Czech University of Life Sciences Prague
Faculty of Economics and Management

Department of Information Engineering

Master's Thesis

iOS Application in the XCode environment

Saravana Kumar Obula Meganath

© 2022 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE

Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT

Saravana Kumar Obula Meganath

Systems Engineering and Informatics
Informatics

Thesis title

iOS application in the XCode environment

Objectives of thesis

The main goal of this thesis is to demonstrate how to create a user-friendly and fully functional mobile
application — a Multitasker app for the iPhone, and increase awareness of mobile development for the
efficient development of iOS projects, the Xcode interface and the SwiG programming language.

Methodology

The Diploma thesis will be divided into two section: theoretical and practical. The theoretical part will
be based on an analysis of secondary data source, programming language documentations, including
a pro- fessional literature, online videos, Internet publications about developing for iOS mobile platform
and doc- uments about mobile technology. The second part will be practical on the example of how to
use these tools and techniques for developing a mobile application name called Multitasker.

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
80 — 120 pages

Keywords
iOS; Mobile Application; SwiG; iPhone; XCode; Programming

Recommended information sources

Arthur M. Langer. 2012. Guide to SoGware Development. New York: Springer.

Christian Keur and Aaron Hillegass. 2015. iOS Programming: The Big Nerd Ranch Guide. Atlanda:
Pearson Technology Group.

Stefan Kaczmarek, Brad Lees, and Gary Bennett. 2019. SwiG 5 for Absolute Beginners: Learn to
Develop Apps for iOS. New York: Apress Media.

Expected date of thesis defence
2021/22 SS - FEM

The Diploma Thesis Supervisor
doc. Ing. Vojtéch Merunka, Ph.D.

Supervising department
Department of Information Engineering

Electronic approval: 1. 11. 2021 Electronic approval: 23. 11. 2021
Ing. Martin Pelikan, Ph.D. Ing. Martin Pelikan, Ph.D.
Head of department Dean

Prague on 28. 03. 2022

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

Declaration
I declare that I have worked on my master's thesis titled "iOS application in the XCode

environment" by myself and I have used only the sources mentioned at the end of the thesis.

As the author of the master's thesis, I declare that the thesis does not break any copyrights.

In Prague on 30.03.2022

Acknowledgement

I would like to thank doc. Ing. Vojtech Merunka, Ph.D, friends and my family for their

advice and support during my work on this thesis.

iOS Application in the XCode environment

Abstract

The thesis's goal is to raise knowledge of efficient iOS mobile app development, the XCode
interface, and the Swift programming language. The primary purpose of this thesis is to illustrate
how to construct a user-friendly and fully working iOS native application — an iPhone
Multitasker app. A novice user will have a fundamental understanding of how a native 10S
application is created from the ground up. The thesis also explains how the Multitasker mobile
app was created using the Swift programming language. The subjects covered in the literature
study demonstrate that it is surely feasible to construct an iOS application by following the user

manuals and tutorials on iOS programming.

Keywords: i0OS, Mobile Application, Swift, iPhone, XCode, Programming.

Aplikace pro iOS v prostiedi XCode

Abstrakt

Cilem prace je rozsifit znalosti o efektivnim vyvoji mobilnich aplikaci pro 10S, rozhrani XCode
a programovacim jazyku Swift. Primarnim tcelem této prace je ukazat, jak vytvorit uzivatelsky
piivétivou a plné funkéni nativni aplikaci pro iOS — aplikaci iPhone Multitasker. Zacinajici
uzivatel bude mit zakladni znalosti o tom, jak se od zakladu vytvaii nativni aplikace pro i OS.
Prace také vysvétluje, jak byla vytvorena mobilni aplikace Multitasker pomoci programovaciho
jazyka Swift. Pfedméty zahrnuté v literarni studii ukazuji, Ze je jist€ mozné vytvorit aplikaci pro

108 podle uzivatelskych pfiruc¢ek a navodu na programovani 10S.

Klicova slova: iOS, mobilnf{ aplikace, Swift, iPhone, XCode, programovani.

Contents

1.
2.
3.

4.

INETOAUCTION .. ccvee ettt ettt ettt et eaee e eat e s st e s s aeesa st e sa bt e s bs e eas s e eaee s ebee s bs e e sse e e e se e s se e bt e bt e e bt e e s 10
Objectives and Methodology of the thesis. ..ot 11
Part 1- Literature REVIEWccocuiiruuiiiiieiieeeie ettt ettt a e be e sbe e sbe e bbb 12
3.1 Why Develop MODILE ADPDS ...ccoiiiiiiiiiiiiieiteiiiitee s 12
3.1.1 INCTEase DUSINESS TEVEIMUEecververireriiesieeeieteetestestt ittt esr et sbe b besbe s e beesbeess et e senteene s 12
3.1.2 Reduce mMarketing COSt.....c.uimiriiminiiiiniiiiiieie ittt e s e s 12
3.13 Improved CUSLOMET EXPETIEIICEcviviiiiriiniire ittt ettt st sttt e 12
3.14 Get @ COMPELILIVE EAZE....c.evvirveuieiiiiiiiiti it e 13
3.15 Broaden YOUT USET DASEc..ccueuieuiuiiiiiiiiiiiiiite ettt s 13
3.1.6 AT and 1atest PRONE SENSOLS.......cocueutirierririiiiiiiiit ittt 13
3.2 HiStory Of iPRONEScovuiiiiiiiiiiiiie i 13
3.3 Mobile OS Market SHATec.coviueiriieriieiiieeiieeictie e 16
3.4 i0S Application LIfECYCIEccoviiiiiiimiiiiiiiiiiie 20
34.1 Life Cycle based on State Management............cocveviiieiieininienies sttt 20
3.4.2 Life Cycle based on Framework methods.............ooeiiiiiniiiiii 22
3.5 Drawbacks Of MODIIE APPS .veveeverreriruieieriiiie ittt st ettt st s es et et st 24
3.5.1 Mobile apps cannot replace a WEbSItE.........oveiiiiriiiiiiiiiiiie e 24
352 Developing for Both Android and i0Sooooiiiiiiiiii 24
353 Listing for Both Apple and Go0ogle STOTES..........cooviiiiiiiiiiriiiie e 25
354 Other DIaWDACKS.ecieiieiienieerieeie ettt ettt e s eae e ae e e b e ste bt nae s 25
3.6 Types Of MODILE APPS ..ccuveviiiiiiiiiiiiiitiiiiet et 27
3.6.1 INGLIVE APPS wevveventenertirteiteitit ittt ettt et sttt bbb bt bbb bttt ettt st et 28
3.6.2 WED ADDS. ettt ettt ettt st s e s e e b e 29
3.63 HYDIIA APPS coveveneeiitinieie ettt ettt sttt s s e e 31
3.7 i0S Native Development Vs Flutter Vs React Nativec.cooiiiviiiiiiinienc 32
3.7.1 Installation & ATCRItECTUTE.....c.eevverutirie ittt 32
372 USET INEETTACEcvvviee ettt ettt sttt et st b st es 33
3.7.3 APP REIOAAING ...ttt s e 33
3.74 CI/CD TNEEZIALION ..ttt ettt ettt sttt sttt s 34
3.7.5 Size of Application Build...........cccovuiiiiiiiiiiiiii 34
Part 2 — Development of Multitasker appccocooieiiiiiiniiiii i 35
4.1 Introduction tO XCOMEcccuvervreriierie ettt ettt s s be e st bbb 35
4.2 INtroduction tO SWitl......cceeeiueriiieriierie ettt e e 38

4.2.1 O UT S et e eeeeeeeeeeeeeee e e e e e e e e e e aaeeabaeeeseeaaesaeeeaaeaeaeeaaeeaas saasssssasssasaesbbeebaeaeesbeeeseeeessessnsensnns 38

422 Tuples and multiple return VAlUESccooevveiiiiiiiiiie it 39
423 GIENETICS .vvvevveeirerieeteeeteeeeeeate et et et et e e s bt eue e eaee eate st e b saae s aeeae s eae e easeas s eabesbe s b e ebsseseen e entesnnens 39
424 C1aSS ANA SLIUCES ...eveievieeiietietesteste et sttt cte sttt ea et eae e re e et et b e sbe s e be s beeseesasessnensaense s 40
4.2.5 EXTENSIONSvevietiietieeetetiete e et et et st et et ebesaa e sas bt sas e s e e be s be e b beebe s ebe e sss e s sebesse s e sne s 41

4.3 Built in Error Handling in SWiftc..cocoiiiiiiiiii 43
4.3.1 Throws and TRIOWcccuveiierierrieniieree sttt ettt sne st ae s 44
432 TV, AO-CALCH ...ttt e 45
433 TIY? ANA IEY! ot s 46

4.4 Common mistakes made by sWift deVElOPErS..........ccviviiiiiiiiiiiiiiiii 46
4.4.1 Unwrapping OPLioNALSceeveiiiiiiiiiiiieniee e e 47
442 To0 much use Of SElf KEYWOTdcc.ueviiriiiiiiiiiiiiiic i 48
443 Not using new features like Generics, Protocol Oriented Programming, Enums etc. 48
444 Not using functional programming features in SWift ..o 48

4.5 TeStFIGNt DY APPLE c.eecuieiiiieiieiieie et s s s 49
4.5.1 Benefits of Conducting TestFIIght........cccccoeviiiiiiiiiiiiie 49
452 The Pre-Requisites of TestFlight Beta TeStingccoovveviviiiiiiiiniiiie e 49

4.6 Design Patterns Used N 10S APD ...coveuiiiiiiiiiiiiiiiie e 50
4.6.1 MVVM (Model - View — View Model)......cccccerveriviriniiiiiiiiiiiiiiiiiiiiccne e 50
4.6.2 MV C (Model — ViEW — CONLTOLIET) ..eovveeiiieiiieiie ettt s 50

4.7 Technical Details of Multitasker MOdUles..........c.ccoouiiiiiiniiiniiii e 51
4.7.1 Details Of PHSEANTO..c..cuiviiieiiriiieiieiei i 53
4.7.2 Source Code ManagemeNntcocceeueviviiiiiiiiiiiiit ettt e 54

5. How Did I Develop Multitasker i0S APD.......ccccivuirimiimiiiiiiitieieieiiee e 55
5.1 Introduction to Multitasker appliCation............ccoeeuiiiiiiiiiiiiniiiiiee e 55
5.2 Application SCIEENSNOLS.......coiiiiiiiiiiiiiiitete e 57
5.3 Storyboard & Technical COMPONENLS........c.ciuiiiiiiiiiiiriniesiis s 68
5.4 UILComponents uSed il APP ...ccoveuiriiiiiiiiiiiitii ettt e 81
5.5 Errors faced during developmentcouiiiiiiiiiiiiiiiniiiiiie e 82
5.6 Used Hardware & SOLEWAIEcccveeieriieriierieesieeiieeie ettt sttt et sbe s se e sae e s 88
6. FULUTE VISION .evviiiiieieiiee ettt ettt ettt et e e e st st sat e et e e e e e asbeeabbeeabe s eabeaesbaesabessabesuste st tenaas 90
T CONCIUSION ...t eieete ettt ettt ettt et eb et aa e st b e b e e be e bt e eas e e as e b e s b e b e e b e e st sbe e sht et en e n e 91
8. List of Figures Used in this DOCUMENLccooiiiiiiiiiiiiii i 92
9. Abbreviations/Acronyms USEd..........cocuevuiiriiiiiiiiiiiiiiiiicie s 94
LO. RETEIEICES ...cuvvievieeteetieeteeeteet et etesstestbesteeshees bt eate st e s e aeesbe s saeeas s ebe s sasens s eae s be e b beebs s ebeesssesbesabeste s bete s 95

Introduction

The recent technology advancements have a great impact on the mobile phones. With the
advent of latest inexpensive chipsets in phones and modern phone sensors have changed
the way people use their phones. With every passing day, the number of mobile apps is
increasing as well as the number of consumers who use those applications. The arrival of
Al and machine learning into the mobile phones has also increased the role of mobile
phone apps in our everyday life.

Technology companies are also progressing in terms of ease and simplicity in software
development of mobile apps. Cross platform applications are slowly making their way
into the mobile market and giving tough competition to native iOS and android. The
frameworks and to tools to develop mobile apps are also becoming simpler day by day.
The thesis serves a basic information frame for developing a native iphone application
using swift language. It should serve as quick basic guide for new iOS developers.
Although this thesis has covered all the major topics needed to develop an iOS
application, however, due to practical nature of iOS mobile app development, this
document should not be considered a full fledge step by step guide for developing an i0OS

application.

10

Objectives and Methodology of the thesis

The main goal of this thesis is to demonstrate how to create a user-friendly and fully
functional iOS native application — a Multitasker app for the iPhone. This thesis will
increase awareness about efficient mobile app development in i0S, the XCode interface
and the Swift programming language. After reading this thesis, a beginner 10S developer
should be in a position to create small but fully functional iOS application using Swift

and XCode.

The diploma thesis is divided into two main parts. The first one is literature review,
which is based on an analysis of secondary data sources, programming language
documentations, including a professional literature, online blog articles, Internet
publications about developing iOS mobile applications and documents about mobile

technology.

The second section demonstrates the development of Multitasker application. Thesis will
go through all the practical aspects of how the application was developed. It will also
explain various sections of the application, technical details, what configuration was used
etc. After going through this section, a beginner user will get the basic idea of how a

native 10S application is developed from scratch.

11

3. Part 1- Literature Review

3.1 Why Develop Mobile Apps

Mobile applications deliver lot of value and business advantage as compared to web
applications. Yes, there are certain use cases where mobile app may not be a perfect
replacement of a web application. However, in most cases, mobile app complement web
application to attract more customers and add revenue. As discussed at (matchboard,

n.d.), mobile app delivers following advantages:

3.1.1 Increase business revenue
Mobile apps bring additional revenue in following ways:

e With mobile apps, there are more chances of repeat order. This is because
customer is almost always carrying the phone and it is very easy to place order on
the go.

e Company can take advantage from a new advertising revenue channel through
mobile application

e Features like in-app purchase, premium features, ads etc. also contribute to

increased revenue

3.1.2 Reduce marketing cost
Take the example of push notification to a mobile app user when he is near to his
favorite restaurant. Traditional marketing would have costed more as compared to push

notifications for example. This reduces the overall marketing cost.

3.1.3 Improved customer experience

Mobile apps are purposely built for handheld devices, so they offer much better UI/UX
experience as compared to a traditional web application which struggles on small
devices. Also, the customized experience based on the phone features or latest high-
tech sensors creates a bond between mobile app and the consumer. Take the example of
Uber mobile app. The latest location of car moving towards you is an example of an

excellent customer experience.

