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PREFACE 

 

This doctoral dissertation is completed using datasets from the Frýdek-Místek district and 

additional data from the Jizera Mts. To achieve the objectives of the study by understanding the 

spatial and vertical distributions of potentially toxic elements (PTEs) in soil, different algorithms 

were adopted to model, map and predict the PTEs in the soil. The thesis adopted supplementary 

auxiliary datasets to enhance the work and achieve the objectives. Among the additional datasets 

were raster and non-raster data from different sources including Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER), satellite imageries (such as Landsat 7 and 8, 

Sentinel 2), land use-cover (from EU-Corine data), terrain attributes and soil properties (from field 

surveys and samplings). Further, legacy database of forest soil and topographic properties which 

comprises thousands of institutional samples collected throughout the Czech Republic between 

1998 and 2019 were also incorporated to enhance the prediction of PTEs in the agricultural and 

forest soils investigated. Though the study focused on the Frýdek-Místek district, an extension was 

made to the Jizera Mountains following the past historical information of intensive anthropogenic 

activities domiciled in the area.  

The work focused on selected PTEs which were known to be more impactful such as Pb, Cu, Cr, 

Zn, Cd, Ni, As and Mn. Several geospatial, geostatistical, and machine learning algorithms, models 

and tools including GIS spatial analytics, various kriging approaches, and the positive matrix 

factorization (PMF) were applied to effectively model, map, and predict the level and trends of 

PTEs in the studied soils in the study areas. In addition to the prediction modelling of the PTEs in 

the soils, the source distribution was evaluated. The accuracy of the applied models for effective 

prediction of the PTEs in the soils were affirmed by introducing various validation algorithms 

namely, the coefficient of determination (R2), root mean square error (RMSE), mean absolute error 

(MAE), RPIQ (ratio of performance to interquartile range), and median absolute error (MdAE). 

The Department of Soil Science and Soil Protection under the Faculty of Agrobiology, Food and 

Natural Resources of the Czech University of Life Sciences Prague (CZU) served as indispensable 

surveillance during the entire thesis. The various grants units, technical supporters, and co-authors 

were given adequate compensatory acknowledgement in the appropriate sections of the 

publications. However, the study was not performed at a national scale yet the results from the study have 

promising information that will promote the integration of field sampling data in known PTEs 



v 
 

elevated areas to serve as adjunct to legacy data in enhancing the prediction at either regional or 

national scales. It could be imperatively concluded that the bibliometric outcomes gathered from 

the different scientific literature adopted in the thesis point that there is no definite modeling 

method that is spectacularly overwhelming in all studies. The following paragraph outlines the 

papers that form the thesis. 
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1.0 LITERATURE REVIEW 

1.1 Soil, and soil pollution 

Soil as a concept could be defined for the understanding of everyone weather experts or layman. 

This work attempted to provide the definitions of soil for the full comprehension of the two classes 

of persons (expert and layman) according to Dazzi and Papa (2022):  

For the experts: Soils are living, four-dimensional natural phenomena possessing solids, water (or 

ice) and air that could store and transform energy and matter, as well as having a significant role 

of interacting with the atmosphere, lithosphere, biosphere, and hydrosphere. Though soils are 

components that are outside and are open systems, they also exist in shallow lakes and beneath 

pavement. They could be of any color, any age, be very shallow or deep, and consist mostly of a 

structured mixture of sand, silt, and clay (inorganics), rocks and organic material (dead and alive).  

For the layman: Soils are the thin layer covering our planet earth. They are complex integration of 

living and mineral elements. Soils are essential Earth resources that purify and conserve water as 

indispensable portion of the planetary system that provide food and habitat for man, plants, and 

animals. 

Soil pollution could be defined as a degradation process caused by presence in soils of substances 

detrimental to the health of humans, animals, and plants (FAO, 2018). Soil pollution can hence be 

seen as the alteration of soil health, defined as the continued capacity of soil to function as a vital 

living ecosystem that sustains plants, animals, and humans (USDA-NRCS, 2018). Soil pollution 

is primarily due to the existence of an anomalous chemical or substance in a higher than-normal 

content that has adverse effects on any non-targeted organism (Binner et al. 2023; FAO & ITPS, 

2015). One group of pollutants is commonly known as the (potentially) toxic elements (PTEs). 

The PTEs have human sources, can exist naturally in soils as mineral materials, and could be 
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harmful in large amounts. The challenge with soil pollution is that it is in most cases not accurately 

studied or accessible. To exacerbate the situation is the fact that contaminants are rapidly 

increasing due to anthropogenic advancements in agrochemical and industrial processes. To 

complicate the issue is the complexity, diversity, uncertainty, time-sapping, and financial exploits 

involved in soil studies, thus making it difficult to identify pollutants. In addition, the impacts of 

soil pollution are more compounded by the characterization of soil which limits the free mobility 

and cycling of contaminant, bioavailability, as well as swaying the soil residence time (An et al. 

2023; Elkhlifi, et al. 2023; FAO & ITPS, 2015).  

Globally, many anthropogenic drivers have been identified as key causes of soil pollution, namely 

industrialization, wars, mining, and agricultural intensification (Yang & Yang 2023; Nwaogu and 

Cherubin 2023; Luo et al. 2009). In some cases, soil is used as a sink for dumping strong and liquid 

pollutants since urban expansion (Usoh et al. 2023). This act is well structured so immediately the 

wastes were buried, they would present no danger to the planetary health (either man or the 

environment) (Usoh et al. 2023; Swartjes & Siciliano, 2012). The principal sources of soil 

pollution are humans, causing accumulation of toxic wastes in soils that could be aggravated 

(Martin et al. 2023; Duarte et al. 2018). The features of soil permit it to naturally absorb and 

promote the cycling of inorganic chemicals or PTEs including lead (Pb), chromium (Cr), zinc (Zn), 

cadmium (Cd), manganese (Mn), nickel (Ni), copper (Cu), mercury (Hg), arsenic (As), antimony 

(Sb), and cobalt (Co) (Adomako et al. 2023; Sun & Chen, 2016). In Europe, North Africa, Asia, 

Northwest Pacific, North America, and Sub-Saharan Africa and Latin America, PTEs have been 

identified respectively as the third, fourth, sixth, seventh, eighth, and the ninth most important 

degraders to soil quality and functions (FAO & ITPS, 2015). In Europe, 6.24% (1,37,000 km2) of 

agricultural land is polluted with PTEs (Naidu et al. 2021). In the Czech Republic for instance, 
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there is a coal reserve of about 705 million tons with approximately 50 million tons of being 

produced annually, making the country the 14th biggest producer in the world. Thus, soil pollution 

is an inevitable impact of mining in the Czech Republic and elsewhere (Rouhani et al. 2023). 

1.2 Potentially toxic elements (PTEs) 

 

Potentially toxic elements (PTEs) are a class of metals, semimetals, and non-metals that are of 

concern due to their persistence, toxicity, bioaccumulation, and biomagnification in high 

concentrations, posing threats to the planetary health including human, animal, plants, and 

environment (de Almeida Ribeiro Carvalho et al. 2022). These elements are naturally parts of the 

earth's crust soils that are mostly harmful when in large concentrations (Ahado et al. 2021; 

Eriksson et al. 2017). Both natural processes and anthropogenic interventions constitute the 

primary sources of the PTEs concentrations (Shar et al. 2021; Mondal et al. 2021; Kalkhajeh et al. 

2021). The natural processes are defined as the materials produced from parent material, while the 

human sources basically emanate from intensive human activities. Many studies have 

demonstrated that natural sources of some PTEs (namely Pb, Cd, and Hg) have been exceeded by 

human discharges into the environment due to pedogenesis (Kalkhajeh et al. 2021; Lu et al. 2012). 

Industrial emissions, burning of fossil fuels, municipal wastewaters, and sewage sludge are 

components of the human sources of metals (Peli et al. 2021; Liu et al. 2020; Nwaogu et al. 2017). 

Further, agricultural intensifications and diversifications have been documented to elevate PTEs 

in the environment including soil and water (Kalkhajeh et al. 2021; Sungur et al. 2021; Cai et al. 

2012).  

Moreso, automobile and vehicle discharges, road dusts, and military operations are responsible for 

high PTEs (Barker et al. 2021; Mondal and Singh 2021). According to Luo et al (2009), farming 

activities are responsible for 79.6%, 56%, and 63% of the yearly total record of Cu, Zn, and Cd, 
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respectively, in soils. They also concluded that the total yearly input of Pb (85%), Ni (67.5%), and 

Cr (43%) presence in the soil comes from industrial atmospheric emissions. Among the several 

harmful impacts of anthropogenic activities on the aquatic and terrestrial ecosystems is the huge 

mobilization, cycling, and dispersal of contaminants from their natural pools into the environment 

(atmosphere, soil, and water) (Hou et al. 2017; Zhao et al. 2014). Soil pollution is difficult to be 

frequently studied or outwardly noticed, making it a hidden threat. The numerous features of 

pollutants are constantly increasing because of agrochemical and industrial advancements. 

However, the effects of soil pollution also significantly rest on the prevailing soil properties since 

this regulates the cycling, mobility, bioavailability, and residence time of PTEs (FAO & ITPS, 

2015). The irony or challenging dichotomy about soil PTE pollution is that  interventions to 

combat them sometimes could introduce additional issues, This is because (a) PTEs are non-

destructible and frequently accumulate rather than degrade in soils (Maas et al. 2010); (b) they 

have a wide range of health effects, and the health vulnerability is complicated by their oxidation 

state and associated bioavailability disparities (Walker et al. 2003); and (c) there are numerous 

diffusional sources of PTE contamination (Qu et al. 2020). Elevated quantities of PTEs in soils do 

not only affect soil health but owing to their steadiness in the environment and lasting biological 

half-life, they possess the potential of accruing in the food processes and consequently impact 

human health (Jannetto & Cowl 2023; Assey & Mogusu 2023; Velayatzadeh 2023; Dhuldhaj et 

al. 2023).  

Though the adverse impacts of PTEs have been continuously reported, yet the consequence of 

their presence continues to increase globally in many agricultural lands, forests, industrial and 

waste pits globally including Nigeria (Nwaogu et al. 2017), China (Wen et al. 2023), Brazil 
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(Cardoso et al. 2023), Australia (Tao et al. 2023), Czech Republic (Rouhani et al. 2023), and USA 

(Sepúlveda et al. 2023). 

1.2.1 Sources of PTEs in soils 

Soil is a dynamic natural resource that is composed of various gases, minerals, salts, organic-

inorganic components and living organisms. It has biological, chemical, and physical properties 

that are susceptible toward any abrupt changes, which can be caused by natural activities (volcanic 

eruptions, weathering of ores, forest fires, etc.) or most commonly by various anthropogenic 

activities (dumping of household and industrial waste, use of chemical fertilizers and pesticides to 

enhance crop (Gautam et al. 2023). Although soil has natural potential to either resist or regenerate 

or suppress the PTEs, this is mostly when the soil is of high quality or when the PTEs are not in 

high concentrations.  PTEs encroach into the soil from various routes, including natural sources 

and anthropogenically-induced sources. It is pertinent to state here that the elementary sources of 

soil pollution are humanly caused which aggregates over time (Duarte et al. 2018). Source of 

pollutant occurs from different paths, including natural enrichment, agricultural activities 

(artificial fertilizers, animal manures, composts, pesticides), industrial activities, transportation 

system, atmospheric deposition, waste management and treatment, and mining (Wang et al. 2023; 

Xue et al. 2023; Demir et al. 2023; Ma et al. 2023; Yuan et al. 2023; Nwaogu et al. 2017). Several 

studies have revealed that the PTEs of human generated sources are generally more mobile and 

bioavailable in soil than PTEs of natural origins (such as volcanic eruptions, geological 

processes/rock weathering reactions, wildfires) (Pacifico et al. 2023; Kharuk et al. 2021). Natural 

processes including wildfires, volcanic eruption, weathering of rocks, erosion, and rock formations 

contribute substantially to the release of large amounts of PTEs in the environment (Pacifico et al. 

2023; Hoshyari et al. 2023; Kharuk et al. 2021). Increase in food production chain due to increase 
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in human population has been reported as one of the primary causes of soil contaminations (Awad, 

2023). As more food items are in high demand by man, more quantities of farmlands are cultivated 

with applications of more quantities of agrochemicals to increase food productions (Falconnier et 

al. 2023; Tudor et al. 2023). 

1.2.2 Spatial distribution of PTEs 

Spatial distribution of PTEs is principally defined by the source of pollution, which is basically 

soil pollution in this case, and is predominantly widespread (Hoshyari et al. 2023; Borůvka et al. 

2005) and considering their level of toxicity and doggedness could be highly harmful to the 

planetary health (human and environment). Meanwhile, the spatial distribution of identified 

contamination has an important structure, with possible pollution proximity to the point source 

decreasing with distance away from the primary source (Belanović et al. 2023; Borůvka et al. 

2005). Soil physicochemical features generally have substantial influence on the spatial 

distribution processes of PTEs (Mahmoudabadi et al. 2015). Studies have shown that the 

enrichment index of PTEs could be linked to diverse soil attributes and their spatial distribution of 

index enrichment for certain PTEs including Zn, Cd, and Ni based on the spatial arrangement of 

pH, soil organic matter (SOM), sand, and clay (Zhao et al. 2010). The metal deposit can be 

enhanced by increasing soil pH, organic matter, cation exchange capacity, and the amount of iron 

and manganese oxides (Zaib et al. 2023; Lake et al. 1984). For example, an increase in soil pH has 

been observed to have affected the solubility and mobility of certain pollutants, making them less 

available for plant uptake or leaching into deeper soil layers or groundwater (Zaib et al. 2023).The 

PTE moieties have been affirmed to have exhibited serious influence on the chemical mobility and 

bioavailability in soil (Zhang et al. 2018). Similarly, the bioavailable components of a PTE in most 

soils are crucial in its conglomeration by organisms. PTEs emitted by anthropogenic activities are 
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thought to have a high bioavailability (Bolan et al. 2014), this could be because many human 

operations such as Arbuscular Mycorrhizal Fungi (AMFs) application can also change PTE 

bioavailability in the soil-crop system (Chen et al. 2023). Therefore, effective identification of the 

chemical compositions of PTEs in soils could be a good support for examining their potential 

environmental issues (Sun et al. 2019).  

1.2.3 The PTEs for study 

1.2.3.1 Cadmium (Cd) 

Cadmium (Cd) is a PTE that was first identified in 1817 as a by-product of the zinc processing 

industry. In the Earth’s crust, Cd is about 700 times more concentrated than zinc and about 0.1–

0.2 mg kg-1 in the lithosphere (El Rasafi et al. 2022) and coexists with zinc ores, as and is a by-

product from the refinement in zinc sulfide mining locations (Rao and Kashifuddin, 2016). Further, 

most Cd is derived from steel remains, which is the second largest source of Cd globally (Coutinho 

et al. 2023). In addition, decomposition of surface, weathering of parent rock mineral might 

promote the discharge of different elements including Cd, which elevates Cd contents in the 

environment (Liu et al. 2022). In farming, the applications of artificial fertilizers containing 

phosphorus elevates Cd in soil, whereas landfill, sewage sludge and other contamination sources 

also increase Cd concentration in the soils (Rao and Kashifuddin, 2016). Other known primary 

sources of Cd are mine tailings, compost inputs and irrigation of mine effluents (Bolan et al. 2013). 

Cd has been recognized as a hazardous element to the soil and humans (Olarewaju et al. 2023).  

1.2.3.2 Chromium (Cr) 

Chromium is a ubiquitous PTE deposited into the environment by various anthropogenic activities 

like plating, corrosion control, tanning, nuclear weapon production (Mohanty et al. 2023; Gosh et 

al. 2016; Ray et al. 2016). Other anthropogenic sources of Cr are mining and metallurgy, metal 



8 
 

plating, rubber, photography, industrial dust and fumes, tanning, leather industry, chemical 

industry, fertilizers, textile industry, paints and pigments, and the diffuse ones that can be 

wastewater and sludge from dyeing and tanning industries (Smiljanić et al. 2019). Chromium 

occurs in six various forms including Chromium (III) and Chromium (VI) which are the two main 

valence states of the metal that take part in inducing environmental toxicity (Mohanty et al. 2014).  

The trivalent form of chromium shows relatively mild toxicity relative to the hexavalent form of 

chromium. The former also has glucose, lipid and protein metabolism affirming that Cr is 

beneficial when exists in acceptable quantities. For example, Cr is important for glucose and fat 

breakdown, and lipoprotein intake in living things. Its biological function is intertwined with that 

of insulin, and most Cr-enhanced processes are insulin dependent. An excessive amount, on the 

other hand, could be harmful (Majhi and Samantaray 2020). In soils treated with wastewater, toxic 

levels are very common. More than 7.5 million tons of Cr are estimated to be generated yearly on 

a global scale.  In nature, Cr is among the few PTEs that do not occur in elemental but exist in 

compound forms such as chromite (Wuana & Okieimen, 2011). Mobility and cycling of Cr is 

influenced by soil sorption properties including clay content, iron oxide content, and the amount 

of available organic matter. Further, surface runoff can transport Cr in its soluble or precipitated 

form to surface waters; soluble and desorbed Cr complexes can leach from soil into groundwater; 

the leachability of Cr(VI) increases as soil pH increases; however, the majority of Cr released into 

natural waters is particle associated and is finally discharged in the sediment or soil (Smith, 1995). 

1.2.3.3 Copper (Cu) 

Copper is known as the 25th most abundant component of the Earth’s crust (Tu et al. 2024), it is 

also an essential micronutrient element for the growth and development of plants, animals, and 

humans. However, excess Cu in the soil is actively risky and might be very toxic to microflora, 
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flora, fauna, and humans. Though a PTE, Cu is malleable, ductile, and a good conductor of heat 

and electricity. A feature distinguished by a crystalline structure that absorbs frequencies in the 

visible range. Copper rapidly integrates to organics in the soil, suggesting that possibly a small 

fraction of Cu might be found in solution as ionic copper, Cu(II). Copper solubility is dramatically 

decreased at pH 5.5, close to the optimal farmland pH of 6.0 - 6.5 (Martínez & Motto, 2000).  

According to Smiljanić et al. (2019), the sources of Cu in the soil and the environment are point 

sources such as mining and metallurgy, plating, rayon, electrical and electronic waste, pesticides, 

paints, and pigments. Others area textile industry, explosive, and diffuse sources like manures, 

fertilizers, pesticides, sewage sludge and atmospheric fall out resulting from the combustion of 

fossil fuels and industrial processes. 

1.2.3.4 Iron (Fe) 

Iron takes the second place after aluminum among metals on the total concentrations in earth crust 

and the fourth most abundant element in the Earth's crust and occupies the 26th elemental position 

in the periodic table (Sánchez et al. 2017; Wedepohl, 1995). Iron is an indispensable element for 

growth and survival of almost all living organisms (Valko et al. 2005). It is an attractive transition 

metal for various biological redox processes because of its inter-conversion between ferrous (Fe2+) 

and ferric (Fe3+) ions (Phippen et al. 2008). The source of iron in surface soil and/or water is 

anthropogenic and is related to mining activities. The production of sulphuric acid and the 

discharge of ferrous (Fe2+) takes place due to oxidation of iron pyrites (FeS2) that are common in 

coal seams (Valko et al. 2005). 

Iron mobilization in soils is regulated by redox processes, pH, and DOC availability for 

complexation. Iron as a metal is further considered to affect the mobilization and bioavailability 

of phosphorus (Bakker et al. 2016) and is reported to show a strong influence on carbon (C) stocks 
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and sequestration by modifying flocculation, sedimentation, and conservation of organic C in 

mineral sediments (Lalonde et al. 2012; von Wachenfeldt et al. 2008). The main sources of Fe to 

the soil are human activities including mining, industry, and agriculture. Naturally, weathering of 

mineral components of the soil is the first step of Fe mobilization (Giesler et al. 2000). Chemical 

weathering is promoted by acidifying compounds of different origins, namely organic acids from 

vegetation and microbes (Landeweert et al. 2001; Chen et al. 2000). Iron concentrations are 

commonly observed in catchments with coniferous forest, and constant land-use changes which 

are known to have relocated Fe from soils to waterbodies (Björnerås et al. 2017). The mobilization 

of Fe from soils depends extremely on either its link to organic matter (OM) (Jansen et al. 2004), 

redox reactions prompted by oxygen deficiency (Grybos et al. 2009), or low soil pH (Kuesel et al. 

2001).  

1.2.3.5 Lead (Pb) 

Pb is among the primary elements in nature globally, and its content in the lithosphere ranges from 

10 to 30 mg kg-1 (USDHHS, 2007). It exists naturally as a bluish-grey metal that is primarily seen 

as a mineral in combination with other elements such as Sulphur (PbS, PbSO4) and/or oxygen 

(PbCO3). Based on its elemental physical and chemical properties, Pb has many industrial 

applications. It stands as the fifth most widely exploited metal globally due to its high industrial 

needs. More than 900 different industries including oil refineries, drug manufacturing, and 

quarrying depend largely on Pb for most of their operations. There is a rise in the metal ion 

concentration in industrial effluent due to an increase in outflow from firms operating close to 

rivers. Worldwide, the average surface soil content of Pb content is about 32 mg kg-1 and ranges 

from 10 to 67 mg kg-1 (Kabata-Pendias, 2010a). Pb is introduced into the soil through various 

pathways including point and diffuse sources which are primarily anthropogenic. Some of the 
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sources are mining and metallurgy, industrial dust and fumes, application of lead in gasoline, 

combustion fossil fuel, solid waste, solid waste combustion and incineration, industrial waste, 

paints and pigments, explosives, ceramics and dishware, and some types of PVC. Others are 

agrochemicals (pesticides, fertilizers, herbicides), manufacturing of lead-acid batteries, urban 

runoff, exhaust gases of petrol engines, and atmospheric fallout from the combustion of fossil 

fuels.  

1.2.3.6 Manganese (Mn) 

Manganese is one of the most prevailing metals in soils, existing as oxides and hydroxides and 

cycling through its three oxidation states which are known primarily as pyrolusite (MnO2) and, to 

a little extent, rhodochrosite (MnCO3) (LENNTECH, 2008). The anthropogenic source of Mn that 

is exported into the soil and the environment in a point and the diffuse source is through the 

production of ferromanganese steels, electrolytic manganese dioxide applied in batteries, alloys, 

catalysts, fungicides, antiknock agents, pigments, dryers, wood preservatives, coating welding 

rods (Bradl, 2005b). Manganese is a mineral nutrient that is required by all plant species 

(PlantProbs.net, 2019). Further, Mn is accumulated by species such as diatoms, mollusks, and 

sponges. Manganese dioxide is adopted as a catalyst, and when chemically combined to potassium 

to form potassium permanganate, it becomes a powerful oxidant and disinfectant. Manganese 

oxide (MnO) and manganese carbonate (MnCO3) are two other distinct compounds that have been 

exploited: the former is used in fertilizers and ceramics, whereas the latter is the starting material 

to produce other manganese compounds (LENNTECH, 2008). Manganese is one of the most 

widespread microelements with the average clark of total Mn in earth’s crust which is about 850–

900 mg kg-1 (Hettler et al. 1997). 
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1.2.3.7 Nickel (Ni) 

Nickel is one of the most popular metals on earth and exists in various metal alloys used in the 

steel industry, also in colorants, taps, as well as in dry cells. Nickel is not only found in soils but 

could erode into water bodies due to its availability in contaminated water (Ogunlalu et al. 2021). 

Other human source for Ni are fertilizers, manures, metal refining, smelting, burning of coal and 

industrial sewage sludge, emissions from mining and smelting operations, an atmospheric fallout 

from the combustion of fossil fuels, mining and metallurgy, electroplating, production of iron and 

steel, industrial dust, industrial aerosols, incineration of waste, fertilizers, combustion of coal, 

battery, chemical industries, food processing industries (Alloway, 2013). In the environment, Ni 

is mostly available in little amounts, while food plants cultivated in polluted soils can absorb large 

amounts. Numerous cytotoxic activities carried out by Ni include the production of free radicals, 

genetic regulation, and the control of transcription factors. It has been discovered that Ni 

contributes to the control of the expression of a few lengthy non-coding chromosomes. Nickel has 

also been shown to produce reactive species, which contribute to neurotoxic development (Engwa, 

et al. 2019). Most of the Ni on earth is unavailable because it is caged in the planet's iron-nickel 

molten core, which has 10% nickel. It has been postulated that large quantities of nickel dissolved 

in the sea ca. 8 billion tons. Nickel concentrations in soil can vary from 0.2 - 450 ppm in clay and 

loamy soils.  

1.2.3.8 Zinc (Zn) 

Zinc (Zn) plays a crucial role in various biological processes and is subsequently an essential 

micronutrient for living beings (Broadley et al. 2012; Wessells et al. 2012; Brown et al. 1993). 

Zinc can also be toxic when present in excess (Giller et al. 1998; Tyler et al. 1989). As a result, too 

low or too high soil Zn concentrations negatively affect soil functions and may harm animal and 
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human health. Primary and secondary Pb smelters have been verified as the main point sources of 

Pb, Zn, and Cd pollution (Luo et al. 2023).  

Beginning from the late 19th century till date, the production of Zn has rapidly increased (Han et 

al. 2002). Zinc is a widely used metal, mainly for galvanizing steel products, brass products, or die 

casting (Graedel et al. 2005). The exploitation and production of Zn contributes to the huge 

quantities of Zn released into the air and its subsequent discharge to soils, followed by waste 

incineration and fossil fuel combustion (Stemweis et al. 1988). The concentrations of Zn in soils 

globally ranged from 30-100 mg kg-1 on average, whereas higher quantities can be found in 

calcareous and organic soils (Kabata-Pendias and Szteke, 2015). Meanwhile, anthropogenic Zn 

sourcing from different agricultural and mining activities might elevate Zn levels in some soils 

(Araújo et al. 2017). Furthermore, Zn emanating from industrial processes and products has 

drastically increased the local contents of the metal. For instance, corrosion of galvanized facilities 

might lead to exacerbated contents of Zn, especially in the soils (Bertling et al. 2006). Zinc as part 

of the particulate matter discharged by brake linings or tires was reported to be associated with 

heightened Zn concentrations in the soils closer to the major roads with heavy traffic (Nwaogu et 

al. 2017; Hjortenkrans et al. 2007). Moreover, agricultural inputs such as chemical fertilizers, and 

manure can introduce unplanned quantity of Zn. For instance, chemical fertilizers having trace 

elements release Zn in soils through agricultural applications (Nziguheba and Smolders, 2008). 

On the other hand, organic fertilizers such as sewage sludge or manure could possess substantial 

quantities of Zn because of feed additives (Mantovi et al. 2003). Therefore, these Zn inputs as 

emphasized above have led to soil pollution globally as reported by several studies in Europe 

(Kabala et al. 2020; Douay et al. 2008; Steinnes et al. 1997), Africa (Famuyiwa et al. 2022; 

Nwaogu et al. 2017; Kazapoe et al. 2021), Asia (Wen et al. 2023; Yang et al. 2023; Yang and Yang 
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2023; Xue et al. 2023; Wang et al. 2023; Hoshyari et al. 2023), Southern America (Sepúlveda et 

al. 2023; de Almeida Ribeiro Carvalho et al. 2022; Reyes et al. 2021), Northern America (Klapstein 

et al. 2020), and Oceania (Tao et al. 2023).  

1.3 Knowledge gap  

Judging from the above literature, it is obvious that there have been problems associated with 

spatial prediction of PTEs and impacts in forest and agricultural soils (Agyeman et al. 2021). The 

role of forest and agricultural soils in sequestering CO2 and providing the growing population with 

food has been very crucial lately. This has therefore put insurmountable pressure on the forest and 

agricultural soils, thereby making the soil lose their natural ecosystem services because many 

contaminants (e.g. PTEs) have saturated them. Since human population continuously increases, 

more food, fibre, carbon stocks are needed from the forest and agricultural soils, thus many 

research works have recently focused on new innovations to redeem the soil by ameliorating PTEs 

concentrations (Agyeman et al. 2022). 

Many conventional approaches adopted have failed to provide sustainable solutions in the 

reduction of increasing contents of PTEs in the soils because these approaches cannot produce 

accurate spatial predictions for precise quantifications of the PTEs over time. Digital soil mapping 

approaches have brought the solution by helping to close the gap by enhancing the availability of 

updates, quantitative, dependable, and valid soil data. In contrast to the traditional soil mapping 

approaches, DSM provides reliable information to support the policy-makers in developing timely, 

effective, and achievable decisions regarding sustainable soil health and management ( Ahado et 

al. 2023). Since the advent of DSM, prediction of PTEs integrated large arrays of environmental 

factors, namely remote sensing, terrain attributes,  digital elevation model, and other related 

datasets that support  the prediction of PTEs in the soil. This is because it encompasses valid facts 
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and reliable data about the surface and subsurface terrain features including highlands, lowlands, 

fluvial erosions, and sediments contaminations, as well as landslides. These support the decision 

makers and end users with timely and comprehensive information required to achieve excellent 

predictions (Ahado et al. 2023). 

Potentially toxic elements concentrations in soil significantly influence soil quality, processes, 

functions, and biota which consequently have negative impacts on agriculture and forest plants 

and productions (Ke et al. 2023; Haj Heidary et al. 2023; Zhao et al. 2017). An exacerbated content 

of PTEs in agricultural and forest soils diminishes the productivity of agriculture, forestry, 

hindering the microbial activity in the soil, renders soil poor in fertility, and it enters the food chain. 

(Cabral et al. 2023; Ke et al. 2023; Haj Heidary et al. 2023; Vácha, 2021; Toth et al. 2016). More 

particularly, increased PTEs in the soil have great risks to planetary health including human health, 

flora, and fauna. Various crop species, cultivation and production systems have different responses 

to PTE uptake from soil to plant, resulting in diverse health risks to people through the food chain 

(Mwelwa et al. 2023; Antoniadis et al. 2017). For example, Mwelwa et al. (2023) recently 

investigated biotransfer of PTEs along the soil-plant-edible insect-human food chain in Africa and 

concluded that high dietary intakes of PTEs is a major safety concern for consumers in the region. 

The prevailing idea of health risk assessment in all areas of interest is mainly on the average values 

of the study area, vis-a-vis the maximum and minimum values. However, these kinds of health 

risk assessments rarely give a total scenario of the health conditions of the study area, but a 

reasonable knowledge about it. In contrary, applying a sample location technique to investigate 

health in each area of interest is a novel approach in health risk assessment that gives a detailed 

understanding of the area of interest as well as comprehensive data and information on health risk 

status for every sampled point (Agyeman et al. 2021). 
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To fully comprehend, assess, analyze, monitor, and regulate PTEs pollution needs good knowledge 

of the sources of PTEs in the area(s) of interest. Different DSM tools and approaches and their 

combinations have been proved highly effective and efficient. These include Principal component 

analysis (PCA), MLR, MLA, geostatistics, RS, GIS and others (Fei et al. 2019). Further, the 

positive matrix factorization (PMF), developed by the United States Environmental Protection 

Agency (USEPA, 2014), has also been identified as a highly effective receptor model that can 

quantitatively compute the contributions of potential sources to soil PTE pollutions at every data 

location under nonnegative constraints and data uncertainty (Yang et al. 2023; Kim et al. 2023; 

Anastasopolos et al. 2023; van der Westhuizen et al. 2023; Vieira et al. 2023; Huang et al. 2018; 

USA- EPA 2018; Sowlat et al. 2016). However, the application of the PMF receptor model has its 

own drawbacks which results in disparities between measured and predicted PTE content, and 

consequently creates impacts on PTEs factor contributions (Brown et al. 2015; Paatero et al. 2014).  

To increase prediction efficiency and enhance model’s performances in DSM, there is the necessity 

to integrate the modeling method with a different model. In respect of this, ecological risk was 

joined with PMF to produce ER-PMF, which supplies less differences and has a higher likelihood 

of minimizing errors between measured and predicted PTE content. This is a novel approach that 

gives sustainable and effective room to decrease to the minimal rate errors emanating from source 

distribution assessment. 

Though, studies have affirmed that some metals including Zn, Mn and Fe are essential for plants 

survival and productivity, yet when these metals become essence in the soil they mar and harm the 

growth and development of the plants (Kalkhajeh et al. 2021). The irony of it is that the 

concentration of these metals is at times difficult to identify if alternative auxiliary datasets are not 

employed to predict their presence in soil. However, the introduction of covariates data including 
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the  satellite imageries containing the soil properties, terrain attributes, as well as PTEs 

concentrations and distributions, with the application of PTEs prediction algorithms such as 

kriging and machine learning algorithms, the challenges associated with lack of data becomes 

significantly resolved. Auxiliary dataset from  Landsat images can easily be combined through the 

fusion processes to enhance the PTEs prediction efficiency which is a new development in PTEs 

assessment and prediction (Agyeman et al. 2022). 

1.4 Digital soil mapping (DSM) 

Digital soil mapping, which can also be referred to as predictive soil mapping, is at the moment 

the best approach to predict the spatial distribution, variation and mobility of soil or sediment at 

given locations (McBratney et al. 2003). The potential and need for DSM and/or predictive soil 

mapping has become a promising subdiscipline in soil science and agronomy (Minasny and 

McBratney 2016). Though, studies have revealed that the spatial variability of soil attributes within 

or between soil types is, in most cases, inherent because of geological and pedological soil 

formation processes (Iqbal et al. 2005), but some of the variability could be related to human 

management systems. At temporal and spatial scales, the drivers and processes influencing soil 

variability interwove to produce a unified content which became later well refined and adjusted by 

the spatial heterogeneity deposition of soil properties. It has been demonstrated by Zhu et al. (2016) 

that environmental covariates and soil interactions in spatial predictions are shaped with a model 

and the comprehended association and are readopted to spaces or areas where soil is unspecified. 

The essence of DSM is the formation of a quantitative soil domain nexus hinged on the modelling 

points or sample observation points to define the interactions between soil and other environmental 

covariates including vegetation indices, climate parameters, geological elements, slope, and 

topographic wetness index (Penizek & Boruvka, 2008). As a perfect tool, DSM adopts models to 



18 
 

determine soil property values at uncertain locations (McBratney et al. 2003a; Heung et al. 2016; 

Minasny and McBratney, 2016; Zhu et al. 2001).  According to Arrouays et al. (2014), the soil 

science world has embraced DSM for mapping and modeling soil attributes, classes, and types 

and, to a large extent, to predict the content of PTEs in the soil. Many stake holders in soil studies 

including FAO, UNEP, and soil societies have adopted DSM because of its high accuracy relative 

to the conventional soil mapping. As a unique method with reliable and high precision in the spatial 

prediction of PTEs, and consistency for sustainable land management, DSM has become a globally 

accepted approach (Padarian et al. 2019). The potential of DSM has been enhanced by the 

progression of geographical information technology and computational technology (Zhang et al. 

2017). According to Lagacherie and McBratney (2006), DSM is the identification, building and 

collation of spatial soil information systems by numerical models referencing the spatio-temporal 

indicators of soil features from soil observation and knowledge from related environmental 

variables. The accruing of PTEs in the soils has been a global issue of paramount concern 

(González-Macías et al. 2006; Liu et al. 2003), because it presents visible threat to planetary health 

(human and environment) (Chen et al. 2015).  Chen et al. (2009) affirmed that DSM is key possible 

goal of studies is the inhibition of PTEs in the soil. On the other hand, spatial prediction of PTEs 

gives an opportunity to identify and delineate the distribution of PTEs, their contents, occurrence 

and defining their source(s) of pollution. 

The DSM approaches are related to many methods such as conventional statistical approaches, 

machine learning algorithms (MLA), geostatistical methods as well as the hybrid methods (Chen 

et al. 2019). The routine approaches are the adoption of regularly used non-spatial statistical 

methods namely multiple linear regression (Jiang et al. 2019), partial least square regression (Lago 

et al. 2021), generalized linear models and linear mixed models (Doetterl et al. 2013). The 
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statistical approaches became famous in the modelling of soil organic carbon (SOC) (Gomes et al. 

2019), PTEs (Ballabio et al. 2018) and soil attributes (Shi et al. 2011). In as much as such statistical 

techniques are not too complex to execute, their needs for reasonable and equal distribution with 

large datasets are seldomly challenging (Chen et al. 2019). These methods are in most cases 

influenced by a dearth of spatial data, which renders them less reliable and unsuitable for 

classifying and studying regional differences and trends (Lian et al. 2009). Other authors have 

reported that DSM applicability is primarily based on scientific research and are regional-based 

oriented (Kempen et al. 2012). Anthropogenic interventions might contaminate restricted places 

with well-defined boundaries from point sources or pollute broader land surfaces circumlocutorily. 

Meanwhile, discovering the source of PTEs is often strenuous if the point source cannot be found 

at the location where high contents of the element are seen (Tóth et al. 2016). In this scenario, the 

potential of DSM of PTEs concentrations of surface soil within given regions is crucial as it helps 

in analyzing spatial trends and hotspots (Tóth et al. 2016). However, the spatial variability of PTEs 

is naturally related to point sources of contamination, other variables including climate (wind 

speed and direction), and topography/terrain surface are also vital and ought to be considered 

(Taghizadeh-Mehrjardi et al. 2021; Costa et al. 2018). For example, Molla et al. (2023) applied 

DSM approaches on the assessment of soil properties and topographic features as significant 

covariates to improve the prediction accuracy of PTEs in soil. Similarly, Behrens et al. (2018) used 

DSM in multi-scale terrain feature development and their respective effectiveness for deep 

learning techniques. Several other studies have demonstrated extensive study of digital elevation 

models (DEM) and PTEs using DSM (Suleymanov et al. 2023; Agyeman et al. 2023a, 2023b; 

Ahado and Nwaogu 2023; Costa et al. 2018). 
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1.4.1 Inverse distance weighting (IDW)  

Inverse distance weighting is a geospatial based digital soil mapping method where interpolation 

explicitly works on the assumption that things which are closer to each other are more alike than 

those which are farther apart (Agyeman et al. 2021). Greater weight will be assigned to the points 

which are closest to the target location, and hence the allocated weights change as an inverse 

function of ‘pth power of distance’, where power function (p) is a positive real number. Greater 

values of p grant greater influence on values which are closest to the point to be interpolated. The 

parameter prediction for the target location is a summation of the product of ‘allotted weights’ and 

‘measured values’ for all sites. After reviewing numerous literatures, p is taken to be 2 for the 

current study. However, the major disadvantages of IDW are that it is sensitive to outliers and there 

is no indication of error or uncertainty. 

1.5 Geostatistical methods 

Geostatistical methods include simple/ordinary kriging and regression kriging. The techniques are 

mostly applied to interpolate geographical features with considerable spatial autocorrelation of 

environmental parameters including climate variables, soil/sediments properties, and geological 

components. The application of geostatistical modelling techniques cut across wider spectra 

namely application in soil SOC (Bangroo et al. 2020; Wang et al. 2015; Peng et al. 2013), soil 

properties (Vašát et al. 2013; López-Granados et al. 2005), PTEs (Linnik et al. 2020; Łyszczarz et 

al. 2020) as well as investigating remote/proximal sensing images (van der Meer, 2012; Zawadzki 

et al. 2005). Two main benefits of geostatistical interpolation are (a) its capability to handle 

directional factors, such as soil pollution (PTEs), soil erosion, siltation flow, lava flow, and wind 

movement, and (b) the ability to surpass the lowest and highest point values. On the contrary, its 
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major constraints are issues of the smoothing effects of kriging, and the reality that spatial 

interpolation analyzes physical data in a continuous environment. 

1.5.1 Kriging   

Ordinary kriging is a globally used digital soil mapping technique which presents many advantages 

over other interpolation techniques. It interpolates using weights independent of the data, hence 

practically, the weights after the first estimation can be used for all data sets. Also, Kriging can be 

thought of as a two-step process: first, the spatial covariance structure of the sampled points is 

determined by fitting a variogram, and then weights derived from this covariance structure are 

used to interpolate values for unsampled blocks or points across the spatial field (Zimmerman & 

Homer, 1991). Kriging has a smoothening effect on the result where it underestimates the higher 

values and overestimates the lower values. Since the data has a smooth trend with lesser  

fluctuations, this was not a cause for concern in the study. The necessary steps to predict with 

kriging are uncovering the rule for getting the dependence and making estimations. The most 

significant contribution of kriging-based dependence estimation is the effect of ‘statistical 

stationarity’ in few cases of predicting values. Some data sets are observed to be random to the 

extent of contributing to a situation, in which the prediction methodology fails to establish any 

correlation to carry out dependable estimation. 

1.5.2 Regression-kriging (RK)  

The RK approach is a workhorse in the toolbox of a digital soil mapper (Keskin and Grunwald, 

2018). It is a hybrid algorithm which works by combining a regression of the target soil property 

on environmental covariates with the kriging of the prediction residuals for predicting soil 

properties (Hengl et al. 2004). In this hybrid model, a regression model is used to assess the 

deterministic trend between the target attribute and environmental predictors, whereas stochastic 
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and spatially auto-correlated residuals are interpolated using a kriging function (Yigini et al. 2018). 

The RK is an efficient tool for predicting the spatial distributions of soil features and attributes 

(Ma et al. 2017). 

1.6  The positive matrix factorization (PMF) model 

The PMF model which is commonly referred to as the US EPA’s Positive Matrix Factorization 

(PMF) Model is a mathematical receptor model created by the US EPA scientists that gives 

scientific support for the assessment, development and implementation of environmental quality 

standards, and environmental forensics of environmental variables on land, water, and air (US 

EPA 2014; 2010). The PMF Model can analyze a wide range of environmental sample data: 

sediments/soil, wet deposition, surface water, and ambient air. The US EPA’s PMF Model 

decreases the huge number of variables in complex analytical datasets to integrate species called 

source types and source contributions. In the model, the source types are classified by relating 

them to tested profiles. The source contributions on the other hand are applied to quantify the 

quantity each source contributed to a sample. Further, the PMF has great potential for supporting 

robust uncertainty estimates and diagnostics. 

The functionality of PMF is simple as the users provide files of sample species designated as 

concentrations and uncertainties together with the number of sources. The model calibrates and 

computes the source profiles (also called fingerprints), source contributions, as well as the source 

profile uncertainties. The PMF Model outputs/results are constrained to provide positive source 

contributions, and the uncertainty weighted difference between the observed and predicted species 

concentration is effectively reduced. The Model outputs are shown graphically in the users’ 

interfaces that ease data input, visualization of model diagnostics, and exporting of the results. One 

great advantage of the model is that it is freely available online and does not require a license or 
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other software to use, as well as it  can be used offline. Meanwhile, the algorithms used in the PMF 

Model have been peer reviewed by leading air, water, and soil quality management scientists. This 

model has been used globally in many studies on soil pollution and quality assessment including 

in the Czech Republic (Ahado and Nwaogu 2023; Agyeman et al. 2023), India (Ambade et al. 

2023), China (Yang et al. 2023), South Korea (Kim et al. 2023), Canada (Anastasopolos et al. 

2023), USA (Sowlat et al. 2016), South Africa (van der Westhuizen et al. 2023), Brazil (Vieira et 

al. 2023). The flexibility and rapid accessibility of the PMF model in assessing soil pollution is 

commendable. PMF has high functionality for the evaluation of the PTEs in soil. It provides 

significant benefit in detecting and monitoring PTEs in organic and mineral soils, thus, it is one of 

the best and latest models (Chen et al. 2010). 

In addition to applying singly, the PMF model has been integrated with other models to investigate 

soil pollution. For example, Ling et al. (2022) combined PMF models with geostatistical analysis 

for source identification while, Wang et al. (2021) investigated the accuracy of PMF source 

contribution analysis with correlation analysis and principal component analysis. In sum, PMF 

model is good at distinguishing different types of pollution sources and has unique advantages of 

processing and optimizing data. 

1.7  Machine learning algorithms (MLA) 

The MLA is a robust approach that can tolerate nonlinearity and multicollinearity and counteract 

overfitting especially with low soil data and auxiliary environmental data (Gautam et al. 2011).  

The MLA models consist of series of methods including Cubist, Stochastic gradient boosting, 

Random forest, Quantile regression forest, and K-nearest-neighbor. 
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1.7.1 Artificial neural networks (ANN) 

Neural networks are known as a combination of algorithms with a purpose of simulating 

human learning. The ANN techniques were initially applied in computer science and later became 

popular in different fields of study. Substantial volumes of simple and advanced algorithms are 

available in various publications. The multi-layer perceptron (MLP) neural network which has a 

back propagation algorithm tends to be the common algorithm (Schmidhuber 2015). In the same 

vein, the less complex learning algorithms with data on dependent parameters and covariates could 

be easily recollected and remembered. Typically, the ANN is made up of three different layers 

namely, input layer, hidden layer, and output layer. Each layer is linked to the neurons operating 

simultaneously and could change the input to the output layer. These algorithms are not new as 

they have been widely applied in soil analysis and mapping several years ago (Song et al. 2016). 

Nowadays, there has been significant improvement of ANN with the introduction of the deep 

learning (DL) that could reach apex level extractions from input. The development of DL was 

initiated by Hinton et al. (2006). A detailed overview of DL could be found in Schmidhuber (2015). 

The DL is ideally conducted via the supervised learning scheme. Meanwhile, only a few soil 

mapping studies have so far applied this novel approach. Integration of the DL and macroscopic 

cellular automata were performed by Song et al. (2016) to model the spatiotemporal distribution 

of soil moisture content. 

1.7.2  Boosted regression tree (BRT) 

The BRT algorithms integrate decision tree techniques and the boosting approaches. In line with 

random forest (RF) models, BRT attempts to fit several decision trees repeatedly to enhance the 

accuracy of the method. Whereas RF models apply retaining techniques permitting every input 

datum to possess uniform likelihood for the successive drawing of subsets, BRT employs a 
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boosting method by examining the input data in the successive building of trees. The BRTs are 

powerful to outliers and missing values (Elith et al. 2008) and can eventually provide a satisfactory 

prediction of the SOC stock in spite of the size of the study area (Ottoy et al. 2017).  

1.7.3 Cubist (CUB) 

Cubist implements a related approach to boosting but is called "committees", which make iterative 

decisions in sequence. This model employs instance and model-based coupling techniques to 

create a multivariate regression from training data. Quinlan (1992) and Kuhn and Johnson (2013) 

reported that the cubist primary value is to enhance the multiple trainings committees and augment 

the weight to ensure it is well balanced. Similarly, the cubist model training committees (above 

one mostly) boosting method shares similarities with sequential series tree development with 

weight-adjusted. Kuhn et al. (2013) recounted that the cubist model is typically used to apply 

amended depending on the number of neighbours, based on prediction rules. However, Kuhn et 

al. (2014) stated that the cubist regression model utilized in classification and regression is 

prevalent and extensively used in R as a package. The cubist model follows the same method as 

in random forests. 

