
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY O F T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION SYSTEMS

PLUGINS FOR GETTING INFORMATION ABOUTTHE
SYSTEM FOR BUSYBOX

BAKALÁRSKA PRACE
BACHELOR'S THESIS

AUTOR PRÁCE MAREK POLÁČEK
AUTHOR

BRNO 2011

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY O F INFORMATION T E C H N O L O G Y
DEPARTMENT OF INFORMATION SYSTEMS

PLUGINY PRO ZISKAVANIINFORMACI O SYSTEMU
PRO PROJEKT BUSYBOX
PLUGINS FOR GETTING INFORMATION ABOUT THE SYSTEM FOR BUSYBOX

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE MAREK POLÁČEK
AUTHOR

VEDOUCÍ PRÁCE Doc. Ing. TOMÁŠ VOJNAR, Ph.D.
SUPERVISOR

BRNO 2011

Abstrakt
Tato práce se zabývá implementací nástrojů pro získávání informací o operačním systému
pro projekt Busybox. Diskutovány jsou souborové systémy sysfs a procfs v operačním
systému Linux. Dále se práce zabývá tím, jak vytvářet co nejmenší programy v jazyce
C. Také se věnuje struktuře programů iostat, mpstat a powertop. V rámci práce byly
vytvořeny minimalistické implementace již existujících nástrojů, zejména z balíku sysstat,
který obsahuje například utility iostat a mpstat.

Abstract
In this thesis, we discuss implementation of tools for getting information from the system.
We examine file systems sysfs and procfs in the Linux operating system. Furthermore, we
discourse how to write small programs in the C language. Eventually, we take a look at
implementation of tools like iostat, mpstat and powertop. These tools were implemented
in a minimalistic form suitable for Busybox within this thesis.

Klíčová slova
Busybox, mpstat, iostat, powertop, sysfs, procfs, informace o systému, gcc optimalizace,
Linux, jazyk C, překladače, knihovny, UNIXové utility.

Keywords
Busybox, mpstat, iostat, powertop, sysfs, procfs, system stats, gcc optimizations, Linux, C
language, compilers, libraries, U N I X utilities.

Citace
Marek Poláček: Plugins for Getting Information about the System for BusyBox, bakalářská
práce, Brno, F IT V U T v Brně, 2011

Plugins for Getting Information about the System
for BusyBox

Statement
I hereby state that this thesis is my own work and effort. Where other sources of informa
tion have been used, they have been acknowledged. This thesis was elaborated under the
supervision of doc. Ing. Tomas Vojnar, Ph.D.

Marek Poláček
May 13, 2011

Acknowledgements
Above all, I would like to thank my colleagues from Red Hat, especially Denys Vlasenko,
Petr Miiller, and Ivana Vařeková for their continuous professional and moral support.
I would further like to thank very much doc. Ing. Tomáš Vojnar, Ph.D. for feedback.
Without these people, I would have never finished this thesis. Thank you.

© Marek Poláček, 2011.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Motivation 3
1.2 Goals 3
1.3 Structure of the Thesis 4

2 Busybox 5
2.1 What It Is 5

2.2 Design 5

2.2.1 Applets 6

2.2.2 libbb 7

2.2.3 NOFORK and NOEXEC Applets 7

2.3 A Closer Look at an Applet 8

2.3.1 Symbols Visibility 9

2.3.2 The -fwhole-program Option 10

2.3.3 The regparm and stdcall Attributes 10

2.4 Obtaining Busybox 11

2.5 How To Add a New Applet 12

3 How to Keep Data Small 14
3.1 About Libraries 14

3.1.1 The G N U C Library 14

3.1.2 Alternate C Libraries 15

3.2 Using Proper Data Types 16

3.3 Eliminate Unnecessary Strings 17

3.4 Reduce Stack Usage 19

3.4.1 Passing Parameters to Functions 19

3.4.2 Local Arrays 20

3.5 Reduce Global Data Usage 21

3.6 Factor Out Functions 23

3.7 Use Your Compiler and Linker Well 23

3.7.1 G C C Optimization Options 23

3.7.2 The -ffunction-sections Option 23

3.7.3 Data Alignment 24

3.7.4 Inline Functions 25

3.8 Getting Rid of Debug Information 25

1

4 The proofs and sysfs File Systems 29
4.1 The proofs File System 29
4.2 The sysfs File System 31

5 Busybox Plugins 33
5.1 The mpstat Plugin 33

5.1.1 Modifications 35
5.2 The iostat Plugin 38

5.2.1 Modifications 39
5.3 The powertop Utility 41

5.3.1 Modifications 44

6 Conclusion 47

2

Chapter 1

Introduction

Today, embedded devices are ubiquitous. We use mobile phones, PDAs, music players,
cameras, printers, etc. Computer networking would never work without routers and bridges.
New microwave ovens, smart fridges, and washing machines also include embedded devices
to provide additional features and convenience. There are embedded devices in critical
environments like hospitals, plains, trains, and cars. Consequently, their failures may cause
serious problems.

1.1 Motivation

Embedded devices of course run software. Developers write the code as they would write an
ordinary application code. This is often not optimal. For embedded devices, some additional
techniques must be applied to produce decent code. Some knowledge is necessary to write
optimized code. Here, optimized mainly means "as minimal as possible". This is because
of many microprocessors have only a small amount of available R A M memory, often have
no hard disks to keep down the power consumption. However, there are other requirements
too: The programs must also be stable and secure. Nobody would want to restart his router
every other day. Often, it is desirable to not implement all the possible features but instead
only pick the really needed ones. This means more straightforward and smaller code, which
in turn decreases the number of bugs.

1.2 Goals

The goal of this thesis is to provide a minimalist set of utilities for determining information
about the operating system for the Busybox project. Subgoals of this main goal are to get
acquainted with the philosophy and the structure of the Busybox, get familiar with various
techniques how to write as small programs as possible and to summarize these techniques
for further use. This requires good knowledge of available C libraries, compilers, assemblers,
and linkers. Since the tools for getting information about the Linux operating system to
a large extent use the sys/ and proc/ file systems, we need to examine these as well. Last
but not least we need to acquaint ourselves with the existing implementation of the mpstat,
iostat, and powertop tools.

3

1.3 Structure of the Thesis

In this thesis, we will take a close look at one of the best-known open source projects
called Busybox which is often used in various embedded devices and minimalist operating
systems. In Chapter 2, we will examine this project more thoroughly.

Chapter 3 speaks about how to keep data small. As we said, the size of programs which
are intended to run on embedded devices is very important. So we will discuss what the
programmer should always bear in mind when writing this kind of applications.

Since, in this thesis, we are mainly interested in programs for getting information about
the system, we need to examine the proc and sys file systems in detail because these are
used heavily. Chapter 4 is devoted to them.

Chapter 5 focuses on implementation of three tools which were created as a part of this
thesis. These are: iostat (Section 5.2), mpstat (Section 5.1) and powertop (Section 5.3).

In Chapter 6, we close this thesis by a general summary. The achieved goals and future
work will be discussed therein.

4

Chapter 2

Busy box

This chapter discusses the Busybox project. First of all, we will introduce this project: what
it actually is, what can it do for us and where it is used. Then we will speak about how
to obtain, install, and configure Busybox. Furthermore, we will briefly talk about cross-
compiling, which is a technique of creating executables for a different architecture than
the one the compiler is currently run. This is often the one and only way for embedded
platforms upon which it is not possible to run the compiler. At the end of the chapter, we
will demonstrate how one can add a new applet into Busybox.

2.1 What It Is

Busybox is very frequently described as "The Swiss Army Knife of Embedded Linux" [3].
This phrase is not chosen accidentally: Busybox is in fact one application that provides
a set of standard U N I X utilities. It is meant to be as small as possible, therefore the utilities
in Busybox have fewer options than the utilities from G N U Coreutils [10]. Nevertheless,
the behavior of various program options is the same like the behavior of their coreutils'
counterparts.

Busybox can easily be customized to contain only desired utilities and not the unneeded
ones which is what shrinks the size of the executable to the bare minimum.

It is even possible to create a working operating system consisting only of the Linux
kernel and Busybox (plus some nodes in the dev/ directory).

Busybox adheres to the Single Unix Specification version 3 standard, specifically the
"Shell and Utilities" section [].

There are quite many places where Busybox can be found. A list of products using
Busybox can be found here: ht tp: / /www.busybox.net/products .html. For example,
dd-wrt router firmware, Debian, Slackware and Red Hat installers, the Android operating
system, the Tiny Core Linux, and Z y X E L routers all use Busybox.

2.2 Design

Having all the utilities in just one binary, called busybox, brings certain advantages. For
example, we need just one set of E L F 1 headers. Every E L F file has an E L F header which
defines the structure of a file—whether 32bit or 64bit, the type of the file, the byte ordering
used, the architecture, virtual address of entry point, and so on. This header also contains

executable and Linking Format [25].

5

http://www.busybox.net/products.html

magic bytes at the very start of the file. Furthermore, every stand-alone executable has
to hold a program header table, and every relocatable E L F object must contain a section
header table. Additionally, only one virtual address space is used. When all the utilities
occupy one virtual address space altogether, it is then possible to share various resources
between particular utilities—for example, instructions or global data.

We can split the inner structure of Busybox into two main parts:

• libbb and

• applets.

These two parts closely cooperate. Now we will shortly analyze these two components.

2.2 .1 Applets
A Busybox applet is just a regular utility, such as sort, which nevertheless has a defined
interface (examined in detail in Section 2.3). The applets are divided into different sub
directories of main Busybox directory according to their purpose and coverage. E.g., we
have the directory editors/ where we can found applets for editing and manipulating
text, like ed, vim, sed are. The other notable directories are coreutils, findutils,
loginutils, mailutils, networking, and util-linux. The complete directory tree can
be viewed in Busybox git repository [2].

We will take a detailed look at a single applet in Section 2.3.

Beside applets, all directories also contain files Config.in and Kbuild. These are
a part of the Kbuild system. Config.in defines entries for the configuration menu, which
can be invoked by make menuconfig (more on this later). In printutils/, Config.in

contains the name of current menu section—' 'Print U t i l i t i e s ' ' and for every applet
there is information like help text, program short name, and a variable, which tells us if this
particular applet should be incorporated into Busybox executable by default. The Kbuild
file grants information on how to build applets.

There are more ways how to actually run an applet. One way is to run:

$ busybox <applet>

However, the usual way is to create a symbolic link which is named after the command
we want to run and which points to the Busybox executable. The command is then run
automatically. This works because the main Busybox executable will get the name of the
symbolic link file—the pointer to this name is stored in argv [0]2. For example, we can do
this:

$ In -s busybox comm

$./comm

The process of creating symbolic links can be automated utilizing the — l i s t option of
Busybox executable. Then it could look like:

2This is the argument vector. The kernel pushes these addresses on the User Mode stack when executing
the execveO system call. More specifically, it is done by calling __put_user() in the create_elf.tables()
function. Interested readers might want to look at the linux/f s/binf mt_elf. c file.

6

$ mkdir -pv bb

$ for i in $(busybox — l i s t) ; do

In -s busybox bb/$i

done

To see the help text for a specific applet, one can use the —help option:

$./zcat —help

2 .2 .2 libbb

Busybox has its own library, called libbb, where all commonly used functions reside. Like
we said earlier, it is desirable to share as much code as possible. This way, we reduce the
code size, and it is also easier to maintain the code.