12

3.14

3.1.5

3.1.6

Get a competitive edge

If your business belongs to a particular niche and your competitors do not have a
mobile app, then developing a mobile app will offer great advantage over your
competitors. Even if your competitors have mobile apps, then you can create a mobile
app containing the various different features which are present in other mobile apps but

not in one place.

Broaden your user base

Young consumers prefer to use mobile app instead of a web application. Not having a
mobile application for your business will be losing the revenue from these consumers.
Mobile application will never decrease your user base; it will always increase it. The

millennials are major target user group of the mobile apps.

Al and latest phone sensors

The introduction of Machine learning and latest phone sensors have changed the way
people use mobile phones. Take the example of Fall detect feature from (Apple, n.d.),
the apple watch detects if person has fallen, and it generates an emergency SOS
message to the contacts in the watch. Similarly, the trend in latest fitness trackers and
mobile wearable has improved the quality of health of many consumers. The latest
wearables offer highly complex medical features like Oxygen saturation level, ECG,

blood pressure etc.

3.2 History of iPhones

Apple iPhones has evolved over the years. (Jones, 2022) and (Verizon, n.d.) has
discussed the history of iPhones in detail. Find below a quick overview of history of

iPhones.

June 2007: The first-generation iPhone is launched

The first iPhone was announced in January 2007, the original iPhone was launched as a
combination of iPod, a revolutionary mobile phone and a groundbreaking Internet
communicator. It featured a 3.5-inch screen, a multi-touch touchscreen displays, a

microphone and headset controls.

13

July 2008: The first phone to beat the iPhone

Around a year after the first iPhone, iPhone 3G hit the market as its successor. It
included various new hardware features like 3G data and GPS, but perhaps most
notable introduction was launch of Apple Store. Apple store allowed users to browse
and download millions of third-party applications

This iPhone 3G addressed the two main issues of the previous iPhone: cost and

inability to access the high-speed cell phone networks.

June 2010: iPhone 4

[Phone 4 introduced a high-resolution retina display, multi-tasking feature and
FaceTime. It was the first phone in which front facing camera was introduced by
Apple. iPhone 4 was an excellent combo of software, hardware, performance, app

selection etc.

October 2011: iPhone 5

Iphone 5 was launched in stores in September 2012. The “s” in iPhone 4S stands for
Siri, Apple’s first intelligent personal assistant introduced at the time of the 4s.

It also introduced i0OS 5, brought along iMessage, iCloud and Notification Center along
with other notable features. 1Phone 4s also housed Apple’s first 8-megapixel camera

with 1080p video recording.

September 2014: Introduction of Plus size models

Two years after iOS 5 was released, Apple added 2 new models to the series. iPhones 6
and 6 Plus brought along faster processors, better cameras, and improved cell data
connectivity. The 7 and 7 Plus added new color options and added water and dust

resistance. The 3.5mm headphone jack was also removed with these models.

September 2017: iPhone 8 and 8 plus

The iPhone 8 and 8 Plus introduced wireless charging with the glass cover on the back
of the iPhone. It brought in a much-improved camera with better tools for editing and
filtering images. The true tone displays greatly improved the viewing experience by

automatically reducing the blue light exposure.

14

November 2017: iPhone X

[Phone X was a revolutionary introduction by Apple. iPhone X brought in dual front
facing cameras through which consumers could take amazing selfies in Portrait mode.
It was the first time, an Apple phone included Portrait mode for the front-facing
camera. Some of the other super features included OLED screen technology, wireless

charging, FacelD, Digital image stabilization, optical image stabilization etc.

September 2018: iPhone XS and XS Max

Apple introduced three new models: iPhone XS, iPhone XS Max and iPhone XR. Some
of the cool features XS and XS Max brought, were faster Face ID, super retina in two
sizes, largest display ever on iPhone, and a revolutionary dual-camera system.

iPhone XR was housed with a Liquid Retina display, which facilitated users to view
true-to-life color from one edge of your screen to the other and that too on the largest

LCD ever for an iPhone.

October 2020: iPhone 12

iPhone 12 had exactly the same features as the iPhone 12 mini, except that it claimed to
have a 16-hour video playback compared to the iPhone 12 mini's 14 hours. This model
also featured the dual-lens camera, 5G support, ceramic shield, A14 bionic chip, 16
core neural engine and exceptional battery life.

In the imaging department, iPhone 12 introduced an Ultra-Wide camera that captured

Night mode images and a Wide camera that now captured 27% more light.

September 14, 2021: iPhone 13

The iPhone 13 introduced a 20% smaller notch, accompanied by a new camera layout.
It runs on new A 15 chip, which is much improved version over the previous generation
of iPhones. Its camera brought some significant improvements including cinematic
mode and photographic Styles. Excellent battery life and cost were some of the other

salient features.

15

September 24, 2021: iPhone 13 Pro Max
The iPhone 13 Pro Max is one step ahead of iPhone 13 Pro. It added an additional GPU

bringing it to total 5. Apple claims that the battery is able to support up to 28 hours of

non-stop video playback.

iPhone 4, 4S iPhone 5, SE iPhone 7, 8 iPhone 7 Plus, 8 Plus iPhone X, Xs iPhone Xs Max iPhone Xn

480 pts 568 pts 667 pts 4 812 pts 896 pts !?96 pts
B ok 1136 pixets) (1334 pinels " sl i 2688 piuat) (1792 pixets)
320 pts
(640 piels) 320 pts 375 pts 414 pts 375 pts 414 pts 414 pts
640 puxeiy e e prepmemmmny Il B YT B purels

Figure 1 - History of iPhones (Source (Proulx, n.d.))

3.3 Mobile OS Market Share

The market share of mobile operating systems has varied in last 20 years. There was a
time when Apple was the sole leader, however, Android caught up with iPhone pretty
fast. Find below a brief report on mobile OS market share based on the statistics from

(Wise, 2022) and (7t.co, n.d.)

Find below an overview of Mobile OS market share from Jan 2012 to May 2021.

16

Market share

% L L LR ST
! lnnmm
i i Ml ““|||||\||\

0%
RNV ZRNC BN VN TN RN RN SN SV RN TN PN RN SN SEPN SN N RN TS N T T S I\ B i

\'b° \sz?\ R \'zy(\ §v‘\ R \fz? \sz?\ R \'zy(\ §v‘\ R \fz? \sz?\ R \'zy(\ §v‘\ R \fz? \sz?\ R \'zy(\ §v‘\ R \fz? \sz?\ R \'zy(\ §v‘\

@ Android @® ios Kaios @ Windows Phone
@ Series 40 (Nokia)* Symbian OS* @ Samsung @ BlackBerry OS
@ Unknown / Other

Figure 2 - Mobile OS Market Share

Apple phones have a large user base in china and world has seen a huge increase in
Apple phone usage in China recently. Apple was able to capture more than 72% of
China’s market share in the Q1 of 2021. One of the factors which played the role in this
increase was the decline of the top end segment of Huawei phones in the mobile market.

Globally, all Chinese brands are gaining popularity, with Xiaomi making new record

volume this quarter with 86.6%.

17

Mobile Market Share by Brand

Other: 10.55

LG: 1.69

Motorola: 2.21 Samsung: 27.91

Vivo: 4.59 T

Oppo: 5.61 __.
Huawei: 7.9 /'

Xiaomi: 11.38 /

\

Samsung [Apple M Xiaomi M Huawei [l Oppo [vivo [l Motorola

Apple: 26.42

Figure 3 - Mobile Vendor Market Share

US & UK has more Android users as compared to 10S

LG Other

i0S gained popularity in UK during the Q1 of 2021 with a 53% market share, leaving

Android behind.

At the same time, Android is trailing in USA with just 38% market share during the Q1

of 2021. User of US and UK like Android more than iOS clearly.
Find below a graph of UK smartphone users, both android and 10S.

18

UK Smartphone Users, Android vs. iPhone,

2020-2023
millions
30.2
29.6
28.0 289
19.3
2020 2021 2022 2023

M Android W iOS

Maote: individuals of any age who own at least one smartphone and use the smartphone(s) at
least once par month
Source: eMarketer, Feb 2021

263434 eMarketar | Insidarintelligence.com

Figure 4 - Android vs iOS Market Share UK

10S has 16.76% Market Share During Q1 of 2021

Although the devices produced by Apple are high quality they offer lot of diversity like
iPhone, iPad, Apple TV, Apple watch etc. However, the growth of Apple products is not
as fast as Google Android devices; this is because of high price of apple devices as
compared to android and also Apple is considered slightly difficult to be handled by
common people.

According to the statistics, 10S showed a decline of 14% from 2015 to 2020. It is
believed that this decline is the aftereffect of the competition between Chinese rivals

Xiaomi and Huawei.

10S Devices Gained a 50.4% Year-over-Year Increase during Q1 of 2021

In 2020, Apple shipped 206.1 million iPhone units, which is 7.9 percent more compared
to the previous year. Not only that, but they also managed to distribute 55.2 million
devices in the market during the first quarter of 2021, gaining a 50.4 percent year-over-

year increase.

19

19.3% Market Share in China

3.4

3.4.1

With a 19.3% market share, iPhone got more than twice the market share compared to the
previous year, which is huge growth. The main rivals for iPhone in the Chinese market
are Xiaomi and Huawei. IPhone sales have dropped from 71 million to 34 million during

2015-2020. Similarly, Q1 of 2021 saw a 13% drop in iPhone market share.

10S Application Lifecycle

Understanding of i0S application life cycle is basis for developing good i0S
applications. Let’s divide the application life cycle in two parts. The first one will focus
on life cycle based on the state management. While the second part will focus on, which
methods will be called on various events in the application. To grasp the concept of life

cycle in 108, inspiration was taken from (Ramnath, 2014, p. 138)

Life Cycle based on State Management
Every i0S application goes through the following states whether it is developed in Swift
or in Objective-C:

1. Not Running

2. In-active

3. Active

4. Background
5. Suspended

20

Launch Screen Ul App Ul

. —»||Unattached || Foreground | ----- = || Foreground
Inactive Active

(. —>) = — (. —+)
|
® 4 ®
Suspended ||« - - — — » | Background |<——> | Foreground
Inactive

o —————— o ————— - —_——— -

Figure 5 - Life Cycle Management

Not Running (Unattached): Application has not started yet or has been terminated by

user/system.
In-active: The app is just entering the foreground state but cannot process events yet. It
remains in this state for very brief amount of time.
Active: The app enters the foreground state and can process user events. This is the
normal state when application is actively being used by the user.
Background: In this state, the application is in background, but it is executing the code.
Following are some of the scenarios when application will go into background states:

- When user clicks on home screen while using the application

- When application is doing some complex processing and it needs some extra

execution time.
- Just before application goes into suspended state, it also transitions into

background state for a small amount of time.

21

Suspended: In this state, the application goes into the background, and it does not execute
any code. It is sitting idle in memory. It cannot execute any code and is considered
frozen. System will give priority to other apps on foreground. System can terminate an

application in suspended state anytime based on needs.

3.4.2 Life Cycle based on Framework methods
During the life cycle of an application, many iOS methods are called in a particular
sequence and on particular events. (Prasad, 2018) has discussed these methods in detail.

Find below a brief summary of the sequence of these methods along with a visual

description.
Launch Time
[User taps app icon]
{ main()]
[UTApplicationMain()]
{ Load main Ul file]
Your Code
e application:
{ Al i P] {willFinishLaunchingWithOptions:
[Restore Ul state] (Various methods]
[Final initializati] application:
inal initialization J didFinishLaunchingWithOptions:
Running
{ Activate the app] { applicationDidBecomeActive:]
Event
Loop { [Handle events J
[Switch to a different app]

Figure 6 - Life Cycle Methods

22

http://wiT.lFinishLaunchingWithO.pt

application: willFinishLaunchingWithOptions - This is the first method from app

delegate which is called after the application is launched successfully. Your code will be

executed after the successfully launch.

application: didFinishLaunchingWithOptions - This method is called just before the

app’s screen is displayed. You can finalize your interface and can provide the root View

Controller to the window.

applicationDidBecomeActive - There are two scenarios in which this method is called:

a. Itinforms your application that it moved from the inactive to active state

b. User ignores an interrupt e.g., incoming phone call, that sent the application to
inactive state temporarily.

c. The best use case of this method is to resume any tasks that were paused (or not yet
started) because the app had gone to inactive state.

applicationWillResignActive - This method is almost opposite to above method. This

method informs your application that it is going to move from active to inactive state.

This can happen in following cases:

a. If the user quits the application

b. In case of any interruption like a phone call alert

c. The best use case for this method to pause any ongoing tasks or disable alarms etc.

applicationDidEnterBackground - This method is called when there is a brief period of

inactivity on the application. It informs your app that it is not running in the foreground.

You have around five seconds to perform any action and return back. Your application

will be terminated by system if you do not perform any activity during that time.

applicationWillEnterForeground - This method is called when app is doing a transition

from background state to active state. The best use case for this method is to undo any

changes you made to your app upon entering the background

state. applicationDidBecomeActive method is called immediately after this method has

finished its execution. After that, it transitions the app from inactive to active state.

applicationWillTerminate - This method is called to inform that your app is just going to

be terminated. The best use case for this method is to perform any final cleanup tasks.

You have around five seconds to perform any action and return back. System may kill the

process if the method does not return before this time expires. This method may also be

23

3.5

3.5.1

3.5.2

called in scenarios where the app is running in the background state and system needs to
terminate it for memory or other reasons. You shouldn’t rely
on applicationWillTerminate to be called in order to perform your mission critical tasks.
There are few scenarios when applicationWillTerminate will not be called at all before
app termination. One of the examples is, the system will not

call applicationWillTerminate when the device is restarted.

Drawbacks of Mobile Apps

As mentioned in (Mariana, 2020), Although the mobile application market is still going
strong and new apps are constantly being added to both Google and Apple stores,
however there is also a trend that users are gradually declining to install new apps to their
phones. It is true that there are other alternates of mobile apps in market, including the
Progressive Web Apps (PWA) however, there are certain factors which limit the potential

of mobile apps. Find below some of the disadvantages of mobile apps:

Mobile apps cannot replace a website

Native applications are a great tool for many businesses to engage customers by
providing rewards programs, shopping applications, location finders, and more. Other
companies are built entirely around a native application that is core of their business —
and this can be a game, a utility, a tool like the Uber, or another form of
entertainment. However, no matter what the use case for a native application, a successful
business always needs a website too. So planning, building, and creating both a website
and a mobile application is double the effort. And of course, double the money! That’s
one of the drawbacks of mobile apps that not all businesses can overcome. Certain apps
which require large screen to operate, including the drag and drop Ul widgets, managing
a visual seat booking plan etc., these are example use cases for which a web application is

a better choice as compared to a mobile app.

