8
solver\RT_16_CO15 - TH TimeSteps\Data.RT0000	19	3	A2 - 400 km/hod	1	0	1	1	

Obrázek 8: Zrychlení ve směru Z pro universální vlak A2 pro vybrané rychlosti

Results of DEF_TOT

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_312_CO1 - TH TimeSteps\Data.RT0003	19	3	A3 - 120 km/hod	1	0	1	~	8
solver\RT_321_CO10 - TH TimeSteps\Data.RT0003	19	3	A3 - 200 km/hod	1	0	1	-	
solver\RT_11_CO10 - TH TimeSteps\Data.RT0000	19	3	A3 - 300 km/hod	1	0	1	~	۲
solver\RT_326_CO15 - TH TimeSteps\Data RT0003	19	3	A3 - 400 km/hod	1	0	1	1	

Obrázek 9: Globální deformace ve směru Z pro universální vlak A3 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_312_CO1 - TH TimeSteps\Data.RT0003	19	3	A3 - 120 km/hod	1	0	1		8
solver\RT_321_CO10 - TH TimeSteps\Data.RT0003	19	3	A3 - 200 km/hod	1	0	1	1	8
solver\RT_11_CO10 - TH TimeSteps\Data.RT0000	19	3	A3 - 300 km/hod	1	0	1	1	8
solver\RT_326_CO15 - TH TimeSteps\Data.RT0003	19	3	A3 - 400 km/hod	1	0	1	1	8

Obrázek 10: Zrychlení ve směru Z pro universální vlak A3 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A4 - 120 km/hod	1	0	1		8
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A4- 200 km/hod	1	0	1	•	
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A4 - 300 km/hod	1	0	1		8
solver\RT_5_CO15 - THS TimeSteps\Data RT0000	19	3	A4 - 400 km/hod	1	0	1	-	

Obrázek 11: Globální deformace ve směru Z pro universální vlak A4 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - TH5 TimeSteps\Data.RT0000	19	3	A4 - 120 km/hod	1	0	1		8
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A4- 200 km/hod	1	0	1		8
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A4 - 300 km/hod	1	0	1		6
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A4 - 400 km/hod	1	0	1		6

Obrázek 12: Zrychlení ve směru Z pro universální vlak A4 pro vybrané rychlosti

Axis y nultiplie

1

1

Plot

-8

Axis x shift

0

0

File

solver\RT_2_CO

TimeSteps\Data.RT000 solver\RT_3_CO5 - TH

Node/Element

19

19

Direction

3

3

Description

A5 - 120 km/hod

A5 - 200 km/hod

Axis x

ultipl

1

1

Obrázek 13: Globální deformace ve směru Z pro universální vlak A5 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A5 - 120 km/hod	1	0	1	•	0
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A5 - 200 km/hod	1	0	1	7	
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A5 - 300 km/hod	1	0	1	•	
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A5 - 400 km/hod	1	0	1	1	

Obrázek 14: Zrychlení ve směru Z pro universální vlak A5 pro vybrané rychlosti

Obrázek 15: Globální deformace ve směru Z pro universální vlak A6 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A6 - 120 km/hod	:1	0	1	•	۲
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A6 - 200 km/hod	31	0	1	•	۲
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A6 - 300 km/hod	:1	0	1	•	۲
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A6 - 400 km/hod	<u></u> (1	0	1	•	۲

Obrázek 16: Zrychlení ve směru Z pro universální vlak A6 pro vybrané rychlosti

Results of DEF

Obrázek 17: Globální deformace ve směru Z pro universální vlak A7 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A7 - 120 km/hod	11	0	1		8
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A7 - 200 km/hod	348	0	1	•	8
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A7 - 300 km/hod	148	0	1 0	•	8
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A7 - 400 km/hod	3 1 8	0	1	•	8

Obrázek 18: Zrychlení ve směru Z pro universální vlak A7 pro vybrané rychlosti

Results of DEF

Obrázek 19: Globální deformace ve směru Z pro universální vlak A8 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A8 - 120 km/hod	1	0	1 0		8
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A8 - 200 km/hod	t	0	S 1 0	1	
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A8 - 300 km/hod	t	0	1	1	8
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A8 - 400 km/hod	t	0	1 0	7	۲

Obrázek 20: Zrychlení ve směru Z pro universální vlak A8 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A9 - 120 km/hod	1	0	1	•	8
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A9 - 200 km/hod	1	0	1	•	8
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A9 - 300 km/hod	1	0	1	4	8
solver\RT_5_CO15 - THS TimeSteps\Data RT0000	19	3	A9 - 400 km/hod	1	0	1	1	8