1.7.4  K-nearest-neighbor (KNN) 

K-nearest neighbors is a popular data mining strategy for solving classification problems (Moreno 

et al. 2003). It is an excellent choice due to its flexibility and relatively fast computational 

efficiency. However, the main disadvantage of the K-nearest neigbour classifier is that it requires 

a lot of memory to store the entire sample. If the sample size is large, the response time of a 

sequential computer is also high (Alpaydin, 1997). Despite the memory requirement, it performs 

well in classification tasks on various datasets (Liang and Li 2009). In this study, the K-nearest-

neighbor was  performed with regression kriging in R using the caret package KNN. 
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1.7.5  Random forest (RF)  

Random forest is a data mining technique that is commonly the ensemble learning method for 

classification and regression that functions by creating a multitude of decision trees at the training 

stage, which are later gathered to produce a single prediction (Breiman, 2001). In recent years, RF 

is becoming popular among digital soil mappers for predicting soil elements as evidenced by the 

number of articles using it. The RF is also a form of machine learning method which has an up-to-

date ensemble technique using the recursive partitioning for the exploring of the association 

between predictors and the variable of focus (Breiman et al. 1996). The RF has the same model 

building process as CART, sharing similar model benefits such as flexibility with different types 

of datasets, and insensitive to missing data. Several trees can be developed in RF, in which 

variables are randomly selected and only one fraction of the parameters will be installed to 

recognize splits in each tree. Thus, compared with CART, the RF can give a concise error 

measurement and is less prone to over-fitting (Breiman 2001), which has been validated in the 

mapping of regional soil type (Barthold et al. 2013), soil organic carbon stocks (Were et al. 2015), 

and soil texture (Song et al. 2016). An additional benefit of RF could be its potential to measure 

the importance of variables and generate acceptable results for the noisy dataset. Various authors 

argue that the performance of RF is still not robust enough when comparing with other machine 

learning techniques (Were et al. 2015). 

1.7.6 Quantile regression forest (QRF)  

Quantile regression forest is a variation on the RF method (Meinshausen, 2006). It keeps track of 

all observation samples in each decision tree node, their average values, and their variation. It also 

evaluates the provisional distribution of prediction results predicted on this information 

(Dharumarajan et al. 2019). 
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1.7.7 Stochastic gradient boosting (SGB) 

Stochastic gradient boosting is associated with mixture boosting and bagging. Many microscale 

categorization or regression trees are progressively generated from pseudo-residuals (the gradient 

of the loss function of the previous tree) (Friedman, 2001; 2002). At each iteration, a tree is built 

from a random subsample of the data (selected without substitution), which causes the model to 

progress incrementally. Using only part of the training data increases computational efficiency and 

prediction accuracy while trying to avoid data overfitting. An advantage of stochastic gradient 

enhancement is that no predictor variable needs to be pre-selected or transformed. It is also 

resistant to outliers, as the steepest gradient method highlights points related to their correct 

categorization. In this study, the stochastic gradient boosting was performed in R using the caret 

package gbm. 

1.8 Environmental covariates and GIS 

Environmental covariates are a set of variables consisting of an empirical quantitative function of 

seven environmental covariates expressed as SCORPAN model (McBratney et al. 2003). In 

description, S stands for soil properties, or prior knowledge of the soil at a point; C represents 

climate, climatic properties of the environment at a point; O indicates organisms, vegetation or 

fauna or human activity; R signifies topography, landscape attributes; P denotes parent material, 

lithology; A is for age, the time factor; and N represents space, relative spatial position.  The nature 

and characteristics of soil at any point has been identified as the influence of the interactions of 

SCORPAN factors. Therefore, for effective assessment and prediction of PTEs, these 

environmental covariates are essential. The introduction of multiple approaches embedded in the 

DSM has made it easier to incorporate all the environmental parameters associated with soil 

thereby promoting the sustainable prediction of PTEs. The combination of remote sensing, GIS-
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based models with the MLA helps to generate meaningful mathematical formula used to produce 

good results in soil PTEs predictions. 
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2.0 OBJECTIVES 

The thesis aims at examining the trends, relationships, and the concentrations of PTEs in forest 

and agricultural soils by using various DSM methods including geostatistical and machine learning 

algorithms. It consists of six papers, each with a specific objective that is in line with this primary 

aim.  

Paper 1: Trend analysis of global usage of digital soil mapping models in the prediction of 

potentially toxic elements in soil/ sediments: a bibliometric review.  

Objectives: The objective of this paper was to conduct a review of articles, summarize and analyze 

the spatial prediction of potentially toxic elements, determine, and compare the models' usage as 

well as their performance over time. 

Paper 2: Using geostatistics and machine learning models to analyze the influence of soil nutrients 

and terrain attributes on lead prediction in forest soils. 

Objectives: The primary goal of this paper was to investigate the possibility of predicting lead 

(Pb) in forest soils by combining terrain attributes and soil nutrients using geostatistics and 

machine learning algorithms (MLAs). 

Paper 3: Spatial modelling and quantification of soil potentially toxic elements based on 

variability in sample size and land use along a toposequence at a district scale. 

Objectives: The key aim of this paper was to apply ordinary kriging (OK), geographically 

weighted regression (GWR), and positive matrix factorization (PMF) to model soil Cu and Mn in 

the Frýdek-Místek district based on different sample sizes, topography, and land use. 
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Paper 4: Source apportionment, contamination levels and spatial prediction of potential toxic 

elements in selected soils of the Czech Republic. 

Objectives: The objective of this paper was to investigate the source apportionment, concentration 

levels and spatial distribution of PTEs in selected soils in Frýdek-Místek District of the Czech 

Republic. 

Paper 5: Assessment of the spatial and vertical distributions of potentially toxic elements in soil 

and how the concentrations differ. 

Objectives: This paper aimed at assessing the concentrations of PTEs in soils by modelling their 

spatial and vertical distributions using a GIS-based ordinary interpolation technique, and to 

identify the possible sources of the PTEs using PMF model. 

Paper 6: Health risk assessment and the application of CF-PMF a pollution assessment-based 

receptor model in the Frýdek - Místek district). 

Objectives: to assess human health risk exposure, to apply a novel pollution assessment-based 

receptor model CF-PMF (contamination factor-positive matrix factorization) in the Frýdek - 

Místek district. 
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3.0 METHODOLOGY: GENERAL OVERVIEW FOR THE STUDY 

3.1. Brief description of the study area(s) 

3.1.1 Study area I 

The area under study is situated in the district of Frýdek-Místek that is within the Moravian-

Silesian Region in the Czech Republic (Fig 1). The area under study is situated within the 

geographical coordinates for the North and East ranges between 49.39° and 49.76° (N) and 

between 18.18° and 18.86° (E), at an altitude between 225 and 1323 m above sea level, 

characterized by a cold temperate climate and a high amount of rainfall even in dry months. In 

Frýdek-Místek, the summers are hot and partially cloudy, and the winters are cold, dry, windy, and 

mainly cloudy. Over the course of the year, temperatures usually range from -4.4 °C to 23.9 °C 

and are rarely below -13.3 °C or above 30°C while the average annual precipitation ranges from 

685 to 752 mm (Weather Spark 2016). The survey area of the district is measured at 1208 km2 with 

39.38% of the land size designated for agricultural activities and 49.36% for forest lands 

(Agyeman et al. 2021). The study area comprises of the following cities: Havířov, Těrlicko, Třinec, 

Bystřice, Jablunkov, Mosty u Jablunkova and Hrčava, which are affected by intensive farming and 

active industries such as the steel industry. Třinec and Vítkovice, a part of Ostrava city where the 

steel industry is located, become an essential area for the assessment of PTEs distribution and 

health risk within and around neighboring communities (Agyeman et al. 2020).  

The soils differ in their color, structure, and carbonate content. The soil shows a medium and fine 

texture material that is derived from parent materials. It is mostly colluvial, alluvial, or aeolian 

deposits. Some parts of the soil show mottles in the top and subsoil that is primarily accompanied 

by concretions and bleaching.  The potential toxic elements pollution in the area is anticipated to 

occur from atmospheric deposition emitted from the steel industry nearby, vehicular emission, 
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abrasion from tires, and agricultural activities (e.g. pesticide and insecticide applications) 

(Agyeman et al. 2020).The dominant soil type is Cambisols,  with minor element of  Stagnosols 

and other soil types (Kozák 2010). 

 

Fig. 1:   Study area map  with sampling locations in forests in Frýdek-Místek district in the Czech 

Republic with CORINE landuse-landcover information. 
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Fig. 2: (A) Study area map with sampling locations in forest soil, (B) Frýdek-Místek district, 

(C) Research location coupled with the partitioned dataset employed (i.e. training and test), (D) 

Sampling locations of the Frýdek-Místek district. 

 

3.1.2 Study area II 

This study area, which is about 110 km2,  covers a greater part of the Jizera Mountains region (Fig. 

3). The altitude ranges from 600 to 1100 m above sea level. The mean annual temperatures are in 

the range of 3 - 6 °C contingent upon the altitude. The annual precipitation amount reaches about 

1500 mm at the top of the mountains. Most areas are covered by forests (Fig. 3), though in some 

areas it recovers only slowly after forest decline in 1980s and 1990s. Norway spruce (Picea abies) 
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is the most abundant tree species. The European beech (Fagus sylvatica) is the main broadleaved 

species as the admixture in mixed forests. Purely broadleaved forests are rather rare in the area 

under study except the UNESCO National Nature Reserve Beech Forests of the Jizera Mountains. 

There are also areas having pockets of peatbogs. The PTE pollution in the area is assumed to 

originate from atmospheric deposits emitted from the coal, textile and steel industries, vehicular 

emission, abrasion from tires. Geologically, the area is characterized by granite (granodiorite) and 

gneiss which form the principal acidic bedrocks. Haplic/Entic Podzols, Stagnosols and Cambisols 

are predominant soils (Vacek et al. 2020; IUSS Working Group WRB, 2015). At most of the area 

especially in the higher altitudes, the mor form of humus dominates, while the moder humus type 

is observable only at lower altitudes.
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Fig. 3: Sampling points and land use–land cover of the Jizera Mts (in the Liberec district). and 

vicinity derived from the CORINE database (Central Map), location of the Jizera Mts. in Liberec 

region in the Northern part of the Czech Republic (Top and down left maps), and the location of 

the Czech Republic in Europe (Top right map). 

 

3.2 Soil sampling and laboratory analyses 

The principal source of soil data used for this study are existing soil data on Frýdek-Místek and 

Liberec districts and a new set of soil samples (agricultural fields – cropland and grassland) in 

Frýdek-Místek district collected in 2019. The legacy data will include a database of forest soil 

properties which consists of several thousands of sampling locations from institutional samples 
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collected between the years 1998 and 2019 across the whole Czech Republic, with the 

environmental covariates of the sampled stands (Borůvka et al. 2022). The soil sampling depth 

from the institutional data went through a transformation (weighted averages) into three depths: 

surface organic horizons (F+H), mineral topsoil (0 – 30 cm) and subsoil (30 – 80 cm; on the part 

of sampling sites only). The transformation is necessary because the soil data is from various 

depths of the soil profile and from the different surveys. Environmental covariates and pedological 

data of the sampled stands within the forests indicate among other covariate properties, the forest 

type (broadleaved, coniferous, mixed) and other land use and land cover in the area.  

In Frýdek-Místek district, new sampling on agricultural land only was performed (Fig.2). A 

composite sample, composed from three mixed subsamples collected on an area of approximately 

1 m2, was collected on each place. The sampling spots were found using a handheld GPS, and 

samples were taken with a bucket auger, depending on the topography. There are a total number 

of 115 topsoil samples and 21 subsoil samples were collected across the study area. The sampling 

grid was 2x2 km (topsoil) and 4x4 km (subsoil).  

The collected soil samples were stored in well-labeled plastic bags and taken to the laboratory. The 

collected samples were air-dried, grounded, and sieved with a mesh of size 2.0 mm to get a 

pulverized sample. In the Teflon container, 1 g of the dried, homogenized, and sieved soil sample 

was placed and labeled. 7 mL of 35% HCl and 3 mL of 65% HNO3 were dispensed in each bottle 

of Teflon and gently closed by the cap to enable the sample to remain overnight for reactions to 

take place (aqua regia procedure).  

The supernatant was placed on a hot metal plate for 2 h to promote digestion of the sample and 

left to cool when the soil sample was dissolved. The mixture was transferred into a prepared 50-

mL volumetric flask and then diluted with deionized water 50 mL. The diluted supernatant was 
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then filtered into 50 mL PVC tubes. 1 mL of diluted concentration was further diluted with 9 mL 

of deionized water and filtered into a 12 mL test tube prepared to evaluate pseudototal PTE content. 

The ICP-OES (inductively coupled plasma optical emission spectrometry) (Thermo Fisher 

Scientific Corporation, USA) was utilized to ascertain the concentration of PTEs (Mn, Ni, As, Pb, 

Zn, Cr, Cu, and Cd) in compliance with standard procedures and protocols. Moreover, the quality 

control and quality assurance process were ensured by checking standard reference material (SRM 

NIST 2711aMontana II soil). The detection limits of the PTEs utilized in this study are 0.0002 mg 

kg kg-1(Cd), 0.0007 mg kg-1(Cr), 0.0060 mg kg-1(Cu), 0.0001 mg kg-1(Mn), 0.0004 mg kg-1(Ni), 

0.0015 mg kg-1(Pb), 0.0067 mg kg-1(As), and 0.0060 mg kg-1(Zn). Duplicate analysis was carried 

out to ensure that the error was minimized. The analysis of soil samples was conducted at the 

Czech University of Life Sciences Prague. 

In addition, the samples were also analysed using a portable X-ray fluorescence (XRF) 

spectrometer Olympus Delta. Each sample was measured in triplicates. The reference material was 

occasionally measured alongside soil samples to ensure that the analysis remained accurate until 

completion. The detection limits of XRF for the PTEs tested were 10 mg kg-1(Ni), 10 mg kg-1(Cu), 

5 mg kg-1(Sr), 20 mg kg-1(Ba), 5 mg kg-1(Ti), 10 mg kg-1(Fe), 10 mg kg-1(Cr), 5 mg kg-1(Y), 5 mg 

kg-1(Zr), 5 mg kg-1(Th) and 5 mg kg-1(Rb). The PTEs recovery percentage was 82.3 (Ni), 89.9 

(Cu), 86.4 (Sr), 88.1 (Ba), 84.7 (Ti), 87.9 (Fe), 81.2 (Cr), 96.2 (Y), 92.5 (Zr), 100.9 (Th), and 98.7 

(Rb) of the measured soil samples. 

3.3 Spatial prediction and  digital soil mapping 

3.3.1 Selection of covariates 

Environmental covariates were extracted from the  Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER)  dataset using a digital elevation model (DEM) at a spatial 
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resolution of 30 m (http://earthdata.nasa.gov/search/) and processed for terrain analysis using the 

SAGA-GIS toolkit. In any case, a DEM with a spatial resolution of 30 m was resampled to a spatial 

resolution of 20 m using the bilinear resampling method in ArcGIS. The topographic parameters 

used in this study are slope, elevation, valley depth, LS factor, aspect and relative slope location. 

Terrain attributes were chosen because of their association with the response variable through a 

simple correlation matrix analysis.  

3.3.2 Spatial modelling and digital soil mapping methods 

Prior to the digital soil mapping, basic statistical parameters (mean, median, minimum, maximum, 

standard deviation, coefficient of variance, etc.) were first calculated for each soil property 

separately by horizons. The following DSM techniques were applied to analyze and model the 

distribution of the PTEs in the soil. These include kriging, geographical weighted regression 

(GWR), inverse distance weighting (IDW) and MLAs such as cubist (CUB), Quantile regression 

forest (QRF), Random forest (RF), stochastic gradian boosting and K-nearest-neighbor (KNN). 

These were applied to produce digital maps of potentially toxic elements Cr, Cu, Fe, Cd, Pb, Zn, 

Mn) after the log transformation of the dataset. To determine the relationship between 

environmental covariates and PTEs, correlation analysis was employed in Rstudio software 

version (4.0.5). The variogram and semivariance interpolation were used. This interpolation 

technique enhanced the creation of the spatial distribution maps of PTEs of the study area. ArcGIS, 

version 10.7.1 (ESRI 2019) was used for spatial data processing and visualization. Further, a 

hybrid model that coupled ordinary kriging with machine learning techniques (e.g., random forest, 

cubist, and extreme gradient boosting) to create a regression kriging approach was implemented. 

Details of the used methods are described in each paper. 
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3.3.3 Assessment of the accuracy and validation of the models 

The study thoroughly examined the performance of the models selected for this work. The models 

were trained using 75% of the dataset, which was validated using the remaining 25% of the dataset. 

The coefficient of determination (R2), root mean square error (RSME), mean absolute error 

(MAE), RPIQ (ratio of performance to interquartile range) and median absolute error (MdAE) 

were used to evaluate the performance, efficiency and accuracy of the various models applied in 

this research. R2 describes the variability in response proportions represented by the regression 

model. MdAE confirms the true measured value, while RMSE and MAE determine the magnitude 

of the models  expected accuracy. The value of R2 should be high and the accuracy should be near 

to 1 to select the best model method using the validation criteria. According to Li et al. (2016), a 

standard R2 value of 0.75 or higher  should be considered excellent predictions, while 0.50 to 0.75 

should be considered satisfactory predictions. The lower obtained values are suitable and 

considered the best choice for model selection for the validated standard estimation methods 

RMSE, MdAE and MAE. The RPIQ is calculated by dividing the interquartile range (IQ = Q3–

Q1) by the RMSE and depicts the largest spread of population residuals (Bellon-Maurel et al. 

2010). 

3.4 Contamination level analysis for PTEs 

The PTEs pollution level of the study area was examined through various contamination 

assessment indices, including the contamination factor (CF) and the pollution load index (PLI).  

3.4.1 Contamination factor (CF)  

CF is defined as the ratio of the element content of the sample to the background value of the same 

metal. It is given by: 

CF = C (metal) Sample / C (metal) background value        (1) 
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Where C (metal) is the concentration of metal analyzed from sampled soil; C (metal) background 

value is the geochemical background value (or concentration) of that metal. It is important to state 

here that the baseline values used were the World mean values (Kabata-Pendias, 2011). 

3.4.2 Pollution load index (PLI) 

The PLI is a measure of estimation which was first proposed by Tomlinson et al. (1980). Pollution 

load index has been in use for the detection of pollution. It is robust and effective in the comparison 

of pollution levels in space and time. The PLI was calculated based on the concentration factor of 

each PTE by focusing on the background value in the soil where CF is the contamination factor 

earlier stated (Eq. 1) and ‘n’ is the number of metals studied. The pollution load index (PLI) 

equation is given by:  

PLI= √CF1 x CF2 x CF,3 x … x CF𝑛
𝑛                                    (2) 

Where CF is the contamination factor derived for each metal; n is the number of metals. A PLI 

less than 1 indicates the optimal soil quality, and a PLI that is equal to 1 signifies that only the 

baseline levels of contaminants are present, while a PLI greater than 1 infers the degradation of 

the quality of the site by pollution (according to Tomlinson et al. 1980). 

3.4.3 Source apportionment using positive matrix factorization (PMF) model 

The positive matrix factorization (PMF) model is effective by using the software EPA-PMF v. 5.0 

(U.S. EPA 2014). It was applied to determine the contribution of PTEs sources to contamination 

in the study area. The mathematical method is a receptor model used in calculating the contribution 

of the sources to samples built on the composition or fingerprints of the sources. The PMF model 

is given by: 

𝐶𝑖𝑗 = ∑ 𝐺𝑖𝑘 

𝑝

𝑘=1
+ 𝐹𝑘𝑗 + 𝐸𝑖𝑗                                                         (3)     
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In which 𝐶𝑖𝑗  represents the content of PTE j in soil sample i, 𝑝 is the number of factors (i.e., 

pollution sources), 𝐺𝑖𝑘  denotes contribution of factor k to soil sample i, 𝐹𝑘𝑗 is the content of PTE 

j in factor k, and  𝐸𝑖𝑗  signifies the residual. Assume the matrix of PTEs contents in the soil samples; 

PMF can derive the factor contribution matrix G as well as factor profile matrix F by minimizing 

the objective function Q, which is presented as: 

𝑄 = ∑ ∑ (
𝐸𝑖𝑗

𝑈𝑖𝑗
)

2

                                                                (4)
𝑚

𝑗=1

𝑛

𝑖=1
 

In which m is the number of PTEs investigated, n denotes the number of soil samples, 𝐸𝑖𝑗  signifies 

the residual and Uij signifies the uncertainty of PTEs j in soil sample i. Uij is determined based on 

the PTEs content (Cij), the relative standard deviation (σ), and the method detection limit (CMDL). 

Therefore, it implies that the PTEs content is above CMDL value; Uij is computed as: 

𝑈𝑖𝑗 = √(𝜎 ×  𝐶𝑖𝑗)
2

+𝐶𝑀𝐷𝐿
2                                                                   (5) 

The model recommends that the data below the detection limit would be substituted with the value 

of CMDL/2, i.e., data that does not occur in this study, and the associated uncertainty is calculated 

as: 

𝑈𝑖𝑗   =
5

6⁄ 𝐶𝑀𝐷𝐿                                                                                     (6) 

Besides the constraint of no significant negative contribution (Gik), the utmost optimal factors were 

derived using the multilinear engine algorithm in PMF. It is vital to note that the minimum Q can 

be global or local. Consequently, multiple attempts using diverse starting points were carried out 

to reach the global minimum Q and a reliable solution. 
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The uncertainty and the bias of the results obtained were further estimated using two error 

estimation methods encompassed in the PMF model: classical bootstrap (BS) and displacement of 

factor elements (DISP) (Brown et al. 2015).  The uncertainty of solutions can arise generally based 

on three causes: (1) errors coming from the data set randomly, which are based on measurement 

procedures; (2) ambiguity resulting from rotation and the fact that multiple PMF solutions can 

have the similar or very close values of object function Q; and (3) modelling errors triggered by 

the simplification of the real system. Bootstrap was performed to curb random errors, whereas 

displacement was engaged to explore data errors and rotational ambiguity. The bootstrapping 

allowed us to create a new data set that randomly selects subsamples from the original observation 

with replacement. This set of data generated was then fitted by the PMF model to derive various 

factors and the concentration contribution. The fingerprint and the factor contribution of each 

element in the soil were assessed based on the results generated by the software from repeating the 

resampling and model fitting procedure. The object function Q would then increase by a 

predetermined maximum value change dQmax. The interpretation is based on the adjustment of the 

upper or lower interval of the displaced element.  

3.5 Health risk assessment 

The presence of industries, productive agriculture, and other anthropogenic factors exposes 

individuals within the study area enclave to risk posed by PTEs. Based on the risk of people being 

exposed, inhalation, ingestion and dermal intake are three known pathways that the residents can 

be exposed to. According to Chen et al. (2015), an individual is exposed to soil  PTEs by three 

main pathways: ingestion, inhalation, and dermal contact of soil. This is specified in the following 

equations below.  

𝐶𝐷𝐼𝑖𝑛𝑔 =
𝐶 × 𝐼𝑅𝑖𝑛𝑔 × 𝐸𝐹 × 𝐸𝐷

𝐵𝑊 × 𝐴𝑇
 10−6                                   (7) 
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𝐶𝐷𝐼𝑖𝑛ℎ =
𝐶 ×  𝐼𝑅𝑖𝑛ℎ × 𝐸𝐹 ×  𝐸𝐷

𝑃𝐸𝐹 ×   𝐵𝑊 × 𝐴𝑇
                                          (8) 

𝐶𝐷𝐼𝑑𝑒𝑟𝑚 =
𝐶 × 𝑆𝐴 × 𝐴𝐹 × 𝐴𝐵𝑆 × 𝐸𝐹 × 𝐸𝐷

𝐵𝑊 × 𝐴𝑇
 ×  10−6       (9) 

𝐶𝐷𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐶𝐷𝐼𝑖𝑛𝑔 + 𝐶𝐷𝐼𝑖𝑛ℎ + 𝐶𝐷𝐼𝑑𝑒𝑟𝑚                                   (10) 

 

The definition of the parameters  for (CDI, mg kg-1 d-1), 𝐶𝐷𝐼𝑖𝑛𝑔  𝐶𝐷𝐼𝑖𝑛ℎ and 𝐶𝐷𝐼𝑑𝑒𝑟𝑚 as well as 

reference values of the parameters in the equations (especially, equations 7-10) are listed in the 

Table 1. 

3.5.1 Non–carcinogenic risk assessment  

The potential non-cancinogenic  risk of one PTE was determined as the hazard quotient (HQ), in 

which the equation is given by: 

𝐻𝑄 =  
𝐶𝐷𝐼𝑡𝑜𝑡𝑎𝑙

𝑅𝑓𝐷
=

𝐶𝐷𝐼𝑖𝑛𝑔 +  𝐶𝐷𝐼𝑖𝑛ℎ + 𝐶𝐷𝐼𝑑𝑒𝑟𝑚

𝑅𝑓𝐷
               (11) 

Where RfD implies the reference dosage (mg kg-1 d-1) and is the projected daily human exposure. 

The computational HQ values were used to assess the detailed risk to health of all the PTEs studied. 

The values were summed up and expressed by equation as a hazard index (HI), which is given by 

equation 12: 

𝐻𝐼 = ∑ 𝐻𝑄 =  𝐻𝑄𝑖𝑛𝑔 +  𝐻𝑄𝑖𝑛ℎ + 𝐻𝑄𝑑𝑒𝑟𝑚                (12) 

In which HQing, HQinh and HQderm correspond to the hazard quotient for ingestion, inhaling and 

dermal. USEPA report (US EPA 1989) specifically asserted that if HI < 1, there is no  possibility 

to have a negative effect upon a person's health who is exposed to PTEs, and if the HI is >1, adverse 

health effects are possible. 
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3.5.2. Carcinogenic risk assessment 

The US EPA report (EPA 2002) stressed that a human exposed to carcinogenic risk (CR) could be 

attributable to the probability of cancer development of any type. Equations 13 and 14 were used 

to calculate for PTEs such as As, Ni and Cr carcinogenic risk. 

 

𝐶𝑅 = 𝐷𝐶𝐼 × 𝑆𝐹                                                                     (13) 

 

𝑇𝐶𝑅 =  ∑ 𝐶𝑅 =  𝐶𝑅𝑖𝑛𝑔 + 𝐶𝑅𝑖𝑛ℎ +  𝐶𝑅𝑑𝑒𝑟𝑚                 (14) 

 

Where CR, TCR and SF values symbolize carcinogenic risk (no unit), total carcinogenic risk (no 

unit)and slope factor for carcinogenic risk, 𝐷𝐶𝐼 denotes daily chronic intake of PTEs (mg kg-1d-1) 

respectively. The acceptable threshold value of CR is 1.0.10-4 and the range of tolerable values of 

CR are from 1.0 10-6 to 1.0 10-4 (US EPA, 2011). This is the acceptable criterion which shows that 

human health is not significantly endangered.  
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Table 1: Exposure factors used in CDI estimation for non-carcinogenic and carcinogenic risk. 

Variables Description Units Values Values  

      Adults Children   

C Concentration of PTE of present study mg/kg       

IRing Ingestion rate mg/d 100 200 US EPA, 2011 

IRinh Inhaling rate m3/d 20 7.65 US EPA, 1991 

EF Exposure frequency days/year 350 350 US EPA, 2011 

ED Exposure duration year 30 6 US DOE, 2011 

SA Skin surface area cm2 5700 2800 US EPA, 2002 

AF Soil adherence factor mg/cm2/d 0.07 0.2 US EPA, 2011 

ABS Dermal absorption factor  mg/kg/day 0.001 0.001 US EPA, 2011 

PEF Particle emission  factor m3/kg 1.36 × 109 1.36 × 109 US EPA, 2011 

BW Average body weight kg 70 15 US EPA, 2013 

AT N-C Average time for non-carcinogenic risk day ED  × 365 ED  × 365 Wang et al., 2017; 

Eziz et al., 2018; 

Wu et al., 2019 
AT CR Average time for carcinogenic risk day  70  × 365 70   × 365 

FC Units’ conversion factor kg.mg-1 1 × 10-6      1 × 10-6      US EPA, 2002 

Specific reference  

dose for ingestion 

RfDo mg/kg/day Cr (3×10-3), Cu (4.0×10-2), Ni 

(2×10-2), Pb (3.50×10-3), Zn (3×10-

1), As (3×10-4) and Mn (0.14) 

                

Li et al. 2015; 

USDOE 2011; 

Qing et al. 2015; 

De Miguel et al. 2007;  

Teng et al., 2015 

Specific reference  

dose for dermal contact 

RfDABS mg/kg/day Cr (6×10-5), Cu (1.2×10-2), Ni 

(5.4×10-3), Pb (5.3×10-4), Zn (6×10-

2) and As (01.23x10-04) Mn (0.05) 

Specific reference  

dose for inhalation 

RfDi mg/m3  Cr (2.86×10-5), Cu (4.02×10-2), Ni 

(2.06×10-2), Pb (3.52×10-3), Zn 

(3×10-1) As (0.3) and   Mn (0.8) 

Oral slope factor  SFo (mg/kg/day)-1   As (1.5) 

Absorbed dose slope factor SFad (mg/kg/day)-1   As (3.66) 

Inhalation slope factor SFi (mg/m3)-1  Cr (0.5), Ni (0.84), and As (15.1) 
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3.6 Materials and methods summarized for each paper. 

3.6.1 Methodology 1 

Trend analysis of global usage of digital soil mapping models in the prediction of potentially 

toxic elements in soil/ sediments: a bibliometric review 

This study adopted the bibliographic review method to enhance the understanding and close the 

knowledge gap on the trends of scientific publications on DSM in the prediction of soil PTEs. This 

was conceived in this work to get the overview of existing studies and publications on the main 

topic of this thesis. In this paper, various articles were collected from different scientific databases 

such as Scopus, Web of Science, and Google Scholar. Some keywords were identified which were 

geared towards the topic under review, and the keywords were tuned consistently to ascertain 

articles that are relevant to the study. The combined keywords used for the search engine included 

Soils*/sediments* AND ("digital soil mapping" OR "digital mapping" OR "spatial prediction" OR 

"predictive mapping") AND ("toxic elements" OR "risk elements" OR "heavy metals" OR 

pollution OR Cadmium OR Copper OR Chromium OR Manganese OR Nickel OR Lead OR Iron 

OR Zinc). This paper made use of only completed articles that were duly published within the 

ambit of prominent journals of which all the required information needed was collected for the 

analysis. No unpublished papers or articles were included in this review. The period for this review 

spans from 2001 to the first quarter of 2019. Over 523 articles were downloaded, and thoroughly 

read through to ascertain 319 articles that were relevant to the study based on these following 

criteria:  

i. Spatial prediction or interpolation by predictive models 

ii. Potentially toxic elements (PTEs) 

iii. Soil or sediments-based analysis 

iv. Geostatistics model or 
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v. Remote sensing or 

vi. Machine learning model.  

Data filtering and mining: In the data mining and filtering stages, several variables were 

considered, such as spatial prediction using either machine learning algorithm or geostatistics. 

Further, under each variable, additional subtopics were included to help in collecting the vital 

information and to have numerous as well as copious data to analyze. 319 articles were carefully 

reviewed while some articles were removed based on the quality and relevance to the topic. Finally, 

a total of 238 papers that are highly relevant to the research, comprising 208 soil-based analyzes 

and 30 sediments-based research were selected. Below are the headings and information used in 

the data filtering and mining process (Table 2). 

Table 2. List of information/options on which information was collected from papers on PTEs 

modeling and mapping. 

Headings  Information collected, options 

Paper identification authors, journal, and year 

Auxiliary data-remote 

sensing 

remote sensing (RS)–satellites, RS–airborne, RS – drones, 

laboratory spectroscopy (VisNIR), laboratory spectroscopy 

(MIR), field spectroscopy (VisNIR), field spectroscopy (MIR), 

other) 

Region Europe w/o Russia, Northern America, Southern America, 

Africa, Australia, Russia, China, Asia (without China) 

Objective mapping, temporal changes/development, spatial 

distribution/variation assessment, comparison of methods, other 

Studied PTEs Arsenic, Beryllium, Cobalt, Cadmium, Chromium, Mercury, 

Molybdenum, Nickel, Lead, Zinc, Antimony, Other 
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PTEs source geology, atmospheric deposition, mining, metallurgy, industry, 

transportation, urban, agriculture (pesticides, fertilizers…), 

flooding, alluvial areas, other 

Modeling methods inverse distance weighting (IDW), geostatistics, kriging 

(ordinary, simple, universal), regression-kriging, fuzzy methods, 

multiple linear regression (MLR), cubist, polynomial models, 

Bayesian methods, (boosted) regression trees (RT), 

classification/decision trees, random forests (RF), partial least 

squares regression (PLSR), principal component regression 

(PCR), artificial neural networks (ANN), multiple additive 

regression splines (MARS), support vector machines (SVM), 

other machine learning techniques 

Uncertainty assessment leave-one/group-out, validation subsample, independent 

validation samples, number of validations, maximum R2 obtained 

(validation), minimum root mean square error (RMSE)–

validation (wt), minimum root mean square error (RMSE)–

validation ((t ha-1) 

 

3.6.2 Methodology 2 

Using geostatistics and machine learning models to analyze the influence of soil nutrients and terrain 

attributes on lead prediction in forest soils. 

In this study, from the legacy database of forest soil properties which comprised of thousands of 

institutional samples collected throughout the Czech Republic between 1998 and 2019, as well as 

topographic attributes of the sampled forests, data for the Frýdek-Místek district were extracted, 

in total 336 sampling points. The depth of topsoil samples used for the legacy data was 0-30 cm. 

Environmental covariates and pedological data derived from forest sampled stands within the 

forest indicate the forest type (broadleaf, coniferous, mixed forest) and other local land uses and 

land covers. The contents of Pb, Cd, Cr, Cu, Mn, Zn, Fe and other elements in the soil were 

obtained by the standard aqua regia method (ISO 11466:1995, 1995). Geostatistics technique was 
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applied to examine and predict the values related to spatial heterogeneity of physical processes. 

This included the spatial and temporal coordinates of the datasets. The geostatistical approaches 

helped as a good approach to distinguish spatial features and linear interpolation values for areas 

in which samples have not been collected. For example, the study used regression kriging (RK) as 

a Geostatistics technique to hybridize with machine learning approaches for mapping and 

predicting lead (Pb) contents in soils. This study also employed machine learning algorithms 

(MLA) including Cubist, Stochastic gradient boosting, Quantile regression forest, and K-nearest-

neighbor for efficient modelling, mapping, and prediction of the soil PTEs in the study. Further, 

since the PTEs (e.g., Pb) are associated with topographic features, environmental covariates were 

extracted from the Aster dataset using a digital elevation model (DEM) at a spatial resolution of 

30 m (http://earthdata.nasa.gov/search/) and processed for terrain analysis using the SAGA-GIS 

toolkit. In any case, a 30 m DEM with a spatial resolution of 30 m was resampled to a spatial 

resolution of 20 m using the bilinear resampling method in ArcGIS. The topographic parameters 

applied in the study are slope, elevation, valley depth, LS factor, aspect, and relative slope location. 

Terrain attributes were chosen because of their association with the response variable(s). To 

determine the prediction accuracy of the used models, the dataset was split into calibration (75%) 

and validation (25%) datasets. The calibration dataset was used to establish the prediction models, 

and validation dataset was adopted for independently evaluating the prediction accuracy. The 

coefficient of determination (R2), root mean square error (RSME), mean error (MAE), RPIQ (ratio 

of performance to interquartile range) and median absolute error (MdAE) were Used to evaluate 

the models’ efficiency and accuracy of the methods adopted in this study. 

 



50 
 

3.6.3 Methodology 3 

Spatial modelling and quantification of soil potentially toxic elements based on variability in 

sample size and land use along a toposequence at a district scale. 

Legacy soil data and current soil maps for the Czech Republic were the primary sources of soil 

data for this study. The same set of data mineral topsoil (0 -30 cm) from 336 sampling locations 

in the Frýdek-Místek district as in the previous study was used. Environmental covariates and 

pedological data of the samples collected within the forests covered broadleaves, coniferous, 

mixed forests, and pollution risk forest areas. The pseudototal content of PTEs (Cu and Mn) in the 

soil was determined using the aqua regia standard method (ISO 11466:1995, 1995). The Rstudio 

software version (4.0.5) was used to further resample the soil samples into five different subsets 

by reducing the total sample (n = 336) by 60 from the original data set. R software code was used 

to model the five (5) different sample sizes, n = 336, n = 276, n = 216, n = 156, and n = 96, 

respectively. Given the total sample size of n = 336, each of the subsequent sub samples was 

randomly selected by assigning a unique seed [e.g., seed (276)] to ensure reproducibility of results. 

The various sample sets were randomly generated together with the x, y coordinates, respective 

terrain height equivalent, and associated land use-land cover (LULC) as derived from the field. 

The sequential reduction of the number of models by 60 was based on the author's discretion as it 

could have been any other number. Basic statistical parameters such as mean, median, minimum, 

maximum, standard deviation, coefficient of variance, kurtosis, and skewness were determined. 

The OK interpolation technique was used to enhance the creation of the spatial distribution maps 

of the PTEs using the non-transformed values of Cu and Mn. Furthermore,  the positive matrix 

factorization (PMF, EPA version 5.0, Washington, DC, USA) was used for the estimation of source 

apportionment and contamination level of the PTEs, whereas the ordination model of CANOCO 

5.0 was used to show the association among LULC, relief, sample size, and PTEs. 
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3.6.4 Methodology 4 

Source apportionment, contamination levels and spatial prediction of potentially toxic elements 

in selected soils of the Czech Republic (Frýdek-Místek)   

In this study, a grid sampling design was adopted for the soil assessment. The topsoil (0 to 20 cm) 

samples were collected at intervals of 2 km using a handheld GPS system (Leica Zeno 5 GPS) and 

subsoil (21 to 40 cm) samples at every 4 km. The total number (n) of samples obtained for topsoil 

(ts) and subsoil (ss) was n=49 and n=21, respectively. They were taken into plastic bags and 

appropriately labelled and transported to the laboratory. The samples were air-dried, crushed by a 

mechanical device, and then sieved (< 2 mm) to obtain a pulverized sample. These samples were 

analyzed using a portable X-ray fluorescence spectrometer (Delta Premium 2019). Each sample 

was measured in triplicates. The quality assurance and control process, the standard reference 

material for a portable device (i.e. XRF 2711a and NIST 2711a, the National Institute of Standards 

and Technology) was used in the analysis to ensure quality compliance. The detection limits for 

the PTEs tested were < 10 mg kg-1 (Ni),< 10 mg kg-1 (Cu),< 10 mg kg -1 (Fe),< 10 mg kg -1 (Cr). 

The PTEs recovery percentage were 82.3 (Ni), 89.9 (Cu), 84.7 (Ti), 87.9 (Fe), 81.2 (Cr), and 92.5 

(Zr).  PTEs contamination analysis such as contamination factor and pollution load index were 

performed. The statistical analyses were performed using Excel (maximum and minimum number, 

average value), PMF EPA 5.0 for estimation of source apportionment, and RStudio for mapping 

as well as estimation of the Pearson correlation matrix. Inverse distance weighting (IDW) 

interpolation was used in  allocating  weights change as an inverse function of ‘pth power of 

distance and the similarities between neighbours with a proportional distance between them. This 

interpolation technique supported the creation of the spatial distribution maps of PTEs of the study 

area under investigation. 
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3.6.5 Methodology 5 

Assessment of the spatial and vertical distributions of potentially toxic elements in soil and how 

the concentrations differ 

In this study  at 3 km intervals, the soil samples were collected were collected for both organic soil 

organic soil (F+H horizons) and mineral soil (30 cm) in the Jizera Mts. Region, Liberec district. 

The sampling points were located using a handheld GPS system (Leica Zeno 5 GPS) and samples 

collected using either a push probe or bucket auger depending on the terrain. A total number (N) 

of 221 samples each were derived for organic soil (F+H horizons) and mineral soil (A) across the 

study area. The collected soil samples were stored in well labelled plastic bags and taken to the 

laboratory. The soil samples were air-dried, crushed by a mechanical device, and then sieved with 

a mesh of size 2.0 mm to get a pulverized sample. The presence of elements such as Cr, Cu, Pb, 

Mn, and Fe) in the soil were extracted using aqua regia standard method(ISO 11466 :1995, 1995) 

(Melo et al. 2016) to determine their pseudo-total content. For the quality control (QC) of the 

method, the standard addition technique was adopted. For example, the QC of the concentration 

determination was guaranteed using the SRM 2711 (Montana II soil) reference material (National 

Institute of Standards and Technology, Gaithersburg, Maryland, USA). The values achieved were 

consistent with the reference data. The recovery differences were generally < 10% (n = 3). The 

detection limits for the elements based on the applied method were as follows: Cr (0.03 mg L−1), 

Cu (0.015 mg L−1), Pb (0.05 mg L−1), Mn (0.05 mg L−1), and Fe (0.15 mg L−1). The source 

apportionment of the soil PTEs were determined by using the PMF model. To determine the 

relationship between environmental covariates  and PTEs, correlation analysis was employed. 

ArcGIS, version 10.7.1 was used for spatial data processing and visualization. Maps of the spatial 

distribution of these soil properties were created using ordinary kriging. 
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3.6.6. Methodology 6 

Health risk assessment and the application of CF-PMF: a pollution assessment-based receptor 

model in urban soil. 

In this study data from 49 samples collected from the Frýdek-Místek district based on agricultural 

and industrial soil areas were used, the same as in paper 4. Contamination assessment indices such 

as contamination degree (Cdeg), modified degree of contamination (mCd), Nemerow pollution 

index, PMF receptor model, and contamination factor receptor model (CF-PMF) was applied to 

determine and predict the soil PTEs. The presence of industries, productive agriculture, and other 

anthropogenic factors exposes individuals within the study area to PTEs. To assess the health 

impacts of the PTEs contamination, health risk assessment (HRA) was performed. The HRA was 

conducted by determining the non-carcinogenic risk assessment, and carcinogenic risk assessment. 
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4.0 SUMMARY AND CONCLUDING REMARKS 

4.1 Summary of key findings and discussion 

Overall, the goal of the study is to assess the spatial prediction of soil PTEs by applying DSM 

approaches including geostatistical and MLA in agriculture and forest soils, as well as determining 

the PTEs source(s). Data for the study were diverse and from different sources, namely legacy 

datasets, field survey data, and  satellite imageries covering different variables such as the soil 

properties, as well as terrain parameters and land use to achieve effective PTEs predictions. The 

introduction of this diverse dataset promoted the expedition of distinct pathways for realizing a 

more accurate  soil PTEs prediction for better decision making in the study area. At some given 

scenario, the integration of  terrain attributes was coupled and/or decoupled with comparative 

analyses to determine the most suitable auxiliary dataset together with the modeling techniques in 

the PTEs prediction. The study demonstrated that the integration of diverse datasets produced more 

acceptable and desirable results than using a single dataset. This data harmonization approach 

intensified and strengthened the prediction efficiency and coherence vis-à-vis reducing negligible 

errors. 

4.1.1 Paper 1: Trend analysis of global usage of digital soil mapping models in the prediction of 

potentially toxic elements in soil/sediments: a bibliometric review 

The findings from this study revealed that soil pollution originates from diverse sources and 

clarifies the motives for authors to focus on a particular area of their interests. The results further 

observed the uncertainties in mapping and identified the number of publications in the subject area 

in the related journals. Further, the continental and global-based endeavors to study and publish 

on trending issues regarding DSM were also established in this study. For example, Europe 

accounted for the highest number of publications, followed by Asia, Africa, North America, South 

America, then Oceania. In terms of publishing journals, articles were extracted from related 
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journals including soil science, soil contamination or pollution, spatial prediction, and related 

journals repository. The journals with the highest publications on the topic were Geoderma (25), 

the Science of the Total Environment (18), Environmental Pollution (18), the Journal of 

Geochemical Exploration (12), Environmental Earth Science (11) and Environmental Monitoring 

& Assessment (10), and other recorded less than 10 articles each during the study period. 

Regarding the modelling methods, the study found a total of sixteen modelling approaches that are 

widely used in DSM as were shown during the study period. These were inverse distance 

weighting, kriging (simple, ordinary, universal), indicator kriging, regression, kriging, fuzzy 

methods, multiple (linear) regression, cubist, classification and regression trees, random forest, 

partial least square regression, principal component regression, artificial neural network, 

multivariate adaptive regression splines, support vector machine. However, the study revealed that 

only 9 out of the 16 models were the most used. The kriging (e.g., simple, ordinary, universal) 

model was the most preferred model of choice by most authors when compared with the other 

models. In addition, regression kriging, multiple linear regression, and artificial neural networks 

have been used quite a few times. Random forest, partial least square regression, multiple linear 

regression, inverse distance weighting was relatively adopted. 

The DSM is primarily based on geostatistics and MLA techniques. The geostatistics is a set of 

statistical approaches that rely on spatial/temporal modelling data as well as focuses on the high-

precision estimation with quantifiable uncertainty. Machine learning, on the other hand, is a 

relatively new set of techniques, other than geostatistics, which some schools of thought assume 

gives a high rate of predictive accuracy concerning the type of model used. The spread of MLA 

use has increased in recent years, and some of the DSM experts believe that there is a gradual 

paradigm shift from the use of the geostatistics model to machine learning techniques. Although 
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MLA is becoming more popular in DSM due to the availability of computational power, 

geostatistical kriging is the most commonly used in prediction (Webster and Oliver 2007).  

Although the geostatistics model remains the citadel of the DSM juxtaposing it with the papers 

reviewed, it is evident that geostatistics is still widely used in the soil sciences community. From 

2011 until now, the soil science community has had a flair in the blending of the usage of MLA 

and geostatistics models. There is no doubt about the popularity of the kriging model and its usage 

in spatial prediction in DSM, as Veronesi and Schillaci (2019) have recently argued. Conversely, 

to Veronesi and Schillaci earlier arguments, they went on to report that practitioners relied less on 

interpolation (kriging models) but rather more on MLA. This assertion reinforces the fact that 

algorithms could be used based on the preference and diverse conditions available at the time. 

Numerous studies have been conducted to compare the two algorithms to determine the contrast 

and superiority between geostatistics and MLA. It is important to note that, for academic findings, 

it is possible to compare algorithms within DSM to find the best results that fit the modelling that 

a practitioner or author is trying to model. 

In respect to the studied potentially toxic elements, this study observed that from 2001 to 2018, 

Cd, Cr, Cu, Pb, and Zn were the predominant in most of the soils examined by the scientists. The 

study showed that many papers mentioned the study of Pb (181 times), Cu (153 times), Zn (153 

times), and Cd (141 times), Cr (130 times), Ni (116 times), and Mn (58 times), while other PTEs 

such as As, Co, Hg, V, and Mo were also mentioned many times. Among the PTEs, Pb was the 

most mentioned PTEs. 

Considering the objectives of the authors for using the DSM algorithm, the most frequent reasons 

were ‘for soil mapping’ which accounted for 133 times in the articles (representing 31.7%), ‘for 
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determining the extent of the pollution (i.e., for spatial distribution or variation)’ which recorded 

172 times in the articles, and with the largest percentage (> 40%).  

In terms of uncertainty and validation for model accuracy, the study revealed that no validation 

was carried out on 128 articles reviewed, 46 papers used R square (R2) validation method, 57 root 

mean square error (RMSE), 14 mean absolute error (MAE), 12 residual prediction deviation 

(RPD), 13 mean error (ME), and the rest of the validation criteria put together had 45 papers. 

This paper reveals the complementary role machine learning algorithms, and the geostatistical 

models play in DSM. Nevertheless, geostatistics approaches remain the most preferred model 

compared to machine learning algorithms because MLA approaches are still new but with time 

more studies might consider MLA than geostatistics because of the potential. 

