

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA CHEMICKÁ

FACULTY OF CHEMISTRY

ÚSTAV CHEMIE MATERIÁLŮ

INSTITUTE OF MATERIALS SCIENCE

SLOŽENÍ A FYZIKÁLNĚ-MECHANICKÉ VLASTNOSTI SAMOZHUTNITELNÝCH TĚŽKÝCH MALT

THE COMPOSITION AND PHYSICAL-MECHANICAL PROPERTIES OF SELF CONSOLIDATING MORTARS

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Jana Čepčianska

VEDOUCÍ PRÁCE SUPERVISOR

prof. Dr. Ing. Martin Palou

BRNO 2020

Zadání diplomové práce

Akademický rok:

2019/20

Číslo práce:	FCH-DIP1495/2019
Ústav:	Ústav chemie materiálů
Studentka:	Bc. Jana Čepčianska
Studijní program:	Chemie, technologie a vlastnosti materiálů
Studijní obor:	Chemie, technologie a vlastnosti materiálů
Vedoucí práce:	prof. Dr. Ing. Martin Palou

Název diplomové práce:

Složení a fyzikálně-mechanické vlastnosti samozhutnitelných těžkých malt

Zadání diplomové práce:

- literární rešerše na dané téma
- optimalizace složení malt na bázi standardů pro SCC jakož i pro těžké betony
- · studium fyzikálně-mechanických vlastností čerstvých a zatvrdlých malt

Termín odevzdání diplomové práce: 7.5.2020:

Diplomová práce se odevzdává v děkanem stanoveném počtu exemplářů na sekretariát ústavu. Toto zadání je součástí diplomové práce.

Bc. Jana Čepčianska student(ka)

prof. Dr. Ing. Martin Palou vedoucí práce doc. Ing. František Šoukal, Ph.D. vedoucí ústavu

prof. Ing. Martin Weiter, Ph.D. děkan

V Brně dne 31. 1. 2020

ABSTRAKT

Diplomová práca je zameraná na charakterizáciu viaczložkových samozhutniteľných ťažkých mált odolných voči dlhodobému pôsobeniu ionizujúceho žiarenia v podzemných úložiskách rádioaktívneho odpadu. Ide o štúdium špecifickej kombinácie vlastností ťažkých betónov a samozhutniteľných mált s prihliadnutím na ekologickú a energetickú stránku výroby cementu a možnosť jeho čiastočnej náhrady bez negatívneho ovplyvnenia vlastností materiálu. Teoretická časť práce poskytuje všeobecný prehľad o zložení a vlastnostiach ťažkých mált.

Obsahom experimentálnej časti je charakterizácia fyzikálno-mechanických vlastností vzoriek samozhutniteľných ťažkých mált s rozdielnym hmotnostným obsahom cementu. Vlastnosti vzoriek boli vyhodnotené na základe výsledkov mechanických skúšok, termickej analýzy, diferenčnej skenovacej kalorimetrie, skenovacej elektrónovej mikroskopie a röntgenovej difrakcie.

KĽÚČOVÉ SLOVÁ

Ťažké malty, ťažké betóny, samozhutniteľné malty, cement Dyckerhoff G-Well, magnetit, rádioaktívne žiarenie.

ABSTRACT

This Master thesis is focused on characterization of multicompound self-compacting heavyweight mortars resistant against long lasting influence of ionizing radiation in the underground nuclear waste storage. It examines a specific combination of properties of heavy-weight concretes and self-compacting mortars while considering the ecological and energetic impact of their production, as well as the productibility of partial substitutions that do not have negative impact on material properties.

The Experimental part provides a comprehensive overview of composition and properties of self-compacting heavy-weight mortars with varying percentages of cement-to-mortar ratio. Sample properties were evaluated based on mechanical test results, thermal analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction.

KEYWORDS

Heavy-weight mortars, heavy-weight concrete, self-compacting mortars, Dyckerhoff G-Well cement, magnetite, radioactive radiation.

ČEPČIANSKA, Jana. *Složení a fyzikálně-mechanické vlastnosti samozhutnitelných těžkých malt.* Brno, 2020. Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/123694. Diplomová práce. Vysoké učení technické v Brně, Fakulta chemická, Ústav chemie materiálů. Vedoucí práce prof. Dr. Ing. Martin Palou.

PREHLÁSENIE

Prehlasujem, že som túto diplomovú prácu vypracovala samostatne a že všetky použité literárne zdroje som správne a úplne citovala. Diplomová práca je z hľadiska obsahu majetkom Fakulty chemickej VUT v Brne a môže byť využitá na komerčné účely len so súhlasom vedúceho diplomovej práce a dekana FCH VUT.

Bc. Jana Čepčianska

POĎAKOVANIE

Touto cestou ďakujem vedúcemu diplomovej práce, pánovi prof. Dr. Ing. Martinovi Palou za pomoc, odborné vedenie, cenné rady a pripomienky pri vypracovávaní mojej diplomovej práce. Zároveň vyjadrujem vďaku Ing. Janette Dragomirovej za pomoc pri napĺňaní cieľov práce. Za poskytnutie laboratórnych priestorov spolu s prístrojovým vybavením, ďakujem Ústavu stavebníctva a architektúry Slovenskej akadémie vied. V neposlednom rade ďakujem Centru materiálového výskumu Fakulty chemickej VUT v Brne za ústretový prístup a pomoc pri realizácií vybraných analýz.

OBSAH

1	ÚVOD	8
2	TEORETICKÁ ČASŤ	9
2.1	Malta	9
2.1.1	Druhy mált	9
2.2	Betón	10
2.2.1	Druhy betónov	10
2.3	Plnivá	12
2.3.1	Druhy plnív	13
2.4	Spojivá	15
2.4.1	Druhy spojív	16
2.4.2	Cement	16
2.4.2.1	Druhy cementov	17
2.4.2.2	Dyckerhoff G-Well HSR cement	
2.4.2.3	Výroba cementu	19
2.4.2.4	Hydratácia cementu	21
2.5	Prísady	21
2.5.1	Druhy prísad	
2.6	Prímesi	22
2.6.1	Vysokopecná troska	23
2.6.2	Vápenec	23
2.6.3	Metakaolín	24
2.7	Voda	24
2.8	Samozhutniteľné malty a betóny	25
2.8.1.	Vlastnosti SCC	25
2.8.2	Tieniace malty a betóny	26
3	EXPERIMENTÁLNA ČASŤ	27
3.1	Cieľ práce	27
3.2	Materiály použité pri príprave maltových zmesí:	27
3.3	Charakteristika použitých materiálov	27
3.4	Výroba skúšobných telies	28
3.5	Metódy skúšania spojív a maltových zmesí	31
3.5.1	Röntgenová fluorescenčná spektrofotometria (XRF)	32
3.5.2	Skúška normovanej konzistencie a stanovenie času tuhnutia ce pasty	ementovej 32

	3.5.3	Izotermická kalorimetria	33
	3.5.4	Stanovenie konzistencie čerstvej SZM skúškou rozliatím	34
	3.5.5	Stanovenie viskozity a vyplňovacej schopnosti SZM	35
	3.5.6	Röntgenová prášková difrakčná analýza (XRPD)	35
	3.5.7	Stanovenie objemovej hmotnosti zatvrdnutých mált	
	3.5.9	Stanovenie pevnosti v tlaku deštruktívnou metódou	
	3.5.10	Stanovenie dynamického modulu pružnosti ultrazvukovou (UZV) im metódou a ultrazvukovým meracím systémom UltraTest	pulzovou 38
	3.5.11	Termogravimetrická analýza (TGA)	40
	3.5.12	Skenovacia elektrónová mikroskopia (SEM) a energeticky d röntgenová spektroskopia (EDS)	lisperzná 41
2	ł	VÝSLEDKY A DISKUSIA	42
	4.1	Röntgenová fluorescenčná spektrofotometria (XRF)	42
	4.2	Skúška normovanej konzistencie astanovenie času tuhnutia ce pasty	mentovej 43
	4.3	Izotermická kalorimetria	44
	4.4	Stanovenie konzistencie čerstvej SZM skúškou rozliatím	46
	4.5	Stanovenie viskozity a vyplňovacej schopnosti SZM	46
	4.6	Röntgenová prášková difrakčná analýza (XRPD)	47
	4.7	Stanovenie objemovej hmotnosti zatvrdnutých mált	47
	4.8	Stanovenie pevnosti v ťahu pri ohybe	49
	4.9	Stanovenie pevnosti v tlaku deštruktívnou metódou	51
	4.10	Stanovenie dynamického modulu pružnosti ultrazvukovou impulzovou a ultrazvukovým meracím systémom UltraTest	metódou 52
	4.11	Termogravimetrická analýza (TGA)	56
	4.12	Skenovacia elektrónová mikroskopia (SEM) a energeticky o röntgenová spektroskopia (EDS)	lisperzná 58
Ę	5	ZÁVER	60
2	ZOZNAM PO	DUŽITEJ LITERATÚRY	61
2	ZOZNAM PO	DUŽITÝCH SKRATIEK A SYMBOLOV	68
2	ZOZNAM PR	ÍLOH	69
F	PRÍLOHY		70

1 ÚVOD

Betón a malta patria v súčasnosti k najpoužívanejším stavebným materiálom predovšetkým vďaka pevnosti, trvanlivosti a voliteľnosti ich vlastností ako je napríklad dizajn a použitie. Suroviny na ich výrobu sú taktiež ekonomicky dostupnými materiálmi.

Trendom v technológii betónu je vývoj betónov novej generácie, ktoré okrem skvalitnenia vlastností a rozšírenia oblasti použitia doterajších betónov prihliadajú aj na udržateľnosť výstavby [1] a znižovanie produkcie oxidu uhličitého pri výrobe betónu [2]. Medzi tieto betóny patria napríklad vysokopevnostné betóny či vysokopevnostné samozhutniteľné betóny [3]. Výnimkou nie sú ani nové druhy pohľadových betónov, medzi ktoré možno zaradiť napríklad transparentný betón nájsť [4], betón so sklenenou drvinou alebo grafický prefabrikovaný betón [5].

Udržateľnosť a ekologická stránka výroby betónov dostáva nový rozmer nahradením časti cementu recyklovanými materiálmi, napríklad LCD sklom, asfaltom, gumou [6] alebo odvodneným papierenským kalom [7].

História betónu v rôznych podobách siaha niekoľko tisícok rokov pred náš letopočet. Najstarším dôkazom o použití kompozitných materiálov pripomínajúcich betón sú pozostatky prvých betónových podláh v Sýrii z obdobia okolo 6 000 p. n. l.

Starí Egypťania v období 3 000 p. n. l. použili približne 500 tis. ton prvej podoby vápennej malty pri stavbe pyramíd v Gíze. Malta slúžila ako spojivo tehál vyrobených zo zmesi blata a slamy.

Až v starovekom Ríme (400 p. n. l) našiel betón poprvýkrát širšie využitie a stal sa nosným prvkom v stavebných konštrukciách. Pozostatky týchto konštrukcií sú aj vďaka svojej odolnosti voči pôsobeniu morskej vody zachované dodnes. Išlo o polotekutú zmes zloženú zo sopečného prachu, páleného vápna, drvenej tehly a sopečnej horniny tuf, ktorá bola vliata do dreveného debnenia v tvare tehál a následne vysušená. Liatím získali Rimania ďalšie možnosti využitia betónu, ako vytváranie oblúkov a klenieb. Týmto spôsobom boli postavené viaceré akvadukty či mosty ako napríklad Pont Du Gard, Aqua Marcia a Aqua Tepula.

Po páde Rímskej ríše prešlo betónové staviteľstvo do úzadia. Vápenná malta sa však používala naďalej [8].

Zlom nastal v roku 1824, kedy Joseph Aspdin získal patent na výrobu cementu, ako ho poznáme dnes. Svoj názov – portlandský cement, dostal tento materiál na základe vzhľadovej podobnosti s vápencom z anglického ostrova Portland [9].

V 19. storočí bol betón využívaný najmä v priemyselnom stavebníctve, avšak na jeho konci sa začali stavať aj obytné stavby, ktorých nosným prvkom bol betón s oceľovou výstužou.

Vývoj betónu postupoval od tradičného konštrukčného materiálu k betónu s vlastnosťami, ktoré preň neboli v minulosti typické [10]. Tieto vlastnosti súvisia napríklad s požiadavkami na dlhšiu životnosť stavieb či rozšírenie oblastí využitia betónu. Motiváciou pre rozvoj je aj ekologická stránka surovín na výrobu betónu.

V diplomovej práci sa preto budem zaoberať štúdiom mechanických a fyzikálnych vlastností samozhutniteľných ťažkých jemnozrnných betónov (SCC), v ktorých bolo použité prírodné ťažké magnetitové kamenivo. Tento typ betónov nachádza využitie najmä v prostredí, kde je potrebné zabrániť prieniku dlhodobo pôsobiaceho ionizujúceho žiarenia do okolitého priestoru. Ako príklad možno uviesť jadrové reaktory alebo hlbinné úložiská jadrového odpadu.

Veľkosť použitého kameniva v uvedených SCC zodpovedá frakcii kameniva d/D = 0/2. Takýto betón je označovaný ako jemnozrnný betón. Vzhľadom aj konzistenciou je však porovnateľný s maltou. Z tohto dôvodu budem pre zjednodušenie tento kompozit v práci označovať slovným spojením samozhutniteľná malta (SZM).

2 TEORETICKÁ ČASŤ

2.1 Malta

Malta je troj a viac zložkové kompozitné spojivo, ktorého hlavnými zložkami sú:

- spojivo (cement, vápno, sadra atď.),
- plnivo (piesok frakcie 0/1,6),
- voda.

Doplnkovými zložkami môžu byť napríklad plastifikačné prísady upravujúce najmä konzistenciu mált a tiež potrebné množstvo zámesovej vody, ale aj iné prísady zabezpečujúce špeciálne požadované vlastnosti malty.

Malta sa vo všeobecnosti používa na spájanie stavebných materiálov, prvkov alebo na povrchovú úpravu stavebných dielov [11], [12].

2.1.1 Druhy mált

V súčasnosti je na trhu dostupné množstvo rozličných mált. Z hľadiska ich *použitia a vlastností* možno malty rozdeliť na:

- malty na omietky a špárovanie (cementové malty alebo malty z hydraulického vápna),
- poterové malty a malty na kladenie obkladov (cementové, vápenné alebo vápennocementové malty),
- *injektážne malty* (cementová malta s minimálnym obsahom vody, čím sa predchádza sedimentácii malty v dutinách),
- *malty s tepelnoizolačnými vlastnosťami* (obsahujú drobné kamenivo s nízkou tepelnou vodivosťou ako je napr. vysokopecná troska, kremelína alebo expandovaný perlit),
- omietkové malty pohlcujúce röntgenové a γ-žiarenie (obsahujú barytový piesok s maximálnou veľkosťou zrna do 1,25 mm),
- žiaruvzdorné malty (využiteľné v prostredí s teplotou do 1 800 °C, ide napr. o šamotové, dinasové alebo magnezitové malty),
- mrazuvzdorné (definované počtom zmrazovacích cyklov),
- vodotesné,
- neprepúšťajúce vodnú paru [11].

Podľa použitého spojiva sa rozlišujú:

- cementové,
- vápenné,
- vápenno-cementové,
- vápenno-sadrové,
- sadrové,
- hlinené
- hlinocementové malty [11].

Ďalším kritériom pre rozdelenie mált je *objemová hmotnosť,* na základe ktorej rozoznávame:

- tepelnoizolačné malty s objemovou hmotnosťou do 1 100 kg.m⁻³,
- vyľahčené malty s objemovou hmotnosťou v rozmedzí 1 101 až 1 600 kg.m⁻³,

- obyčajné malty s objemovou hmotnosťou od 1 601 do 2 200 kg.m⁻³,
- ťažké malty s objemovou hmotnosťou nad 2 200 kg.m⁻³ [11].