We can encounter quite a lot of functions in the libbb directory presently. Many of
them start with the prefix "x". These functions are basically wrappers around system or
library calls which are testing return values of underlying functions or are automatically
retrying requests3. For illustration, here is a function for safely opening a file:

FILE* FAST_FUNC xfopen(const char *path, const char *mode)

{

FILE *fp = fopen(path, mode);

if (fp == NULL)

bb_perror_msg_and_die can't open '°/,s''' path);

return fp;

}

We can see that the xfopen function either returns a valid FILE pointer or crashes the
whole program. Then there is no need to check the return value in the source code of
applets, which makes code simpler and smaller. The FAST_FUNC macro will be discussed in
Section 2.3

Apart from the wrappers, there are also other often used functions: in getopt32() for
a convenient parsing of command-line parameters, linked list management functions, various
string-to-number functions or, for example, the get_cpu_count () function for determining
the number of CPUs contributed by the author of this thesis.

The only thing needed for using these functions is to include the libbb.h header to
provide function declarations, constant symbols, and various macros.

2 . 2 . 3 NOFORK a n d NOEXEC Applets

By and large, when running a program from another program, the scheme is to call the fork
system call, which creates an exact clone of the calling process. If this system call succeeds,
there will be two processes, parent and child, which have the same memory image, the same
environment strings, and the same open files []. After this, the child process executes the
execve system call which replaces its memory image, and then the new program is run.

These system calls are not cheap. They use a lot of C P U time and occupy memory.
Thence, they are slow. So U N I X shells try to avoid them by re-implementing some U N I X

3 Most functions return -1 or NULL when a failure occurrs. Some failures are, however, recoverable which
is usually notified by setting the errrno value to EINTR. In such a situation, it is appropriate to repeat the
call. In the unistd.h header file there is a handy macro TEMP_FAILURE_RETRY for handling such situations.

7

commands internally, e.g., echo. This way the combination of fork and execve is not
needed. The same situation applies to some Busybox applets which are marked as NOFORK
or NOEXEC.

The NOEXEC tag means that execve is not called when starting the given program: after
forking a new process the applet's main entry function is called. However, one needs to
be careful because we cannot assume the global data on the heap to be initialized properly,
thus we may need to re-initialize them using, e.g., the memset function. Another pitfall is
that the parent process might have set the buffering somehow differently than we would
expect.

The NOFORK applets do not use the fork system call nor the execve system call—a new
applet is run just by calling its main entry function. This significantly reduces the overhead,
but brings a lot of limitations which the programmer must be aware of. Except the NOEXEC
limitations, one cannot, for example, ever use the exit or exec functions, one must not
leave malloced blocks unfreed, one cannot use xmalloc freely, and one must always close
opened file descriptors, and restore various flags, terminal settings, and signal handlers.

It should be obvious now that applets marked as NOEXEC/NOFORK are quite hard to write,
and it is not an easy thing to maintain them. Therefore, only simple and very often used
applets should make use of this interesting feature.

2.3 A Closer Look at an Applet

Let us now examine one single applet more deeply. Almost every applet starts by including
the libbb header:

include ''libbb.h''

Now it is possible to use the Busybox library. The libbb header includes all the commonly
used header files like stdio.h, unistd.h, dirent.h, fcntl.h, stdarg.h, and so on. How
ever, sometimes this is not enough—if we needed the definition of, say, struct utsname,
we would have to include sys/utsname .h as well.

Afterwards there is commented-out information for the Kbuild system. This defines
the menu entries, and we have already talked about them in Section 2.2.1:

//kbuild:lib-$(CONFIG_IOSTAT) += iostat.o

//configrconfig IOSTAT

//config: bool ''iostat''

//config: default y

//config: help

//config: Report CPU and I/O statistics

Then there is information which ends up in include/applets .h file which basically
stores a list of all available applets in Busybox. The line looks like:

//applet:IF_I0STAT(APPLET(iostat, BB_DIR_BIN, BB_SUID_DROP))

Finally, there is also stored the usage text displayed when using the —help command-
line option, both in the short and long variants. After processing, this text will be stored
in the include/usage .h file.

8

#define iostat_trivial_usage

,,[-c] [-d] [-t] [-z] [-k|-m] [ALL|DEV.

#define iostat_full_usage
 }
,\n\n''

,,Report CPU and I/O statistics\n''

,,\nOptions:''

.] [ITV [COUNT]]''

-c

-d

-t

Show CPU utilization''

Show device utilization''

Print current time''

-z Omit devices with no activity'

-k Use kb/s''

-m Use Mb/s''

A l l this commented-out information are automatically processed by the
gen_build_f i l e s . sh shell script located in scripts/ sub-directory.

2.3.1 Symbols Visibility

Let us now concentrate on the actual code of an applet. The essential function of every
applet is a function declared as:

int foo_main(int argc, char **argv) MAIN_EXTERNALLY_VISIBLE;

This is the main entry point of an applet and the one and only function that is visible
outside of the applet. A l l other functions should be declared with the static keyword.
Adding the keyword static means that a variable or a function will not be exported 4.
This further brings certain advantages—we need fewer relocation 5 (we still might have
a few relative relocations but this is not a big deal since relative relocation is handled by
Id

6

 within the linking phase) and fewer P L T 7 entries. This speeds up the execution of
the program and also allows the compiler to optimize functions marked as static more
aggressively. The static keyword is occasionally dropped because of the fact that compiler
can auto-inline only static functions8, which is sometimes unwanted because inlining has
often negative impact on the size of the code. Nevertheless, this is not needed anymore
since we can tell the compiler 9 to never inline a particular function using __attribute__
((noinline)). So the rule is to always use the static keyword when defining/declaring
a function except the f oo_main function.

Attentive readers might have noticed the MAIN_EXTERNALLY_VISIBLE keyword in the
declaration of the foo_main function. When the G C C version is 4.1 or newer, this macro
expands to __attribute__ ((v i s i b i l i t y (

}
 ,def ault''))) 1 0 . To understand why this is

4The GNU as directive .global will disappear. The linker cannot see symbols without this directive.
More on this in [30].

5 Computing and assigning run-time addresses to symbols.
6The GNU Linker [31].
7Procedure Linkage Table.
8 In fact, this is not entirely true. GCC may auto-inline even non-static functions when the

-finline-functions option is used. This option is included in optimization levels -0s, -03, and -Ofast.
The -Of ast optimization level was introduced in GCC version 4.6.

9 In this thesis we assume GCC, the GNU Compiler Collection [22].
10Before GCC 3.1 the programmer would have to use asm to add the information []: int foo; asm

(" .hidden foo ") ; .

9

needed, we have to be thoroughly familiar with the E L F visibility notion and with the
GCC' s -f whole-program optimization option.

The generic E L F A B I defines visibility of symbols [28]. E L F symbol visibility was
invented to provide more control over which symbols were accessible outside a shared library
[11]. There are four different types of visibil i ty 1 1 :

• STVJ5EFAULT:

default symbol visibility rules, global symbols are visible everywhere.

• S TV _HIDDEN:

the symbol is unavailable in other modules, the symbol is not visible outside the
current executable or shared library.

• STV-INTERNAL:

a processor specific hidden class.

• STV .PROTECTED:

not preemptible, not exported.

Wi th G C C 4.0 and newer there is a command-line option - f v i s i b i l i t y . This option
can be used to change default visibility of all symbols, e.g. -f visibility=hidden will
make sure that all symbols are defined with STV_HIDDEN unless specified otherwise []. One
should be aware that the - f v i s i b i l i t y flag only affects definitions and not declarations.
However, it is possible to define per-symbol visibility using G C C attributes 1 2. This works
also for declarations. And this is exactly what the MAIN_EXTERNALLY_VISIBLE macro does:
it explicitly tells the compiler that f oo_main should have bear the default visibility.

2.3.2 The -fwhole-program Option

Now let us briefly talk about the G C C ' s -f whole-program optimization option. This option
is available since G C C 4.1. This optimization basically tells the compiler to treat all public
functions (except the main function) and variables as if they were be declared with the
static keyword. This allows the compiler to perform some further optimization which
would not be possible otherwise [9]. The problem is that in Busybox applet source codes
there are no main functions! However, the f oo_main functions ultimately must be exported
for the reason that they have to be callable from the main Busybox executable. This is
precisely the reason why one marks the applet's main functions with default visibility. Note
that this is needed only when we are compiling with the -f whole-program option. There
is another way how to achieve this: use the externally_visible attribute, which nullifies
the effect of the -f whole-program option []. This attribute can be used on both functions
and variables.

2.3.3 The regparm and stdcall Attributes

At times, we can see functions marked with FAST_FUNC in Busybox. This is especially true
for the libbb library. This macro expands to nothing on all architectures but x86 1 3 . On
x86, this expands to __attribute__ ((regparm(3), stdcall)). These attributes enforce

1 1Description taken from e l f u t i l s / l i b e l f /elf .h.
1 2 Another way is to use #pragma gcc v i s i b i l i t y push (default) and #pragma gcc v i s i b i l i t y pop.
1 3 Also, GCC 3.1 or newer is needed.

10

specific calling conventions which possibly may make function calls faster and smaller
. This is usually used on non-static functions since the static functions are optimized
automatically by the compiler 1 5.

The stdcall attribute tells compiler to assume that a called function will pop arguments
from the stack. This ordinarily does the caller. This attribute has no effect on functions
taking a variable number of arguments. Normally, the caller must adjust the stack using the
instruction addl, which has three bytes. Wi th the stdcall attribute, the stack should be
corrected by the callee using the instruction ret which occupies two bytes [29]. Nonetheless,
this attribute must be used with care because nowadays the compilers are more and more
clever, and they actually do not have to clean up the stack after every function call, but
instead they are eligible to do so after several function calls. Thus the size advantage may
suddenly very well become a disadvantage.

The regparm attribute takes one parameter: an integer. It causes the compiler to pass
the specified number of arguments in registers instead of on the stack [9]. The registers
eax, ecx, and edx may be used 1 6 . This attribute is ignored for functions taking a variable
number of arguments. Wi th this attribute, we can get rid of unnecessary movl instructions,
which normally be would used for moving the values from the stack to registers.

2.4 Obtaining Busybox

We now describe how to get, install, and configure Busybox.

Probably the simplest way is to just download pre-compiled binary for the desired
architecture from Busybox Prebuilt Binaries []. This is a statically linked version, so there
are no dependencies. After downloading it, it is only necessary to set the execution the bit,
and then the Busybox executable is ready to run:

$ wget -q -0 bbox busybox.net/downloads/binaries/latest/busybox-'uname -m'

$ chmod +xX bbox

$ f i l e -b bbox

ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,

stripped

$./bbox

Another possibility is to download the source codes from the git repository [] of Busybox
and then to manually configure, compile, and install Busybox. In this case, we first obtain
the source codes using git clone:

$ git clone git://busybox.net/busybox.git

Now we have to configure Busybox. Configuring Busybox is essentially the same as
configuring the Linux kernel. The easiest thing to do is to create a default config file, which
includes almost all features but does not burden the executable with debug information:

1 4There are also similar attributes like f astcall, sseregparm, cdecl, and thiscall. These will not be
described here.

1 5Here techniques like Value Range Propagation are used.
1 6People who are familiar with the kernel code might know this attribute already. In kernel there is

a frequently used macro named asmlinkage which is just a synonym for __attribute__((regparm(O))) on
x86. Its effect is that all arguments are always passed on the stack and not in registers. For example, all
system calls are marked this way. See include/linux/syscalls.h.