4.1.2 Paper 2: Using geostatistics and machine learning models to analyze the influence of soil 

nutrients and terrain attributes on lead prediction in forest soils 

This paper investigates the possibility of predicting lead (Pb) in forest soils by combining terrain 

attributes, soil nutrients and their combinations, and regression kriging in the Frýdek-Místek 

district of the Czech Republic. The results showed that the prediction of Pb in forest soil using 

separately terrain attributes and soil nutrients as additional data sets combined with regression 

kriging would produce satisfactory results. On the other hand, it performed well with the 

combination of soil nutrients and terrain attribute. Overall, the evaluation showed that using 

cubist_RK in combination with terrain attributes and soil nutrients provided the best prediction 

accuracy and the lowest error in Pb prediction in forest soils. Interactions between Pb and soil 

nutrients, as well as terrain attributes, can help to better identify sources of PTE pollution while 

improving predictive efficiency. It was found that applying a robust digital soil mapping (DSM) 

model in combination with terrain attributes and soil nutrients is efficient in predicting the spatial 
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distribution and estimation of uncertainty levels of lead (Pb) in forest soils based on the model’s 

accuracy parameters. Therefore, it is established that the use of soil chemical properties as a proxy, 

together with appropriate environmental covariates, and DSM will improve modeling efficiency 

for the predictions of lead (Pb) in forest soils. This inference was drawn based on the following 

summarized contextual findings that: (i) when the terrain attributes were used as the only auxiliary 

dataset, QRF_RK proved to be the most effective method for predicting Pb in forest soil (context 

1) ; (ii) when soil nutrients were used as the only auxiliary dataset, the most effective method for 

predicting Pb in forest soil was a combination with SGB_RK (context 2); (iii) combining 

cubist_RK with an ancillary dataset of soil nutrients and terrain attributes together is the most 

effective method for predicting Pb in forest soils (context 3). In sum, this finding is assumed to be 

a contributor to the existing knowledge on DSM using geostatistics and MLAs under forest soils.  

4.1.3 Paper 3: Spatial modelling and quantification of soil potentially toxic elements based on 

variability in sample size and land use along a toposequence at a district scale 

This study applied ordinary kriging (OK), geographically weighted regression (GWR), and 

positive matrix factorization (PMF) to model soil Cu and Mn in the Frýdek-Místek district based 

on different sample sizes, topography, and land use. It was found that the predicted PTEs 

concentrations and their spatial distribution in the soil between the different calibration sample 

sizes were highly heterogeneous. The PTEs in all the samples had a clear positively skewed 

distribution: Cu (n = 336) having the highest skewness of 4.46 and Cu (n = 96) having the lowest 

skewness of 1.04. The skewness value for Mn ranged from 2.37 to 1.58. The mean values obtained 

for both Cu and Mn were lower compared to the European mean values, worldwide mean value 

(Kabata-Pendias 2011), and Crati basin values (Guagliardi et al. 2012). This may suggest that the 

soil had low pollution. 
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The northern parts of the study district were found to have the highest concentration (hotspots) of 

all PTEs. This could be attributed to the fact that the socio-economic and industrial activities are 

concentrated towards the northern part of the study area, and thus toxic elements are regularly 

discharged (Wang et al. 2020; Guo et al. 2019). This study further revealed spatial dependency 

values in relation to the structure of the PTEs pollution in the study area, a trend that might be 

attributed to a typical soil-geochemical patterns of PTEs pollution formation by the disposal of 

human-made waste in the forest soils (Xu et al. 2016). Further, the study established that the 

prediction accuracy of PTEs was not dependent on total sample size but on other environmental 

variables such as elevation and land use are involved. For example, all the sample sizes showed 

the highest concentrations of the PTEs in the lowlands below 500 meters where the industrial, 

commercial and the arable activities dominated in contrast to the highlands (above 500 m) where 

forests were dominant.  Therefore, the selection of appropriate prediction models will enhance the 

achievement of accurate prediction of PTEs spatial distribution in soils. 

The result further established that the concentrations of Cu and Mn in the soils of the study area 

were within the reference range recommended by  EU, and/or US-EPA which are  EU (50–140 mg 

kg−1), and US-EPA (28-80 mg kg−1 average) for Cu, and EU (524 mg kg−1on average), and US-

EPA (< 750 mg kg−1 average) for Mn, respectively. Although the rate of pollution according to the 

mean values indicated non-polluted soils, there may be an intermittent need to assess the soils for 

control measures to be taken to curtail excessive accumulation and escalation to safeguard the 

wellbeing of the inhabitants and the ecosystem. Also, the results might support policy-developers 

in sustainable farming and forestry for the health of the ecosystem towards food security, forest 

safety, as well as animal and human welfare. The research also concluded that sample size does 

not necessarily influence the quantification of spatial variability and predictive accuracy of PTEs, 
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rather other environmental factors such as covariates, land use, topography and the selection of 

appropriate models influence the prediction and predicted distribution of these elements in soils. 

Different subsets with the same number of samples can provide different results.  

4.1.4 Paper 4: Source apportionment, contamination levels, and spatial prediction of potentially 

toxic elements in selected soils of the Czech Republic 

This study investigated the spatial and vertical distribution of the PTEs in the soil by analyzing the 

concentration at the topsoil (0-20 cm) and subsoil (21-40 cm). The result established that both 

topsoil and subsoil showed homogeneous variability. Ni showed high variability in both the topsoil 

and subsoil, whereas Fe showed high variability in the topsoil only. The spatial distribution of the 

non-homogeneity of Ni and Fe predicts the existence of a local source of enrichment. Comparing 

the findings from this study with the PTEs from Crati Basin (Guagliardi et al. 2012), it is apparent 

that the Crati Basin is highly enriched in Cr, Ni,Cu, Rb, Sr and Ba compared to the current studies. 

However, the current study is also enriched in Y, Zr, Ti and Fe compared to the Crati Basin. 

The findings revealed that the area consisted of low to high pollution sites. For the topsoil, the 

average PTE concentration decreased in the order of: Fe>Ti>Ba>Zr>Rb>Sr>Cr>Y>Cu>Ni>Th, 

while the subsoil decreased in the order of Fe>Ti>Zr>Ba>Rb>Sr>Cr>Y>Cu>Ni>Th. The result 

further revealed that Cr, Ni, Cu, Rb, Y, Zr, Ba, Th, and Fe were far above both the European average 

value (EAV) and the World average value (WAV) of baseline/level.   

The PTEs average value concentrations of Cr, Cu, Y, Ba, Th, and Fe in the topsoil are higher than 

the PTEs in the subsoil. On the other hand, the concentration of Ni, Rb, Sr, Zr, and Ti in the subsoil 

were higher than in the topsoil. The enrichment of the topsoil by the relevant PTEs could be due 

to anthropogenic activities such as atmospheric deposition, steel industry, and vehicular emission 
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as well as agriculture (Jones et al. 2019). In contrast, the enrichment of the subsoil by the dominant 

PTEs might be attributed to geogenic origin, pedogenic processes, and leaching (Li et al. 2017).  

The source apportionment showed the dominance of Cr, Ni, Rb, Ti, Th, Zr, Cu, and Fe in the 

topsoil while in the subsoil, all the PTEs showed similar pattern of  factor loadings  except for  Ba. 

Therefore, it is essential to highlight that there should be periodic monitoring process to put 

structures in place to discourage the release of these PTEs into soils in order to safeguard the health 

of humans, flora, and fauna. It is incumbent to articulate from the finding ascertain that the soil 

health in the study area is under threat and therefore calling for attention and actions for the 

reduction and the prevention of PTEs contamination, which serve as an imminent threat to the 

environment. In sum, it is highly recommended that further studies be performed to assess the 

ecological and health risk of the PTEs in the soil of the Moravian-Silesian Region in Frýdek-

Místek district. 

4.1.5 Paper 5: Modeling and assessing the spatial and vertical distributions of potentially toxic 

elements in soil and how the concentrations differ 

The findings from this study established the evidence and supported the notion that the Jizera 

Mountains area is within the “Black Triangle” which is affected by industrial activities connected 

with the extraction and exploitation of coal and other natural resources in Central Europe. The 

content of Pb exceeded the mean values for Europe and the world (Kabata-Pendias 2011).  

The application of ordinary kriging approach for the spatial analysis of the PTEs gave a clear 

indication of the spatial distribution and hotspots of the study area. The basic summary statistics 

indicate that in the organic soil, the elements increased in the order: Fe< Pb< Cu<Cr<Mn .It was 

further observed that all the elements with exemption of Mn indicated significant relationship with 

altitude  above sea level  in both the organic soil and the mineral soil horizons. This result is in 
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tandem with a study conducted by Nozari et al. (2024) in the study area.  Similarly,  studies exist 

in other regions and countries (Gerdol and Bragazza, 2020 and Ding et al.2017). For example, in 

the Suxian district of China, it was revealed that PTEs concentrations decreased at low elevation 

but increased considerably with increasing elevation (Ding et al. 2017). Other studies have 

reported that fine-particle elements including Cr and Cu accumulate more at lower elevations (Liu 

et al. 2020). 

It was also established in the study that for both organic soil and the mineral soil horizons, the 

northern part of the kriged maps revealed higher contents of the PTEs when compared with either 

the southern or central part. This could be explained by the historical distribution pattern of 

industrial and agricultural activities in the study area which were mainly located in the northern 

part (Černik et al. 2016). 

Application of the positive matrix factorization (PMF) model, ArcGIS-based ordinary kriging, and 

contamination level analysis were effective for the source identification, hotspot location, and 

assessment of the contamination level of the PTEs. By introducing these techniques, it was further 

observed that except for samples 40, 65, and 174 in the organic soil, all the 442 sample points 

revealed low contamination by the PTEs, in contrast to the fact that the Jizera Mountains area is 

indeed within the “Black Triangle” which is affected by industrial activities (Borůvka et al. 2020; 

Marx et al. 2017). However, the level of pollution in the area is quite low based on the findings of 

pollution indices of this study. The findings from this study may serve as baseline information for 

the pollution assessment of Czechia and European farmland and forest soil quality. The results 

might support policy-developers in sustainable farming and forestry for the health of the ecosystem 

towards food security, forest safety, as well as animal and human welfare. 
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4.1.6 Paper 6: Health risk assessment and the application of CF‑PMF: a pollution assessment–

based receptor model in an urban soil 

This study revealed that the mean concentration of the PTEs  such as Cr, As, Mn, Pb and Zn in the 

Frýdek-Místek district exceeded World average, whereas the mean concentrations of As, Pb and 

Zn were higher than upper continent crust. However, the concentration of Cu, Mn, Pb and Zn also 

exceeded the tolerable European average values limit. 

The comparison of CF-PMF receptor model to EPA-PMF receptor model applied in the study 

showed that the PMF receptor model is a robust receptor model, but the hybridization of PMF and 

CF increases the source apportionment efficiency and reduces the error. A comparative assessment 

between the hybrid model and PMF revealed that consistently the hybrid model performed better 

than the single-parent model. For example, in this study, the estimated coefficient of determination 

(R2), root mean square error (RMSE) and mean absolute error (MAE) showed that out of the seven 

PTEs evaluated, CF-PMF showed superior performance in all the seven PTEs relative to PMF 

model. 

In terms of the potential health risk, the estimated total carcinogenic risk (TCR) for children was 

2.33 times higher than that of the adults. The TCR for adults and children were 6.9 × 10-6 and 1.61 

× 10-5, respectively. Oral ingestion of soil was the main pathway for the CR of As for children, 

while dermal contact of soils was the main pathway for the CR of As for adults. Therefore, it was 

established that the calculated TCR for both adults and children were a good proof that according 

to US- EPA  the carcinogenic health risk within the study area falls within the acceptable limits 

(i.e., TCR values should range in between 1 × 10-6 to 1 ×10-4).  Conclusively, the likelihood for 

indigenes within the study area to be exposed to carcinogenic related health risk associated with 

soil PTEs is relatively low or zero. However, it is pertinent for the people to take pragmatic 
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strategies to protect the soil by ensuring that PTE accumulations are continuously either abated 

and/or reduced. To achieve this, the study suggests regular monitoring of the soil PTEs contents 

using more effective tools such as the DSM approaches. 

4.2 Concluding remarks 

This thesis concluded that: 

(i) Applying a robust and hybridized digital soil mapping (DSM) model in combination 

with terrain attributes, soil nutrients and appropriate auxiliary datasets was efficient in 

achieving effective prediction of the spatial distribution and estimation of the 

uncertainty levels of PTEs in forest and agricultural soils. 

(ii) In the past decades, more studies focusing on the spatial prediction of PTEs in the soil 

applied geostatistical approaches, but recently, the combination of other DSM models 

such as machine learning algorithms is fast gaining recognition.  

(iii) The integration of data fusion, terrain attribute, and the kriging modeling techniques 

produced optimal results with a high R2 value, high prediction accuracy, marginal 

errors, and less bias. 

(iv) For better prediction outcomes, proxies or additional data sets can be combined with 

soil characteristics that have a strong correlation with response variables. 

(v) The combination of  legacy datasets, coupled with appropriate modeling method(s) and 

a well-correlated environmental covariate dataset, generates valuable and reliably 

acceptable PTEs prediction results. 

(vi) Adopting a higher spatial resolution remote sensing datasets together with input data 

in the prediction of PTEs or soil properties is not a guarantee for achieving good results. 

But the preferrable best results will be realized by combining environmental covariates 
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with a high correlation of the response variable, coupled with appropriate modeling 

approaches for predicting PTEs in either agricultural or forest soil. 

(vii) The application of mean, maximum, and minimum values as criteria for health risk 

estimation might not ensure a comprehensive scenario of the health status in any study 

area; other health risk assessment procedures and standards and factors (e.g., 

socioeconomics) need to be put into consideration. 

(viii) The adoption of a pollution assessment-based receptor model (ER-PMF) has proved 

more reliable and practical in estimating distribution sources. 

(ix) Introduction of geographical weighted regression ordinary kriging is highly dependable 

and efficient in the mapping and modeling of PTEs in the agricultural and forest soils 

compared to the use of only geographical weighted regression. 

(x) No specific geostatistics and/or machine learning algorithm (MLA) is an all-round the 

best in the prediction of PTEs. But the efficiency and reliability of any model depends 

mainly on the available datasets, and partly on the users’ experience. For a good result, 

every study needs a different modeling method that is most appropriate for the type of 

dataset used because there is no single modeling technique that fits all datasets, and for 

the study objectives. 
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Abstract The rising and continuous pollution of the

soil from anthropogenic activities is of great concern.

Owing to this concern, the advent of digital soil

mapping (DSM) has been a tool that soil scientists use

in this era to predict the potentially toxic element

(PTE) content in the soil. The purpose of this paper

was to conduct a review of articles, summarize and

analyse the spatial prediction of potentially toxic

elements, determine and compare the models’ usage as

well as their performance over time. Through Scopus,

the Web of Science and Google Scholar, we collected

papers between the year 2001 and the first quarter of

2019, which were tailored towards the spatial PTE

prediction using DSM approaches. The results indi-

cated that soil pollution emanates from diverse

sources. However, it provided reasons why the authors

investigate a piece of land or area, highlighting the

uncertainties in mapping, number of publications per

journal and continental efforts to research as well as

published on trending issues regarding DSM. This

paper reveals the complementary role machine learn-

ing algorithms and the geostatistical models play in

DSM. Nevertheless, geostatistical approaches remain

the most preferred model compared to machine

learning algorithms.

Keywords Digital soil mapping � Spatial prediction �
Geostatistics � Machine learning � Algorithms �
Potentially toxic elements � Soil pollution

Introduction

Potentially toxic elements (PTEs) are abundant natural

components of the earth’s crust soils (Kabata-Pendias

and Mukherjee 2007; Iñigo et al. 2011). PTE is a

generic nomenclature given to poisonous metal(loid)s

that are detrimental to either human well-being or

sustainable environment or both. The term soil

contamination alludes to the presence of a chemi-

cal(s) or strange substance higher than the average

concentration that has adverse effects on any non-

targeted organism (FAO and ITPS 2015). Although

part of PTEs has anthropogenic sources, some con-

taminants can happen naturally in soils as components

of minerals and can be toxic at high concentrations.

Soil contamination cannot be regularly evaluated or

outwardly seen, making it a concealed threat. The

diverse variety of contaminants is continuously

advancing due to agrochemical and industrial devel-

opments. Nevertheless, the impacts of soil contami-

nation also depend upon soil properties since these

controls the mobility, bioavailability and residence
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time of PTEs (FAO and ITPS 2015). Industrialization,

wars, mining and intensification in farming have left a

legacy of contaminated soils around the entire world

(Luo et al. 2009a, b; Bundschuh et al. 2012). Since the

urban expansion, the soil has been utilized as a

repository for the dumping of solid and liquid waste. It

was well thought out that once buried and out of sight,

the contaminants would not pose any danger to human

health or the environment and that they would

somehow disappear (Swartjes and Siciliano 2012).

The fundamental sources of soil contamination are

anthropogenic, resulting in the sowing of contami-

nants in soils that may reach levels of concern

(Cachada et al. 2017). Source of pollutant occurs

from different sources, namely natural enrichment,

agricultural activities (land application of fertilizers,

animal manures, composts, pesticides), industrial

activities, transportation system, atmospheric deposi-

tion, waste management and treatment and mining

(Basta et al. 2005; Khan et al. 2008; Zhang et al. 2010;

Ballesta et al. 2017). PTEs of anthropogenic sources

are typically more mobile and bioavailable in soil than

PTEs of lithogenous or pedogenic origin (Kuo et al.

1983; Kaasalainen and Yli-Halla 2003). According to

Seaward and Richardson (1990) and Thevenon et al.

(2011), natural processes such as weathering of rocks,

erosion, rock formation and volcanic eruption play a

major role in the emission and exposure of enormous

quantity of PTEs such as Al, Cu, Hg, Mn, Ni and Zn

into the environment particularly soil. Scragg (2006)

reported that agricultural production was the foremost

human influence exerted on the soil. The ever-growing

human population is the fulcrum that pushes farmers

to produce more as well as apply agrochemicals such

as fertilizers, pesticides or animal manure to enhance

yield and productivity. Application of agrochemicals

like foliar sprays that is rich in PTEs, for instance, Co,

Cu, Fe, Mn, Mo, Ni and Zn, to soil essentially for plant

growth (Lasat 1999), successively during every crop

season elevates the PTE concentration in the soil.

However, recent publications by Nicholson et al.

(2003), Luo et al. (2009a, b) and Liang et al. (2017)

suggested that anthropogenic activities related to

agronomic practices such as the use of fertilizers,

fungicides and fossil fuel combustion practices have

contributed more to the high accumulation of Cu, Hg,

Mn, Pb or Zn in soils. For example, lead arsenate and

arsenate compounds used to control pests in fruit

orchards in New Zealand and Australia are rich in Cu,

Cr and As (Wuana and Okieimen, 2014) these

elements are likely to increase the concentration of

PTEs in soil beyond the tolerable limits. Basta et al.

(2005) recounted that the application of biosolids like

sewage sludge, industrial waste and compost to

agricultural fields results in the increment of PTEs

such as As, Cd, Cr, Cu, Pb, Hg, Ni, Se, Mo, Zn, Tl and

Sb in the soil. Industrial activity coupled with mining

as well as tailings discharges a large amount of PTEs

that contaminates the soil. For instance, huge lead (Pb)

and zinc (Zn) ore mining, as well as metal smelting,

has the propensity in contaminating the soil and poses

an ecological risk. According to the FAO and ITPS

(2018) reports, the United Nations Environmental

Assembly (UNEA-3) agreed on a resolution calling for

expedite actions and collaboration to address and

manage soil pollution worldwide. The report further

articulated that a total consensus was reached by all

the member nations acknowledging the global signif-

icance of soil pollution and the readiness of these

countries to develop concrete solutions to address the

causes and impacts of this significant threat. The

United Nations Environment Programme (UNEP) and

the International Soil Research and Information Cen-

tre (ISRIC) estimated that 22 million hectares had

been affected by soil pollution (Oldeman 1991).

However, the latest data indicated that this number

might underestimate the nature and extent of the

problem (FAO and ITPS 2018). The frightening rate of

soil pollution has been determined as the third most

vital danger to soils in Europe, fourth in North Africa,

fifth in Asia, seventh in the Northwest Pacific, eighth

in North America and ninth in sub-Saharan Africa and

Latin America (FAO and ITPS 2015). The occurrence

of certain pollutants may likely create nutrient imbal-

ances and soil acidification. Approximately 3 million

potentially polluted sites that are located in the

European Economic Area and cooperating countries

in the Western Balkans (EEA-39) (EEA 2014) and

more than 1,300 contaminated sites in the USA are

included in the Superfund National Priorities List (US

GAO 2015).

A crucial role in soil science, environmental

science and ecology is to research spatial or geotem-

poral trends of ecosystem variables, e.g. climate

dynamics (Appelhans et al. 2015), soil properties

variability (Gasch et al. 2015) or vegetation form

distribution (Juel et al. 2015). Spatially continuous

datasets of soil/sediment variables are required to
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examine spatial trends and dynamics. The application

of a rich geospatial dataset plays a critical role in

solving several major societal issues; but, due to the

specific characteristics of spatial data, it is also

technically challenging. Jiang (2018) stated that there

is an urgent need for effective and accurate prediction

methods that could unlock the values of such rich

geospatial data properties.

Digital soil mapping (DSM) or predictive soil

mapping is presently the most effective way to predict

the spatial variation of soil/sediment over an area

(McBratney et al. 2003). According to Minasny and

McBratney (2016), DSM or predictive soil mapping

has become a successful subdiscipline of soil science.

Iqbal et al. (2005) stated that spatial variability of soil

physical properties within or between soils is, at most

times, inherent in nature due to geological and

pedological soil formation factors, although some of

the variability may be caused by other management

practices. The factors work together on a temporal and

spatial scale, and the content, is further adjusted by the

spatial heterogeneity deposition of soil properties. Zhu

et al. (2018) reported that environmental covariates

and soil relationship in spatial predictions are fitted

with a model as well as the learned nexus and are

subsequently applied to spaces or locations that data

(soil/sediment data) are unknown. Usually, DSM

forms a quantitative soil environment relationship

centred on the modelling points or sample observation

points to characterize the nexus between soil and

environmental covariates such as climate variables,

geological variables, slope and topographic wetness

index. DSM applies models to compute soil property

values at unknown locations (Zhu et al. 2001;

McBratney et al. 2003; Minasny and McBratney

2016; Heung et al. 2016). Globally, the soil science

communities have adopted DSM for mapping soil

properties and classes (Arrouays et al. 2014) as well as

to a significant extent predict the concentration of

PTEs in the soil/sediments. Due to its high accuracy

compared to conventional mapping, many stakehold-

ers (FAO) have embraced the usage of DSM. DSM is

consistent for sustainable land management (Padarian

et al. 2019), and by extension, it is useful and efficient

in the spatial prediction of PTEs. Significant to the

success and applicability of spatial predictions are the

underlying assumptions employed in describing the

relationships and how these relationships are charac-

terized (Zhu et al. 2018). Soil mapping techniques

have generally improved by the progression of geo-

graphical information technology and computational

technology (Zhang et al. 2017). Lagacherie and

McBratney (2006) defined digital soil mapping as

the creation and population of spatial soil information

systems by numerical models inferring the spatial and

temporal variations of soil types and soil properties

from soil observation and knowledge from related

environmental variables. The accumulation of PTEs in

the soils/sediments has been a worldwide concern (Liu

et al. 2003; Gonz�alez et al. 2006), as it poses an

utmost threat to human health (Chen et al. 2015).

According to Chen et al. (2009), one of the feasible

roles of studies is the inhibition of PTEs in the soil. On

the other hand, spatial prediction of PTEs provides an

avenue to delineate the distribution of potentially toxic

elements, their concentration, occurrence and possibly

knowing their source of pollution. There are substan-

tial proven research and published papers showing the

prediction of PTEs in soils/sediments using DSM

approaches.

The successes of DSM at this present day compared

to conventional soil mapping are not in doubt. We

hypothesized that the option of spatial prediction or

DSM models for the prediction of PTEs depends

primarily on environmental factors, the preference of

the author and the prevailing conditions accessible.

However, what is the global reach of DSM? How

accessible is DSM in the developing and least

developed countries? This paper is seeking to assess

the trend and the global usage of DSM models in the

prediction of PTEs in soils and sediments. It brings

together a list of articles published on the distribution

of PTEs from various journals using DSM approaches.

DSM has provided a more significant deal of corre-

lation and has a superior effect of spatially predicting

PTEs in the soil and sediment. This work will submit a

quantitative review of well-proven and tested scien-

tific algorithms that have been used to predict the

distribution of PTEs in soils and sediments spatially.

The emphasis is on summarizing the spatial prediction

of PTEs between 2001 and 2019 to analyse, determine

and compare model usage as well as their

performance.
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Materials and methods

We collected various articles from different databases

such as Scopus, Web of Science and Google Scholar.

We identified some keywords that were geared

towards the topic under review, and the keywords

were tuned consistently to ascertain articles that are

relevant to our search. The number of keywords that

were combined includes Soils*/sediments* AND

(‘‘digital soil mapping’’ OR ‘‘digital mapping’’ OR

‘‘spatial prediction’’ OR ‘‘predictive map-

ping’’) AND (‘‘toxic elements’’ OR ‘‘risk elements’’

OR ‘‘heavy metals’’ OR pollution OR Arsenic OR

Beryllium OR Cobalt OR Cadmium OR Copper OR

Chromium OR Mercury OR Molybdenum OR Nickel

OR Pb OR Antimony OR Zinc‘‘). This paper made use

of only completed articles that were duly published

within the ambit of prominent journals of which all the

required information needed was collected for the

analysis. No unpublished papers or articles were

included in this review. The period for this review

span between 2001 and the first quarter of 2019. Over

523 articles were downloaded, and we thoroughly read

through to ascertain 319 articles that were relevant to

the study based on these following criteria:

• Spatial prediction or interpolation by predictive

models

• Potentially toxic elements (PTEs)

• Soil or sediment-based analysis

• Geostatistical model or

• Remote sensing or

• Machine learning model

Data filtering and mining

In the data mining and filtering process, many

parameters were considered, such as spatial prediction

using either machine learning algorithm or geostatis-

tics. Furthermore, under each parameter, we addition-

ally provided subtopics that aided us in collecting the

needed information allowing us to have diverse as well

as copious data to work with. We carefully reviewed

the 319 articles and eliminated some articles based on

the quality and relevance to our topic. Finally, we

reduced it to 238 papers that are highly relevant to our

research, comprising 208 soil-based analyses and 30

sediment-based researches. Below are the headings

and information used in the data filtering and mining

process (Table 1).

Table 1 List of information/options on which information was collected from papers on PTE modelling and mapping

Headings Information collected, option

Paper identification Authors, journal and year

Auxiliary data remote

sensing

Remote sensing (RS), Remote sensing airborne (RS airbone), Remotes sensing drone(RS drones),

laboratory spectroscopy (VisNIR), laboratory spectroscopy (MIR), field spectroscopy (VisNIR), field

spectroscopy (MIR), others)

Region Europe w/o Russia, Northern America, Southern America, Africa, Australia, Russia, China, Asia (without

China)

Objective Mapping, temporal changes/development, spatial distribution/variation assessment, comparison of

methods, others

Studied PTEs Arsenic, beryllium, cobalt, cadmium, chromium, mercury, molybdenum, nickel, lead, zinc, antimony,

others

PTE source Geology, atmospheric deposition, mining, metallurgy, industry, transportation, urban, agriculture

(pesticides, fertilizers, etc.), flooding, alluvial areas, others

Modelling methods Inverse distance weighting (IDW), geostatistics, kriging (ordinary, simple, universal), regression kriging,

fuzzy methods, multiple linear regression (MLR), cubist, polynomial models, Bayesian methods,

(boosted) regression trees (RTs), classification/decision trees, random forests (RFs), partial least squares

regression (PLSR), principal component regression (PCR), artificial neural networks (ANNs), multiple

additive regression splines (MARSs), support vector machines (SVMs), other machine learning

techniques

Uncertainty assessment Leave-one/group-out, validation subsample, independent validation samples, number of validations,

maximum R2 obtained (validation), minimum root mean square error (RMSE) validation (wt), minimum

root mean square error (RMSE) validation ((t/ha)
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Results and discussion

Geographical distribution of study areas

Two hundred and thirty-eight articles were collected

from various journals across the globe, featuring

countries on the six continents. Out of the six

continents, there were 46 countries. The largest

number of countries included came from Europe

(without Russia), 21 countries, Asia (without China)

11, Africa 5, North America 3, South America 2,

Australia and New Zealand, China and Russia. The

percentage distribution of the number of papers from

each continent on a global scale is shown on a pie

chart (see Fig. 1). The articles reviewed presented

countries from different continents, and countries like

Russia as well as China were segregated to stand on its

own to ascertain the influx of articles coming from

those countries. China was isolated based on both

population and land, and Russia was separated based

on the land area in Europe. Out of 238 articles, 9

articles were from Africa accounted for just 3.78% of

the chart, 49 from Asia (without China) for 20.59%, 77

from Europe (without Russia) for 32.35%, 5 from

Southern America for 2.10%, 33 from North America

for 13.89%, 8 from Australia and New Zealand for

3.36%, 8 from Russia for 3.36% and 8 from Russia for

3.3%, and lastly, from China 49 articles represent

20.59% of the chart. Even though Europe had the

largest share of the chart (32.35%), it took 21 countries

to get that share. China, on the other hand, accounted

for 20.59% of the chart, which is the same as the

percentage of Asia (without China). It is important to

note that China alone contributed more than one-fifth

of the articles collected for this review, juxtaposing

with Europe (without Russia), which had accumulated

32.4%. Similarly, other countries such as the USA,

Iran, Spain, Italy and Mexico made a significant

contribution to 20, 19, 14, 14 and 11 papers

respectively.

Global concern about PTEs has necessitated a great

deal of research to be carried out in other areas with

higher levels of contaminants. The current distribution

of the studies and publications coming from continents

indicated that European countries place premium in

investigating PTE spatial distribution. The prevalence

of PTE research in Europe is widespread, not limited

to a few countries, but quite several countries (Austria,

Belgium, Croatia, Czechia, Finland, France, Germany,

Greece, Hungary, Ireland, Italy, the Netherlands,

Norway, Poland, Portugal, Serbia, Spain, Slovenia,

Sweden Switzerland and UK). Although Europe has

the highest number of countries doing research and

publishing on PTEs, Asia (without China) has made a

significant contribution to PTE research.

The countries that featured in Asia (without China)

include Hong Kong, India, Iran, South Korea,

Malaysia, Mongolia, Pakistan, Qatar, Taiwan, Thai-

land and Turkey. Among the countries that made

publications, China published 49 articles, which is

equal to the number of publications from the other

Asian countries. This presupposes that the rate of

research and publication on PTE spatial distribution in

China is very high. Gunson et al. (2001) reported that

China is a global producer and a consumer of

metal(loids) such as antimony (Sb), iron (Fe), lead

(Pb), manganese (Mn), tin (Sn), tungsten (W) and zinc

(Zn) as well as resources like coal. The extraction and

Africa
3.78%

North America
13.87%

South America
2.10%

Europe(without 
Russia)
32.35%

Asia(without China)
20.59%

Australia and new 
Zealand
3.36%

China
20.59%

Russia
3.36%

Fig. 1 Pie

chart representing the

distribution of studies

among countries per

continents
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consumption of these minerals will always incur

damages to the soil and the environment. However,

Chen et al. (1999) recounted that the primary sources

of soil pollution from PTEs in China are sewage

irrigation, sludge use, mining and smelting operations

for metallic ores. Yang et al. (2018) noted that the

study (six-year soil pollution study) conducted by the

Chinese government found that the country’s soil was

heavily polluted by anthropogenic activities, such as

human activities in the industrial, mining and agricul-

tural sectors.

North America and Australia and New Zealand

have made a significant contribution to soil science

and DSM in general. However, having access to many

published papers from these continents (particularly

countries such as Australia and New Zealand and the

USA) is quite complicated. DSM has made a lot of

progress, but a lot of challenges limits its use in

developing countries. Zijl (2019) reported that the

exploitation of the tools provided by DSM has been

low in developing countries such as Africa. It presup-

poses that the developed nations have embraced the

use of the tools provided by the DSM. On the contrary,

the number of developing nations according to the

International Statistical Institute Report (ISI 2020)

stands at 137 countries, which implies that the global

reach of the DSM is low. The slow nature of most

developing nations to adopt DSM tools is likely to be

due to the lack of technical expertise, lack of logistics

and minimal interest in DSM. For example, the West

African subregion may hold periodic meetings and

conferences to engage with experts, encourage TOT

(Trainer of Trainers), build confidence in practitioners

and work together to enhance knowledge transfer

across developing countries in other ways to enhance

efficiency and modern ways of mapping.

Publishing journals.

Articles were drawn from soil science, soil con-

tamination or pollution, spatial prediction and related

journals repository. Although there were 80 journals in

which all the papers were taken from, the bar

chart (Fig. 2) indicates 13 individual journals with

the highest number of papers in this review and the

13th is labelled with others. The 13th bar on the

chart consists of 68 different journals in which the

number of articles reviewed is below six. Geoderma

journal gave 25 articles. Also, the science of the Total

Environment, Environmental Monitoring & Assess-

ment, the Journal of Geochemical Exploration, Envi-

ronmental Earth Science and Environmental

Pollution, have published 10 articles and more,

respectively. The 68 journals that were labelled

others, 5 articles were taken from one journals, 4

articles were taken each from 3 journals, 3 articles

were taken from 5 journals, 2 articles were taken from

10 journals and one article each was taken from 49

journals. Geoderma is a journal that is part of

Elsevier’s multifaceted journals, which focuses on

soil science and encircles all aspects of soil science

and related pedometrics articles. The journal
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(Geoderma) also provides technical reports on soils

from a variety of environments, such as agricultural,

urban and forest soils. Alternatively, the Science of the

Total Environment, which has given us 20 articles for

this review, is also from Elsevier. Its scope of research

cuts across environmental issues related to the atmo-

sphere, the hydrosphere, the biosphere, the lithosphere

and the anthroposphere.

Modelling methods

The data mining process captured a range of modelling

techniques used to predict contamination levels in a

variety of ways and to express or interpret the intent on

how the soil has been polluted. The DSM models

included in this paper include inverse distance

weighting, kriging (simple, ordinary, universal), indi-

cator kriging, regression, kriging, fuzzy methods,

multiple (linear) regression, cubist, classification and

regression trees, random forest, partial least square

regression, principal component regression, artificial

neural network, multivariate adaptive regression

splines and support vector machine. Sixteen modelling

techniques that are widely used in DSM were captured

between 2001 and the first quarter of 2019. Consid-

ering the performance of the algorithms, only 9

models included in the 16 algorithms were worthy of

use in the bar chart. These 9 models consisted of 4

geostatistical models (kriging (simple, ordinary, uni-

versal), regression kriging, coking and indicator

kriging), MLA (random forest, partial least square

regression, artificial neural network), multiple linear

regression and inverse distance weighting. The kriging

(simple, ordinary, universal) model was the most

preferred model of choice by most authors to the other

algorithms. Over the 18 years of this review, it became

apparent that kriging (simple, ordinary, universal)

model usage exceeded all algorithm use, as shown in

Fig. 3. Conversely, regression kriging, multiple linear

regression and artificial neural networks have been

used quite a few times. Random forest, partial least

square regression, multiple linear regression and

inverse distance weighting were relatively used.

Geostatistics is statistics that relies on spatial/

temporal modelling data as well as focuses on the

high-precision estimation with quantifiable uncer-

tainty. Machine learning, on the other hand, is

relatively a new technique, other than geostatistics,

which some schools of thought assume that it gives a

high rate of predictive accuracy concerning the type of

model used. The spread of MLA use has increased in

recent years, and some of the DSM experts believe that
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there is a gradual paradigm shift from the use of the

geostatistical model to machine learning techniques.

Although MLA is becoming more popular in DSM due

to the availability of computational power (Rossiter

2018), geostatistical kriging is the most commonly

used in prediction (Webster and Oliver 2007).

Although the geostatistical model remains the citadel

of the DSM juxtaposing it with the papers reviewed, it

is evident that geostatistics is still widely used in the

soil sciences community. From 2011 until now, the

soil science community is having a flair in the blending

of the usage of MLA and geostatistical models. There

is no doubt about the popularity of the kriging model

and its usage in spatial prediction in DSM, as Veronesi

and Schillaci (2019) have recently argued. Con-

versely, to Veronesi and Schillaci earlier arguments,

they went on to report that practitioners relied less on

interpolation (kriging models), but rather more on

MLA. This assertion reinforces the fact that algo-

rithms could be used based on the preference and

diverse conditions available at the time. Numerous

studies have been conducted to compare the two

algorithms to determine the contrast and superiority

between geostatistics and MLA. It is important to note

that, for academic findings, it is possible to compare

algorithms within DSM to find the best results that fit

the modelling that a practitioner or author is trying to

model.

Recent papers published by different authors have

revealed in various articles that the author may

conclude a comparative analysis based on the prevail-

ing exigencies. For example, Beguin et al. (2017)

conducted a comparative study of 8 algorithms and,

following their research, concluded that ordinary

kriging performed better than MLA (random forest,

boosted regressing tree). In the same year in South

Korea, Rhee and Im (2017) reported in their research a

piece of conclusive findings that MLA (random

forests, decision tree) showed impressive results

compared to their counterpart kriging. The essence

of the selection of algorithms enables the modeller or

author to decide on the best-fit model for a study area

that is mainly dependent on location, environmental

factors and the author’s decision on the algorithm to

choice. The intercourse between geostatistics and

MLA has resulted in a lot of versatility in the DSM

space. It is also worth not divorcing the fact that both

algorithms have some degree of uncertainty. However,

the soil science scientific community argues that MLA

has gained more popularity than geostatistics in recent

times, regardless of the lack of evidence to show a

significant difference in accuracy (Veronesi and

Schillaci 2019).

The geostatistical model enables scientists or

authors to work and play with several assumptions.

Geostatistics is mathematics that deals with finding a

link between variables to predict the outcome. A

machine learning algorithm, on the other hand, is just

an algorithm that can learn and work on iterations,

where the computer tries to find patterns hidden in the

data (Srivastava et al. 2015). However, geostatistical

modelling is usually applicable to data with fewer

attributes or ends up being overfitting. Many mod-

ellers may prefer geostatistics to MLA because

geostatistics is based on intensive mathematics and

coefficient estimation. For example, for a modeller to

use geostatistics, the modeller must understand the

relationship between the variables before entering

them. There is a significant human effort in geostatis-

tics that allows humans to play a vital role in

prediction, while minimal human effort is needed in

MLA.

Land-use type and sources of PTES

Soil pollutants are introduced into the soil by natural

processes or by anthropogenic means. Most of the

areas studied by the respective authors in their articles

ranged from cropland, grassland, forests, urban areas,

mining areas, industrial sites, recreation areas, peri-

urban areas and other host areas. In certain countries,

the type of pollutants introduced into the soil/sedi-

ments arose predominantly from anthropogenic activ-

ities. The clustered bar (Fig. 4) shows that the

pollution that is introduced into the soil has occurred

through a multiplicity of events. A high number of

articles have focused their attention on cropland or

arable land because it presents a high percentage of

land, and its pollution with PTEs poses a threat to the

food chain. However, an increase in the number of

publications on urban, industrial, forestry and mining

is likely to be due to an increase in pollution levels and

most likely being the most polluted areas. Cropland or

arable land has been cited 125 times as being affected

by PTEs, followed by urban areas, and recreation areas

are the least contaminated areas on the chart. It is

worth noting that urban land or areas are polluted

often, but the attention paid by soil scientists to urban
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land is minimal. On the contrary, due to the attention

being paid to these sectors, it is relatively easy to find

substantial research and reportage on cropland or

agricultural land. Urban areas are more heteroge-

neous, fragmented and not used for food production,

which is why less attention is being paid to it.

Figure 5 displays the various sources for which the

soil has been polluted. From the papers reviewed, 102

articles referred to the industry as a significant soil

polluter, accounting for 19.9% of the pie chart. Other

sources of pollution being analysed are agricultural

(84), geology (84), mining (83), transport (49),

construction activities (38), atmospheric deposition

(36), metallurgy (19), waste disposal (14) and flooding

(4). In some land-use areas, the sources of pollution

used have been a multiplicity of sources, and industrial

pollution (19.9%) is very high in soil pollution. These

numbers indicate the relative attention paid to the
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sources in the reviewed articles, which may reflect on

the importance of pollution; however, they may also

be influenced by the easiness of mapping.

According to Bundschuh et al. (2012), EEA (2014)

and FAO and ITPS (2015) anthropogenic activities

such as waste disposal, mining, industrial activities,

transport, agriculture (fertilizers and pesticides) and

other hosts of anthropogenic activities have been a

significant problem of global soil pollution for

centuries. FAO and ITPS (2015) argued that mining

had had a dominant impact on soil, water and biota

since prehistoric times. Alloway (2013) reported

earlier before FAO and ITPS (2015) communicated

that there is a documented evidence all over the world,

highlighting many instances of heavy soil contamina-

tion by mining activities. Substantial quantities of

PTEs and other related elements are released into the

environment by mining and smelting facilities, which

have continued for an extended period even after these

activities (Ogundele et al. 2017).

Armah et al. (2014) catalogued that different PTEs

were found in higher levels around urban areas, peri-

urban areas, hinterland, foodstuffs, soil and water

bodies around a close range of mining areas in Ghana.

According to the report by FAO and ITPS (2018), the

development of infrastructure in the form of housing,

roads and railways has contributed primarily to

environmental degradation. Furthermore, the situation

has shown that the negative impact on the soil is the

sealing of the soil and land consumption. Apart from

these imminent threats, infrastructural soil pollution

has received a great deal of attention for a long time in

terms of impact assessment and planning (FAO and

ITPS 2018). Moving humans from one point to the

other using the transport system has also been one of

the focal points for soil pollution in a variety of ways,

such as emissions and combustion of engines that

reach more than 100 m of soil through atmospheric

deposition as well as oil spills (Mirsal 2008). Trans-

portation systems using rail, road and highway are

some of the significant soil pollutants, particularly in

the peri-urban, urban and hinterland regions. On the

other hand, paints rich in Pb are a significant legacy of

Pb contaminant in urban and peri-urban areas, apart

from fuel knocking. According to Mielke and Reagan

(1998), the soil is contaminated with paint rich in Pb

when it is pulverized into smaller particles or dust

during the demolition or renovation process that

percolates into the environment. Mielke and Reagan

(1998) further pointed out that approximately the

exact tonnage of Pb used in leaded gasoline between

1929 and 1989 was used in white paint pigments

between 1884 and 1989 with the maximum use of

paints rich in Pb in the year 1920 to 1929. Sometimes

contaminants from landfill sites (landfill leachates)

also pollute the soil and groundwater. It is, therefore,

incumbent to deduce based on the papers reviewed

that attention is being paid to anthropogenic pollution;

nevertheless, the human is at the centre of these

pollutions. In particular, land use related to PTEs

(study areas) were studied because most of the authors

placed a premium on the critical role arable land plays

in food production. Zhang et al. (2014), Tóth et al.

(2016) and Adagunodo et al. (2018) confirmed that the

most research paper focuses on arable land and the

investigation of PTEs, as mentioned earlier.

Studied potentially toxic elements

Various PTEs above the normal threshold have the

propensity to contribute to the soil’s insalubrious state.

A large number of articles focused on PTEs such as

lead (Pb), chromium (Cr), arsenic (As), zinc (Zn),

cadmium (Cd), copper (Cu), mercury (Hg), molybde-

num (Mo), cobalt (Co), vanadium (V) manganese

(Mn) and nickel (Ni). Other elements such as thorium

(Th) and antimony (Sb) were also mentioned in some

of the articles. But the elements mentioned above were

mostly those that were very popular in the articles.

Figure 6 shows clearly that, from 2001 to 2018, As,

Cd, Cr, Cu, Pb and Zn were found to be predominant in

most of the soils examined by the scientists. During

2018, the PTE survey captured in Fig. 6 showed a

progressive increase in studies of all elements except

vanadium. It was evident that from 2010 to 2014,

ongoing studies showed the presence of As, Cd, Cr,

Co, Cu, Ni, Pb, Zn, V and Mn in soil annually.

However, a large number of As, Cd, Cu, Ni, Pb, Zn and

Cr assessments were conducted in the soil during

2011, 2013 and 2014. In 2015 to 2018, the number of

articles publishing the presence of As, Cd, Cr, Co, Cu,

Ni, Pb, Zn, V and Mn in soil increased. During 2015,

2016 and 2018, there has been a steady increase in the

number of publications, indicating the presence of

most of the elements captured in this paper. During

2019, we reviewed papers from the first quarter only,

and Fig. 8 clearly shows that there has been a steady

influx of PTE publications. The data obtained showed
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that many papers mentioned the study of Pb (181

times), Cu (153 times), Zn (153 times) and Cd (141

times). Other PTEs such as Cr, Ni, As, Co, Hg, Mn, V

and Mo have also been mentioned several times in

various papers accounting for the following figures:

130, 116, 95, 62, 61, 58, 49 and 20, respectively. Much

of the study centred on Pb because of the danger it

presents to society and people in general. In October

every year, the World Health Organization (WHO)

spends a week on raising awareness and reducing Pb

poisoning to the barest minimum. In 2019, the WHO

objectives for the International Pb Poisoning Preven-

tion Week of Action set out the following objectives:

to raise awareness of the health effects of lead

poisoning; to highlight the efforts of countries and

partners to prevent childhood lead poisoning; and to

urge further action to eliminate lead paint through

country-level regulatory action (WHO 2019). Member

states have adopted the objectives by ensuring that

there is a reduction in the fight against Pb contami-

nation in soil and the environment. Studies conducted

in the Mediterranean (Spain) by Iñigo et al. (2014) and

Marı́n et al. (2016) have shown that human activities,

such as soil management practices, increase the

concentration of PTEs (such as Pb and Cd) in soil. A

great deal of attention has been given to them (mainly

Pb) and hence necessitated soil scientists given it the

needed attention to curtail its release into the soil and

the environment. The need for these elements from the

earth crust for our industry remains essential, as there

may be no alternative means of extraction or process-

ing of these earth metals. Mining is known to generate

direct and indirect employment as well as meet the

needs of industries, but considering the impact it has

had, soil scientists, policymakers and other stakehold-

ers need to find a more effective and environmentally

sustainable way to mine metals.

Objectives for using DSM models

There are different motives behind the modelling of a

piece of land, area or settings. Most DSM users have a

variety of reasons for using a model or algorithm, and

their intention aligns with the creation of a geograph-

ical soil database at a specified resolution with the help

of a laboratory and field observation method (either

one or both). This objective is achieved by means of

environmental data obtained quantitatively and

through a quantifiable relationship.

Figure 7 shows various reasons why soil scientists

and experts in the field of pedometrics or soil science

have applied or used a model to provide information

on the state of health of the soil/sediment out there to

policymakers or end-users. The authors of the

reviewed papers indicated that they applied a model

or algorithm for various reasons, and based on the
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information accrued, it was apparent that their motives

aligned with the choice of the model applied were

justifiable since it provided accurate results.

Among the most frequent reasons, some of the

authors referred to mapping as a reason for modelling;

soil mapping was cited 133 times in the articles

(representing 31.7% in the pie chart). On the other

hand, some of the reasons were for determining the

extent of the pollution and 10 papers were collected for

this purpose; 172 articles indicated spatial distribution

or variation as a reason for using the algorithms.