2.2 Betón

Betón alebo umelý kameň je *kompozitný stavebný materiál* zložený z *plniva, spojiva, vody* a *prípadných aditív* [13]. V porovnaní s prírodným kameňom má viacero výhod, z ktorých možno spomenúť napríklad možnosť ovplyvnenia jeho vlastností, dopravu betónovej zmesi v sypkom stave alebo možnosť výroby na mieste spotreby. Ďalšími výhodami betónu je možnosť vytvorenia jednoliateho celku prakticky neobmedzeného tvaru a ľubovoľných rozmerov či cenová dostupnosť. Taktiež je možná kombinácia s oceľou a materiálmi vhodnými na ťahové namáhanie, čím vzniká nosný prvok [14], [15]. V súčasnej dobe je dostupné široké spektrum betónov rôzneho *zloženia, spôsobu spracovania a vlastností.*

Vlastnosti betónu sú vo veľkej miere ovplyvniteľné voľbou jednotlivých zložiek a ich množstva [15]. Zhomogenizovaná zmes týchto zložiek sa nazýva *čerstvý betón*, ktorého spracovanie spočíva v jeho uložení do debnenia alebo formy, zhutnení a ošetrovaní. Čerstvú betónovú zmes je potrebné uložiť do debnenia a zhutniť pred začiatkom procesu *tuhnutia* [13].

Tuhnutie a *tvrdnutie* betónovej zmesi je ovplyvnené mnohými faktormi, ktorých príkladom je zloženie zmesi (použité spojivo), priebeh hydratačných reakcií, objemová hmotnosť, reologické vlastnosti, prostredie, priestorové ohraničenie betónovej zmesi či spôsob ošetrovania [15]. Začiatok tuhnutia betónu sa v závislosti od vyššie uvedených faktorov začína prejavovať po niekoľkých hodinách od zamiešania betónovej zmesi a po 28 dňoch betón dosahuje zvyčajne 60 až 90 % konečnej pevnosti. Betón je v tejto fáze označovaný ako *zatvrdnutý* [13].

Pevnosť je jedným z kvalitatívnych ukazovateľov pri posudzovaní vlastností betónu.

2.2.1 Druhy betónov

Rozličné požiadavky na vlastnosti, spracovanie a možnosti použitia betónu prispievajú k rozmanitosti jeho druhov.

V závislosti od typu spojiva v betónovej zmesi rozoznávame:

- cementový,
- vápenný,
- sadrový,
- magnéziový,
- asfaltový,
- polymérbetón a i. [15].

Podľa použitých prísad rozlišujeme betón:

- hydrofóbny,
- plastifikovaný,
- fungicídny,
- prevzdušnený [15].

Podľa veľkosti zŕn kameniva:

- drobnozrnný betón s veľkosťou zŕn do 4 mm,
- hrubozrnný betón s veľkosťou zŕn nad 4 mm [15].

Podľa *spôsobu výstuže:*

- nevystužený betón,
- železobetón,
- oceľobetón,
- vláknobetón (vlákna z ocele, skla, uhlíka, polypropylénu apod.),
- predpätý betón [15].

Rozdelenie podľa spôsobu zhutňovania:

- samozhutniteľný betón (SCC) schopný samozhutnenia sa bez zhutňovacej činnosti,
- vibrovaný betón zhutnený použitím vibračného stroja,
- prepichovaný betón zhutnený ručným prepichovaním oceľovou tyčou,
- valcovaný betón zhutnený sústavou valcov,
- lisovaný betón zhutnený hydraulickým lisom [15].

Podľa objemovej hmotnosti v suchom stave :

Ľahký betón (LC) s objemovou hmotnosťou od 800 do 2 000 kg.m⁻³. Obsahuje ľahké pórovité kamenivo ako agloporit, expandit, perlit, vysokopecná troska prípadne polyméry – polystyrén [16]. Na základe svojej pevnosti v tlaku, sa ľahké betóny rozdeľujú do pevnostných tried od LC 8/9 po LC 80/88. V porovnaní s obyčajným betónom má ľahký betón viaceré výhody ako napr. vysokú pevnosť vzhľadom k nízkej objemovej hmotnosti, vyššiu životnosť, menšie zmrašťovanie, lepšiu súdržnosť kameniva a matrice, jednoduchšiu dopravu a manipuláciu s betónovou zmesou. Možnými nevýhodami je krehkosť, vyššia nasiakavosť, uvoľňovanie väčšieho množstva hydratačného tepla a i.

Ľahké betóny sa čoraz viac uplatňujú v konštrukciách pozemných, občianskych alebo dopravných stavieb a nie sú výnimkou ani v záhradnej architektúre, či nízkoenergetickom staviteľstve [17].

- Bežný konštrukčný betón (C) s objemovou hmotnosťou v rozmedzí 2 000 až 2 600 kg.m⁻³ a pevnosťou v tlaku do 50 MPa. Použité kamenivo je hutné, zvyčajne ťažené, drvené, umelé alebo recyklované [16]. Pevnostné triedy pre bežný betón sa pohybujú v rozmedzí od C 8/10 po C 50/60.
- Ťažký betón (HC) s objemovou hmotnosťou väčšou ako 2 600 kg.m⁻³. Tento typ betónu sa vyrába z prírodného alebo umelého ťažkého kameniva ako napr. baryt, magnetit, hematit či ferosfosfor [16]. Vlastnosťou ťažkých betónov, ktorá predurčuje ich použitie, je koncentrácia veľkej hmotnosti v malom objeme. Využívajú sa napríklad ako protizávažia výťahov, rôznych zdvíhacích zariadení alebo mostov. Sú takisto vhodnými tieniacimi materiálmi pre zdroje ionizujúceho žiarenia [17]. Rozpätie pevnostných tried pre ťažký betón sa pohybuje medzi triedami C 55/67 a C 100/115. Normované valcové a kockové triedy pevnosti bežného a ťažkého betónu sú uvedené v *Tabuľke 1* [18].

Ďalšie spôsoby rozdelenia betónov závisia od *miesta výroby, spôsobu výroby a funkcie betónovej konštrukcie, pevnostnej triedy v tlaku a špeciálnych vlastností* [13], [12].

Pevnostná trieda v tlaku	Minimálna charakteristická valcová pevnosť f _{ck, cyl} [MPa]	Minimálna charakteristická kocková pevnosť f _{ck, cube} [MPa]
C 8/10	8	10
C 12/15	12	15
C 16/20	16	20
C 20/25	20	25
C 25/30	25	30
C 30/37	30	37
C 35/45	35	45
C 40/50	40	50
C 45/55	45	55
C 50/60	50	60
C 55/67	55	67
C 60/75	60	75
C 70/85	70	85
C 80/95	80	98
C 90/105	90	105
C 100/115	100	115

Tabuľka 1: Pevnostné triedy v tlaku obyčajného (C 8/10 až C 50/60) a ťažkého betónu (C 55/67 až C 100/115) [18].

2.3 Plnivá

Hlavnými zložkami betónu sú *plnivo, spojivo* a *voda*. Plnivo tvorí, vo väčšine prípadov, viac ako 75 % objemu betónovej zmesi. Jeho úlohou je vystuženie betónovej zmesi s minimálnou medzerovitosťou a zníženie výskytu objemových zmien pri tuhnutí a tvrdnutí. Z týchto dôvodov sa používajú plnivá zložené z frakcií s rôznou zrnitosťou (*Obrázok 1*) [16].

Obrázok 1: Znázornenie frakcií kameniva [19].

2.3.1 Druhy plnív

Druh plniva ovplyvňuje trvanlivosť a mechanicko-fyzikálne vlastnosti betónu. V bežne používaných a ťažkých betónoch sa ako plnivá používajú lokálne najdostupnejšie prírodné alebo syntetické anorganické zrnité materiály. Na území Slovenskej a Českej republiky je to najčastejšie dolomit, vápenec a andezit [20]. Technické požiadavky na tieto plnivá podliehajú normatívnemu predpisu [21], [22].

Predstaviteľmi *prírodného ťažkého kameniva* sú najmä magnetit, baryt, limonit, ilmenit a prírodný korund.

Ferofosfor, ferosilicium, borkalcit, umelý korund či oceľ patria k najčastejšie používaným umelým, priemyselne vyrobeným ťažkým plnivám. V závislosti od špecifických požiadaviek na absorpciu žiarenia, sa jednotlivé druhy kamenív kombinujú a tvoria zmesi kamenív s požadovanými vlastnosťami.

V jadrovej energetike sú z dôvodu ekonomickej dostupnosti najčastejšie používané prírodné železné rudy na báze oxidov. Medzi tieto rudy patrí napr. už spomínaný *magnetit*, ktorý bol použitý v experimentálnej časti diplomovej práce. Magnetit (*Obrázok 2*), v závislosti od kvality zdroja, obsahuje v priemere 65 % oxidu železnato-železitého (Fe₃O₄). Pevnosť v tlaku magnetitového kameniva je približne 220 MPa.

Príkladom neželeznej rudy je *baryt. Pri* veľmi kvalitnom zdroji barytu, môže takýto kameň obsahovať až 85 % podiel síranu bárnatého (BaSO₄). Pevnosť v tlaku barytového kameniva dosahuje hodnoty cca 48 MPa [16].

Umelé ferofosforové (FenP) kamenivo môže, v závislosti od výrobcu umelého kameniva, obsahovať 65 až 70 % železa. Bližšia špecifikácia vybraných druhov kamenív z hľadiska objemovej hmotnosti a absorpcie žiarenia, je uvedená v *Tabuľke 3* [12], [15].

Medzi plnivá vhodné do ľahkých betónov patria drevené vlákna, triesky, piliny alebo penové plasty [11].

Z hľadiska *pôvodu* možno kamenivo rozdeliť na:

- prírodné anorganické kamenivo získané z prírodných hornín,
- *umelé* anorganické kamenivo získané tepelným alebo iným procesom (napr. kamenivo z priemyselného odpadu ako popolček či vysokopecná troska),
- *recyklované* anorganické kamenivo, ktoré už bolo použité v stavebných konštrukciách, napr. drvené tehly alebo betón [12].

Podľa spôsobu ťažby a spracovania rozlišujeme:

- *Ťažené kamenivo* (riečne, ľadovcové, riečno-ľadovcové, usadené). Zrná majú zaoblený tvar a hladký povrch.
- *Drvené kamenivo*, ktoré vzniklo drvením väčších kusov hornín vyťažených z povrchových lomov a ich následným triedením.
- *Predrvené ťažené kamenivo* získané drvením zŕn ťaženého kameniva s veľkosťou zŕn nad 2 mm [23].

Na základe veľkosti zŕn rozoznávame:

- hrubozrnné kamenivo s veľkosťou zŕn 4 až 125 mm označované ako štrk,
- drobnozrnné kamenivo s veľkosťou zŕn do 4 mm označované ako piesok,
- zmes hrubozrnného a drobnozrnného kameniva označované ako štrkopiesok alebo štrkodrvina,

 kamenivo obsahujúce jemné častice s veľkosťou zŕn do 0,063 mm označované ako filer alebo kamenná múčka [12].

V *Tabuľke 2* sú uvedené všeobecné normované požiadavky na zrnitosť kameniva do betónu. Frakcie kamenív sú definované pomerom veľkostí otvorov spodného sita *d* [mm] a horného sita *D* [mm]. Veľkostný rozdiel frakcie sa zapisuje ako *d/D*.

Kameniyo	Veľkosť		Prepad	Kategória			
	Verköst	2D	1,4 D	D	d	d/2	G₫
	D/d ≤ 2 alebo	100	98 – 100	85 – 99	0 – 20	0 – 5	G _c 85/20
Hrubé	D ≤ 11,2 mm	100	98 – 100	80 – 99	0 – 20	0 – 5	G _c 80/20
Thube	D/d > 2 alebo D > 11,2 mm	100	98 – 100	90 – 99	0 – 15	0 – 5	G _c 90/15
Drobné	D ≤ 4 mm a d = 0	100	95 – 100	85 – 99	_	_	G _F 85
Ťažené prírodné	D = 8 mm a d = 0	100	98 – 100	90 – 99	_	_	G _{NG} 90
Zmes	D ≤ 45 mm	100	98 – 100	90 – 99	_	_	G _A 90
kameniva	a d = 0	100	98 – 100	85 – 99			G _A 85

Tabulles O.	Vžeekeená	n a ≚ia da ulu u	in a sua Plua at	, _ <u> </u>			041
Tapurka Z.	vseobeche	poziadavky	na verkost	ZIII Kallie	riiva uu) pelonu j	Z I J.

Delenie kameniva podľa objemovej hmotnosti:

- Ľahké (pórovité) kamenivo s objemovou hmotnosťou do 2 000 kg.m⁻³ využiteľné ako plnivo pri výrobe ľahkých mált a betónov. Z prírodných kamenív sem možno zaradiť drvené pórovité horniny, napr. vulkanické tufy, pemzu a diatomity. Z umelých kamenív sem patrí napr. keramzit, spenená vysokopecná troska a expandovaný perlit. Príkladom recyklovaného kameniva je tehlový recyklát.
- Hutné kamenivo s objemovou hmotnosťou v rozmedzí 2 000 3 000 kg.m⁻³. Tento druh kameniva nachádza využitie vo väčšine obyčajných betónov a mált. Prírodným hutným kamenivom je väčšina ťažených a drvených kamenív, napr. vápenec, dolomit a čadič. Z recyklovaných kamenív sa uplatňuje betónový recyklát.
- Ťažké kamenivo s objemovou hmotnosťou nad 3 000 kg.m⁻³. Ťažké kamenivo sa využíva v špeciálnych konštrukciách z ťažkých betónov, ktoré poskytujú ochranu pred rádioaktívnym a röntgenovým žiarením. Okrem rádiodiagnostických metód v zdravotníctve nachádza využitie v jadrovej energetike, pri stavbe krytov civilnej ochrany, úložísk vyhoreného jadrového paliva a ochranných múrov urýchľovačov častíc [23], [15], [12].

Tabuľka 3: Objemové hmotnosti a špecifická absorpcia neutrónového a γ-žiarenia vybranými prírodnými a umelými ťažkými kamenivami [12].

Kamaniya	Objemová hmotnosť	Objemová hmotnosť	Špecifická absorpcia [cm².g ⁻¹]		
Kallelivo	kameniva [kg.m⁻³]	betónu [kg.m⁻³]	Rýchle neutróny	Energia γ- žiarenia [MeV]	
Magnetit (Fe₂O₃)	4 100 – 5 200	3 350 – 4 150	0,0258	0,0359	
Baryt (BaSO₄)	4 000 – 4 600	3 350 – 3 700	0,0236	0,0363	
Ferofosfor (zmes FeP a Fe₂P)	5 800 – 6 800	4 100 – 5 150	0,0214	0,0359	
Ferosilícium (FeSi)	5 800 – 6 200	4 000 – 5 000	0,0103	0,0413	

Obrázok 2: Frakcie magnetitu [24].

Na kamenivo určené do ťažkých betónov sa v závislosti od využitia kladú tieto požiadavky:

- zaručené zloženie zrnitosti, objemovej hmotnosti, obsah kryštalicky viazanej vody a chemické zloženie,
- kamenivo nesmie svojím charakterom obmedzovať pevnosť a tuhosť betónu,
- minimálna obrusnosť pri skladovaní a miešaní,
- charakter povrchu kameniva nesmie znižovať jeho súdržnosť v malte a betóne,
- kamenivo nesmie obsahovať nijaké zložky poškodzujúce betón alebo oceľ,
- minimálna pevnosť v tlaku najmenej 80 MPa [12].

2.4 Spojivá

Spojivá sú látky alebo zmesi látok upravené prídavkom vody do tekutej formy, ktoré majú schopnosť spevniť sa. Táto schopnosť umožňuje spojenie nesúdržných zložiek maltovej zmesi do kompaktného celku [18]. Povrch plniva a jednotlivých zložiek maltovej zmesi je zmáčaný spojivom, pričom vznikajú adhézne spoje. Následnými fyzikálno-chemickými procesmi spojivo stráca svoju tekutosť, čím sa postupne spevňuje a tuhne [25]. Ide o procesy ako je napríklad zmena chemického zloženia látky, zmena skupenstva odparením rozpúšťadla, pôsobenie

kapilárnych a sorpčných síl. Stuhnuté spojivo pôsobením času tvrdne a získava vyššiu pevnosť. Priebeh procesu tuhnutia a tvrdnutia spojiva je ovplyvnený jeho druhom a prostredím, v ktorom k tomuto procesu dochádza [26]. Často využívaným druhom spojiva v stavebníctve sú anorganické spojivá, ktorých základom je prášková látka minerálneho pôvodu [12].

2.4.1 Druhy spojív

Vo všeobecnosti možno rozdeliť spojivá do dvoch kategórií:

- *Mechanické* počas ich tuhnutia a tvrdnutia nedochádza v látkach k chemickým zmenám.
- *Chemické* sú prevládajúcim druhom spojív, počas tuhnutia a tvrdnutia prebiehajú chemické reakcie, ktoré vedú k vzniku nových zlúčenín [26].