11

http://busybox.net/downloads/binaries/latest/busybox-

$ make defconfig

Also, we can create a minimal config file with all the features turned off:

$ make allnoconfig

Then there is an option to enable absolutely everything:

$ make allyesconfig

For people who want to set everything manually there is an option which makes it
possible to use a ncurses-based menu interface:

$ make menuconfig

After configuring, we can compile Busybox right off:

$ make

This produces a dynamically-linked executable. If we wanted a statically linked version
of the Busybox executable, we would have to set the environment variable LDFLAGS:

$ LDFLAGS="—static" make

Last but not least, it is possible to cross-compile Busybox for another architecture than
we are currently on:

$ make CR0SS_C0MPILE=armv4tl-

When everything is compiled, we can step up to the last part, installing Busybox:

make install

There exist also another make options which we will not describe here. For displaying
these options, just use:

$ make help

2.5 How To Add a New Applet

We will explain how to create and add a simple applet to Busybox. The way how to add an
applet has recently changed. Previously, one had to create an applet and then modify other
files too, such as usage.h, applets.h, Kbuild, and Config.in. These files were described
in Section 2.3. Fortunately, this is no longer needed: all one has to do is just to write an
applet, and the build system takes care of everything else.

Now we will write a very simple applet—a getpid program. Its functionality is to just
print its own Process ID. In the Linux operating system, one can use the the sys_getpid
for this purpose system ca l l 1 7 . Figure 2.1 shows how the getpid applet can look like.

At this point, everything that is needed is to configure and compile Busybox. After
this, the new applet can be run:

$./busybox getpid

Current PID: 2768

This call in fact returns the thread group id of the current process. The t i d and pid are usually
identical.

12

//applet:IF_GETPID(APPLET(getpid, BB_DIR_BIN, BB_SUID_DROP))

//kbuild:lib-$(CONFIG_GETPID) += getpid.o

//conf ig:conf ig GETPID

bool ''getpid''

default y

help

//config:

//config:

//config:

//config: Print the PID of current process.

//usage:#def ine

//usage:

//usage:#def ine

//usage:

getpid_full_usage

getpid_trivial_usage
'' > >

Print the PID of current process

\n\n

#include "libbb.h"

int getpid_main(int arge, char **argv) MAIN_EXTERNALLY_VISIBLE;

int getpid_main(int arge UNUSED_PARAM, char **argv UNUSED_PARAM)

{

printf ("Current PID: °/
0
u\n" , getpidO);

return EXIT_SUCCESS;

}

Figure 2.1: A n example of a Busybox plugin—the getpid program

13

Chapter 3

How to Keep Data Small

In this chapter we will discuss several techniques how to write smaller programs, based
on the author's own experience. This by no means is a complete list. We will talk about
available libraries, about how to write programs with the size aspects in mind, and last but
not least, we will examine various compiler/linker options, which could help us to reduce
the size of our programs. We will also tackle a question how to make already compiled
programs even smaller. Some of these ideas will be documented using illustrative examples
in the C programming language. Many of these tricks were used when the author was
writing plugins for Busybox.

3.1 About Libraries

Almost every program depends on some library, that is, it uses functions which some
library defines. The most important library is the C library. Since Busybox is always
linked with some C library, be it statically or dynamically, we need to know which available
library will serve our purpose best. The C library is essential to almost all user space
programs 1 8 and must provide at least what the ISO C standard defines [12]. The C library
also provides system call wrappers that enable user space applications to interface with
the kernel. Nonetheless, the C library might be broadened to cover the system-dependent
extensions as wel l 1 9 . There is not just one single C library, there are more of them. Now
we will go into the merits of available C libraries.

3.1.1 The G N U C Library

Probably the most commonly used C library in the Linux world is the G N U C library [21].
This library provides stable, portable, high performance, and rich collection of functions.
In addition, this library is also very well internationalized. The G N U C library moreover
contains add-on packages2 0 such as:

• libidn: a library for handling internationalized domain names,
1 8 W i t h GCC, it is, however, possible to bypass linking programs with default C library by using the

-nostdlib or -nodef aultlibs command-line options.
1 9 The extensions are guarded by the feature test macros. An example of using this macro is the code #if

defined __USE_P0SIX in the stdio.h header file.
2 0These add-ons can be enabled or disabled when configuring glibc using the —enable-add-ons

command-line option.

14

• nptl: a native POSIX thread library,

• nss: a library for the name service switch,

• resolv: lightweight resolver in Berkeley Internet Name Daemon,

• crypt: DES cryptographic functions.

This broad scale of features has unfortunately also some negative impact on the size
of this library. Usually, not all the functions and facilities are really needed. Especially
small devices suffer from this fact: a big footprint makes the devices run slowly—functions,
which are not used take up the virtual address space, tend to fragment the page set for
the functions that are actually used, fragment the icaches 2 1 and they are also causing more
T L B 2 2 misses. This restraint contributed to the fact that new C libraries were developed.
We now explore some of alternate C libraries that are nowadays available for the Linux
operating system.

3.1.2 Alternate C Libraries

These libraries emphasize an approach based on reducing the size of the C library by
removing unnecessary functions and add-ons. This approach is more embedded devices-
friendly because with these C libraries the user applications are smaller and the amount of
memory that they require to execute is not so big.

Here is an overview of various G N U C library alternatives:

• eglibc
is a fork of glibc which is designed to work well on embedded systems []. Eglibc
means "embedded glibc". Eglibc should be binary compatible with glibc. Further
more, eglibc lays emphasis on easy cross-compiling.

• uClibc is a C library for embedded Linux [26]. This library is probably the most
complete alternative to glibc. The main goal is nevertheless the size of the library.
uClibc was originally developed for the uClinux project. uClibc can also run on
MMU-less systems. This C library is very often used with Busybox and is closely
related to the Buildroot project [1].

• Newlib is a C library intended for use on embedded systems []. It consists of
several parts. This library can be used on systems without any operating system.
A remarkable thing is that this library also contains a small math library. It is easy
to port this library to another operating system [].

• dietlib is another C library optimized for size [5]. This library comes with its own
driver which runs gcc and links the program with the dietlibc automatically. However,
this library contains quite a lot of bugs which make it uneasy to use this library on
embedded devices.

• klibc this library is mainly intended to run during the Linux boot process, but it can
also be used on embedded devices [].

2 1These are the instruction caches.
2 2Translation Lookaside Buffer.

15

Which of these libraries should we use is an open question. When using Busybox on
a desktop P C , it is sensible to just use the G N U C library because on desktop P C , we
usually have a lot of memory available. However, probably the most proven library which
is intended to cooperate with Busybox on embedded devices is the uClibc library.

3.2 Using Proper Data Types

To save space, it is possible to use smaller data types. So, for example, we try to avoid using
data types like long, intmax.t, double, etc. We might spare some space by using types like
short int, bool (C99 only), or char in places where we need to use small numbers only.
However, sometimes, using the smallest possible type is not as benefical as it may seem.
There are situations where using char over int does not bring any space advantage, for
example, a byte access may in fact lead to a larger code on some architectures! Fortunately,
this is not true for widely used architectures such as i386, x86_64, and MIPS.

The structure type (the struct keyword in C) is often left out. However, we can very
easily save here some bytes as well—we have to reorganize the structure layout so there will
be no gaps between structure's elements. The structure elements are normally aligned to the
4byte boundary. This does not apply when the structure is defined with the __attribute__
((packed)) flag.

We can use the felicitous tool named pahole []. This software is used for displaying
structure layouts. It makes use of the D W A R F debugging format. This tool requires that
the binary to examine must have been compiled with the G C C ' s -g flag. Then pahole can
analyze the .debug_info section.

Let us have the following not very well organized structure:

struct foo

char c;

_Complex int i ;

char a [2];

float f;

const void *p;

{

Pahole tells us:

struct foo {

char c; /* 0 1 */

/* XXX 3 bytes hole, try to pack */

complex int

char a [2] ;

/*

/* 12

4 8 */

2 */

/* XXX 2 bytes hole, try to pack */

float f; /* 16 4 * /

16

/* XXX 4 bytes hole, try to pack */

const void * p; /* 24 8 */

/* size: 32, cachelines: 1, members: 5 */

/* sum members: 23, holes: 3, sum holes: 9 */

/* last cacheline: 32 bytes */

};

Note that the considered structure is 32 bytes big. Now, we try to place the structure
elements in a better way:

struct foo

{

_Complex int i ;

const void *p;

float f;

char c;

char a [2];

};

After this reordering, the size of this structure will be 24 bytes only !

3.3 Eliminate Unnecessary Strings

Strings are used in various warning and error messages. It is wise to use predefined functions
of this kind. In context of Busybox this means that one should always use the already
defined strings. So, instead of:

bb_error_msg_and_die(''memory exhausted'');

bb_error_msg_and_die(''virtual memory exhausted'');

bb_error_msg_and_die(''out of memory'');

write this:

bb_error_msg_and_die(bb_msg_memory_exhausted);

These predefined messages can be found in messages. c and are in the following form:

const char bb_msg_memory_exhausted[] ALIGN1 = ''out of memory'';

const char bb_msg_invalid_date[] ALIGN1 = ''invalid date '°/
0
s''';

This way, it suffices to have only one set of strings in the executable. Sometimes,
however, we need to create our own strings which are unique to an applet. When the
strings will not be modified, they should be marked as const. Also, it is often desirable to
have exactly one copy of the string. Thus, for constant strings, we should write something
like this:

static const char str[] = ''I am a string!'';

17

This string will be saved in a read-only memory. In addition, with the static keyword,
the str is not a variable anymore. It is merely a label for a location in memory. The string
will be stored in the section .rodata.

However, there are other techniques how to decrease the number of strings needed. G C C
and the linker can cooperate and perform a string merging. This way, it is possible to share
some parts of strings. Currently, this works only on suffixes of the strings.

Furthermore, strings which appear in more object files appear only once in final
executable [28].

The linker's string merger then generates data sections marked with the flags SHF_MERGE
and SHF.STRINGS. Below we show a quick example of string merging.

We start with a file a.c:

#include <stdio.h>

int

main (void)

{

puts ("hello k i d s ") ;

puts ("kids");

foo();

}

Now, consider a file b. c:

#include <stdio.h>

void

foo (void)

{

puts ("hello k i d s ") ;

}

We compile this together:

$ gcc -fmerge-all-constants a.c b.c

The strings are stored in the .rodata section:

$ eu-readelf —strings=.rodata a.out

String section [15] '.rodata' contains 27 bytes at offset 0x5c8:

[f]

[10] hello kids

From the above output, we can see that there are no unnecessary duplicates of strings,
which will save us some bytes.

18

3.4 Reduce Stack Usage

Stack is a part of the virtual address space where local (auto) variables and function pa
rameters are stored. Also, chunks of the memory allocated using the library call alloca
take place on the stack. Stack is, especially in context of the embedded devices, a quite
precious piece of memory. Allocating too much data on the stack may lead to immediate
S I G S E G V 2 3 . Due to this, the programmer must be very careful.

3.4.1 Passing Parameters to Functions

As we said, stack is heavily used when passing function parameters. Of course, it is possible
to use G C C attributes to change this calling convention, but this works only on x86 and
does not work for a variable length parameter list (we spoke about this in Subsection 2.3.3).
Sometimes we may want to completely avoid passing arguments to functions. This will
save us some move instructions, which means a smaller .text segment, and thus a smaller
executable. We illustrate this by an example

#include <stdint.h>

static int

foo (const void *p, intmax_t m, const char *s)

{

/* ... */

return 0;

}

int

main (void)

{
return foo (main, 1 << 16, func);

}

We compile the code into assembler as follows 2 4:

$ gcc -00 -fverbose-asm -dA -S stackl.c -o -

The resulting assembler code given below shows us calling the foo function 2 5 (only the
important instructions are displayed):

foo:

pushq °/
0
rbp #

movq 7
0
rsp, °/

0
rbp #,

movq 7
0
rdi, -8(°/

0
rbp) # p, p

movq '/,rsi, -16(°/
0
rbp) # m, m

movq °/
0
rdx, -24(°/

0
rbp) # s, s

2 3 We are able to manipulate the maximum size of stack segment by using ulimit -s command or system
call setrlimit (RLIMIT_STACK, fcrlim).