Comparison of the models as an objective accounted

for 45 articles, indicating sources of PTEs for 15

papers, concentration of PTEs for 36 papers, and

finally, the least mentioned reason was temporal

changes or developments for 9 articles. In some of

the papers, more than one objective was mentioned as

a reason for the use of the algorithm. The primary

motivation of the DSM is to emphasize the modelling

of the landscape in which it quantifies the relation

between the environmental variable and the soil

properties (Scull et al. 2003). The papers reviewed

brought together a collection of predictive models or

algorithms in the field of soil mapping, tailored

towards the prediction of PTEs, using either geosta-

tistical models, machine learning or a combination of

both models. Many of these models identified in this

review are documented in a paper published by

McBratney et al. (2003) underlining the application

process, the underpinnings and principles of DSM or

soil science by different authors. These DSM models

in this paper provided useful information and practical

experience from other published articles, highlighting

the reasons as well as some limitations encountered in

their research. Many of these publications allow new

users, as well as old users, who want to use a different

algorithm, to have access to information and some-

times serve as a guideline.

Uncertainty and validation

The quality of soil map can be related to measures of

accuracy (Finke 2006). According to Cressie and

Kornak (2003), if there is an error sampled, there is a
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likelihood that it will contribute to the relationship

inferred by the fact that covariates and soil observation

will not actually correspond. Based on such error,

estimating the uncertainty that will occur when

making maps is acceptable. One of the essences of

research is to keep people informed and disseminate

information to people, end-users and policymakers to

enhance the well-being of humans in society or the

world. Scientist or researcher ensures that the infor-

mation provided is well checked, validated and of

higher quality. In this context, there is a certain level of

uncertainty in DSM due to unknown information, such

as specific uncertainties stemming from the prediction

of soil properties generated by the DSM, which is

essential for the use of soil function assessments.

Based on this presumption, it is incumbent upon the

authors to use a quantifiable level of uncertainty and to

make a comparison to assess the performance of the

method. As a result, validation provides an orifice to

authenticate and address these issues. Several valida-

tion criteria have been presented in the articles

reviewed. Some of the maps created by the authors

in the articles went on further to validate it, while

others (40.1%) did not validate it. Figure 8 shows the

proportion of validation methods used to address the

issue of uncertainty and outlines some articles that did

not use any validation methods. No validation was

carried out on 128 articles reviewed, 46 papers used R

square (R2) validation method, 57 root mean square

error (RMSE), 14 mean absolute error (MAE), 12

residual prediction deviation (RPD), 13 mean error

(ME) and the rest of the validation criteria put together

45 papers. In some of the articles, a multiplicity of

validation indicators was used. In the year 2001 to

2006, many published articles measured the quality of

maps as well as proposed different ways of classifying,

comparing and validating soft maps (Woodcock and

Gopal 2000; Pontius and Cheuk 2006). Grunwald

(2009) argued that conventional and digital soil maps

are not perfect and contain some errors, and therefore,

it is crucial that they are frequently validated.

Congalton (1991) captured the most critical measure-

ments of map quality, outlining that the quality map

should include the following: overall accuracy (over-

all purity, map purity), user accuracy, producer

accuracy, and kappa coefficient of agreement. In

another vein, Lark (1995) raised questions about the

appropriateness of the term’s user and producer

accuracy, as well as the incorporation of quality

measures, which may be crucial for users as well as

producers. In recent times, the use of deep learning for

DSM has been shown to be useful and produces a

higher level of accuracy in the spatial prediction

model. Recent research conducted by Behrens et al.

(2018) has shown that the use of intermediate scales in

DSM has been found to produce high predictive

accuracy and, as such, serve as a multipurpose

approach to spatial prediction and modelling of any

size of area at any resolution. However, it is imperative

to point out that the uncertainty associated with

prediction and map creation should be independently

validated to address mapping issues in other areas to

improve the quality of the map.

Conclusions

This study quantitatively reviewed DSM models that

are used spatially to predict PTEs in soil and sediment.

Europe, Asia, North America and Australia and New

Zealand have always been hot spot regions leading to

research and publication on PTEs, as well as providing

end-user materials and policy for several activities.

Research on PTEs in Europe using the DSM model is

relatively prevalent. The difficulty is that it is some-

times challenging to access articles, especially in the

USA and Australia, despite their enormous contribu-

tion to the DSM. In Africa, some of the articles

collected were collaborations with other institutions

beyond the shores of Africa. However, the African

continent has become a hub for all kinds of exploration

and mining activities. However, the use of DSM in

developing countries is relatively low; therefore, we

advocate a decentralized approach for the soil science

community to ensure that DSM reaches globally and is

user-friendly. The soil science community should

animate clubs in different universities to adapt and

learn modern mapping methods. Moreover, subre-

gional integration should inform and update scientists

on emerging trends in disadvantaged parts of the

world, as well as support for the uptake of DSM tools.

Our research confirms that kriging (simple, ordinary,

universal) approaches remain the most preferred

algorithms. Nonetheless, the intervention of machine

learning algorithms has resulted in resilience and

versatility in the use of models to predict PTEs

spatially. There should be further research to deepen

the complementing role knitted between geostatistical
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approach and machine learning algorithm to enhance

the finest hybrid model to decrease the level of

uncertainty clothe with both algorithms. Geoderma

gave us more of the articles than any other journals

captured in this study. It was evident that many

researchers were focusing on cropland, but again it

was also essential that a great deal of attention be

given to other land uses. Besides, the increasing level

of publicity and the campaign against anthropogenic

activities that release PTEs into the soil, more

significant concerns should be placed on the develop-

ing countries, particularly in Africa, Southern Amer-

ica and some parts of Asia. The root mean square error

(RMSE) criterion was the most preferred validation

criterion used by the authors. Several papers worked

on distinct PTEs such as Pb, Cr, As, Zn, Cd, Cu, Hg,

Mo, Co, V, Mn and Ni. Among the PTEs, Pb was the

most mentioned element.
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(2016). Lead and Cadmium in Soils of La Rioja Vineyards

Spain. Land Degradation and Development, 27(4),

1286–1294.

McBratney, A. B., Mendonça Santos, M. L., & Minasny, B.

(2003). On digital soil mapping. Geoderma, 117(1–2),

3–52.

Mielke, H. W., & Reagan, P. L. (1998). Soil is an important

pathway of human lead exposure. Environmental Health
Perspectives., 106, 217.

Minasny, B., & McBratney, A. B. (2016). Digital soil mapping:

A brief history and some lessons. Geoderma, 264,
301–311.

Mirsal, I. (2008). Soil pollution: Origin monitoring & remedi-
ation (p. 310). Berlin: Springer.

Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith,

C., & Chambers, B. J. (2003). An inventory of heavy

metals inputs to agricultural soils in England and Wales.

Science of the Total Environment, 311(1–3), 205–219.

Ogundele, L. T., Owoade, O. K., Hopke, P. K., & Olise, F. S.

(2017). Heavy metals in industrially emitted particulate

matter in Ile-Ife, Nigeria. Environmental Research, 156,
320–325.

Oldeman, L. (1991). World map on status of human - induced
soil degradation. Wageningen: Ref.

Padarian, J., Minasny, B., & McBratney, A. B. (2019). Using

deep learning for digital soil mapping. Soil, 5(1), 79–89.

Pontius, R. G., & Cheuk, M. L. (2006). A generalized cross-

tabulation matrix to compare soft-classified maps at mul-

tiple resolutions. International Journal of Geographical
Information Science, 20(1), 1–30.

Rhee, J., & Im, J. (2017). Meteorological drought forecasting for

ungauged areas based on machine learning: Using long-

123

Environ Geochem Health (2021) 43:1715–1739 1729

https://www.isi-web.org/index.php/capacity-building/developing-countries
https://www.isi-web.org/index.php/capacity-building/developing-countries
https://doi.org/10.1007/978-3-540-32714-1
https://doi.org/10.1016/S0166-2481(06)31001-X


range climate forecast and remote sensing data. Agricul-
tural and Forest Meteorology, 237–238, 105–122.

Rossiter, D. G. (2018). Past, present & future of information

technology in pedometrics. Geoderma., 324, 131.

Scragg, A. (2006). Environmental Biotechnology, Oxford
University Press, Oxford, UK, 2nd edition, 2006. Oxford:

Oxford University Press.

Scull, P., Franklin, J., Chadwick, O. A., & McArthur, D. (2003).

Predictive soil mapping: A review. Progress in Physical
Geography, 27(2), 171–197.

Seaward, M. R. D, Richardson, D. H. S. (1990). Atmospheric

sources of metal pollution and effects on vegetation. Heavy
metal tolerance in plants evolutionary aspects, 75–92.

Srivastava, P. K., Islam, T., Gupta, M., Petropoulos, G., & Dai,

Q. (2015). WRF dynamical downscaling and bias correc-

tion schemes for NCEP estimated hydro-meteorological

variables. Water Resources Management, 29(7),

2267–2284.

Swartjes, F. A., & Siciliano, S. (2012). Dealing with contami-

nated sites: from theory towards practical application. Soil
Science Society of America Journal, 76(2), 748–748.

Thevenon, F., Guédron, S., Chiaradia, M., Loizeau, J. L., &
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Villegas, T. (2006). Analysis of arsenic, lead and mercury

in farming areas with mining contaminated soils at

Zacatecas, Mexico. Journal of the Mexican Chemical
Society, 50(2), 57–63.

Timofeev, I. V., Kosheleva, N. E., Kasimov, N. S., Gunin, P. D.,

& Sandag, E. A. (2016). Geochemical transformation of

soil cover in copper-molybdenum mining areas (Erdenet,

Mongolia). Journal of soils and sediments, 16(4),

1225–1237.

El Badaoui, H., Abdallaoui, A., Manssouri, I., & Lancelot, L.

(2013). Application of artificial neural networks of MLP

type for the prediction of heavy metals in Moroccan aquatic

sediments. International Journal of Computational Engi-
neering Research, 3(6), 75–81.

Khalil, A., Hanich, L., Bannari, A., Zouhri, L., Pourret, O., &

Hakkou, R. (2013). Assessment of soil contamination

around an abandoned mine in a semi-arid environment

using geochemistry and geostatistics: pre-work of geo-

chemical process modeling with numerical models. Jour-
nal of Geochemical Exploration, 125, 117–129.

Brus, D. J., De Gruijter, J. J., Walvoort, D. J. J., De Vries, F.,
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Kishné, A. S., Bringmark, E., Bringmark, L., & Alriksson, A.

(2003). Comparison of ordinary and lognormal kriging on

skewed data of total cadmium in forest soils of Sweden.

Environmental monitoring and assessment, 84(3),

243–263.

Hofer, C., Borer, F., Bono, R., Kayser, A., & Papritz, A. (2013).

Predicting topsoil heavy metal content of parcels of land:

An empirical validation of customary and constrained

lognormal block kriging and conditional simulations.

Geoderma, 193, 200–212.

Schnabel, U., & Tietje, O. (2003). Explorative data analysis of

heavy metal contaminated soil using multidimensional

spatial regression. Environmental Geology, 44(8),

893–904.

Chu, H. J., Lin, Y. P., Jang, C. S., & Chang, T. K. (2010).

Delineating the gambling zone of multiple soil pollutants

by multivariate indicator kriging and conditioned hyper-

cube sampling. Geoderma, 158(3–4), 242–251.

Juang, K. W., Chen, Y. S., & Lee, D. Y. (2004). Using sequential

indicator simulation to assess the uncertainty of delineating

heavy-metal contaminated soils. Environmental Pollution,
127(2), 229–238.

Lin, Y. P., Cheng, B. Y., Chu, H. J., Chang, T. K., & Yu, H. L.

(2011). Assessing how heavy metal pollution and human

activity are related by using logistic regression and kriging

methods. Geoderma, 163(3–4), 275–282.

Lin, Y. P. (2002). Multivariate geostatistical methods to identify

and map spatial variations of soil heavy metals. Environ-
mental geology, 42(1), 1–10.

Lin, Y. P., Cheng, B. Y., Shyu, G. S., & Chang, T. K. (2010).

Combining a finite mixture distribution model with indi-

cator kriging to delineate and map the spatial patterns of

soil heavy metal pollution in Chunghua County, central

Taiwan. Environmental Pollution, 158(1), 235–244.

Simasuwannarong, B., Satapanajaru, T., Khuntong, S., &

Pengthamkeerati, P. (2012). Spatial distribution and risk

assessment of As, Cd, Cu, Pb, and Zn in topsoil at Rayong

Province, Thailand. Water, Air, & Soil Pollution, 223(5),

1931–1943.

Gannouni, S., Rebai, N., & Abdeljaoued, S. (2012). A spectro-

scopic approach to assess heavy metals. Journal of Geo-
graphic Information System, 4, 242–253.

Agca, N. (2015). Spatial distribution of heavy metal content in

soils around an industrial area in Southern Turkey. Arabian
Journal of Geosciences, 8(2), 1111–1123.
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Abstract
The study aimed at investigating the possibility of predicting lead (Pb) in forest soils by combining terrain attributes and 
soil nutrients using geostatistics and machine learning algorithms (MLAs). The study was partitioned into three categories: 
predicting Pb in forest soil using terrain attributes and RK (Context 1); predicting Pb in forest soil using soil nutrients and 
RK (Context 2); and lastly predicting Pb in forest soils using a combination of soil nutrients, terrain attributes, and RK 
(Context 3). Stochastic Gradient Boosting-regression kriging (SGB-RK), cubist regression kriging (CUB_RK), quantile 
regression forest kriging(QRF_RK) and k nearest neighbour regression kriging (KNN_RK) were the modeling approaches 
used in the estimation of lead (Pb) concentration in forest soil. The results showed that combining the terrain attribute as an 
auxiliary dataset with QRF_RK proved to be the most effective method for predicting Pb in forest soil (context 1). The most 
effective method for predicting Pb in forest soil was to combine soil nutrients as an auxiliary dataset with SGB_RK (context 
2). Combining cubist_RK with an ancillary dataset of soil nutrients and terrain attributes is the most effective method for 
predicting Pb in forest soils (context 3). In addition, combining ancillary variables such as soil nutrients and terrain attributes 
with cubist_RK generated the best results for estimating Pb concentration in forest soils. It was found that applying a robust 
digital soil mapping (DSM) model in combination with terrain attributes and soil nutrients is efficient in predicting the spa-
tial distribution and estimation of uncertainty levels of lead (Pb) in forest soils based on the model’s accuracy parameters.

Keywords Regression kriging · Soil nutrient · Terrain attributes · Uncertainty assessment

Intoduction

Digital soil mapping (DSM) is the application of mathemati-
cal and statistical models to combine soil measurements with 
spatially explicit environmental variables to generate soil 
spatial information (van der Westhuizen et al. 2023; Takout-
sing and Heuvelink 2022; Sanchez et al. 2009). One of the 
benefits of DSM resides in its capacity to resolve the uncer-
tainty of the final products (Arrouays et al. 2020). Geosta-
tistical based methods such as regression kriging (RK) have 
been for several years the major DSM Approach. The main 
robustness of RK lies in its capacity to account for spatial 
correlation, benefit from relationships with terrain attrib-
utes (i.e., explanatory environmental variables), reduce the 
prediction error variance and give prediction uncertainties 
through the kriging standard deviation (Hengl et al. 2015; 
Hengl et al. 2007; Odeh et al. 1995). The presupposition of 
RK is hinge on a linear mathematical relationship between 
soil nutrients and terrain attributes (Wadoux et al. 2018). 
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However, in reality soil properties are often governed by 
complex relationships with soil forming factors (Behrens 
et al. 2014) and landscape attributes (Takoutsing et al. 2018) 
that compel them non-linear and entail complex relationship 
between terrain attributes (Lamichhane et al. 2019).

The application of machine learning algorithms (MLAs) 
approaches for spatial prediction of soil parameters has 
increased in recent years (Hengl et al. 2018). MLAs can han-
dle a high number of cross-correlated covariates as predic-
tors and may depict complex nonlinear interactions between 
dependent variables and covariates (Nussbaum et al. 2018). 
Furthermore, unlike geostatistical approaches, which fre-
quently need transformation of the original data to satisfy 
the normality assumption (Wadoux et al. 2020), MLAs make 
no assumptions about the underlying distribution of the data. 
Because ML algorithms do not have to satisfy stringent sta-
tistical assumptions, they are more easily implemented. Fur-
thermore, because of their adaptability to the nature of the 
connection between the soil nutrients of interest and terrain 
attributes, they are frequently more accurate than regres-
sion kriging (Hengl et al. 2015). While there are numerous 
MLAs, one that has attracted a lot of attention particularly 
for regression purposes is the random forest (RF) algorithm 
(Breiman 2001). Several studies (Hengl et al. 2015, Hengl 
et al. 2018, Nussbaum et al. 2018, Vaysse and Lagacherie 
2017) have shown that RF is an efficient and valuable DSM 
technique for soil spatial prediction.

However, MLAs are not as excellent as kriging in quan-
tifying prediction uncertainty, and the success of a DSM 
model must also be rated on its capacity to quantify predic-
tion uncertainty reliably and realistically (Heuvelink, 2018; 
Arrouays et al. 2014). In this backdrop, Meinshausen (2006) 
improved the RF technique to create quantile regression 
forests (QRF), which yield all quantiles of the conditional 
distribution. As a result, it can quantify prediction uncer-
tainty at all prediction locations, such as the upper and lower 
bounds of a 90% prediction interval. It does not quantify the 
spatial correlation of prediction uncertainty since it does not 
model spatial dependency (Heuvelink and Webster 2022). 
As a result, it is unable to quantify the prediction uncertainty 
of spatial averages and totals. A geostatistical technique is 
necessary to do this (Szatmári et al. 2021). Previous studies 
have employed RF and QRF and other MLAs to successfully 
forecast various soil parameters (Forkuor et al. 2017, Hengl 
et al. 2015, Hengl et al. 2021).

Several studies have examined RK and RF performance 
and found significant variations in prediction maps. Foued-
jio (2020) discovered that RF can make forecasts that are as 
accurate and unbiased as RK. Hengl et al. (2015) proved that 
the RF algorithm outperformed RK across a wide range of soil 
parameters. Veronesi and Schillaci (2019) found that kriging 
outperformed RF in a study conducted on the semiarid island 
of Sicily in Italy. However, only a few research (Szatmári and 

Pásztor 2019, Vaysse and Lagacherie 2017) have been con-
ducted to compare RK and RF and other MLAs prediction 
uncertainty maps and determine if these maps are genuine 
representations of the prediction uncertainty. This necessitates 
additional case studies to gain a better understanding of RK 
,QRF, Cubist, and Stochastic gradient boosting capacity to pre-
dict lead (Pb) and quantify uncertainty in forest soil.

The development of soil information at the global, national 
and regional levels is frequently hindered by low data avail-
ability, and many algorithms rely on extrapolation to obtain 
the essential information. In contrast to spatial interpolation, 
which uses point values in a study area to predict values at 
other points enclosed by observation points and located within 
that same area, spatial extrapolation refers to transferring the 
model beyond the area from which the training data were taken 
(i.e., to new geographic space). Specifically, whereas spatial 
interpolation predicts using data from all geographic direc-
tions, spatial extrapolation predicts using data from one or a 
few directions only, possibly from a long distance away. Due 
to changes in the kind and intensity of soil-forming variables, 
extrapolating a model from one place to another presents vari-
ous issues (Angelini et al. 2020). Therefore, a detailed under-
standing of soil nutrients is critical to the decision-making 
process to assess lead contamination of forest soils. However, 
often the data is either unavailable or may not be well-struc-
tured, comprehensive, or spatially robust. However, collecting 
large numbers of field samples, processing and testing them 
in the laboratory is expensive and time-consuming. A viable 
alternative, digital soil mapping (DSM), uses soil and readily 
available environmental factors to spatially predict soil param-
eters (e.g., McBratney et al. 2003). DSM employs a variety 
of computational methods, including Machine learning algo-
rithms that can make accurate predictions of soil properties, 
but they typically use point or raster data and require many 
environmental inputs (predictors). The difficulty in commu-
nicating the imprecision (uncertainty) associated with fore-
casting is a practical limitation of these methods for decision-
making, despite the increasing availability of supporting data. 
Therefore, the objectives of the study were to: determine 
whether a combination of soil nutrients and terrain attributes 
can influence predictions of lead (Pb) in forest soils; determine 
whether combining terrain attributes and soil micronutrients 
in the estimation of Pb in forest soil will improve prediction 
accuracy and ascertain the level of uncertainty that will be 
associated in both contexts.

Materials and methods

Research area and sampling design

The Frydek Mistek district has a total area of 1208 km2 and 
is made up of 39 km2 of agricultural land and 49 km2 of 
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forest land. The latitude and longitude of the study area are 
respectively 49° 41’ 0” North and 18° 20’ 0” East. It undu-
lates from a height of 225 to 327 m above sea level. Due 
to its chilly, temperate climate, the study area experienced 
significant rainfall even in the dry months. The summers in 
Frydek Mistek are hot and partly rainy, while the winters 
are typically icy, dry, and windy Fig. 1. Temperatures range 
from 8 to 86 degrees throughout the year, rarely dropping 
below or rising above 24 degrees, and frequently fluctuat-
ing between these two ranges (Spark 2016). Precipitation 
ranges from 685 to 752 millimetres annually on average. 
The geomorphology of the studied area reveals rugged ter-
rain with the highest peaks believed to be part of the Mora-
vian-Silesian Beskydy and Outer Carpathians Mountains. 
1208 km2 is the approximate survey area for the district, 
with lower terrain in the northern region. Because of the 
nearby steel and metal industries, as well as a large amount 
of farmland, Frydek Mistek is considered a relatively pol-
luted area. Although the Czech Republic has a wide variety 
of soil types, Cambisols are the most common (Kozák et al., 
2010). Fluvisols and stagnosols are two additional minor soil 
types. The variety of materials used in soil substrates reflects 

the region’s complex geological structure, with sediments 
from a variety of solid rocks forming gradient sediments at 
higher elevations and sediments from aeolian, fluvial, and 
lacustrine sources at lower elevations (Kozák et al. 2010). 
Nevertheless, the most common soil types in research envi-
ronments are Cambisols and stagnosols (Kozák et al., 2010). 
These soils are found throughout the Czech Republic at ele-
vations between 160.6 and 455.1 m for retentive soils and 
59.6–493.5 m for Cambisols Vacek et al. (2020).

Data selection and preprocessing

The legacy database of forest soil properties comprises 
thousands of institutional samples collected throughout the 
Czech Republic between 1998 and 2019, as well as topo-
graphic attributes of the sampled forests (Borůvka et al. 
2020). The depth of topsoil samples used for legacy data 
was 0–30 cm with a total number of 337 sampling points. 
Environmental covariates and pedological data derived from 
forest sampled stands within the forest indicate the forest 
type (broadleaf, coniferous, mixed forest) and other local 
land uses and land covers.

Fig. 1  A Study area map with sampling locations, B Frydek Mistek district, C Research location coupled with the partitioned dataset employed 
(i.e., training and test), D Sampling locations and land use–land cover of the Frýdek-Místek district with coordinates
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The contents of Pb, Cd, As, Cr, Cr, Cu, Mn, Zn, Fe and 
other elements in the soil were obtained by the standard 
aqua regia method (ISO 11466:1995, 1995) (Melo et al. 
2016). Their pseudo-total content was determined using 
inductively coupled plasma optical emission spectros-
copy (ICP-OES). Standard calibration methods were used 
to ensure method quality (QC). Standard material SRM 
2711 (Montana II soil) (National Institute of Standards and 
Technology, Gaithersburg, MD, USA) was used to ensure 
quality control of concentration determinations.

Geostatistics

Geostatistics is a statistical discipline that examines and 
predicts the values related to spatial heterogeneity of 
physical processes. This includes the spatial and tempo-
ral coordinates of the datasets in the assessments. Several 
geostatistical approaches have been generated as a pru-
dent approach to distinguish spatial features and linear 
interpolation values for areas in which samples have not 
been collected. In this research, Regression kriging (RK) 
was used to hybridize with machine learning approaches 
for mapping and predicting lead (Pb) contents in soils. 
Ordinary kriging is an interpolation method that enables 
the user to quantify the spatial variability of soil proper-
ties at the investigational site (van der Westhuizen et al. 
2023; John et al. 2021; Bishop and Geoderma 2001). The 
equation is as follows:

where Z*  (X0 ) = represents the predicted value at the 
unquantified location  (X0 ), Z(XI) denotes the known or 
observed value at the location  (XI), λi is the coefficient 
weighting at the observed location  (XO) and n is the number 
of locations within the area under observation.

Regression kriging (RK) is a form of interpolation tech-
nique where there is a mixture of linear models of variables 
that are dependent and auxiliary variables, such as terrain 
attributes of variables in which the residuals are kriged 
alongside (Agyeman et al. 2022b; Odeh et al. 1995). The 
RK approach was used in this research to spatially inter-
polate the distribution of lead (Pb) in the following order 
to: evaluate the lead (Pb) prediction technique approach by 
utilizing the regression technique in reciprocal directions, 
quantifying the lead (Pb) prediction modeling approach with 
residuals at every calibration position, modeling the covari-
ance structure of the lead (Pb) residuals and spatially inter-
polating the lead (Pb)residuals using the variogram model 
parameters and obtaining the predicted map and combining 
the lead (Pb) prediction approach surface on the interpolated 
residual surface.

(1)Z
∗
(

X0

)

=

∑n

i
�
i
ZX

I

Introduction of machine learning algorithms (MLAs)

Machine learning algorithms (MLA) used include Cubist, 
Stochastic gradient boosting, Quantile regression forest, and 
K-Nearest-Neighbor. Based on these MLAs, each dataset is 
randomly divided into two parts: a test set (25%) and a train-
ing set (75%). The training set generates regression models 
that show the relationship between the response variable 
(i.e., Lead) and the predictor variables (i.e., Terrain attrib-
utes and soil nutrients data), while the test data evaluates the 
performance of each model. A description of the model and 
packages used by the R software is given below.

Cubist (CUB)

The Cubist algorithm (Rulequest 2016a,b) is one of the rule-
based algorithms used to build predictive models based on 
the analysis of input information. See5/C5.0 can solve clas-
sification problems (Quinlan 2004), and Cubist can solve 
regression problems very well. Cubism model results are 
preferred over linear regression model results. Also, it is 
simpler than the ANN model (Rulequest 2016a, b). The 
Cubist model is a tree extension of Quinlan’s M5 model 
(Quinlan 1992) with the ability to use thousands of input 
features (Rulequest 2016a, b). In the Cubist model, the goal 
depends on the input and is calculated according to the rules. 
These rules are combined with various conditions and linear 
functions. If the rule considers the general requirements to 
evaluate the result correctly, the appropriate linear function 
is used. The cubist algorithm can run multiple instances at 
once and then test different linear functions to evaluate the 
output. Therefore, Cubist can generate different models and 
mix them according to the rules. This was determined before 
the development of several models with different rules, the 
combination of which could help the Cubist model achieve 
a higher level of accuracy. More details on Cubist can be 
found in Ref. (Nguyen et al. 2019). In this study, the cubist 
was performed in R using the caret package cubist.

Stochastic gradient boosting (SGB)

Stochastic gradient boosting is associated with mixture 
boosting and bagging. Many microscale categorization or 
regression trees are progressively generated from pseudo-
residuals (the gradient of the loss function of the previous 
tree) (Friedman 2001, 2002). At each iteration, a tree is built 
from a random subsample of the data (selected without sub-
stitution), which causes the model to progress incrementally. 
Using only part of the training data increases computational 
efficiency and prediction accuracy while trying to avoid data 
overfitting. An advantage of stochastic gradient enhance-
ment is that no predictor variable needs to be pre-selected 
or transformed. It is also resistant to outliers, as the steepest 
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gradient method highlights points related to their correct 
categorization. In this study, the stochastic gradient boosting 
was performed in R using the caret package gbm.

Quantile regression forest (QRF)

QRF is a variant of the RF algorithm (Meinshausen and 
Ridgeway 2006). It records the mean and spread of all 
observed samples at each node of the decision tree. It uses 
this information to test the conditional probability of the 
expected outcome (Dharumarajan et al. 2019). In this study, 
the Quantile Regression Forest was performed in R using the 
caret package qrf.

K‑nearest‑neighbor (KNN)

K-Nearest Neighbors is a popular data mining strategy for 
solving classification problems (Moreno et al. 2003). It is 
an excellent choice due to its flexibility and relatively fast 
computational efficiency. However, the main disadvantage 
of the K-Nearest Neigbour classifier is that it requires a lot 
of memory to store the entire sample. If the sample size is 
large, the response time of a sequential computer is also high 
(Alpaydin 1997). Despite the memory requirement, it per-
forms well in classification tasks on various datasets (Liang 
and Li 2009). In this study, the K-Nearest-Neighbor was 
performed in R using the caret package KNN.

Terrain attributes and soil properties

By integrating several topographic variables, Pb is associ-
ated with topographic features. Environmental covariates 
were extracted from the Aster dataset using a digital eleva-
tion model (DEM) at a spatial resolution of 30 m (http:// 
earth data. nasa. gov/ search/) and processed for terrain analy-
sis using the SAGA-GIS toolkit. In any case, a 30 m DEM 
with a spatial resolution of 30 m is resampled to a spatial 
resolution of 20 m using the bilinear resampling method in 
ArcGIS. The topographic parameters used in this study are 
slope, elevation, valley depth, LS factor, aspect and relative 
slope location. Terrain attributes were chosen because of 
their association with the response variable.

Soil condition, based on several physico-chemical and 
biological properties and their nutrient content, is crucial in 
agricultural production. Assessing and improving soil sus-
tainability and health, which can contribute to sustainable 
agricultural systems, has recently received increased atten-
tion worldwide (Monther et al. 2020). Plant development 
and nutrient cycling in both terrestrial and aquatic environ-
ments are controlled by phosphorus (P) and nitrogen (N), 
which are an essential component of the biomacromolecules 
of all living organisms (Vrede et al. 2004; Sista and Schimel 
2012). Therefore, changes that alter N:P stoichiometry can 

lead to changes in species diversity and vegetation composi-
tion, which in turn affect ecosystem functioning (Vitousek 
et al. 2010; Yuan and Chen 2015). By identifying regional 
and temporal trends in N and P stoichiometry, we can better 
understand the dynamics of nutrient cycling on lead distribu-
tion in terrestrial ecosystems and their potential impact on 
ecosystem functioning in a rapidly changing environment. 
The elements such as potassium (K), calcium (Ca), copper 
(Cu), iron (Fe), and phosphorus (P) were selected based on 
their association with the response variable and their con-
flicting and reinforcing effects on the response variable.

Assessment of the accuracy and validation of the models

In order to determine the prediction accuracy of models, 
the dataset was split into calibration (75%) and validation 
(25%) datasets. The calibration dataset is applied to estab-
lish the prediction models, and validation dataset is adopted 
for independently evaluating the prediction accuracy. The 
coefficient of determination  (R2), root mean square error 
(RSME), mean error (MAE), RPIQ (ratio of performance 
to interquartile range) and median absolute error (MdAE) 
were Used to evaluate model efficiency and accuracy of the 
methods applied in this research. R2 describes the variability 
in response proportions represented by the regression model. 
MdAE confirms the true measured value, while RMSE and 
MAE determine the magnitude of multiple versions in a 
given measurement, allowing estimates to approach expected 
accuracy. The value of R2 should be high and the accuracy 
should be near to 1 to select the best model method using the 
validation criteria. According to Li et al.(2016) A standard 
R2 value of 0.75 should be considered excellent predictions, 
while 0.50 to 0.75 should be considered satisfactory predic-
tions. The lower obtained values are suitable and considered 
the best choice for model selection for the validated standard 
estimation methods RMSE, MdAE and MAE. The RPIQ is 
calculated by dividing the interquartile range (IQ = Q3–Q1) 
by the RMSE and depicts the largest spread of population 
residuals (shi et al. 2023; Bellon-Maurel et al. 2010).

To analyze the uncertainty of digital soil mapping, a boot-
strap approach was utilized (Wu et al. 2023; Zeraatpisheh 
et al.2022). The sample dataset is randomly divided into 
calibration and validation datasets for N times, for example, 
200 times. As a consequence, N spatial distribution maps are 
generated. The uncertainty map is the difference between the 
95th and 5th percentiles of the N maps, then divided by the 
mean value map.

where  CI95% and  CI5% are the upper and lower of the 95% 
and 5% confidence intervals of the predicted values, and 
Mean is the mean predicted value of N maps.

(2)Uncertanity =
(

CI95% − CI5%

)/

Mean

http://earthdata.nasa.gov/search/
http://earthdata.nasa.gov/search/
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Results and discussion

Description of data and variable relative importance 
of soil nutrients and terrain attributes to Pb

Statistical details of Pb levels and selected environmental 
covariates used in this study are shown in Table 1. Maximum 
and minimum values   for PTE and environmental covariates 
ranged from 4.00 to 312.30 (mg/kg), Pb from 5.00 to 611 
P (mg). /kg), K from 67.39 to 1389.60 (mg/kg), Mg from 
10.00 to 1190 (mg/kg), Ca from 15.40 to 8386.33 (mg/kg), 
0.60 to 101.00 (mg/kg) Cu and 101. 20760.43 (mg/kg) Fe. 
The lower and upper quartiles of the data set range from 
28.54 to 72.84 Pb, 37.52 to 121.67 P, 168 to 280.76 K, 93.57 
to 253.36 Mg, 88.17 to 252.57 for Ca, 2.98 to 6.15 for Cu 
and 4134.27 to 7114.3 for Fe. The standard deviation val-
ues   of Pb and soil nutrients were relatively high, while Cu 
was below 6.50. This is due to the increased heterogene-
ity of variables in the study area (Agyeman et al. 2021). 
The normality of the data based on the estimated skewness 
indicates that the data does not follow a normal distribu-
tion because skewness values   exceed 1 to -1. Additionally, 
the kurtosis and skewness values   in Table 1 indicate that 
the distribution of Pb and soil nutrients is not balanced in 
the right direction. The coefficient of variation (CV) of Pb 
indicated that the calculated CV of Pb (68.22%) in the study 
area was mainly from anthropogenic sources. According to 
Karimi Nezhad et al. (2015) for CVs greater than 20%, it 
implies that lead variability is likely to be primarily from 
anthropogenic sources.

Prediction applying the three diverse contexts

Prediction of Pb levels in forest soils was performed using 
three different methods, namely application of Pb in for-
est soils using terrain attributes with regression kriging 

(Context 1), prediction of Pb in forest soils using coupled 
soil nutrients with regression kriging (Context 2) and predic-
tion of Pb in forest soil using soil nutrients in combination 
with coupled terrain attributes to regression kriging (context 
3). In context 1 (see Table 1), the prediction of the Pb con-
tent of forest soils suggests that QRF_RK (Quantile Regres-
sion Forest-Regression Kriging) 0.63, 25.71, 18.26, 12.79 
and 0.79 for R2, RMSE, MAE, MdAE and RPIQ received 
respectively. With an R2 value of 0.56, RMSE of 27.46, 
MAE of 20.69, MdAE of 16.01 and RPIQ of 0.74 have 
reported that KNN_RK (k-Nearest Neighbors regression 
kriging) predicted the Pb content of forest soils. In contrast, 
the other modeling approaches yielded R2, RMSE, MAE, 
MdAE, and RPIQ values   of 0.61, 26.25, 19.16, 15.05, and 
0.99 for CUBIST_RK (cubist_regression kriging) and 0, 
62, 26.25, 20.37, 15.10 and 0.93 for SGB_RK (Stochastic 
Gradient Boosting-Regression Kriging). The application of 
QRF_RK was the best approach in the prediction of Pb in 
forest soil (Table 2).

In context 2 (see Table 3), forest soil Pb prediction was 
modeled using soil nutrient and regression kriging mod-
els. The results indicate that the use of QRF_RK in com-
bination with soil nutrients resulted in R2, RMSE, MAE, 
MdAE and RPIQ values   of 0.74, 22.72, 15.72, 9.53 and 1. 78 
respectively. Other modeling techniques, such as KNN_RK 
and CUBIST_RK, have yielded R2, RMSE, MAE, MdAE 
and RPIQ values   of 0.69, 24.22, 17.53, 12.32 and 1.24 for 
KNN_RK and 0, 77, 21 0.81, 14.37, 9.67 and 1.66 for CUB-
IST_RK. The SGB_RK modeling approach, in combination 
with soil nutrients as a supplementary dataset, predicted for-
est soil Pb with the following results: 0.78, 21.30, 14.73, 
10.52 and 1.91 for R2, RMSE, MAE, MdAE and RPIQ 
respectively. Cumulative evaluation of the results in context 
2 of the modeling approaches indicated that SGB_RK in 
combination with soil nutrients gave the best results in Pb 
prediction in forest soil.

Table 1  The summary statistics 
of lead (Pb) and soil nutrients

Pb P K Mg Ca Cu Fe

Mean (mg/kg) 54.72 97.82 235.42 189.98 322.17 5.33 5805.55
Geometric mean (mg/kg) 44.18 67.26 214.57 151.28 167.58 4.25 5074.65
Median (mg/kg) 45.75 69.50 218.71 166 130.87 4.20 5307.00
Minimum (mg/kg) 4.00 5.00 67.39 10.00 15.40 0.60 101.00
Maximum (mg/kg) 312.3 611 1389.6 1190 8386.33 101 20760.43
Lower quartile 28.64 37.52 168 93.57 88.17 2.98 4134.27
upper quartile 72.84 121.67 280.76 253.36 252.57 6.15 7114.3
10 percentiles 18.57 21.85 123.25 58.62 65.5 1.96 2860
90 percentiles 101 199.38 342 345.1 627.31 8.88 9102.08
Std.Dev 37.33 95.02 119.41 131.66 677.28 6.38 2785.96
Coef. Var 68.22 97.14 50.72 69.3 210.22 119.6 47.99
Skewness 1.87 2.45 3.93 2.37 7 10.9 1.30
Kurtosis 6.84 7.76 30.31 12.59 66.97 154.71 3.92
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Modeling results for predicting Pb in forest soil in context 
3 (see Table 3) showed that QRF_RK and KNN_RK gave 
the following results: 0.77, 21.19, 15.56, 12.32, and 1.88 for 
R2, RMSE, MAE, MdAE, and RPIQ in QRF_RK and 0.65, 
25.15, 18.20, 12.99, and 0.98 for R2, RMSE, MAE, MdAE, 
and RPIQ in KNN_RK. CUBIST_RK and SGB_RK, on 
the other hand, achieved the following R2, RMSE, MAE, 
MdAE, and RPIQ results: 0.82, 19.04, 12.74, 8.04, and 1.96 
for CUBIST_RK; 0.77, 21.84, 15.10, 11.26, and 1.83 for 
SGB_RK. An overall evaluation of the modeling approach 
in context 3 of Pb prediction in forest soil shows that the best 
results are obtained using CUBIST_RK in combination with 
terrain attributes and soil nutrients.

Comparing contexts 3 and 1, the R2 values   of QRF_
RK, KNN_RK, CUBIST_RK, and SGB_RK in context 3 
increased by 22.31%, 16.51%, 33.48%, and 24.71% com-
pared to context 1, respectively. Compared with Context 
1, the RPIQ values   of  QRF_RK, KNN_RK, CUBIST_RK, 
and SGB_RK in Context 3 increased by 139.49%, 17.18%, 
97.55%, and 96.90%, respectively. The estimated errors of 
the modeling approaches QRF_RK, KNN_RK, CUBIST_
RK, and SGB_RK for RMSE, MAE, and MdAE decreased 
by 17.57%, 14.74%, and 3.69% (QRF_RK), 8.41%, 33.74%, 
and 18.84% (KNN_RK), 8.41%, 33.74%, and 18.84% 

(CUBIST_RK), and 16.80%, 25.88%, and 25.40% (SGB_
RK) in context 3.

Comparing contexts 2 and 3, the following modeling 
methods QRF_RK and CUBIST_RK achieved an increase 
in R2 values   by 4.43% and 6.67%, respectively, in context 
3 in predicting Pb in forest soil. In contrast, the following 
modeling methods KNN_RK and SGB_RK increased R2 
values   by 6.47% and 1.46% in context 2 compared to context 
3, respectively. More specifically, the estimated RPIQ values   
for the modeling methods in Contexts 2 and 3 show that 
the RPIQ values   of QRF_RK and CUBIST_RK in Context 
3 increased by 5.54% and 17.76%, respectively, compared 
to Context 2. Alternatively, the RPIQ values   of KNN_RK 
and SGB_RK increased by 20.83% and 4.09% in Context 2 
compared to Context 3. The quantified errors of the mod-
eling approaches used in the prediction of Pb in forest soil 
revealed that RMSE, MAE, and MdAE realized an error 
margin reduction of 6.74%, 1.00%, and 29.26% for QRF_RK 
and 12.71%, 11.34%, and 16.90% for CUBIST_RK in con-
text 3 compared to context 2. Similarly, the estimation errors 
(e.g., RMSE, MAE, and MdAE) of KNN_RK and SGB_RK 
in context 2 are reduced by 3.84%, 3.82%, and 5.48% for 
KNN_RK and 2.55, 2.50, and 7.02 for SGB_RK compared 
to context 3.

The spatial variability of Pb was assessed by applying 
the semivariance portraying the quantified indexes that 
were predicted using diverse regression kriging models in 
the prediction of Pb in the soil using the gaussian semivari-
ogram model alongside with its nuggets effect. The higher 
ratio indicates that stochastic factors, such as litter layers 
from trees, farming measures, lumbering, forest planta-
tions, woody organic residues from deep roots, and affili-
ated soil microbial and fauna populations, as well as other 
human activities, are primarily responsible for the spatial 
variability of Pb in forest soil. The lower ratio indicates 
that structural factors such as climatic conditions, parental 
material, elevation, soil properties, and other natural factors 
play an important role in spatial variability. According to 
Cambardella et al. (1994), a nugget sill ratio of 0.25 or less 
represents strong spatial variability, 0.25 to 0.75 represents 
moderate spatial variability and anything above 0.75 suggest 
a weak spatial variability. Based on the regression kriging 
approaches used in this study the nugget sill ration is below 
0.25 showing a high spatial variability but weak spatial ran-
domness (see Table 4, 5).

The overall evaluation of the prediction methods in 
contexts 1, 2 and 3 showed that the prediction of lead in 
forest soil using terrain attributes as an auxiliary data set 
gave satisfactory results, but with a correspondingly high 
error rate. However, using soil nutrients as an auxiliary data 
set to predict Pb in forest soils gave good and satisfactory 
results. Nevertheless, the use of terrain attributes and soil 
nutrients as auxiliary datasets for Pb prediction in forest 

Table 2  Prediction of lead in forest using terrain attributes (Context 
1)

Stochastic Gradient Boosting-regression kriging (SGB-RK), cub-
ist regression kriging (CUB_RK), quantile regression forest kriging 
and k nearest neighbour regression kriging (KNN_RK) and quantile 
regression forest (QRF_RK)

Terrain attributes

R2 RMSE MAE MdAE RPIQ
QRF_RK 0.63 25.71 18.26 12.79 0.79
KNN_RK 0.56 27.46 20.69 16.01 0.84
CUBIST_RK 0.61 26.25 19.16 15.05 0.99
SGB_RK 0.62 26.25 20.37 15.10 0.93

Table 3  Prediction of lead (Pb) in forest using soil nutrients (Context 
2)

Stochastic Gradient Boosting-regression kriging (SGB-RK), cub-
ist regression kriging (CUB_RK), quantile regression forest kriging 
and k nearest neighbour regression kriging (KNN_RK) and quantile 
regression forest (QRF_RK)

Soil nutrients

R2 RMSE MAE MdAE RPIQ
QRF_RK 0.74 22.72 15.72 9.53 1.78
KNN_RK 0.69 24.22 17.53 12.32 1.24
CUBIST_RK 0.77 21.81 14.37 9.67 1.66
SGB_RK 0.78 21.30 14.73 10.52 1.91
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soils increased the predictive output of all modeling meth-
ods except KNN_RK. Based on the three modeling envi-
ronments, the best modeling approach for predicting forest 
soil Pb content is to use CUBIST_RK in combination with 
soil nutrients and terrain attributes, resulting in the best pre-
diction performance with the lowest error. The modeling 
approach used in this study showed that predicting soil lead 
using soil nutrients as an auxiliary data set performed better 
than using terrain attributes. Therefore, it can be concluded 
that the combination of soil nutrients and terrain attributes 
has a positive effect on terrain attributes in predicting Pb in 
forest soils. Although  Agyeman et al. (2022b) reported that 
geological topography is an influential factor in predicting 
soil PTE, and the results suggest that interactions between 
soil nutrients and PTE are also important in predicting soil 
PTE. Cubist_RK has been applied in various studies to 
predict soil properties and PTE. Pouladi et al. (2019) used 
Cubist_RK together with Random Forest_RK, and accord-
ing to the output results, Cubist_RK performed better than 
Random Forest_RK. According to Ma et al. (2017), when 
residuals were incorporated into a cubist model using krig-
ing, soil organic carbon prediction was optimized compared 
to other modeling methods used. When combined with regu-
lar kriging, cubist models can be as effective as random for-
ests (Lamichhane et al. 2019) for predicting soil properties 
and PTE. Cubist_RK outperformed RF_RK (Random For-
est Regression Kriging) and CIF_RK (Conditional Inference 
Forest Regression Kriging) in predicting antimony levels in 

agricultural soils when data fusion was combined with ter-
rain attributes (Agyeman et al. 2022b). The integration of 
soil nutrients and terrain attributes together with cubist_RK 
is potent in predicting PTE’s in forest soils with small errors 
and high detection rates. According to Hengl et al. (2004), 
Umali et al. (2012), a Zhang et al. (2012) using RK in the 
learning algorithm combined with spatial interpolation pro-
vides better spatial interpolation results when predicting soil 
properties and PTE.

The combination of soil nutrients and topographic fea-
tures gave good results in predicting forest soil Pb content. 
The effect of soil nutrient inclusions on terrain features in 
forest soil Pb prediction gave good results. It should be 
noted that the antagonistic and stimulatory effects of soil 
nutrient interactions probably explain the best results in 
context 3. This is consistent with Agyeman et al. (2023), 
who used spectral reflectance to predict agricultural soil 
zinc concentrations and soil nutrients in the same area. 
Geomorphic topography has a significant impact on the 
assessment of PTEs such as Pb in soil, and the relation-
ship between bedrock, climatic conditions and geomorphic 
processes can cause the formation of complex soil matrices 
(Agyeman et al. 2022a, 2022b). Pb changes in soil layers 
are not uniform and closely related to hydroxides (espe-
cially Fe). Because the geochemistry of Pb2 + is similar 
to that of divalent alkaline earth metals, Pb can replace K 
and sometimes Ca in both minerals and on sorbent surfaces 
(Kabata 2010). According to Hettiarachchi et al. (2001), P 
compounds are very potent in reducing the bioavailability of 
Pb. P rocks are more effective than P fertilizer. Hashimoto 
and Sato (2007) studied the lead adsorption capacity of dif-
ferent waste materials and found that hydroxyapatite with 
low crystallinity was the most effective. Pb immobilization 
in the soil is strongly influenced by P and some minerals, 
especially pyrozoites (Kumpiene et al. 2008). Pb-Ca inter-
actions are important in metabolism because Pb can mimic 
the physiological behavior of Ca and thus inhibit certain 
enzymes (Kabata 2010). Interactions between soil nutrients 
and topographic properties have enormous implications for 
the impact and effective characterization of spatial lead het-
erogeneity in soils depending on the context of pedogenesis 
and developmental evolution (Zeraatpisheh et al. 2020). 