Developing for Both Android and i0S

To take maximum advantage of mobile applications, you will have to develop a native

application for Android and a separate one for iOS, and even for Microsoft store as well

24

3.5.3

3.54

if your application supports desktop application too. Although you have option to go for
the famous hybrid approach which is cross platform mobile application development, but
you lose some of the benefits of native application development. This doubled cost will

be a major factor in deciding whether you can go for native mobile application or not.
Listing for Both Apple and Google Stores

Whether you develop your application in native or in cross platform like reactNative, you
will need not only to compile and build both types of apps on their native hardware
(MacOS for iOS build), but you will also need to submit both apps to their respective
stores. And Google might be a little forgiving in terms of application acceptance, Apple
is not. Apple has strict rules for accepting applications into their Apple store. They have
strong and comprehensive guidelines for accepting application into their store. It will
need effort, knowledge, skill, and little bit cost to successfully get your application into

Apple store.
Other Drawbacks

Compared to a website, which can be presented by just a URL, mobile app presentation
to stakeholders for testing is not as easy. Yes, there are solution available like Diawi or
Apple’s test flight but there have always been technical challenges in adopting these
technologies. Take the example of distributing iOS build. If the application is under
development and you want to distribute it to many persons for testing, you cannot do it
without using test flight, or you have to include the device UUID of every person in the
10S build. That is a big hassle compared to a website testing through just a URL.

It is not just about investing in development of website or a native mobile application.
Both it also needs to be updated regularly and as needed whenever there is a product or
change in platform libraries/SDK. Consider the Android and iOS updates, and that could
be three different developers who need to be tasked with three sets of updates. Not only
that, but application stores take time to approve updated applications and for consumers
to benefit from an update, they must either download software updates or re-download an

entire application.

25

There would have been many times, when you could not update your iOS mobile app on
Apple store just because Apple wants you to accept an updated license agreement. Unless
and until you visit the Apple iTunes, website and accept the new license agreement you
cannot manage your application on store.

Undoubtedly, one of the biggest disadvantages of mobile apps is that their content is not
indexed by search engines. It means they can’t be optimized for organic traffic — and
consequently, users won’t be able to find your app through Google or any other search
engine. Bots or crawlers cannot find your mobile application. As a result, driving traffic
to a mobile application comes from mainly the marketing efforts of the application link,
and store listings only. This is different than the website, where a website properly
configured for SEO can be found by crawlers and will be indexed by search engines
almost automatically.

Most of the mobile applications submitted to app stores, never make to their first
download. Without downloads, consumer reviews to improve ratings and positioning are
not possible, leading to a vicious cycle of no downloads, no reviews, no visibility, and
again — no downloads. If marketing efforts fail or there is not enough budget to drive
visitors to an application store link, a new application could fall through the cracks.

The chart below illustrates the potential dropout rate and point of drop-out of 1,000
consumer clicks that could result in an application download. Out of 1,000 prospective
consumers, only 800 will actually land on the app store, only 640 will successfully find
an application of their choice, more will abandon at the “Accept Permissions” stage,

and only 262 out of 1,000 are likely to use an application.

Start With 1000 Patential App Downloads

Load Store BOD
Firid In Stora G40
Click Install 512
Four Businesy -
dcceptl Permissions 410
Dovsnload 38
‘ ‘ Usep App 2632

Figure 7 - Mobile App Usage (Mariana, 2020)

26

3.6

With the passage of time, many consumers around the world are less inclined to
download new applications, preferring instead to conserve their device storage, even
though the phone storage is becoming cheaper with the advancement in phone hardware.
According to Zipwhip 2019 State of Texting Report, around 61% of consumers will not
install a new application at all, this is a big number.

Although the focus of the report is, the use of applications for communication, its
findings indicate a growing consumer trend. Zipwhip believes, a typical user struggles
with data management and 21% of consumers abandon new applications after their first
download. Not only that, a more than 76% of consumers will never use an application

again 3 days after installing it.

Types of Mobile Apps

Mobile application development has come a long way during last 10 years. There was
time where only native mobile application existed. Then came the hybrid apps with
PhoneGap and other hybrid mobile app development frameworks. ReactNative and
flutter gained lot of popularity for cross platform mobile application development.
Another rather simple and easy way of mobile apps was progress web apps (PWA). Find
below we will discuss various types of mobile applications and what purpose do they
serve.

According to (Valdellon, n.d.) There are three basic types of mobile apps based on the
technology and how we code the apps:

1. Native apps are developed specifically for one platform or operating system.

2. Web applications are responsive versions of websites that can work on any
mobile device or operating system as they are rendered using the mobile phone
browser.

3. Hybrid or cross platform appsare combination of both native and web
applications, but wrapped within a native app, which makes it capable of having
its own icon or available on app store. Hybrid app is basically another layer

built on top of native application backbone.

27

3.6.1 Native Apps

Native mobile applications are called native because they are developed for native
operating system of a mobile device whether it is a phone, tablet, or a wearable. It is
perfectly fine to develop an android native application as well as native iOS application,
however both must be developed separately having their separate codebase. Since they
are developed targeting just one platform, you cannot mix both. i.e., you cannot use an

android application on apple phone and vice versa.

Technology Used: Native apps are developed using various different programming

languages. Some examples include: Kotlin, Java, Swift, Objective-C, React, C++ etc.

Pros: Native apps are generally faster, and they have much better performance as
compared to non-native apps. This is because they are closer to device’s native operating
system. They use mobile device’s resources more efficiently as compared to other types
of apps. Also, Native apps utilize the native device user interface, giving users a much
smoother and elegant user experience. And because the native apps connect with device’s
hardware directly without any intermediate layer, they can take advantage of device’s

features like GPS, Bluetooth, phonebook contacts, camera roll, NFC etc.

Cons: As the native app is specific to one platform so you have to double the efforts to
make it available to another platform. The code you write for one platform cannot be
reused on another platform at all. This has impact on the costs. On top of that, one has to
put efforts to maintain and update the codebase for each version. Last but not least,
whenever there is an update to the app, the user has to download the new version and
reinstall on the phone. This also means that native apps occupy more space in the

device’s storage.

28

NATIVE APPS

TECHNOLOGY USED
Java, Kotlin, Python, Swift, Objective C, etc.

®

—~
Faster, better @ Higher cost to
performance maintain

Q) Native Ul (E Takes up space

in the device

(3 Can{access 3 Updates must
— device features be downloaded

Figure 8 - Pros and Cons of Native Apps

3.6.2 Web Apps

Web apps operate similarly to native apps but are accessed through your mobile device’s
web browser. They are actually responsive websites that adjust its user interface
according to the screen size, aspect ratio and the device the user is on. In fact, when a
user comes across the option to “install” a web application, the URL of the website
simple added as a bookmark on your device.

A recent progress in mobile web apps is the progressive web app (PWA), which is
basically a native app running inside a browser. An icon is placed on the mobile app

desktop through which user can access this web app.

Technologies Used: As they are web apps, so they are developed using HTMLS, CSS,

JavaScript, Python, and similar programming languages used for web development.

29

Pros: Since it is web-based, so you do not need to customize it for a particular platform or
operating system. This reduces the development costs. Not to mention, you do not have
to go to app store and download anything. Also, it will not take up space on your device’s

memory like a native application does. That makes maintenance much easier as well.

Cons: As the web application runs in the browser, that means, the cross-browser
compatibility will be an issue. There will be some features of HTML or CSS which will
be available in one browser perfectly, however the same feature might not work properly
on another browser on same phone. Also, unlike the native apps which can run in offline
mode, the web apps cannot work offline. They are just shells for website, so they do not

have capability to work offline.

WEB APPS

TECHNOLOGY USED
HTMLS, CSS, JavaScript, Ruby, etc.

®

1 Web-based so 1 Dependent on a
performs on all browser
devices

2) N Needs an internet
Easier to maintain connection

3 Users don’t run May not always integrate
out of storage with device hardware

Figure 9 - Pros and Cons of Web Apps

30

3.6.3 Hybrid Apps
Hybrid apps have come a long way. In the early stages of hybrid apps, the strong

integration with hardware was missing. Using features of phone camera, GPS, Bluetooth
was not easy. However, with the passage of time, the gap between hybrid apps and native
apps reduced. Hybrid apps are web apps that look and feel just like native apps. In fact, a
non-technical user might not be able to confirm if this is a native app or hybrid app. They
have all the features which hybrid apps have, like, home screen, app icon, responsive
design, fast performance, offline mode etc. but actually they are web applications which
are developed to look like native apps.

Latest advancement like Xamarin and flutter has changed the way hybrid apps are
developed. It is one step forward towards closing the gap between hybrid mobile apps

and native apps.

Technology Used: Hybrid apps use a mixture of web technologies and native APIs.

They’re developed using: React, C#, Dart, Swift, HTMLS, and others.

Pros: Development of a hybrid application is faster and more economical than a native
app. A hybrid app is a perfect use case for developing an MVP (minimum viable product)
of a product. If you need quick turnaround time to develop an app and to showcase it to
investors, hybrid app is your way to go. They also load rapidly, and they are ideal for
usage in countries with slower internet connections. They give users a consistent user
experience, although they might lack the finesse in animations etc. Also, because they use

a single codebase, there is much less code to maintain.

Cons: Hybrid apps might lack in power and speed, which is a common drawback across
all hybrid apps. Since they are relatively new in the market, so there is also lack of
support for integration with 3 party SDK’s or API’s. If you prefer a high-quality
application having complex integrations, then hybrid app is not the best choice. Note that
hybrid apps are one layer on top of the native platform, so it might not run as smoothly as

the native apps do, however this difference will be minimal in small, simple applications.

31

3.7

3.7.1

HYBRID APPS

TECHNOLOGY USED
lonic, Objective C, Swift, HTMLS5, etc.

®

Quicker/cheaper @ Lacks power of
to build native apps

@ Load quickl @ Slower since it has to
q Y download each element

Less code to Certain features might
maintain

not be usable on devices

Figure 10 - Pros and Cons of Hybrid Apps

10S Native Development Vs Flutter Vs React Native

Cross platform application development has come a long way. React Native and Flutter
are two of the most popular choices for developing cross platform hybrid applications.
Both have their pros and cons. As discussed in (Sharma, 2021), Here is a brief

comparison of these three options:

Installation & Architecture

After Apple launched the swift language, developing native iOS applications has become
more exciting. Swift is a versatile, fast, and type-safe programming language. In order to
develop an iOS app, all you need to do is, download and install XCode as the IDE and
install i0OS SDK for development. Swift provides a wide range of interesting features to
developers, and it is used not only for iphone and iPad app development but also for
development of apple watches, apple TV etc. Every Apple device e.g., Apple TV,

watches, iPod, iPad etc. uses an application developed in swift.

32

3.7.2

3.7.3

React Native is an open-source cross platform mobile application framework created by
Facebook. It comes under the category of hybrid mobile app development platform. It is
used to develop iOS and Android apps using the single code base. React Native use
JavaScript, HTML and CSS for development. React Native is an extra layer on top of the
native i0OS platform, it creates a bridge to communicate between native iOS and

JavaScript. Json messages are used to carry out this communication.

Flutter is an open-source, cross platform mobile platform from Google. Just like react
native, it can be used to develop iOS and Android apps from the single code base instead
of maintaining two separate code bases. Flutter uses Dart language which is gaining
popularity due to its powerful features, ease of use and it is also based on OOPS
principles. The good thing about Flutter is, that it does not require the bridging concept to
communicate with native components as it already contains everything inside it. Not only

that, but it also provides full support to native features.

User Interface

As discussed in (Langer, 2012, p. 24), User interface plays a prominent role in any
business application and proper business analysis of target business audience is very
important. Although using the bridging concept, you can develop native Ul easily and
react native also provides few native UI features. However, sometimes it becomes
difficult to replicate complex native Ul components.

Whereas Flutter provides a UI package which facilitates in using native UI features and
develop application having good user experience. Native iOS outperforms both flutter

and react native when it comes to complex UI components like animations.

App Reloading

Reloading the app is very easy using SwiftUL. And developers can use non-native
solutions to add new functionalities as well.

React Native uses hot reloading to update the changes in hybrid application. React Native
uses virtual DOM which compares the current changes with last changes and updates

only latest changes in code.

33

3.7.4

3.7.5

Like React Native, Dart also uses hot reload feature, and it is considered even faster when

incorporating changes in your code.

CI/CD Integration

For CI/CD integration, we use tools and libraries specific to each development
framework. For swift, we use either Fastlane or Jenkins to automate the build and
integration process. React Native can also make use of Jenkins or Fastlane.

Flutter framework uses Nevercode that uses Codemagic CI/CD tool for implementation

of continuous integration and continuous deployment.

Size of Application Build

Swift based i0S app size is usually smaller because it uses built-in tools and libraries for
most of the work. For React Native, app size is little bit more than Swift because React
Native makes use of lot of third-party libraries. Flutter iOS app is even more than React

Native & Swift due to the size of Dart Engine.

T o e

Performance Better Good “
Compatibility & features Better Good “

Time to market Better “ Good
Engineering cost Better Good

Figure 11 - Comparison of Flutter Vs React Native Vs Native

Source: https://nix-united.com/blog/flutter-vs-react-native/

34

https://nix-united.com/blog/flutter-vs-react-native/

Part 2 — Development of Multitasker app

Introduction to XCode
XCode is the default IDE for developing mobile applications in swift. Since its launch in
2003, it is the first choice for iOS native development among the beginners and veterans
alike. XCode is a tool through which developers create applications for different apple
platforms like iPhone, iPad, Apple TV, and apple wearables.
Before swift programming language came into being, Objective-C language was used to
develop applications through XCode. However, after swift’s launch in 2014, Objective-C
is not used in any new application development. There are many legacy iOS apps, which
were developed on Objective-C, and they are still in use.
According to (softwaretestinghelp, n.d.) , Through XCode, developers can develop a
complete application from scratch and submit it to Apple store. Here are some of the core
features of XCode which are used by developers every day:

e Designing user interface

e Writing application code

e Compiling the code and resolving any compilation errors

e Testing the code

e Deploying the application to simulator

e Submit the application to apple store
Following are the minimum requirements which must be met in order to download and
use the XCode.

1. Minimum macOS version i.e., macOS Big Sur 11.3

2. Minimum SDK’s i.e., i0S 15.2, macOS 12.1, tvOS 15.2, watchOS 8.3

3. Supported Swift Versions Swift 4, Swift 4.2, Swift 5.5
Find below minimum the table for minimum requirements, taken from Apple website

(Apple, n.d.)