2 4Note that, with GCC optimizations turned on, the parameters would be optimized away. In this
example, we do not want this to happen.

2 5 It should be clear that this output was produced on x86_64 architecture with frame pointers turned on.

19

movl $0, %eax #, D.1624

main:

movl $__func__. 1628, °/
0
edx #,

movl $65536, '/,esi #,

movl $main, °/
0
edi #,

call foo #

If we omit all the parameters that the function foo takes, we end up with this assembler
output:

foo:

pushq °/
0
rbp #

movq °/«rsp, °/
0
rbp #,

movl $0, y.eax #, D.1594

main:

call foo #

It is apparent, that passing the parameters increases the code size quite a lot.

3.4.2 Local Arrays

Local arrays are proper when one wants to use them only in the scope of a function or
a block. Often, we do not know how big the array will be, this will be known only at
run-time. There are basically two options 2 6 how to allocate an array on the stack.

The first option is to make use of a nice feature which the C99 standard brought and
which is called a variable lenght array (VLA) [12]. V L A ' s size is determined at run-time
instead of at compile time. These arrays cannot be initialized. The space used by the
V L A is recyclable. A n example shows a V L A which takes up to N bytes, depending on the
iteration of the loops in which an array is allocated and initialized:

for (int i = 0; i < N; ++i)

{

char arr[i + 1];

memset (arr, i , i + 1);

}

The second option how to allocate space on the stack is to use the alloca function. This
function just moves the stack pointer, which is very cheap since this can be done using one
instruction. The space allocated by alloca will be automatically freed when the function
returns. A n important fact is, that the space is not recycled! Thus, the example piece of
code shown in Figure ?? will occupy n(n + l) / 2 bytes! This can lead to strange crashes2 7,
if one allocates a lot of space because then it is possible to accidentaly write to memory
which does not belong to the stack. One must be aware of potential risks using alloca.

2 6Note that we are talking about arrays on the stack, not on the heap or somewhere else. Thus, the
functions like malloc, brk, and mmap are not of our interest right now.

2 7Note that we ought not to check the return value of a l loca because this call never fails.

20

for (int i = 0; i < N; ++i)

{

char *arr = alloca (i + 1);

memset (arr, i , i + 1);

}

3.5 Reduce Global Data Usage

We have already mentioned that the main Busybox executable consists of many small
object files, applets. Every applet's object file contains, among other the .bss and .rodata
sections. These sections will be concatenated into the main Busybox executable, so we wind
up with one "big" .bss and .rodata section. When we run the Busybox executable, all
the sections in a segment marked as PT_L0AD must be loaded. Below we show the segments
(PhysAddr column was removed).

$ eu-readelf -1 busybox

Program Headers:

Type Offset VirtAddr FileSiz MemSiz Fig Align

PHDR 0x000040 0x0000000000400040 OxOOOlcO OxOOOlcO R E 0x8

INTERP 0x000200 0x0000000000400200 0x00001c 0x00001c R 0x1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x000000 0x0000000000400000 0x0e8aac 0x0e8aac R E 0x200000

LOAD 0x0e9000 0x00000000006e9000 0x00100a 0x003580 RW 0x200000

DYNAMIC 0x0e9028 0x00000000006e9028 OxOOOlaO OxOOOlaO RW 0x8

NOTE 0x00021c 0x000000000040021c 0x000024 0x000024 R 0x4

GNU_EH_FRAME 0x0c6c90 0x00000000004c6c90 0x004fl4 0x004fl4 R 0x4

GNU_STACK 0x000000 0x0000000000000000 0x000000 0x000000 RW 0x8

Section to Segment mapping:

Segment Sections...

00

01 [R0: .interp]

02 [R0: .interp .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn .rela.plt .init .pit

.text .fini .rodata .eh_frame_hdr .eh_frame]

03 .ctors .dtors .jcr .dynamic .got .got.pit .data .bss

04 .dynamic

05 [R0: .note.gnu.build-id]

06 [R0: .eh_frame_hdr]

07

This remark implies, that we have to avoid using large global data in all applets. This
is really crucial point. Now we will present a sub-optimal example which really should not
be incorporated into Busybox:

21

#include <string.h>

static char arr[1000];

static int cnt;

int

main (void)

{

memset (arr, 0x55, sizeof arr);

cnt = 5;

return cnt " arr[52];

}

The program 2 8 above has the following sizes of the .bss and .rodata sections.

$ eu-size -dA | grep -e bss -e rodata

section size addr

.rodata 16 4195816

.bss 1040 6293664

The size could be optimized: we present in the following how the ordinary Busybox
applets solve the global variables issue.

We first define our structure struct globals. Then we define a constant pointer
to this structure. Because we defined this pointer as a const pointer, the compiler will
know that this pointer will never change. To assign to this pointer, we need to use the
SET_PTR_T0_GL0BALS macro. After all these modifications, we get:

#include <stdlib.h>

#include <string.h>

struct globals

{

char arr [1000];

int cnt;

};

struct globals *const ptr_to_globals;

#define G (*ptr_to_globals)

#define SET_PTR_T0_GL0BALS(x) do { \

(•(struct globals **) &ptr_to_globals) = (void *) (x); \

} while (0)

int

main (void)

{

SET_PTR_T0_GL0BALS(calloc(l, sizeof(G)));

2 8 N o optimizations were applied.

22

G.cnt = 5;

return G.cnt " G.arr [52];

}

Let us now check the sizes of the sections now:

$ eu-size -dA | grep -e bss -e rodata

section size addr

.rodata 16

24

4195848

6293688 .bss

As we can see, the results are dramatically different.

3.6 Factor Out Functions

A l l functions that may be useful for more applets should be factored out and moved to
libbb. Sometimes it is not that easy, and one must untangle the function from original
source code. The factored out functions must be as general as possible to make it possible
to use them in other applets. This means that the function should not depend on some
global variable or have side-effects.

A n example of a factored out function is saf e_write from libbb.

3.7 Use Your Compiler and Linker Well

Aside tuning the code, it is more than desirable to know various compiler and linker options
that can reduce the code size. Wi th these options, we can maximize our space-saving effort.
Even when we write an optimal code, there are many ways how the compiler will interpret
this code. The code can be performance-oriented, or space-oriented. We will here describe
some useful G C C command-line options which can significantly help us to reduce the size
of executable.

3.7.1 G C C Optimization Options

G C C allows us to set the optimization level by specifying one of the -0 options. These are:
-00, -01, -02, -03, -0s, and since version 4.6 also -Of ast. The level -0s means optimizing
the code with the size in mind. The -0s level enables the -02 optimizations that do not
increase the code size []. Here we are interested only in the -0s level. In Figure 3.1 there is
a list of all optimization flags which are turned on by the -0s level 2 9 . We will not describe
all these options here. Instead, we will devote our attention only to some of these options.

3.7.2 The -ffunction-sections Option

The first option which we will talk about is widely used in Busybox as well as in the Linux
kernel. Most of the time, this option is used together with the -fdata-sections option.
The -ffunction-sections causes that the G C C will put each function (even the static
ones) in its own section. The resulting section will be named .text .function. Normally,

2 9 This list was generated using gcc -Q -0s —help=optimizers I grep enable I colrm 40. An inter
ested reader might also want to take a look at default_options_table[] in the gcc/opts.c file.

23

all the functions are in one .text section. This gives the linker a better opportunity to do
dead code removal and further optimize locality of reference in the instruction space [9].
Similarly, -fdata-sections instructs G C C to put the data elements into its own sections.

These two options are best used in combination with the linker option —gc-sections
30

.

With this option, the linker tries to get rid of unused sections. It works by analyzing the
symbol table and relocations. It can, however, discard only entire sections, which is the
reason why it makes sense to use -ffunction-sections and -fdata-sections as well.

One must use these optimizations with caution. Because of the way the linker determines
which section should disappear, there might arise problems, for instance, when the symbol
in a section is used only via a dlsym call. The linker cannot determine this and thus can
happily discard a section which, in fact, is used. The G C C attribute used may help in
a situation like this.

Let us now demonstrate the -ffunction-sections option by a short example. We
have a static library which contains two functions: foo and bar. When compiling the
source code of this library, we used the -ffunction-sections option, so the object file
in this library will contain, among other, sections .text.foo and .text.bar. Now, we
will use this library, but we only use the foo function. Then, when linking, we use the
—print-gc-sections. The linker then prints all the sections it is going to discard:

$ gcc m.c -Wl,—gc-sections -Wl,—print-gc-sections libfoo.a

/usr/bin/ld: Removing unused section '.text.bar' in f i l e 'libfoo.a(f.o)'

This is precisely what we expect: the linker discarded the unused .text .bar section.

3.7.3 Data Alignment

Every variable and function is aligned to a certain byte boundary. However, sometimes,
G C C uses a too big value to align to, which consumes extra space and generally increases
code size. It is true especially for structures. A bigger alignment is by and large beneficial
for the performance, which is the reason why the -02 optimization level uses higher values
to align controlling options, such as -f align-functions, -f align-jumps, -f align-loops,
and -f align-labels. The gaps are filled with the N O P instructions. Lowering these values
might decrease the code size. For instance, Busybox uses the value of 1. When we have
a very limited stack space, we can use -mpref ered-stack-boundary=2 to save some space.

We can set the functions, variables and structure members to be aligned to a desired
value by using the G C C attribute aligned. We will show it in an example where we make
use of the G C C keyword __BIGGEST_ALIGNMENT This is a target dependent macro which,
in fact, defines the largest alignment possible for a particular machine. Thus, for instance,
the following program has the size of 6275 bytes:

int __attribute__ ((aligned (BIGGEST_ALIGNMENT)))

main (void)

{

}

Nevertheless, when we align the main function to a 2 byte boundary, the executable
size decreases to 6259 bytes.

3 0 This option can be passed to the linker through GCC using -Wl,—gc-sections

24

3.7.4 Inline Functions

Inlining is a technique with which the body of a function is put on the place where the
function is called. This usually has a positive impact on performance because:

• It removes the need of a function call (call, leave). Also, function prologues/epilogues
are no longer needed.

• The code to be executed is closer to itself in memory, which improves the locality of
reference, the code is usually held in the instruction cache.

• Additional techniques like value range propagation or constant range propagation can
be used more extensively.

Although inlining sometimes might decrease the code size, usually it does the opposite.
Thus, we generally try to avoid inlining when writing programs for embedded devices. G C C
has a few attributes which allow us to control inlining more precisely. The first one is the
noinline attribute which prevents a function from being ever inlined. The always_inline
attribute, on the contrary, tells G C C to always inline that particular function. Furthermore,
there is one more interesting attribute: flatten, which means that all function calls in the
flat function will be inlined.

A n inliner is implemented as a G C C pass which tries to inline functions. Whether
a function will be inlined depends on several parameters: unit growth, function growth, and
stack frame growth. These factors are useful for computing the so called badness value.
The function can be inlined only until certain badness limit is hit. The tendency is to inline
the so called hot functions (these are called often) and to inline cold functions (unlikely
executed) only if it is expected that this decreases the code size. Functions called just once,
such as static constructors and destructors are inlined if the stack frame growth limit is not
reached. More on this can be found in [13].

The user can to a great extent control what will be inlined. We have already talked
about attributes, now we will take a look at some useful G C C options. We can limit the size
of functions that should be inlined. This is commonly used in Busybox and it is done using
the f inline-limit=N option. Here the N is a number of pseudo instructions. These pseudo
instructions do not correspond with the assembly instructions. Pseudo instructions are
an abstract measurement of function's size [9]. The -finline-small-functions option is
quite useful because it does not make the code size bigger. This option will inline functions
when they are smaller than the function call code. Probably the most important option
is the -f inline-functions option which causes that the compiler will use its heuristic to
decide which functions to inline. The -finline-functions-called-once tries to inline
all functions that are called only once. The -f early-inlining option will inline functions
marked as always_inline before the proper inlining pass. This makes the later profiling
cheaper.