Chemické spojivá je možné ďalej klasifikovať na základe *prostredia*, v ktorom dochádza k ich tuhnutiu a tvrdnutiu. Sú to:

- Vzdušné spojivá ako napríklad vzdušné vápno, sadra a síranové spojivá, ktorých tuhnutie prebieha za prítomnosti vzduchu. Vzdušné spojivá nie sú odolné voči vode ani po úplnom vytvrdnutí.
- Hydraulické spojivá ako hydraulické vápno, cementy a i., ktoré majú schopnosť po počiatočnom zatuhnutí na vzduchu ďalej tuhnúť a tvrdnúť nielen na vzduchu, ale aj vo vodnom prostredí. Odolnosť voči vode je spôsobená prítomnosťou vo vode nerozpustných oxidov, tzv. hydraulitov. Týmito oxidmi sú oxid kremičitý, hlinitý a železitý [12].

V závislosti od zloženia spojív rozoznávame:

- cementy,
- sadru a síranové spojivá,
- vápno a vápenné spojivá,
- alkalicky aktivované spojivá,
- spojivá s chemickou väzbou [16].

2.4.2 Cement

Cement patrí k najčastejšie používaným hydraulickým spojivám v súčasnom stavebníctve. Svetová produkcia tohto jemného práškového slinkového materiálu dosiahla v roku 2019 úroveň zhruba 4,1 biliónov ton [27].

Cement po zmiešaní s vodou vytvára cementovú pastu, ktorá tuhne a tvrdne v dôsledku prebiehajúcich hydrolýznych a hydratačných reakcií slinkových minerálov, ktorými sú vápenaté silikáty a alumináty.

Počas prechodu cementovej pasty do tuhého skupenstva vzniká kapilárna pórovitá štruktúra cementového kameňa zložená z tuhej, kvapalnej a plynnej fázy. Tuhú fázu tvoria amorfné nedokonale kryštalické a kryštalické novotvary vzniknutých hydratovaných slinkových minerálov. Týmito hydratačnými produktmi je pórovitosť vznikajúceho cementového kameňa postupne vyplňovaná a zatuhnutá cementová pasta tak vytvára pevnú väzbu medzi zrnami kameniva.

Proces tuhnutia a tvrdnutia cementovej pasty po jej úvodnom zatuhnutí na vzduchu, môže ďalej pokračovať aj vo vodnom prostredí, čo je spôsobené stálosťou vzniknutého cementového kameňa [18], [16].

2.4.2.1 Druhy cementov

Široké spektrum cementov na všeobecné použitie možno klasifikovať z rôznych hľadísk. Medzi tieto hľadiská patrí napríklad klasifikácia cementov podľa chemického a mineralogického zloženia:

- Kremičitanové (portlandské) cementy s prevládajúcim obsahom kremičitanov vápenatých. V súčasnosti sú najpoužívanejšími cementmi a ich príkladom je portlandský cement (označovaný ako CEM I).
- Hlinitanové cementy s väčšinovým obsahom hlinitanov vápenatých.
- Ostatné cementy, napríklad železitanové a bárnaté.
- Zmesové cementy (ozn. CEM II) s prídavkom prímesí, ktoré čiastočne nahrádzajú obsah slinku, pričom nemenia vlastnosti cementu. K najbežnejšie používaným zmesovým cementom patria dvojzložkové cementy zložené zo slinku a vysokopecnej trosky [11].

Rozdelenie portlandských cementov na všeobecné použitie označované značkou CEM do hlavných skupín, je uvedené v *Tabuľke 4* [28].

Druh cementu	Slovné označenie
CEMI	portlandský cement
CEM II	portlandský cement zmesový
CEM III	vysokopecný cement
CEM IV	pucolánový cement
CEM V	zmesový cement

Tabuľka 4: Rozdelenie portlandských cementov CEM.

Tabuľka 5: Prímesi používané v zmesových cementoch [28]. Princíp označenia jednotlivých druhov cementov značkou CEM I až V je uvedené v Tabuľke 4. Cementy označené písmenom A obsahujú od 6 do 20 % prímesí, označenie B je zaužívané pre cementy s 21 až 35 % obsahom prímesí.

Prímes	Označenie	Používa sa na druh cementu
Cementový slinok	K	CEM I – CEM V/B
Granulovaná vysokopecná	ç	CEM IIA, CEM II/B, CEM III/A, CEM III/B,
troska	5	CEM III/C, CEM V/A, CEM V/B
Prírodný pucolán	D	CEM IIA, CEM II/B, CEM IV/A, CEM IV/B,
	F	CEM V/A, CEM V/B

Prímes	Označenie	Používa sa na druh cementu
	0	CEM IIA, CEM II/B, CEM IV/A, CEM IV/B,
		CEM V/A, CEM V/B
Kremičitý popolček	V	CEM IIA, CEM II/B, CEM IV/A, CEM IV/B,
	v	CEM V/A, CEM V/B
Vápenatý popolček	W	CEM IIA, CEM II/B
Kalcinovaná bridlica	Т	CEM IIA, CEM II/B
Kremičitý úlet	D	CEM II/A, CEM II/B, CEM IV/A, CEM IV/B
Vápenec	L	CEM IIA, CEM II/B
Viaczložková zmes	М	CEM IIA, CEM II/B
Plnivo	F	CEM I – CEM V/B

V závislosti od *dosiahnutej pevnosti v tlaku po 28 dňoch* hydratácie cementovej zmesi, možno cementy zaradiť do troch pevnostných tried:

- 32,5 MPa,
- 42,5 MPa,
- 52,5 MPa [28].

Rýchlosť dosiahnutia počiatočnej pevnosti cementového kameňa, tzn. pevnosti po 2 a 7 dňoch hydratácie, možno rozčleniť na:

- normálnu N,
- rýchlu R,
- pomalú L [28].

Širokú paletu cementov na všeobecné použitie dopĺňa skupina cementov so špecifickými vlastnosťami:

- Estetickú funkciu spĺňajú napríklad biele cementy s nízkym obsahom oxidu železitého (Fe₂O₃).
- *Síranovzdorné portlandské a vysokopecné cementy* nepodliehajú rapídnej deštrukcii v prostredí s vyššou koncentráciou síranov.
- *Cestárske cementy* s nízkym hydratačným teplom a vysokou pevnosťou v ťahu dlhodobo odolávajú vplyvom vonkajšieho prostredia [16].
- Cementy určené do špeciálneho prostredia odolávajú výkyvom mechanických, fyzikálnych a chemických podmienok špecifického prostredia. Príkladom sú cementy používané v hĺbkových geotermálnych vrtoch [29].

2.4.2.2 Dyckerhoff G-Well HSR cement

Patrí medzi špeciálne druhy cementov, ktorých špecifickou vlastnosťou je odolnosť voči pôsobeniu vysokých teplôt, karbonizácii a agresívnejším podmienkam vyskytujúcich sa v podzemných konštrukciách ako sú napr. ropné vrty, tunely a už spomínané hlbinné úložiská jadrového odpadu. Dôležitou vlastnosťou je aj odolnosť voči erózii a nepriepustnosť vody. Cementy triedy G sú vo všeobecnosti vhodné na použitie v hĺbkach do 2 500 m [29], [30].

Použitím tohto typu cementu sa rozšírila oblasť využitia ťažkých samozhutniteľných mált, ktoré sú predmetom tejto práce.

2.4.2.3 Výroba cementu

Podstatou výroby cementu je *slinovanie* (spekanie, výpal) prírodných surovín bohatých na ílové a slieňové minerály ako sú napríklad vápence, slieňovce alebo bridlice, ktorého výsledkom je vznik *slinku* [31].

Do procesu výroby cementu vstupujú uvedené, ťažbou získané, suroviny, ktoré sú ďalej drvené, zvyčajne, na čeľusťových, kladivových alebo kužeľových drtičoch. V závislosti od zloženia a kvality vstupných surovín, je možné v ďalšom kroku ovplyvniť ich vlastnosti prídavkom korekčných surovín.

Pre dosiahnutie optimálneho merného povrchu surovinovej zmesi, ktorý je dôležitým parametrom pri procese slinovania z hľadiska jeho efektivity, sú podrvené zhomogenizované suroviny rozomleté na múčku, prevažne v guľových mlynoch.

Surovinová múčka pripravená týmto spôsobom, postupuje z priebežného homogenizačného sila do cyklónového predohrievača, v ktorom dochádza k výmene tepla medzi pecným plynom a múčkou. Teplota surovinovej múčky na výstupe je približne 800 °C. Nasleduje proces čiastočnej kalcinácie – termický rozklad vápenca pri teplote 900 °C [32]. Tento proces prebiehajúci v kalcinačnom kanály možno zapísať rovnicou [33]:

$$CaCO_3 \rightarrow CaO + CO_2 \tag{1}$$

Nasledujúcim technologickým krokom je slinovanie, ktoré prebieha v závislosti od typu výrobného postupu zväčša v kontinuálnych rotačných peciach [34]. Schematické zobrazenie predohrievača, kalcinátora a rotačnej pece s rozdelením na jednotlivé časové a teplotné zóny, je spolu s priebehom tvorby slinku zobrazené na *Obrázku 3*.

Po dosiahnutí *medze slinutia* pri teplote 1 400 – 1 500 °C, reaguje vzniknutý oxid vápenatý s ďalšími oxidmi za vzniku slinku v podobe niekoľko centimetrových tvrdých granúl [35]. Zjednodušene možno tento proces zapísať rovnicou [33]:

$$CaO + SiO_2 + Al_2O_3 + Fe_2O_3 \rightarrow slinkové minerály$$
(2)

Slinok sa skladá z viac ako dvadsiatich zlúčenín, avšak najzastúpenejšími sú dikalciumsilikát (belit, označovaný ako C_2S), trikalciumsilikát (alit, C_3S), trikalciumaluminát (celit, C_3A) a tetrakalciumaluminoferit (brownmillerit, C_4AF) [36].

V ďalšom výrobnom stupni je slinok čiastočne ochladený najčastejšie v roštovom chladiči, pričom k úplnému dochladeniu dochádza v slinkových silách. Slinok sa následne homogenizuje s prísadami a prímesami, ktorými sú napríklad sádrovec (CaSO₄.2H₂O), ktorý predlžuje dobu spracovateľnosti betónovej zmesi, troska či popolček. Posledným výrobným stupňom je mletie v bubnových mlynoch na cementový prášok s priemerom zŕn do 100 µm [35], [12]. Výsledný produkt, ktorým je portlandský cement, je následne uskladnený v cementových silách [33]. Schéma výrobného procesu je zachytená na *Obrázku 4*.

Obrázok 3: Schematické zobrazenie predohrievača, kalcinátora a rotačnej pece na výrobu cementu [37].

Obrázok 4: Schéma výrobného procesu cementu [33].

2.4.2.4 Hydratácia cementu

Voda zohráva v procese tuhnutia a tvrdnutia portlandských cementov dôležitú úlohu. Podľa Hlaváča [25] ide o tzv. *hydraulické tuhnutie a tvrdnutie*, ktoré vedie ku vzniku vo vode nerozpustných a stálych produktov.

Chemickou podstatou tohoto procesu je hydrolýza a následná hydratácia bezvodých slinkových minerálov za vzniku vápenatých hydrosilikátov a hydroaluminátov. Najreaktívnejšími minerálmi sú C₃A a C₃S. V krátkom časovom odstupe reagujú aj minerály C₄AF a β -C₂S.

Dejom prebiehajúcim na fyzikálnej úrovni je zmena štruktúry cementovej zmesi, pri ktorej vznikajú pevné spoje medzi novovzniknutými časticami.

Hydratácia cementu prebieha v troch fázach:

- 1. *Indukčná fáza* je počiatočnou fázou po zmiešaní cementu s vodou. V tejto fáze trvajúcej niekoľko hodín je cementová pasta tvárna [25]. Indukčná fáza prebieha v dvoch etapách:
 - Počas prvej, tzv. preindukčnej etapy dochádza k zmáčaniu zŕn cementu a prebiehu prvých reakcií slinkových minerálov s vodou.
 Reakciou aluminátov a síranov s vodou vzniká portlandit hydroxid vápenatý Ca(OH)₂ a kalcium sulfoaluminát C₆AS₃H₃₂ s mineralogickým názvom etringit, označovaný aj ako AFt fáza. Tento dej prebiehajúci po dobu 10 až 15 minút je sprevádzaný intenzívnym vývinom hydratačného tepla.
 - Druhé indukčné obdobie je druhou etapou hydratácie. Dochádza pri ňom k úbytku silikátov a tvorbe zárodkov kryštálov hydrosilikátového C-S-H gélu (CaO_x ·SiO₂·H₂O_y). Druhé indukčné obdobie trvá zvyčajne 1 až 2 hodiny od zmiešania cementu s vodou. Uvoľnenie hydratačného tepla je pomalé a tvorba AFt fázy naďalej pokračuje. V dôsledku prenikania vody k zrnám cementu vznikajú nové hydratačné produkty [26].
- Poindukčná fáza, pri ktorej cementová zmes prechádza do tuhého skupenstva a priestor pôvodne vyplnený vodou je vyplňovaný hydratačnými produktmi [25]. V dôsledku reakcie C₃S vznikajú kryštály portlanditu a dlhovláknitého silikátu C-S-H, čím sa vytvárajú základy mikroštruktúry cementového kameňa [26].
- 3. Dosiahnutie stupňa stabilnej štruktúry je poslednou fázou. V porovnaní s predošlými fázami vzniká drobnovláknitý C-S-H gél, AFt fáza prechádza na monosulfát AFm a nastáva difúzna hydratácia C₂S. Vývin hydratačného tepla a rýchlosť hydratácie klesá. Toto obdobie trvajúce približne 28 dní nahradí obdobie tzv. dozrievania, ktoré môže trvať niekoľko rokov [26].

2.5 Prísady

Chemická podstata prísad ako povrchovo aktívnych látok a látok ovplyvňujúcich kinetiku hydratácie cementu umožňuje pozmeňovanie chemicko-fyzikálnych vlastností čerstvej alebo zatvrdnutej maltovej, či betónovej zmesi. Ako príklad možno uviesť plastifikačné prísady, ktoré umožňujú zníženie použitého množstva zámesovej vody pri zachovaní tekutosti zmesi [38] či stabilizátory zabraňujúce odlučovaniu vody v betónových zmesiach [39]. Do zvolenej zmesi sú

prísady pridávané počas jej miešania a ich obsah zvyčajne neprekročí 5 % hmotnosti cementu [16].

Účinnosť prísad závisí od druhu použitého cementu, avšak vo všeobecnosti platí, že väčší merný povrch cementu poskytuje väčšiu reakčnú plochu, ktorá zjednodušuje priebeh reakcií. Dôležitým faktorom ovplyvňujúcim reakciu prísad so zrnami cementu je aj koncentrácia prísady vztiahnutá k hmotnosti cementu. Jej hodnota sa pohybuje v rozmedzí 2 až 50 g prísady na 1 kg cementu [31].

2.5.1 Druhy prísad

Ďalšími možnými prísadami na úpravu vlastností maltovej alebo betónovej zmesi sú napríklad:

- plastifikačné prísady,
- stabilizačné prísady,
- prevzdušňujúce prísady,
- prísady urýchľujúce tuhnutie alebo tvrdnutie cementu (akcelerátory),
- prísady spomaľujúce tuhnutie (retardéry),
- hydrofóbne vodu odpudzujúce prísady,
- plynotvorné a penotvorné prísady,
- odpeňovače [40].

2.6 Prímesi

Vlastnosti čerstvej alebo zatvrdnutej maltovej, resp. betónovej zmesi, možno okrem použitia vyššie uvedených prísad, ovplyvniť aj použitím spojivových prímesí, ktoré sa na základe reaktivity rozdeľujú na inertné (typ I) a aktívne (typ II).

Inertné prímesi, medzi ktoré patria kamenné múčky (filery), vlákna, farebné pigmenty či polyméry, sa aktívne nezúčastňujú na hydratačných procesoch, ovplyvňujú však spracovateľnosť čerstvej maltovej alebo betónovej zmesi.

Aktívnymi prímesami sú anorganické zrnité materiály, ktoré majú svojou účasťou na hydratačných procesoch schopnosť ovplyvniť dlhodobé vlastnosti zatvrdnutých zmesí [13].