35

Minimum requirements and supported SDKs

Xcode

Version Minimum OS Required SDK Architecture Deployment Targets Simulator Swift
Xcode 13.2 macOS Big Sur 11.3 i0sS15.2 x86_64 i0S 9-15.2 i0S10.3.1-15.2 Swift 4
macOS 12.1 armv? iPad0Ss 13-15.2 tvOS5 10.2-15.2 Swift 4.2
tv0S 15.2 armv7s macOS 10.8-12.2 watchOS 3.2-8.3 Swift 5.5
watchOS 8.3 armv7k tv0S 9-15.2
Driverkit 21.2 armé4 watchOS 2-8.3
arm64e DriverKit 19-21.2

arm64_32

Figure 12 - XCode Requirements

As mentioned in (Chris, n.d.), XCode is only supported on Mac OS. If you want to

develop iOS applications on Windows OS, then there are few works around options. One

of the workarounds is make use of virtualization (e.g., virtualbox, VMware etc.). Another

option is to rent the Mac online. There are other options too, but these two are the most

commonly used options. Please note that the level of performance, flexibility, reliability,

and ease which is available on Mac OS, is not available on any other OS.

Every new version of XCode brings some exciting new features and XCode 13 is no

exception. (Allen, 2021) has described lot of useful features in XCode 13 and here are

some of the important highlights of this XCode:

- Source Code Editor Improvements

(Hudson, 2021) has discussed that he auto-completion of code editor has improved a lot.

Not only that, XCode is also able to detect if you are trying to unwrap an optional and it

will complete the code block for you, interesting, isn’t it?
Below is an example code block.

Struct CloseContract {

func close(contractld: Int?) {

if let cont

/

/

36

As you’re writing if let contrac, XCode will offer the correct completion: if let contractld
= contractld.

- Design Improvements
XCode 13 brings with itself an improved project navigator design. It now has icons for
different file types and file extension names are not shown by default. This results in a
clean and compact look.

- XCode Cloud
With the rapid growth in devops and continuous integration, XCode cloud is a
remarkable step towards CI/CD. It offers parallel testing across different device types,
automatic push your application to Apple’s test flight so that your builds could be tested
easily.

- DocC
This was a long-awaited feature. Now developers can create the documentation directly
from the code. It improves the user experience of your codebase. Through
DocumentationCompiler(DocC), developers can create not only documentation, but
tutorials and articles for the code base as well. And it has native integration with Apple’s

default documentation viewer too.

Following are some of the common issues faced by junior developers, as mentioned on
Apple website (Apple, n.d.) :

1- If you are unable to grant XCode Cloud access to your code repository, kindly
ensure required permissions are assigned to connect XCode Cloud for your code
repository.

2- If you are facing issues related to dependencies, please make sure to review project
dependencies. If you are using cocoa pods to manage dependencies, ensure you
have committed your Podfile and Podfile.lock files to code repository and installed
CocoaPods correctly.

3- If your build fails with an error about a missing app capability, make sure that your
app ID has all the required capabilities added. This is the same app ID which you

used, when you configured your first XCode Cloud workflow.

37

4.2

4.2.1

4- If you are facing build errors, and you are using new build system, switch to the
default build system and see if it works.
5- Make sure that there is enough free disk space left in the system.

6- Sometimes using “clean” and then build resolves the build issues.

Introduction to Swift

Swift is a powerful language, and it offers some very useful features which facilitates
developers in many aspects. As discussed in (Wilson, 2020) and (Lim, 2020, p. 522),
Some of the salient features include Closures, Tuples, Generics, builtin error handling,

classes/structs. Extensions etc. Let’s discuss these in detail.

Closures

As per (tutlane, n.d.) , Closure is a block of code which is self-contained and can be
passed to another method as parameter. Closures can capture and store a reference to any
constant or variable. Closures are designed for variables and constants; means we assign
the value in it and then pass it to the function parameter.
Swift has introduced a special syntax for passing the closure. It is called trailing closure
syntax. Instead of passing the closure as a parameter, you can pass it right after the
function inside the curly braces (). It's an easy and flexible way for developers, that’s why
more and more developers are adopting this practice.
Generally, in swift, functions are regarded as a special type of closures, and it can take
any one of three forms
e Global Functions: These are considered closures having a name but do not
capture a value.
e Closure Expressions: These are unnamed closures that are written in
lightweight context and can capture values from its surrounding context.
e Nested Functions: These are the types of closured which can capture values
from the functions encapsulated in another function.
Swift has a shortcut syntax that lets you go even shorter. Instead of typing string
(variable) in, we can let Swift provide automatic names for the closure’s parameters.

These are named with a dollar sign and a number starting with 0.

38

4.2.2 Tuples and multiple return values

4.2.3

Although Tuple is not considered as an official collection type by apple, however it is an
important data structure to be used in swift programming. Tuples are the new collection-
like type found in Swift. Tuples fit in on odd place between structs and arrays, but allow
for quite remarkable flexibility in code, especially when returning multiple values in a
function.

Just like an array is a collection type containing elements of the same type, A tuple in
swift is a collection type which contains values of different types. Although This does not
make them an alternate for arrays, but a temporary way of moving several values around
simultaneously. For understanding of Collection types, inspiration was taken from

(raywenderlich.com Team, 2017).

Declaring a tuple is super easy. Here are some examples:

let mySwiftCourse = ("Udemy", 5)

You can add names for the parts of the tuple.

var mySwiftCourse = (vendor:"Udmey",rating:5, complexity:"Easy")

There are various ways to retrieve values from a tuple. One of the easiest ways is to do
the reverse of assigning the tuple, creating two variables with data of the tuple, like
below:

var (vendor,rating) = mySwiftCourse

println("Your course is from \(vendor) having rating of \(rating)")

Generics

As discussed in (Hudson, Pro Swift Break Out of Beginner's Swift, 2016, p. 106),
Generics help you write the code once and then reuse it later. Swift is a type of safe
language which means you need to explicitly specify the type when passing to any
function. If you define a variable of type Integer, then you cannot pass a string to it.
However, sometimes we need to have a function that can handle more than one type, or

we need to work with types which should not be strict, that’s where generics come into

play.

39

http://raywenderlich.com

4.2.4

Let’s take an example based on (hackingwithswift, n.d.), if you have to implement a
specific protocol called XProtocol and you want to create a function that takes few
parameters and it return it. The function below can only work with the XProtocol type.
func hello(first: XProtocol, second: XProtocol) -> XProtocol {
//more code..
i

What if you have a protocol of different type e.g., ZProtocol? then we probably have to
make another function which accepts ZProtocol of as a parameter. This will result in code
repetition, and it is against the DRY (Don’t repeat yourself) code principle. Let’s solve
this problem through generics. Generics allow you to create one single method that is
tailor-made for the type that invokes it. Let’s modify the above example to incorporate
through generics:

function hello<A: XProtocol>(first: A, second: A) -> A {
//more code..
i

In the code above, the placeholder type A is an example of a type parameter. A type
parameter specifies and names a placeholder type and is written immediately after the
function name between the two angle brackets (<A>). So, A will be replaced with

whatever type you pass in at runtime.

Class and Structs
According to (Swanner, 2020), both class and structs(structures) are very similar. They
are basic building blocks of Swift language, and every good swift program is based on
reusable and solid code chunks of class and struct.
Find below some of the similarities between both class and struct.

o They both store values.

o Both allow access across your codebase.

e Both struct and class define initializers.

Both can be extended further in your code.

They comply to standard functionality protocols.

40

4.2.5

Classes are more intelligent and more suited to complex business logic. Whereas structs
are more suited to static logic which will not be modified later. Here are some of the
differences between class and struct:

e C(Class can use make sure of inheritance but struct cannot.

o Classes can use type casting at runtime while struct cannot.

e Classes can make use of de-initializers to free up resources.

e C(Classes allow reference counting for multiple class references.

Here’s an official example of Class and struct from Apple’s Swift website (Apple, n.d.)
struct Resolution {

var width = 0

var height = 0

/

As you can see, the struct contains the static data. Width and height are normal methods
for identifying resolution, and they are stored as variables so they can be altered as
needed later on.

class VideoMode {

var resolution = Resolution()

var interlaced = false

var frameRate = 0.0

var name: String?

/

Now let’s analyze the Class. It is not only accessing struct’s data for resolution but also

adds other features like interlacing, a frame-rate count, name of the apple device etc.

Extensions

As the name suggests, extensions in swift extend the functionality of an existing class,
structure or enumeration type. Please note that you can add type functionality with
extensions, but you cannot override existing functionality with extensions.

According to (tutorialspoint, n.d.), Some of the powerful features of extensions are as

follows:

41

4.2.6

You can add functions and computer properties

You can define instance and type methods

It allows to use new initializers i.e., constructor functions
You can define subscripts with subscript() function

You can define and use new nested types

You can make an existing type conform to a protocol

Extensions are declared with the keyword 'extension'. Here is an example:

extension MyType {

/extend and existing function.

/

Swift UI

Swift Ul is the new framework from Apple, and it was launched with iOS 13. Gradually

it is replacing the previous Ul framework of UIKit. Through SwiftUI, you can design and

developer highly powerful user interfaces declaratively and without the need to write too

much code. Not only the syntax of SwiftUI is easy to understand but you can also

preview SwiftUI project in automatic preview easily.

(steelkiwi Inc, n.d.) and (Yu, 2021) has discussed SwiftUI in detail, here are some of the

core features of SwiftUI are following:

Drag-and-drop components: Using SwiftUI lets you drag a button or other Ul
component from the object library and drop it onto the canvas. Swift Ul will
automatically write the relevant code. This drag-and-drop method even applies to
attributes like font weight etc.

Reusable Ul components: After you have successfully created layouts in SwiftUI,
you can further reuse them anywhere in your application. For example, if you’ve
created a photo album carousal which shows images thumbnail and clicking on a
particular image shows enlarged version of image, that component can be reused
by extracting a new subview.

Vertical-Horizontal-Z Axis Stack: This is an interesting feature of SwiftUL
Through VHZ stack, developers can create complex designs by dragging and

dropping elements to any orientation either vertical or horizontal or even the Z-

42

axis of other elements. It is just like building within rows or columns, with no
manual coding required.

Build across Apple platforms: With the rise in cross platform app development,
this is not a surprising feature. With Swift Ul, it is very easy for developers to
build across Apple platforms like WatchOS, TV OS, and macOS by using the
subview components made in one app across other apps.

You can use a hybrid approach of using both SwiftUl and UIKit using
UlIHostingController.

SwiftUIl provides mechanisms for reactive programming. Developer can use

ObjectBinding, BindableObject and the whole Combine framework.

However, there are some disadvantages of SwiftUI as well. Here are some of those:

4.3

>

Built

As a relatively new entrant, it needs minimum iOS 13 and minimum XCode 11. If
you decide to use SwiftUI then you are abandoning the users of the older versions
of the iOS. But more and more applications are now using SwiftUIl for Ul
development and new apps on apple store are now using it.

As it is relatively new, so the community support is limited as compared to UIKit.
However, the number of SwiftUI posts on Stack overflow are now increasing and
with the passage of time, the support for SwiftUI related issues is growing rapidly.
It is difficult examine the view hierarchy in XCode Previews. In XCode 13,

developers do not have the ability to debug XCode Previews.

in Error Handling in Swift

According to According to (journaldev, n.d.), Error handling is defined as the process of

catching and handling various errors in the application. Swift has robust system of error

handling. Generally speaking, we can divide the errors into three categories:

1-

2-

3-

Informational Errors. Which are intentionally shown to user. E.g., Incorrect
Pin code.

Errors which must be displayed to help other developers e.g., Code merge
errors

Errors which stop application from performing it optimally

43

4.3.1

A basic way to handle errors is to use If else statements but it results in too many nested
conditions and redundant code. Swift treats errors as values of a certain type, however
checked exceptions are not supported in Swift. Find below some of the ways provided by

Swift to handle errors:

Throws and Throw

If a function (or initializer) might throw an error, the throws keyword must be added in
the definition itself right after the brackets and just before the return type. See a simple
example below.
func userTest() throws -> <Return Type> {

/

The throws keyword will propagate the error from the function back to its calling code.
The code which will call this function, must add a try catch block so that it could handle
any error thrown by this function. The keyword throws indicates that this function might
throw an error whereas the keyword throw will actually throw an error.

Let’s look at an example demonstrating throws and throw in a function:

func validateUserName() throws {
if <condition_matches> {
//Add your function code here
/
elsef
throw UserNameError.noSpecialCharaterAllowed
/
/

In Error Handling, guard let is useful in the sense that we can replace the return statement
in the else block with the throwing error. This prevents too many if else conditions. Find
below another simple example:

func validateUser(invoiceCode: Int, accessCode: String) throws {

guard invoiceCode > 0 else{

44

4.3.2

throw UserDetailError.invoiceCodeNotValid

/

guard accessCode.count > 0 else{

throw UserDetailError.accessCodeNotValid

/
/

In the above-mentioned code, if any of the condition becomes true then it will throw an

error and the function would return the control to its calling function.

Try, do-catch

Just like try-catch is used in java and many other languages, Swift uses do-catch block to
handle errors. Each function that has throws keyword must set in the try statement since it
might throw an error.
Note that the try statement will execute only when it is inside the do-catch block. Find
below a brief example:

dof

try userValidate(pin: 0, name: "")

} catch let error {

print("Error: \(error)")

Here is another way to handle it, using multiple catch statements:

dof

try userValidate(pin: 0, name: "")

/

catch UserDetailError.noValidName
{

print("The name is not valid")

45

4.3.3

4.4

catch UserDetailError.noValidpin
{
print("The pin is not valid")
/
catch let error {

print("Unspecified Error: \(error)")
/

Try? and try!

Try? was a relatively new keyword which came with XCode 7. You can user try?
keyword handle errors by converting them into an optional value. As a result, when an
error actually occurs, the function will return a nil which is a valid value for an optional.
That will eliminate the need to add the do-catch block.

Try! is used to declare that the error will not occur. Use it only when you are 100% sure
that the function will not throw an error. Just Like try?, try! works without a do-catch
block. Here is an example of both keywords.

var nl = try? Patient(name: nil)

var n2 = try! Patient (name: "John")

please not that using try! In your code will disable error handling at all and it will stop
propagating the error. If error occurs, the application will crash.
When you use #ry? you are ignoring the actual error which took place. You should use it

in scenarios where overall success or failure is more important than the error itself.

Common mistakes made by swift developers

It is not uncommon for junior developers to face issues when adopting new programming
language. (Agrawal, 2017) has evaluated these issues in detail. Following are some of

the programming mistakes commonly made by developers who are new to swift:

46

4.4.1 Unwrapping Optionals
Forced unwrapping of optional is one of the frequent mistakes by beginner Swift
developers. Optionals are a very powerful feature of Swift. They are just types similar
to int and String. As discussed in detail in (Keur, 2015, p. 87), Optionals are annotated
with a question mark after the type declaration. Here is an example which show how to
declare an optional string:
var swiftVariable: String?
This will let the compiler know that either there can be a valid value or no value at all.
Please note that String and String? Are two different types, they are not just a variation of
same type.
In order to extract the value of an optional, you must first unwrap the optional. There are
many ways of doing this. The incorrect way to do is, is by using the bang operator. The
exclamation sign ! is the bang operator which is used to perform the operation of
unwrapping. The problem occurs, when you try to unwrap an optional which does not
hold a value (nil). This results in crashing your code. Here is an example below:
var xVariable: String?

var yVariable: String = "hello world"

func executeMethod() {
self. yVariable = self.xVariable!