3.8 Getting Rid of Debug Information

This section suggests how to make an already compiled executable even smaller by removing
the debug information.

G C C supports many options which control how much debugging information we get
and in which format. There are more debugging formats such as STABS or C O F F , but
in scope of this thesis, we assume the D W A R F Debugging Format [20]. These debugging

25

information comes in handy when we want to debug our program, e.g., using gdb , because
there will be available the symbol table or line numbers information. However, there are
also other tools which rely on debugging information. These tools include pahole (see
Section 3.2) or addr21ine (which converts addresses into file names and line numbers).

The most used G C C debug option is certainly the -g switch. This switch causes that
the compiler will emit debug information. Not many people know that this switch has
various levels; so, for example, with -g3 the compiler will also produce some additional
information (macro definitions). Then there are switches specific for the G N U Debugger:
-ggdbN. There is no point in describing all these options. A n interested reader might want
to take a look at [8]. The debug data are stored in sections. The names of these sections
always start with the . debug_ prefix. Here is an excerpt of a section dump of an executable
with all the debug information, which are split into various sections:

[26] .comment PROGBITS 00000874 0000002d 1 MS 0 0 1

[27] .debug_aranges PROGBITS 000008al 00000030 0 0 0 1

[28] .debug_pubnames PROGBITS 000008dl 0000001b 0 0 0 1

[29] .debug_info PROGBITS 000008ec 00000090 0 0 0 1

[30] .debug_abbrev PROGBITS 0000097c 00000043 0 0 0 1

[31] .debug_line PROGBITS 000009bf 00000169 0 0 0 1

[32] .debug_str PROGBITS 00000b28 00000086 1 MS 0 0 1

[33] .debug_macinfo PROGBITS OOOOObae 000034f6 0 0 0 1

[34] .debug_pubtypes PROGBITS 000040a4 00000012 0 0 0 1

These debug data of course occupy some space which is often unwanted. Fortunately
there is a way how to discard all unnecessary data from an executable—using the strip
utility. This utility discards also the .strtab (which holds the string table) and .symtab
(which holds the symbol table) sections. The same effect could be achieved using GCC' s
-s option when compiling 3 2 .

In the following we will show how this works. We have a simple Hello World program:

#include <stdio.h>

int

main (void)

{
printf ("Hello World\n");

}

Now we compile it with a lot of debug information (according to C99, we do not need
to write the return 0; statement at the end of the main function):

$ gcc -std=gnu99 -g3 x.c -o hello

This file is not stripped yet:

$ f i l e -b hello

ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), dynamically linked

(uses shared l i b s) , for GNU/Linux 2.6.18, not stripped

3 1 This is the GNU Debugger.
3 2 More precisely, when linking. If we used the -c option, which supresses the linking phase,-s would have

no effect.

26

We print out the size'

$ stat — f ormat=, ,Size: °/
0
s Bytes'' hello

Size: 21701 Bytes

This is just too much. So we will strip this file and then again print out the size:

$ eu-strip hello

$ f i l e -b hello

ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), dynamically linked

(uses shared l i b s) , for GNU/Linux 2.6.18, stripped

$ stat — f ormat=
}
 ,Size: °/

0
s Bytes'' hello

Size: 4240 Bytes

With this scoured executable we saved around 17 kilobytes. This means that stripping
the binaries is definitely something one should consider.

Please note that we do not use the eu-size utility to print out the size, because this utility counts
only sections marked as SHF_ALL0C, which means all sections not used at run-time are ignored. And debug
sections are not used at run-time.

27

-falign-functions

-falign-jumps

-falign-labels

-f argument-alias

-fasynchronous-unwind-tables

-fbranch-count-reg

-fcaller-saves

-fcommon

-fcprop-registers

-fcrossjumping

-fcse-follow-jumps

-f dee

-fdefer-pop

-fdelete-null-pointer-checks

-f dse

-fearly-inlining

-fexpensive-optimizations

-f f orward-propagat e

-fgese

-fgcse-lm

-fguess-branch-probability

-fif-conversion

-fif-conversion2

-finline-functions

-finline-functions-called-once

-finline-small-functions

-fipa-cp

-fipa-pure-const

-fipa-reference

-fivopts

-fjump-tables

-fmath-errno

-fmerge-constants

-fmove-loop-invariants

-fomit-frame-pointer

-foptimize-register-move

-foptimize-sibling-calls

-fpeephole

-fpeephole2

-fregmove

-frename-registers

-fweb

-freorder-blocks

-freorder-functions

-frerun-cse-after-loop

-fsched-interblock

-fsched-spec

-fsched-stalled-insns-dep

-fschedule-insns2

-fsigned-zeros

-fsplit-ivs-in-unroiler

-fsplit-wide-types

-fstrict-aliasing

-fthread-jumps

-ftoplevel-reorder

-ftrapping-math

-ftree-builtin-call-dce

-ftree-ccp

-ftree-ch

-ftree-coalesce-vars

-ftree-copy-prop

-ftree-copyrename

-ftree-cselim

-ftree-dee

-ftree-dominator-opts

-ftree-dse

-ftree-fre

-ftree-loop-im

-ftree-loop-ivcanon

-ftree-loop-optimize

-ftree-pre

-ftree-reassoc

-ftree-scev-cprop

-ftree-sink

-ftree-sra

-ftree-switch-conversion

-ftree-ter

-ftree-vect-loop-version

-ftree-vrp

-funit-at-a-time

-fvar-tracking

-fvar-tracking-assignments

-fvect-cost-model

Figure 3.1: G C C -Os optimization flags

2<S

Chapter 4

The procfs and sysfs File Systems

We now turn our attention to two virtual file systems in Linux. These two file systems,
procfs and sysfs, are essential for the tools we set out to write. Basically, the tools for
getting information about the system only read certain system files, do some computation
over data obtained from there, and preferably also format the output to be more user-
friendly.

We begin with a general description of procfs and sysfs. Afterwards, we will take
a look at specific files that appear in the procfs and sysfs file systems. This look, however,
will be very confined since we need to examine only a fraction of all the available files. We
will also present a few examples of how the procfs and sysfs files might be useful for
everyone running the Linux kernel.

4.1 The procfs File System

Right from the beginning, we need to know that the procfs file system (i.e., the process
file system) is not Linux specific. The process file system originally comes from the 8th
version of U N I X []. Presently, we can find the process file system in various UNIX-like
operating systems, such as BSD, IRIX, A I X , Solaris, and Q N X .

The process file system does not contain real files and directories. Almost all the
files in the procfs have the file size of 0. It merely contains process-related information.
When these pseudo-files are read, the system retrieves the information from the actual pro
cesses or the system [32]. Traditionally, this file system is located under the /proc mount
point. For instance, we can obtain all the exported symbols from the kernel by reading
the /proc/kallsyms file. The /proc directory mainly contains numbered directories. For
every running process in the kernel there is created a directory —the name of this direc
tory is actually the process ID. In this directory, one can find various information about
the process, such as memory maps, status information, O O M 3 4 score, etc. Also, there is
a symbolic link called self. This symbolic link points to the current process.

If we want to take a look at a memory map of current process (cat, in this example),
we can run:

$ cat /proc/self/maps

It is interesting that some of the process file system files may be written to in order to
change system parameters [32]. Hence, one can, e.g., free the page caches by using:

3 4 OOM means Out Of Memory. When the system is OOM, it can kill some process based on its OOM
score to gain additional memory.

29

$ echo 1 > /proc/sys/vm/drop_caches

Many of the already existing system utilities are based purely on reading certain files
from the process file system. A few examples of utilities using the proofs to a great extent
are top, vmstat, ps, slabtop, pmap, lsof , and free.

Now we are to describe some proofs files more thoroughly. Since there are so many files
in there, we will inquire only those files, which we made use of when writing tools mpstat,
iostat, and powertop.

The /proc/uptime file contains just two numbers: system up time and the time spent
in the idle mode. Both are given in seconds.

The /proc/diskstats file contains disk input and output statistics, such as the number
of reads, the number of sectors read, the number of milliseconds spent writing, and the
number of operations currently active. Here is and example contents of the file:

8 16 sdb 296 1216 2723 5244 0 0 0 0 0 4808 5244

8 17 sdbl 199 1214 1931 3739 0 0 0 0 0 3411 3739

The /proc/stat stores various statistics about kernel activities. The statistics here
are collected since the system boot. The numbers express what the CPUs do, in USER_HZ
units 3 5 . For example, we can determine, how much time the C P U spends on executing
the user processes, the kernel processes, waiting for I /O operations to finish, servicing
interrupts, or being idle. Also, context switches are to be found here.

In the /proc/interrupts are the interrupt statistics saved. They are nicely readable
because there are also descriptions of each column. Every IRQ has its own number in the
IRQ vector. It is apparent that the IRQ number zero is reserved for the timer interrupts,
which are the most common:

The /proc/softirqs concieves the counts of soft IRQ handlers serviced [].

CPU0 CPU1 CPU2 CPU3

HI 0 0 0 0

TIMER 148980950 148991855 0 0

NET_TX 1418599 265482 0 0

NET_RX 114753 3116129 0 0

BLOCK 592191 6034 0 0

The /proc/timer_stats is in fact a debugging facility that allows one to collect infor
mation about the timer events. We can determine which process issued how many timer
interrupts. The usage is trivial. First, we must start the timer by writing '1' to the
/proc/timer_stats file:

echo 1 > /proc/timer_stats

After a certain period of time, we stop the timer:

echo 0 > /proc/timer_stats

Now, we can read the collected data. Below is an example of reading the /proc/timer_stats.
Here we can see the number of events, the PID of the process, which initialized the timer,
the name of the process, then two functions—the first one is the function that initialized
the timer, the second one is the callback function.

3 5 This is most of the time l/100ths of a second.

30

cat /proc/timer_stats

Timer Stats Version: vO.

Sample period: 12.150 s

12150, 0 swapper

12150, 0 swapper

32, 27458 bash

9429, 9 events/0

261, 21155 firefox

hrtimer_start_range_ns (tick_sched_timer)

hrtimer_start_range_ns (tick_sched_timer)

queue_delayed_work (delayed_work_timer_fn)

queue_delayed_work (delayed_work_timer_fn)

hrt imer_ st art _range _ns (hrt imer_wakeup)

Note that doing the above as is requires the superuser privileges. The timer stats facility
can be turned on by enabling the CONFIG_TIMER_STATS kernel configuration option.

4.2 The sysf s File System
Another virtual file system in the Linux operating system 3 6 is the sysf s. This file system
is used to access information about the kernel objects, i.e. devices and drivers. The kernel
objects are represented as directories, the kernel object attributes as regular files, and
the relationships between objects as symbolic links []. It is also possible to change the
system's setting by writing into files in this file system.

The sysfs directory structure is hierarchical. It is best viewed by using the program
tree(l):

$ tree -FCL 1 /sys/

/sys/

I — block/

I — bus/

I— class/

I — dev/

I — devices/

I— firmware/

I— fs/

I — hypervisor/

I — kernel/

I — module/

I — power/

II directories, 0 fi l e s

In this thesis, we care mainly about the devices/ sub-directory. This directory contains
information about each device detected by the operating system. We can differentiate
between platform devices and system devices. For example, the CPUs and timers are among
the system devices while devices that have I /O ports are among the platform devices.

Since there is a lot of information in the files in the sysfs, we will pick up only few.
For example, if we are to determine why and how long the particular C P U is idle, in the
/sys/devices/system/cpu/cpuO/cpuidle/stateO/ directory we might find useful follow
ing files:

The desc file is the text description of the idle state, i.e., the C P U does not do anything
useful, the latency file keeps the latency of the idle state in microseconds, the name holds

3 6 We assume kernel version 2.6.