Týmito prímesami sú:

- Latentne hydraulické prímesi, ktoré bez prítomnosti aktivátora, napr. oxidu vápenatého alebo síranu sodného, zmiešané s vodou samovoľne netuhnú a netvrdnú. Typickým príkladom takéhoto spojiva je granulovaná vysokopecná troska.
- Pucolány, obsahujúce amorfný oxid kremičitý (SiO₂), kremičitany, hlinitany a hlinitokremičitany [41].

Pucolány sú látky, ktoré po zmiešaní s vodou neprejavujú spojivové vlastnosti, avšak v prítomnosti aktivátoru tvoria hydratačné produkty podobné produktom vznikajúcim pri tuhnutí portlandského cementu [16]. Ide o tzv. *pucolánovú reakciu,* do ktorej vstupuje pucolán, aktivátor (portlandit, Ca(OH)₂) a voda. Produktami pucolánovej reakcie sú hydratované kremičitany a hlinitany vápenaté [42].

Pemza, tuf, kremelína či vápenec, sú príkladmi prírodných pucolánov. K technogénnym pucolánom patria elektrárenské popolčeky, kalcinované bridlice, metakaolín, kremičitý úlet a i. [37]. V odbornej literatúre sa možno stretnúť so zistením, že prídavok pucolánov do spojivovej zmesi, pozitívne ovplyvňuje krátkodobé a čiastočne dlhodobé pevnosti mált alebo betónov [15].

2.6.1 Vysokopecná troska

Vzniká ako vedľajší produkt pri výrobe surového železa vo vysokých peciach [37]. Troska je spolu so surovým železom odpichovaná z vysokej pece pri teplote približne 1 536 °C a pomocou troskových vozov dopravená do troskových jám. Pri výrobe granulovanej vysokopecnej trosky je nasledujúcim technologickým krokom granulácia, ktorá zvyčajne prebieha mokrým spôsobom. Tekutá troska je v tomto kroku prudko ochladená vodou, čo spôsobuje jej zatuhnutie v sklovitom (amorfnom) stave a vznik sypkého granulátu s rozmerom granúl do 30 mm [43]. V prípade nižšej intenzity chladenia trosky, dochádza k vzniku kryštalickej štruktúry a táto troska je vhodná na výrobu tzv. umelého hutného kameniva a štrkoviny z vysokopecnej trosky (ozn. UHKT VP) [44].

Mletá granulovaná vysokopecná troska (MGVT, v cementárstve ozn. S) so špecifickým merným povrchom, ktorý sa pohybuje v rozmedzí 350 až 450 m².kg⁻¹, je pre použitie v cementárstve špecifikovaná európskou normou STN EN 15167-1 [45].

Zloženie MGVT je pomerne premenlivé, vplýva naň zloženie vysokopecnej vsádzky (rudy, prísady), technologický postup výroby železa či spôsob chladenia taveniny [44]. Všeobecnou požiadavkou na zloženie MGVT je väčšinový (2/3) hmotnostný obsah oxidu vápenatého (CaO), oxidu horečnatého (MgO) a oxidu kremičitého (SiO₂). Dôraz je kladený aj na minimálnu hodnotu hmotnostného podielu $\frac{CaO + MgO}{SiO_2}$, ktorá by nemala byť

nižšia ako 1 [46].

Zložka	CaO	SiO ₂	Al ₂ O ₃	MgO	FeO a Fe ₂ O ₃	S vo forme S ²⁻	MnO
Obsah [hm. %]	30 – 50	30 – 43	5 – 18	1 – 15	0,2 - 3	0,5 – 3	0,2 – 2

Tabuľka 4: Zvyčajné	percentuálne	zastúpenie	zložiek vo v	/ysokopecne	j troske	[47]
······································						

Vysokopecná troska nachádza využitie vo výrobe portlandských troskových cementov, vysokopecných či zmesových cementov [43]. Troska je však pridávaná do maltových alebo betónových zmesí aj za účelom čiastočného nahradenia cementu. S jej prídavkom môže byť spájaný čiastočne spomalený vývin hydratačného tepla či vývin počiatočných pevností. Prídavok trosky zvyšuje odolnosť mált alebo betónov voči pôsobeniu sulfátov [15].

2.6.2 Vápenec

Patrí k priemyselne často využívaným sedimentárnym horninám. Jeho hlavnou zložkou je minerál kalcit (CaCO₃ s trigonálnou kryštálovou štruktúrou) s prímesami dolomitu (CaCO₃.MgCO₃) či aragonitu (CaCO₃ kosoštvorcová kryštálová štruktúra) [48], [49].

Okrem minimálneho obsahu CaCO₃, ktorý predstavuje 75 hm. %, sú na vápenec pre použitie v portlandskom cemente kladené nasledujúce požiadavky [46]:

 Obsah ílovitých zložiek vo vápenci s merným povrchom 5 000 cm².g⁻¹, stanovený podľa ČSN EN 933-9 + A1 [50] skúškou metylénovou modrou, nesmie presiahnuť 1,2 g indikátoru na 100 g vzorky.

- Vyhovujúci celkový obsah organického uhlíka (TOC) vo vápenci, stanovený podľa ČSN EN 13639 [51] je:
 - Obsah TOC menší ako 0,2 hm. % (označenie vápenca LL),
 - Obsah TOC menší ako 0,5 hm. % (ozn. vápenca L).

Vápenec je v mnohých prípadoch pridávaný do betónových zmesí za účelom čiastočnej náhrady cementu, ktorá sa nepodieľa na hydratačných reakciách. Vďaka vysokej jemnosti svojich častíc vypĺňa v maltovej, resp. betónovej zmesi medzery medzi zrnami cementu a vytváraním nukleačných centier pre vznikajúce kryštály portlanditu, čiastočne urýchľuje hydratáciu silikátov a aluminátov. V spojitosti s týmto javom bol pozorovaný rýchlejší nárast počiatočných pevností [52].

2.6.3 Metakaolín

Metakaolín (MK) vzniká kalcináciou kaolínu alebo kaolinitických ílov pri teplote v rozmedzí 650 až 900 °C. Pri procese kalcinácie dochádza k dehydroxylácii kaolínu za vzniku metastabilnej fázy – metakaolínu [25]. Metakaolín je pridávaný do betónovej zmesi za učelom čiastočného nahradenia cementu, avšak jeho prednosťami je aj čiastočné zvýšenie trvanlivosti a pevnosti betónu [41]. V závislosti od množstva pridaného metakaolínu, môže ďalej dochádzať k zníženiu pórovitosti betónu, ktorá vedie k zvýšenej chemickej odolnosti [53].

2.7 Voda

Voda pridávaná do suchej cementovej zmesi tzv. zámesová voda, umožňuje hydratáciu cementu, zvlhčuje povrch zŕn kameniva a dodáva malte alebo betónu požadované reologické vlastnosti. Zámesová voda ovplyvňuje dôležité vlastnosti čerstvej alebo zatvrdnutej cementovei kaše a betónu ako napr. pevnosť v tlaku, zmrašťovanie, dotvarovanie, permeabilitu, mrazuvzdornosť a húževnatosť [35], [42]. Dôležitým aspektom, na ktorý je potrebné dbať je aj kvalita použitej vody. Podľa európskej normy STN EN 1008 je vhodnou zámesovou vodou pitná voda. Pri zvažovaní použitia ostatných druhov vôd (priemyselných, recyklovaných, podzemných, povrchových a i.), je vhodné pred ich prípadným použitím stanoviť zloženie a posúdiť ich vhodnosť na základe normy STN EN 1008. Neodporúčanými typmi vôd sú odpadové a splaškové vody [15].

Množstvo vody potrebné na plnú hydratáciu cementu závisí od jeho mineralogického zloženia, podmienok hydratácie, spôsobu spracovania a transportu čerstvého betónu [12]. Všeobecne možno povedať, že množstvo pridanej vody ovplyvňuje pevnosť malty alebo betónu. Čím je množstvo zámesovej vody menšie, tým je pevnosť cementového kameňa vyššia [42]. Mierou pevnosti zatvrdnutého cementového kameňa je *vodný súčiniteľ. Vodný súčiniteľ* je definovaný ako hmotnostný pomer účinného obsahu vody (w) na dávku cementu (c) v čerstvej betónovej zmesi [15]. *Účinný obsah vody* je určený ako rozdiel medzi celkovým obsahom vody v čerstvej betónovej zmesi a vodou, ktorá je obsiahnutá v póroch kameniva [12].

Optimálne množstvo zámesovej vody sa vo väčšine betónov pohybuje v rozmedzí 45 až 70 % z hmotnosti cementu, teda *w/c* = 0,45 až 0,70. V prípade *vysokého vodného súčiniteľa*, t. j. pri *nadbytku zámesovej vody*, sa zvyšuje pórovitosť cementového kameňa, ktorá negatívne ovplyvňuje vlastnosti ako pevnosť, nasiakavosť, trvanlivosť a vodotesnosť betónu.

Pri *nízkom obsahu vody* je vodný súčiniteľ *nižší* a v zhutnenej cementovej kaši je vyššia koncentrácia cementových častíc, čo je predpokladom na získanie veľmi hutnej a zložito spracovateľnej cementovej kaše [37].

Okrem zámesovej vody je pri výrobe mált a betónov dôležitá aj *ošetrovacia voda*. Ošetrovacia alebo hydratačná voda slúži na vyrovnávanie strát vody, resp. vlhkosti vznikajúcich pri tuhnutí a tvrdnutí betónu. K stratám vody dochádza pri odparení, vytečení alebo sa voda spotrebuje pri priebehu chemických reakcií [15].

2.8 Samozhutniteľné malty a betóny

Prvá myšlienka na vývoj samozhutniteľného betónu (SCC) sa zrodila v Japonsku v 80. rokoch minulého storočia. Hlavnými dôvodmi vývoja nového typu betónu bolo zvýšenie jeho odolnosti a trvácnosti. V roku 1988 profesor Okamura z tokijskej univerzity navrhol a vytvoril prvý prototyp samozhutniteľného betónu. Nasledovali ho veľké japonské stavebné a konštrukčné spoločnosti, ktoré začali tento betón využívať v praxi [54].

Prvou európskou krajinou, v ktorej bol *v polovici 90. rokov* SCC použitý je Švédsko. Približne od roku 2000 sa používanie SCC začalo rozširovať do ďalších európskych krajín [55]. Rozsah jeho použitia v Slovenskej a Českej republike je vzhľadom na jeho vyššiu cenu obmedzený. Využitie nachádza prevažne v špeciálnych stavbách.

2.8.1. Vlastnosti SCC

Okrem vysokej pevnosti a odolnosti SCC, patria medzi jeho prednosti reologické vlastnosti, ktoré umožňujú zatekanie zmesi a úplné vyplnenie debnenia zložitého tvaru a vysoko vystuženého prierezu bez narušenia súdržnosti zmesi. SCC sa spevňuje účinkom vlastnej hmotnosti bez potreby dodatočného zhutnenia [56]. Zhutňovanie bežne používaných betónov, prebieha najčastejšie procesom mechanickej vibrácie. Tento proces prispieva k narušeniu homogenity a môže viesť k neželanému unášaniu a segregácii kameniva. Použitím vibračného zariadenia môže dôjsť k rýchlejšiemu opotrebovaniu debnenia [57].

Prednosťou SCC je aj vysoká kvalita konečných povrchov, ich rovnorodá farebnosť, menší výskyt bublín a nižší vplyv netesností spojov formy. Dosiahnuté vlastnosti povrchov závisia od vhodného ošetrovania, ktoré by malo začať ihneď po uložení zmesi do debnenia, aby sa minimalizoval vznik škrupiny a zmrašťovacích trhlín [58].

Z ďalších výhod použitia SCC možno spomenúť:

- Nižšie náklady na čerpaciu techniku a autodomiešavače v dôsledku kratšej doby čerpania a ukladania zmesi.
- Priaznivejšia spotreba elektrickej energie spôsobená elimináciou vibračnej techniky.
- Prostredie s nižšou hladinou hluku.
- Možnosť využitia väčšieho objemu priemyselných produktov v betónovej zmesi, čo vedie k zníženiu množstva cementu [59].

K menej výhodným vlastnostiam SCC patrí:

- Citlivosť na zmeny v kvalite a množstve zložiek v zmesi ako napr. vlhkosť, čistota.
- Obmedzenie ukladania betónu samospádom z výšok viac ako 5 m. Odporúčaná bočná vzdialenosť toku sa pohybuje v rozmedzí 8 až 15 m.
- Vyššia obstarávacia cena v porovnaní s bežnými druhmi betónov [59].

2.8.2 Tieniace malty a betóny

V jadrových reaktoroch a úložiskách RAO sú tieniace betóny vystavené okrem vysokých teplôt najmä *y*-žiareniu a fotónovému žiareniu s energiou zhruba do 20 MeV. Prítomný je aj pomerne vysoký podiel ionizujúceho a neutrónového žiarenia [60], [61]. Dôležitým aspektom pri tienení zdrojov ionizujúceho žiarenia je jeho rovnomerné tienenie materiálom. V prípade použitia tieniacich SCC má použité ťažké kamenivo väčší sklon k segregácii. Segregácia je nežiaduci jav vo fáze tuhnutia a tvrdnutia betónu, kedy väčšie časti kameniva klesajú smerom nadol a vzniká nerovnomerné rozloženie zložiek v betóne. Preto je odporúčané dbať na výber vhodnej technológie výroby týchto konštrukcií a zvoliť vhodnú metódu na ich kontrolu v priebehu výstavby [61].

3 EXPERIMENTÁLNA ČASŤ

3.1 Cieľ práce

Cieľom diplomovej práce bolo overenie fyzikálno-mechanických vlastností troch vybraných zmesí samozhutniteľných ťažkých mált (SZM 100, 90 a 80) v závislosti od obsahu použitého cementu a spojivových prímesí čiastočne nahrádzajúcich cement.

Cieľom práce bolo na základe dosiahnutých výsledkov posúdenie možnosti optimalizácie zloženia a ďalšieho prípadného navyšovania množstva spojivových prímesí nahrádzajúcich cement v zmesiach samozhutniteľných ťažkých mált odolných voči pôsobeniu trvalého ionizujúceho žiarenia.

3.2 Materiály použité pri príprave maltových zmesí:

- Plnivo magnetitové kamenivo (LKAB Minerals AB, Švédsko)
- Spojivo a jeho zložky:
 - Cement Dyckerhoff Well API Class G-Black Label High sulfate-resistant (Dyckerhoff GmbH, Nemecko)
 - o Granulovaná vysokopecná troska (Kotouč Štramberk, spol. s r.o., Česká republika)
 - o Jemne mletý vápenec (Calmit, spol. s r. o., Slovenská republika)
 - o Metakaolín L05 Mefisto (České lupkové závody, a. s., Česká republika)
- Prísady:
 - o Superplastifikátor STACHEMENT 3000 (Stachema Bratislava a. s.)
 - Superplastifikátor STACHEMENT 910 (Stachema Bratislava a. s.)
 - o Stabilizátor STABILAN KC03 (Stachema Bratislava a. s.)
- Voda pitná voda z verejnej vodovodnej siete

3.3 Charakteristika použitých materiálov

Použité materiály a spojivové zložky v jednotlivých maltových zmesiach SZM 100, 90 a 80 boli charakterizované na základe hustoty a merného povrchu.

Hustota bola stanovená pyknometrickou metódou s použitím automatického plynového pyknometra Pentapyc 5200e od spoločnosti Quantachrome Instruments. Zvolené množstvo materiálu v závislosti od jeho typu bolo navážené na analytických váhach Mettler Toledo XS204. Materiál bol následne prenesený do priestoru pyknometra a podrobený analýze.

Merný povrch materiálov bol stanovený permeabilnou metódou na Blainovom prístroji od firmy Testing. Materiál navážený na analytických váhach Radwag WPS 510/C/2 bol vsypaný do cely Blainovho prístroja, kde bol zanalyzovaný. Stanovené charakteristické vlastnosti sú uvedené v *Tabuľke 1*. Obidva použité analyzátory sú zobrazené na *Obrázku 5*.

Tabuľka 1: Charakteristické vlastnosti použitých materiálov. Percentuálne zloženie spojivových zmesí použitých vo vzorkách SZM 90 a 80 je uvedené v Tabuľke 3.