/

In the above example, the app will crash because the value for xVariable was never
defined, and we are trying to assign it to a variable of type String. This kills the whole

purpose of optionals, which were introduced to protect from errors like this!
Here is one of the correct ways to do it.
var someVariable: String?

var somethingElse: String = "hello world"

func executeMethod() {

47

4.4.2

4.4.3

4.4.4

if let theThing = someVariable {
self.somethingElse = self.someVariable!
Jelse {

print("error”

/

The only thing new to this example is the optional binding. As a result, instead of

crashing, the code enters the else statement and prints "error."

Too much use of self keyword

As discussed in (Neuburg, 2017, p. 19), it is not mandatory to use self to access a class’
or struct’s properties inside a method. It is needed only inside a closure where it needs to
capture self. Frequent use of selfis not an error; however, it will result in unnecessary and

inconsistent code.

Not using new features like Generics, Protocol Oriented Programming,

Enums etc.

Developers usually do not take advantage of new features introduced in Swift. Take the
example of Enums. Enums is not just a simple list of related constants, it is much more
than that. you can attach a value to each enum case. Enums can also have methods and

computed properties that can be used to add more details to each case.

Not using functional programming features in swift

Swift offers many methods which are basis for functional programming. Lot of
functionality is encapsulated inside these methods. Instead of using writing lengthy code
to achieve something, you can use methods like map, filter, reduce etc. to achieve the

same purpose using very few lines of codes.

48

4.5 TestFlight by Apple

TestFlight is an Apple product through which you can invite users to test your iOS,

iPadOS, watchOS and tvOS applications before you release them to the App Store. It is

one of the most popular beta testing applications from Apple.

4.5.1 Benefits of Conducting TestFlight

TestFlight is a powerful tool and some of its major features including following;

The process is simple, and you can easily test all your new applications.
Through its built-in dashboard, developers can manage and track all the tests.
You can easily distribute your applications over-the-air to the testers.

You can perform testing on various different devices at the same time so you
can easily find test failures.

Through TestFlight, you can get many meaningful metrics and reports about
the OS versions, device models etc.

It enables you to collect feedback early in the testing, that way, all the
feedback can be incorporated into the app before its release.

It enables you to receive application crash reports too.

4.5.2 The Pre-Requisites of TestFlight Beta Testing

Setting up TestFlight is not complex at all. Find below some of the pre-requisites for get

it up and running:

Application ID.

A certificate for distributing apps.

Device UDID.

A developer ID for accessing the Apple developer account.

An Ad Hoc provisioning profile so that the application could be distributed to

the tester’s devices.

Note: The Multitasker application was not tested through the TestFlight.

49

4.6

4.6.1

4.6.2

Design Patterns Used in 10S App

According to (wikipedia, n.d.), a software design pattern is a general, reusable solution
to a commonly occurring problem within a given context in software design. It is not a
finished design that can be transformed directly into source or machine code. Rather, it is
a description or template for how to solve a problem that can be used in many different
situations.

Two major design patterns used in the iOS mobile app development include following:

MVVM (Model - View — View Model)

Motif . Ewvenit
! ViewModel =

Updat Bindi =
Model e o View

Figure 13 - MVVM Diagram

Source: (Benoit Pasquier, n.d.) https.//benoitpasquier.com/ios-swift-mvvm-pattern/

MVVM is also a very common design pattern used in the iOS development. As above
diagram depicts, there are three main components just like in MVC. For understanding of

this pattern, inspiration was taken from (Hudson, Swift Design Patterns, 2018, p. 37)
MVC (Model — View — Controller)

Model view controller is very famous and most commonly used design pattern in many
modern programming languages. And swift is no exception.
In the Multitasker application, the modules of General Knowledge and Side Menu
utilized the MV C pattern. According to (Laso-Marsetti, 2019):

e Model is where your data is residing

. View is the face of your application

. Controller acts as a bridge between view and controller through the delegation
pattern

50

https://benoitpasquier.com/ios-swift-mvvm-pattern/

Find below a high-level diagram explaining the flow of the MVC pattern in i0S:

CONTROLLER

USER

ACTION UPDATE

PRI NOTIFY
VIEW HODEL

Figure 14 - MVC Diagram

Source: https://www.raywenderlich.com/1000705-model-view-controller-mvc-in-ios-a-modern-approach

4.7 Technical Details of Multitasker Modules
Find below the technical details of each section of the application. Technical details
include following:
e Which built in library/framework was used in this module?

e Which data structures were used in this module?

Technical Details of Maps

Inspired from (Wenderlich, n.d.), Following component/libraries were used to develop
the maps module in the application.
e Google Maps. It is Used to display maps, mark location etc. For using Google
Maps, inspiration was taken from (Jakob Iversen, 2013, p. 146)
e Core Location. It is used to determine user’s phone’s geographic location,
altitude, and orientation

No Major data structures were used in this module.

51

https://www.raywenderlich.com/1000705-model-view-controller-mvc-in-ios-a-modern-approach

Technical Details of Music Player

Following component/libraries were used to develop the music player module in the

application.

AVFoundation. It was used to play music files from the audio files present in
the application. Note that you can use any audio /video feature using
AVFoundation whether it is video playing, music playing, camera app etc.
UlTableViewDataSource

UlTableViewDelegate

UlSlider

Technical Details of Recipe Collection

Following component/libraries were used to develop the recipes module in the

application.

UlTableViewDelegate
UlDatableViewDataSource
UllmageView

UlTextView

UlLabel

The main data structure used was Arrays.

Technical Details of General Knowledge Section

Following component/libraries were used to develop the general knowledge module in

the application.

UlCollectionView
UlDatableViewDataSource
UllmageView

UlTextView

UlLabel

The main data structure was dictionary, where country name was stored as key while the

questions answers were added its value. To understand how dictionary works, help was

taken from (Feiler, 2017, p. 116).

Navigation controllers were used to navigate from one screen to another.

52

Technical Details of Shopping List Section

4.7.1

Following component/libraries were used to develop the shopping list module in the
application.

e UlTableViewDelegate

e UlDatableViewDataSource

e Core Data (For saving and retrieving data)

Data Model included entities, attributes and its type like String, Integer etc.

Details of plist.info
Configuration of a mobile application hold a key place in the overall application
development. It is configuration where you mention everything related to configuration

including following:

e Permissions in your application (e.g., location, Bluetooth etc.)
e How will your application run?

e Appname

e App version

e Build number

¢ And many more
It is actually a data file which stores information in the form of key value pair. Inspiration

was taken from (raywenderlich Team, 2016, p. 105), to learn about how plistlinfo work.

Find below info.plist file for the Multitasker application.

53

Key Value

v Information Property List
Privacy - Location When In Use Usage Description Allow Location
Privacy - Location Always and When In Use Usage Description We need your location

v LSApplicationQueriesSchemes

<O OO

Item O googlechromes
Item 1 comgooglemaps
Required background modes t
Item O App plays audio or streams audio/video using AirPlay
Item 1 App registers for location updates
v Application Scene Manifest
Enable Multiple Windows

NO

v Scene Configuration

O OOO

Application Session Role

> Item O (Default Configuration)

Figure 15 - Plist.Info

As you can see from the screenshot, this file is just a list of properties, and its type is
dictionary. There are many important configurations added in the above file. Some of
these include following:
e Location access permissions. This will be used in the Maps section of this
application
e Features which require background modes. In current application, location and
Music players are part of the background operation.
e Configuration of LSApplicationQueriesSchemes which was a security feature
introduced in i0OS 9. Any application which is built with SDK 9 or above must
provide a LSApplicationQueriesSchemes entry in the plist file, declaring which

schemes it will try to query.

4.7.2 Source Code Management
Source code of iOS application development can be managed through GIT (Git Hub,
n.d.) based free repository hosting. Desktop version of GitHub (Git Hub, n.d.) can be
used for CLI based management and GUI based management. Another popular option is

(Bit Bucket, n.d.).

54

5. How Did I Develop Multitasker i10S App

5.1 Introduction to Multitasker application

This is a simple but useful iOS native application developed using Swift version. It is
compatible with iOS versions and iPhone versions. The app provides most useful features
all in one central place. The major business modules of the application include:

e Music Player

e Recipe Collection

e Map

e General Knowledge Section

e Shopping List

Find below the core functionalities of this application.

Music Player
This is a basic music player which plays the audio files from the phone. In this
application, default and built-in music player from Apple has been used. Through the

music player, you can play music while your application is running.

Recipe Collection

This is an interesting feature for food lovers. This module shows various categories of
food, and you can click on any category to see the recipe of a particular food dish. Some

of the categories include North Indian, Pizza, cake, noodles, etc.

Maps
This is Google’s map (Google, n.d.) integrated into the system and user can see his
current location on the map. User’s current location will be shown in the form of location
pin and location details like city, country etc. Phone must have GPS installed and enabled

to use this feature.

55

General Knowledge Section
This is section to display the general knowledge information about various countries of
the world. When you enter this section, you will see list of many countries. When you
click on a particular country, the application will show general knowledge in the form of

questions and answers specific to that country.

Shopping List
This is section to display as a quick notes list on shopping list items when going out. User
can add new items as well. That way, you can just open the list in the app, and it will

ensure you did not miss anything.

Application Architecture of App
Architecture Diagram

Find below a high-level architecture diagram of the Multitasker application.

Architecture Diagram of Application

iOS App Delegate Storyboard
r—f{—

D > B Ry R >
N N =
User
4
® - ©
Core Data Controllers

Figure 16 - Application Architecture Diagram

Find below details of the architecture diagram flow and sequence.

56

5.2

User starts interacting with the application. App delegates manages the call. App delegate
is the main entry point of the application and will work every time application will start.
Next, the story board comes into action. The story board has laid out the visual flow and
sequence of navigation. So, story board will redirect the control to the relevant controller.
In the next step, controller does its job. Based on the need, it will retrieve data from the
Core Data module.

Core Data is a framework for managing object graph. It is not a database itself but can
use SQLite as the database. Core Data will contain all the required entities/class which
will be needed.

After getting the data from Core Data, controller will then delegate the request to story
board again.

Story board will then redirect to the relevant view.

View will be rendered along with the data retrieved from the Core Data and passed along

by controller.

Application Screenshots

Find below application screenshots from iPhone 11

57

all Vodafone CZ & 12:16 AM @29%®

/ﬂ\ Home
i

Music

Maps

Shopping List

1

.. Receipe
o

a

=

General Knowledge

(‘ Follow us on instagram

by Saravana Kumar

Figure 17 - Application Side Menu

This is the main menu of the application. It shows all the sections of the application
accessible from this menu. Whatever screen the user is on, this menu will be available to

user so that used can access any option directly from any screen of the application.

58

AMAZON ARESENE

Neeye Oli
Film: Sarpatta Parambarai

Beggin
Film: Maneskin

Thalaivar
Film: Darbar

Neeye Oli
Film: Sarpatta Parambarai

Beggin
Film: Maneskin

Figure 18 - Music Player Home Page

This is the home screen of the music section. As you can see, it contains the list of the
music items to be played. Each item has its following information:

- Name of the music track

- Name of the film which contains this track

- Icon of the music track

59

Film: Sarpatta Parambarai

Music by: Santhosh

“« I »

Figure 19 - Music Track Playing

This is the default media player from Apple, embedded into the application. User can
play any of the songs which are present in the library. Currently following options are
available for music player:

- Play song

- Pause song

- Go to next song in the collection

- Go to previous song in the collection

60

ull Vodafone CZ 2 12:17 AM @29%(e

608 Uzice

Kralupy
£ nad Vitavou
ce Odolena Voda
240]
Holubice Lib¢ice nad Kli¢any
Vitavou
a Tursko

Klarany

Ceska Zemedelska Univerzitav Pr...

Prague, Czech Republic

'
Tuchoméfice HoromFice Vd EH
240
PRAG
’ Prirodni
7] park Sarka
- Lysolaje PRAGUE 6
PRAGUE 1
3 0|
Prague
PRAGUE 5
ZLICIN
PRAGUE 4
« OKI
Iy Meéstst
4]
Google

Figure 20 - Map showing current location

This is the maps section of the application which makes use of Google maps. As you can
see above, it shows not only the map, but it also displays current location pin of the user’s

phone and the pin displays public name of the current location including city, country etc.

61

all Vodafone CZ 2 12:17 AM @ 29%E)

Recipe

Figure 21 - Recipe Home Page

This is the recipes section. As you can see, the recipes are categorized into various
categories. When user clicks on a particular category then the recipes related to that food

category section will display.

62

ull Vodafone CZ = 12:22 PM @ 62 %

SOUTH INDIAN

Dosa
Idly
Puttu with Kadala Curry

Pulihora

Figure 22 - Recipes List

When user clicks on a particular recipes category, then all the recipes belonging to that
category will show up. Above example shows the recipes list screen if user clicks on

“South Indian” recipe category.

63

ull Vodafone CZ 12:22 PM @ 62 %=

< SOUTH INDIAN

Dosa also called as dosai (in Tamil language) is
a famous and popular South Indian breakfast
or snack in India as well in the rest of the
world. Dosa are basically crispy or soft crepes
made with ground and fermented lentil and
rice batter. To make the batter, first the lentils
and rice are soaked in water for 4 to 5 hours.
They are then ground separately to a fine
consistency. Then both the lentil batter and

Figure 23 - Recipe Details

Above screen shows the food item belonging to a particular recipe category on which

user clicked. An image along with the description of the food item will be displayed.

64

«ll Vodafone CZ = 12:18 AM ® 29 %W)

The List

Milk 1litre

bread

€99

butter

Figure 24 - Shopping List Screen

This is the screen of Shopping list. User can add items to shop here. This will serve as a

quick reminder to make sure you do not miss any item when going out for shopping.

65

«ll Vodafone CZ = 12:18 AM @ 29 %@

Countries

America Australia Austria

Bangladesh Belgium

Czech Rep... France

Figure 25 - General Knowledge Home Screen

This is the home page of the general knowledge section. As you can see, this screen
shows list of various countries along with their flags. When user will click on a particular
country name/image, the application will show the questions and answers related to that

particular country.

66

all Vodafone CZ & 12:18 AM @ 29%®

America

1. What is the Official Languages for America?
Answer:- English.

2. What is the Capital city for United States of
America?
Answer:- Washington, D.C.

3. What is the Currency for United States of
America??
Answer:- American Doller.

Figure 26 - General Knowledge Q &A

The application screen above was displayed when user clicked on the country “America”.
The country’s flag shows up on the top followed by the questions and answers related to

general knowledge about America.