31

the names of the idle states. These are the so-called C-states. The power file shows how
much power was consumed while the C P U was in the idle state. The value is in milliwatts.
In the usage file is stored how many times the C P U was in this idle state. In the time
file can one determine how long the C P U was in the idle state. The value is described in
microseconds.

32

Chapter 5

Busybox Plugins

In this chapter, we describe the Busybox plugins which were created as a part of this thesis.
We describe the main concept of how these tools work. Interested readers are advised to
look at the source codes of these plugins. The source codes are freely available in the
Busybox git repository []. Moreover, we discuss various changes of the mpstat, iostat,
and powertop tools that have been made by the author of this thesis in order to adjust the
tools to the form suitable for incorporating them into the Busybox project.

5.1 The mpstat Plugin

Mpstat is a tool to report CPU-related statistics. It originally comes from the Sysstat
package []. The Busybox mpstat retained all the command-line options that the original
mpstat has. We will now shortly describe what mpstat can do.

When run without parameters, the output of the mpstat will be just an overview of
global C P U statistics:

$./busybox mpstat

Linux 2.6.32-71.el6.x86_64 (dhcp-25-89.brq.redhat.com) 04/29/11 _x86_64_

20:58:29 CPU '/.usr '/.nice °/.sys '/.iowait °/.irq '/.soft '/.idle

20:58:29 a l l 3.69 0.00 2.00 1.19 0.08 0.13 92.91

The above given command produces a global overview in what states most of the time
the C P U is. We get this output also when we specify the -u command line argument.

Normally, mpstat will just display numbers like these and then exit. It can, however,
run infinitely with various delays. To achieve this, we just supply a number as an argument.
It is also possible for mpstat to output just a certain number of statistics which happens
when we supply another number as an argument. So, for generating statistics ten times
every two seconds, we would write $ mpstat 2 10.

If we are on a machine with more CPUs, we can select a particular C P U by using the
-P option. Thus, to display information about the first C P U only, one would use $ mpstat
-P 0; to display information about all the CPUs, we can use mpstat -P ALL.

It is possible to produce a different output of mpstat than the default one. If we are
interested in seeing interrupts, we can specify the - I option together with the SUM keyword.
This way we get information about how many interrupts per second there occurr. A much
more detailed output will be generated when we use ALL in place of the SUM keyword.

33

http://dhcp-25-89.brq.redhat.com

We will now shortly delve into the implementation of mpstat. The source code can
be found in the procps directory in the Busybox directory. The mpstat program consists
mostly of collecting various pieces of data from the process file system. We described
the process file system in Section 4. The pieces of data from the proofs are stored in
different structures holding statistics. First of the structures holding statistics is the struct
stats_irqcpu structure. The purpose of the struct stats_irqcpu structure is to store
information about the C P U interrupts. Here we can found the number of the interrupts
and the interrupt name:

struct stats_irqcpu {

unsigned interrupts;

char irq_name[MAX_IRQNAME_LEN];

};

Next, the struct stats_cpu structure holds information about one C P U , i.e. the
counts of various activities. The data_t type is an unsigned integral type which can hold
even very high numbers. Usually, it is a synonym for the unsigned long long int type:

struct stats_cpu {

data. _t cpu_ user;

data. _t cpu_ nice;

data. _t cpu_ .system;

data. _t cpu_ .idle;

data. _t cpu_ .iowait;

data. _t cpu_ .steal;

data. _t cpu_ .irq;

data. _t cpu_ .softirq

data. _t cpu_ .guest;

>;

The another important structure is the struct stats_irq structure. It has just one
element which stores the number of all the interrupts that have occurred since the system
boot:

struct stats_irq {

data_t irq_nr;

};

At the beginning of the program, mpstat gets the interrupt counts. This is done just
by reading the /proc/interrupt and /proc/softirqs files. Afterwards, the function
main_loop is called. This is the workhorse of the mpstat. The function main_loop always
updates the stats_cpu data structure by reading the /proc/stat file. What happens next
depends on the command line arguments specified. If the - I SUM option was specified, the
main loop will update the stats_irq structure. If the user wanted to see a more detailed
interrupts statistics, the stats_irqcpu structure is updated at this point. This is done
by reading the /proc/interrupt or /proc/sof tirqs file. If the user did not specify any
interval, the collected statistics are printed. If, however, the interval is set, we now get into
a loop, which is terminated when the user kills the mpstat or when the count parameter is
hit. After this, the average statistics are also printed to the standard output. The timing
is implemented by using the alarm library function, which sends the SIGALRM signal to the

34

calling process after a specified number of seconds. The real implementation is somewhat
more complicated, but here we are trying to cover only the very basics of how this program
works.

5.1.1 Modifications

Almost complete functionality of the original mpstat was retained. Hence, Busybox mpstat
accepts all the command line options like the original mpstat, except the -V option, which
causes mpstat to display version and exit immediately. Printing the version and help is
handled by Busybox core—the user can use the —help option. However, there is one
difference in that the Busybox mpstat does not honour the S_TIME_FORMAT environment
variable, which is used to set a different locale. Ignoring the S_TIME_FORMAT environment
variable saves a getenv and a strcmp call. Busybox applets in general do not support the
National Language Support, thus Busybox mpstat does not support it neither. This saved
a few setlocale calls, the bindtextdomain call, and the textdomain call.

Both mpstats need to determine the number of CPUs . In original mpstat this is done
interating over the files residing in the /sys/devices/system/cpu sub-directory using func
tions opendir and readdir. Every file is compared by calling the strncmp function with
a string ''cpu''. Then the functions such as snprintf, stat, and isdigit are called
to determine the number of CPUs. A l l these functions are big, thus, in Busybox, we use
a different scheme. To determine the number of CPUs, we only read the /proc/stat file
by using the f gets function. In addition, we do not even use the strcmp function, instead,
to determine if a string starts with the ' 'cpu'', we use this kind of optimization for size:

int FAST_FUNC starts_with_cpu(const char *str)

{

return ((str[0] - 'c') I (str[l] - 'p') | (str[2] - >u>)) ==0;

}

To significantly reduce the .bss segment usage, all global variables were moved to the
struct globals structure. We described this technique in Section 3.5. Furthermore, some
space was saved by using the xzalloc function prom the libbb, instead of using the malloc
and memset.

Another great opportunity to save space was the parsing of the command line arguments.
Original mpstat does not use any function like the get opt, instead the parsing is done using
a long chain of i f s together with a lot of the strcmp calls. In Busybox, we took a better
approach: parsing is done using the getopt32 function and the strcmp functions were
replaced by just a single call of function index_in_strings. Both the getopt32 and the
index_in_strings functions reside in the libbb. We have talked about using the libbb
functions in Subsection 2.2.2.

The function for reading the C P U statistics was optimized. In original mpstat is the
function unnecessarily long since it duplicates its code. Below is given the original function
in pseudo-code:

i f (strncmp ())

{

memset ();

scanf ();

A = sum;

}

35

else i f (strncmp ())

{

memset ();

scanf ();

B = sum;

}

Duplicating the code is never a good idea. Hence, we end up with a better variant, where
only a single call of memset and scanf is needed:

i f (starts_with_cpu ())

continue;

memset ();

scanf ();

if (strncmp ()

A = sum;

else

B = sum;

At some places in the original mpstat we may find a TEST_STDOUT macro, which tries
to write an empty string to the standard output. This TEST_STDOUT was removed since it
does not bring anything very useful.

One of the biggest functions in original mpstat is the function for printing the statistics
called write_stats_core. In original mpstat, the write_stats_core function ill-advisedly
uses much more printf calls than is really needed. Consider this example:

i f (condl)

printf (A);

for ()

{

i f (cond2)

printf (B);

if (cond3)

printf (B);

else

printf (A);

}

A l l those printf calls are not necessary. The printf function must not be underestimated,
since it is a big function, and also because the printf takes a string as an argument, which
must be stored somewhere, most likely in the .rodata section. Thus, above given code was
reorganized a bit in the form that only two printf calls are needed:

for ()

{

if (! condl)

continue;

if (cond2)

goto zeros;

36

i f (cond3)

{

zeros:

printf (B);

continue;

}
printf (A);

}

In the function for printing the statistics was originally a variable, which determined, if
the header should be printed (called unintuitively disJidr). In Busybox mpstat we print
the header always—thus, variable like dis_hdr is no longer needed. Removing the dis_hdr
variable saved some space, e.g., it is no longer needed to pass the variable to functions (see
Subsection 3.4.1), also various i f (disJidr) are gone now. In addition to the removed
dis_hdr variable, in Busybox mpstat we do not determine the size of the terminal windows.
Thus, there is no expensive ioctl call in Busybox mpstat.

Furthermore, some completely redundant code was removed. Consider the following
example, taken from original mpstat:

void write_stats_avg(int curr, int dis)

{

char string[16];

strncpy(string, _(''Average:''), 16);

string [15] = '\0';

write_stats_core(2, curr, dis, string, string);

}

In the example above, the variable string and the strncpy call are not needed. It com
pletely suffices to pass the ' 'Average: ' ' string as a parameter to the write_stats_core.

At various places were used functions from the libbb. For instance, it is not needed
to check the return value of fopen, since in Busybox mpstat is used the f open_f or_read
function which already handles the case when a file cannot be opened. Also, in Busybox
mpstat is used the xmalloc function, thus the necessity to check the return value vanishes.
Using the functions for the libbb much simplifies the code. Furthermore, the libbb function
saf e_strncpy is used, thus it is no longer necessary to write the N U L L byte at the end of
a buffer.

Another change is that a lot of variables were moved into the smallest scope needed.
Described another way, if a variable is needed only in a certain scope, it is better to move
the variable into this scope, because with clever compilers, we can save a register space.
Also, moving the definitions of variables closer to the place, where they are used, has
a good impact on readibility of the code. Better readibility paves the way for any future
improvements.

Last but not least, several badly named functions and variables were renamed to better
reflect their meaning. For example, in original mpstat, one can find the ll_sp_value

function. It arguably is not clear, what a function with a name like this should in fact do,
thus, it was renamed to overf low_saf e_sub to represent, that it serves to subtracting two
numbers with respect to overflows. Many variables with names such as itv, icjtir, sec,
and scp, that baffled many, so they were renamed to more meaningful names.

37

Original mpstat has around 1300 lines of code, while Busybox mpstat has around 900
lines of code. In Figure 5.1 are shown statistics of Busybox after adding the mpstat plugin.

function old new delta

mpstat_main - 1334 +1334

write_stats_core - 1326 +1326

write_irqcpu_stats - 771 +771

get_irqs_from_interrupts - 607 +607

.rodata 148189 148709 +520

get_cpu_statistics - 370 +370

get_uptime - 139 +139

static.get_irqcpu_nr - 131 +131

get_irqs_from_stat - 124 +124

print_header - 120 +120

write_stats - 119 +119

packed_usage 28406 28498 +92

get_per_cpu_interval - 63 +63

is_cpu_in_b itmap - 37 +37

applet_main 2768 2776 +8

applet_names 2372 2379 +7

static.v - 4 +4

applet_nameof s 692 694 +2

applet_install_loc 173 174 +1

alarm_handler 53 37 -16

(add/remove: 14/0 grow/shrink: 6/1 up/down: 5775/-16) Total: 5759 bytes

text data bss dec hex filename

951935 4106 9568 965609 ebbe9 busybox_old

958757 4114 9568 972439 ed697 busybox_unstripped

Figure 5.1: Busybox after adding mpstat

5.2 The iostat Plugin

Iostat is another tool coming from the Sysstat package []. Its original purpose is to report
C P U statistics as well as I /O and N F S 3 7 statistics for devices and partitions. Nevertheless,
in Busybox, we dropped the NFS support. This way we achieved a much smaller size of
this applet. Iostat from Busybox does not come with a lot of command line options. By
default, the output looks like:

$./busybox iostat

Linux 2.6.32-71.el6.x86_64 (dhcp-25-89.brq.redhat.com) 01/00/00 _x86_64_

avg-cpu: '/.user °/
0
nice °/

0
system °/

0
iowait °/

0
steal °/

0
idle

6.69 0.00 3.09 1.34 0.00 88.87

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn

sda 5.03 72.30 132.72 2075391 3809962

dm-0 18.73 72.05 132.72 2068420 3809944

7 NFS is a network file system protocol. The newest version is NFSv4.

38

http://dhcp-25-89.brq.redhat.com

dm-1 3.58 36.49 20.80 1047426 596976

dm-2 0.82 0.86 5.71 24616 163904

dm-3 13.93 34.68 106.21 995442 3049064

In the first part of the output, we can see an overall C P U statistics. If we want to see
solely this part, we can use the -c command line option. In the second part, we see various
numbers expressing how many blocks were written and/or read, at which speed, and how
many transfers per second (tps) occurred.