Materiál	Hustota ρ [kg.m ⁻³]	Merný povrch S _{Blaine} [cm².g ⁻¹]
Cement Dyckerhoff	3 155	3 306
Spojivová zmes v SZM 90	3 110	3 287
Spojivová zmes v SZM 80	2 978	3 551
Vysokopecná troska	2 904	4 275
Vápenec	2 700	_
Metakaolín	2 627	_
STACHEMENT 3000	1 060	_
STACHEMENT 910	1 050	-
STABILAN KC03	1 015	_
Voda	1 000	-

Obrázok 5: Pyknometer Quantachrome Pentapyc 5200e (vľavo), Blainov prístroj (vpravo).

3.4 Výroba skúšobných telies

Skúšobné telesá v tvare hranolov s rozmermi 160 x 40 x 40 mm boli vyrobené postupom v súlade s STN EN 12390-1: Skúšanie zatvrdnutého betónu. Časť 1: Tvar, rozmery a iné požiadavky na skúšobné telesá [62]. Skúšobné telesá boli vyrobené z maltových zmesí SZM 100, 90 a 80 s vodným súčiniteľom 0,42. V každej zo zmesí bolo použité rozdielne množstvo spojiva a spojivo nahrádzajúcich prísad. Ako plnivo bolo v maltových zmesiach použité kamenivo magnetit. Percentuálny hmotnostný obsah zŕn v jednotlivých frakciách magnetitu je uvedený v *Tabuľke 2* a krivka zrnitosti vyplývajúca z uvedených údajov sa nachádza na *Obrázku 6*.

Veľkosť	Hmotnosť	Podiel	Celkový podiel	Celkový podiel
otvoru sita	zostatku [kg]	zostatkov	zostatkov [%]	prepadov [%]
[mm]		[%]		
2	0,00	0	0,00	100
1	0,18	18	18,00	82
0,5	0,35	35	53,00	47
0,25	0,25	25	78,00	22
0,125	0,11	11	89,00	11
0,063	0,11	11	100,00	0
Dno	0,00	0	100	0
$\sum Ri + P$	1	100	_	_

Obrázok 6: Grafické znázornenie krivky zrnitosti pre kamenivo s najväčším priemerom zŕn 2 mm.

Prehľad o percentuálnom hmotnostnom zložení jednotlivých zložiek spojivových zmesí použitých vo vzorkách SZM 100, 90 a 80 poskytuje *Tabuľka 3*.

	Zmes SZM 100	Zmes SZM 90	Zmes SZM 80
Zložka	Hmotnostný	Hmotnostný	Hmotnostný
	obsah [%]	obsah [%]	obsah [%]
Cement Dyckerhoff	100	90	80
Troska	_	6	12
Vápenec	_	3	6
Metakaolín	_	1	2

Hmotnostné zastúpenie všetkých zložiek v maltových zmesiach použitých na výrobu skúšobných telies vyjadrené v g a % sa nachádza v *Tabuľke 4*.

	Zmes SZM 100 až 80		
Zložka	Hmotnostný obsah	Hmotnostný obsah	
	[9]	[%]	
Kamenivo	1 260,0	20,70	
Spojivová zmes	3 000,0	49,20	
Superplastifikátor STACHEMENT 3000	18,0	0,30	
Superplastifikátor STACHEMENT 910	15,0	0,25	
Stabilizátor STABILAN KC03	3,0	0,05	
Voda	1 804,3	29,60	

Tabuľka 4: Zloženie maltových zmesí SZM 100, 90 a 80.

3.4.1 Postup výroby

Suroviny na výrobu maltových zmesí vo vyššie uvedených množstvách boli navážené na analytických váhach Radwag PS 6000.R2. Následne bolo v horizontálnej miešačke Beckel 20-00020 (*Obrázok 7*) zmiešané kamenivo s časťou zámesovej vody potrebnej na obalenie zŕn kameniva. K vlhkému kamenivu bolo primiešané spojivo v závislosti od typu pripravovanej vzorky. V ďalšom kroku bola primiešaná zmes zvyšného objemu vody, plastifikátorov a stabilizačnej prísady. Zmes bola miešaná celkovo po dobu 10 minút.

Čerstvá maltová zmes bola uložená do foriem (*Obrázok 8*) ošetrených odformovacím prostriedkom, ktoré boli následne umiestnené do zatuhnutia zmesí v prostredí so 100 % vlhkosťou. Vzorky boli po zatuhnutí premiestnené do vodného kúpeľa až po dobu kedy na nich boli vykonávané jednotlivé skúšky ich vlastností.

Obrázok 7: Miešačka Beckel.

Obrázok 8: Vzorky čerstvých SZM umiestnené vo formách na prípravu skúšobných telies.

3.5 Metódy skúšania spojív a maltových zmesí

Na základe predošlých experimentov [63], [64], [65] boli pre spojivové zmesi a vyrobené vzorky SZM, zvolené nasledujúce postupy:

Vlastnosti a priebeh hydratácie spojivových zmesí boli charakterizované:

- Prvkovou analýzou zloženia spojív v zmesiach SZM metódou röntgenovej fluorescenčnej spektrofotometrie
- Skúškou normovanej konzistencie a času tuhnutia cementovej pasty
- Izotermickou kalorimetriou.

Charakteristika vlastností čerstvých mált pozostávala z nasledujúcich stanovení:

- Stanovenie konzistencie skúškou rozliatím
- Stanovenie viskozity a vyplňovacej schopnosti

Skúšky a charakterizácia zatvrdnutých mált boli realizované pomocou:

- Röntgenovej práškovej difrakčnej analýzy
- Stanovenia objemovej hmotnosti mált
- Stanovenie pevnosti v ťahu pri ohybe
- Stanovenie pevnosti v tlaku
- Ultrazvuková impulzová metóda, systém Ultratest
- Termogravimetrickou analýzou TGA
- Skenovacej elektrónovej mikroskopie a energeticky disperznej röntgenovej spektroskopie

3.5.1 Röntgenová fluorescenčná spektrofotometria (XRF)

Kvalitatívne a kvantitatívne stanovenie kovových prvkov v práškových spojivových zmesiach s obsahom cementu 100, 90 a 80 hmotnostných % prebehlo pomocou energeticky disperznej röntgenovej (RTG) fluorescenčnej spektrofotometrickej metódy na Fakulte chemickej VUT v Brne. Vzorky boli snímané pomocou ručného RTG spektrofotometra Vanta VCR, ktorý sa nachádza na *Obrázku 9*.

Použitá metóda je založená na meraní intenzity emitovaného žiarenia vo forme fotónov s charakteristickou vlnovou dĺžkou pre každý prvok [66]. K emisii žiarenia dochádza pri interakcii dopadajúceho RTG žiarenia so vzorkou. RTG žiarenie spôsobuje prechod atómov vzorky zo základného energetického do excitovaného stavu, ktorý je nestabilný. V dôsledku nestability častica prechádza do pôvodného stavu, ktorý je sprevádzaný emisiou prebytočnej energie vo forme fotónov [67].

Obrázok 9: Ručný analyzátor Vanta VCR [53].

3.5.2 Skúška normovanej konzistencie a stanovenie času tuhnutia cementovej pasty

Normovaná konzistencia spolu so stanovením začiatku času tuhnutia cementovej pasty zloženej z cementu Dyckerhoff G-Well a vody, boli stanovené v súlade s STN EN 196-3 [68].

Skúška *normovanej konzistencie* spočívala v stanovení vhodného množstva vody, ktoré je potrebné zmiešať s cementom, aby výsledná cementová pasta dosiahla hodnotu normovanej konzistencie.

Pri prvej skúške určenia vhodného množstva vody bolo navážených 100 g cementu, ktoré boli po častiach primiešavané do 25 ml vody. Od momentu posledného prídavku cementu do vody, tzv. nulového času, bola spustená časomiera. Zmes bola homogenizovaná v laboratórnom mixéry Laboratory Mortar Mixer Model: JJ-5 po dobu 90 s. Zmes bola v priebehu nasledujúcich 30 s zotretá zo stien nádoby mixéra a opäť homogenizovaná počas 90 s. Celkový čas miešania pasty predstavoval 3 min. Skúška hustoty bola realizovaná prostredníctvom Vicatovho prístroja s hustomerným valčekom do 4 min od nulového času. Vicatov prstenec ošetrený olejom umiestnený na sklenenej doštičke bol po okraj naplnený pripravenou cementovou pastou. Zvyšok pasty bol zotretý špachťlou. Prstenec bol následne umiestnený pod hustomerný valček tak, aby bol valček nad stredom naplneného prstenca. Valček bol následne na 1 až 2 s spustený do polohy, v ktorej sa dotýkal povrchu cementovej pasty. Následne bola uvoľnená pohyblivá časť s valčekom, ktorý bol spustený do vzorky. Hĺbka vniknutia valčeka bola na stupnici prístroja odčítaná v rozmedzí 5 až 30 s po jeho spustení. Skúška bola opakovaná po dosiahnutie optimálnej vzdialenosti 6 ± 2 mm medzi spodnou plochou valčeka a sklenenou doštičkou.

V nadväznosti na predchádzajúcu skúšku bol stanovený *začiatok času tuhnutia cementovej pasty* s normovanou konzistenciou.

Na prípravu cementovej pasty bolo navážených 100 g cementu a na základe výsledkov predchádzajúcej skúšky 27,07 ml vody. Postup miešania cementovej zmesi, spustenie časomiery a spôsob umiestnenia vzorky do Vicatovho prstenca je zhodný s postupom uvedeným vyššie. Stanovenie času tuhnutia pasty prebehlo na Vicatovom prístroji s oceľovou ihlou. Vicatov prstenec s cementovou pastou bol umiestnený pod Vicatovu ihlu. Ihla bola následne spustená do polohy, v ktorej sa jej hrot dotýkal povrchu pasty. Po 1 až 2 s bola pohyblivá časť s ihlou uvoľnená a ihla bola spustená do cementovej pasty. Hĺbka vniknutia ihly bola zo stupnice odčítaná po zastavení vnikania, najneskôr však po 30 s. Interval meraní bol určený na 10 min a po dvadsiatich opakovaniach bol upravený na 5 min. Merania boli opakované po dosiahnutie vzdialenosti 4 ± 2 mm medzi hrotom ihly a sklenenou doštičkou [35], [68].

Obrázok 10: Vicatove prístroje s hustomerovým valčekom a ihlou.

3.5.3 Izotermická kalorimetria

Vplyv prímesí na hydratačný mechanizmus spolu s priebehom vývinu hydratačného tepla a tepelného toku počas hydratácie, bol vo vzorkách spojivových zmesí s obsahom cementu 100, 90 a 80 hmotnostných % sledovaný metódou izotermickej kalorimetrie. Stanovenie prebehlo na osemkanálovom izotermickom kalorimetri TAM Air od spoločnosti TA Instruments (*Obrázok 11*). Vývoj hydratačného tepla bol sledovaný pri teplote 25 °C v laboratóriu Centra materiálového výskumu FCH VUT Brno.

Vzorky boli umiestnené do sklenenej ampulky s viečkom o objeme 20 ml. K vzorke bol pomocou striekačky pridaný 1 ml destilovanej vody a vzniknutá zmes bola zhomogenizovaná drôtikom. Ampulka s pripravenou zmesou bola následne vložená do kalorimetra a po nastavení parametrov merania zanalyzovaná [69].

Obrázok 11: Izotermálny kalorimeter TA Instruments, TAM Air [57].

3.5.4 Stanovenie konzistencie čerstvej SZM skúškou rozliatím

Konzistencia čerstvej maltovej zmesi bola stanovená na základe normovanej skúšky rozliatím za pomoci kužeľa mini S-Cone a sklenenej podložky s meradlom. Pomery zložiek zmesi boli zvolené na základe výsledkov predchádzajúcich reologických stanovení Ústavu stavebníctva a architektúry SAV.

Bezodná kužeľová forma bola umiestnená podľa normovaného predpisu na podkladovú platňu s rozmermi 900 x 900 mm s vyznačeným stredom a kruhom s priemerom 200 mm. Forma bola po okraj naplnená maltovou zmesou. Prebytočná zmes bola z okraja formy stiahnutá a povrch zmesi bol zarovnaný pomocou zarovnávacej tyče. Po následnom vertikálnom zodvihnutí formy bola spustená časomiera. Čas bol zastavený keď vzorka dosiahla priemer 200 mm a po zastavení rozlievania sa na meradle odčítal finálny priemer rozliatia vzorky najneskôr však do 2 minút od začatia skúšky [70].

Obrázok 12: Podkladová doska s kužeľovou formou (vľavo) a podkladová doska s maltovou zmesou po ukončení skúšky (vpravo).

3.5.5 Stanovenie viskozity a vyplňovacej schopnosti SZM

Normované stanovenie viskozity a vyplňovacej schopnosti vzorky čerstvej maltovej zmesi so zložkami v pomere uvedenom v podkapitole 3.5.4, bolo vyhodnotené na základe skúšky mini V-lievikom.

Pripravená maltová zmes bola naliata do lievika zobrazeného na *Obrázku 13*. Lievik bol zabezpečený uzáverom proti pretekaniu a pod lievik bola umiestnená nádoba na zachytávanie prípadných strát vzorky. Po krátkom odležaní vzorky (cca 10 ± 2 s) bol uzáver lievika uvoľnený za spustenia časomiery. Skúška prebiehala do momentu, od ktorého bolo možné prvýkrát vidieť cez lievik do misky, kedy sa časomiera zastavila a odčítal sa príslušný čas potrebný na pretečenie danej vzorky [71].

Obrázok 13: Mini V-lievik.

3.5.6 Röntgenová prášková difrakčná analýza (XRPD)

Fázové zloženie zatuhnutých maltových zmesí SZM 100, 90 a 80 vo veku 28 dní spolu s fázovým zložením magnetitového kameniva, bolo stanovené semikvantitatívnou XRPD metódou, ktorej princípom je interakcia dopadajúceho röntgenového žiarenia s atómami kryštalickej mriežky v sledovanej vzorke. Po dopade a rozptyle žiarenia sa stávajú atómy kryštalickej mriežky zdrojmi RTG žiarenia, čím vzniká difraktované žiarenie. Podmienkou pre vznik žiarenia je platnosť Braggovej rovnice, ktorá definuje geometrické podmienky medzi dopadajúcim žiarením a orientáciou kryštalografickej štruktúry sledovaného materiálu [72], [73]. Princíp RTG difrakcie je znázornený na *Obrázku 14*.

Vzorky zatuhnutých zmesí boli upravené do práškovej podoby podrvením a preosiatím cez nerezové sito s veľkosťou ôk 0,063 mm. Následne boli vzorky premiešané s acetónom a po jeho odparení boli vysušené v sušiarni pri teplote 50 °C po dobu 24 hodín. Takto pripravené vzorky boli umiestnené do držiaku, jemne zarovnané a zanalyzované. Analýza vzoriek

prebehla na RTG práškovom difraktometri Empyrean s CuKα anódou od spoločnosti Malvern Panalytical v CMV na FCH VUT Brno. Snímka goniometra je zachytená na *Obrázku 15*.

Obrázok 14: Braggova rovnica. Princíp RTG difrakcie [60].

Obrázok 15. Goniometer. RTG difraktometer Panalytical, Empyrean.

3.5.7 Stanovenie objemovej hmotnosti zatvrdnutých mált

Objemová hmotnosť zmesí SZM 100, 90 a 80 vo veku 2, 7, 28 a 90 dní bola stanovená v súlade s STN EN 12390-7. Výpočty objemovej hmotnosti ρ boli realizované podľa vzťahu:

$$\rho = \frac{m}{V} [\text{kg.m}^{-3}] \tag{1}$$

Kde: *m* je hmotnosť skúšobného hranola [kg],

V – objem získaný zo zmeraných rozmerov skúšobného telesa [m³].
Hmotnosť bola získaná odvážením skúšobných hranolov na analytických váhach Radwag PS 6000.R2. Rozmery hranolov potrebné na výpočet objemu boli odmerané posuvným meradlom [74].