Table 4  Prediction of lead (Pb) in forest using a combination of soil 
nutrients and terrain attributes (Context 3)

Stochastic Gradient Boosting-regression kriging (SGB-RK), cub-
ist regression kriging (CUB_RK), quantile regression forest kriging 
and k nearest neighbour regression kriging (KNN_RK) and quantile 
regression forest (QRF_RK)

Terrain attributes + soil nutrients

R2 RMSE MAE MdAE RPIQ
QRF_RK 0.77 21.19 15.56 12.32 1.88
KNN_RK 0.65 25.15 18.20 12.99 0.98
CUBIST_RK 0.82 19.04 12.74 8.04 1.96
SGB_RK 0.77 21.84 15.10 11.26 1.83

Table 5  Semivariogram model 
and spatial dependance results 
of lead (Pb) prediction in forest 
soil

Quantile regression forest (QRF_RK), Stochastic Gradient Boosting-regression kriging (SGB-RK),  cubist 
regression kriging (CUB_RK), quantile regression forest kriging and k nearest neighbour regression krig-
ing (KNN_RK)

Model Model Range (m) Sill  (Co+ C) Nugget  (Co) Nugget/Sill

KNN_RK Gaussian 1222.11 4.9594 0.0049 0.001
Cubist_RK Gaussian 1280.68 484.895 0.856 0.0018
SGB_RK Gaussian 1280.68 162.067 0.696 0.0043
QRF_RK Gaussian 848.273 17.4154 0.221 0.0127
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Changes in PTEs such as PTEs in forest soil are strongly 
influenced by several soil processes, such as pedogenesis, 
parent material weathering, or the ability of PTEs to bind 
organic matter (Kabata-Pendias 2011) and their presence 
in the soil in different forms. Thus, these processes allow 
accurate identification of lead concentration attributes, spa-
tial distribution, and factors affecting forest soils. However, 
the impact process is associated with various changes, such 
as the speed of different topographic gradients, which affect 
the spatial variability of Pb in soil and their interrelationship 
with different elements (Jiang et al. 2019b).

Spatial prediction of the optimal regression kriging 
approaches per context

Pb prediction plots based on 6 environmental covariates 
and 6 soil nutrients were used as independent variables to 
fit QRK-RK, SGB-RK, CUBIST-RK and KNN-RK. Fig-
ure 4 shows the top 3 models for predicting Pb in forest 
soils, showing their regression kriging, residuals, and spa-
tial distribution plots of the modeling method using both 
contexts. The spatial distribution map of the regression 
kriging method is regulated by soil nutrients as an auxiliary 

covariate, which exhibits relatively high spatial autocor-
relation. The machine learning predicted (ML) maps and 
regression kriging predicted maps of the best methods 
(TASN_CUBIST_RK, SN_SGB_RK, and TA_QRF_RK) 
have similar spatial distribution patterns from northwest 
to southeast and southwest of the study area. The maps 
produced by regression Kriging and the machine learning 
part of regression Kriging show no significant differences 
between the predicted maps, but they differ in high and low 
values   of the prediction range. This means that using topo-
graphic attributes and soil nutrients alone or in combination 
did not make a significant difference in the predicted maps 
in forest soils, regardless of whether machine learning algo-
rithms or hybrid models such as regression kriging were 
used. All ML predictions and RK predictions of the opti-
mal model produce hotspots in the northeast and southeast 
regions of the research area. On the other hand, the TASN_
CUBIST_RK and SN_SGB_RK predictions and the RK map 
show hotspots in the northeastern enclave of the research 
area. The distribution of Pb concentration in the forest soil 
in the sampled area was low to moderate over a large area, 
and patches of elevated Pb concentration were observed in 
some areas of the study area. The residual images of the 

Fig. 2  Shows the predicted map of machine learning approaches, 
the residuals, and the regression kriging for the optimal modeling 
approaches in each context. Row A represents Stochastic Gradient 

Boosting-regression kriging, B cubist regression kriging and C quan-
tile regression forest kriging
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best maps show a mixture of low, medium, and high predic-
tions, except for the QRF residuals, which show consistently 
low predictions across the study area. This may be because 
QRF was designed to combine the advantages of quantile 
regression (QR) and random forest (RF), thus splitting the 
residuals into low quantiles. Unlike ordinary regression, 
the effect of QRF regression assumes a line that best fits 
a given quantile of the estimated response variable (Mein-
shausen 2006). QR can be used to Investigate the expected 
relationships between variables is more useful when the 
affiliations between the variable means are very weak or 
non-existent (Brennan et al. 2015). The differences between 
the remaining maps produced with the TASN_CUBIST_RK, 
SN_SGB_RK and TA_QRF_RK maps (Fig. 2) may be due 
to overfitting caused by mapping artefacts. The use of addi-
tional datasets for modeling methods to map PTEs such as 
Pb in forest soils improves prediction accuracy. It is clear 
that the relationship between Pb and the auxiliary data is 
strong but using the TASN_CUBIST_RK and SN_SGB_RK 
maps provides a better control of the effects of map overfit-
ting than TA_QRF_RK.

Uncertainty assessment of the modeling 
approaches based on each context

Figures 3, 4 and 5 show the estimated uncertainties for the 
modeling methods used in this study for each case. The 
uncertainty for each modeling method in each context in 
each graph is listed in all modeling methods in a columnal 
approach. In context 1, 5% confidence intervals (CIs) and 
95% uncertainty spreads and mean predictions for Cub-
ist_RK columns (A), KNN_RK columns (B), and SGB_
RK columns (C) are plotted for the Northeast, Southeast, 
Center, Southwest, and Northwest territories. The modeling 
approach shows a mosaic distribution pattern of prevalence 
levels from low to high uncertainty (Cubist_RK column (A), 
KNN_RK column (B) and SGB_RK column (C). There are 
patches of high uncertainty in the central region of the map 
and in the eastern and western areas. The 95% CI of Cub-
ist_RK shows a higher level of uncertainty than KNN_RK 
and SGB_RK. On the other hand, the QRF_RK modeling 
approach shows a low to moderate level of uncertainty in 
the lower limits, upper limits, and mean predictions. In con-
text 2, the uncertainty distribution for all modeling methods 

Fig. 3  Depicts an uncertainty prediction of Pb in forest soil using soil 
nutrients as an auxiliary dataset. For Cubist_RK column A,KNN_RK 
column B, QRF_RK column C, and SGB_RK column D, the 95% 

and 5% confidence interval predictions, as well as the mean predic-
tion, are displayed in each column
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is consistent with context 1. Applying uncertainty propa-
gation to soil nutrients and topographic attributes did not 
reveal any significant differences in the level of uncertainty 
propagated using prediction intervals. This may be because 
soil nutrients and topographic features have geologic rela-
tionships with response variables. Long-term interactions 
between bedrock, climatic conditions, and geomorphological 
mechanisms lead to the formation of soil matrix composites 
(Agyeman et al. 2022b). In Context 3, all modeling methods 
have low to moderate uncertainty in the study area, with high 
patchiness in the center of the study area. The combination 
of soil nutrients and topographic features reduces the level 
of uncertainty in predicting soil lead levels. The relation-
ship between soil nutrients, topographic properties and Pb 
affects the effective characterization of spatial heterogene-
ity in PTE, such as PTE in soil, depending on pedogenesis 
and evolutionary development, resulting in low uncertainty 
propagation in prediction intervals for all modeling methods. 
Figure 3 depicts an uncertainty prediction of Pb in forest soil 
using soil nutrients as an auxiliary dataset. For Cubist_RK 
column A, KNN_RK column B, QRF_RK column C, and 
SGB_RK column D, the 95% and 5% confidence interval 

predictions, as well as the mean prediction, are displayed 
in each column.

Conclusion

This paper investigates the possibility of predicting lead 
(Pb) in forest soils by combining terrain attributes, soil 
nutrients and their combinations, and regression kriging 
in the Frydek Mistek district of the Czech Republic. The 
results showed that the prediction of Pb in forest soil using 
only terrain attributes and soil nutrients as additional data 
sets combined with regression kriging would produce 
satisfactory results. On the other hand, it performed well 
with the combination of soil nutrients and terrain attrib-
ute. Overall, the evaluation showed that using cubist_RK 
in combination with terrain attributes and soil nutrients 
provided the best prediction accuracy and the lowest error 
in Pb prediction in forest soils. Interactions between Pb 
and soil nutrients, as well as terrain attributes, can help to 
better identify sources of PTE pollution while improving 
predictive efficiency. Therefore, it is suggested that the use 

Fig. 4  Depicts an uncertainty prediction of Pb in forest soil using 
terrain attributes as an auxiliary dataset. For Cubist_RK column E, 
KNN_RK column F, QRF_RK column G, and SGB_RK column H, 

the 95% and 5% confidence interval predictions, as well as the mean 
prediction, are displayed in each column
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of soil chemical properties as a proxy, together with appro-
priate environmental covariates, will improve modeling 
efficiency for the predictions of lead (Pb) in forest soils. 
This finding will contribute to the existing knowledge on 
DSM using geostatistics and MLAs under forest soils.
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Abstract
This study applied ordinary kriging (OK), geographically weighted regression (GWR), and positive matrix factorization to 
model soil Cu and Mn in the Frýdek Mistek district based on different sample sizes, topography, and land use. OK maps were 
validated using mean error, while the GWR maps used digital elevation model (DEM) as a covariate. The elements and their 
different sample sizes revealed high heterogeneous/variability. Cu and Mn showed similar strong, moderate, and weak spatial 
dependence between the various samples (ratios ranged from 0.00 to 0.99%). The OK interpolation revealed the highest PTE 
concentration levels (i.e. hotspots) in the north-eastern parts of the study district. The GWR coefficients for both Cu and Mn 
indicated a positive correlation between DEM and the PTEs towards the south-eastern parts. In addition to the sample sizes, 
land use and elevation to a large extent determined the distribution, variability, and concentrations of Cu and Mn. All the 
sample sizes showed the highest concentrations of the PTEs in the lowlands below 500 m where the industrial, commercial, 
and the arable activities dominated in contrast to the highlands (above 500 m) where forests were dominant. This study will 
benefit future researchers in selecting appropriate prediction models to enhance the achievement of accurate prediction of 
PTE contents and spatial distribution in soils. It will also support the land-use planners in identifying the land-use types that 
are associated with higher concentrations of the PTEs, thus proffering a sustainable solution.

Keywords Soil pollution · Spatial distribution · Potentially toxic elements · Cross-validation · DEM · Land use–land cover

Introduction

Potentially toxic elements in soils have constantly been a 
significant threat to the environment and the ecosystem 
due to their toxicity, multiple sources of origin, and their 

non-biodegradable nature (Dai et al. 2018; Mahar et al. 
2016; Mazur et al. 2015). PTEs in their enriched concentra-
tion levels have several negative effects on plant growth and 
reproduction as well as on microorganism activity. They dis-
rupt essential biological processes such as nitrogen fixation, 
adenosine triphosphate development, soil enzyme activity, 
and eventually deter microbial biomass production (Ahmed 
and El-Arabi 2005; Buss et al. 2016). Furthermore, high 
PTE concentration levels have been shown to affect litter 
decomposition due to impaired biological functions (Berg 
et al. 1991; Cotrufo et al. 1995), and metal distribution is 
influenced by litter turnover, owing to the binding affinity 
between metals and humidified substances. PTE accumula-
tion in soils has become a worldwide problem (Sabiha-Javid 
et al. 2009; Yang et al. 2013).

Rapid urbanization and industrialization have also 
accounted for the excessive accumulation of PTEs in the 
soils of Frýdek Mistek (Agyeman et al. 2021). Industrial 
activities are critical for economic development and urbani-
zation (Antoci et al. 2018; Khademi et al. 2019; Li et al. 
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2013; Masto et al. 2017). However, the devastating short- 
and long-term effects of threats posed by these industrial 
chemicals, such as industrial influxes, which may eventually 
accumulate in the soils as PTEs, can never be underesti-
mated and more especially its impact on the ecosystem and 
potential human health risks.

In most countries, unregulated mining and the uncon-
trolled release of mining waste cause environmental harm, 
and hazardous waste disposal activities continue to be prac-
ticed. The first step in determining the ecological effects of 
these pollutants in soils is to determine the concentration 
levels, bioavailability, and their spatial distribution patterns. 
PTE risk assessments have been widely published with a 
focus on contamination of soil and other land use includ-
ing water (Ahmad et al. 2020; 2021a, b; Chabukdhara and 
Nema 2013; Fallatah et al. 2022; Zheng et al. 2010; Zhao 
et al. 2012). Also, there have been various studies on PTEs 
in the Czech Republic, focusing on either origin or distribu-
tion, and mostly done at post-mining sites, urban, moun-
tains, forest soils, and/or in sediments (Borůvka et al. 2005; 
Gholizadeh et al. 2015; Lichnovský et al. 2017; Sáňka et al. 
1995; Sysalová and Száková 2006; Weissmannová et al. 
2015). The importance and novelty of this study could be 
explained by some reasons including: (1) the need to ame-
liorate the declining and degradation of the crop lands as a 
result of industrial pollutants, (2) the necessity to improve 
livestock forage quality by abating the extinction of the pas-
tures species that are becoming endangered and endemic 
due to severe industrial emissions, (3) the ecological ben-
efits of restoring the biodiversity and the potential ecosystem 
services of the area that has become threatened by long-
term waste discharges from anthropogenic activities, (4) the 
innovative concept of modelling the potential influence of 
sample size, land use, and relief on the PTEs pollution level 
as well as on the spatial distribution and variability of soils. 
Therefore, these reasons make this work a rare study that 
has never been performed before in the study area (Frýdek 
Mistek district of the Czech Republic). Further, the use of 
positive matrix factorization (PMF), which is one of the lat-
est software of the USA Environmental Protection Agency 
(US, EPA) used to model soil elemental sources, concentra-
tions, and pollution level, makes this study a unique one in 
the study area. To further support and prove the novelty in 
this study is the application of CANOCO—a multivariate 
ordination analysis software used to measure and illustrate 
the relationships among the sample sizes, LULC, elevation 
and the PTEs.

In respect to the above-mentioned context, the study 
aimed at (1) quantifying and modelling the pollution levels 
of PTEs based on different sample sizes in the study area; 
(2) assessing the prediction accuracy of PTEs using OK and 
GWR methods; (3) identifying and mapping the spatial dis-
tribution patterns of Cu and Mn using different sample sizes; 

and (4) examining the impacts of land use and relief as well 
as their nexus with the PTEs distribution in the soils. It is 
therefore hypothesized that there is (1) a positive relation-
ship between sample size and prediction accuracy of the spa-
tial distribution of PTEs in soils and (2) a strong association 
between LULC, elevation and PTE concentrations.

Materials and methods

Description of the study area

The research area is situated at latitude of 49° 41′ 0′ N and 
longitude of 18° 20′ 0′ E. It undulates at heights between 
225 and 327 m above sea level. The study area is a cold 
temperate climate that receives heavy rainfall even during 
the dry months. The summer season in Frýdek Mistek is 
humid and partly wet, while the winter periods are very cold, 
dry, and windy. Though the temperature ranges from 24 to 
75 °C throughout the year, it seldom falls below 8° or rising 
above 86° (Weather Spark 2016). The average annual pre-
cipitation is between 685 and 752 mm. The geomorphology 
is characterized by rugged terrain that is considered part of 
the Moravian-Silesian Beskydy with the outer Carpathian 
Mountain as the highest peak. The area survey of the district 
is estimated at 1208  km2, with lower landscape found in 
the northern part (Fig. 1). A significant area for evaluating 
the distribution and related ecological impacts of PTEs is 
Trinec and Vítkovice. In and around the district is Ostrava 
which forms part of the area under investigation and is 
endowed with steel and metal industries. The soil proper-
ties are clearly distinguishable based on the colour, structure 
and carbonate content. The soil contains medium and fine 
texture, which comes from its parent materials, and is made 
up of colluvial, alluvial, or Aeolian deposits. Cambisols and 
stagnosols are the most common reference soil groups in the 
study region. Cambisols have 56.7% coverage in the Czech 
Republic, while stagnosols have 7.01% (Vacek et al. 2020).

About 39.38% of the land area is used for anthropogenic 
activities including industries, crop cultivation, pastures and 
animal husbandry, while 49.36% are forests (Fig. 2). The 
PTEs contamination in the region is thought to be caused by 
atmospheric deposition from human activities such as local 
steel mills, vehicular emissions, tire abrasion, and agricul-
ture, which are dominant in the north, north-west and north-
eastern parts of the area (Fig. 2).

Soil sampling and laboratory analysis

Legacy soil data and current soil maps for the Czech Repub-
lic were the primary sources of soil data for this study. The 
legacy data comprise a database of forest soil properties, 
which includes thousands of sampling locations from 
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Fig. 1  Sampling points, relief of 
the study area shown as digital 
elevation model (DEM), and 
location of the study area in the 
Czech Republic

Fig. 2  Distribution of the 
sampling points across the land 
use–land cover
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institutional samples gathered across the Czech Republic 
between 1998 and 2019. The data also cover environmental 
covariate of the sampled stands (Borůvka et al. 2018). A 

total of 336 mineral topsoil (0–30 cm) was used for this 
study after the data were transformed. The transformation is 
required because the soil data come from varying depths of 
the soil profile from different surveys. Environmental covari-
ate and pedological data of the samples collected within the 
forests covered broadleaves, coniferous, mixed forests, and 
pollution risk forest areas.

Chemical analysis and instrument

The presence of elements such as Cu and Mn in the soil 
was extracted using the aqua regia standard method (ISO 
11466:1995, 1995) to determine their pseudo-total con-
tent (Melo et al. 2016). For the quality control (QC) of the 
method, the standard addition technique was adopted. For 
example, the QC of the concentration determination was 
guaranteed using the SRM 2711 (Montana II soil) refer-
ence material (National Institute of Standards and Technol-
ogy, Gaithersburg, Maryland, USA). The values achieved 
were consistent with the reference data. The recovery dif-
ferences were generally < 10% (n = 3). The detection lim-
its for the elements based on the applied method were Cu 
(0.015 mg  L−1) and Mn (0.05 mg  L−1).

Fig. 3  The relief (in metres) shown as digital elevation model (DEM). 
This was categorized into two groups: lowland (below 500  m) and 
highland (above 500 m)

Table 1  Description statistics of PTE concentrations and their spatial distribution in the soil

*Sources: Kabata-Pendias and Szteke (2015), Guagliardi et al. (2012), Ahmad et al. (2021a, b), Waseem et al. (2014), Onyedikachi et al. (2018), 
US-EPA (2007a, 2007b)

Sample sizes (mg  kg−1) Mean Median Mode Mini Maxi Std dev CV (%) Kurtosis Skewness

Cu (n = 336) 5.05 4.19 3.30 0.60 43.65 43.65 72.40 38.40 4.46
Cu (n = 276) 4.95 4.06 3.60 0.60 22.70 3.09 62.29 6.09 1.92
Cu (n = 216) 4.80 4.04 3.30 0.60 20.36 2.86 59.42 3.98 1.53
Cu (n = 156) 4.85 4.04 3.60 0.60 20.36 2.92 60.10 5.21 1.78
Cu (n = 96) 4.72 3.93 3.60 0.60 12.60 2.47 51.96 0.78 1.04
Mn (n = 336) 190.25 166.25 133.00 10.00 1190.00 131.77 69.16 12.57 2.37
Mn (n = 276) 198.47 124.28 47.00 0.50 1332.22 216.78 109.03 6.03 2.15
Mn (n = 216) 191.12 125.63 47.00 0.50 1332.22 210.72 110.00 7.05 2.30
Mn (n = 156) 195.26 125.63 47.00 0.50 1332.22 209.60 107.00 6.59 2.16
Mn (n = 96) 179.49 102.65 47.00 0.50 883.13 186.52 103.37 2.31 1.58
Mean values (mg  kg−1) for Cu*
European mean values 17.30
Worlds mean values 38.90
Crati basin mean values 44.36
US-EPA mean values 40.70
Mean values (mg  kg−1) for Mn*
European mean values 524
Worlds mean values 488
Crati basin mean values 1300
US-EPA mean values 750
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Software and spatial modelling process

Categorization into five sample sizes

The Rstudio software version (4.0.5) was used to further 
classify the soil samples into five different categories by 
reducing the total sample (n = 336) by 60 from the original 
data set. R software code was used to model the five (5) dif-
ferent sample sizes, n = 336, n = 276, n = 216, n = 156, and 
n = 96, respectively. Given the total sample size of n = 336, 
each of the subsequent subsamples was randomly selected 
by assigning a unique seed [e.g. set. seed (276)] to ensure 
reproducibility of results. The various sample sets were ran-
domly generated together with the x, y coordinates, respec-
tive terrain height equivalent, and associated land use–land 
cover (LULC) as derived from the field. The sequential 
reduction of the number of models by 60 was based on the 
author's discretion as it could have been any other number. 
Basic statistical parameters such as mean, median, mini-
mum, maximum, standard deviation, coefficient of variance, 
kurtosis, and skewness were determined. The OK interpola-
tion technique was used to enhance the creation of the spatial 
distribution maps of the PTEs using the non-transformed 
values of Cu and Mn. The OK interpolation determines 
the weights based on the distances between measured and 
projected points and the semivariogram model, based on 
variogram theory and structural analysis and the premise 
of spatial correlation among regional variables (Cressie 
et al. 1990). In analysing the spatial similarity within the 
measured data points, a semivariogram was determined. 
Dragović et al. (2014) defined the empirical semivariogram 
as half the averaged squared difference between paired data 

values separated by a distance interval, which shows the 
spatial autocorrelation of samples and variation patterns on 
the entire spatial scale. This is given in Eq. (1) following 
Dragović et al. (2014) and Kumar et al (2023):

(1)γ(h) =
1

2N(h)

N(h)
∑

i=1

[

z(xi) − z
(

xi + h
)]2

Table 2  Semivariogram models 
and cross-validation results of 
Cu and Mn

*Nugget/sill ratio
**Spatial autocorrelation

Parameters Models Nuggets  (Co) Sill (Co + C) Range *N/S **SAC

Cu (n = 336) Exponential 1,093,754 1,423,081 5,418,205 0.77 Weak
Cu (n = 276) Sphere 6,600,203 8,618,451 4,304,304 0.77 Weak
Cu (n = 216) Exponential 6,002,543 7,741,647 13,895.89 0.78 Weak
Cu (n = 156) Exponential 0.00 6,978,982 4,042,666 0.00 Strong
Cu (n = 96) Linear 5.93 6.02 17,740.49 0.99 Weak
Mn (n = 336) Linear 10,607.86 19,349.83 24,170.51 0.55 Moderate
Mn (n = 276) Linear 3,438,621 54,785.09 43,779.77 62.77 Weak
Mn (n = 216) Exponential 29,124.58 121,890.77 128,879.4 0.24 Strong
Mn (n = 156) Linear 33,507.82 43,719 28,904.15 0.77 Weak
Mn (n = 96) Linear 32,583.72 38,037.90 26,227.54 0.86 Weak

Table 3  Values and interpretation of spatial autocorrelation

Karami et al. (2009)

Spatial autocorrelation (SAC) Explanation

< 0.25 Strong autocorrelation
0.25–0.75 Moderate autocorrelation
> 0.75 Weak autocorrelation

Table 4  Cross-validation results of ordinary kriging interpolation

Parameters ME MAE RMSE MSDR
mg/kg

Cu (n = 336) 0.011 2.22 3.62 1.029
Cu (n = 276) 0.009 2.2 3.08 1.144
Cu (n = 216) − 0.003 2.04 2.74 1.13
Cu (n = 156) − 0.033 2.12 2.93 1.29
Cu (n = 96) − 0.003 1.93 2.48 1
Mn (n = 336) 0.132 94.54 129.42 1.39
Mn (n = 276) 1.383 157.24 214.48 1.23
Mn (n = 216) − 1.013 150.61 209.35 1.34
Mn (n = 156) 1.554 156.08 215.19 1.52
Mn (n = 96) − 0.058 146.88 190.39 1.04
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where γ(h) is the semivariogram value; z
(

xi
)

 and z
(

xi + h
)

 
represent the measured values of the same PTE at xi and 
xi + h , respectively; and N(h) is the number of sample pairs 
that agree with the lag of h. Different h values will pro-
duce a series of γ(h) values in the empirical semivariogram. 
In fitting the semivariogram cloud, the concise theoretical 
model should be chosen using the least square method fit 
the semivariogram. Spherical, exponential, Gaussian, linear 
and other theoretical models are commonly used, with nug-
get (C0), range, and sill (C) being three critical parameters. 
When the sampling interval is 0, the nugget is the semi-
variogram value, which represents the calculated error and 
spatial variance at the minimum abstract scale. The scope 
of the spatial correlation is represented by the range. The 
maximal variance of samples is known as the sill, and when 
the semivariogram value is more than the sill, there is no 
spatial correlation between the models (Wang et al. 2014).

The ordinary kriging method of interpolation is presented 
in Eq. (2) according to Kumar et al (2023):

where ẑ(xo) is the predicted value of xo , z(xi) is the meas-
ured xi , value �i denotes the weight of samples xi , and n 
represents the number of samples.

Sample sizes grouping under the different land use–land 
cover

By using the Rstudio software version (4.0.5) and ArcGIS 
version (10.7.1), the classified five soil sample sizes were 
grouped based on land use–land cover types. There are six-
teen LULC types (excluding the waterbody) in the study 
area (Fig. 2). The LULC was classified into three distinct 
groups, namely industrial area, arable/pasture, and forestland 
area. All the LULC shown in green colours (broad-leaved 
forest, mixed forest, coniferous forest, and transitional wood-
shrub) were grouped under the forestland area, while the 
arable/pasture includes non-irrigated arable land, pastures, 
natural grassland, complex cultivation area, agriculture, and 
natural vegetation. On the other hand, discontinuous urban 
fabric, industrial or commercial units, road and rail network, 
dump sites, construction sites, and urban green areas were 
grouped under the industrial area (see Fig. 2). This was done 
to measure the contributions of the LULC for the PTEs and 
the variability in sample sizes distribution. Here, the positive 

(2)ẑ
(

xo
)

=

n
∑

i=1

𝜆iz
(

xi
)

matrix factorization (PMF, EPA version 5.0, Washington, 
DC, USA) was used for the estimation of source apportion-
ment and contamination level of the PTEs, whereas the 
ordination model of CANOCO 5.0 was used to show the 
association among LULC, relief, sample size, and PTEs.

Sample sizes grouping under lowland (below 500 m) 
and highland (above 500 m)

The Rstudio software version (4.0.5) was used to further 
group the classified five soil samples sizes under lowland 
(denoting areas below 500 m) and highland soil areas (repre-
senting regions above 500 m). These topographical gradients 
are clearly visible in Fig. 3 where the lowlands are dominant 
in the northern part, while the highlands are found in the 
south. This was done to determine whether height above 
sea level influenced the pollution level, soil sample sizes 
distribution, and variability.

Cross‑validation

Cross-validation was adopted to compare various interpola-
tion methods and helped in the best interpolation parameter 
and model (Stone 1974). The concept behind leave-one-out 
cross-validation is that the significance of each sample is 
unknown and is estimated by the surrounding samples. The 
calculated and predicted values' mean error (ME), mean 
absolute error (MAE), root-mean-square error (RMSE), 
and mean-squared deviation ratio (MSDR) were chosen as 
evaluation indicators.

The variables separately include estimates of overall esti-
mation bias and interpolation accuracy (Qu et al. 2017). The 
RMSE was used to evaluate the prediction accuracy. The 
smaller the RMSE value, the more accurate the prediction 
outcome will be. When the RMSEs are equal, the accuracy 
should be assessed using the smaller ME criterion, which 
leads to higher accuracy. The MSDR was also used to deter-
mine the degree of fitting of the theoretical variation func-
tion. The closer the MSDR value is to 1, the more accurate 
the fit variation function will be (Zhang et al. 2011). These 
validation methods as shown in Eqs. (3), (4), and (5) were 
applied following the works of Zhang et al. (2011), Sishah 
et al. (2023), and Mueller et al. (2023).

(3)ME =
1

n

n
∑

i=1

[

Z
(

xi
)

− Z∗
(

xi
)]
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Fig. 4  Ordinary kriging interpolation and spatial distribution maps of Cu (mg  kg−1) with different sample sizes
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Fig. 5  Ordinary kriging interpolation and spatial distribution maps of Mn (mg  kg−1) with different sample sizes
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where z
(

xi
)

 is the measured value, ẑ
(

xi
)

 are the predicted 
values, �i and n are the variance and the size of the validation 
set in samples, respectively.

Geographically weighted regression

Geographically weighted regression (GWR) model is the 
locally weighted least square method where the weight is the 
distance function between the approximate site's geospatial 
position and the other observation sites' geospatial locations. 
The GWR is a spatial statistical method that considers both 
spatial heterogeneity and autocorrelation and can be used to 
investigate local relationships among various possible spatial 
variations (Brown 2012; Hou et al. 2017). The GWR tech-
nique was used in this study to elucidate and visualize the 
relationship between PTEs' spatial distributions in surface 
soil and the DEM (Fig. 1). The relationship between the 
parameters and their geospatial location is characterized by 
the variation of the parameters with their geospatial location. 
The GWR model is stated as following the work of Li et al 
(2023) and Li and Wang (2023):

where yi
(

�i, vi
)

 is the coordinate of each sampling site 
(such as latitude and longitude), �k

(

�i, vi
)

 is the regression 
parameter of each sample site, which is a function of the 
geographic location i , and �i represents the error at location 
i.�i ∼ N

(

O, �2
)

, cov
(

�i�j
)

= 0(i =≠ j). In this model, it is 
critical to choose the best bandwidth. The geographically 
weighted regression analysis uses the AIC criteria to select 
the weight function bandwidth (Cao et al. 2017). Equa-
tion (7) is applied according to Lee et al. (2023) and Cao 
et al. (2017) that were adopted:

(4)RMSE

√

√

√

√

1

n

n
∑

i=1

[

Z
(

xi
)

− Z∗
(

xi
)]2

(5)MSDR =
1

n

n
∑

i=1

(
[(

z
(

xi
)

− ẑ
(

xi
))]2

𝜎2

i

)

(6)yi = �O
(

�i, vi
)

+

p
∑

k=1

�k
(

�i, vi
)

xik + �i i = 1, 2,… n

(7)AIC = −2nInL(�̂�) + nIn2 + n

[

n + tr(S)

n − 2 − tr(S)

]

where the trace tr(S) of the hat matrix S depends on the 
bandwidth b, and �̂�  is the predicted maximum variance of 
the random error term. The bandwidth of the GWR function 
of the minimum AIC value of an individual sample is the 
sample’s optimal bandwidth. The surface content of a single 
PTE is the dependent variable in GWR analysis, while the 
surface content of the other PTE and the covariate (DEM) of 
the sampling points are the independent variables.

Results and discussion

Descriptive statistics of PTE concentrations and their 
spatial distribution in the soil

The basic statistical characteristics of the studied PTEs, 
including Cu and Mn for the various sample sizes of soil, 
are described in Table 1. The coefficient of variance (CV) 
explains the degree of variation within PTE concentrations 
(Karami et al. 2009). A CV value of less than 20% represents 
low variability, and a CV that falls between 21 and 50% 
indicates a moderate variability. On the other hand, a CV 
ranging from 50 to 100% signifies high variability. On the 
other hand, when CV is greater than 100% (i.e. > 100%), it is 
described as extremely high heterogeneity. In this study, the 
CV of the PTEs Cu indicates a high variability, while the CV 
of Mn exhibited an extremely high heterogeneity pattern in 
variation (Table 1). In general, both elements and their dif-
ferent sample sizes revealed high heterogeneous/variability. 
The data for PTEs in all the samples had a clear positively 
skewed distribution: Cu (n = 336) having the highest skew-
ness of 4.46 and Cu (n = 96) having the lowest skewness of 
1.04. The skewness value for Mn ranged from 2.37 to 1.58.

The mean values obtained for both Cu and Mn were lower 
compared to the European mean values, worldwide mean 
value (Kabata-Pendias and Szteke 2015), and Crati basin 
values (Guagliardi et al. 2012). This may suggest that the 
soils had low pollution. Although this is consistent with the 
study, there is need to assess other aspects of biogeochem-
istry, fractions, and speciation of these elements.

Semivariogram models and cross‑validation results 
of Cu and Mn maps

Semivariogram and the nugget-to-sill ratio were used to 
define spatial dependence and investigate spatial variability. 
Extreme spatial dependence was indicated by a ratio of less 
than 25%, and moderate spatial dependence was indicated by 
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a ratio between 25 and 75%. Finally, a ratio of 75% showed 
a poor spatial relationship (Karami et al. 2009). Intrinsic 
factors are usually to blame for a strong spatial dependence 
of soil properties and PTEs, whereas external factors are 
to blame for weak spatial dependence (Cambardella et al. 
1994; Wu et al. 2009). The total content of Cu and Mn in this 
study (Table 2) showed strong, and moderate-to-weak spatial 
dependence between the various samples (ratios ranged from 
0.00 to 0.99%). This study showed strong autocorrelation 
(extreme spatial dependence), moderate (moderate spatial 
dependence), and weak autocorrelation (weak/poor spatial 
relationship) (Table 3). Strong spatial dependence is caused 
by intrinsic factors such as industrial production and soil 
practice management. At the same time, moderate spatial 
dependence might be explained by intrinsic and extrinsic 
factors including industrial production, agricultural prac-
tice, parent material, and topography (Hani and Karimineja 
2010).

Cross‑validation results of ordinary kriging 
interpolation

The components of the cross-validation test revealed that 
the interpolation of all soil variables for distribution maps 
was reasonable. The overall mean error was close to zero, 
except in the case of Mn (n = 276) and Mn (n = 156), and the 
mean-squared error was also smaller than the sample vari-
ance of all soil variables (Table 4). The standardized mean-
squared error for Mn and Cu revealed that the interpolation 
was accurate. The RMSE values were slightly higher, while 
the MSDR values for all elements were significantly lower 
indicating the accuracy of the models. Combining ME, 
MAE, RMSE, and MSDR will replicate the characteristics 
of original samples, preserve their spatial variability and 

mutability, ensure prediction accuracy, as well as enhance 
the model-fitting effect of various methods.

Ordinary kriging interpolation results of Cu and Mn

The spatial distribution maps of Cu and Mn were generated 
by the OK method (Figs. 4 and 5). All PTEs had a similar 
pattern of distributions except in the case of Cu (n = 156 and 
276). The spatial distribution maps revealed similar regional 
patterns, with high PTE contents in the north, north-east and 
north-west. The northern parts of the study district had the 
highest concentration (hotspots) of all PTEs. This could be 
attributed to the facts that the socio-economic and indus-
trial activities are concentrated towards the northern part of 
the study area; thus, toxic elements are regularly discharged 
(Wang et al. 2020; Guo et al. 2019). However, n = 156 and 
276 are slightly distributed across the entire study area. The 
spatial dependency values (Table 3) and the structure of the 
PTEs pollution in the study area (Figs. 4 and 5) might be 
attributed to a typical soil-geochemical patterns of PTEs pol-
lution formation by the disposal of human-made waste in the 
forest soils (Xu et al. 2016). The spatial distribution maps of 
Cu and Mn showed a similar geographic trend. The pattern 
of similarity is strongly supported by the mean values of Cu 
and Mn (Table 1).

Geographically weighted regression analysis

The remarkable fit and accuracy of the explanation vari-
ables indicated that they could adequately characterize the 
dependent variables. To further examine the relationship 
or effects of environmental covariates on the behaviour of 
PTEs, the DEM was used as an independent variable. A 
digital elevation model (DEM) is a three-dimensional (3D) 
representation of the surface of the terrain generated from 
elevation data. In the 1970s, the term DEM was coined to 
differentiate the most basic form of terrain relief modelling 
from more complex forms of digital surface representation.

Fig. 6  Geographically weighted regression (GWR) interpolation with 
digital elevation model (DEM) and point distribution maps of Cu 
(mg  kg−1) with different sample sizes

◂
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In the south-eastern part of the study area, DEM and Cu 
concentrations were positively associated for all sample 
sizes, while in the north-western part, the regression coeffi-
cient steadily decreased before turning negative (Fig. 6). The 
regression coefficients of Mn and DEM followed the same 
trend with concentration strongly correlated towards the 
south-eastern part of the study area (Fig. 7). This revealed 
that DEM affected the distribution of Cu and Mn. Gener-
ally, the study results are important because the prediction 
accuracy of PTEs is not dependent on total sample size, but 
other environmental variables such as elevation and land use 
are involved. In sum, the selection of appropriate prediction 
models will enhance the achievement of accurate prediction 
of PTEs spatial distribution in soils.

The multivariate ordination analysis of RDA demon-
strated the association between the sample sizes and land 
use along the toposequence (Fig. 8). All the sample sizes 
showed the highest concentrations of the PTEs around the 
industrial/commercial and the arable land soils under the 
lowland below 500 m. This was also shown in the OK mod-
elling analyses (Figs. 4 and 5) where the north had higher 
PTE concentrations than the southern part. The contents of 
Cu and Mn in all the sample sizes were relatively insignifi-
cant in the forest land area where the topography is high. 
This finding was consistent with the map showing the land 
use–land cover of the study area (Figs. 1 and 2). It could be 
attributed to the concentration of industrial, commercial, and 
arable activities in the lowland areas when compared to the 
highland areas. The result is consistent with the report by 
Wang et al (2020) who revealed that the type of LULC in an 
area contributes significantly to the distribution and redis-
tribution of PTEs in the surface soil. Industrial, commercial, 
and agricultural sites have been known as important sources 
of PTEs (Guo et al. 2019).

For example, the enrichment of PTEs in agricultural soil 
was primarily because of the excessive use of fertilizers 
and the animal dungs (Xu et al. 2016). Other studies on the 
correlation between elevation and concentration of PTEs 
revealed that lowland soils have higher contents of the PTEs 
because of runoff from the highlands and slopes downwards 
(Qiao et al. 2017; Wang et al. 2020).

This study examined the sources of PTEs in the study 
area by applying the positive matrix factorization (PMF) 

model developed by the US-EPA. The PMF model was 
introduced as one of the most suitable and latest models 
with high capabilities for efficient PTE source evaluation 
(Chen et al. 2010a, b). The validity and reliability of the 
analysis are centred on minimum Q to model the residual 
matrix that influences a substantial number of variables. To 
achieve the most accurate result, the PMF model was run 
for at least 20 times, and the best outputs (which were Run 
6, Run 7, and Run 20) were chosen following the software 
developer’s guide (U.S. EPA. 2010). The PMF simulation 
generated six factors (Figs. 9, 10, and 11) and revealed the 
sources of the contributions based on each PTE (Norris et al. 
2014). The result for the sample sizes showed that factor 1 
was dominated by Cu in the sample size 96 with a factor 
loading of 77.8%, while factor 2 had Mn in sample size 216, 
which accounted for the highest element with factor loads 
of 83.4% (Fig. 9). The manganese content in a sample size 
of 276 accumulated factor 3 with factor loads of 84.5%. The 
model analysis revealed that factor 4 had the highest loads 
for the accumulation of the PTEs in the different sample 
sizes. These include Cu in 336 sample size (80.1%), Cu in 
276 sample size (62.3%), Cu in 156 sample size (61.9%), Mn 
in 336 sample size (40.4%), Cu in 216 sample size (35.7%), 
and Cu in 96 sample size (22.3%). Factor 5 was dominated 
by Mn in the 156-sample size, whereas Mn in sample size 
96 accrued factor 6 with factor loads of 78.9%.

The percentage contributions of Mn in each land-use 
types revealed an interesting information where none of 
the forest soils except broad-leaved forest had a significant 
factor load or contribution in Cu accumulations (Fig. 10). 
Green urban area showed the highest Cu accumulation in 
factor 1 with 70.1% contribution factor, while construction 
sites (75.3%) and transition woodland shrubs (73.2%) had 
the highest for factor 2. Factor 3 had discontinuous urban 
fabric (75.3%) and natural irrigated arable land (39.9%), 
whereas factor 4 had natural grassland as the land use with 
the highest soil Cu and accrued 85.1% factor loads.

In the cases of factor 5 and factor 6, pastures (83.6%) and 
broad-leaved forest (70.5%), respectively, accounted for the 
highest. Similar to the results from PMF model analysis for 
Cu, the percentage contributions of Mn in each land use 
types indicated that only the soil under the broad-leaved 
forest had a significant factor contribution in Mn accumula-
tion (Fig. 11). In factor 1, green urban soil accounted for 
83% factor loading for Mn, while in factor 2 natural grass-
land accrued the highest factor loads of 24.2% followed 
by broad-leaved forest (23.9%) and transitional woodland 

Fig. 7  Geographically weighted regression (GWR) interpolation with 
digital elevation model (DEM) and point distribution maps of Mn 
(mg  kg−1) with different sample sizes
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shrubs (23.5%). Factor 3 had construction sites as the land 
use with the highest Mn accumulation with loading factor 
of 42.6%, whereas transitional woodland shrub had 40.4%.

Natural irrigated arable land (52.1%) accounted for the 
highest Mn in factor 4. In factor 5, discontinuous urban fab-
ric had the highest accumulation of Mn with 61.0%. Factor 6 
had industrial/commercial sites and pasture lands recording 
the highest factor loads of 77.5% and 70.1%, respectively. 
The highest factor loads were found in either the industrial 
or arable and pasture lands, while the forests recorded rela-
tively low factor loads except in broad-leaved forest. The 
OK modelling results in Figs. 4 and 5 also reflected this 
pattern. This could be attributed to the high concentrations 
of the PTEs in the lowland area (below 500 m) where the 
anthropogenic activities are dominant (Guo et al. 2019; 
Nguyen et al. 2020; Vannini et al. 2021; Xiao et al. 2021; 
Xu et al. 2016). In addition, agents of erosion such as wind 
and water might carry loads of pollutants containing Cu and 
Mn from the highlands to the industrial, commercial, arable, 
and pasture areas at the lowlands, which consequently con-
taminated the soil (Xiao et al. 2021). The broad-leaved forest 
was the only forest type that recorded some high factor loads 
of the PTEs. This could be explained by the reason that the 
broad-leaved trees have the capacity to retain and absorb 
in their leaves pollutant carried by wind. These retained 
PTEs are later transferred into the soil through stem-flow or 
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Fig. 8  Multivariate ordination analysis of RDA Showing the asso-
ciation between the sample sizes, land use, and DEM. Descrip-
tion of Abbreviations: SS96Cu, SS156Cu, SS216Cu, SS276Cu, 
and SS336Cu represent sample sizes of 96. 156, 216, 276, and 336, 
respectively, for copper, while SS96Mn, SS156Mn, SS216Mn, 
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Fig. 9   Source fingerprint of different sample sizes from the PMF 
model analysis showing the percentage contributions of Cu and 
Mn. Description of Abbreviations: SS96Cu, SS156Cu, SS216Cu, 
SS276Cu, and SS336Cu represent sample sizes of 96. 156, 216, 

276, and 336, respectively, for copper, while SS96Mn, SS156Mn, 
SS216Mn, SS276Mn, and SS336Mn represent sample sizes of 96, 
156, 216, 276 and 336, respectively, for manganese
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biological translocation processes from the leaves. In addi-
tion, the broad-leaved trees have large buttress roots that 
could stop the removal and erosion of the PTEs in the soil 
when compared with the other forest tree types. Further, the 
amount of litter falls from the broad-leaved forest might have 
increased the concentration of CU and Mn in the soil (Solgi 
et al. 2018). This was also reported in some other studies 
where the soil PTE contents were highly increased in the 
broad-leaved forests than in the coniferous or tiny-leaved 
forest (Fu et al. 2010; Ma et al. 2015; Solgi et al. 2018; Zhou 
et al. 2018).

The correlation analysis for the five sample sizes and the 
PTEs revealed that manganese content in sample size 96 
and copper content in sample size 216 had significant cor-
relations across all the sample sizes and elements (Table 5). 

Similarly, Mn content in sample size 336 significantly cor-
related with all the PTE contents in all the sample.

Figures (or values) in bold are significant at the 0.05 
confidence level. Description of Abbreviations: SS96Cu, 
SS156Cu, SS216Cu, SS276Cu, and SS336Cu represent 
sample sizes of 96. 156, 216, 276, and 336, respectively, for 
copper, while SS96Mn, SS156Mn, SS216Mn, SS276Mn, 
and SS336Mn represent sample sizes of 96. 156, 216, 276, 
and 336, respectively, for manganese.

The influence of elevation on the PTEs in the sample sizes 
was remarkable as significant differences were recorded in 
the study (Table 6). The lowlands (≤ 500 m above sea level) 
showed significant p values for Cu and Mn concentrations in 
the different sample sizes except for SS156Cu and SS276Cu 
(Table 6). In the highland sites (> 500 m above sea level), 

Fig. 10   Source fingerprint from the PMF model analysis showing 
the percentage contributions of Cu in each land use. Description of 
abbreviations; copper contents in: Discontinuous urban fabric = Dis-
UrbFab_Cu, Industrial/commercial units = IndComm_Cu, Road&rail 
network area = RdRlnet_Cu, Dump sites = Dump_Cu, Construction 
sites = Const_Cu, Green urban area = GrenUrb_Cu, Natural Irrigated 

Arable area = NatIrgArab_Cu, Pastures = Pasture_Cu, Natural grass-
lands = NatGras_Cu, Complex cultivation area = CompCult_Cu, 
Agric & natural vegetation = AgricNatVeg_Cu, Broad-leaved for-
est = BrodLevForest_Cu, Coniferous forest = ConiForest_Cu, Mixed 
forest = MixedForest_Cu, Transition woodland shrubs = TransWood-
Shrub_Cu
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Fig. 11   Source fingerprint from the PMF model analysis showing 
the percentage contributions of Mn in each land use. Description 
of abbreviations; Manganese contents in: Discontinuous urban fab-
ric = DisUrbFab_Mn, Industrial/commercial units = IndComm_Mn, 
Road&rail network area = RdRlnet_Mn, Dump sites = Dump_Mn, 
Construction sites = Const_Mn, Green urban area = GrenUrb_Mn, 

Natural Irrigated Arable area = NatIrgArab_Mn, Pastures = Pas-
ture_Mn, Natural grasslands = NatGras_Mn, Complex cultivation 
area = CompCult_Mn, Agric & natural vegetation = AgricNat-
Veg_Mn, Broad-leaved forest = BrodLevForest_Mn, Coniferous for-
est = ConiForest_Mn, Mixed forest = MixedForest_Mn, Trans wood-
land shrubs = TransWoodShrub_Mn

Table 5  Summary of correlation analyses between the soils concentrations of Cu and Mn for the sample sizes

Description of Abbreviations: SS96Cu, SS156Cu, SS216Cu, SS276Cu, and SS336Cu represent sample sizes of 96,156, 216, 276, and 336, 
respectively, for copper, while SS96Mn, SS156Mn, SS216Mn, SS276Mn, and SS336Mn represent sample sizes of 96, 156, 216, 276, and 336, 
respectively, for manganese
*Correlation is significant at the 0.01
**Correlation is significant at the 0.05

Parameter SS96Cu SS156Cu SS216Cu SS276Cu SS336Cu SS96Mn SS156Mn SS216Mn SS276Mn SS336Mn

SS96Cu 1.00
SS156Cu 0.07 1.00
SS216Cu 0.58 − 0.15 1.00
SS276Cu 0.00 0.56 0.58** 1.00
SS336Cu − 0.04 0.09 0.61* 0.14 1.00
SS96Mn 0.65* 0.71* 0.93* 0.54** 0.82* 1.00
SS156Mn 0.47 0.00 0.81* 0.06 − 0.37 0.48 1.00
SS216Mn 0.32 − 0.17 0.84* − 0.14 − 0.31 0.42 0.68* 1.00
SS276Mn 0.07 0.15 0.75* 0.00 − 0.53 0.15 0.00 0.14 1.00
SS336Mn 0.37* 0.01 0.65** 0.28* − 0.31 0.78* 0.70** 0.63* 0.53** 1.00
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there were no significant differences in the observed outputs 
for the PTEs across the different sample sizes. The high con-
centration and significant differences seen among the low-
land area might be related to the fact that industrial, commer-
cial, and arable activities were concentrated in the lowland 
areas when compared with the highlands areas (Vannini 
et al. 2021). Agricultural activities could have applied rea-
sonable quantities of fertilizers and animal manures, which 
might have increased the association between the PTEs and 
the sample sizes at the lowland soils (Nguyen et al. 2020; 
Xu et al. 2016).