Obrázek 21: Globální deformace ve směru Z pro universální vlak A9 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	8
solver\RT_2_CO1 - THS TimeSteps\Data.RT0000	19	3	A9 - 120 km/hod	1	0	1	•	۲
solver\RT_3_CO5 - THS TimeSteps\Data.RT0000	19	3	A9 - 200 km/hod	1	0	1	•	۲
solver\RT_4_CO10 - THS TimeSteps\Data.RT0000	19	3	A9 - 300 km/hod	1	0	1	>	۲
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A9 - 400 km/hod	1	0	1	•	۲

Obrázek 22: Zrychlení ve směru Z pro universální vlak A9 pro vybrané rychlosti

Results of DEF

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_284_CO1 - TH TimeSteps\Data.RT0002	19	3	A10 - 120 km/hod	1	0	1	•	۲
solver\RT_288_CO5 - TH: TimeSteps\Data.RT0002	19	3	A10 - 200 km/hod	1	0	1	•	۲
solver\RT_293_CO10 - TH TimeSteps\Data.RT0002	19	3	A10 - 300 km/hod	1	0	1	•	۲
solver\RT_298_CO15 - TH TimeSteps\Data.RT0002	19	3	A10 - 400 km/hod	1	0	1	•	۲

Obrázek 23: Globální deformace ve směru Z pro universální vlak A10 pro vybrané rychlosti

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_284_CO1 - TH TimeSteps\Data.RT0002	19	3	A10 - 120 km/hod	1	0	1		8
solver\RT_288_CO5 - TH TimeSteps\Data.RT0002	19	3	A10 - 200 km/hod	1	0	1	V	8
solver\RT_293_CO10 - TH TimeSteps\Data.RT0002	19	3	A10 - 300 km/hod	1	0	1	V	8
solver\RT_298_CO15 - TH TimeSteps\Data.RT0002	19	3	A10 - 400 km/hod	1	0	1	7	۲

Obrázek 24: Zrychlení ve směru Z pro universální vlak A10 pro vybrané rychlosti

Příloha č. 6a - Porovnání metod časové analýzy

										LINEÁ	RNÍ METODA										
									Od	lchylky globáln	ích deformací	σu,z[mm]									
		A	1	A	2	A	3	A	4	A	5	A	.6	A	7	A	18	A	.9	A	LO
		MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR
	120	0,175655	0,001148	0,102000	0,000418	0,106000	-0,000026	0,128000	0,000837	0,114000	0,000111	0,113000	0,000725	0,071000	0,000464	0,061000	0,000150	0,064000	0,000418	0,168000	0,001098
	140	0,052070	0,000011	0,039000	0,000706	0,049000	0,000314	0,033000	0,000039	0,132000	0,000379	0,090000	0,000614	0,125000	0,000163	0,056000	-0,000085	0,055000	0,000111	0,052000	-0,000039
	160	0,106352	0,000133	0,144000	0,000039	0,148000	0,000477	0,104000	-0,000118	0,075000	0,000209	0,045000	-0,000033	0,058000	-0,000078	0,094000	0,000124	0,050000	0,000170	0,055000	0,000529
	180	0,093738	0,000022	0,165000	0,000706	0,129000	-0,000536	0,042000	-0,000013	0,095000	0,000719	0,029000	-0,000026	0,044000	0,000124	0,050000	0,000105	0,077000	0,000092	0,064000	0,000118
=	200	0,047497	-0,000027	0,062000	0,000131	0,046000	0,000229	0,081000	-0,000105	0,070000	0,000105	0,065000	-0,000020	0,038000	-0,000248	0,049000	-0,000137	0,083000	0,000438	0,082000	-0,000216
per	220	0,072050	0,000171	0,081000	-0,000216	0,096000	0,000235	0,073000	0,000595	0,090000	0,000386	0,423000	0,002771	0,360000	0,002150	0,239000	0,000471	0,456000	0,002634	0,441000	0,002477
Ĵ.	240	0,071992	0,000016	0,113000	0,000196	0,049000	-0,000654	0,121000	0,000046	0,058000	0,000471	0,073000	0,000268	0,119000	0,000163	0,145000	0,000346	0,110000	0,000601	0,126000	0,000745
	260	0,048198	-0,000007	0,085000	0,000190	0,086000	-0,000065	0,125000	0,000529	0,079000	0,000170	0,086000	0,000235	0,115000	-0,000124	0,119000	-0,000007	0,151000	0,000438	0,112000	0,000092
sold	280	0,038129	-0,000041	0,059000	0,000052	0,081000	-0,000111	0,037000	-0,000118	0,085000	-0,000065	0,055000	0,000255	0,085000	0,000098	0,070000	-0,000386	0,068000	-0,001399	0,084000	-0,001431
\$ cl	300	0,123139	-0,000048	0,061000	-0,000020	0,114000	0,001013	0,032000	-0,000052	0,047000	0,000033	0,060000	0,000118	0,050000	-0,000183	0,041000	-0,000176	0,080000	0,000536	0,053000	0,000196
-	320	0,065340	0,002015	0,098000	0,000013	0,081000	-0,000863	0,035000	0,000203	0,068000	0,000039	0,029000	0,000359	0,030000	0,000144	0,030000	0,000065	0,042000	0,000052	0,041000	0,000131
	340	0,125352	0,000529	0,056000	-0,000758	0,177000	0,000908	0,053000	0,000098	0,078000	-0,000320	0,042000	-0,000007	0,033000	0,000039	0,047000	-0,000235	0,025000	0,000000	0,031000	0,000418
	360	0,110248	0,000098	0,429000	0,002575	0,186000	0,000641	0,078000	-0,001046	0,129000	-0,000660	0,076000	0,000007	0,064000	-0,000013	0,052000	-0,000157	0,052000	0,000111	0,073000	0,000327
	380	0,069867	-0,000068	0,237000	-0,000255	0,493000	0,002876	0,190000	0,002314	0,292000	0,000771	0,161000	-0,000163	0,119000	-0,000118	0,089000	-0,000144	0,061000	0,000340	0,072000	0,000458
	400	0,074619	0,000003	0,139000	0,000020	0,351000	0,001425	1,027000	0,004216	0,515000	0,002477	0,335000	0,000850	0,219000	0,001000	0,131000	-0,000647	0,141000	0,000183	0,117000	0,000235
MAXI	NUM	0,175655	0,002015	0,429000	0,002575	0,493000	0,002876	1,027000	0,004216	0,515000	0,002477	0,423000	0,002771	0,360000	0,002150	0,239000	0,000471	0,456000	0,002634	0,441000	0,002477