3.5.8 Stanovenie pevnosti v ťahu pri ohybe

Vzorky SZM boli podrobené normovanej skúške v ťahu pri ohybe na skúšobnom lise od firmy VEB Werkstoffprüfmaschinen Leipzig so zariadením pre zaťažovanie pozostávajúcom z dvoch oceľových podperných a jedného zaťažovacieho valca. Normovaný priemer valcov sa pohybuje v rozmedzí 20 až 40 mm. Tlakovým pôsobením zaťažovacieho valca na skúšobný hranol vzniklo napätie na jeho ťahanom (spodnom) a tlačenom (hornom) povrchu. Po dosiahnutí medze pevnosti materiálu (maximálneho zaťaženia), došlo k porušeniu povrchu vzorky a vzniku trhliny po celom priereze vzorky. Úlomky hranolov boli ďalej použité na stanovenie pevnosti v tlaku [75].

Pevnosť v ťahu pri ohybe f_{cf} bola určená na základe vzťahu:

$$f_{cf} = \frac{3 \cdot F \cdot l}{2 \cdot d_1 \cdot d_2^2} \text{[MPa]}, \tag{2}$$

kde: F je maximálne zaťaženie [N],

- l osová vzdialenosť medzi podpernými valčekmi [mm],
- d_1 a d_2 rozmery priečneho rezu telesa [mm].

Obrázok 16: Skúšobný lis (vľavo) a detailný záber zaťažovacích valcov (vpravo).

3.5.9 Stanovenie pevnosti v tlaku deštruktívnou metódou

Stanovenie pevnosti v tlaku zatvrdnutých SZM deštruktívnou metódou prebehlo podľa normovaného postupu po 2, 7, 28 a 90 dňoch od prípravy zmesí. Skúšobné hranoly boli podrobené deštruktívnej skúške na skúšobnom lise od výrobcu VEB Werkstoffprüfmaschinen Leipzig *(Obrázok 17)*. Hranoly boli uložené medzi prítlačné dosky lisu a vystavené postupnému plynulému zaťažovaniu do momentu ich porušenia.

Hodnoty pevností v tlaku f_c boli zistené na základe pomeru [76]:

$$f_c = \frac{F}{A_c} [\text{MPa}]$$
(3)

Kde: F je maximálna sila pri porušení vzorky [N],

 A_c – prítlačná plocha [mm²].

Obrázok 17. Skúšobný lis a umiestnenie vzorky medzi prítlačnými doskami.

3.5.10 Stanovenie dynamického modulu pružnosti ultrazvukovou (UZV) impulzovou metódou a ultrazvukovým meracím systémom UltraTest

Modul pružnosti s využitím generátora UZV vlnenia Mettler Toledo Thornton 200CR (Obrázok 18), bol stanovený normovaným [77] *postupom UZV impulzovej metódy* pre všetky vzorky maltových zmesí SZM 100, 90 a 80 vo veku 2, 7, 28 a 90 dní.

Dynamický modul pružnosti s požitím osemkanálového UZV meracieho systému UltraTest IP-8 (Obrázok 19) bol kontinuálne stanovený vo vzorkách SZM 100, 90 a 80 do veku 28 dní.

UZV impulzová metóda patrí k nedeštruktívnym statickým stanoveniam dynamického modulu pružnosti a spočíva v meraní rýchlosti šírenia impulzov pozdĺžneho UZV vlnenia v meranom materiáli. Rýchlosť šírenia impulzov je získaná na základe množstva času potrebného na prechod čela zväzku UZV vlnenia medzi snímačom a budičom UZV prístroja [78].

Pred sledovaním rýchlosti šírenia UZV vlnenia na prístroji Mettler Toledo Thornton 200CR boli bočné strany skúšobných hranolov a čidlá UZV prístroja ošetrené technickou vazelínou. Po priložení čidiel k hranolu, bol z prístroja odčítaný čas prechodu impulzu vzorkou [77].

Výpočet dynamického modulu pružnosti E_{bu} vo vzorkách bol následne realizovaný na základe vzťahu [78]:

$$E_{bu} = \rho \cdot v_L^2 \cdot \frac{1}{k^2} \cdot 10^{-9} \text{ [GPa]}, \tag{4}$$

Kde: ρ je objemová hmotnosť malty [kg.m⁻³],

- V_L impulzová rýchlosť pozdĺžneho UZV vlnenia [m.s⁻¹],
- k súčiniteľ rozmernosti prostredia. Pre jednorozmerné prostredie je hodnota súčiniteľa k = 1.

Obrázok 18. Mettler Toledo, Thornton 200CR.

Stanovenie modulu pružnosti pomocou systému UltraTest IP-8 spočívalo v umiestnení čerstvých maltových zmesí do silikónových foriem vybavených postrannými sondami a nastavení parametrov merania. Hodnota dynamického modulu pružnosti E_{bu} jednotlivých vzoriek bola následne stanovená na základe vzťahu [79]:

$$E_{bu} = k \cdot v^2 \cdot \rho \cdot 10^{-9}$$
 [GPa] (5)

Kde $k = \frac{(1+\mu) \cdot (1-2\mu)}{(1-\mu)}$,

 μ je Poissonovo číslo, ktorého hodnota pre SCC je 0,2 [80]

V – rýchlosť šírenia UZV vlnenia [m.s⁻¹],

 ρ – objemová hmotnosť vzorky [kg.dm⁻³].

Obrázok 19: UltraTest, IP-8 (vľavo), silikónová forma s postrannými sondami (vpravo) [69].

3.5.11 Termogravimetrická analýza (TGA)

Zloženie jednotlivých fáz spojivových zmesí použitých vo vzorkách SZM 100 až 80 vo veku 2, 7 a 28 dní bolo v závislosti od tepelného pôsobenia charakterizované termogravimetrickou analýzou.

Analýza bola realizovaná pomocou termického analyzátora Mettler Toledo TGA/DSC – 1 (*Obrázok 20*) na Ústave stavebníctva a architektúry Slovenskej akadémie vied v Bratislave. Výhodou použitého analyzátora je možnosť sledovať vlastnosti vzoriek dvomi metódami na jednom prístroji. Týmito metódami sú termogravimetria a diferenčná kompenzačná kalorimetria (DSC). Termogravimetrické stanovenie spočíva v sledovaní hmotnostných zmien vzorky v závislosti od teploty. Pri zahrievaní vzorky môže vo všeobecnosti dôjsť k úbytku alebo nárastu hmotnosti, pričom úbytok je dôsledkom uvoľňovania plynnej fázy [81].

Diferenčná kompenzačná kalorimetria je založená na súčasnom zahrievaní analyzovanej vzorky a referenčnej látky bez teplotného rozdielu. Potenciálny rozdiel teplôt je kompenzovaný v závislosti od deja prebiehajúceho vo vzorke [82]. Potrebné množstvo vzorky s hmotnosťou 50 mg bolo navážené na analytických váhach Mettler Toledo XS204 do platinového kelímku s presnosťou na jedno desatinné miesto. Následne bola vzorka v otvorenom kelímku umiestnená do priestoru pece analyzátora. Analýza prebehla v atmosfére syntetického vzduchu s rýchlosťou ohrevu 10 °C.1 min⁻¹. Vzorka bola zahrievaná do teploty 1 000 °C.

Obrázok 20: Termický analyzátor Mettler Toledo, TGA/DSC - 1.

3.5.12 Skenovacia elektrónová mikroskopia (SEM) a energeticky disperzná röntgenová spektroskopia (EDS)

Metóda bola použitá za účelom štúdia mikroštruktúry vzoriek SZM 100, 90 a 80 vo veku 28 dní a fázového rozhrania medzi cementovou pastou a kamenivom. Prvkové zloženie vzoriek bolo stanovené metódou EDS v Centre materiálového výskumu FCH VUT Brno.

Princípom uvedených metód je interakcia zväzku urýchlených elektrónov emitovaných z elektrónového zdroja s povrchom vzorky. Dôsledkom tejto interakcie vzniká množstvo fotónov a elektrónov [83], ktoré sú zobrazené na *Obrázku 21*.

Obe analýzy prebehli na skenovacom elektrónovom mikroskope EVO LS 10 od spoločnosti Carl Zeiss (*Obrázok 22*). Povrch vzoriek bol pred snímkovaním upravený pozlátením. Snímky vzoriek pri metóde SEM boli zhotovené prostredníctvom sekundárnych elektrónov. Tieto elektróny vznikajú pri neelastických zrážkach urýchlených elektrónov s elektrónmi nachádzajúcimi sa v elektrónových obaloch atómov vzorky [83]. Metóda EDS využíva pre tvorbu obrazu vzniknuté röntgenové žiarenie [84].

Obrázok 21: Interakcia elektrónového zväzku so vzorkou [74].

Obrázok 22: Skenovací elektrónový mikroskop Carl Zeiss – EVO LS 10.

4 VÝSLEDKY A DISKUSIA

4.1 Röntgenová fluorescenčná spektrofotometria (XRF)

Obsah prvkov v spojivách použitých v zmesiach SZM 100, 90 a 80 bez prídavku kameniva a vody, boli stanovené vo forme oxidovej fázy metódou XRF.

Z výsledkov stanovenia (*Tabuľka 5, Obrázok 23*) vyplýva, že k najzastúpenejším oxidom vo všetkých analyzovaných spojivách patrí oxid vápenatý (CaO), oxid kremičitý (SiO₂) a oxid železitý (Fe₂O₃). Najvyššia hmotnostná koncentrácia oxidu vápenatého a oxidu železitého bola stanovená v spojivovej zmesi vzorky SZM 100, teda v cemente Dyckerhoff bez pridaných prímesí. Zvýšený obsah oxidu kremičitého a oxidu hlinitého (Al₂O₃) bol zistený vo vzorke SZM 90 a 80, čo je pravdepodobne spôsobené prídavkom vysokopecnej trosky a metakaolínu.

	Hmotnostná koncentrácia [%]				
Oxidová fáza Zmes	SZM 100	SZM 90	SZM 80		
CaO	67,41	66,39	63,86		
SiO ₂	18,46	18,64	20,32		
Fe ₂ O ₃	4,97	4,69	4,55		
SO₃	4,48	4,03	3,76		
Al ₂ O ₃	3,50	4,09	4,74		
K ₂ O	0,53	0,48	0,45		
TiO ₂	0,24	0,24	0,29		
SrO	0,15	0,14	0,14		
MnO	0,11	0,12	0,15		
P ₂ O ₅	0,07	0,05	0,06		
ZnO	0,016	0,016	0,01		
CuO	0,014	0,013	0,012		
MgO	0,00	1,034	1,60		

Tabuľka 5: Percentuálne zastúpenie zlúčenín prvkov vo forme oxidov v spojivových zmesiach.

Obrázok 23: Grafické zobrazenie hmotnostného zastúpenia jednotlivých oxidových fáz prvkov vo vzorkách SZM 100, 90 a 80.

4.2 Skúška normovanej konzistencie a stanovenie času tuhnutia cementovej pasty

Požadovaná *normou stanovená konzistencia cementovej pasty* bola vyhovujúca pri prídavku vody v objeme 27,07 ml k 100 g cementu. Prídavok vody predstavuje 34,5 % z celkového objemu cementovej pasty. Vzdialenosť medzi spodnou plochou hustomerového valčeka a sklenenou podložkou Vicatovho prstenca dosiahla pri uvedenom prídavku vody hodnotu 7 mm. Táto hodnota spĺňa normou stanovené požiadavky.

V *Tabuľke 5* sú uvedené postupne pridávané objemy vody k 100 g cementu spolu so vzdialenosťou medzi spodnou plochou valčeka a sklenenou podložkou, až po dosiahnutie požadovanej konzistencie cementovej pasty. Grafické vyjadrenie závislosti vzdialenosti medzi plochou hustomerového valčeka a plochou podložky s vyznačeným bodom požadovanej normovanej hustoty sa nachádza na *Obrázku 24*.

Tabuľka 5: Objem pridanej vody do vzoriek a nameraná vzdialenosť medzi plochou valčeka a podložky.

Meranie č.	т _{н20} [ml]	Obsah vody v cementovej paste [hm. %]	h [mm]
1	27,50	35,06	2,0
2	27,00	34,29	9,0
3	27,25	34,68	4,0
4	27,18	34,57	4,0
5	27,10	34,44	4,5
6	27,05	34,37	7,5
7	27,07	34,40	7,0

Obrázok 24: Graf zobrazujúci závislosť vzdialenosti medzi spodnou plochou valčeka a plochou podložky od množstva pridanej vody.

Začiatok času tuhnutia cementovej pasty bol na základe experimentu zaznamenaný v čase 255 min od spustenia časomiery v tzv. nulovom čase. Vzdialenosť hrotu ihly od sklenenej podložky Vicatovho prstenca sa nachádzala v normovanom intervale a jej hodnota

predstavovala 1,8 mm. Stanovený čas tuhnutia cementovej pasty zodpovedá normovým požiadavkám.

Časová závislosť priebehu tuhnutia cementovej pasty s vyznačeným bodom začiatku tuhnutia pasty je zobrazená na *Obrázku 25*.

Obrázok 25: Krivka tuhnutia cementovej pasty.

4.3 Izotermická kalorimetria

Časový priebeh hydratácie spojivových zmesí po dobu 48 hodín a následný vznik hydratačných produktov použitých vo všetkých troch vzorkách SZM charakterizovaný metódou izotermickej kalorimetrie je zobrazený na nižšie uvedených kalorimetrických krivkách. Súhrnné kalorimetrické krivky vyjadrujúce časovú závislosť vývinu hydratačného tepla a tepelného toku sú pre detailnejšiu orientáciu zobrazené separátne.

Obrázok 26: Kalorimetrické krivky pre spojivo bez prímesí použité v maltovej zmesi SZM 100.

Z priebehu ukážkových kalorimetrických kriviek pre vzorku SZM 100 je zrejmé, že preindukčná (zmáčacia) fáza nasledujúca po zmiešaní vzorky s vodou, je sprevádzaná značným vývinom hydratačného tepla. Počas tejto fázy dochádza k reakcii C₂S, C₃S, C₃A a C₄AF so sadrovcom za vzniku etringitu C₆AS₃H₃₂ a portlanditu. Vzniknutý etringit ďalej obaľuje zrná C₃A, čím vytvára bariéru medzi zrnom a vodou, ide o tzv. topochemický proces. Dĺžka tohto procesu je zhruba 20 minút. Prudký pokles vývinu hydratačného tepla naznačuje prechod do indukčnej fázy, v ktorej naďalej vzniká etringit.

Približne 4 hodiny od zmiešania spojivovej zmesi s vodou bol pozorovaný nárast vývinu hydratačného tepla, ktorý je dôsledkom začiatku tuhnutia zmesi, ide o tzv. zrýchlenú poindukčnú fázu.

Ďalší priebeh krivky s maximálnou hodnotou hydratačného tepla v okolí 12 hodín je dôsledkom tvorby C-S-H gélu, ktorá je spôsobená úplnou hydrolýzou slinkových minerálov.

Pokles kriviek a ich opätovný mierny nárast v čase cca 17,5 hodiny indikuje prechod do spomalenej fázy a s ňou spojený vznik základov mikroštruktúry cementového kameňa. V tejto perióde je porušovaná vrstva etringitu okolo cementových zŕn. Následný pokles vývinu hydratačného tepla a prechod do poslednej, tzv. difúznej fázy, je dôsledkom postupnej stabilizácie štruktúry cementového kameňa, jeho tuhnutia a nadobúdania pevnosti.

Obrázok 27: Graf časovej závislosti tepelného toku počas hydratácie spojív vo vzorkách SZM 100 až 80.

Priebeh hydratácie spojív použitých vo všetkých vzorkách SZM 100 až 80 zobrazený na *Obrázku* 27 a 28, odráža vyššie uvedené procesy prebiehajúce počas hydratácie.

V preindukčnej fáze hydratácie neboli v správaní jednotlivých vzoriek spozorované odchýlky. Tieto boli pozorované na konci indukčnej fázy v oblasti začiatku tuhnutia spojivovej zmesi, ktorý bol vo vzorke SZM 100 v porovnaní so SZM 90 a 80 mierne posunutý za 4 hodiny. Intenzita tvorby C-S-H gélu v časovom okruhu 12 hodín bola najvyššia vo vzorke SZM 100 a v najmenšej miere sa táto tvorba prejavila vo vzorke SZM 80, pričom medzi krivkami jednotlivých vzoriek je viditeľný pomerne výrazný rozdiel.

Vznik mikroštruktúry cementového kameňa naznačuje pík v blízkosti 17 hodín. Rozdiel jeho intenzity v jednotlivých vzorkách signalizuje, že priebeh vzniku cementového kameňa bol najvýraznejší vo vzorke SZM 100 a vo vzorke SZM 80 bol, naopak, najmenej výrazný.