Conclusion

The forest soils (0–30 cm) of the Frýdek mistek district of 
the Czech Republic were examined. Geostatistics approaches 
were used in this analysis to evaluate the spatial variability 
of PTEs in the soil and predict accuracy based on different 
sample sizes. Maps of Cu and Mn were developed using the 
GWR for the distribution. The models based on the obtained 
data formed strong spatial dependence patterns (nugget-to-
sill ratio ranged from 0.00 to 0.24%), while Mn (n = 336) 
formed moderate spatial dependence patterns (nugget-to-
sill ratio 0.55%); all other samples indicate weak spatial 
dependence pattern (nugget-to-sill ratio ranged from 0.77 
to 62.77%). PTE concentrations were low for the studied 
elements in the district, indicating no pollution. The GWR 
coefficients for both Cu and Mn revealed a positive corre-
lation between DEM towards the south-eastern part of the 
study area.

In addition to the sample sizes, land use and elevation to 
a large extent determined the distribution, variability and 
concentrations of Cu and Mn in the study area. For example, 
all the sample sizes showed the highest concentrations of 
the PTEs around the industrial, commercial, and the arable 

land soils under the lowland below 500 m when compared 
with the highlands (above 500 m) where forests dominated.

It is important to emphasize that the concentrations of 
Cu and Mn in the soils of our study area were within the 
reference range recommended by FAO/WHO, EU, and/
or US-EPA ,which are FAO/WHO (35–75 mg  kg−1), EU 
(50–140 mg   kg−1), and US-EPA (28–80 mg   kg−1 aver-
age) for Cu, and FAO/WHO (20-10E04 mg  kg−1) and EU 
(524 mg  kg−1 on average), and US-EPA (< 750 mg  kg−1 
average) for Mn, respectively. Although the rate of pollu-
tion per the mean values indicated non-polluted soils, there 
may be an intermittent need to assess the soils for control 
measures to be taken to curtail excessive accumulation and 
escalation to safeguard the well-being of the inhabitant and 
the ecosystem. Also, the results might support policy-devel-
opers in sustainable farming and forestry for the health of 
the ecosystem towards food security, forest safety, as well 
as animal and human welfare. The research also concluded 
that sample size does not necessarily influence the quan-
tification of spatial variability and predictive accuracy of 
PTEs, rather other environmental factors such as covariates, 
land use, topography and the selection of appropriate models 
influencing the prediction and distribution of these elements 
in soils.
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Abstract The sustenance of humans and livestock

depends on the protection of the soil. Consequently,

the pollution of the soil with potentially toxic elements

(PTEs) is of great concern to humanity. The objective

of this study is to investigate the source apportion-

ment, concentration levels and spatial distribution of

PTEs in selected soils in Frýdek-Mı́stek District of the

Czech Republic. The total number of soil samples was

70 (topsoil 49 and 21 subsoils) and was analysed using

a portable XRF machine. Contamination factor and the

pollution index load were used for the assessment and

interpreting the pollution and distribution of PTEs in

the soils. The inverse distance weighting was used for

the spatial evaluation of the PTEs. The results of the

analysis showed that the area is composed of low-to-

high pollution site. PTEs displayed spatial variation

patterns. The average PTE concentration decreases in

this Fe[Ti[Ba[Zr[Rb[ Sr[Cr[
Y[Cu[Ni[Th order for the topsoil and also

decreases in this Fe[Ti[Zr[Ba[Rb[ Sr[
Cr[Y[Cu[Ni[ and Th order for the subsoil.

These PTEs Cr, Ni, Cu, Rb, Y, Zr, Ba, Th, and Fe were

far above the baseline European average value and the

World average value level, respectively. The source

apportionment showed the dominance of Cr, Ni, Rb,

Ti, Th, Zr, Cu, Fe in the topsoil, while the subsoil was

dominated by all the PTEs (factor 1 to 6) except Ba.

The study concludes that indiscriminate human activ-

ities have an enormous effect on soil pollution.

Keywords Spatial distribution � Potentially toxic

elements � Contamination degree � Source

apportionment � Soil pollution � European average

value

Introduction

Potential toxic elements (PTEs) are a generic name

that includes the phrase ‘heavy metals’, ‘trace ele-

ments’, and ‘toxic elements’ with a weight density

more than or less than 5 g cm-3 (Fu et al. 2008; Ali

et al. 2013; Fang et al. 2016; Anwakang 2018). PTEs

are commonly present in almost all environmental

matrices, including but not limited to soil, plants, and

water. Similarly, PTEs originate naturally from rocks

and mineral ores (Alloway 2013), from normal

geological processes such as rock weathering and

ore formation, and also from anthropogenic effects
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associated with urbanization, manufacturing activi-

ties, agricultural practices, mining, and extraction of

natural resources (e.g. coal) (Alyazichi et al. 2017;

Jones et al. 2019). As a result, their soil enrichment is

always unclear until research has been conducted to

assess the probability of elevated levels of toxicity.

However, a lot of research work has been done on

PTEs due to their potential health threats within

society.

Generally, the rising rate of anthropocentric activ-

ities such as agriculture, industrialization, mining, and

urbanization as a means of ensuring human survival

has profoundly affected our soils. Anthropocentric

activities can be traced back to the pre-medieval era,

whereby most of the impacts exerted on soils were

attributed to human actions than to natural sources

(Brevik 2005). According to Anatolaki and Tsitouri-

dou (2007) and Xu et al. (2014), industrialized and

urbanized areas harbour pollutants released from a

diverse range of sources (e.g. vehicular emissions,

fugitive sources residential heating, industrial and

natural activities). As a result, soils have been a sink

for pollutants, although they play a central role in

ensuring ecosystem balance as well as the basis for

food production (Alyazichi et al. 2016).

According to Rehman et al. (2008), pollutants such

as PTEs are discharged into the environment, often in

the form of waste products from both point and non-

point sources pollution. Although these PTEs may

sometimes be released at low concentrations, their

continued accumulation, non-biodegradable nature,

and persistence may ultimately pose a high risk to the

environment, and the potential for bioconcentration or

biomagnification in plants and animal tissues (Ikem

et al. 2003; Alyazichi et al. 2015). Khan et al. (2015)

reported that an increased concentration of PTEs in the

soil environment could harm the health of both plants

and animals because of bioaccumulating effects.

However, the World Environmental Agency bodies

(e.g. EPA) have described PTEs as problematic in the

environment (e.g. Ghana’s mining site) and have a

significant influence on soil quality (Sterckeman et al.

2000; Ordóñez et al. 2003; Alyazichi et al. 2015; Jones

et al. 2019).

Many environmental factors (e.g. parent material,

climatic factors, biotic factors, and anthropogenic

activities) contribute spatially to soil variability (Zhu

et al. 2001; McBratney et al. 2003; Minasny and

McBratney 2016). These factors contribute to the

assessment and determination of soil quality and

promote the mobility, speciation, and distribution of

PTEs (Ogundiran and Osibanjo 2009; Jones et al.

2019). Some natural factors, such as climate, slope,

elevation, and parent material, are not the only factors

that have an impact on development and soil chemical

formation, but human factors, such as pollution

source, vehicle emissions, agriculture, domestic

waste, and industry, are eminent in soil pollution.

(Yu et al. 2014). The anthropogenic effect is the key

contributor to the spatial dispersion of PTEs rather

than the natural accumulations (Poonam et al. 2014),

and the excessive accumulation rate in the environ-

ment has been reported to be alarming (Dunea et al.

2016). PTEs accumulation in the soils has become a

global problem (Sabiha-Javied et al. 2009; Yang et al.

2013) as it poses the greatest threat to human health

(Chen et al. 2015; Alyazichi et al. 2015; Jones et al.

2019). According to Song et al. (2009), the inhibition

of PTEs in soil is one of the feasible functions of

studies. On the other hand, the spatial prediction of

PTEs provides an avenue for identifying the distribu-

tion, concentration, occurrence, and probably the

source of contamination of PTEs.

However, there is still knowledge gap in the

pollution assessment processes (i.e. Why the exposure

to these risk elements differs from the environment) as

well as the advantages of positive matrix factorization

(PMF) in source identification of these PTEs in

Central European district (e.g. Frýdek-Mı́stek) in

agricultural soil actively engaged for crop production.

Besides, the study location has been actively engaged

in both industrial and farming activities, hence the

need to understand the chemical composition of the

prevalent pollutants and the spatial distribution over

the area. Specifically, the study is aimed at investi-

gating the source apportionment, contamination

levels, and spatial prediction of potentially toxic

elements in some selected soils in the Czech Republic.

Materials and methods

The study area

Frýdek-Mı́stek is a district of the Moravian-Silesian

Region, located in the foothills of the Moravian-

Silesian Region in the Czech Republic, Europe. The

district was formerly made up of two separate cities,
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Silesian Frýdek and Moravian Mı́stek. Both munici-

palities were merged in the year 1943, and the name

has been used since 1955. The area under study is

situated within the geographical coordinates Latitude

49� 410 000 North and Longitude 18� 200 000 East at an

altitude ranging between 225 and 327 m above sea

level, characterized by a cold temperate climate and a

high amount of rainfall even in dry months (Fig. 1). In

Frýdek-Mı́stek, the summers are hot and partially

cloudy, and the winters are cold, dry, windy, and

mainly cloudy (Weather Spark 2016). Over the course

of the year, temperatures usually range from 24 to 75�
F and are rarely below 8 or above 86� F, while the

average annual precipitation ranges between 685 and

752 mm (Weather Spark 2016). The area survey of the

district is estimated at 1208 km2 with 39.38% of the

land size designated for agricultural activities and

49.36% for forest lands. The PTE pollution in the area

is assumed to originate from atmospheric deposition

emitted from the steel industry nearby, vehicular

emission, abrasion from tires, and agricultural activ-

ities (e.g. pesticide and insecticide applications).

Meanwhile, the dominant reference soil groups in

the study area are cambisols and stagnosols. Cambisol

dominates the Czech Republic with a percentage

coverage of 56.7 and stagnosols 7.01% (Vacek et al.

2020).

Soil sampling and analysis

A grid sampling design was adopted for the soil

investigation in this study. The soil samples were

collected at intervals of 2 km using a handheld GPS

system (Leica Zeno 5 GPS), and at every 4 km, the

samples were collected for both topsoil (0 to 20 cm)

and subsoil (21 to 40 cm), respectively. The total

number (n) of samples obtained for both topsoil (ts)

and subsoil (ss) is n = 49 and n = 21, respectively,

across seven cities (Havirov, Terlicko, Trinec, Bys-

trica, Jablunkov, Mosty u Jablunkova, and Hrcava).

They were taken into plastic bags and appropriately

labelled and transported to the laboratory. The samples

were air-dried, crushed by a mechanical device, and

then sieved (\ 2 mm) to obtain a pulverized sample.

These samples were analysed using a portable X-ray

fluorescence spectrometer. Each sample was mea-

sured in triplicates.

Quality assurance and quality control (QA/QC)

The quality assurance and control process, the stan-

dard reference material for a portable device (i.e. XRF

2711a NIST, the National Institute of Standards and

Technology), was used in the analysis to ensure

quality compliance. The reference material was occa-

sionally measured alongside with soil samples to

ensure that the analysis remained accurate until

completion. The detection limits for the PTEs tested

were\ 10 mg/kg (Ni),\ 10 mg/kg (Cu),\ 5 mg/kg

(Sr),\ 20 mg/kg (Ba),\ 5 mg/kg (Ti),\ 10 mg/kg

(Fe),\ 10 mg/kg (Cr),\ 5 mg/kg (Y),\ 5 mg/kg

(Zr),\ 5 mg/kg (Th) and\ 5 mg/kg (Rb). The PTEs

recovery percentage was 82.3(Ni),89.9(Cu), 86.4(Sr),

88.1(Ba), 84.7(Ti), 87.9(Fe),81.2(Cr), 96.2(Y),

92.5(Zr), 100.9(Th), and 98.7(Rb).

PTEs contamination analysis

The PTEs pollution level of the study area was

assessed through various contamination assessment

indices, including the contamination factor (CF) and

the pollution index (PLI).

a. Contamination factor

CF is defined as the ratio of the metal content of the

sample to the background value of the same metal. It is

given by,

CF ¼ Cmð ÞSample

Cmð ÞBackground
ð1Þ

where the Cm sample is the concentration of metal

analysed from sampled soil and Cm Background is the

geochemical background concentration. The cate-

gories used for interpretation of CF values are as

follows:\ 1 (No Pollution), 1–3 (Moderate Pollu-

tion), 3–6 (Considerable Pollution), and[ 6 (Very

High Pollution). The baseline values used were the

World average value (WAV) (Alina Kabata-Pendias

2011).

b. Pollution load index

This measure of estimation was proposed by Tomlin-

son et al. (1980) and is used to detect pollution that
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permits a comparison of pollution levels amongst sites

and at different times. The PLI was calculated as a

result of the concentration factor of each PTE with

regard to the background value in the soil where CF is

the contamination factor mentioned above (Eq. 1) and

n is the number of metals studied. PLI\ 1 refers to the

optimal soil quality, and PLI = 1 shows that only the

baseline levels of contaminants are present, while

PLI[ 1 suggests the degradation of the quality of the

site by Tomlinson et al. (1980).

The pollution load index (PLI) equation is given by

PLI ¼ ðCF1xCF2xCF3x. . .xCFnÞ
1
n ð2Þ

Source apportionment

Positive matrix factorization (PMF), EPA–PMF v5.0

(U.S. EPA 2014), was employed to estimate the

contribution of PTEs sources to contamination in the

area. This mathematical technique is a receptor model

used in calculating the contribution of the sources to

samples built on the composition or fingerprints of the

sources. PMF model apportions the collaborations of

elements in soil composition by solving chemical

mass balance such as:

Cij ¼
Xp

k¼1

Gik þ Fkj þ Eij ð3Þ

where Cij represents the content of PTEs j in soil

sample i, p is the number of factors (i.e. pollution

sources), Gik denotes contribution of factor k to soil

sample i, Fkj is the content of PTEs j in factor k, and Eij

signifies the residual. Assume the matrix of PTEs

contents in the soil samples; PMF can derive the factor

contribution matrix G as well as factor profile matrix F

by minimizing the objective function Q, which is

presented as:

Fig. 1 Study area and sampling location map
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Q ¼
Xn

i¼1

Xm

j¼1

eij
uij

� �2

ð4Þ

where m is the number of PTEs investigated, n de-

notes the number of soil samples, and Uij signifies the

uncertainty of PTEs j in soil sample i. Uij is deter-

mined based on the PTEs content (Cij), the relative

standard deviation (r), and the method detection limit

(CMDL). Therefore, it implies that the PTEs content is

above CMDL value; Uij is computed as:

Uij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� Cij

� �2þC2
MDL

q
ð5Þ

The model recommends that the data below the

detection limit would be substituted with the value

of CMDL/2, i.e. data that do not occur in this study, and

the associated uncertainty is calculated as:

Uij ¼ 5=6 CMDL ð6Þ

Besides the constraint of no significant negative

contribution (Gik), the utmost optimal factors were

derived using the multilinear engine algorithm in

PMF. It is vital to note that the minimum Q can be

global or local. Consequently, multiple attempts using

diverse starting points were carried out to reach the

global minimum Q and reliable solution.

The uncertainty and the bias of the results obtained

were further estimated using two error estimation

methods encompassed in the PMF model: classical

bootstrap (BS) and displacement of factor elements

(DISP) (Brown et al. 2015). The uncertainty of

solutions can arise generally based on three causes:

(1) errors coming from the data set randomly, which

are based on measurement procedures; (2) ambiguity

resulting from rotation and the fact that multiple PMF

solutions can have the similar or very close values of

object function Q; and (3) modelling errors triggered

by the simplification of the real system. Bootstrap was

performed to curb random errors, whereas displace-

ment was engaged to explore data errors and rotational

ambiguity. The bootstrapping allowed us to create a

new data set that randomly selects subsamples from

the original observation with replacement. This set of

data generated was then fitted by the PMF model to

derive various factors and the concentration contribu-

tion. The fingerprint and the factor contribution of

each element in the soil were assessed based on the

results generated by the software from repeating the

resampling and model fitting procedure. The

displacement analysis is repeatedly displaced to each

potentially toxic element in the factor profile far

enough from its fitted values and then fits the PMF

model. The object function Q would then increase by a

predetermined maximum value changed Qmax. The

interpretation is based on the adjustment of the upper

or lower interval of the displaced element. This

analysis was conducted using the positive matrix

factorization model (version 5.0) developed by the

United States Environmental Protection Agency

(USEPA).

Data analysis

The statistical analyses were performed using Excel

(maximum and minimum number, average value),

PMF EPA 5.0 for estimation of source apportionment,

and RStudio for mapping as well as estimation of the

Pearson correlation matrix. Inverse distance weighting

(IDW) interpolation was used in computing the

correlation and the similarities between neighbours

with a proportional distance between them. This

interpolation technique enabled us to create the spatial

distribution maps of PTEs of the study area under

investigation.

Results and discussion

PTEs concentration in soil

The descriptive statistics for the PTEs Fe, Ti, Ba, Zr,

Rb, Sr, Cr, Y, Cu, and Ni in the topsoil and the subsoil

from the study area listed in Table 1 display the

average, maximum, minimum, and the percentage

coefficient of variability. According to Karimi et al.

(2015), the coefficient of variance (CV) indicates the

degree of heterogeneity within PTE concentrations. If

the CV B 20% indicates low variability, 21% B CV

B 50% is considered to be moderate variability, and

50% B CV B 100% indicates high variability, and if

the CV is above 100%, it is considered to be extremely

high variability. The coefficient of variation (CV%) of

the PTEs in the current study area of the topsoil

decreases in this order Ni\ Fe\Cu\Y\Zr\
Cr\ Sr\Th\Ba\Rb\Ti accruing 63.47%,

52.25%, 43.68%, 31.59%, 30.53%, 22.96%, 18.45%,

18.01%, 17.86%, 15.98%, and 11.07%, respectively.

The CV for the subsoil also decreases in this order Ni,
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Cu, Zr, Fe, Rb, Cr, Th, Sr, Y, Ba, and Ti accounting for

55.35%, 30.13%, 26.11%, 24.41%, 21.55%, 20.50%,

18.42%, 18.37%, 17.33%, 16.99%, and 13.32%,

respectively. The CV results suggest that there is a

moderate variability between Cr, Cu, Y, and Zr in the

topsoil and the subsoil (Cr, Cu, Rb, Zr, and Fe) (see

Table 1). However, both (topsoil and subsoil) show

more homogeneous variability. Ni showed high vari-

ability in both the topsoil and subsoil, whereas Fe

showed high variability in the topsoil only. The spatial

distribution of the non-homogeneity of Ni and Fe

predicts the existence of a local source of enrichment.

Comparing the findings from this present studies with

the PTEs from Crati Basin (Guagliardi et al.2012), it is

apparent that the Crati Basin is highly enriched in Cr,

Ni, Cu, Rb, Sr, and Ba compared to the current studies.

However, the current study is also enriched in Y, Zr,

Ti, and Fe than in the Crati Basin.

The concentrations of the PTEs in the soils of the

study area are shown in Tables 2 and 3, respectively.

The average concentration of the PTEs from the

highest to the lowest in the topsoil is as follows

Fe[Ti[Ba[Zr[Rb[ Sr[Cr[Y[Cu[
Ni[Th and in the subsoil it follows in this order

Fe[Ti[Zr[Ba[Rb[ Sr[Cr[Y[Cu[
Ni[ and Th. Table 1 reveals that the average

concentration of the PTEs (Cr, Cu, Rb, Y, Zr, Ba,

Th) in the current study (topsoil) surpassed the World

average value (WAV) and European average value

(EAV) threshold limits. On the other hand, the subsoil

average values presented in Table 1 revealed that Cr,

Rb, Y, Zr, Ba, and Th concentrations also exceeded the

WAV and EAV limit. Out of the 49 topsoil samples

analysed, some of the concentrations were far below

the international standard limit (WAV), and the

majority were far above the allowable limits. Chro-

mium concentration measured (topsoil) indicated that

22 out of the 49 samples exceeded the WAV soil limits

representing 44.9% of the total number of samples

collected. Other PTEs such as Ni, Cu, Rb, Y, Zr, Ba,

Th, and Fe (topsoil) also exceeded the WAV (8, 2, 49,

41, 49, 29, 43, and 3) representing 16.3%, 4.1%,

100%, 83.7%, 100%, 59.2%, 87.8%, and 6.1% of the

total number of soil sample collected, respectively.

The concentration level of the PTEs revealed that

several locations displayed high, moderate, and

slightly contaminated levels (Tables 2 and 3) com-

pared with the international limits (EAV and WAV).

This may be attributed to diverse factors such as steel

factory and agriculture activities (Zhao et al. 2007;

Jones et al. 2019). The high concentration of Cr and Cu

in the soil is consistent with the results obtained by Bi

et al. (2006) from zinc smelting areas in Hezhang

county, China. On the other hand, the concentration of

Ba and Rb in the soil may be attributed to pedogenic

factors and phosphate fertilizer application that

accounted for the moderate increase compared to the

international limits (Alina Kabata-Pendias and

Mukherjee 2007). The PTEs average value concen-

trations of Cr, Cu, Y, Ba, Th, and Fe in the topsoil are

Table 1 Average concentration of PTEs from the study area and background level of toxic elements

Cr Ni Cu Rb Sr Y Zr Ba Th Ti Fe

mg/kg

Topsoil average 62.10 16.30 21.30 93.70 79.40 28.40 478.00 490.20 11.50 4664.40 23,380.59

Coef. var.% (topsoil) 22.96 63.47 43.68 15.98 18.45 31.59 30.53 17.86 18.01 11.07 52.25

Minimum (topsoil) 44.00 0.00 8.87 70.47 49.67 13.70 29.43 378.33 4.97 3133.67 11,788.00

Maximum (topsoil) 111.70 43.00 58.33 161.50 127.70 78.47 673.00 912.67 15.30 5560.00 75,987.67

Subsoil average (subsoil) 59.80 17.50 18.80 97.50 81.40 27.60 514.00 483.30 11.10 4863.00 21,154.02

Coef. var.% (subsoil) 20.50 55.35 30.13 21.55 18.37 17.33 26.11 16.99 18.42 13.32 24.41

Minimum (subsoil) 38.00 0.00 10.07 75.67 54.80 13.87 256.70 386.67 4.90 3356.67 16,160.00

Maximum (subsoil) 88.67 45.00 33.53 179.00 119.30 35.67 674.70 787.00 14.30 6724.00 37,026.67

*European average value 94.80 37.00 17.30 87.00 130.00 23.00 2.10 400.00 9.20 6070.00 –

*World average value 59.50 29.00 38.90 68.00 175.00 23.00 267.00 460.00 9.20 7038.00 –

**Crati Basin 90.54 34.67 44.36 104.66 234.25 24.99 209.36 603.05 – 0.73 5.47

*Kabata-Pendias (2011 pp. 41 and 42) **Guagliardi et al. (2012)
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Table 2 PTEs concentration level in the topsoil

Sample Cr Ni Cu Rb Sr Y Zr Ba Th Ti Fe

mg/kg

1 67.33 5.67 16.23 83.07 81.27 28.90 601.67 443.33 11.37 4568.33 16,496.33

2 59.33 11.67 20.37 88.20 86.47 32.80 673.00 423.33 12.53 4470.00 16,877.00

3 51.67 15.00 19.20 82.10 80.00 27.90 647.33 451.67 9.73 4493.33 15,878.67

4 63.33 15.33 18.60 77.47 65.53 25.20 457.33 430.00 10.63 4638.33 16,011.67

5 57.67 12.67 19.93 92.50 81.43 31.90 638.00 475.00 12.93 4908.00 18,480.33

6 53.00 29.67 31.33 94.00 90.13 32.70 553.00 489.00 13.53 4682.67 22,481.67

7 54.00 12.00 17.53 86.97 82.37 30.60 615.33 417.67 13.27 4873.67 16,785.33

8 52.33 15.00 18.63 87.33 85.07 30.00 653.33 464.33 12.77 4790.67 17,920.33

9 57.33 22.33 19.00 98.33 90.07 32.20 507.67 509.67 13.30 4981.00 22,770.00

10 50.00 18.33 19.20 91.90 76.03 28.30 622.33 479.00 12.87 4944.67 22,881.00

11 56.67 15.33 18.10 92.87 79.13 28.90 592.33 485.00 13.30 5046.00 22,721.67

12 64.33 13.33 20.03 87.97 74.27 28.60 620.00 478.33 12.43 4760.00 19,550.00

13 83.33 15.00 29.33 89.33 70.10 27.80 555.67 490.33 13.63 4760.00 19,550.00

14 71.67 6.67 16.77 88.73 70.53 24.20 449.00 458.67 10.73 4863.33 33,403.67

15 111.70 17.00 14.67 111.10 65.20 26.20 204.67 912.67 9.67 5523.67 17,139.00

16 44.67 14.67 16.83 80.73 73.13 20.80 426.33 399.67 10.73 4734.00 20,128.67

17 88.33 36.33 18.87 109.90 113.80 26.30 304.00 554.00 8.33 3376.33 19,547.67

18 48.33 10.33 25.27 71.40 49.67 13.70 240.67 378.33 4.97 5345.33 28,212.00

19 63.67 17.00 29.67 70.47 73.10 21.50 490.67 518.67 11.87 3133.67 22,850.33

20 67.00 17.67 16.33 107.00 77.47 31.90 564.33 482.33 13.27 4290.33 50,875.33

21 45.33 0.00 12.80 95.63 58.43 18.10 355.33 434.67 6.73 4990.00 17,691.67

22 52.00 12.00 16.20 89.43 66.30 24.40 483.00 452.33 9.50 4665.00 21,907.00

23 49.00 7.67 15.60 85.57 67.53 27.70 497.33 458.00 9.53 4591.00 17,557.67

24 48.00 7.33 14.60 88.33 62.37 25.10 397.33 434.33 9.97 4172.33 20,900.33

25 58.00 21.67 19.23 93.47 74.73 27.20 502.00 474.33 12.37 4807.67 21,967.00

26 87.67 40.67 34.00 96.73 108.80 32.70 336.67 542.00 11.73 4437.00 34,046.00

27 60.33 17.33 21.33 91.10 77.43 29.30 623.00 480.67 13.40 5094.67 18,672.33

28 66.33 3.00 11.30 84.37 75.90 26.70 541.67 450.33 11.40 4720.33 16,726.33

29 74.33 9.00 16.90 87.13 83.30 29.90 637.33 433.67 13.53 4880.33 18,688.67

30 55.67 3.33 22.07 87.43 70.83 14.10 248.00 434.00 7.63 3162.33 21,782.67

31 88.00 34.67 26.77 111.10 108.40 35.30 388.67 562.00 11.97 4479.67 28,346.67

32 68.33 17.33 24.10 88.40 75.77 19.20 277.00 494.67 8.90 4801.00 21,439.33

33 54.33 9.00 58.33 91.33 71.80 29.10 572.67 432.00 9.07 4636.67 18,188.67

34 57.00 14.67 18.00 89.70 82.50 27.70 608.67 481.33 11.90 4849.67 19,277.00

35 55.67 6.33 16.83 88.40 60.10 26.20 497.00 483.67 11.60 5287.67 18,017.33

36 51.67 30.33 28.53 92.73 89.10 33.10 561.33 493.67 12.77 4917.33 22,360.67

37 61.33 11.00 19.10 121.40 73.40 30.10 559.67 548.67 13.90 5560.00 22,630.33

38 56.67 5.33 8.87 95.87 82.57 28.30 515.67 466.00 12.27 5195.00 16,335.67

39 63.67 20.33 19.27 87.50 92.97 36.20 655.67 491.67 15.30 4605.33 19,943.33

40 60.33 22.33 23.43 91.47 97.10 37.00 581.33 528.67 14.50 4887.67 25,840.33

41 81.00 39.33 57.00 93.87 95.13 31.40 478.33 667.00 11.57 5104.67 71,486.00

42 56.67 12.33 18.20 81.37 63.63 20.20 403.67 383.00 11.10 3768.00 12,473.00

43 51.33 23.00 20.40 129.80 74.27 24.90 308.33 493.00 10.80 4093.67 23,378.33

44 45.67 10.33 15.80 85.37 66.60 25.50 587.67 431.67 13.00 4598.33 18,348.67
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higher than the PTEs in the subsoil; similarly, the

samples average value concentrations of the PTEs (Ni,

Rb, Sr, Zr, and Ti) in the subsoil are also higher than

those same PTEs in the topsoil (Tables 2 and 3). The

enrichment of the topsoil may be due to anthropogenic

activities such as atmospheric deposition, steel indus-

try, and vehicular emission as well as agriculture

(Jones et al. 2019). In contrast, the enrichment of the

subsoil elements may be due to geogenic, pedogenic,

and leaching. Oliva and Espinosa (2007) provided

Table 2 continued

Sample Cr Ni Cu Rb Sr Y Zr Ba Th Ti Fe

mg/kg

45 49.78 11.11 15.42 104.30 68.14 23.50 435.44 443.00 10.56 4957.67 18,846.33

46 91.00 43.00 30.67 109.40 127.70 33.90 270.33 534.67 9.57 4941.33 30,332.67

47 44.00 0.00 12.43 84.87 83.20 18.70 367.67 445.33 9.70 4656.00 11,788.00

48 74.00 29.67 23.77 161.50 89.50 26.60 273.00 704.67 13.03 3779.67 75,987.67

49 72.00 13.33 14.60 90.13 78.47 78.47 29.43 599.67 11.90 4734.00 20,128.67

Average values 62.14 16.25 21.25 93.65 79.40 28.39 477.75 490.20 11.45 4664.44 23,380.59

Table 3 PTEs concentration level in the subsoil

Sample Cr Ni Cu Rb Sr Y Zr Ba Th Ti Fe

mg/kg

1.00 62.33 14.33 26.30 75.67 54.80 13.87 256.70 386.67 4.90 3356.67 24,675.33

2.00 38.00 15.67 17.93 82.30 73.77 23.37 400.00 412.33 9.60 3671.67 19,120.00

3.00 56.33 15.67 18.43 107.80 78.63 33.50 572.00 473.00 12.10 4986.33 20,088.00

4.00 77.67 36.33 17.77 119.10 119.30 24.83 312.70 566.00 11.80 5473.67 28,377.67

5.00 56.33 18.33 18.53 95.47 90.67 32.07 506.70 504.00 9.90 4939.67 23,300.33

6.00 72.67 0.00 11.67 86.33 75.37 26.63 564.00 446.67 11.90 4620.67 17,263.00

7.00 45.67 17.00 10.97 99.50 84.10 29.60 548.30 451.33 12.90 4424.33 19,527.33

8.00 53.67 8.33 14.97 90.13 63.17 27.87 543.30 475.00 10.00 4903.00 19,261.00

9.00 50.00 16.00 15.27 86.73 81.60 28.83 672.70 473.00 13.40 5505.67 17,635.33

10.00 53.00 14.33 33.53 93.77 72.30 28.27 599.30 449.33 12.60 4636.67 18,188.67

11.00 60.00 13.67 19.03 79.90 82.70 27.83 636.70 447.67 11.00 4540.00 16,160.00

12.00 66.33 14.33 16.17 87.13 82.23 28.73 653.70 450.33 11.50 4698.67 17,486.67

13.00 50.33 19.00 20.60 91.60 79.10 30.63 653.30 446.67 14.00 5016.33 17,441.33

14.00 69.67 34.00 25.33 179.00 88.63 27.10 265.70 787.00 14.30 6724.00 37,026.67

15.00 50.00 17.33 16.93 86.30 69.80 24.63 586.30 434.67 10.50 4867.67 18,222.33

16.00 63.00 17.67 21.23 91.30 85.47 32.17 674.70 503.33 11.50 4888.33 18,470.00

17.00 47.67 5.67 11.03 87.93 72.97 23.23 495.00 455.67 9.83 4950.67 17,999.33

18.00 80.00 28.00 23.33 102.70 96.57 35.67 557.70 555.67 10.90 4789.67 23,150.67

19.00 88.67 45.00 24.77 113.90 114.70 32.50 288.70 554.67 11.20 5441.33 30,187.33

20.00 61.67 17.33 20.37 92.73 79.93 28.53 604.00 472.67 11.30 4985.33 23,937.00

21.00 52.33 – 10.07 97.90 63.57 20.13 410.30 404.33 7.87 4703.33 16,716.33

Average value 59.78 17.52 18.77 97.48 81.40 27.62 514.37 483.33 11.11 4863.03 21,154.02
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evidence that collaborates with this paper’s findings

that topsoil enrichment is due to anthropogenic

activities. In another vein, Li et al. (2017) agree with

the results established in this study that potentially

subsoil toxic metal enrichment is due to leaching,

geogenic, and pedogenic influence.

Contamination factor and pollution load index

for topsoil and subsoil

The results obtained indicate that the contamination

factors (CF) values of most of the PTEs such as Zr, Rb,

Th, Y, Ba, Cr, Fe, Ti, Ni, Cu, and Sr range from low-

to-moderate contamination degree (0.00 to 3.00, see

Table S2). These may be due to the impact of distinct

external sources like industrial activities, agricultural

activities, runoffs, and other anthropogenic inputs.

Yttrium was the only PTE that displayed severe

contamination at a sampled point 49 (see Table S2).

The CF for chromium at 49 observation points (for

topsoil) indicated that 21 sampled locations were

moderately contaminated. Out of 49 topsoil-sampled

points, 9 observation points showed moderate con-

tamination for Ni, 2 for Cu, Rb 49, Y 40, Zr 43, Ba 28,

Th 43, and Fe 3 as displayed in the boxplot (Fig. 2). In

the subsoil, 21 locations were sampled, and the PTEs

CF estimated showed moderate contamination in the

following order Rb (21), Ba (19), Th (19), Ti (19), Zr

(19), Cr(11, Ni (4), and Fe (1) as displayed in the

boxplot (Fig. 3).

The pollution load index (PLI) was found to be

generally very slightly contaminated to severe con-

tamination (see Table S2 and Fig. 4). The results

obtained here may be primarily attributed to the

atmospheric deposition of PTEs due to the steel

factory proximate to the pollution source and, like-

wise, the intensive agricultural activities in the area.

These also confirm that there is a gradual rise of the

PTEs concentration in the study area, especially

around the observation point 41 (see Table S1) with

PLI = of 0.656 mg/kg.

Comparison of baseline reference values

to measured values

Figure S1 indicates that the measured average values

are higher than that of the European baseline line

average values. However, three out of the 49 sampled

points were below the European baseline average

value (see Table 1). Conversely, quite a number of the

PTEs concentration values fell below the WAV

baseline and a lot more above it (see Table 1). The

Fig. 2 A boxplot for the concentration factor of metals significance levels of topsoil
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barium concentration in the soil was relatively high,

and five measured values fell within the range 600 mg/

kg to 920 mg/kg. More so, most of the concentration

of Ba in the studied agricultural soil was higher than

Fig. 3 A boxplot for the concentration factor of metals significance levels of subsoil

Fig. 4 A boxplot for the concentration of metals significance level for pollution load index in the topsoil (PLI_TS) and the subsoil

(PLI_SS)
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WAV and EAV (see Fig. S1), and this is coherent with

other studies conducted by Zhang et al. (2018).

Figure S2 shows a quantifiable distribution of

average chromium concentration values in the topsoil

and the subsoil, which indicated that some measured

Cr concentrations are slightly higher than the WAV

baseline but lower than the EAV baseline (see

Table 1). The average value concentration of chro-

mium for topsoil is 62.14 mg/kg and for subsoil, it is

59.78 mg/kg. Juxtaposing the EAV baseline limits to

the maximum concentration value of Cr in the topsoil

(111.70 mg/kg, see Table S2), it is evident that the Cr

maximum concentration is higher than the EAV

baseline limit. Equally, some of the concentration

values for Cr at some sampled location exceeded the

EAV baseline.

Similarly, Fig. S3 presents a quantitative distribu-

tion of Cu in the topsoil and subsoil, compared with

the EAV (see Table 1); some of the Cu concentration

values were found to be higher than the EAV baseline

threshold but lower than the WAV, respectively. Only

2 soil samples of the topsoil (58.3 mg/kg, 57 mg/kg)

exceeded the WAV baseline.

Figure S4 shows the distribution of nickel (Ni) in

the topsoil and the subsoil. Most of the concentration

values of soil samples collected were below the WAV

and EAV baseline (see Table 1). Only a subsoil

sample and 3 topsoil samples collected exceeded both

the EAV and WAV baseline (Fig. S4).

The displayed Fig. S5 illustrates the quantitative

variation of Rubidium (Rb) in the top and the subsoil,

which is in sharp contrast with the WAV and EAV

baselines (see Table 1). Most of the concentration of

Rb taken from the analysed soil samples was higher

than WAV and EAV baselines. None of the Rb

concentration values fell below the WAV baseline, but

quite a few soils sampled dropped below the EAV

baseline. A sample of the topsoil and subsoil recorded

a very high concentration value (161.5 mg/kg,

179 mg/kg, respectively).

Figure S6 shows the concentration of strontium of

the topsoil and subsoil from the study area. The

strontium concentration level fell below both Euro-

pean and World average values of the World and

European soil allowable limits (see Table 1). Stron-

tium level in the soil of the study area was below the

measurable limit of the European and the World soil

threshold.

Thorium (Th) concentration level displayed in

Fig. S7 shows that the concentration of Th from the

study area mostly exceeded the EAV and WAV

baseline (see Table 1). The thorium concentration

level in the study area appears to be very high in both

the topsoil and subsoil.

Figure S8 shows the concentration of titanium of

the soils (topsoil and subsoil) from the study area, and

it revealed that the concentration level of titanium was

below both WAV and EAV baselines (see Table 1).

Titanium concentration level, according to the EAV

threshold, places the concentration in this present

study under the acceptable limit, likewise the WAV

baseline limit. Only a sample of the subsoil exceeded

the EAV but below the WAV baseline.

Yttrium (Y) concentration level shown in Fig. S9

indicates that the quantitative distribution of Th from

the study area mostly exceeded the EAV and WAV

baseline. Yttrium concentrations level in the study

area appears to be high in both topsoil and subsoil. One

of the samples of the topsoil recorded a very high

concentration level (78.47 mg/kg).

Figure S10 shows zirconium (Zr) concentration

level and the quantitative distribution Zr from the

study area. Most of the Zr concentrations level

exceeded the EAV and WAV baseline (see Table 1).

The zirconium concentration level in the study area

appeared to be high in both topsoil and subsoil. Only

four soil samples dropped below the WAV baseline,

but the whole soil samples concentration level of Zr

from this current study exceeded the EAV baseline.

Spatial distribution of PTEs

The spatial distribution of PTEs in the topsoil and the

subsoil was evaluated with inverse distance weighting

interpolation. This approach was adopted to estimate

the distribution of enrichment and to detect hot spot

areas of the PTEs concentration in the soil (see Figs. 5,

6, 7, 8) (Burgos et al. 2008). Figure 5 indicates the

enrichment of Cu in the subsoil than the topsoil. The

spatial distribution of Cu in subsoil indicates more

spatial variability of Cu in the central region of the

map spreading down the map. Enrichment and the

variability of Cu in the peri-urban area, which is

mainly agricultural land, and sites along with the steel

industry, are consistent with Rauch and Pacyna

(2009), and Liang et al. (2017) arguments that humans
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activities such as sewage irrigation, fertilizer, and

pesticide applications hugely impact Cu (see Fig. 5).

The variability of Rb and Ba concentrations in the

soils was observed to be similar (see Fig. 5). The

distribution of Ba confirms that the agricultural

activity in the study area may have induced a high

concentration of Ba in soil (Do Amaral Sobrinho et al.

2019). However, Ba and Rd have hot spots, but Rb

concentrations may be due to both geological and

climatic conditions (Kabata-Pendias and Pendias

1984). Similarly, Cr, Ni, and Sr showed regular spatial

distributions over the study area (Fig. 6). Compara-

tively, the accumulation of Cr in the subsoil is more

than the topsoil. These may be attributed to both

leaching and geogenic effects (Ferreira-Baptista and

De Miguel 2005). For Cr, the central region of the map

shows the hot spot in the subsoil and the southward

direction indicates a relative hot spot of Cr in the

topsoil. Furthermore, the spatial distribution pattern of

Th, Ti, and Zr revealed similar severe distribution

(Fig. 7). They are evenly distributed and suggest that

Ti and Th concentrations in the soil are primarily from

soil weathering. It was observed that the soils were

predominantly cambisols with a leached B horizon

generally developed from sedimentary rocks. This

study’s finding agrees with similar studies by

Fig. 5 Spatial distribution of Ba, Cu, and Rb (topsoil and subsoil)

123

612 Environ Geochem Health (2021) 43:601–620



Sartandel et al. (2009). Zirconium showed high

concentration both in the topsoil and in the subsoil,

respectively. The enrichment of Zr was high compared

to the EAV benchmark level and, in most cases,

exceeded the WAV benchmark level in quite a several

sampled areas. Even though Zr is used as an immobile

element (Bain et al. 1994), it shows a variant

propensity as well.

The distribution of Y (Fig. 8) showed a marginal

distribution with high enrichment in the topsoil.

Distribution of Y concentrations in the soil may be

attributed to the natural background of the prevailing

mineral rocks. The distribution of Fe is mild, in the

topsoil with a patchy hot spot, whereas in the subsoil, it

shows a proportional distribution at the central region

and a hot spot at the southward direction (Fig. 8). In

general, the spatial distribution pattern of the concen-

tration levels of the PTEs indicates that their distribu-

tion is mostly heterogeneous with reference to their

diverse sources.

Pearson correlation matrix

Figure SF11 (topsoil) and Fig. SF12 (subsoil) indicate

the correlation matrix between the investigated PTEs,

showing the relationship that exists between them.

The relationship of the PTEs in the topsoil (SF 11)

revealed that there is a strong positive correlation

between Ni and Sr, likewise, Cr and Ba with r = 0.76

and 0.73, respectively. Zr and Th showed a strong

Fig. 6 Spatial distribution of Cr, Ni, and Sr (topsoil and subsoil)
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correlation amongst each other, and similarly, Rb and

Ba, Cr and Ni, Ni and Fe, Ni and Cu as well as Rb and

Fe all revealed a stronger positive correlation amongst

each other. PTEs such as Ni and Sr, Cr and Ba, Zr and

Th, Rb and Ba, Cr and Cu, Ni and Fe as well as Rb

have shown strong positive correlations between

themselves and are likely to have the same or closely

related roots, whereas those with weak or negative

associations are likely to have different origins. The

highest correlation (r = 0.76) was observed for Ni and

Sr, whereas the lowest was found between several

PTEs such as Fe and Th (r = 0.11). The results suggest

that Ni and Sr, Cr and Ba, Zr and Th, Rb and Ba, Cr

and Cu, Ni and Fe probably shared familiar sources,

while the sources of Fe and Th as well as the others are

poorly correlated.

The correlation matrix for the PTEs in the subsoil is

presented in Fig. SF12. Rb and Ba, Rb and Fe, Ba and

Ti, Ba and Fe, as well as Ni and Sr, showed a strong

positive correlation between each other. The weak

correlation was observed between Th and Fe. The

elements in the subsoil showing the high relationship

are probably sharing the same source and vice versa

for the weak and the negatively correlated PTEs. The

highest correlation in the subsoil has r = 0.93, which

is between Rb and Ba. Besides the correlation in the

subsoil, the correlation matrix in the subsoil appears to

be stronger than the correlation in the topsoil (Fig. S12

Fig. 7 Spatial distribution of Th, Ti and Zr (topsoil and subsoil)
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and Fig. S13). This probably suggests that these PTEs

are more closely related in the subsoil than the topsoil.

Source apportionment by PMF model

The study area is currently polluted by the activities of

the steel industry, productive agriculture that covers

39.38% of the total land area (1208 km2), vehicular

emission, biological waste (animal excreta), and

domestic waste. The earlier discussed PMF model

provides a better way of identifying the source of PTEs

in the selected soils. The rationality of the analysis is

premised on minimum Q to control the residual matrix

that determines a reasonable number of factors. The

PMF analysis in this paper discharged six factors and

run for 20 runs. Figures 9 and 10 display the source

contribution per every PTEs.

Factor 1 was characterized by Cr and Ni with a

factor loading of 27.8% and 35.1% in the topsoil,

whereas in the subsoil, Rb, Th, and Ti accrues factor

loads of 36.4%, 31.7%, and 31.7%, respectively. The

concentration of Cr and Ni in the topsoil may be

attributed predominantly to agriculture activities and

geogenic source. Moreover, a study conducted by

Manta et al. (2002) argues that Cr and Ni in the topsoil

in Italy were primarily inherited from geogenic

sources. Besides that, other studies carried out by

Mamat et al. (2014) in Yanqi Basin soils agree with the

Manta et al. (2002) assertion, which supports this

current study.

The study area has been traditionally associated

with agricultural activities, and Saha et al. (2011)

opined that the topsoil enrichment of Cr is due to

agricultural materials such as slaked lime-NPK. In

addition, Zhang et al. (2016) conducted comprehen-

sive research gathering 464 papers on the concentra-

tion of Cr in China, and the findings indicated that the

higher concentration of Cr in agricultural soil (Cr

agricultural soil 78.94 mg/kg) was well above base-

line (57.30 mg/kg) levels. Even though the geogenic

source cannot be undermined, the anthropogenic

pollution of Cr is eminent and increasing daily. The

Cr average concentration (62.14 mg/kg) in this pre-

sent study falls below the Europeans average soil

concentration baseline value (94.80 mg/kg). On the

other hand, it exceeds the World average (59.5 mg/kg)

and the upper continental crust Cr concentration

(35.0 mg/kg). It is quite interesting to note that during

an acute water shortage, farming communities may

create an avenue and resort to using raw sewage to

Fig. 8 Spatial distribution of Y and Fe (topsoil and subsoil)
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irrigate and fertilize cropland, which is another way to

upsurge the concentration of Cr in the soil as reported

Lente et al. (2012).

Agri-anthropogenic-related source forms part of

the soil pollution in this area of study due to the large

presence of farming that covers 39.8% of the total land

area. Nevertheless, the steel industry in Frýdek-Mı́stek

is also another hub that deposits Ni and Cr into the soil.

This is consistent with exposition made elsewhere by

Chen et al. (2016) that non-ferrous metal and steel in

the Gansu province in China have provided evidence

on a few studies showing that Cr and Ni emanate from

industrial activities like steel industry, mining, and

metal processing factories.

Titanium, thorium, and rubidium, on the other

hand, dominated the subsoil accruing 31.7%, 31.7%,

and 36.4% factor loadings, respectively. Zirconium

and titanium presence in agricultural soil primarily is

traceable to the parent material, which is affirmed by

research carried out by Taboada et al. (2006).

Notwithstanding, other research conducted by Hamby

and Tynybekov (2002) as well as Négrel et al. (2018)

proclaims that thorium and rubidium which exist in

agricultural and shoreline areas are of natural occur-

rence such as weathering.