67

5.3

Storyboard & Technical Components

In i0S, storyboarding is defining the user journey through series of UI screens. A
storyboard is a visual representation of the user interface of an iOS application, which not
only displays content on screens, but also the connection between them. As mentioned in
(Ramnath, 2014, p. 193), A storyboard consists of a sequence of scenes, each
representing a view controller and its views; scenes are connected by segue objects,
which represent transition between two view controllers.

XCode provides a built-in visual editor for creating story boards. Through this editor,
developers you can lay out and design the screens of application by adding various Ul
components like text boxes, buttons, table views, and text views onto scenes. Not only
that, through storyboard, you link a view to its controller, and to manage the transfer of
data between different view controllers. Using storyboarding is the preferred way to
design the user interface of your application because it enables you to visualize the
appearance and overall flow of your user interface on one place.

Find below the storyboarding steps of Multitasker application.

68

Choose a template for your new project:
Multiplatferm ios macOS watchOS tv0S DriverKit

Application

Document App Augmented Sticker Pack App
Reality App

iMessage App Safari Extension
App

Framework & Library

Framework Static Library Metal Library

Figure 27 - XCode Choose Template

As you see, this is the very first initial screen in XCode when you start building an
application. It is like the first step in a wizard to create an application. It lets you choose
if you want to develop an app, game, an AR app, an iMessage app or some other kind of

10S application.

69

Choose options for your new project:

Product Name:
Team:

Organization Identifier:
Bundle |dentifier:

Interface:

Language:

Cancel

Multitasker

Saravanakumar Obula Meganath (Person...

newcompany

Storyboard
Swift

« Use Core Data
Host in CloudKit
+ Include Tests

Previous

Figure 28 - XCode Project Details

This screens in the wizard are about the details of the application project. You have to fill

in following details:
- Name of the product

- Team name

- Identifier of your organization

- Bundle identifier

- Interface (we selected storyboard, but you can custom code Ul or utilize SwiftUI

as well)

- Programming language (we are using swift, but objective-C has been another

option for older projects)

- Enable option of “Use Core Data”

- Enable option of tests in the code

70

MultiTasker
N

@ MultiTasker } & iPhone 11 MultiTasker: Ready | Today at 4:15 PM

3 AppDelegate

MultiTasker e e Identity and Type

MultiTasker Name AppDelegate.swift

AppDelegate Type Default - Swift Source
T'":mi!gl:m ation Relative to Group
R —
Main
s Assets
LaunchScreen
Info
MultiTaskerTests
3 MultiTaskerTests
MultiTaskerUlTests
3 MultiTaskerUiTests
3 MultiTaskerUITestsLaunchTests

AppDelegate: UIResponder, UIApplicationDelegate {

(_ applicatio UIApplication, launchOptions:
[UIApplication.LaunchOptionsKey: 1?) => Bool {

Text Settings

Text Encoding | No Explicit Encoding

MARK: UISceneSession Lifecycle
Indent Using | Spaces
(_ application: UIApplication, Widths a®
connectingSceneSession: UISceneSession, : UIScene.ConnectionOptions) —> Tab Indent
UISceneConfiguration { ¥ Wrap lines

UISceneConfigurati name: "Default t . sessionRole:
connectingSceneSession.)

(_ application: UIApplication, sceneSessions:
Set<UISceneSession>) {

Line: 1 Col: 1

Figure 29 - App Delegate

Above screen shows the AppDelegate. From 10S 13, the responsibilities of AppDelegate
have been changed. Now, the AppDelegate only takes care of the application lifecycle and
setup. However, AppDelegate is still the main entry point for the application.

71

@ MultiTasker } & iPhone 11 MultiTasker: Ready | Today at 4:16 PM +

20 @

Identity and Type

ETI e G < 3 SceneDelegate
- MultiTasker MultiTasker MultiTasker) 5 SceneDelegate) No Selectiol
v MultiTasker 1 eDelegate.swift
3l AppDelegate efault - Swift Source
3 SceneDelegate
3 ViewController
X Main
T Assets
% LaunchScreen
EE Info
¥ MuitiTaskerfosts SceneDelegate: UIResponder, UIWindowSceneDelegate {
3 MultiTaskerTests

UIKit
On Demand

v & MultiTaskerU|Tests : UIWindow?

3 MultiTaskerUlTests Target Membership

3 MultiTaskerUlTestsLaunchTests
(_ scene: UIScene, session: UISceneSession,
connectionOptions: UIScene.ConnectionOptions) {

9 No Explicit Encoding
Line Endings
Indent Using | Spaces
_ = (scene ? UIWindowScene) T
Tab indent

(_ scene: UIScene) {

(_ scene: UIScene) {

Figure 30 - Scene Delegate

This is the screen showing SceneDelegate. As mentioned previously, the role of
AppDelegate was split between AppDelegate and SceneDelegate since i10S 13. The

SceneDelegate now takes care of for what is displayed on the handle and manage the way

content is displayed on your app.

72

Zm]

sk @ MultiTasker) & iPhone 11 MultiTasker: Ready | Today at 4:13 PM +

M Z Q & S & < 3 ViewControlier =0 @

iTas| MultiTaske ViewCe er) No Selectio les e
fye— MultiTasker MultiTasker) 5 ViewController) No Selection Identity and Typ:

MultiTasker 1 Name ViewController.swift

3 AppDelegate Default - Swift Source
SceneDelegate

: — "“ Relative to Group
tewEenirater ViewController.swift

X Main

G Assets

X LaunchScreen

EE Info

MultiTaskerTests

3 MultiTaskerTests

import UIKit
class ViewController: UIViewController {

MoliTaskerUTests override func 04

3 MultiTaskerUiTests super. Q

3 MultiTaskerUlTestsLaunchTests

No Explicit Encoding

indent Using Spaces

Widths a4l
Tab indent

¥ Wrap lines
Show the Symbol navigator

Figure 31 - View Controller

This screen shows the basic behavior of ViewController. The View Controller is parent
of all the views present on the storyboard, assuming the application Ul is developed
through Story board. There will be at least one ViewController in each application. The
job of ViewController is to manage the transition between various portions of the user

interface.

73

Em) P r"“'"“sur @ MultiTasker) & iPhone 11 MultiTasker: Ready | Today at 4:16 PM

E T QA CF < % Main (Base)
T MultiTasker) & MultiTasker) 3 Main) % M
v & MultiTasker [view Controller Scene
3 AppDelegate . Goiics
3l SceneDelegate ew
3l ViewController Safe Area
% Main D Responder
G Assets
e orear > Storyboard Entry Paint
EE Info
v MultiTaskerTests
3 MultiTaskerTests
v & MultiTaskerUlTests
3 MultiTaskerUiTests
3 MultiTaskerUITestsLaunchTests

Not Applicable

Figure 32 - Initial Story Board

This is the initial story board designer. Storyboard is the visual layout of all the screens in
the app and how the user journey is carried out on these screens. Please note that, during
the initial setup of this application in XCode, the option of “Storyboard” was selected
from the available options for the interface type. Many new applications are being
developed using SwiftUI, however many beginners still prefer to use storyboard because
it is simpler, easier, and faster to implement screens/views through storyboard as

compared to SwiftUL

74

0]) MultiTasker) [iPhone 11 Build Succeeded | 16.02.2022 at 5:24PM A5
EHTZaaAOs ¢ % Main 3 ProfileVi ntroller , DataModel 3 AppDelegate S elegate 3 MainViewController 3 HomeViewController

asker ViewCe ors inViewCantrolle: selectedCall(
+ E MultiTasker MultiTasker ViewControllers) 3t N ntroller) (M| selectedCel

v & MultiTasker

MainViewController
HomaViewController

MusicViewControl .
import UIKit

MapsViewCont - s
import SafariServices

SettingsVi...Contr

S inViewController: UIViewController {

: SideMenuViewController!
UIView!
CGFloat = 268

@ Assets r 3 CGFloat = 15@
X LaunchScreen r

3 AppDelegate
3 SceneDslegate

3 LocationManager

EE Info r 2 var : false
Main r t
song

MultiTaskerTests

MultiTaskerUITests rivate : NSLayoutConstraint!

Products

Pods. = te : Bool = true

Frameworks
Pods var : Bool = true

Podfile

Frameworks

Pods

Products

Targets Support Files

ad UIView(frame:
ad
ad
= 0.8
= UITapGestureRecognizer(target: self, action:
tapGestureRecognizer.
tapGestureRecognizer.

nuonT

Figure 33 - Main View Controller

This screen shows MainViewController which is root of all view controllers. It is derived
from UIViewController. The UIViewController defines the behavior for managing your

views, handling events, transitioning from one view controller to another etc.

75

0] - -) MultiTasker) [iPhone 11 Build Succeeded | 16.02.2022 at 5:24PM A5

[EIjvie % ¢ yDa % Mai 3 ProfileviewControlier DataModel 3 AppDelegate SceneDelegate 3 Main 3 SideMenuViewCo
MultiTasker ViewCe ors eMen: Side oller o
+ E MultiTasker MultiTasker ViewControllers SideMenu) 3 Side iraller) [B] menu
v & MultiTasker

ViewControllers

MainViewController

ort i
MapsViewContre import UIKit

SettingsVi...Contr . .
HI SR proto SideMenuViewControllerDelegate {

SideM:
ideMenu func (_ row: Int)
3 SideMenuCell

X SideMenuCell
SickManpiiade] 5 SideMenuViewController: UIViewController {
: UIImageVie
AppDelegate L t : UITableView!
SceneDelegate @ t: r: : UILabel!
LocationManager
T Assets r : SideMenuViewControllerDelegate?
X LaunchScreen
Info var : Int
X% Main
: [SideMenuModel] = [
SideMenuModel(icon: UIImage(
SideMenuModel(icon: UIImage(
SideMenuModel(ico UIImage(
SideMenuModel(UIImage(
SideMenuModel(ico UIImage(
SideMenuModel(UILImage(

N SideMenuModel(icon: UIImage(
7 Podfile

Frameworks
Pods e func
Products

Targets Support Files

Figure 34 - Side Menu View Controller

This the ViewController related to the side menu of the application. It shows all the menu
items in the form of a list. It also defines how the transitioning from this view to other
views will be managed. It is perfectly fine to have multiple views associated with a single
ViewController. And it is also possible to have only one view associated with a

ViewController.

76

0] - O MultiTasker) [iPhone 11 Build Succeeded | 16.02.2022 at 5:24PM A5

|y e L S E] yDataModel % Main Profil ntroller DataModel AppDelegate cel s Main! o X SideMenuCell

T, MultiTasker MultiTasker ViewControllers nu) % SideMenuCell

MultiTasker
Receipe ViewControllers
ShoppingLi...Controllars
ViewControllers
3 MainViewController
3 HomeviewController
3 MusicViewController
3 MapsViewController
3 Settingsvi...Controller
SideMenu
3 SideMenuCell
% SideMenuCell
3 SideMenuModel
3 SideMen..ontroller A
3 AppDelegate
3 SceneDelegate
3 LocationManager
T Assets
X LaunchScreen
EE Info
X Main
song
MultiTaskerTests
MultiTaskerUITests
Products
Pods:
Frameworks
Pods.
Podfile
Frameworks
Pods.
Products
Targets Support Files

Figure 35 - Building Menu Item

This screen shows how to build each individual menu item cell in the side menu view.
You can not only design the look and feel of how it will look but you can also define its
behavior as well. Note that that after creating the cell, you will have to register it with the

view of the side menu as well.

77

G} pjpauidieskoy € MultiTasker) [iPhone 11 Build Succeeded | 16.02.2022 at 6:24 PM

E T Q € yDa X Main 3 ProfileviewController £ DataModel 3 AppDelegate s elegate M Contraller 3 ReceipesViewCor
V V eceipe ors e wControllel olle
+ B MultiTasker Receipe trollers) 3k Receipe Controller) [C| R ntroller
v & MultiTasker

v @ Receipe ViewControllers

Northindi...Cantroller G
import 1
NoodlesK...Controller 3
NoodlesR...Contr q q q
s ReceipesViewController: UIViewController {
PizzaKitc...Controller

PizzaReci...Controll : ULImageView!

: ULImageView!
: UIImageView!
: UIImageView!
UIImageView!
: UIImageView!

CakeKitch...Controller

CakeReci...Controller

kil

Controller

k
k
k
Controller @ tlet Kk
k
k

ontrollers
rs
3 AppDelegate ide func {
3 SceneDelegate uper.
3 LocationManager
T Assets sthIndianImg.
X LaunchScreen NorthIndianImg.
EE Info
Main
song
MultiTaskerTests

MultiTaskerU|Tests .
sthIndianImg.

nIndianImg.
2sIm

Products.
Pods
Frameworks

Pods

7 Podfile
Frameworks

Eoc let southIndianRecognizer = UITapGestureRecognizer(target: s

Products let northIndianRecognizer = UITapGestureRecognizer(targe
Targets Support Files noodlesRecognizer = UITapGestureRecognizer(target:self, action:
let pizzaRecognizer = UITapGestureRecognizer(targe 1f, actiol
let cakeRecognizer = UITapGestureRecognizer(target f, action
let bunRecognizer = UITapGestureRecognizer(target: self, action: #selector(openBun))

Figure 36 - Recipes View Controller

This is the ViewController for recipes section. You can see that all the sections of recipes
are being developed in this class. Again, you can not only define the UI of the recipes

section but also the behavior, transitioning to other views as well.

78

http://pe-sViewConr.ro

+ s MultiTasker
D main

@ MultiTasker) B iPhone 11 Build Succeeded | 15.02.2022 at 6:24 PM

E T a & o) % Main Assets o ewControlle E, DataModel AppDelegate

MultiTasker & Main Bun

3 Biscuit Cake

B Briyani

= Bun

[Butter Cake

B Butter Chicken Universal
[Chinese Noodles

B Chole Bhature

B Dosa

@ English Muffins

B Home Made Pizza

ViewControllers
3 AppDelegate
3 SceneDelegate
3 LocationManager
G Assets
% LaunchScreen
£ Info
X Main

song

MultiTaskerTests
MultiTaskerUiTests
Products
Pods. [Korean Noadles
Frameworks logo

Pods. & Main Bun
Podtile . B Main Cake

B Main Noodles

[Main North Indian

B Main Pizza

M Main South Indian

B Margherita

B menu

= Naan

=1 Pepperoni

@ Pound Cake

B Pulihora

= Puttu with Kadala Curry

Frameworks
Pods
Products

Targets Support Files

B Sesame Seeds
Sliced Bread
Sponge Cake

Figure 37 - Assets

This screen shows one of the image assets in the XCode. Assets can be images, videos
etc. Let’s touch upon the image versions 1x, 2x, 3x briefly. As we know, Apple supports
multiple devices with different screen resolutions and screen sizes, and apps developed
by developers should be compatible with as many of these devices as possible. 1x, 2x,
and 3x images allow developers to optimize rendering of application Ul based on the
user's device, regardless of the phone on which the app is running. In a nutshell, 1x, 2x,

and 3x images are the same image, but at different sizes.