										LINEÁI	RNÍ METODA										
										Odchylky zr	ychlení σ _{ư,z} [n	1/s²]									
		A	1	A	2	A	3	A	.4	A	5	A	6	A	7	A	8	A	.9	A	10
		MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR	MAXIMUM	PRŮMĚR
	120	0,105831	-0,002961	0,124000	-0,000131	0,117000	0,001660	0,141000	-0,002000	0,149000	0,000869	0,123000	-0,001124	0,132000	-0,000255	0,121000	0,000967	0,079000	0,000216	0,106000	-0,003098
	140	0,078135	-0,000142	0,067000	-0,001902	0,083000	-0,000739	0,061000	0,000320	0,188000	0,000667	0,103000	-0,000163	0,129000	0,000641	0,094000	0,001137	0,083000	0,000471	0,099000	0,000961
	160	0,187372	0,000616	0,324000	0,001641	0,189000	-0,000026	0,150000	0,001301	0,144000	0,001170	0,122000	0,000333	0,139000	0,001131	0,106000	0,000379	0,108000	0,000621	0,096000	-0,000974
	180	0,109149	0,001094	0,203000	0,000810	0,147000	0,004405	0,098000	0,000850	0,113000	0,000203	0,049000	0,000935	0,051000	-0,000196	0,060000	0,000379	0,109000	0,000542	0,068000	0,000667
-	200	0,177436	0,001237	0,206000	0,001020	0,150000	0,001092	0,164000	0,001333	0,145000	-0,000941	0,178000	0,002020	0,111000	0,001797	0,118000	0,001078	0,284000	0,002843	0,237000	0,002595
ğ	220	0,096025	-0,000454	0,133000	0,001379	0,136000	-0,000216	0,157000	-0,000980	0,226000	-0,001196	0,413000	0,001183	0,423000	0,001150	0,219000	0,001131	0,537000	0,000562	0,442000	-0,000536
È	240	0,103156	0,000244	0,129000	0,000529	0,136000	0,002641	0,139000	0,000503	0,115000	-0,001451	0,144000	0,000444	0,129000	0,000490	0,182000	-0,000418	0,162000	0,000118	0,160000	0,000059
÷,	260	0,110927	-0,006723	0,183000	-0,001000	0,138000	0,003967	0,217000	-0,001824	0,221000	0,000052	0,274000	-0,000477	0,348000	0,000830	0,267000	-0,000719	0,329000	0,000797	0,333000	0,001111
los	280	0,115906	-0,001390	0,106000	0,003196	0,176000	0,003327	0,107000	0,001386	0,162000	0,002810	0,146000	0,001046	0,132000	0,001739	0,123000	0,002111	0,142000	0,005575	0,164000	0,005941
5	300	0,373867	0,002271	0,107000	0,001150	0,372000	-0,003392	0,084000	0,001353	0,146000	0,001229	0,190000	0,001758	0,107000	0,001033	0,101000	0,002235	0,093000	0,000516	0,095000	0,000137
<u>ش</u>	320	0,101283	-0,007136	0,287000	0,001359	0,243000	0,002242	0,110000	-0,000621	0,160000	0,000614	0,084000	-0,000647	0,094000	-0,000444	0,095000	-0,000647	0,114000	-0,000124	0,077000	-0,000418
	340	0,173143	-0,000752	0,163000	0,004327	0,503000	0,003667	0,164000	-0,001242	0,194000	0,001209	0,101000	0,001046	0,078000	-0,000654	0,096000	0,000373	0,069000	0,000627	0,083000	-0,001176
	360	0,160241	-0,000880	0,462000	0,001353	0,228000	0,000444	0,306000	0,002948	0,114000	0,003144	0,161000	-0,000242	0,139000	-0,000699	0,086000	0,001046	0,119000	0,000216	0,171000	0,000405
	380	0,146314	0,000188	0,262000	-0,000556	0,577000	0,002856	0,257000	-0,002824	0,284000	0,000275	0,215000	0,002118	0,195000	0,001444	0,161000	0,000327	0,113000	0,000784	0,100000	0,000229
	400	0,101972	0,001217	0,156000	0,000830	0,392000	0,001791	1,139000	0,006556	0,583000	0,003804	0,331000	0,003020	0,259000	0,003144	0,233000	0,002484	0,231000	0,003340	0,227000	0,002745
MAX	мим	0,373867	0,002271	0,462000	0,004327	0,577000	0,004405	1,139000	0,006556	0,583000	0,003804	0,413000	0,003020	0,423000	0,003144	0,267000	0,002484	0,537000	0,005575	0,442000	0,005941