Factor 2 was controlled by Rb and Ti in the topsoil,

whereas Cr and Fe are the major dominating elements

in the subsoil. Both PTEs in the soil accounted for the

following factor loadings 31.1%, 32%, 39.2%, and

41.5%, respectively. Fe and Cr form a great relation-

ship with r = 0.59, which presupposes that they

probably share a common source (that is, steel

industry). Even though Fe is abundant, its content in

the subsoil general comes from the natural occurrence;

nonetheless, according to Luo et al. (2015), its content

in the soil can be altered significantly by human

activities such as the steel industry.

Fig. 9 Source fingerprint of the topsoil from PMF model analysis showing percentage contribution of PTEs
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The 3rd factor in the loading in the topsoil and

subsoil with high percentage factor contributions is Th

(47.5%), Zr (58.4) topsoil and Cr (35.4%), and Zr

(30.4%) subsoil. Some of these element sources come

from a multiplicity of sources, especially Cr (Jones

et al. 2019). The content of Zr that dominates the

topsoil and subsoil in centrally controlled by the parent

materials that is consistent with the research con-

ducted by Taboada et al. (2006). Thorium occurrence

is not entirely different; its high concentration in the

soil is of a natural process.

The 4th factor load consists of Cu (57.3%) and Zr

(34.1%) from the topsoil and Ni (71.1%) and Sr

(17.3%) from the subsoil. Nickel shows a very high

percentage in the subsoil; its high percentage is as a

result of the diversity of sources such as industrial and

geogenic source accounting for its high concentration

(Jones et al. 2019). Copper dominated the topsoil with

more than half-percentage in this group. It sources

primarily associated with livestock (Holm 1990;

Cheng et al. 2014; Liang et al. 2017) and serve as an

antibacterial agent to the gut (Rosen and Roberts

1996).

Factor 5 accounts for Cu and Fe dominating the

topsoil, and Y as well as Zr constituted the highest

amount in the subsoil. Cu accrued 31.8% and Fe

26.4%, whereas Y accounted for 38.5% as well as Zr

44.2%, respectively. The relatively high source of Y is

due to their natural occurrence (Luo et al. 2015).

The last factor (6th) produced Ni and Fe as the

dominant elements in the topsoil, whereas Cu as well

as Fe also had high factor loadings. Fe accrued 47.9%

in the topsoil and garnered 9.1% in the subsoil as well

Fig. 10 Source fingerprint of the subsoil from PMF model analysis showing percentage contribution of PTEs
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as Cu and Ni, accounting for 40.5% and 41.8%,

respectively.

Conclusion

This present study brings the attention into data

concerning potentially toxic elements, concentration

levels in different soil levels, source apportionment,

and the spatial distribution of the toxic elements in

agricultural exposed land. The identified PTEs such as

Cr, Ni, Cu, Rb, Y, Zr, Ba, Th, and Fe exceeded the

World average value (WAV) and European average

value (EAV) soil limits from low concentration to a

high concentration level for the topsoil and also the

subsoil. Furthermore, the area is characterized by a

mild to hot spot areas by these PTEs.

The PTEs’ average value concentration in the

topsoil was higher than the elements in the subsoil.

Consequently, the average value concentration of the

following PTEs Ni, Rb, Sr, Zr, and Ti in the subsoil

was higher than those same elements in the topsoil.

Furthermore, most of the soil samples fell within a

moderately contaminated level and some at the brink

of dropping in the significantly enriched level. Despite

the various contamination assessment indices esti-

mated and spatial distribution of PTEs analysis,

agricultural production, industrial activities, vehicular

emission, atmospheric deposition, and geogenic

sources were identified as the sources of PTEs

accumulation in the studied soil.

The source apportionment showed the dominance

of Cr, Ni, Rb, Ti, Th, Zr, Cu, and Fe in the topsoil,

while in the subsoil, all the PTEs at the factor loadings

dominated from factors 1 to 6 apart from Ba.

Therefore, it is essential to highlight that there should

be periodic control as well as a monitoring process to

put structures in place to discourage the release of

these PTEs into soils in other to safeguard the health of

humans, flora, and fauna. It is incumbent to articulate

from the finding ascertain that the soil health in the

study area is under threat and therefore calling for

attention and actions for the reduction and the

prevention of PTEs contamination, which serve as

an imminent threat to the environment.

Hence, it is highly recommended, in the future,

further research to evaluate the ecological and health

risk of potentially toxic elements in these soils be

evaluated.
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Abstract: A healthy soil is a healthy ecosystem because humans, animals, plants, and water highly
depend upon it. Soil pollution by potentially toxic elements (PTEs) is a serious concern for hu-
mankind. The study is aimed at (i) assessing the concentrations of PTEs in soils under a long-term
heavily industrialized region for coal and textiles, (ii) modeling and mapping the spatial and vertical
distributions of PTEs using a GIS-based ordinary kriging technique, and (iii) identifying the possible
sources of these PTEs in the Jizerské Mountains (Jizera Mts.) using a positive matrix factorization
(PMF) model. Four hundred and forty-two (442) soil samples were analyzed by applying the aqua
regia method. To assess the PTE contents, the level of pollution, and the distribution pattern in soil,
the contamination factor (CF) and the pollution load index load (PLI) were applied. ArcGIS-based
ordinary kriging interpolation was used for the spatial analysis of PTEs. The results of the analysis
revealed that the variation in the coefficient (CV) of PTEs in the organic soil was highest in Cr
(96.36%), followed by Cu (54.94%) and Pb (49.40%). On the other hand, the mineral soil had Cu
(96.88%), Cr (66.70%), and Pb (64.48%) as the highest in CV. The PTEs in both the organic soil and the
mineral soil revealed a high heterogeneous variability. Though the study area lies within the “Black
Triangle”, which is a historic industrial site in Central Europe, this result did not show a substantial
influence of the contamination of PTEs in the area. In spite of the rate of pollution in this area being
very low based on the findings, there may be a need for intermittent assessment of the soil. This helps
to curtail any excessive accumulation and escalation in future. The results may serve as baseline
information for pollution assessment. It might support policy-developers in sustainable farming and
forestry for the health of an ecosystem towards food security, forest safety, as well as animal and
human welfare.

Keywords: heavy metals; positive matrix factorization; contamination factor; pollution load index;
GIS-kriging

1. Introduction

Soil is an indispensable component of an ecosystem that directly or indirectly links and
maintains the Earth’s four spheres (namely the lithosphere, biosphere, hydrosphere, and
atmosphere). However, this essential potential of soil has, in recent times, been threatened
by heavy metals or potentially toxic elements (PTEs). Interestingly, the chemistry of
soil makes it vulnerable to high concentrations of heavy metals or PTEs. At a required
concentration, most PTEs such as Cr, Cu, Fe, Mn, Zn, Ni, Mo, Co, Se, and others are
essential for plants, animals, or humans [1,2]. The presence of PTEs in soil has been
attracting reasonable attention because of their ecological and biological risks. Several
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studies in different biomes have been performed to identify the sources of PTEs in the
soils [3–16].

Natural phenomena and anthropogenic activities are the two major sources that de-
termine the concentrations of PTEs in soils [17–24]. Natural phenomena are described as
the components generated from parent material, whereas anthropogenic sources primarily
originate from acute human activities [17,18,25,26]. Many authors have revealed that natu-
ral sources of some PTEs (such as Pb, Cd, and Hg) have been surpassed by anthropogenic
deposits into soils due to pedogenesis [17]. Industrial inputs, the combustion of fossil fuels,
municipal wastewaters, and sewage sludge have been identified as anthropogenic sources
of metals [11,14,27,28]. Furthermore, intensive agricultural practices have been reported to
increase PTEs in soils [16,17]. In addition, automobile and vehicle emissions, road dusts,
and military activities also account for increases in PTEs [4,29]. It has been estimated by
some authors that agricultural practices contributed to 79.6%, 56%, and 63% of the annual
concentrations of Cu, Zn, and Cd, respectively [30]. The authors further summarized that
the total annual input of Pb (85%), Ni (67.5%), and Cr (43%) found in soil emanates from
industrial atmospheric deposition.

The safety of plants, food, animals, and human health have been threatened by the
accumulation of PTEs in soil. Toxic elements are discharged into the soil and subsequently
absorbed by plants, which are consumed by animals and humans [12]. In some cases, the
PTEs penetrate into surface and underground water, which are used by living organisms
including humans [31–33].

In the Czech Republic, edible mushrooms grown in a smelting area were reported to
have been contaminated by the atmospheric deposition of Pb [34]. In Germany, there has
been an urgent call to address the Pb contents in plant-based foodstuffs including bread
and potatoes, which are important suppliers of this metal in human meals [35]. The yearly
deposition of Cr to soils in the UK was 327 tons [36]. In addition, the study reported that
126 tons out of the 327 tons were emanated from chemical fertilizers (mostly phosphate),
while 83 tons originated from atmospheric deposition and 78 tons came from sewage
sludge [36]. The effect of Cr is not only recorded in food crops but also in forest trees. The
health of forest plants has been at risk because of exacerbated Cr content in the soil [37].
Globally, there have been reports on the effects of increased Cu, Fe, Mn, Mo, Zn, Ni, and
other PTEs on soils, plants, animals, humans, and water. Therefore, the issue has become
of critical concern to the government and the stakeholders, including decision makers.

The urgency of the situation demands a robust assessment with effective quantitative
and qualitative analyses. An investigation of the PTEs in soil and their sources is the
principal purpose for preserving and enhancing soil quality in most areas in the world.
Thus, to develop reliable policies for a sustainable soil safety for an area, it is important
to have good information on the soil and its contamination level. In recent years, several
analyses including statistical, geostatistical, geo-accumulation index, multivariate and
modeling, as well as potential ecological risk index analyses have been proposed and
applied to investigate the source, degree, and spatiotemporal state of PTE pollution in
the soil [3–6,12,14,24,28,29,31–33]. As reported by some authors, an assessment of the
contents and distribution of PTEs in soil requires intensive and robust sampling to inves-
tigate the soil conditions under distinct soil types [38–42]. Furthermore, considering the
high temporal, spatial, and vertical variability in the uppermost soil layers of a forest, a
substantial number of samples need to be examined in order to thoroughly quantify the
soil adequately along an extensive scale [43]. Routinely, the study of PTE content in soil
has been performed following the regular laboratory chemical methods, including atomic
absorption or inductively coupled plasma analysis. These methods are expensive and time-
consuming and involve consecutive serial procedures with growing complications [44,45].
Thus, a systematically structured and affordable analytical method to monitor and assess
the PTEs in soil on an appropriate vertical and spatial scale is necessary [46], especially
when a tangible number of sampling points are considered. The flexibility and rapid
accessibility of the positive matrix factorization (PMF) model in assessing soil pollutions is



Toxics 2021, 9, 181 3 of 16

remarkable [6,41]. This analytical method has high functionality for the investigation of
the PTEs in soil. The PMF provides a great advantage in detecting and monitoring PTEs in
organic and mineral soils: it is one of the best and latest models [6,41,47,48].

The study area is located in a northern part of the Czech Republic. The area is called
Jizerské hory Mountains (Jizera Mts.). The area was polluted by past accumulation of
PTEs from human and natural sources. However, there have been ongoing policies and
efforts by the government and the people to ameliorate the problem, yet the impact is still
prevailing in the ecosystem (mainly in the soil and vegetation). This is partly because,
after soil is polluted, it takes a longer period for remediation and for ecosystem recovery
processes to be completed [49]. Second, a large amount of the PTEs are enriched in the
acidified forest soil, and these elements are still being discharged [5,50,51]. Some authors
have reported health risks from the PTEs in high-altitude mountains in Europe including
the Jizera Mts. [52–54]. For example, in a study performed by EscartÍn and Porte [52], the
authors reported that a high percentage (76%) of polycyclic aromatic hydrocarbon (PAH)
metabolites were detected in trout from the Central European high Mountains lake and that
this has a high health risk. There have been many studies that focused on the acidification
by sulfur and nitrogen oxides in the area. Studies focusing on the spatial and vertical
distributions as well as the content and hotspots of PTEs are crucial for closing the gap in
sustainable pollution assessment in the area. The benefits of applying PMF to investigate
PTEs in the soil is commendable [55]. This study aims (i) to assess the concentrations of
PTEs in the soil under Jizera Mts. in the Liberec region of Czech Republic after long-term,
heavy industrialization; (ii) to model and map the spatial and vertical distributions of
the PTEs using a GIS-based ordinary kriging technique; and (iii) to identify the possible
sources of these PTEs and their contamination levels in the area using a PMF model. The
findings from this study may serve as a baseline for the pollution assessment of farmland
and forest soil quality in the Czech Republic and in Europe. The results might support
policy-developers in sustainable farming and forestry for the health of the ecosystem and
for food security, forest safety, as well as animal and human welfare.

2. Materials and Methods
2.1. Study Area

The study covered about 110 square kilometers in the Jizera Mts. The height above
sea level of the area ranges from 600 to 1100 m. The average yearly temperature falls
between 3 and 6 ◦C, which is contingent upon the altitude. The annual precipitation
reaches about 1500 mm at the top of the mountains. Most areas are covered by forests
(Figure 1), though in some areas, the regeneration of trees has been slow after intensive
forest decline in the 1980s and 1990s [5,13]. Coniferous species, namely Norway spruce
(Picea abies) and the European beech (Fagus sylvatica), are key forest trees. There are also
areas with pockets of peatbogs. PTE pollution in the area is considered to have been
emanated from atmospheric deposition released from the coal, textile, and steel industries
and from agricultural activities. Geologically, the area is characterized by principal acidic
bedrocks such as granite (granodiorite) and gneiss. Haplic/Entic Podzols, Stagnosols, and
Cambisols are the predominant soils [56–58]. In most of the area, especially in the higher
altitudes, the mor form of humus dominates while the moder humus type is observable
only at lower altitudes [59]. The value of the soil pH was relatively low (Table 1), thus
contributing to the high acidic condition of the area.
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Figure 1. Sampling points and land use–land cover of the Jizera Mts. area derived from the CORINE database (central
Map), the location of the Jizera Mts. in Liberec region in the northern part of the Czech Republic (top left and down left
maps), and the location of the Czech Republic in Europe (top right map).

Table 1. Mean values of the physiochemical characteristics of the soil in the study area.

Properties (Unit) Organic Soil Mineral Soil

Sand (%) 29.7 28.2
Silt (%) 44.2 25.3

Clay (%) 26.1 46.5
Texture Sandy clay-loam Clay-loam
N (%) 1.6 0.5
C (%) 30.9 7.5
S (%) 0.34 0.26

P (mg kg−1) 946.9 386.2
K (mg kg−1) 811.6 935.3
Ca (mg kg−1) 915.2 327.9
Mg (mg kg−1) 839.5 1078.1
Al (mg kg−1) 9473.5 8614.4

pH 3.6 3.8
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2.2. Soil Sampling and Laboratory Analysis

At every 3 km, soil samples were collected for both organic soil and mineral soil (to
the depth of 30 cm). The samples were collected in 3 replicates for each sampling point, and
the average value of the sampled points was used for the analysis. The sampling points
were located using a handheld GPS system, while samples were collected using either a
push probe or bucket auger depending on the terrain. A total of 221 samples each were
collected from organic soil (org) and mineral soil (A) across the study area. The collected
soil samples were stored in well-labelled plastic bags and taken to the laboratory. The
collected samples were air-dried, ground, and sieved with a mesh of size 2.0 mm to obtain
a pulverized sample.

Chemical Analysis and Instrument

The presence of elements such as Cr, Cu, Pb, Mn, and Fe in the soil were extracted
using the aqua regia standard method (ISO 11466:1995, 1995) to determine their pseudo-
total content [60]. For quality control (QC) of the method, the standard addition technique
was adopted. For example, the QC of the concentration determination was guaranteed
using the SRM 2711 (Montana II soil) reference material (National Institute of Standards
and Technology, Gaithersburg, MD, USA). The values achieved were consistent with the
reference data. The recovery differences were generally < 10% (n = 3). The detection
limits for the elements based on the applied method were as follows: Cr (0.03 mg L−1),
Cu (0.015 mg L−1), Pb (0.05 mg L−1), Mn (0.05 mg L−1), and Fe (0.15 mg L−1). The presence
of Fe and Mn in the soils were also investigated; their concentrations posed no threat in the
area because their concentrations were far below the EU and world recommended limits.

2.3. Contamination Level Analysis for PTEs

The PTE pollution status of the study area was assessed through various contamination
assessment indices, namely the contamination factor (CF) and the pollution index (PLI).

2.3.1. Contamination Factor

CF is defined as the ratio of metal content in the sample to the background value of
the same metal. It is given by the following:

CF = C (metal) Sample/C (metal) background value (1)

where C (metal) is the concentration of metal analyzed from sampled soil and where
C (metal) background value is the geochemical background value (or concentration) of
that metal.

It is important to state here that the baseline values used were the world values [10].

2.3.2. Pollution Load Index (PLI)

The PLI is an estimation and was first proposed by [60]. The pollution load index has
been in use for the detection of pollution. It is robust and effective in the comparison of
pollution levels in space and time. The PLI was calculated based on the concentration factor
of each PTE by focusing on the background value in the soil, where CF is the contamination
factor earlier stated (Equation (1)) and the letter ‘n’ signifies the number of metals studied.
A pollution load index less than 1 indicates the optimal soil quality, and a PLI that is equal
to 1 proves that only the baseline levels of contaminants are present, while a PLI greater
than 1 infers the degradation of the quality of the site by [61].

The pollution load index (PLI) equation is given by the following:

PLI = n
√

(CF1 × CF2 × CF3 × . . . × CFn) (2)

where CF is the contamination factor derived for each metal and where n is the number
of metals.
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2.4. Source Apportionment Using a Positive Matrix Factorization (PMF) Model

The positive matrix factorization (PMF) model is an effective method acquired from
the software EPA-PMF v 5.0, Washington DC, USA [55]. It was applied to determine
the contribution of PTE sources to contamination in the study area. The mathematical
method is a receptor model used in calculating the contribution of the sources to samples
built on the composition or fingerprints of the sources. The PMF model apportions the
collaborations of elements in soil composition by solving chemical mass balance:

Cij =

p

∑
K=1

Gik + Fkj + Eij (3)

where Cij signifies the content of PTEs j in soil sample I, p represents the number of factors
(i.e., pollution sources), Gik shows contribution of factor k to soil sample I, Fkj denotes the
content of PTEs j in factor k, and Eij stands for the residual.

Additional information on the procedures, methods, and formulas used in this study
for determining the soil or site contamination level through the PMF model was followed
as specified by [55,62] and as applied by [3,6].

2.5. Statistical Analysis and Spatial Modeling

Basic statistical parameters (such as mean, median, minimum, maximum, standard
deviation, and coefficient of variance) were first calculated for each soil property based on
horizon. Positive matrix factorization (PMF, EPA version 5.0, Washington, DC, USA) was
used for the estimation of source apportionment and contamination level of the PTEs. To
determine the relationship between the PTEs in organic and mineral soils, an ANOVA and
correlation analysis were used. Ordinary kriging interpolation was used in determining
the differences and/or similarities among sites with a proportional distance among them.
The interpolation technique enhanced the creation of the spatial distribution maps of the
PTEs of the study area. ArcGIS, version 10.7.1, CA, USA [63], was used for processing and
visualizing of the spatial data. By applying the ordinary kriging technique, maps of the
spatial distribution of these soil properties were generated [64]. The result was validated
using the mean error [65,66]. In other words, to determine the accuracy of the produced
maps, the mean error (ME) was used for the validation. The formula is shown below in
Equation (4):

ME = ∑n
i=1

(
x1.i − x2.j

)
/n (4)

where x1 is prediction of the variable x, x2 is measure of that variable, and n is number
of records.

3. Results and Discussion
3.1. General Description of PTEs Concentrations and Their Spatial Distribution in the Soil

The basic statistical characteristics of the studied PTEs including Cr, Cu, Fe, Mn, and
Pb for the organic soil and mineral soil have been described in Table 2. The coefficient of
variation (CV) defines the degree of variations within PTE concentrations [67]. A coefficient
of variation value less than 20% represents low variability, and a CV that falls between
21–50% is regarded as moderate variability. On the other hand, a CV ranging from 50–100%
signifies high variability, while a CV greater than 1 (that is >100%) is described as having
extremely high heterogeneity. In this study, the CV of the PTEs in the organic soil increased
in the following order: Fe < Pb < Cu < Cr < Mn, accounting for 46.31%, 49.40%, 54.94%,
96.36%, and 97.06%, respectively.
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Table 2. Basic statistical characteristics of the soil PTE concentrations in the study area.

Soil Horizons Parameters † Cr Cu Fe ‡ Mn ‡ Pb

Organic soil Count 221 221 221 221 221
Mean 11.0 16.2 7357.8 149.6 99.2

Median 9.1 15.5 7010 73 92.9
Mode 7.2 18.5 10,200 32 104

Minimum 3.1 2.3 1004 1.0 7.1
Maximum 85.2 81.9 21,000 1650 339

Std dev 10.6 8.9 3407.5 145.2 49
Coef of Var. (CV) 96.36 54.94 46.31 97.06 49.4

Mineral soil Count 221 221 221 221 221
Mean 4.5 6.4 6744.3 168.0 65.6

Median 3.8 3.8 6194.4 68.4 58.8
Mode 3.9 1.0 3610 248 111

Minimum 0.4 0.2 159.3 0.5 6.7
Maximum 26.5 38.3 24,274.0 1940.0 281.0

Std dev 3.0 6.2 4054.5 137.6 42.3
Coef of Var. (CV) *

Czech Republic
66.7

<11.0
96.88
<16.0

60.12
>8000

81.9
<150.0

64.48
<60.0

** European mean
value 94.8 17.3 38,000 524 32

** World mean
value 59.5 38.9 35,000 488 27

** Crati Basin 90.54 44.36 54,700 1300 63.67
* Authors’ estimates from most publications in the Czech Republic on the issue as there was no official existing
baseline; ** Kabata-Pendias [10]. † All parameters and numbers are reported in mg kg−1, while CV is reported in
%. ‡ Fe and Mn also showed reasonable variability; they posed no threat because their concentrations were far
below the EU and world limits.

The CV of the PTEs for mineral soil was also in ascending order: Fe (60.12%) <
Pb (64.48%) < Cr (66.70%) < Mn (81.9%) < Cu (96.88%). The results derived from the CV
revealed a high variability between the PTEs in the mineral soil. Similarly, in the organic
soil, the CV for Cr, Mn, and Cu indicated a high variability (Table 2). In general, both the
organic soil and the mineral soil revealed high heterogeneity (or variability). All of the
PTEs showed relatively high variability in both soil horizons except for the Fe (46.31%)
in the organic soil. The spatial distribution of the heterogeneity of the PTEs suggest that
the metals are enriched by intensive sources of from the industrial, commercial, domestic
and agricultural sectors [3,5,13]. However, the content of the PTEs varies between the
soil horizons, yet the organic soil had higher mean values across the metals, excluding
Mn. The content of manganese was 18.4 mg kg−1 higher in the mineral soil compared
with its content in the organic soil. This finding agrees with a report by other authors in
the same region [21]. Studies have shown that, in addition to human activities and their
associated soil acidifications [13], the geological bedrock of the area also contributes to
accruing PTE concentrations [15]. The study area has Podzols and Dystric Cambisols as
the prevailing soils [5], and this might have contributed to the high contents of Pb, Fe, and
Mn. The concentration of Fe in the study area is remarkable when compared with other
metals. This could be attributed to the high acidic soil status of the area (Table 1). As has
been earlier reported, the concentration of Fe in the soil solution at optimal soil pH falls
between 30 and 550 µg L−1, but in high acid soils, it may exceed 2000 µg L−1 [68]. Higher
concentrations of the PTEs were found in this study area relative to the neighboring regions
in the country [3]. In comparison with the European value [10], the world value [10], and
the Crati Basin value [69], the contents of Pb in both the organic soil and the mineral soil
were higher. The exceptional content of Pb in the study area might be attributed to past
intensive anthropogenic activities and the prevailing geological formation of Cambisols.
Lead has been reported to exhibit the highest content in a Cambisols soil group [10].
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3.2. Relationships among the PTE Concentrations in the Organic and Mineral Soils

The correlation analysis for the PTE concentrations in the organic and mineral soils
revealed that the content of Cr in the mineral soil (Cr_tot_A) showed a significant and
strong positive correlation with Cu, Fe, Mn, and Pb in the mineral soil (Table 3). Chromium
has a strong relationship with other elements because it is easily mobilized in acidic
soils and our study area is highly acidic [5,10]. Furthermore, in the mineral soil, Pb is
significantly correlated with Cu and Mn. In the organic soil, Pb has a significant and
strong positive relation with Cu and Fe. The strong relation between Pb, Fe, and Mn was
documented earlier [10]. The concentrations of Pb in Fe–Mn nodules can be as high as
20,000 mg kg−1 [70]. Most of the negative correlations between the PTEs occurred in the
inter-horizon and not within the same horizon. The correlation between the elements in
the same soil horizon showed more positive relationships. This could be described by the
likelihood that they shared the same origin. Furthermore, the correlation of the PTEs in
the mineral soil revealed stronger relationships when compared with the correlation in
the organic soil. This probably proved that these PTEs are more closely associated in the
mineral soil relative to the organic soil. This finding was consistent with a recent report by
other authors on the same issue [3].

Table 3. Summary of correlation analyses between the PTE concentrations in the organic and mineral soils.

Parameters Cr_tot_org Cu_tot_org Fe_tot_org Mn_tot_org Pb_tot_org Cr_tot_A Cu_tot_A Fe_tot_A Mn_tot_A Pb_tot_A

Cr_tot_org 1.00
Cu_tot_org 0.03 1.00
Fe_tot_org 0.77 * 0.43 * 1.00
Mn_tot_org 0.52 ** −0.40 0.19 1.00
Pb_tot_org 0.00 0.71 ** 0.64 * −0.56 * 1.00
Cr_tot_A 0.53 * −0.14 0.10 0.58 −0.21 1.00
Cu_tot_A 0.10 −0.13 −0.10 0.20 −0.26 * 0.78 * 1.00
Fe_tot_A 0.03 0.16 0.50 * −0.06 0.43 0.56 ** 0.00 1.00
Mn_tot_A 0.10 −0.22 * −0.05 0.73 * −0.59 ** 0.60 * 0.58 * 0.03 1.00
Pb_tot_A 0.05 −0.12 −0.08 0.10 −0.10 0.76 ** 0.81 ** 0.19 0.54 * 1.00

* = Correlation is significant at the 0.01 p-value, at <0.05; ** = correlation is significant at the 0.05 p-value; tot_org = total concentration in
organic soil; tot_A = total concentration in the mineral soil.

The ANOVA in Table 4 was used to analyze the distribution of PTE contents in relation
to the organic soil and the mineral soil horizons. It was revealed that all of the elements,
with the exception Mn, showed significant relationships in both the organic soil and the
mineral soil. There have been few studies within and outside the study area that focused on
the relationship between soil horizon [8,21]. Consistent with our study, many authors have
reported a significant relationship between soil horizon, elevation, and the concentrations
of metals. For example, in the Suxian district of Chenzhou City in Hunan Province of
China, it was revealed that heavy metal concentrations decreased at low elevation but
increased considerably with increasing elevations [8]. Other studies have affirmed that
fine-particle metals including Cr and Cu accumulate more at lower elevations [11].

Table 4. Summary of ANOVA for PTE concentrations for the tot-org and tot-A horizons.

Soil Parameters df F-Statistics p-Value *

Cr_tot_org 220 2.12 0.019
Cu_tot_org 220 −3.73 <0.001
Fe_tot_org 220 −1.40 <0.001
Mn_tot_org 220 3.31 0.685
Pb_tot_org 220 0.63 <0.001
Cr_tot_A 220 2.06 0.016
Cu_tot_A 220 −1.94 0.021
Fe_tot_A 220 −1.13 <0.001
Mn_tot_A 220 4.91 0.283
Pb_tot_A 220 0.82 0.041

* Figures (or values) in bold are significant at the 0.05 confidence level. tot_org = total concentration in organic
soil; tot_A = total concentration in the mineral soil.
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In the organic soil, the highest contents of Cr, Pb, Fe, and Mn were found in the
northern and central parts of the area (Figure 2). Studies have revealed a close association
between Mn and Fe. Manganese is described as a member of the iron family, and both
elements are closely linked in geochemical processes [10]. The author further stressed that
Mn cycles follow Fe cycles in various terrestrial environments. Copper on the other hand
had a concentration hotspot that spread from the northeast to the northwest.

Figure 2. Spatial and vertical distributions of soil characteristics in the organic soil (org) assessed using ordinary kriging (all
of the elements are reported in mg kg−1). Though Fe and Mn posed no threat in the region, they were mapped/modeled to
draw inferences on Cr, Cu, and Pb. In other words, the study attempted to assess if the presence of Fe and Mn in the soil
influenced the vertical and spatial distributions of the three other PTEs (namely Cr, Cu, and Pb) in the different soil horizons.
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The kriged map of Cu and Pb distributions showed almost the same pattern in the
mineral soil (Figure 3). They tend to have higher concentrations towards the east in this
area. In this mineral soil, Fe and Cr showed extensive spatial distribution patterns that
spread from the northeast, through the central region, and to the northwestern part of
the mapped area. On the other hand, the kriged map of Mn distribution showed higher
concentrations within the northwest and north-central parts of the area. In general, for
both organic and mineral soils, the northern and central parts of the kriged maps revealed
more distribution of the elements when compared with the southern part. This could be
explained by the historical distribution pattern of industrial and agricultural activities in
the study area, which were mainly located in the northern and central parts [71].

Figure 3. Spatial and vertical distributions of soil characteristics in the surface mineral soil (A) made by ordinary kriging.
(all of the elements are in mg kg−1). Though Fe and Mn posed no threat in the region, they were mapped/modeled to
draw inferences on Cr, Cu, and Pb. In other words, the study attempted to assess if the presence of Fe and Mn in the soil
influenced the vertical and spatial distribution of the other three PTEs (namely Cr, Cu, and Pb) in the different soil horizons.
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3.3. Source Apportionment by the Positive Matrix Factorization (PMF) Model

There have been many reports and studies that affirmed that our study area is lo-
cated within the vicinity of various anthropogenic activities including mining, intensive
agriculture, automobile gas emissions, and acute biological sludge, which might affect
the soil [4,52,53,72,73]. It is important to examine the sources of PTEs in the study area.
Therefore, the PMF model was adopted as one of the best and latest models with high
functionalities for effective PTE source identification [6]. The validity and reliability of the
analysis are based on minimum Q to model the residual matrix that influences a substantial
number of variables. To derive the best result, the PMF model was run 20 times, while
the best outputs (which were Run 8 and Run 20) were selected following the software
developer’s guide [55]. The PMF analysis produced six factors (see Figures 4 and 5) and
disclosed the origin of contributions based on each PTE [62].

Figure 4. Source fingerprint of the total organic soil (tot-org) from the PMF model analysis showing the percentage
contribution of PTEs. Note that the source and availability of Fe and Mn posed no risk to the soils.

In the organic soil, factor 1 was dominated by Pb and Cr, with a factor loading of
73.5% and 23.7%, while in the mineral soil, Cu and Pb had factor loads of 92.2% and 18.3%,
respectively (Figures 4 and 5). Factor 2 was characterized by Cr and Mn, and these accrued
factor loadings of 45.1% and 15.1%, respectively, in the organic soil layer. On the other
hand, in the mineral soil, Mn and Cu accumulated factor loadings of 28.3% and 6.7%,
respectively. The factor 3 load consisted mainly of Mn (72.6%) and Cu (4.9%) in the organic
soil, while Fe (64.8%) and Cr (11.9%) accrued in the mineral soil. Furthermore, factor 4 load
was characterized by Cu (51.7%) and Fe (18.3%) in the organic soil while Mn (71.1) and Pb
(26.4%) accumulated in the mineral soil. The factor 5 had Fe (42.5%), Cr (19.6%), and Pb
(14.2%), accounting for the highest elements in the organic soil, while Cr (72.9%) and Fe
(20.1%) accrued in the mineral soil. The 6th factor (which is the last factor) revealed that
Cu (15.7%) had the highest factor load in the organic and mineral soils relative to all of the
studied elements. Cr, Cu, and Pb accumulations in the study probably confirmed intensive
pollution from many sources such as industrial, agricultural, commercial, and municipal
activities and wastes [28]. These PTEs might have also been deposited during weathering
because, in mineral forms, most of the elements are oxidized, released, and reprecipitated
in the soil [74]. However, the sources of Mn and Fe in the soil are natural sources, posing
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no threats if the concentrations do not exceed the maximum allowable limits. However, the
sources of Mn and Fe in the soil are natural sources, posing no threats if the concentrations
do not exceed the maximum allowable limits.

Figure 5. Source fingerprint of the total mineral soil (tot-A) from the PMF model analysis showing the percentage
contribution of PTEs. Note that the source and availability of Fe and Mn posed no risk to the soils.

3.4. Contamination Factor and Pollution Load Index of PTEs for Organic Soil and Mineral Soil

The research revealed that, in organic soil, there was no obvious pollution recorded
in any of the soil sample points except in samples 33, 36, 65, 81, 103, 113, 147, 157, and
193. On the other hand, in the mineral horizon, the soil at some sites were polluted,
observed only in samples 111, 126, 213, and 221 horizon (Table S1 and Table S2). This
finding, however, is in contrast with the reports from previous studies in the same area. For
example, there are studies showing that, in the past few decades, the area was among the
major pollution zones caused by industrial and agricultural activities [5,75]. Furthermore,
as one of the regions located in northern Bohemia, the study area has been documented as
a region characterized by power and coal production from the 1950s to the 1980s [75]. In
addition to intensive agriculture, industrial activities, and geological processes, the study
area has some peatbogs, and these increased the pollution of the area by PTEs to a large
extent [76,77]. This study area lies in the “Black Triangle”, which is affected by industrial
activities linked to the extraction and exploitation of coal and other natural resources on
the sides of the Jizera Mts areas [20,21,72,73]. The study area is historically susceptible to
pollution, but the current results revealed otherwise. This could be due to measures put in
place by authorities to ameliorate the impact of industrial activities in the area.

4. Conclusions

In both organic and the mineral soils, a high variability in the PTEs was observed. The
spatial distribution and the heterogeneity of the PTEs suggested that there were widely
distributed sources of the metals’ enrichment from the industrial, commercial, domestic,
and agricultural sectors. Lead revealed a high concentration level. Chromium showed a
strong relationship to other elements investigated, while Pb has a significant and strong
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positive relation with Cu. This was probably because Cr is easily mobilized in acidic soils
and our study area is highly acidic.

The correlation between the elements in the same soil layer showed more positive
relationships, while the correlation of the PTEs in the mineral soil revealed stronger rela-
tionships when compared with the correlation in the organic soil. The findings revealed
that all the elements in exemption of Mn indicated significant relationships in both the
organic soil and the mineral soil. Meanwhile, the concentrations of Mn and Fe were not
harmful in the study area. On the other hand, Mn and Fe we below the EU and World
limits. In both the organic soil and the mineral soil, the northern part of the kriged maps
revealed more distribution of the elements when compared with either the southern part.
This implied that the concentrations of the elements were oriented towards the northern
part of the study region.

The applications of the Positive Matrix Factorization (PMF) model, ArcGIS-based
ordinary kriging, and contamination level analysis were effective for source identification,
hotspot location, and assessment of the contamination level of the PTEs. In the organic
soil, there was no obvious pollution recorded in any of the soil sample points except in
samples 33, 36, 65, 81, 103, 113, 147, 157, and 193. On the other hand, in the mineral
horizon, some deteriorated site quality was observed only in samples 111, 126, 213, and 221.
The method and results presented might be applicable in coniferous and broad-leaf tree-
dominated highlands with a history of industrial activities and atmospheric acidifications.
The methods are suitable for measuring the distribution and concentration of elements.

The current result revealed that there is no evidence of pollution by PTEs in the Jizera
Mts area. In contrast, this area lies within the “Black Triangle”, which was affected by
industrial activities linked with the extraction and exploitation of coal and other natural
resources in Central Europe. However, the rate of pollution in the area is very low based
on the findings of this study. There may be a need for intermittent assessment of the soil.
This regular assessment will help to curtail the possibility of any excessive accumulation
and escalation in the future. The findings from this study may serve as a baseline for
pollution assessments of farmland and forest soil quality in the Czech Republic and in
Europe. The results might support policy-developers in sustainable farming and forestry
for the health of the ecosystem to achieve food security, forest safety, as well as animal and
human welfare.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics9080181/s1, Table S1: Contamination Factor (CF) and Pollution Loading Index (PLI)
for PTEs in organic soil (n = 221), Table S2: Contamination Factor (CF) and Pollution Loading Index
(PLI) for PTEs in mineral soil (n = 221).
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13. Pavlů, L.; Drábek, O.; Stejskalová, Š.; Tejnecký, V.; Hradilová, M.; Nikodem, A.; Borůvka, L. Distribution of aluminium fractions
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Abstract
Purpose This study was carried out to assess human health risk exposure, to apply a novel pollution assessment–based 
receptor model CF-PMF (contamination factor-positive matrix factorization), and to estimate the extent of contamination 
across seven cities in the Frydek-Mistek district. Nevertheless, the impact of agricultural production and industrial activi-
ties on urban soil and the livelihood of the indigenous peoples in the study area as well as the source contribution of the 
individual PTEs is unknown.
Methods This study collected 49 soil samples across seven towns in the Frydek-Mistek district, which are primarily agri-
cultural and industrially oriented urbanized communities. The samples were air-dried, and the potentially toxic elemental 
(PTEs) (i.e., Pb, As, Cr, Ni, Mn, Cu, and Zn) concentrations measured using portable x-ray fluorescence.
Results Nemerow Pollution index and modified contamination degree indicated that the urban contamination levels were 
between low and moderate contamination level with a few cases of high contamination levels. The degree of contamination 
and the contamination factor showed varying levels of contamination for PTEs, with a high level of contamination and a 
low to high level of contamination, respectively. PTEs displayed a low to high pattern of spatial distribution in urban soil 
around Trinec, Bystice, Hrcava, and Harirov. The source of the PTEs was detected using principal component analysis, 
and the source apportionment of the PTEs was further assessed using CF-PMF (contamination factor-positive matrix fac-
torization). Comparison of the CF-PMF receptor model and the EPA-PMF receptor model revealed that the novel receptor 
model performed better. The root mean square error (RMSE) and the mean absolute error (MAE) of the new receptor model 
marginal errors reduced significantly. RMSE and MAE for the CF-PMF receptor model for all the PTEs for instance As, Cr, 
Cu, Mn, Ni, Pb, and Zn are 11.56, 97.85, 17.30, 527.26, 37.16, 32.12, and 68.02 (RMSE) and 11.58,95.00, 17.26, 520.85, 
37.04, 32.13, and 68.03 (MAE) were lesser than the EPA.PMF receptor model respectively.
Health risk computed indicated that there was no potential carcinogenic and non-carcinogenic risk being exposed to the 
people living within the study area.
Conclusion We propose using the novel receptor model CF-PMF because its output has  shown to be optimal with minimal 
error and improved efficiency when compared to the parent model EPA-PMF. In general, continuous introduction of agro-
related inputs and other anthropogenic activities  surges PTEs levels in urban soils. Thus, constructive yet efficient steps, 
appropriate control, and mitigation measures are required to abate pollution sources that may be sowed to the soil.

Keywords Contamination factor-positive matrix factorization · Spatial distribution · Urban soil · Health risk assessment · 
Principal component analysis

1 Introduction

Potential toxic elements (PTEs) have always been at the 
center stage of soil pollution due to human activities that sus-
tain human life and survival on earth. Agyeman et al. (2020) 
stated that PTE is a generic lexicon given to hazardous 
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metal(loids) that damages the human health or the ecosys-
tem. PTE’s soil pollution has escalated over the globe (Solgi 
et al. 2012; Yang et al. 2018) and has gained a tremendous 
spotlight in modern times (Chen et al. 2015; Wang et al. 
2016). Mineral ore and rocks are the origin of PTEs (Alloway  
2013), which are usually natural formation like those of 
weathering of rocks including mineral formations and from 
anthropogenic impacts correlated to urbanization, industrial 
activities, mining, agriculture, and natural resource extrac-
tion (e.g., gold) (Alyazichi et al. 2017; Jones et al. 2019; 
Bhuiyan et al. 2021). According to Alloway (2013), PTEs can 
typically be small in nature with an elevated concentration 
level that is often recurrent and has a sustained bioavailable 
duration. These PTEs due to their bioavailability in nature 
and long residence period are found to be injurious to human 
health and the ecosystem at large. According to Burges et al. 
(2015), PTEs are pervasive and may be detrimental to the 
environment and human health due to their degree of nox-
iousness and tenacity in nature. Anthropogenic processes 
such as industrial development, urban sprawl, mining, and 
agriculture have long been at the forefront of soil pollu-
tion. According to Wei and Yang (2010) and Agyeman et al. 
(2020), over the last decades, toxic substance from various 
sources, including PTEs, have been significantly introduced 
into the soil because of accelerated industrial development 
and urban sprawl. Kabata-Pendias (2011) have reported that 
soil has the greatest natural environmental effect because it 
monitors the distribution of PTEs to the air, the hydrosphere, 
and the biosphere, not only as a geochemical sink for the use 
of pollutants, but also as a natural safety valve. However, 
much research has been done on PTEs, since it is a potential 
threat to health in society (Agyeman et al. 2020) in terms of 
human activities, especially in the urban areas, agricultural 
land, and industrial areas (Guagliardi et al. 2013). Ferri et al. 
(2012) reported that the soil tends to remain in its condition 
for a period of time following contamination due to sorption 
and mobility of soil particles by PTEs.

According to USEPA (1996), PTEs that are mostly 
uncovered in most polluted site such as urban soil in excess 
are As, Cd, Cr, Cu, Hg, Pb, and Zn. The rate of reaction, 
transportation, and the fate of the these PTEs are largely 
dependent on the metal speciation and the chemical forms 
of the metals (Wuana and Okieimen 2011). Shiowatana 
et al. (2001) and Buekers (2007) outlined that PTEs are 
adsorbed in seconds or minutes by a rapid reaction, fol-
lowed by a gradual adsorption reaction process that can take 
days or weeks, and are disseminated in various forms such 
as toxicity, mobility, and bioavailability. PTEs may possibly 
alter soil properties particularly  biological soil properties 
(Friedlova 2010). Nevertheless, the toxicity of the PTEs has 
a rippling effect on the flora and fauna of the soil. These are 
profoundly influenced by factors such as pH, organic matter, 
soil temperature, clay minerals, inorganic cation and anion 

ratios, and the chemical types of PTEs (Giller et al. 1998; 
Šmejkalová et al. 2003). According to Levy et al. (1992), 
the rate of reaction of PTEs in soils such as urban soil, 
can potentially control the following processes: biological 
immobilization and mobilization, mineral precipitation and 
dissolution, plant uptake, aqueous complexation and ion 
exchange, adsorption, and desorption.

Mamut et al. (2017) and Eziz et al. (2018) argued that 
PTEs could potentially have an effect on humans, flora, fauna, 
and the food chain in the environment. Substantial research 
in recent years has based its studies on both health risk and 
ecological risk as well as  the distribution of environmental 
impacts (Xu et al. 2014; Eziz et al. 2018; Doabi et al. 2018; 
Rinklebe et al. 2019; Baltas et al. 2020). PTE pollution to 
human from either anthropogenic or natural sources most often 
has a devastating health implication. Human exposure to PTEs 
is realized in several forms, be it dermal, ingestion, or inhala-
tion, as the surest orifice or pathways in which the pollutants 
gets into human body (Ayantobo et al. 2014). The procedural 
and standardization procedures that human use in the field of 
medicine have characterized human exposure to PTEs at any 
level and can lead to carcinogenic and non-carcinogenic health 
effects (Lim et al. 2008).

Even through there are many pieces of literature pub-
lished across the globe on health threats, there is a lack of 
documentation and research in the study area. Quite apart 
from that, some papers published by Gržetić and Ghariani 
(2008), Wang et al. (2010), Maria Figueiredo et al. (2011), 
Luo et  al. (2012), and Bhuiyan et  al. (2021) claim that 
health-related risk evaluation is limited in various cities such 
as Belgrade in Serbia, Changsha in China, Sao Paulo in Bra-
zil, Xiamen in China, and Bangladesh, respectively. Health 
risk assessment is a realistic cardinal approach to assess-
ing and evaluating risk to human health posed by PTEs by 
diverging pathways of exposure according to Kampa and 
Castanas (2008) and Bempah and Ewusi (2016).

A number of receptor models are consistently applied in 
the source allocation study, involving positive matrix fac-
torization (PMF), UNMIX, principal component analysis/
absolute principal component score analysis-multi-linear 
regression (PCA/APCS-MLR), and chemical mass balance 
(CMB). In recent papers published by Salim et al. (2019), Fei 
et al. (2020), Wu et al. (2020), Zhang et al. (2020), Agyeman  
et al. (2020), and Bhuiyan et al. (2021) relied mainly on  
PMF or APCS/PCA-MLR or both to calculate and identify 
the elemental source distribution of PTEs. PMF and APCS/
PCA-MLR are chosen due to the following reasons: (i) the use 
of effective monitoring procedures, along with the intention 
of establishing a substantial database, has recently become 
a universal practice; (ii) these receptor models do not need 
pre-quantified source profiles (i.e., backward tracking) in dis-
parity with CMB; and (iii) the capacity of the receptor mod-
els is capable of coping with significant monitoring datasets  
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(Lee et al. 2016). Even though PMF and APCS/PCA-MLR 
are frequently used, some authors have also raised concerns 
on the effectiveness and the efficiency of the receptor mod-
els based on their applicability to their intended purpose. 
Some of the constraints outlined by some of the authors are 
the differences in computing source contribution, differ-
ences in estimated contribution for each potential pollution 
source (Gholizadeh et al. 2016), inability to identify more 
sources (Zhang et al. 2019), and high percent error Salim 
et al. (2019). 

The study area has a strong emphasis on indigenous 
health, and therefore, it is necessary and reasonable to evalu-
ate the quality and the detail of the risk of the soil across the 
cities, predicated on the priority for human life, livestock, and 
soil health (example urban soil). The aim of this study is to 
estimate the degree of soil contamination and the pattern of 
spatial distribution of PTEs and proposes and applies a novel 
pollution assessment–based receptor model (contamination 
factor-positive matrix factor-CF-PMF) for source distribution 
and the assessment of carcinogenic and non-carcinogenic 
health risks to humans. This study seeks to answer the fol-
lowing research questions: What is the impact of agricul-
tural production and industrial activities on urban soil and 
the livelihood of the indigenous peoples in the study area? 
What is the source contribution of the individual PTEs? We 
hypothesized that the chemical composition of the soil in the 
study area is less favorable to the health of the indigenes and 
PTE levels above the normal threshold. Nevertheless, both 
industrial and agricultural activities were actively carried out 
in the study area, and therefore, the chemical composition of 
prevailing pollutants and the spatial distribution across the 
area need to be investigated. The findings of this study would 
significantly contribute to understanding the risks resulting 
from human and livestock exposure to PTEs in cities and 
towns within the Moravian-Silesian Region in the Czech 
Republic. Furthermore, the results will motivate interested 
parties’, indigenes of the study area, and legislators to raise 
awareness of the soil toxicity and health risk exposure level 
of the urban soil, allowing them to take corrective actions to 
ensure a safer environment.