79

P MultiTasker D MultiTasker) [iPhone 11 Build Succeeded | 15.02.2022 at 5:24 PM A8

[DataModel AppDelegate SceneDelegate MainViewController ReceipesViewControfler

> B Maps Scene

[<) Navigation Controller... e
> [B Music Scene
[E) Main View Controller S..

> [& Home Scene

[<) Navigation Controller...
> [Side Menu View Contr...
[<) Navigation Controller...

> B Settings Scene

[<) Navigation Controller...
> B Recipe Scene
[B) Noodles Kitchen View...

> [E Cake Kitchen View Co...

[E cake Recipe View Con...
> B Bun Recipe View Contr...
[E Bun Kitchen View Con...
> [Pizza Kitchen View Co...

[EJ Pizza Recipe View Con...
[& South Indian Recipe Vi

Figure 38 - Story Board

Navigation Item
& First Responder

& it

This is the overall storyboard of the application in XCode. As mentioned previously,
storyboard visually lays out the overall user journey across all the views in the
application. It will contain all the views in the application, and it will also visually
assemble the navigation path through all those screens. For creating story boards,

inspiration was taken from (Gary Bennett, 2019, p. 107)

80

+» MultiTasker

@ MultiTasker) B iPhone 11 Build Succeeded | 15.02.2022 at 6:24 PM

BRI < yDataModel X Main 3 ProfileviewController £, DataModel 3 AppDelegate 3 SceneDelegate 3 MainViewControlier 3 ReceipesViewCor

MultiTasker) & MultiTasker } & Shopping ontrollers) % DataModel) [, Databodel) (E] Person) [§] foo

~ Attributes

E| Person
Attribute Typs

S| foo String

S| name String

> @ viewControllers

[€) Default

3 AppDelegate M _

3 SceneDelegate

3 LocationManager ~ Relationships

& Assets

% LaunchScreen

£ Info
% Main

song

Relationship Destination Inverse

> & MultiTaskerTests
> & MultiTaskerUlTests

> & Products
> & Pods

v Fetched Properties

Fetched Property ~ Predicate

> & Frameworks

v & Pods
& Podfile

> & Frameworks

> & Pods

> & Products

> & Targets Support Files

=+ (& Filter

5.4

= EH

Outline Style Add Entity e Editor Style

Figure 39 - Data Model

This screenshot shows initial stages of the Core Data. Core Data is actually a framework
provided by Apple for iOS apps. It is used to manage the model layer object in 10S
application. Through Core Data you can track, save, modify, and filter the data inside

your iOS application, however, Core Data should not be considered or used as a database.

UI Components used in App

How the user interface of an application is developed, is an important factor in any i10S
application. Multitasker application though simple in nature, has used some core and
important Ul components on its views. Find below details of such UI components:
Following are some of the basic Ul components which were used in overall application:

e Navigation bar

e Buttons
e Labels
e Alerts

e Icons

81

Image view (UllmageView) was used in many modules of this application. Some of the
modules where this component was used, include General knowledge, Recipe section etc.
Scroll view (UlScrollView) was used in the modules of recipe, shopping list and
countries.

Table view (UlTableView) was used in the modules of recipe, shopping list and
countries. To understand the working of Table Views, help was taken from (Maurice
Sharp, 2013, p. 275)

UlIPanGesture was used in the module of side menu.

5.5 Errors faced during development
Following are some of the compilation errors faced during the development of this

application.

MultiTasker MultiTasker ViewControllers) 3 HomeViewController) /M| viewDidLoad()

import UIKit

class HomeViewController: UIViewController {
@IBOutlet var ieM 3tn: UIBarButtonItem!

override func view
super.\v

sideMenuBtn.target revealViewController()
sideMenuBtn.action = #selector(revealViewController()?.revealSideMenu)
sideMenuBtn.self = self ® Cannot assign value of type 'HomeViewController' to type 'UlBarButtonitem'

Figure 40 - Compile Time Error 1

Compile time error “Cannot assign value of type ‘HomeViewController’ to type

‘UlBarButtonltem’

82

MR, MultiTasker) [] iPhone Build Failed | Today at 11:58 PM & 2

main
3 GoogleMap..wController 3 MusicViewController 3 SideMenuViewController 3 MapsViewController

MultiTasker MultiTasker ViewControllers ; 3i MusicViewController) No Selection

(animated)
ntroller()?.gestureEnabled = true

sender: Any){

PIBAction func sender: Any){
audioPlayer.pause

(_ sender: Any){
i 2}

2 ® Extraneous '} at top level

Figure 41 - Compile Time Error 2

Compile time error “Extraneous ‘}’ at top level’ This is self-explanatory. There is an

extra parenthesis in this code block.

83

; 2 rtlltlTllker ﬂ MulnTaskar) D iPhone Finished running MultiTasker on iPhone 1 AN
ewController 3 HomeViewController 3 Southindian..wController 3 SideMenuViewController X Main

MultiTasker MultiTasker Receipe ViewControllers) 3 SouthindianKitchenViewController) |C| SouthindianKitchenViewController

import UIKit

class SouthIndianKitchenViewController: UIViewController ,UITableViewDelegate,
UITableViewDataSource{

® Type 'SouthindianKitchenViewController' does not conform to protocol
‘UlTableViewDataSource'

= [Stringl()
= [UIImagel() Do you want to add protocol stubs?

UIImage()
IBOutlet : UITableView!

override func

super.vi

i(UIImage(named:

{(UIImage(

i(UIImage(
nd(UIImage(r

Figure 42 - Compile Time Error 3

Compile time error “Type ‘SountlndianKitchenViewController’ does not conform to

protocol ‘UlTableViewDataSource’, Do you want to add protocol stubs?”

84

ewController 3 HomeViewController 3 Southindian..wController 3 SideMenuViewController X Main

MultiTasker MultiTasker Receipe ViewControllers 3 SouthindianKitchenViewController) |C| SouthindianKitchenViewController

import UIKit

class SouthIndianKitchenViewController: UIViewController ,UITableViewDelegate{
1

var f P = [Stringl()

var = [UIImagel()
var l ="

var je = UIImage()

?IBOutlet weak var w) : UITableView!

override func
super.\v

rldTable.del
worldTable.dat

® Cannot assign value of type 'SouthindianKitchenViewController' to type
'UlTableViewDataSource?'

foodNames . apy
foodNam

foodNz
foodNames.append("”

i(UIImage(na

d(UIImage(nar

C nd(UIImage(na
foodImages.append(UIImage (

Figure 43 - Compile Time Error 4

Compile time error “Type ‘SountIndianKitchenViewController’ does not conform to type
‘UlTableViewDataSource’? As discussed on (stackoverflow, n.d.), this happens when

one of the functions is missing in the implementation.
During the application development, there are some errors which are received when

application code is executed on the simulator or on the actual physical device. Find below

some of the errors which were faced during the application execution on actual device.

85

1+ MultiTasker MultiTasker) @ iPhone 11 Running MultiTasker on iPhone 11 A 14
5

main
outhindian...wController 3 Northindian..wController 3 SideMenuViewController X Main 3 AppDelegate

MultiTasker MultiTasker) 3 AppDelegate) |C| AppDelegate
T ULR1T
t CoreData
Swiftul
GoogleMaps
GooglePlaces

Pmain = Thread 1: "Google Maps SDK for iOS must be initialized via [GMSServices provideAPIKey:...] prior to use"
class AppDelegate: UIResponder, UIApplicationDelegate {

18
w: UIWindow?

func ’ (_ application: UIApplication, f) launchOptions:
[UIApplication.LaunchOptionsKey: Anyl]?) -> Bool {
return true

(_ application: UIApplication) {

MARK: - Core Data stack
1 : N MultiTasker) (i Thread 1) (&' 15 static AppDelegate.$main()

.simruntime/Contents/Resources/RuntimeRoot/usr/1ib/libMTLCapture.dylib
DYLD_FRAMEWORK_PATH=/Users/saro/Library/Developer/Xcode/DerivedData/MultiTasker-gxcbpexuquxkgceqwsznhrk
kxagb/Build/Products/Debug-iphonesimulator

k% Terminating app due to uncaught exception 'GMSServicesException', reason: 'Google Maps SDK for iOS
must be initialized via [GMSServices provideAPIKey:...] prior to use'’

terminating with uncaught exception of type NSException

CoreSimulator 776.4 - Device: iPhone 11 (72603051-1754~4F9F-8AE1-084437CA3987) ~ Runtime: iOS 15.0

(19A339) - DeviceType: iPhone 11

Figure 44 - Runtime Error 1

Runtime Error “Thread 1: Google Maps SDK must be initialized via [GSMServices
provideAPIKey...] prior to use”.

86

+ » MultiTasker
‘

) Multitasker) B iPhone 11 Running MultiTasker on iPhone 11 A 13

% MusicViewController Darbar 3 PlayerViewController 3 ReceipesViewController 3 ProfileViewContr —

MultiTasker MultiTasker ViewControllers) 3 MusicViewController) M| viewDidLoad()

class MusicViewController: UIViewController, UITableViewDelegate, UITableViewDataSource {
pIBOutlet var ble: UITableView!
= [Songl()
: UIBarButtonItem!
override func
super.

self.
self.

Thread 1: Fatal error: Unexpectedly found nil while implicitly unwrapping an Optional val...

0 {
d(Song(name:

MultiTasker) (Il Thread 1) (& 6 MusicViewController.viewDidLoad()

MultiTasker/MusicViewController.swift:25: Fatal error: Unexpectedly found nil while implicitly unwrapping
an Optional value

2022-02-28 16:25:45.956672+0100 MultiTasker[3809:104471] MultiTasker/MusicViewController.swift:25: Fatal
error: Unexpectedly found nil while implicitly unwrapping an Optional value

Figure 45 - Runtime Error 2

Runtime error “Thread 1: Fatal error Unexpectedly found nil while implicitly unwrapping
an optional value...”. This is a common error while unwrapping the optional. This point
has been discussed in detail in the earlier section of “Common mistakes made by swift
develpers”. As discussed in (Cui, 2020) , before forced unwrapping, we need to make

sure that the optional contains a value.

87

uthindian...wController 3 Northindian...wController 3 SideMenuViewController 3 AppDelegate

MultiTasker MultiTasker) 3 AppDelegate) |C| AppDelegate

UIKit
ort CoreData
Swiftul
GoogleMaps
t GooglePlaces

16 [Pmain Thread 1: "unable to dequeue a cell with identifier cell - must register a nib or a class for the identifier or connect a proto...
class AppDelegate: UIResponder, UIApplicationDelegate {

: UIwWindow?

func icat (_ application: UIApplication, didFi ; ; i launchOptions:
[UIApplication.LaunchOptionsKey: Anyl?) -=> Bool {

GMSServices.provideAPIKey("A
GMSPlacesClient.provideAPIKey(

o MultiTasker) (i’ Thread 1) [& 15 static AppDelegate.$main() &l

DYLD_FRAMEWORK_PATH=/Users/saro/Library/Developer/Xcode/DerivedData/MultiTasker-gxcbpexuquxkgceqwsznhrk
kxagb/Build/Products/Debug-iphonesimulator

pkk Terminating app due to uncaught exception 'NSInternallnconsistencyException', reason: 'unable to
dequeue a cell with identifier cell - must register a nib or a class for the identifier or connect a
prototype cell in a storyboard'

erminating with uncaught exception of type NSException

oreSimulator 776.4 - Device: iPhone 11 (72603051-1754~4F9F-8AE1-084437CA3987) - Runtime: iOS 15.0
(19A339) - DeviceType: iPhone 11

Figure 46 - Runtime Error 3

Runtime error “Unable to dequeue a cell with identifier cell — must register a nib or a

class for the identifier or connecta....”

5.6 Used Hardware & Software
Following hardware was used as part of the development of the Multitasker application.
e MacBook Air 2015 - 1.6 GHz Dual - Core Intel i5, 8GB Ram
e iPhone 8 rose gold 64GB
e iPhone 11 Black 128GB

Following libraries, frameworks, component were used during development of

Multitasker application.

88

XCode Version 13.1 (13A1030d)

For iPhone 8 - Software Version 14.8.1
For iPhone 11 - Software Version 15.3.1
CocoaPods (www.cocoapods.org)
Canva (www.canva.com)

Microsoft Word, Microsoft Excel

&9

http://www.cocoapods.org
http://www.canva.com

6. Future Vision

The Multitasker application can be further enhanced with many features. Some of the

desired features, which can be included in the future releases are following:

L.

API’s for music, recipes, general knowledge etc.: The current implementation has
all the data residing inside the app itself. For the future version, API’s should be
integrated so that the data is pulled from the API’s. Many free rest-based API’s
are available related to almost everything. Whether it is music, food recipes,
general knowledge, location-based data, there is an API for everything.

Publishing the app to the Apple store: After making some tweaks and some new
features, the application should be submitted to the store for review. Not only, it
will be a learning experience in terms of Apple’s required guidelines for app
submission, but there would be a sense of achievement as well.

Device Compatibility: The Multitasker application should be enhanced to have
more support for iPads and other iPhones as well. This will require change to the
views and how they are rendered. Most of the UI components will remain same
and the layout for views will need to be modified for device compatibility.
Addition of user login: Adding a user’s login will result in a customized
experience for consumer. User will be able to mark favorite tracks, recipes,
locations etc. And we can have a feature similar to wish list where users can ask

to add their favorite recipes, music tracks etc.

90

Conclusion

We have successfully completed everything described earlier in the objectives. This
diploma thesis has proved the effectiveness of literature review. The topics discussed in
literature review shows that it is certainly possible to develop an iOS application by
following the user guides and tutorials about the 10S development. This can serve a quick
guide for a beginner i0S developer so that he could understand the foundation of the i10S
development and various areas of swift programming language which are pre-requisites

for developing an actual native iOS application.

The thesis also described in detail, how was the Multitasker mobile application was
developed using Swift programming language. All the major components, life cycle,
error handling, core libraries etc. were discussed which are very helpful for any i0S
developer who intends to develop a native mobile app from scratch.

If the features mentioned in the section of “Future Vision™” are also included in the future
versions of the application, then it can be a good addition to the Apple app store and it
can catch eyes of many youngsters who want to see various different features in a single

mobile application.