Obrázok 28: Grafické zobrazenie časovej závislosti vývoja hydratačního tepla počas hydratácie spojív použitých vo vzorkách SZM 100 až 80.

Na základe výsledkov kalorimetrického stanovenia možno zhodnotiť, že vzorka spojiva použitého v maltovej zmesi SZM 100, teda vzorka cementu Dyckerhoff bez pridaných prímesí, vykazovala najintenzívnejší vývin tepla a teda aj najvyššiu rýchlosť hydratácie. Nahradenie časti cementu prímesami teda vplýva na zníženie rýchlosti hydratácie v priebehu hydrolýzy a následnej hydratácie slinkových minerálov.

4.4 Stanovenie konzistencie čerstvej SZM skúškou rozliatím

Skúškou rozliatím bola stanovená konzistencia maltovej zmesi s pomerom kameniva, cementu a vody 4:1:0,42. Sledovaná vzorka dosiahla kruh s priemerom 200 mm v čase 2,66 s. V čase 4,25 s dosiahla vzorka maximálne rozliatie, ktorého priemer predstavoval 323 mm. Výsledky skúšky sú vyhovujúce v prípade, ak vzorka dosiahne rozliatie s priemerom 200 mm v časovom rozmedzí 2 až 3 s a priemer maximálneho rozliatia vzorky je 24 až 26 mm. Konzistencia skúšanej maltovej zmesi spĺňa uvedené požiadavky.

4.5 Stanovenie viskozity a vyplňovacej schopnosti SZM

Viskozita a vyplňovacia schopnosť bola stanovená pre maltovú zmes s vyššie uvedeným pomerom zložiek. Hodnota času odmeraného od uvoľnenia uzáveru mini V-lievika po moment, kedy bolo možné cez maltovú zmes umiestnenú v lieviku vidieť do nádoby pod lievikom, predstavovala 6,85 s. Vzorka maltovej zmesi spĺňa dosiahnutým časom podmienku vyhovujúceho stanovenia, ktorou je rozmedzie dosiahnutého času 7 až 11 s.

4.6 Röntgenová prášková difrakčná analýza (XRPD)

Prvky vo forme oxidových fáz boli vo vzorkách SZM 100, 90 a 80 stanovené metódou XRF (podkapitola 3.5.1). Minerály obsahujúce dané stanovené oxidové fázy boli identifikované metódou XRPD. Pre získanie komplexného prehľadu o mineralogickom zložení maltových zmesí, bolo toto zloženie stanovené aj vo vzorke kameniva. RTG difraktogramy jednotlivých vzoriek sa nachádzajú v Prílohe 1. Percentuálne zastúpenie minerálov vo vzorkách je uvedené v *Tabuľke 6*.

	Hmotnostný obsah [%]			
Minerál	SZM 100	SZM 90	SZM 80	Kamenivo
Magnetit Fe ₃ O ₄	37	41	41	78
Portlandit Ca(OH ₂)	19	15	18	_
Larnit Ca ₂ (SiO ₄)	12	12	13	_
Biotit K(Mg,Fe) ₃ (OH,F) ₂ AlSi ₃ O ₁₀	9	7	5	3
Hatrurit Ca₃SiO₅	8	6	7	_
Brownmillerit Ca ₂ FeAlO ₅	5	5	5	_
Kremeň SiO ₂	3	4	3	6
Kalcit CaCO ₃	3	6	5	_
Hematit Fe ₂ O ₃	2	2	4	3
Etringit Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ · 26H ₂ O	2	1	_	_
Hydrotalcit Mg ₆ Al ₂ (CO ₃)(OH) ₁₆ · 4H ₂ O	_	1	_	_
Albit Na(AlSi ₃ O ₈)	_	_	_	10

Tabuľka 6: Zastúpenie minerálov vo vzorkách stanovené XRPD metódou.

Spoločným rysom všetkých vzoriek je väčšinový obsah minerálu magnetit nachádzajúci sa v použitom kamenive. Hmotnostný objem použitého kameniva bol vo všetkých troch vzorkách rovnaký.

Nevýrazné odchýlky boli pozorované medzi obsahom portlanditu a larnitu v jednotlivých vzorkách. Vo všetkých vzorkách bol stanovený identický obsah brownmilleritu. Rozdiel sa prejavil v obsahu biotitu, hatrutritu, kremeňa a ďalších menšinových prvkov.

4.7 Stanovenie objemovej hmotnosti zatvrdnutých mált

Objemová hmotnosť vzoriek SZM 100, 90 a 80 bola stanovená do veku 90 dní v normou stanovených časových intervaloch 2, 7, 28 a 90 dní. Stanovené hodnoty objemovej hmotnosti sú uvedené v Prílohe 2. Na základe týchto hodnôt boli vypracované grafy pre jednotlivé vzorky vo všetkých časových intervaloch merania. Ukážkové grafy časovej závislosti objemovej hmotnosti vybranej vzorky SZM 100, stanovenej vo veku 2, 7, 28 a 90 dní, sú uvedené na *Obrázku 29*. Grafické spracovanie hodnôt vzorky SZM 90 a 80 je uvedené v Prílohe 2. V každom uvedenom časovom období, boli stanovené tri hodnoty objemovej hmotnosti vzoriek a tieto hodnoty boli následne spriemerované. Priemer hodnôt spolu so smerodajnou odchýlkou pre všetky vzorky SZM, je uvedený na *Obrázku 30*.

Obrázok 29: Objemové hmotnosti vzorky SZM 100 vo veku 2, 7, 28 a 90 dní.

Z čiastkových grafov pre vzorku SZM 100, v ktorej bol ako spojivo použitý cement Dyckerhoff bez cement nahrádzajúcich prímesí, je zrejmé, že najvyššiu objemovú hmotnosť 3 411 kg.m⁻³ dosiahla táto vzorka po 28 dňoch hydratácie. Najnižšia hodnota 3 350 kg.m⁻³ bola stanovená vo veku 7 dní, čo je pravdepodobne spôsobené znížením obsahu vody v maltovej zmesi v dôsledku jej spotreby na tvorbu hydratačných produktov obsahujúcich chemicky viazanú vodu. Priemerná hodnota z každého časového intervalu merania je spolu s ďalšími hodnotami uvedená na *Obrázku 30*.

Obrázok 30: Priemerná objemová hmotnosť maltových zmesí SZM 100, 90 a 80.

Grafický záznam hodnôt objemovej hmotnosti na *Obrázku 31* zachytáva správanie sa všetkých vzoriek SZM 100 až 80 vo všetkých časových intervaloch, v ktorých bolo uskutočnené stanovenie objemových hmotností.

Najvyššou hodnotou objemovej hmotnosti vzoriek, bola hodnota 3 426 kg.m⁻³ vo vzorke SZM 80 po 2 dňoch hydratácie. Najnižšiu spomedzi všetkých hodnôt objemových hmotností 3 309 kg.m⁻³ dosiahla vzorka SZM 90 vo veku 2 dni.

Vo všetkých vzorkách bol pozorovaný výraznejší pokles objemovej hmotnosti vo veku 7 dní a opätovný nárast vo veku 28 dní. Vzorky vo veku 90 dní dosiahli v porovnaní s pevnosťami vo veku 28 dní nižšie hodnoty.

4.8 Stanovenie pevnosti v ťahu pri ohybe

Pevnosť v ťahu pri ohybe bola stanovená vo vzorkách maltových zmesí SZM 100, 90 a 80 vo veku 2, 7, 28 a 90 dní. Namerané hodnoty pevností jednotlivých vzoriek sú zaznamenané v tabuľke umiestnenej v Prílohe 3. Grafické spracovanie nameraných hodnôt pevností vzorky SZM 100 v jednotlivých časových intervaloch je uvedené na *Obrázku 31*. Grafy pre vzorky SZM 90 a 80 sa nachádzajú taktiež v Prílohe 3. V každom veku vzorky boli namerané tri hodnoty pevnosti, ktoré boli následne spriemerované a graficky spracované. Súhrnný graf priemerných hodnôt pevností v ťahu pri ohybe spolu s odchýlkami nameraných hodnôt vzoriek SZM 100, 90 a 80, je uvedený na *Obrázku 32*.

Obrázok 31: Časová závislosť pevnosti v ťahu pri ohybe stanovenej vo vzorke SZM 100 po 2, 7, 28 a 90 dňoch hydratácie.

Grafické spracovanie pevností v ťahu pre vybranú vzorku SZM 100 bez použitia spojivových prímesí poukazuje na najvyššiu dosiahnutú hodnotu pevnosti 11,11 MPa po 90 dňoch hydratácie. Najnižšiu dosiahnutú hodnotu pevnosti 8,31 MPa vykazovala vzorka po 2 dňoch hydratácie.

Priemerné hodnoty pevností v ťahu pre vzorky SZM 100 až 80 vo veku 2, 7, 28 a 90 dní sú uvedené v súhrnnom grafe na *Obrázku 32*.

Obrázok 32: Súhrnný graf priemerných hodnôt pevností v ťahu pri ohybe vzoriek SZM 100, 90 a 80 v intervaloch 2,7, 28 a 90 dní.

Najvyššia pevnosť v ťahu 11,66 MPa bola dosiahnutá zmesou SZM 80 po 90 dňoch hydratácie. Najnižšou hodnotou pevnosti 7,27 MPa, disponovala zmes SZM 90 vo veku 2 dni. Z grafu je možné odpozorovať, že nárast pevností v ťahu je vo vzorkách SZM 100 a 80 lineárny. Vo vzorke SZM 90 vo veku 90 dní je zaznamenaný mierny pokles nárastu pevnosti.

Najvyššími pevnosťami, ktoré vykazovali vzorky SZM 100 až 80, sú pevnosti vo veku 28 a 90 dní. Na základe stanovenia pevnosti v ťahu pri ohybe, je možné postrehnúť pozitívny vplyv cement nahrádzajúcich prímesí v spojivových zmesiach na dlhodobé pevnosti mált a teda aj na ich kvalitu.

4.9 Stanovenie pevnosti v tlaku deštruktívnou metódou

Hodnoty pevností v tlaku pre vzorky SZM 100, 90 a 80 do veku 90 dní stanovené deštruktívnou metódou sú uvedené v Prílohe 4.

Vývoj priemerných hodnôt pevností vo vybranej vzorke SZM 100, je graficky zaznamenaný na *Obrázku 33.*

Obrázok 33: Časová závislosť pevnosti v tlaku vzorky SZM 100 vo veku 2, 7, 28 a 90 dní.

Na základe grafického zobrazenia vývoja stanovených pevností v tlaku vo vzorke SZM 100, je možné zhrnúť, že najvyššou hodnotou pevnosti disponovala táto vzorka vo veku 90 dní. Protikladom je najnižšia hodnota pevnosti v tlaku, ktorú vzorka dosiahla vo veku 2 dní.

Obrázok 34: Priemerné hodnoty pevností v tlaku vzoriek SZM 100, 90 a 80 dosiahnuté v 2, 7, 28 a 90 dňoch veku vzorky.

Z grafu na *Obrázku 34*, je zrejmé, že najvyšší modul pružnosti bol stanovený vo vzorke SZM 80 vo veku 90 dní. Najnižšiu stanovenú hodnotu vykazuje vzorka maltovej zmesi SZM 90 po 2 dňoch hydratácie.

Z grafu ďalej vyplýva, že priebeh vývoja pevností v tlaku v závislosti od veku maltových zmesí, sa vo všetkých vzorkách prejavuje stúpajúcim trendom. Vo vzťahu k pridaným cement nahrádzajúcim prímesiam a výškou vodného súčiniteľa zvoleného pri výrobe zmesí, je tento trend pozitívny.

4.10 Stanovenie dynamického modulu pružnosti ultrazvukovou impulzovou metódou a ultrazvukovým meracím systémom UltraTest

Hodnoty dynamického modulu pružnosti stanovené UZV impulzovou metódou v zmesiach SZM 100, 90 a 80 vo veku 2, 7, 28 a 90 dní sú zobrazené v Prílohe 5. Grafické zobrazenie hodnôt dynamického modulu pružnosti vzorky SZM 100 stanovené vo vyššie uvedených časových intervaloch, je zobrazené na *Obrázku 35.* Hodnoty stanovené pre vzorky SZM 90 a 80 sú uvedené v Prílohe 5. Súhrnné grafické znázornenie priemerných hodnôt modulu pružnosti všetkých vzoriek, získaných zo spracovania hodnôt pre jednotlivé vzorky, je zobrazené na *Obrázku 36.*

Obrázok 35: Časová závislosť dynamického modulu vzorky SZM 100 stanovená v časových intervaloch 2, 7, 28 a 90 dní.

Vo vybranej vzorke SZM 100 bola najvyššia hodnota dynamického modulu stanovená vo veku 90 dní. Najnižšou hodnotou, ktorou vzorka disponovala, bola hodnota vo veku 2 dni. Priebeh vývoja modulu pružnosti vo všetkých maltových zmesiach v závislosti od ich veku, vyjadruje súhrnný graf na *Obrázku 36*. Z uvedeného grafu plynie, že najvyššia hodnota modulu pružnosti bola stanovená v zmesi SZM 90 vo veku 90 dní. Najnižšiu hodnotu modulu pružnosti dosiahla taktiež vzorka SZM 90, no vo veku 2 dni.

Vo všetkých vzorkách maltových zmesí SZM 100 až 80 bol zistený nárast hodnoty modulu pružnosti spolu s nárastom veku vzoriek. Tento jav je pravdepodobne spôsobený vplyvom pevnosti na modul pružnosti zatvrdnutých maltových zmesí. Pevnosť v ťahu pri ohybe spolu s pevnosťou v tlaku dosahujú s vekom vzoriek stúpajúci trend.

Obrázok 36: Graf časovej závislosti spriemerovaných hodnôt dynamického modulu pružnosti vzoriek maltových zmesí SZM 100, 90 a 80.

Dynamický modul pružnosti bol v maltových zmesiach do veku 28 dní pre porovnanie hodnôt získaných UZV impulzovou metódou, stanovený aj pomocou *UZV meracieho systému UltraTest*. Grafický výstup stanovenia je uvedený na *Obrázku 36*. Ide o časovú závislosť rýchlosti šírenia UZV vlnenia v jednotlivých vzorkách SZM 100, 90 a 80. Na základe vzťahu 5 uvedeného v podkapitole 3.5.10, boli hodnoty rýchlosti šírenia UZV vlnenia použité pri výpočte dynamického modulu pružnosti. Časová závislosť modulu pružnosti je uvedená na *Obrázku 37*.

Obrázok 37: Graf časovej závislosti rýchlosti šírenia UZV vĺn.

Obrázok 38: Krivka časovej závislosti modulu pružnosti v zmesiach SZM 100, 90 a 80.

Pre porovnanie hodnôt dynamického modulu pružnosti stanoveného UZV metódou a UZV meracím systémom UltraTest, boli vybrané namerané hodnoty modulu pružnosti umiestnené do *Tabuľky7*. Z každého časového intervalu 2, 7 a 28 dní boli vybrané a spriemerované tri hodnoty.

Tabuľka 7: Porovnanie stanovených hodnôt dynamického modulu pružnosti stanovených UZV impulzovou metódou a UZV meracím systémom UltraTest. Stanovenie vo vzorkách SZM 100, 90 a 80 do veku 28 dní.

Dynamický modul pružnosti [GPa]							
Systém UltraTest				UZV impulzová metóda			
Vek zmesi	Zmes Meranie	SZM 100	SZM 90	SZM 80	SZM 100	SZM 90	SZM 80
	1	44,90	39,30	43,10	47,88	43,93	46,73
2 dai	2	44,90	39,30	43,40	48,44	45,14	46,42
2 011	3	44,31	38,70	42,50	47,54	43,81	47,21
	Priemer	44,70	39,10	43,00	47,95	44,29	46,79
7 dní	1	52,71	48,30	51,40	57,00	54,07	55,97
	2	52,71	48,30	51,40	55,96	54,58	55,63
	3	52,71	48,30	51,40	56,47	54,24	54,93
	Priemer	52,71	48,30	51,40	56,48	54,29	55,42
28 dní	1	57,21	54,70	56,30	62,91	62,96	63,75
	2	57,21	54,70	56,30	61,76	63,47	64,04
	3	57,21	54,70	56,30	62,22	62,67	64,13
	Priemer	57,21	54,70	56,30	62,30	63,03	63,97

Z nameraných hodnôt dynamického modulu pružnosti uvedených v *Tabuľke 7*, vyplýva, že tieto hodnoty sú pomerne odlišné. Hodnoty modulu pružnosti stanoveného UZV impulzovou metódou, boli vo všetkých vzorkách maltových zmesí do veku 28 dní v porovnaní s hodnotami zo systému UltraTest nižšie. Rozdiel medzi hodnotami modulu pružnosti v maltovej zmesi SZM 100 vo veku 2 dni predstavoval 6,8 %, vo veku 7 dní 6,7% a vo veku 28 dní 8,2 %. V zmesi SZM 90 boli zistené najvyššie rozdiely medzi stanovenými hodnotami, konkrétne vo vzorke po 2 dňoch hydratácie predstavoval tento rozdiel 11,7 %, po 7 dňoch 11,1 % a po 28 dňoch 14,2 %. Modul pružnosti v maltovej zmesi SZM 80 vo veku 2 dní sa odlišoval o 8,1 %, vo veku 7 dní o 7,3% a vo veku 28 dní dosiahol rozdiel hodnotu 12 %.