2  Materials and methods

2.1  Study area

The area under study is situated in the district of Frydek-
Mistek within the foothill of the Moravian-Silesian Region 
in the Czech Republic (Fig. 1). The community is a combina-
tion of a previous two independent towns, namely, Silesian 
Frydek and the Moravian Mistek, which were put together 
in the year 1943 and stayed since 1955. The area under 
study is positioned within the geographical coordinates  

49° 41′ 0″ North and 18° 20′ 0″ East at an altitude between 
225 and 327 m above sea level, characterized by a cold 
temperate climate and a high amount of rainfall even in 
dry months. In Frýdek-Místek, the summers are hot and 
partially cloudy, and the winters are cold, dry, windy, and 
mainly cloudy. Over the course of the year, temperatures 
usually range from 24 to 75 °F and are rarely below 8 °F or 
above 86 °F while the average annual precipitation ranges 
from 685 to 752 mm (Weather Spark 2016). The area sur-
vey of the district is measured at 1208  km2 with 39.38% 
of the land size designated for agricultural activities and 
49.36% for forestlands. The study area comprises of the 
following cities: Havirov, Terlicko, Trinec, Bystrica, Jab-
lunkov, mostly Jablunkov, and Hrcava, which are affected 
by intensive urban farming and active industries such as 
the steel industry. Trinec and Vitkovice, a part of Ostrava 
city, where the steel industry is located, becomes an essen-
tial area for the assessment of PTEs distribution and health 
risk within and around neighboring communities (Agyeman  
et al. 2020). The soil’s properties are differentiated evi-
dently from color, structure, and carbonate content. The soil 
shows a medium and fine texture material that is derived 
from parent materials. It is mostly colluvial, alluvial, or 
aeolian deposits. Some part of the soils shows mottles in the 
top and subsoil that is primarily accompanied by concre-
tions and bleaching. The potential toxic element pollution in 
the area is anticipated to occur from atmospheric deposition 
emitted from the steel industry nearby, vehicular emission, 
abrasion from tires, and agricultural activities (e.g., pesti-
cide and insecticide applications) (Agyeman et al. 2020). 
Nevertheless, the dominant soil types are cambisols and 
stagnosols (Kozák 2010). Cambisols soil type dominate the 
Czech Republic; they are found at the elevation range of 
455.1 to 493.5 m (Vacek et al. 2020).

2.2  Soil sampling and analysis

A total sample of 49 topsoil  was obtained across seven 
towns (Havirov, Terlicko, Trinec, Bystrice, Jablunkov, 
mostly Jablunkov, and Hrcava) situated within the dis-
trict of Frydek-Mistek. The sample design adopted for 
sampling was the regular grid, and the soil sample inter-
vals were 2 x 2 km using the handheld GPS device (Leica 
Zeno 5 GPS) at a depth 0 to 20 cm. The collected sam-
ple was placed in Ziploc bags, well labeled accordingly, 
and transported to the laboratory. The collected samples 
were air-dried, crushed by a mechanical device (Fritsch 
disc mill pulverize), and then sieved (< 2 mm), to obtain 
a pulverized sample. These samples were then scanned 
including a three-beam system (Weindorf et al. 2013) for 
the elemental concentration of As, Cr, Cu, Mn, Pb, Ni, 
and Zn using a portable X-ray fluorescence spectrom-
eter (Delta Premium XPD 6000, OLYMPUS INNOV-X, 
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USA). Each sample was measured in triplicates with the 
average measurement computed for each sample at the 
end of the analysis.

2.3  Quality assurance and quality control (QA/QC)

The quality assurance and control process, the stand-
ard reference material for a portable device (i.e., XRF 
2711a NIST, the National Institute of Standards and 
Technology), was used in the analysis to ensure quality 
compliance. Reference material was measured intermit-
tently together with the soil samples to ensure that the 
analysis remained precise until completion. The detec-
tion limits for the elements been research on are < 10 mg/
kg (Ni), < 10 mg/kg (Cu), < 5 mg/kg (As), < 10 mg/kg 
(Mn), < 10 mg/kg (Cr), < 5 mg/kg (Pb), and < 5 mg/kg 
(Zn).

2.4  Contamination assessment indices

2.4.1  Contamination degree  (Cdeg)

This is a contamination assessment tool used in computing 
the degree of contamination index. This was introduced 
by Håkanson (1980), and it is defined as the summation 
of contamination factors for all PTEs analyzed reflecting 
the degree of environmental contamination. The equation 
is given by

whereby Cf  represents contamination factor and n the num-
ber of PTEs analyzed.

Cf  is employed to compute the contamination level of 
toxic chemicals such as PTEs in soil or sediments centered 

(1)Cdeg =
∑n

i=1
Cf

Fig. 1  Study area map showing sampling points
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on the concentration level in the sample to the geochemical 
background level. The equation is given as 

whereby Csample denotes the PTE concentration in the 
soil, and Cgeo−background refers to the geochemical back-
ground level. The geochemical background level used was 
selected from the European average value (EAV) (Kabata- 
Pendias 2011) (refer to Table 1). The contamination level can be  
categorized according to their values from 1 to 6: if CF < 1, 
low pollution; 1 < CF < 3, moderate pollution; 3 < CF < 6, 
considerable pollution; CF > 6, very high pollution. The 
interpretation of  CDEG values is given as  Cd < 6 = low 
degree, 6 <  Cd < 12 = moderate degree of contamination, 
12 <  Cd < 24 = considerable degree of contamination, and 
 Cd > 24 = high degrees of contamination.

2.4.2  mCd

Abrahim and Parker (2008) first used this index. The index 
allows the assessment of the total contamination of the soil 
PTEs corresponding to the sum of the total contamination 
factor (Cf) to the given number of PTEs divided by the 
number of PTEs analyzed. This index is calculated by the 
sum of the content of PTEs at a given location. This is 
given by

in which n denotes the number of analyzed PTEs and Cn the 
individual PTEs concentration.

The classification of modified degree of contamination 
(mCd) values is given as < 1.5 very low contamination, 
1.5–2 = low contamination, 2–4 = moderate contamination, 
4–8 = high contamination, 8–16 = very high contamination, 
16–32 = extremely high contamination and > 35 = ultra-high 
contamination.

(2)
c
f=

Csample

Cgeo−background

(3)mCd =

∑n

i=1
Cn

n

2.4.3  Nemerow pollution index ( PI
Nemerow

)

PINemerow computes the overall degree of pollution of the 
soil that consists of the concentration of all analyzed PTEs 
(Qingjie et al. 2008). The index is used in the assessment 
of for both the O and A horizons. The formula is given by

where PI represents the computed values for the single 
pollution index and  Pmax the maximum values for the sin-
gle pollution index of all the PTEs; the interpretation of 
 PINemerow class values is given as ≤ 0.7 = clean, 0.7–1 = warn-
ing list, 1–2 = slight pollution, 2–3 = moderate pollution 
and ≥ 3 = heavy pollutions. However, single pollution index 
(PI) is defined as the concentration of the PTE in the sample 
to its geochemical background level. The equation is given 
by

in which the cn represents the concentration of the sampled 
PTEs, and Bn also denotes the geochemical background level 
of the same elements. The geochemical background level 
used was selected from the European average value (EAV).

2.4.4  PMF receptor model

Positive matrix factorization (PMF), EPA–PMF v5.0 (U.S. 
Environmental Protection Agency 2014), is a mathematical 
technique, a receptor model used in computing the contri-
bution of the source of samples built on the composition or 
fingerprints of the sources. The input files are composed 
of the concentration and uncertainty values of the samples. 
Matrix X concentration is given as

(4)PINemerow =

�

(1∕n
∑n

i−1
PI)2 + PI2

max

n

(5)PI =
Cn

Bn

(6)X = GF + E

Table 1  The concentration of 
PTEs in the study area, basic 
statistics, and background level 
of toxic elements

* Kabata [11] (page 41 and 42) Upper continental crust (UCC), world average value (WAV)
European average value (WAV), coefficient of variability (CV

Elements Cr Ni Cu As (mg/kg) Mn Pb Zn

Mean 62.14 16.25 21.25 9.76 674.97 50.23 95.69
*UCC 100.00 20.00 55.00 1.80 900.00 15.00 70.00
*WAV 59.50 29.00 38.90 6.83 488.00 27.00 70.00
*EAV 94.80 37.00 17.30 11.60 524.00 32.00 68.10
CV % 22.95 63.47 43.68 46.41 31.19 50.17 38.75
Minimum value 44.00 0.00 8.87 5.60 319.67 28.47 53.17
Maximum value 111.67 43.00 58.33 28.67 1335.67 180.67 270.33

3121Journal of Soils and Sediments (2021) 21:3117–3136



1 3

in which G (m × p), F (p × n), and E (m × n) represents the 
concentration factor matrices, for the source profile species 
and uncertainty.

The determination of the contribution, as well as profiles 
factors, is given by this equation

whereby m refers to the number of PTEs investigated, n sig-
nifies the number of soil samples, and Uij means the uncer-
tainty of PTEs j in soil sample i.

The authors have previously described the function of the 
minimum Q and the uncertainty and explaining the param-
eters involved as well as the implementation techniques 
(Agyeman et al. 2020).

2.4.4.1 CF‑PMF The pollution assessment–based receptor 
model, contamination factor receptor (CF-PMF), is a novel 
receptor model which is based on the PMF model, but its 
determination utilizes the computed CF values of the respec-
tive PTEs under investigation instead of the raw data got-
ten from the field. The CF-PMF receptor model equation is 
given as

in which the (Csample)ij is the calculated total contamination 
factor of the PTEs from the jth source in the ith sampling 
area, (Cgeo−background)ij also represents the examined single 
PTE concentration in the assessed environment in the jth 
source from the ith sampling location, and (Bn)i denotes the 
geochemical background values of the respective analyzed 
PTEs in the reference environment of the reference PTEs.

2.5  Health risk assessment

The presence of industries, productive agriculture, and 
other anthropogenic factors exposes individuals within 
the study area  to PTEs. Based on the risk of people being 
exposed, inhalation, ingestion, and dermal are three known 
pathways that the residents can be exposed to. Accord-
ing to Wang et al. (2017), in urban, peri-urban, and rural 
areas, three ways can be used to evaluate the risk of PTEs 
described below. The following equations specify the path-
ways of human exposure by PTEs.

(7)Q =
∑n

i=1

∑m

j=1

(

�ij

uij

)2

(8)Cf =
(Csample )ij

(Cgeo−background )i

(9)CDIing =
C × IRing × EF × ED

BW × AT
10

−6

(10)CDIinh =
C × IRinh × EF × ED

PEF × BW × AT

The definition of the parameters for  CDIing,  CDIinh, and 
 CDIderm and reference values of the indices above Eqs. (8, 
9, 10, and 11) are listed in the table (see ST1).

2.6  Non‑carcinogenic risk assessment

The potential non-cancerous risk of one PTE was deter-
mined as the hazard quotient (H.Q), in which the equation 
is given by

where Rfd implies the reference dosage (mg/kg/day) and is 
the projected daily humans’ exposure. The computational 
HQ values were used to assess the detailed risk to health 
of all the PTEs studied. The values were summed up and 
expressed by equation as a hazard index (HI), which is given 
by Eq. 14:

In which  HQing,  HQinh, and  HQderm correspond to the 
hazard quotient for ingestion, inhaling, and dermal. USEPA 
report (US EPA 1989) specifically asserted that if HI < 1, 
there is a possibility to have a negative effect upon a person’s 
health who is exposed to PTEs. Eziz et al. (2018), however, 
reported that there are also, non-carcinogenic health risks 
when the HI > 1 occurs.

2.7  Carcinogenic risk assessment

The USEPA report (EPA  2002) stressed that a human 
exposed to carcinogenic risk (CR) could increase the likeli-
hood of developing cancer of any form. Equations 13 and 
14 were used to calculate PTEs such as As, Ni, and Cr car-
cinogenic risk.

where CR, TCR, and SF values symbolize carcinogenic risk 
(no unit), total carcinogenic risk (no unit), and slope factor 
for carcinogenic PTEs (mg/kg/day) respectively. The value of 
the TCR should differ from 1 to 10–6 to 1 to 10–4 in value. 
This is the acceptable criterion which shows that human 
health is not significantly endangered (Hu et al. 2012).

(11)CDIderm =
C × SA × AF × ABS × EF × ED

BW × AT
× 10

−6

(12)CDItotal = CDIing + CDIinh + CDIderm

(13)HQ =
CDItotal

RfD

(14)HI =
∑

HQ = HQing + HQinh + HQderm

(15)CR = DCI × SF

(16)TCR =
∑

CR = CRing + CRinh + CRderm
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2.8  Data analysis

Statistical analyses were conducted using kyplot, PMF 
EPA 5.0 for source distribution estimation, Excel for pos-
sible health risk estimation, RStudio for mapping, princi-
pal component analysis (PCA), and Pearson’s correlation 
matrix estimation. PCA is applied with the aim of finding 
a collection of low-sized orthogonal base functions known 
as principal components (PCs) (Jollife and Cadima 2016). 
PCA also shows the principle of similarity of findings and 
variables by showing them in maps as points. Furthermore, 
there is a smaller new collection of uncorrelated variables, 
also called PCA scores, which represent the original vari-
ables of interest (John et al. 2021).

The multiple linear regression model (MLR) is a regres-
sion model that encompasses the relationship between a 
response variable and a large number of predictor variables 
by using linearly integrated parameters computed using the 
least squares method. Following the selection of an explana-
tory variable, the least square model is a prediction function 
directed toward a soil property in MLR. In order to construct 
a linear relationship using the explanatory variable, PTE 
was used as a response variable. The factor scores served 
as predictors, and the PTEs served as the response vari-
able. The number of samples used in this analysis was 49, 
and the scale was set between 0 and 1, indicating low and 
high values. A random approach was used to divide the data 
into a test dataset (with 25% for validation) and a training 
dataset (75% for calibration). The models were subjected 
to a tenfold cross-validation procedure, which was repeated 
five times. Mean absolute error (MAE), root mean square 
error (RMSE), and R square or coefficient determination 
(R2) were used to assess the receptor models. To evaluate 
the best receptor model using the validation parameters, the 
R2 value must be high, and the closer the value is to 1, the 
higher the accuracy.

The ordinary kriging (OK) geostatistical interpolation 
technique was used. This interpolation technique enabled 
us to estimate the spatial distribution of PTEs in the location 
under investigation. Kriging is an interpolation that predicts 
values of a variable at locations where data are not available 
based on the spatial pattern of the available data (Bishop and 
McBratney 2001). It is expressed by this equation:

in which Z′(§ 0) is the interpolated value for point § 0, Z(§ i) 
denotes the known value, and λi represents the kriging weight 
for the Z(§ i) values. It can be computed by the semi-variance 
function of the variables on the condition that the estimated 
value is unbiased and optimal. The semivariogram model is 
expressed as:

(17)Z
�(§

0
) =

∑n

i=1
�i.Z(§i)

whereby γ (h) signifies semi-variance, N(h) denotes point 
group number at distance h, Z(xi)represents numerical value 
at position  xi, and Z  (xi + h) is the numerical value at a distance 
 (xi + h).

3  Results

3.1  PTE concentration in soil

The concentration of the PTEs in the soil decreased in the fol-
lowing order Mn > Zn > Cr > Pb > Cu > Ni > As (see Table 1). 
The general mean concentration of the PTEs of the current 
study juxtaposed with the European average background 
(EAV) level, particularly Cu, Mn, Pb, and Zn was higher than 
the EAV tolerable limit. The mean concentration of copper 
in the present study is 1.23 higher than EAV (see Table 1), 
likewise Mn (1.28), Pb (1.59), and Zn (1.4). Alternatively, the 
mean concentration of the following PTEs Cr, As, Mn, Pb, and 
Zn in Table 1 indicated that the world average value (WAV) 
(Kabata-Pendias 2011) of the same elements was lower than 
the mean concentration of the elements of this present study. 
The present research PTE (Cr, As, Mn, Pb, and Zn) concentra-
tion levels are higher with a magnitude of 1.04, 1.4, 1.38, 1.86, 
and 1.36 times than respective values of WAV. Furthermore, 
the elements studied juxtaposing with the same elements of 
upper continent crust (UCC) (Table 1) exceeded some of the 
PTEs of the present study in exception of As, Pb, and Zn. 
Comparatively, As, Pb and Zn concentration exceeded that of 
UCC by the size of 5.44, 3.33, and 1.36 time higher than the 
respective values.

According to Karimi Nezhad et al. (2015), the coefficient 
of variance (CV) suggests the degree of variability within 
the concentrations of PTEs. CV ≤ 20% indicates low vari-
ability, 21% ≤ CV ≤ 50% is considered as moderate variability, 
50% ≤ CV ≤ 100% suggests high variability, and CV above 100% 
is regarded as exceptionally high variability. The coefficient of 
variation (CV %) of the PTEs in the current soils decreases in 
this order Ni > Pb > As > Cu > Zn > Mn > Cr accruing 63.47%, 
50.17%, 46.41%, 43.68%, 38.75%, and 22.95%, respectively.

3.2  Chemometric approach

3.2.1  PCA and Pearson’s correlation matrix

PCA was used in the pattern recognition of the principal source 
of  PTEs pollution in the study area. It is a useful tool that 
can provide informative suggestion concerning PTE pathways 
and primary sources (Hou et al. 2013). In this research, the 
principal component loading’s significant correlation value  

(18)�(h) =
1

2N(h)

∑n

i=1
[Z(Xi) − Z(Xi + h)]2
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was fixed at 0.65 or higher (Table 2). Based on the eigenvalues 
that should be 1 or more than 1, PC 1 and 2 were found to 
be statistically significant, accounting for 74.23% of the total 
data variance. The first principal component (PC1) accrued 
54.58% that explains the variation in total, which comprises 
the following PTEs in the order Pb, Zn, As, Mn, and Cu. PC1 
origination can be ascribed to a multiplicity of sources such 
as geogenic and anthropogenic components. Principal compo-
nent 2 loading explained that 19.65% of the total variance and 
demonstrated that the concentration of PTEs (Cr and Ni) is 
associated. Hence, it suggested that Cr and Ni share a common 
source of contamination and more of geogenic origin with an 
anthropogenic boost.

The correlation matrix (see Fig. SF1) between the investi-
gated PTEs indicated that there is a nexus between the PTEs. 
The correlation between the PTEs illustrated a stronger 
connection between the elements. Zinc (Zn) and lead (Pb) 
showed a stronger positive correlation of r = 0.92, as well 
as Pb and As, r = 0.88; Zn and As r = 0.75; and Mn and As, 
r = 0.72. With this, therefore, it is vital to accentuate that 
they probably share the same or closely related sources. In a 
like manner, other correlation between PTEs such as Pb and 
Mn (r = 0.58), Zn and Cu (r = 0.55), Cu and Ni (r = 0.48), 
Ni and Cr (r = 0.48), and Pb and Cu (r = 0.46) also showed 
a resilient connection specifying that the source of pollution 
might be related or close. Zn and Pb showed the strongest 
positive correlation, and the least positive correlated element 
was between Ni and Mn with r = 0.06. All the PTEs showed 
a positive collection without any negation.

3.2.2  CF‑PMF pollution assessment‑based receptor model

The CF-PMF model was used in the identification of the 
source in the soil and the apportionment of PTE contribution 
(Fig. 2). The minimum Q controls the residual matrix that 
ensures that the reasonable number of factors is produced. The 
CF-PMF used in the current paper discharged factor loadings 

that run for 20 runs. Run 8 was the selected run among the 20 
runs to discharge the factor loadings as well as the percentage 
contribution of each PTEs in the study. Factor 1 gave high 
factor loading values that comprised Ni and Cr (42.7% and 
46.3%, respectively). Factor 2 was dominated by Cr, Mn, and 
Cu with 50.6%, 39.7%, and 31.0% factor loadings, respec-
tively. Factor 3 loading comprised As, Zn, and Pb having the 
factor loadings of 51.7%, 50.6%, and 60.4%, respectively. 
The fourth-factor loading was dominated by Ni, Mn, and Cu 
accruing 53.7%, 32.9%, and 36.5% loadings, respectively.

3.3  Contamination assessment of PTEs

3.3.1  Contamination and modified contamination degree

The calculated contamination assessment indices such as 
contamination factor, contamination degree, and modified 
contamination degree values of the PTEs showed a diverse 
degree of contamination (Table 3). The estimated contami-
nation factor showed a contamination level from low to 
moderate among all the PTEs. However, Zn, Cu, and Pb 
showed considerable high contamination at sample point 
41(FM-468–01), which is displayed on a box plot (Fig. 3 and 
see Table ST3). Contamination degree  (Cdeg) computation 
is given in Table 3, and Ni showed a considerable degree 
of contamination. The other PTEs indicated a very high 
degree of contamination, and Zn calculated  Cdeg was very 
high. The degree of contamination in the soil as assessed by 
modified contamination degree (mCd) indicated that the Ni 
level of contamination was moderate; nonetheless, Cr and 
As showed high contamination level in the soils. Moreover, 
Cu, Pb, Zn, and Mn degree of contamination was very high.

3.3.2  Nemerow pollution index  (PInemerow)

Nemerow pollution of PTEs is shown in Fig.  4 and 
Table ST3. Application of Nemerow pollution index to inter-
pret the pollution level in the soil showed that some areas 
were least polluted by PTEs as displayed in Fig. 4. Neverthe-
less, some of the regions revealed the tendency of warning 
limit, as well as other areas, showed slight to the moderate 
pollution level. The northeastern (Trinec and Bystrice) and 
some parts of the central regions (Bystrice and Jablunkov) 
showed moderate to high spatial distribution pollution class 
as indicated in the map. This hotspot shows an active hetero-
geneous pollution distribution with a multiplicity of sources. 
The spatial distribution pattern of  PInemerow of soils in the 
study area showed a sectorial distribution pattern in the soils 
in these towns: Trinec, Bystrice, and Jablunkov. The non-
polluted regions distributed in the western and some parts of 
the central, north-western, and southwestern areas showed 
evidence of clean to low polluted areas distributed spatially 
in other parts of the study area.

Table 2  The total contribution of PTEs in the principal component of 
the study area

Elements PC1 PC 2

Cr 0.37 0.73
Ni 0.57 0.68
Cu 0.67 0.29
As 0.88  − 0.29
Mn 0.71  − 0.35
Pb 0.91  − 0.26
Zn 0.9  − 0.12
Eigen value 3.82 1.38
% Variance explained 54.58 19.65
Cumulative % total 74.23
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3.4  Potential health risk

3.4.1  Non‑carcinogenic risk

The computed chronic daily intake (CDI), HQ, and HI val-
ues are displayed in Table 4. The  CDItotal distribution for 
the PTEs in the soils in the present studies (adult and chil-
dren) is given in the following descending order: Mn > Zn 
> Cr < Pb < Cu < Ni < As (Table 4). The computed hazard 
quotient (HQ) of the children seems to be higher than the 
adult’s HQ (see Table 4), and it falls within the range of 
4.7E − 01 to 6.81 − 03 while that of the adults’ span between 

the range 4.47E − 02 to 7.31E − 04. In ascending order, the 
estimated HQ values for the PTEs (both adults and children) 
is as follows: As < Cr < Pb < Mn < Ni < Cu < Zn account-
ing for 27.96%, 1.10%, 0.72%, 43.87%, 6.49%, 19.43%, 
and 0.43% for children and 28.22%, 1.09%, 0.71%,43.71%, 
6.47%,19.37%, and 0.43% for adults, respectively.

3.4.2  Carcinogenic risk

Regarding carcinogenic risk CDI, CR, and TCR were com-
puted as shown in Table 5. The chronic daily intake was cal-
culated for Cr, Ni, Pb, and As. The CDI total for children and 

Fig. 2  Factor profile of PTEs from CF-PMF model analysis showing percentage contributions

Table 3  Computed modified 
contamination degrees values 
of PTEs

Elements Cr Ni Cu As Pb Zn Mn

Cdeg 32.12 21.52 60.20 41.22 63.12 76.91 68.86
mCd 4.59 3.07 8.60 5.89 9.02 10.99 9.84
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adults is given in this ascending order: Cr < Pb < Ni < As. The 
CDI for children ranges between 5.51E − 05 and 6.82E − 05 
whereas that for adults from 2.36E − 05 to 2.92E − 05.

3.5  Spatial prediction of PTEs

The spatial distribution of PTEs in the study area is shown 
in Fig. 5. The distribution pattern of the PTEs showed a 
sectorial trend of spatial variability that is skewed toward the 

east northern part of the map for Cu and Ni (this was toward 
Trinec and Bysrice town). The southeastern part (Trinec and 
Hrcava) and a little part of the central part skewed toward the 
east northern part (Trinec and Bysrice) of the map showed 
a hotspot for As and Mn. A larger area of the central part of 
that map showed a high concentration and a spatial variabil-
ity pattern for Cr (Trinec and Bysrice). On the other hand, 
Pb and Zn showed a spatial distribution pattern at the east 
northern part moving downward to the southeastern part of 
the map (Trinec, Bysrice and Jablunkov).

Fig. 3  Box plot showing for contamination factor (CF) of PTEs significance levels in the selected towns
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4  Discussion

4.1  PTE concentration in soil

The PTEs such as Cu, Mn, Pb, and Zn showed a high pol-
lution in the study area. The higher content of the PTEs 
signifies that they have multiple sources. The geogenic 
source cannot be ruled out; hence, there is enough evidence 
that proves that anthropogenic activities (steel industry and 
intensive agriculture) and other factors are accounting for 
the upsurge of the PTE concentrations. Hossain Bhuiyan 
et al. (2021) reported that human-related pollution is mostly 
caused by anthropogenic activities such as agriculture and 
sewage drainage, as well as industrial and air emissions. 
According to Jia et al. (2018), the excess of some of the 
PTE values in the present study to the UCC respective PTE 
values provides a clear indication that the source of pollution 
might also have an anthropogenic origin. Comparatively, the 
current soil concentration likened to the soil concentration 
of Sweden (Kabata-Pendias 2011) portrays that the present 

PTE concentration of the study area exceeded similar PTE 
concentrations in all levels. The coefficient of variability 
results explained that there is a moderate variability between 
As, Cu, Zn, Mn, and Cr and that they are more homogene-
ous. Ni and Pb showed high variability, which indicates a 
non-homogenous distribution of Ni and Pb, which explained 
a probable human-related activity. The spatial distribution 
of the non-homogeneity of Ni and Pb foretells the presence 
of locally enrichment source.

4.2  Pollution assessment

The contamination factor of the PTEs revealed that 97.95 
% (48 samples) of the 49 urban soils sampled had low 
chromium contamination, with Ni displaying 93.87 % (46 
samples), Cu 34.69 % (17 samples), As 87.75 % (43 sam-
ples), Mn 18.38 % (9 samples), Pb 2.05 (1 sample), and 
Zn 20.4 % (10 samples). Lead, manganese, zinc, and cop-
per exhibited elevated moderate contamination distribution 
level representing 91.84%, 81.64% 77.55%, and 61.22% of 
the total sample, respectively. Similarly, chromium, nickel, 
and arsenic moderate contamination level was relatively low 
representing 2.05%, 6.13%, and 12.25% of the total sampled 
data. Contamination levels of lead, zinc, and copper of the 
urban soil in some locations were considerably high: 6.47%, 
2.05%, and 4.09% of the overall sample that were sampled 
from the 49 locations, respectively.

Modified contamination degree suggests a moderate enrich-
ment based on the cumulative and average of all the PTEs 
analyzed. The overall enrichment of urban soil and the result-
ant impact of PTEs on the soil were pervasive in the study 
area based on the results (see Table 3). The mCd result of Ni 
compared to the proposed gradations of Abrahim and Parker 
(2008) establishes that the cumulative average calculation of 
Ni is moderately contaminated which might be attributed to 
a geo-anthropogenic source (blend of geogenic and anthropo-
genic sources (steel industry)). However, arsenic and chromium 
showed a high level of contamination that can be related to par-
ent materials and intensive farming. Cu, Pb, Mn, and Zn also 
showed a very high degree of pollution that might be associated 

Fig. 4  Distribution map of  PInemerow_kriging showing pollution levels 
in soils of the study area

Table 4  Comparison assessing 
of model quality using multiple 
linear regression

CF_PMF

CR_As CR_Cr CR_Cu CR_Mn CR_Ni CR_Pb CR_Zn

R2 0.830 0.993 0.478 0.930 0.983 0.993 0.905
RMSE 0.179 0.013 0.433 0.113 0.038 0.073 0.180
MAE 0.100 0.011 0.228 0.081 0.023 0.062 0.127

PMF
As Cr Cu Mn Ni Pb Zn

R2 0.831 0.993 0.478 0.929 0.983 0.992 0.905
RMSE 2.070 1.272 7.493 59.580 1.412 2.345 12.244
MAE 1.158 1.045 3.936 42.189 0.852 1.992 8.640
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to the intensive urban crop production on urban soil, the appli-
cation of livestock manure on the urban farmland, and the steel 
industry. Despite the fact that the parent material’s contribution 
to higher levels of Cu, Pb, Mn, and Zn in urban soil is undenia-
ble fact. However, Bhuiyan et al. (2011) posited that PTEs with 
higher pollution levels demonstrate an anthropogenic impact.

The Nemerow pollution index displayed various color 
patterns indicating differing  levels of pollution on the urban 
soil. But the most contaminated area on the PInemerow dis-
tribution map is where the steel plant is situated. The areas 
that are in proximity with the steel plant also revealed a 
relatively high pollution pattern, implying that the steel plant 
seems to be the major pollutant source within that environ.

4.3  PCA

Figure 6 shows the projection of the clustered PTEs and the 
relationship fostered between the PTEs. The high r values of 
Pb and As (PC 1) indicate that they may share the same or 
close related source which might be more of anthropogenic 
than geogenic (see Fig. 6). However, lead and arsenic are 
agronomically related in agrochemicals, such as lead arse-
nate pesticides or herbicides, which are an essential source of 
chemicals in urban agricultural soil (Franco-Uría et al. 2009). 
Previous studies from Nicholson et al. (2003) and Luo et al. 
(2009) outlined that fertilizer and livestock manures are an 
essential source for both Pb and As, and this is coherent with 

the present findings in the urban soil. Zn, Mn, and Cu (0.90, 
0.71, and 0.67 respectively) source of occurrence may be 
attributed to a combination of the geogenic and anthropo-
genic source (liming). Zinc displayed a more definite correla-
tion matrix with the other two PTEs (Mn and Cu). According 
to Mantovi et al. (2003), Cu and Zn concentrations in soil 
surges in relation to the application of wastes derived from 
animal farming and fertilizer application. The enrichment 
of the PC 2 PTEs (Cr and Ni) proposed that PC 2 might be 
controlled primarily by a parent material with a hinge to an 
anthropogenic source. The anthropogenic source of Cr and 
Ni could be appropriated to agricultural fertilizer that is in 
accordance with research carried by USEPA (2002) as part 
of the central metal contaminants.

4.4  CF‑PMF receptor model

The dominance of Cr and Ni (factor 1) in the urban soil can 
be ascribed to geogenic- and anthropogenic-related sources 
(such as the steel industry where it is predominantly used 
for alloy for formation and other agricultural-related activi-
ties such as slaked lime). The current results are in accord-
ance with similar studies by Veit et al. (2009) and Saha 
et al. (2011) outlining that slaked lime NPK plays a role in 
enriching the soils with Cr. Nevertheless, previous studies 
by Zhang et al. (2016) revealed that high Cr concentration 
in agricultural soils that surpasses the maximum acceptable 

Table 5  The non-carcinogenic 
risk index of PTEs in soils in 
the study area

Elements Cr Ni Cu As Mn Pb Zn

Children
CDIing 7.94E − 04 2.08E − 04 2.72E − 04 1.25E − 04 8.63E − 03 6.42E − 04 1.22E − 03
CDIinh 2.23E − 08 5.84E − 09 7.64E − 09 3.51E − 09 2.43E − 07 1.81E − 08 3.44E − 08
CDIderm 6.83E − 07 1.79E − 07 2.34E − 07 1.07E − 07 7.42E − 06 5.52E − 07 1.05E − 06
CDItotal 7.95E − 04 2.08E − 04 2.72E − 04 1.25E − 04 8.64E − 03 6.43E − 04 1.23E − 03
Adult
CDIing 8.51E − 05 2.23E − 05 2.91E − 05 1.34E − 05 9.25E − 04 6.88E − 05 1.31E − 04
CDIinh 1.25E − 08 3.27E − 09 4.28E − 09 1.97E − 09 1.36E − 07 1.01E − 08 1.93E − 08
CDIderm 9.12E − 08 2.38E − 08 3.12E − 08 1.43E − 08 9.9E − 07 7.37E − 08 1.40E − 07
CDItotal 8.52E − 05 2.23E − 05 2.92E − 05 1.34E − 05 9.26E − 04 6.89E − 05 1.31E − 04
Children
HQing 2.65E − 01 1.04E − 02 6.79E − 03 4.16E − 01 6.16E − 02 1.85E − 01 4.08E − 03
HQinh 7.81E − 04 2.84E − 07 1.91E − 07 1.17E − 08 4.85E − 06 5.13E − 06 1.15E − 07
HQderm 2.28E − 05 3.31E − 05 1.95E − 05 8.72E − 04 9.28E − 06 1.05E − 03 1.75E − 05
HQ 2.66E − 01 1.04E − 02 6.81 − 03 4.7E − 01 6.17E − 02 1.85E − 01 4.10E − 03
HI 0.95
Adult
HQing 2.83E − 02 1.11E − 03 7.28E − 04 4.46E − 02 6.60E − 03 1.96E − 02 4.37E − 04
HQinh 4.38E − 04 1.59E − 07 1.07E − 07 6.55E − 09 2.72E − 06 2.87E − 06 6.43E − 08
HQderm 3.04E − 05 4.42E − 06 2.6E − 06 1.16E − 04 1.24E − 06 1.40E − 04 2.34E − 06
HQ 2.88E − 02 1.12E − 03 7.31E − 04 4.47E − 02 6.61E − 03 1.98E − 02 4.39E − 04
HI 0.10

3128 Journal of Soils and Sediments (2021) 21:3117–3136



1 3

limit is not limited to the agro-related source. However, 
higher Cr level is due to collaboration with other tenants 
such as the geogenic source. This assertion (that geogenic 
source) was confirmed by Manta et al. (2002) and Mamat 
et al. (2014) in their studies. Beyond that, other studies by 
Li et al. (2009) and Liu et al. (2015) mentioned that Cr con-
centration in agricultural soil increases by the application 
of sewage irrigation to farmlands. Industrial activities such 
as steel industries and smelting ores are also contributing 
to Cr and Ni enrichments in soil. Several studies in China, 
for instance, Gansu province, discovered that non-ferrous 
metal and steel production pollutes the soil with Cr and Ni 
coming from industrial activities (steel industries, smelting 
ore) (Chen et al. 2016; Qu et al. 2013).

Copper accumulation in factor 2 primarily may be related 
to livestock manure (Nicholson et al. 2003) because combin-
ing Zn to Cu serves as an additive that improves microbial 
activities (anti-bacterial agent to the gut) (Rosen and Roberts 
1996) as well as control, scours after weaning (Holm 1990). 
According to Cheng et al. (2014) and Xiong et al. (2010), 

livestock manure (particularly from pigs) and phosphate fer-
tilizers are rich in Cu which may eventually contribute to its 
enrichment in agricultural soil. Manganese enrichment is of 
geogenic source, and according to International Manganese 
Institute, it is the 4th most used element in tonnage after Fe, 
Al, and Cu (Das et al. 2011). According to Goncalves et al. 
(2014), Mn is ubiquitous and the 2nd and the 12th most 
abundant element in the Earth’s crust.

The source of Pb and Zn from factor 3 largely might have 
originated from agriculture, vehicular traffic, fuel knocking, 
and abrasion from car tires. Previous studies from Li et al. 
(2001) and Tepanosyan et al. (2016) share similar assertion 
that Pb and Zn enrichment may be attributed to road traffic, 
tire abrasion, and fuel knocking as well as the minimal geo-
genic source. Most pesticides and herbicides such as calcium 
arsenate, lead arsenate, and sodium arsenate are rich in As 
and are used in diverse ways for agricultural production. 
Research conducted by Bhattacharya et al. (2007) attests 
to the fact that agrochemicals of such nature are highly rich 
in inorganic As. Similar studies accentuate that livestock 

Fig. 5  The spatial distribution of PTEs in the soil
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manure is also a potential source for As enrichment in the 
soil (Micó et al. 2006; Fang et al. 2011). Factor 4 is a blend 
of anthropogenic and geogenic sources.

4.5  Comparison of CF‑PMF receptor model 
to EPA‑PMF receptor model

One of the most used pollution assessment indices in assess-
ing the soil quality and extent of contamination with specific 
PTEs in an urban area is the contamination factor. Accord-
ing to Kowalska et al. (2018), in assessing the contamina-
tion level of a specific PTE, CF is one of the most analytical 
techniques in assessing the soil quality of an urban area. The 
positive matrix factorization receptor model is a robust recep-
tor model, but the hybridization of PMF and CF increases 
the source apportionment efficiency and minimizes the error. 
Comparative assessment the hybrid model and PMF exhib-
ited that consistently, the hybrid model performed better than 
the parent model. The estimated coefficient of determination 
(R2), root mean square error (RMSE), and mean absolute 
error (MAE) suggested that out of the seven PTEs evaluated, 
CF-PMF showed superior performance in all the seven PTEs 
(Table 4). All the PTEs analyzed in CF-PMF have lower error 
level as compared to PMF. According to Li et al. (2016), for 

a model to deemed as a good model, the prediction value R2 
value should be 0.75 or greater. However, RMSE and MAE 
values on the other hand should be close to 0 or infinitesimally 
small. Evaluating the models, it was evident that CF-PMF 
receptor model performed better than PMF receptor model. 
The CF-PMF receptor model is an improvement of the PMF 
receptor model thereby amplifying the efficiency of source 
apportionment estimation as well as decreasing marginal error 
significantly. The errors with regard to RMSE for the CF-PMF 
receptor model for all the PTEs such as As, Cr, Cu, Mn, Ni, 
Pb, and Zn are 11.56, 97.85, 17.30, 527.26, 37.16, 32.12, and 
68.02 lesser than the EPA.PMF receptor model respectively. 
Similarly, the MAE error with the CF-PMF receptor model 
for all PTEs such as As, Cr, Cu, Mn, Ni, Pb, and Zn is 11.58, 
95.00, 17.26, 520.85, 37.04, 32.13, and 68.03 less than the 
EPA.PMF receptor correspondingly.

4.6  Potential health risk

The non-carcinogenic intake  (CDItotal) of adult and children 
is presented in Table 5, and the  CDItotal values of the PTEs 
of children compared to that of the adults indicates that that 
of the children is a bit higher to that of the adults, since chil-
dren are more exposed than the adults and are more prone 

Fig. 6  The use of principal 
component analysis in the pro-
jection of PTE components
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to possible hurt than the adults. Children and adult CDI oral 
ingestion was the highest among the other CDIs computed. 
Earlier reports by Fang et al. (2011) and Karim and Qureshi 
(2014) and a more recent report by Bhuiyan et al. (2021) 
confirm the same results and proceed to report that oral or 
ingestion remains the utmost exposure pathway of PTEs into 
the human body. In this present study, the total HI value esti-
mated for children is 9.5 times higher than that of the adults 
(see Table 5). It presupposes that children are more suscepti-
ble and more sensitive to the health effects of PTEs because 
their mouth and finger practices tend to increase their rate of 
exposure to PTEs. Numerous studies regarding health risk 
have reported similar high HI results for children (Baltas 
et al. 2020; Rinklebe et al. 2019; Varol et al. 2020; Wu et al. 
2018). For instance, Varol et al. (2020) reported 8.44E − 01 
for children to 9.85E − 02 for adults, and Baltas et al. (2020) 
reported 1.21 for children to 0.131 for adults. The computed 
HI for children was 0.95, which is less than the threshold of 
1; therefore, it implies that it is unlikely for the PTEs to have a 
negative impact to an exposed individual (Kusin et al. 2018). 
Similarly, the calculated HI for an adult is not significant 
because it is equally less than the threshold 1, which points 
out that it is unlikely for non-carcinogenic negative impact 
to befall an individual if exposed. It is vital to note that the 
calculated HI results are from summing up all the elemental 
HQs assessed; therefore, if most HQs are high, this may result 
in a high HI and vice versa.

The CDI total for children (CR) is higher than that of the 
adults, irrespective of the estimated value of the PTEs. Chil-
dren are open to multiple exposure pathways than  adults, 
and children being exposed to PTEs leads to diverse health 
issues such as cardiovascular disease, poor respiratory func-
tion, neurodevelopmental deficits, and skeletal damage as 
well as reproductive toxicity (Madrigal et al. 2018). The CDI 
oral ingestion for adults and children were also found higher 
than the other computed CDIs. Moreover, the  CDItotal for 
children was found higher than that for the adults (Table 6). 
The  CDItotal and TCR for As of the adults were found lower 
than that of  the children. Computed TCR for children was 
found 2.33 times higher than that of the adults. The total 
carcinogenic risk for the adults and children was 6.9E − 06 
and 1.61E − 05, respectively. The computed TCR for both 
adults (6.9E − 06) and children (1.61E − 05) pointed out that 
carcinogenic health risk within the study area falls within 
the acceptable limits (TCR values should range between 
1 ×  10−6 and 1 ×  10−4). Therefore, the propensity for indi-
genes within the enclave of the urban soils to be exposed to 
carcinogenic related health risk is unlikely.

4.7  Spatial prediction of PTEs

The concentration of Cu and Ni pointed out that its enrich-
ment primarily can be attributed to the steel industry and 

agro-related sources (livestock manure); this is coher-
ent with previous research conducted by Facchinelli et al. 
(2001). Moreover, Salonen and Korkka-Niemi (2007) out-
lined that some PTEs such Ni and Cu can be present in the 
parent materials of the soil with minute temporal and spatial 
distribution in worldwide soils. The enrichment of As in 
the soil is due to the potential application of lead arsenate 
and sodium arsenate to boost yield (i.e., increase yield in 
fruits and potatoes) which upsurges the levels of the PTEs 
(Frank et al. 1976). Manganese is of natural origin, but the 
continuous application of manganese sulfate in agricultural 
soil to increase yield in crops such as vegetables and beans 
elevate the concentration levels of PTEs (Frank et al. 1976). 
The enrichment of Cr is due to multiplicity of anthropogenic 
sources. The hotspot of Cr in the map is as a result of the 
steel industry usage of chromium in alloy formation as well 
as sewage discharge. Goovaerts (1997) hinted the source of 
PTEs such as Cr, Cu, and Ni; the geochemical background 
of these elements is normal in general, but sometimes, their 
elevation in soils may be influenced by agro-anthropogenic-
related sources. The spatial distribution of Zn and Pb primar-
ily is linked toward agricultural fertilizer, vehicular traffic, 
and fuel knocking. This is coherent with previous research 
by Kachenko and Singh (2006), Perez-de-Mora et al. (2006), 
and Rodríguez et al. (2008) reporting that Pb and Zn higher 
levels in urban agricultural soil are as a result of anthropo-
genic component constituted by human-related activities. 
Pb pollution is one of the critical concerns for almost half 

Table 6  The carcinogenic risk index of PTEs in soils in the study area

Elements

Adults Cr Ni As Pb

CDIing 2.92E − 05 7.63E − 06 4.58E − 06 2.36E − 05
CDIinh 4.29E − 09 1.12E − 09 6.74E − 10 3.47E − 09
CDIderm 3.13E − 08 8.18E − 09 4.91E − 09 2.53E − 08
CDItotal 2.92E − 05 7.64E − 06 4.59E − 06 2.36E − 05
Children
CDIing 6.81E − 05 1.78E − 05 1.07E − 05 5.5E − 05
CDIinh 1.92E − 09 5.01E − 10 3.01E − 10 1.55E − 09
CDIderm 5.86E − 08 1.53E − 08 9.20E − 09 4.73E − 08
CDItotal 6.82E − 05 1.78E − 05 1.07E − 05 5.51E − 05
Adult
CRing 6.87E − 06
CRinh 1.80E − 07 9.43E − 10 1.02E − 08
CRderm 1.80E − 08
TCR 6.9E − 06
Children
CRing 1.60E − 05
CRinh 8.04E − 08 4.21E − 10 4.54E − 09
CRderm 3.37E − 08
TCR 1.61E − 05
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of the sites of the US Superfund Environmental Protection 
Agency (EPA) according to Hettiarachchi and Pierzynski 
(2004), McBride et al. (2014), and Brown et al. (2016).

5  Conclusion

This study showed that some PTE concentrations, such as 
Cr, As, Mn, Pb, and Zn, exceeded the WAV, whereas the 
mean concentrations of As, Pb and Zn were higher than the 
UCC. However, the concentration of Cu, Mn, Pb, and Zn also 
exceeded the tolerable EAV limit. The PCA established the 
prime source of pollution in the study area and clarified that 
with the significant statistics of 74.23%. It suggested that the 
source of pollution originated from a multiplicity of origin 
that is from anthropogenic (mostly agricultural practices and 
steel industry) and geogenic sources. The CF-PMF pollu-
tion assessment–based receptor model discharged four fac-
tors, and the source distribution revealed the dominance of Ni 
and Cr (factor 1); Cr, Mn, and Cu (factor 2); As, Zn, and Pb 
(factor 3); and Ni, Mn, and Cu (factor 4). The contamination 
factor exhibited low to medium level of contamination for all 
the PTEs except for Pb, Zn, and Cu that further displayed a 
considerable contamination level. The contamination degree 
also indicated that the PTEs for Ni were considerably con-
taminated and contamination degrees of the other PTEs such 
as Cr, Cu, As, Pb, Zn, and Mn were considerably high. How-
ever, the mCd also specified that Ni was rather moderately 
contaminated. In addition, it placed Cr and As in the same 
high contamination degree categories and Cu, Pb, Zn, and 
Mn were very highly contaminated in the urban soil.

Nevertheless, the Nemerow pollution displayed a low 
to moderate level of pollution pattern, but the northeastern 
(Trinec and Bystrice) and certain parts of the central regions 
(Bystrice and Jablunkov) indicated moderate to high spatial 
distribution pollution class. The risk assessment of both non-
carcinogenic and carcinogenic health for adults and children 
suggested that it is unlikely that the exposure to PTEs would 
have a negative effect, and there is no carcinogenic risk to 
the residents living within the enclave of the study area. Spa-
tial distribution of PTEs in the study area suggested a hotspot 
along Trinec, Bystrica, Jablunkov, and Hrcava. Continuous use 
of agro-related inputs and other anthropogenic tenants, such as 
the steel industry, is likely to raise the urban soil PTE levels.

The comparison assessment of the novel CF-PMF receptor 
model based on PMF showed that combining CF to PMF has 
improved the receptor model’s accuracy. Multiple linear regres-
sion analysis of both the EPA.PMF model and the CF.PMF 
model using cross validation evaluation such as coefficient of 
determination (R2), root mean square error (RMSE), and mean 
absolute error (MAE) has consistently shown that the error 
level has been reduced significantly across all the PTEs ana-
lyzed. The CF-PMF receptor model has shown to be effective 

and useful in the discovery and distribution of the percentage 
contribution of the PTEs under investigation.

In parallel with the health risk assessment, pollution 
assessment and the CF-PMF receptor model highlighted hot-
spot and risk-prone areas within the urban area, which are of 
great concern to the communities under investigation. How-
ever, it is important for the cities to take pragmatic measures 
to reduce and protect the soil from PTEs accumulation.
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