Analogously to mpstat, the user can specify the interval and count parameters too.
Also, the user can specify about which partitions and devices the statistics will be printed.
Thus, for instance, we can select some partitions only:

$./busybox iostat -cm /dev/sda /dev/sdal 2 10

The -m option causes the output to be in megabytes and -k in kilobytes. The -t option
will print the time and, the - z option will not display inactive devices. Inactive devices are
those which are neither read from nor written to.

In iostat, two structures are essential. The first one is the struct stats_cpu structure.
This structure is in fact equivalent to the struct stats_cpu structure from mpstat. An
other one is the struct stats_dev structure, which holds information about devices: their
name, sectors read/written, and operations count:

struct stats_dev {

char dname[MAX_DEVICE_NAME] ;

unsigned long long rd_sectors;

unsigned long long wr_sectors;

unsigned long rd_ops;

unsigned long wr_ops;

};

Basically, the course of events is happening in the iostat_main function. There is
an infinite loop where the program always prints the header and then, according to the
command line options, also specific data. The iostat applet may print out the time and the
C P U stats. If the user did not specified the -c option, the function dev_report and in turn
the do_disk_statistics is called. Here we read the /proc/diskstats file and then we
print relevant information. On the other hand, if no options are specified or the -c option
is on, we call the cpu_report function. This function prints the stats_cpu structure. The
stats_cpu structure is filled by the function get_cpu_statistics, which, essentially, reads
/proc/stat. The whole loop is terminated if the limit count is hit or if the interval value
was not specified.

5.2.1 Modifications

Probably the most dramatic change is that Busybox iostat does not support some option as
original mpstat does. The removed command line options are the -n for displaying NFS re
port, -N for viewing L V M 2 statistics, and the -x for displaying the extended statistics. Also,
Busybox iostat does not know the -p command line option for displaying statistics for block
devices and all their partitions. The -x and -n options require the 2.6 Linux kernel, while
some embedded devices still run the 2.4 Linux kernel. The -N command line option was find

39

to not to be too useful. The code size of Busybox iostat decreased quite a lot, since it was
not needed to re-implement some big function from original iostat. For instance, functions
such as the write_ext_stat, the get_devmap_major, and the transform_devmapname were
completely omitted.

Other changes to iostat are quite similar to the changes made to mpstat. That said, the
National Language Support was removed, the parsing of command line arguments is done
by using the getop32 function from the libbb, and all the global variables were moved to
the struct globals structure (see Section 3.5).

It is possible to specify certain devices—iostat will then print information about the
specified devices only. In original iostat this is solved by saving all the specified devices
into an array of strings. In Busybox iostat, however, this is solved differently—the Hist
interface, which is the linked list interface, is used. A l l the functions for handling a linked
list are a part of the libbb. It works by having a l l i s t _ t variable. Adding an item into
the l l i s t . t variable is very easy—it is handled by the llist_add_to function. To be more
concrete, below is given a piece of code from the Busybox iostat, which handles the device
list:

char *dev_name = skip_dev_pfx (*argv);

if (!llist_find_str (G.dev_list, dev_name))

{

llist_add_to (&G.dev_list, dev_name);

dev_num++;

}

At the end of the iostat, this list is freed by calling the function llist_free. Using the
Hist Busybox interface saved a lot of code and is also much more readable.

Next, the alarm and pause functions were removed, instead, only the single sleep is
used. Using the sleep function brought further simplification: the core of Busybox iostat
now looks roughly like the following:

for (;;)

{

get_cpu_statistics ();

if (condl)

dev_report ();

if (cond2)

cpu_report ();

if (count > 0)

if (—count == 0)

break;

sleep (interval);

}

In Busybox iostat, the function for getting the C P U statistics is way simpler. In original
iostat, getting the C P U statistics is basically done as shown below:

40

while (fgets ())

{

if (strncmp ())

{

memset ();

sscanf ();

upl = sum;
}

else i f (strncmp ())

{

memset ();

sscanf ();

up2 = sum;

}

}

This can be simplified into the form given below:

while (fgets ())

{

if (starts_with_cpu ())

continue;

for ()

{

sscanf ();

sum += value;

}

break;

}

We saved the memset and the sscanf calls which leads to a smaller code size.
Another opportunity to save the size was to review the data types. It came out that at

some places we could save some bytes by using a smaller data type. Thus, the data type
of the curr variable which holds either 0 or 1 was changed to smallint. We talked about
the data types in Section 3.2.

Among above given changes, some variables and functions were renamed to more mean
ingful names, for instance, it is hard to guess what the i t variable actually means, so its
new name is the interval.

Also, not surprisingly, various functions from the libbb were used. E.g., for setting
a memory block to zero, is the xzalloc function used.

Original iostat has around 2000 lines of code, while the Busybox iostat consists of around
500 lines of code. This is a very positive improvement. In the Figure 5.2 are shown Busybox
statistics after adding the iostat applet.

5.3 The powertop Utility

Powertop, unlike mpstat and iostat, does not come from the Sysstat package, but instead it
is a standalone software. This program serves to analyze power consumption on Intel-based
laptops []. Powertop from Busybox does not come with any command line parameters.

41

function old new delta

iostat_main - 2105 +2105

.rodata 148260 148709 +449

print_stats_dev_struct - 263 +263

packed_usage 28429 28498 +69

is_partition - 35 +35

applet_main 2768 2776 +8

applet_names 2372 2379 +7

applet_nameof s 692 694 +2

applet_install_loc 173 174 +1

(add/remove: 4/0 grow/shrink: 6/0 up/down: 2939/0) Total: 2939 bytes

text data bss dec hex filename

955445 4114 9568 969127 ec9a7 busybox_old

958757 4114 9568 972439 ed697 busybox_unstripped

Figure 5.2: Busybox after adding iostat

Powertop needs to be run with superuser privileges. This is due to the fact that we need to
be able to write into the /proc/timer_stats file. We spoke about this file in Section 4.1.

The basic goal of Powertop is to determine which applications are causing most makeups.
To know what a wakeup is, we need to get to know the C P U power states. Wi th regard to
power consumption, a C P U has three power states:

• C-states, the idle states.

• P-states, the performance states.

• T-states, the thermal states.

If we want to accomplish better savings, we should adjust these states to get better results
as far as power consumption concerns. We can differentiate the C-states into four levels,
CO to C4. Basically, when the C P U is in the CO state, it is executing some instructions.
This state is the most expensive. The C I and higher states mean, that the C P U is idle.
The higher level, the more power savings. Having that said, if we want to really save the
power consumption, then the C P U should be in the C3 or C 4 3 8 state most of the time. Of
course, being in a higher C-state has also some downsides. These downsides are above all
worse latency and performance. The crucial point is that changing the C-states involves
quite a lot of power consumption. It is more expensive to change state from C4 to CO than
from C I to CO. These C-state changes are the so-called wakeups. To see the C-states of
a particular system, one could issue:

$ cat /proc/acpi/processor/*/power

Obviously to save more power, we should lower the number of the wakeups. This is
when Powertop comes in handy. The output of Powertop could look like the following (it
refreshes this output automatically every 10 seconds), where we, in the first part, can see
available C-states together with the information how long in average the C P U spends in
a particular C-state and a number, which says, in what C-state the C P U most of the time
is, and in the second part we can see which applications are causing most wakeups:

3 8Note that the C4 state is often not available when the laptop runs on A C power.

42

Cn Avg residency

CO (cpu running) (5.4%)

CI 0.0ms (0.0%)

C2 0.6ms (3.0%)

C3 2.0ms (91.0%)

Wakeups-from-idle in 10 seconds: 10281

Top causes for wakeups: 14 2% (1417) <kernel core> hrtimer_start_range_ns (tick_sched_timer)

11 0% (1099) npviewer.bin hrtimer_start_range_ns (hrtimer_wakeup)

6 7% (664) <interrupt> iwlagn

5 5% (545) firefox hrt imer_ st art _range_ns (hrt imer_wakeup)

2 5% (250) totem hrt imer_ st art _range_ns (hrt imer_wakeup)

1 4% (138) <kernel core> hrtimer_start (tick_sched_timer)

1 3% (130) pulseaudio hrt imer_ st art _range_ns (hrt imer_wakeup)

1 1% (113) <kernel IPI> Rescheduling interrupts

1 0% (98) thunderbird-bin hrt imer_ st art _range_ns (hrt imer_wakeup)

0 8% (80) <kernel core> usb_hcd_poll_rh_status (rh_timer_func)

0 7% (73) <kernel core> sk_reset_timer (tcp_delack_timer)

0 5% (54) <interrupt> hda_intel

0.4% (40) <kernel core> hrtimer_start (nmi_watchdog_timer_fn)

0.4% (35) <interrupt> ahci

0 1% (13) i r s s i hrt imer_ st art _range_ns (hrt imer_wakeup)

It is apparent that most of the time the C P U is in the C3 state, which is good. However,
if we want to further lower the wakeups count, we can investigate the table—this is a list
with running applications on the system causing most wakeups. In this very example,
Firefox and Totem are generating a fair amount of wakeups. Thus, if the user wanted to
reduce the number of wakeups, s/he should shut Firefox and/or Totem down. Below, we
give an overview of the implementation of Powertop.

The main part of Powertop is an infinite for loop. Here are always the C-state counts
updated by calling the read_cstate_counts function. This function merely examines the
/proc/acpi/processor/*/power files. After this, wakeups in 10 seconds are displayed.
The function process_irq_counts is handling the total number of wakeups. It works
primarily by reading the /proc/interrupts file. Finally, the timer stats are displayed.
Lines to be printed are all saved in the struct line *lines array. Every element of this
array comprises a name and the corresponding wakeup count. These lines were collected
by the process_timer_stats function by reading the /proc/timer_stats. After gathering
all of them, they are sorted using the qsort library function and finally they are displayed
to the standard output. When all of this is done, another iteration starts.

A n interesting thing related to Powertop worth mentioning is how can we obtain ad
ditional information about the C P U . One possible way is to use the cpuid assembly in
struction. In Powertop, running on x86, this is used to get the information about available
C-states. The E A X register is used to specify which information we are interested in (e.g.,
if E A X is equal 1, we can get the vendor identification):

The inline assembly code looks l ike 3 9 :
3 9 The ' = ' constraint modifier means, that the variable is write-only.

43

asm (

,, pushl HebxVi'' /* Save EBX */

,
}
 cpuid\n''

,, movl Hebx, °/
0
l\n" /* Save content of EBX */

,, popl r/„ebx\n'' /* Restore EBX */

: ,,=a''(*eax), /* Output */

,,=r''(*ebx),

, =c''(*ecx),
,,=d''(*edx)

: , , 0"(*eax), /* Input */

, ,1" (*ebx),

,,2''(*ecx),

, ,3'' (*edx)

);

This way, we can get all the supported C-states by bit-shifting the edx variable.