91

8. List of Figures Used in this Document

Figure 1 - History of iPhones (Source (Proulx, n.d.) ..o 16
Figure 2 - Mobile OS Market Share............cccooiiiiiiiiii e 17
Figure 3 - Mobile Vendor Market Share............cocooiiiiiiiiiii 18
Figure 4 - Android vs i0S Market Share UKccoooiiiiiiiii 19
Figure 5 - Life Cycle Managementccccovivuiiuiniiriiieeiet ittt sttt st st 21
Figure 6 - Life Cycle MEthods.......ccccuviiiiiiiiiiii it 22
Figure 7 - Mobile App Usage (Mariana, 2020)ccooiiiiiiiiiiieiniieeeee e 26
Figure 8 - Pros and Cons Of NAtiVe ADPDSccceiiuiiiriiioieiiiienie s 29
Figure 9 - Pros and Cons of Web APPSccoiviiiiiiiiiiiieiieiie e 30
Figure 10 - Pros and Cons of Hybrid ADPPS.......cccoieeiriiiiiiiiiiiie i 32
Figure 11 - Comparison of Flutter Vs React Native VS NatiVecocooiiiiiiiiinien 34
Figure 12 - XCode REQUITEMELSccouiiiiiiiuiiiiiiiite ettt st s 36
Figure 13 - MV VM DIAIaAM...cc.coveuiiiiiiiiiiiiiiiiiiite ettt e 50
Figure 14 - MVC DIQZIaml......ccccoeeieiiiiiiiiiiiiiieiiite ettt et e et st 51
Figure 15 - PHSEINEO c..eveueiiiiiicie i 54
Figure 16 - Application Architecture DIagramccocooiiiiiiiiiniiiiii 56
Figure 17 - Application Side MENU...........cccciviiiiiiiiiiniiiii i 58
Figure 18 - Music Player HOme Pagecccooiiiiiiiiiiii 59
Figure 19 - Music Track Playingcccocoviiiiiiiiiiii s 60
Figure 20 - Map showing current loCation...........ccoeeiiiriiiiiiiiieiee e 61
Figure 21 - Recipe HOME PaBEcooiiiiiiiiiiiiiiiiii 62
Figure 22 - RECIPES LLST..ccueriiiiieiiiiiiiiciciiiits ettt e 63
Figure 23 - ReCIPe DELAILScoveeiiriiriiiiiiiiiiiii et s s 64
Figure 24 - Shopping LiSt SCIEEILc.ocueiiiuiiiiiiiiiie it 65
Figure 25 - General Knowledge HOME SCIEENccvoiiiiiiiiiiiiiiiiii e 66
Figure 26 - General Knowledge Q&Accooiiiiiiiiiiii 67
Figure 27 - XCode Choose TEMPIALEc.cciviiiiiiiiiiiniite it 69
Figure 28 - XCode Project DEtails...........cccuiiiiiiiiiiiiiiiiiiii s 70
Figure 29 - APP DELEZALE.......coueuiiuiiiiiiiiiiiiiite ettt 71
Figure 30 - SCeNe DELEGALEc.ceiriiriiuiiiiiiiiii ittt s s 72
Figure 31 - VIEW CONLIOLIETco.eiveuiiiiiiiiiii ittt 73
Figure 32 - Initial StOry BOArd..........cccoiiiiiiiiiiiiiiii 74
Figure 33 - Main View CONIOLIETccooiiiiiiiiiiiiiieeie et 75
Figure 34 - Side Menu View CONLIOLETccoiiiiiiiiiiniieiietiie e 76
Figure 35 - Building Menu Itemc.ocoouiiiiiiiiniiiii 77

92

Figure 36 - Recipes VIEW CONIOLIETooooiiiiiiiiieiie s 78

FAGUIE 37 = ASSELS ...eueuteteieiieie ittt ettt et d s s 79
Figure 38 - StOry BOAIAc.oiiiiiiiiiii it 80
Figure 39 - Data MOGEL........c.cuiuiiiiiiiciiiei s 81
Figure 40 - Compile Time EITOT 1oooiiiiiiiiiiiiiiii e 82
Figure 41 - Compile Time EITOT 2c.oiiiiiiiiiiiieii s 83
Figure 42 - Compile Time EITOT 3coiiiiiiiiiiiii e 84
Figure 43 - Compile Time EITOT 4cooooiiiiiiiiitieit e 85
Figure 44 - RUNtME EITOT L. .oooiiiiiiiiiiiiie it 86
Figure 45 - RUNGME EITOT 2.....cviiiiiiiiiiiiii it e 87
Figure 46 - RUNtME EITOT 3.....o.oiiiiiiiiiii e 88

93

Abbreviations/Acronyms Used

Following are some of the abbreviations and acronyms used in this document.

iOS —iPhone, iPad, iPod Touch Operating system
Android — Operating system made by Google
SDK — Software Development Kit

UX — User Experience

UI — User Interface

MVC — Model View Controller

MVVM - Model — View — View Model

CSS — Cascade Style Sheet

GPS — Global Positioning System

94

10. References

Jones, M. (2022, 02 16). Retrieved from https://historycooperative.org/the-history-of-the-iphone/

Prasad, L. (2018, July 15). Retrieved from https://hackernoon.com/application-life-cycle-in-ios-
12b6babaf78b

Mariana. (2020, July). Retrieved from www.beezer.com:

https://www.beezer.com/disadvantages-of-mobile-apps/
Valdellon, L. (n.d.). Retrieved from https://clevertap.com/blog/types-of-mobile-apps/

Sharma, N. (2021, February 02). Retrieved from https://nehaiosdeveloper.medium.com/swift-vs-
react-native-vs-flutter-dart-which-one-to-choose-78553970c794

Apple. (n.d.). Retrieved from https://developer.apple.com/support/xcode/
Chris. (n.d.). Retrieved from https://codewithchris.com/xcode-for-windows/

Allen, S. (2021, June 10). Retrieved from https://wwdcbysundell.com/2021/whats-new-xcode-
13/

Hudson, P. (2021, June 10). Retrieved from

https://www.hackingwithswift.com/articles/236/whats-new-in-xcode-13

Apple. (n.d.). Retrieved from https://developer.apple.com/documentation/xcode/resolving-

common-configuration-and-build-issues

Wilson, T. (2020, March 18). Retrieved from https://levelup.gitconnected.com/introduction-to-
closures-in-swift-ea75477e8f0b

Smyth, N. (2018). SwiftUI Essentials - iOS Edition. Packt.

Swanner, N. (2020, april 1). Retrieved from https://insights.dice.com/2020/04/01/swift-tutorial-

structs-classes-beginners/

Yu, A. (2021, November 17). Retrieved from https://builtin.com/software-engineering-

perspectives/swift-ui

95

https://historycooperative.org/the-history-of-the-iphone/
https://hackernoon.com/application-life-cycle-in-ios-
http://www.beezer.com
https://www.beezer.com/disadvantages-of-mobile-apps/
https://clevertap.com/blog/types-of-mobile-apps/
https://nehaiosdeveloper.medium.com/swift-vs-
https://developer.apple.com/support/xcode/
https://codewithchris.com/xcode-for-windows/
https://wwdcbysundell.com/2021/whats-new-xcode-
https://www.hackingwithswift.com/articles/236/whats-new-in-xcode-13
https://developer.apple.com/documentation/xcode/resolving-
https://levelup.gitconnected.com/introduction-to-
https://insights.dice.com/2020/04/01/swift-tutorial-
https://builtin.com/software-engineering-

Agrawal, V. (2017, August 21). Retrieved from https://code.tutsplus.com/articles/three-terrible-

mistakes-of-ios-developers--cms-29355

7t.co. (n.d.). Mobile Market Share 2021 — Android vs i0S, Apple vs Samsung. Retrieved from
https://7t.co/blog/mobile-market-share-2021-android-vs-ios-apple-vs-samsung/

wikipedia. (n.d.). Software design pattern. Retrieved from wikipedia:

https://en.wikipedia.org/wiki/Software_design_pattern

Benoit Pasquier. (n.d.). How to implement MVVM pattern in Swift from scratch. Retrieved from

benoitpasquier: https://benoitpasquier.com/ios-swift-mvvm-pattern/

developer.apple.com. (n.d.). Model-View-Controller. Retrieved from Apple Developers:
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-

CocoaCore/MVC.html

stackoverflow. (n.d.). see why "type does not conform to protocol” in Xcode (swift). Retrieved
from stackoverflow: https://stackoverflow.com/questions/36872667/see-why-type-does-not-

conform-to-protocol-in-xcode-swift
Git Hub. (n.d.). GitHub Desktop. Retrieved from GitHub: https://desktop.github.com/

Wenderlich, R. (n.d.). SwiftUI Maps & Location Fundamentals. Retrieved from raywenderlich:

https://www.raywenderlich.com/14255236-swiftui-maps-location-fundamentals
Bit Bucket. (n.d.). Bit Bucket Home Page. Retrieved from BitBucket: bitbucket.org

matchboard. (n.d.). 10 Great Reasons to build a Mobile App. Retrieved from matchboard:

https://www.matchboard.com.au/10-great-reasons-to-build-a-mobile-app/
Git Hub. (n.d.). Git Hub Home Page. Retrieved from GitHub: https://github.com

Apple. (n.d.). Use fall detection with Apple Watch. Retrieved from Apple Support:
https://support.apple.com/en-us/HT208944

Cui, Y. (2020, February 13). Best Practices for Using Optionals in Swift. Retrieved from
betterprogramming: https://betterprogramming.pub/best-practices-for-using-optionals-in-swift-

€9ac093ad50d

96

https://code.tutsplus.com/articles/three-terrible-
https://7t.co/blog/mobile-market-share-2021-android-vs-ios-apple-vs-samsung/
https://en.wikipedia.org/wiki/Software_design_pattern
https://benoitpasquier.com/ios-swift-mvvm-pattern/
http://developer.apple.com
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-
https://stackoverflow.com/questions/36872667/see-why-type-does-not-
https://desktop.github.com/
https://www.raywenderlich.com/14255236-swiftui-maps-location-fundamentals
http://bitbucket.org
https://www.matchboard.com.au/10-great-reasons-to-build-a-mobile-app/
https://github.com
https://support.apple.com/en-us/HT208944
https://betterprogramming.pub/best-practices-for-using-optionals-in-swift-

Laso-Marsetti, F. (2019, April 15). Model-View-Controller (MVC) in iOS — A Modern Approach.
Retrieved from raywenderlich: https://www.raywenderlich.com/1000705-model-view-controller-

mvc-in-ios-a-modern-approach

Wise, J. (2022, 02 12). Mobile & Desktop Operating System Market Share Stats For 2022.

Retrieved from earthweb: https://earthweb.com/operating-system-market-share/

Verizon. (n.d.). A timeline: Notable milestones in the history of iPhone from Apple. Retrieved

from Verizon: https://www.verizon.com/articles/milestones-in-history-of-apple-iphone

Proulx, D. (n.d.). iPhone Size Comparison Chart: Ranking Them ALL By Size. Retrieved from
pinterest: https://www.pinterest.com/pin/642396334341225553/

softwaretestinghelp. (n.d.). Xcode Tutorial — What Is Xcode And How To Use It. Retrieved from

softwaretestinghelp: https://www.softwaretestinghelp.com/xcode-tutorial/

tutlane. (n.d.). Swift Closures. Retrieved from tutlane:

https://www.tutlane.com/tutorial/swift/swift-closures

hackingwithswift. (n.d.). Understanding generics — part 1. Retrieved from hackingwithswift:

https://www.hackingwithswift.com/plus/intermediate-swift/understanding-generics-part-1

Apple. (n.d.). Structures and Classes. Retrieved from Swift Docs: https://docs.swift.org/swift-
book/LanguageGuide/ClassesAndStructures.html

tutorialspoint. (n.d.). Swift Extensions. Retrieved from tutorialspoint:

https://www.tutorialspoint.com/swift/swift_extensions.htm

steelkiwi Inc. (n.d.). SwiftUI vs UIKit: Benefits and Drawbacks. Retrieved from steelkiwi:
https://steelkiwi.medium.com/swiftui-vs-uikit-benefits-and-drawbacks-6a540cced684

journaldev. (n.d.). Swift Error handling — Swift try, do catch, throws. Retrieved from journaldev:

https://www.journaldev.com/19651/swift-error-handling-swift-try
Hudson, P. (2018). Swift Design Patterns. In P. Hudson, Swift Design Patterns. Paul Hudson.

raywenderlich.com Team, J. C. (2017). Swift Apprentice Third Edition: Beginning Programming
with Swift 4. Razeware LLC.

97

https://www.raywenderlich.com/1000705-model-view-controller-
https://earthweb.com/operating-system-market-share/
https://www.verizon.com/articles/milestones-in-history-of-apple-iphone
https://www.pinterest.com/pin/642396334341225553/
http://softwaretestinghelp.com/xcode-tutorial/
https://www.tutlane.com/tutorial/swift/swift-closures
https://www.hackingwithswift.com/plus/intermediate-swift/understanding-generics-part-l
https://docs.swift.org/swift-
https://www.tutorialspoint.com/swift/swift_extensions.htm
https://steelkiwi.medium.com/swiftui-vs-uikit-benefits-and-drawbacks-6a540cced684
https://www.journaldev.com/19651/swift-error-handling-swift-try
http://raywenderlich.com

Feiler, J. (2017). 5. Learn Computer Science with Swift_ Computation Concepts, Programming
Paradigms, Data Management, and Modern Component Architectures with Swift and

Playgrounds . Apress.

Hudson, P. (2016). Pro Swift Break Out of Beginner's Swift. Paul Hudson.

Ramnath, R. (2014). Beginning iOS Programming For Dummies. For Dummies.

Keur, C. (2015). iOS Programming: The Big Nerd Ranch Guide. Addison-Wesley Professional.

Neuburg, M. (2017). iOS 11 Programming Fundamentals with Swift: Swift, Xcode, and Cocoa
Basics. O'Reilly Media.

Maurice Sharp, E. S. (2013). Learning iOS Development: A Hands-on Guide to the

Fundamentals of iOS Programming. Addison-Wesley Professional.
Google. (n.d.). Google Maps. Retrieved from Google Maps: maps.google.com

Jakob Iversen, M. E. (2013). Learning Mobile App Development: A Hands-on Guide to Building
Apps With los and Android. Addison-Wesley Professional.

Lim, G. (2020). Beginning iOS 14 & Swift App Development. Packt.

raywenderlich Team, M. H. (2016). iOS Apprentice Fifth Edition: Beginning iOS development
with Swift 3. Razeware LLC.

Langer, A. M. (2012). Guide to Software Development: Designing and Managing the Life Cycle
. Springer.

Gary Bennett, B. L. (2019). Swift 5 for Absolute Beginners: Learn to Develop Apps for iOS.
Apress;.

98

http://maps.google.com