Příloha č. 6b – Grafické zobrazení porovnání metod časové analýzy pro vybrané vlakové soupravy a rychlosti

Obrázek 1: Grafické zobrazení deformací metod časové analýzy (A1 - 320 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	1
- THS1 - TimeSteps \Data.RT000348	19	3	A1 - 320 km/hod - časová analýza -				1	
- THS2 - TimeSteps \Data.RT000381	19	3	A1 - 320 km/hod - časová analýza -					۲

Results of ACC

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A4 - 400 km/hod - časová analýza -				~	۲
solver\RT_364_CO30 - TH TimeSteps\Data.RT0003	19	3	A4 - 400 km/hod - časová analýza -				~	۲

Obrázek 3: Grafické zobrazení deformací metod časové analýzy (A4 - 400 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_5_CO15 - THS TimeSteps\Data.RT0000	19	3	A4 - 400 km/hod - časová analýza -					۲
solver\RT_364_CO30 - TH TimeSteps\Data.RT0003	19	3	A4 - 400 km/hod - časová analýza -				•	۲

Obrázek 4: Grafické zobrazení zrychlení metod časové analýzy (A4 - 400 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_294_CO6 - TH TimeSteps\Data,RT0002	19	3	A9 - 220 km/hod - časová analýza -				•	۲
solver\RT_319_CO21 - TH TimeSteps\Data.RT0003	19	3	A9 - 220 km/hod - časová analýza -				7	۲

Results of ACC

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	95 54
solver\RT_292_CO9 - TH TimeSteps\Data.RT0002	19	3	A10 - 280 km/hod - časová analýza -					۲
solver\RT_323_CO24 - TH TimeSteps\Data.RT0003	19	3	A10 - 280 km/hod - časová analýza -				-	۲

Obrázek 7: Grafické zobrazení deformací metod časové analýzy (A10 - 280 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_292_CO9 - TH TimeSteps\Data.RT0002	19	3	A10 - 280 km/hod - časová analýza -					0
solver\RT_323_CO24 - TH TimeSteps\Data.RT0003	19	3	A10 - 280 km/hod - časová analýza -				1	6

Results of ACC

Obrázek 8: Grafické zobrazení zrychlení metod časové analýzy (A10 - 280 km/hod)

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_297_CO14 - TH TimeSteps\Data.RT00029	19	3	A10 - 380 km/hod - časová analýza -				✓	0
solver\RT_328_CO29 - TH TimeSteps\Data.RT00033	19	3	lineární implicitní Newmark				~	8

File	Node/Element	Direction	Description	Axis x multiplier	Axis x shift	Axis y multiplier	Plot	
solver\RT_297_CO14 - TH TimeSteps\Data.RT00029	19	3	A10 - 380 km/hod - časová analýza -				7	۲
solver\RT_328_CO29 - TH TimeSteps\Data.RT0003	19	3	lineární implicitní Newmark				~	•