5.3 .1 Modifications

Powertop is a plugin that underwent the most dramatic changes. The first of this striking
changes is that original powertop uses the ncurses library for displaying various colors and
shapes, while the Busybox powertop does not use the ncurses library. In Busybox, this is
unthinkable, because it would be a tremendous code bloat. Not using the ncurses library is
less user-friendly, but it also saved several hundreds lines of code. Another benefit is that
no additional dependency is needed. However, since powertop is an interactive tool, it was
needed, e.g., to turn on the unbuffered input. The unbuffered input is useful in situation,
when we want that the user input does not have to be confirmed by Enter key. For this,
we use the tcsetattr function. Similar approach is taken in the top Busybox applet.

A very crucial modification is that in Busybox powertop were omitted the so-called
suggestions. Suggestion is a helpful text which advises, that the user should change some
system value or, e.g., turn on or off some kernel option. The powertop itself can change some
of the system values. However, the suggestions are taking up too much space, suggestions
are virtually hundreds lines of code. Except this, suggestions also contain lots of long
strings. The necessity to hold a lot of long strings would make the .rodata section much
more bigger. In addition, there is one more major drawback. In the future, the suggestions
would need to be constantly updated to reflect current system options. The need to update
the suggestions is somewhat unwelcome.

Busybox powertop also does not print the battery status. Not displaying the battery
status allowed to remove some of the original powertop functions. Gathering the information
about battery was handled by the print_battery_proc_pmu, print_battery_proc_acpi,
and print_battery_sysfs functions. The functions for determining information about
battery were quite big, and contained enormous number of functions such as the readdir,
the sprintf , the strtoull, and the fgets. Thus, a huge savings of code were achieved.

Reading and parsing the /proc/timer_stats is done in both original and Busybox
powertop. Nevertheless, in Busybox was taken a more size-oriented approach. In original
powertop the reading and parsing is done in the main loop of the program. In Busybox,
there is a specialized function, that is also more optimized. For instance, instead of a long
chain of the strchr functions together with while loops for skipping whitespaces, in Busybox
powertop there is the following piece of code:

44

get_func_name:

p = strchr (p, ' ');

i f (! p)

continue;

*p++ = '\0';

p = skip_whitespace (p);

if (process == NULL)

{
process = p;

goto get_func_name;

}

Note, that the skip_whitespace function from the libbb is used in place of a while loop.
The function for parsing the /proc/interrupts file was also further optimized. A se

quence of the strcmp functions was removed; instead, one single call of the index_in_strings
is used. Consider following example from original powertop:

i f (strncmp(line, "NMI: " , 4)==0)

nr=20000;

if (strncmp(line,''RES: " , 4)==0)

nr=20001;

if (strncmp(line, " CAL: " , 4)==0)

nr=20002;

In Busybox it is better, with respect to size, write the following:

nr = index_in_strings(,,NMI\0RES\0CAL\0TLB\0TRM\0THR\0SPU\0'', buf);

Moreover, consider below given code from original powertop:

c = strchr(name, '\n');

if (c)

*c = 0;

To save additional space, in Busybox powertop, the following variant is used:

strchrnul(name, '\n')[0] = '\0';

Moreover, all global variables were, to save the space in the .bss segment, moved to
the struct globals structure. This structure was described in Section 3.5.

It is possible to save some more space by writing more generic functions. Consider the
below given example from original powertop:

void stop_timerstats(void) void start_timerstats(void)

{ {

FILE * f i l e ; FILE * f i l e ;

f i l e = f i l e =

fopen(' '/proc/timer_stats'' , ' ' » ") ; f open(' '/proc/timer_stats' ' , "w");

i f (!file) i f (!file)

{ {

nostats = 1; nostats = 1;

return; return;

> >

f p r i n t f (f i l e , " 0 \ n"); f p r i n t f (f i l e , " l \ n ") ;

fclose(file); fclose(file);

} >

45

Above given functions differ in the string that will be written into the file. This is
completely unnecessary. A better approach is to use just one more general function and
pass the string to be written as an argument:

static int

write_str_to_file(const char *fname, const char *str)

{

FILE *fp = fopen_for_write(fname);

if (!fp)

return 1;
fputs(str, fp);

fclose(fp);

return 0;
}

Another change is that the Busybox powertop does not try to load the cpufreq_stats
kernel module. Original powertop does this using the system library function. However,
using the system function together with superuser privileges is not safe and thus should be
avoided.

Some names of functions and variables were amended. For instance, it is not very clear
that the linehead variable is a number of lines saved. The lines_cnt variable is more
readable.

Original powertop consists of around 4 000 lines of code, while the Busybox powertop
consists of around 850 lines of code. Below is presented the result of adding powertop to
Busybox:

function old new delta

iostat_main - 2105 +2105

.rodata 148260 148709 +449

print_stats_dev_struct - 263 +263

packed_usage 28429 28498 +69

is_partition - 35 +35

applet_main 2768 2776 +8

applet_names 2372 2379 +7

applet_nameof s 692 694 +2

applet_install_loc 173 174 +1

(add/remove: 4/0 grow/shrink: 6/0 up/down: 2939/0) Total: 2939 bytes

text data bss dec hex filename

955445 4114 9568 969127 ec9a7 busybox_old

958757 4114 9568 972439 ed697 busybox_unstripped

Figure 5.3: Busybox after adding powertop

46

Chapter 6

Conclusion

Let us briefly summarize the contents of this thesis. We have acquainted ourselves with
the Busybox project. We have investigated how this project is structured, we have also
taken a look at the Busybox library. Since the mpstat, iostat, and powertop applets are
an essential part of the Busybox, we have examined a single applet to the great extent. We
have shown how to obtain, configure and run the Busybox and its applets. We have also
created and added a simple applet to the Busybox.

We have payed a lot of attention to the area of how to make our programs smaller. We
have discussed several programming techniques on how to better utilize our programs to
save space. We have described available C libraries. We have proposed and described quite
a lot of G C C command line options, which can further help to reduce the size of the final
executable. Apart from studying how to write more compact code, we have also introduced
several tools which are useful when tuning code.

Then, we have discussed the Sysfs and Procfs file system. We have assumed that we are
using the Linux operating system. These file systems are crucial for tools used to getting
information about the system. We have picked up only several files from the procps and
the sysfs, and we have described these in more detail.

In the last chapter we debated the implemented applets—mpstat, iostat, and powertop.
We have presented examples on how to use these tools and what information they can bring
us. As a part of our contribution these applets were written and are now a part of stable
version of Busybox. They have been added since the version 1.18.0. Wi th this work we
attempted to describe on a higher level, how these tools actually work.

Finally, we have also studied the modifications of the implemented tools, which were
made to keep the code size at minimum. We have always presumed that the implementation
language is the C language.

47

Bibliography

[1] Buildroot Homepage, http://buildroot.uclibc.org/.

[2] Busybox Git Repository, http://git.busybox.net/.

[3] Busybox Homepage, http://www.busybox.net/.

[4] Busybox Prebuilt Binaries, http://busybox.net/downloads/binaries/latest/.

[5] diet libc - a libc optimized for small size, http://www.fefe.de/dietlibc/.

[6] DWARF debugging tools.

http://git.kernel.org/?p=linux/kernel/git/acme/pahole.git;a=summary.

[7] Embedded GLIBC Homepage, http://www.eglibc.org/home.

[8] GCC Debugging Options.
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html.

[9] GCC Optimize Options.

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

[10] GNU Coreutils. http://www.gnu.org/software/coreutils/.

[11] Ian Lance Taylor, Linkers, 2007. http://www.airs.com/blog/archives/42.

[12] ISO/IEC 9899:1999 C standard.
http://www.open-std.org/jtcl/sc22/wgl4/www/standards.html#9899.

[13] Jan Hubicka, Taras Glek, Optimizing real world applications with GCC Link Time
Optimization, 2010. http://arxiv.org/abs/1010.2196.

[14] kLIBC Homepage, http://svn.netlabs.org/libc.

[15] Linux Kernel Documentation, 2011. http://www.kernel.org/doc/.

[16] Patrick Mochel, The sysfs Filesystem, 2005. http://www.kernel.org/pub/linux/
kernel/people/mochel/doc/papers/ols-2005/mochel.pdf.

[17] Porting Newlib. http://wiki.osdev.org/Porting_Newlib.

[18] Powertop Homepage, http://www.lesswatts.org/projects/powertop/.

[19] Sysstat Homepage, http://sebastien.godard.pagesperso-orange.fr/.

[20] The DWARF Debugging Standard, http://www.dwarfstd.org/.

48

http://buildroot.uclibc.org/
http://git.busybox.net/
http://www.busybox.net/
http://busybox.net/downloads/binaries/latest/
http://www.fefe.de/dietlibc/
http://git.kernel.org/?p=linux/kernel/git/acme/pahole.git;a=summary
http://www.eglibc.org/home
http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://www.gnu.org/software/coreutils/
http://www.airs.com/blog/archives/42
http://www.open-std.org/jtcl/sc22/wgl4/www/standards.html%239899
http://arxiv.org/abs/1010.2196
http://svn.netlabs.org/libc
http://www.kernel.org/doc/
http://www.kernel.org/pub/linux/
http://wiki.osdev.org/Porting_Newlib
http://www.lesswatts.org/projects/powertop/
http://sebastien.godard.pagesperso-orange.fr/
http://www.dwarfstd.org/

[21] The G N U C Library, h t tp : / /www.gnu . 0 rg / s / l ibc / .

[22] The G N U Compiler Collection, h t tp : / / gcc .gnu .o rg .

[23] The Newlib Homepage, h t tp : / / sourceware .o rg /newl ib / .

[24] The Open Group Base Specifications Issue 6.
http:/ /pubs.opengroup.org/onlinepubs/009695399/.

[25] Tool Interface Standard (TIS) Executable and Linking Format (ELF) Specification,
version 1.2. h t t p : / / r e f s p e c s . f r e e s t a n d a r d s . o r g / e l f / e l f . p d f .

[26] uClibc Homepage, h t tp : / /www.uc l ibc .org /about .h tml .

[27] Ulrich Drepper, Red Hat, Inc., Good Practices in Library Design, Implementation,
and Maintenance, 2002. www.akkadia.org/drepper/goodpractice.pdf.

[28] Ulrich Drepper, Red Hat, Inc., How To Write Shared Libraries, 2006.
www.akkadia.org/drepper/dsohowto.pdf.

[29] Ulrich Drepper, Red Hat, Inc., Optimizing Applications with gcc & glibc, 1999.
www.akkadia.org/drepper/opt imtut l .ps .gz.

[30] Using The G N U Assembler, h t t p : / / s o u r c e w a r e . o r g / b i n u t i l s / d o c s / a s / .

[31] Using The G N U Linker.
h t tp : / / f t p .gnu .o rg /o ld -gnu /Manua l s / ld -2 .9 . l / h tml_mono / ld .h tml .

[32] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall, 2008.

49

http://www.gnu.0rg/s/libc/
http://gcc.gnu.org
http://sourceware.org/newlib/
http://pubs.opengroup.org/onlinepubs/009695399/
http://refspecs.freestandards.org/elf/elf.pdf
http://www.uclibc.org/about.html
http://www.akkadia.org/drepper/goodpractice.pdf
http://www.akkadia.org/drepper/dsohowto.pdf
http://www.akkadia.org/drepper/optimtutl.ps.gz
http://sourceware.org/binutils/docs/as/
http://ftp.gnu.org/old-gnu/Manuals/ld-2.9.l/html_mono/ld.html