Tento rozdiel je spôsobený vplyvom prostredia, v ktorom stanovenie prebiehalo. Vzorky analyzované UZV impulzovou metódou boli do momentu stanovenia uskladnené vo vodnom kúpeli a následne vysušené na vzduchu. Vzorky analyzované systémom UltraTest sa nachádzali od momentu uloženia čerstvej maltovej zmesi do uzavretej silikónovej formy prístroja, až po ukončenie merania v stálom prostredí bez prístupu vzduchu a vlhkosti.

4.11 Termogravimetrická analýza (TGA)

Termická stabilita spojivových zmesí použitých vo vzorkách SZM 100, 90 a 80 bola sledovaná metódou termogravimetrickej analýzy v časovom intervale 2, 7 a 28 dní. Nižšie uvedené TG a DTG krivky zachytávajú teplotnú závislosť hmotnostného úbytku a dejov, ktoré boli pozorované pri zahrievaní vzoriek.

Obrázok 39: TG/DTG krivka pre spojivo použité v zmesi SZM 100 – cement Dyckerhoff bez pridaných prímesí. Vek vzorky 28 dní.

Zobrazené TG/DTG krivky boli v rámci zjednodušenia opisu ich priebehu pomyselne rozdelené do troch teplotných úsekov.

V teplotnom úseku od 0 do 300 °C sú viditeľné dva píky, pričom pík s vyššou intenzitou odráža rozklad C-S-H gélu. Ďalším výrazným bodom v danej teplotnej oblasti je pík s neporovnateľne nižšou intenzitou, ktorý predstavuje rozklad etringitu. V teplotnom intervale 300 až 600 °C je viditeľný výrazný pík odrážajúci tepelný rozklad portlanditu. Nasledujúci teplotný interval 600 až 900 °C charakterizuje rozklad vápenca.

Predstavu a porovnanie správania sa všetkých zmesí počas termogravimetrického stanovenia, ponúka súhrnné zobrazenie TG/DTG kriviek uvedené na *Obrázku 40*. Separátne TG a DTG krivky pre vzorky SZM 90 a 80 vo všetkých časových intervaloch analýzy sa nachádzajú v Prílohe 6.

Obrázok 40: Súhrnné zobrazenie TG/DTG kriviek pre spojivové zmesi vo vzorkách SZM 100 až 80. Interval stanovenia 2, 7 a 28 dní. V porovnaní s TG krivkami, DTG krivky udávajú presnejšie intervaly teplôt, pri ktorých dochádza k hmotnostnému úbytku vo vzorkách.

Z vyššie uvedeného súhrnného zobrazenia TG/DTG kriviek je zrejmé, že rozklad C-S-H gélu pozorovaný v teplotnom úseku 0 až 300 °C, je najvýraznejší pri vzorke s 20 % obsahom spojivových prímesí SZM 80 v 7 dňoch. Rozklad C-S-H gélu vo vzorke SZM 90 v 28 dňoch je najmenej intenzívny. Rozklad etringitu sprevádzaný najväčším množstvom uvoľneného tepla, bol pozorovaný vo vzorke SZM 80 vo veku 28 dní. Naopak, vzorka s cementovým spojivom bez použitých prísad – SZM 100 vo veku 2 dni podlieha tomuto rozkladu najmenej intenzívne. Rozdiely medzi krivkami sú spôsobené pridanými spojivovými prímesami, ktoré

znižujú obsah cementu v maltových zmesiach a tým aj obsah C₃S, ktorý sa podieľa na hlavnej hydratačnej reakcii. V porovnaní s hmotnostným úbytkom spojeným s rozkladom etringitu, bol úbytok v dôsledku rozkladu C-S-H gélu vo všetkých zmesiach nižší.

V teplotnom úseku 300 až 600 °C bol pozorovaný rozklad portlanditu, ktorý bol najintenzívnejší vo vzorke SZM 100 vo veku 28 dní. Najnižšia intenzita rozkladu sa prejavila vo vzorke SZM 90 vo veku 7 dní. Tento dej je sprevádzaný skokovou zmenou hmotnostného úbytku vo všetkých sledovaných vzorkách. Najnižšia zmena hmotnosti bola zaznamenaná v spojive vzorky SZM 100_2d a v spojivovej zmesi s 10% náhradou cementu – SZM 90_2d. Naopak, najvyššia hmotnostná zmena je viditeľná v prípade spojivovej zmesi vo vzorke SZM100 vo veku 28 dní.

V rozmedzí teplôt 600 až 900 °C prebiehal rozklad vápenca sprevádzaný miernym úbytkom hmotnosti. Sledovaný rozklad ktorý je najvýraznejší vo vzorke SZM 90 vo veku 7 dní. Vo vzorke SZM 100 vo veku 2 dni dosiahla jeho intenzita najnižšiu hodnotu spomedzi všetkých sledovaných vzoriek.

Priebeh TG/DTG kriviek naznačuje, že so zvyšujúcim sa obsahom cement nahrádzajúcich prímesí v spojivových zmesiach, dochádza k zníženiu intenzity zobrazených endotermických dejov vznikajúcich v dôsledku teplotnej nestability látok. Z celkového priebehu termogravimetrickej analýzy vyplýva, že obsah prímesí v spojivových zmesiach v súvislosti s vekom vzoriek ovplyvňuje hmotnostné zmeny, ktoré sú spôsobené rozkladnými procesmi jednotlivých spojivových prímesí.

4.12 Skenovacia elektrónová mikroskopia (SEM) a energeticky disperzná röntgenová spektroskopia (EDS)

Štruktúra povrchu vzoriek maltových zmesí na mikroskopickej úrovni vo veku 28 dní bola charakterizovaná metódou SEM. Analyzované boli vybrané úlomky vzoriek zo stanovenia pevnosti v tlaku. Snímky boli snímané pomocou sekundárnych elektrónov. Snímky umiestnené naľavo, sú zväčšené 2 500x. Vpravo sa nachádzajú snímky zväčšené 5 000x. Kvalitatívne zloženie vybraných snímaných oblastí povrchu vzoriek bolo stanovené metódou EDS. Snímky vytvorené pomocou tejto metódy a tabuľky so stanoveným obsahom jednotlivých prvkov obsiahnutých v mieste snímania povrchu vzorky sa nachádzajú v Prílohe 7.

Obrázok 41: Mikroštruktúra povrchu vzorky SZM 100.

Obrázok 42: Morfologická štruktúra kameniva vo vzorke SZM 90.

Obrázok 43: Rozhranie medzi kamenivom a cementovou pastou vo vzorke SZM 80.

Na *Obrázku 41* a *43* je zobrazené rozhranie medzi zrnami magnetitového kameniva a cementovou pastou vo vzorkách SZM 100 a 80. Rozhranie medzi kamenivom a cementovou pastou je pomerne jasne rozoznateľné, avšak hladká štruktúra cementovej pasty nevykazuje viditeľnú pórovitosť a mikrotrhliny, z čoho je možné usúdiť, že táto štruktúra je hutná. Na *Obrázku 42* je zachytená morfológia kameniva s čiastočkami cementovej pasty.

5 ZÁVER

Vývoj technológie stavebných materiálov napreduje a spolu s ním sa menia požiadavky na vlastnosti a oblasť využitia týchto materiálov. Cieľom diplomovej práce bolo štúdium fyzikálnomechanických vlastností maltových zmesí, ktoré sa od bežne používaných mált odlišujú svojím zložením a možnosťou využitia v priestoroch, v ktorých sa uplatní ich tieniaca schopnosť. Uvedené vlastnosti zmesí boli sledované v závislosti od množstva cementu a čiastočne cement nahrádzajúcich spojivových prímesí, ktoré boli v týchto zmesiach použité.

Vplyv účinku použitých prímesí na rýchlosť hydratácie vo vzorkách maltových zmesí SZM 100 až 80, bol analyzovaný prostredníctvom izotermickej kalorimetrie. Z analýzy vyplýva zistenie, že vo vzorkách maltových zmesí s cementovými prímesami, prebieha v porovnaní so vzorkou bez prímesí hydratácia pomalšie, teda obdobie spracovateľnosti maltových zmesí je dlhšie.

Na základe stanovení objemovej hmotnosti vo vzorkách, je možné usúdiť, že sledované maltové zmesi spĺňajú hmotnostné kritérium na ich zaradenie do kategórie ťažkých betónov. Pri stanovení bol zaznamenaný nárast objemovej hmotnosti v zmesiach s prímesami.

V závislosti od obsahu spojivových prímesí v analyzovaných maltových zmesiach, boli stanovené aj mechanické vlastnosti vzoriek. Záverom stanovení je, že použitie prímesí v maltových zmesiach zvyšuje hodnoty dlhodobých pevností v ťahu pri ohybe a v tlaku.

Ďalšou stanovenou charakteristikou maltových zmesí je dynamický modul pružnosti určujúci objem deformácií v maltových zmesiach. Vplyv cementových prímesí na vývin hodnôt tohto modulu nie je možné na základe použitých metód jednoznačne posúdiť. Dôvodom je kolísanie hodnôt medzi jednotlivými vzorkami SZM 100 až 80 v časových intervaloch 2, 7 a 28 dní.

Teplotná stabilita maltových zmesí v závislosti od druhu použitého spojiva, bola stanovená termogravimetrickou analýzou. Vzorky s cementovými prímesami vykazovali v porovnaní so vzorkou s čistým cementom nižšiu teplotnú stabilitu.

Dosiahnuté výsledky, ktoré preukázali vplyv čiastočného nahradenia cementu prímesami na fyzikálno-mechanické vlastnosti vzoriek samozhutniteľných ťažkých mált, ponúkajú priestor na ďalší výskum.

ZOZNAM POUŽITEJ LITERATÚRY

- SIM J. a K. H. LEE. Sustainable Concrete Technology. Civil Engineering Dimension. Indonesia: Petra Christian University, 2015, 17(3), 158-165. DOI: https://doi.org/10.9744/ced.17.3.158-165. Dostupné také z: https://doaj.org/article/43e7d9acd815494a8d5580df7f2f909a
- [2] SIM J., M. JU a K. LEE. Thirty Years Researches on Development for Sustainable Concrete Technology. *MATEC Web of Conferences*. Les Ulis: EDP Sciences, 2017, 138. DOI: http://dx.doi.org/10.1051/matecconf/201713803008. Dostupné také z: https://search.proquest.com/docview/2039434763/fulltextPDF/D8FD0F29B85A4E7CP Q/1?accountid=17115
- WAłACH, D., P. DYBEł, J. SAGAN a M. GICALA. Environmental performance of ordinary and new generation concrete structures - a comparative analysis. Berlin/Heidelberg: Springer Berlin Heidelberg, 2018, 264. DOI: 10.1007/s11356-018-3804-2. Dostupné také z: https://link.springer.com/article/10.1007%2Fs11356-018-3804-2
- [4] COVALEOV, G. Transparent Concrete. Bucharest: Matrix Rom, 2019, 10(4), s. 433-442. Dostupné také z: http://search.proquest.com/docview/2354294821/
- [5] ALTUSGROUP, INC. AltusGroup brings Graphic Concrete Technology to Norh America. (NEWS SCOPE: PRECAST). Mining Media, 2017, 1206, s. 16. Dostupné také z: http://web.b.ebscohost.com.ezproxy.lib.vutbr.cz/ehost/detail/detail?vid=0&sid=e4d640 7d-6ae2-45d3-8685-0fa3fa8f42c4%40pdc-vsessmgr01&bdata=Jmxhbmc9Y3Mmc2l0ZT1laG9zdC1saXZl#db=bth&AN=123686283
- [6] SCHUAICHENG, G., H. JIONG a D. QINGLI. A critical review on the performance of portland cement concrete with recycled organic components. Elsevier, 2018, 188, s. 92-112. DOI: 10.1016/j.jclepro.2018.03.244. Dostupné také z: https://www-sciencedirectcom.ezproxy.lib.vutbr.cz/science/article/pii/S0959652618309211
- KON, M. a L. H. CHOU. The Eco-Concrete with the Papermaking Sludge. Trans Tech Publications, 2014, 670, s. 454-457. DOI: 10.4028/www.scientific.net/AMM.670-671.454. Dostupné také z: https://www.researchgate.net/publication/286704089_The_Eco-Concrete_with_the_Papermaking_Sludge
- [8] GIATEC, INC. Concrete Hub. *The History of Concrete*. 2019. Dostupné také z: https://www.giatecscientific.com/education/the-history-of-concrete/
- [9] CONCRETENETWORK. *Timeline of Concrete & Cement History*. 2019. Dostupné také z: https://www.concretenetwork.com/concrete-history/
- [10] HOLZER, S. Frühgeschichte des modernen Konstruktionsbetons. Bautechnik. Berlín: Wiley-VCH Verlag, 2014, 91(12), 884-891. DOI: 10.1002/bate.201400057. Dostupné také z: https://onlinelibrary.wiley.com/doi/full/10.1002/bate.201400057
- [11] FRAŇO, V. a kolektív. Stavebné látky. Bratislava: Alfa, 1984.
- [12] SVOBODA, Ľ. a kolektív. *Stavebné materiály*. Bratislava: JAGA, 2005. ISBN 80-8076-014-4.

- [13] BILČÍK, J., Ľ. FILLO, V. BENKO a J. HALVONIK. Betónové konštrukcie. Bratislava: Vydvateľstvo STU, 2008, 2. ISBN 978-80-227-2940-6.
- [14] PRIGANC, S. a F. BAHLEDA. *Zosilňovanie betónových prvkov*. Košice: Stavebná fakulta Technickej univerzity v Košiciach, 2006. ISBN 80-8073-589-1.
- [15] BAJZA, A. a I. ROUSEKOVÁ. Technológia betónu. Bratislava: JAGA, 2006. ISBN 80-8076-032-2.
- [16] PYTLİK, P. Technologie betonu. Brno: VUTIUM, 2000, 2. ISBN 80-214-1647-5.
- [17] BETON TKS, a. s. *Betonové konstrukce 21. století, betony s přidanou hodnotou*. Praha: Beton TKS, s. r. o., 2012. ISSN: 1213-3116. Dostupné také z: http://www.betontks.cz/sites/default/files/BETONOVE-KONSTRUKCE.pdf
- [18] ČSN EN 206-1: 2001. Beton Část 1: Specifikace, vlasnosti, výroba a shoda. Praha: Český normalizační institut, 2001. 72 s.
- [19] ŠKVÁRA, F. *Technologie anorganických pojiv II, Užití maltovin, Koroze cementu.* Praha: Ediční a audiovizuální centrum VŠCHT, 1995. ISBN 80-7080-225-1.
- [20] KSR KAMEŇOLOMY SR, a. s. Produkty kamenivo. KSR Mineral. 2019. Dostupné také z: http://www.mineralslovensko.com/databases/internet/_public/content30.nsf/web30?Openagent&id=CZ-MINERAL.COM_kamenivo.html&men1=5&sid=510
- [21] *STN EN 12620+A1: 2008*. Kamenivo do betónu (Konsolidovaný text). Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky, 2008. 54 s.
- [22] KAMENOLOMY ČR, Mineral ČR. 2019. Dostupné také z: http://www.mineralcesko.com/databases/internet/_public/content30.nsf/web30?Openagent&id=CZ-MINERAL.COM_unternehmen.html&men1=1&sid=100
- [23] JIRÁSEK, J. a M. VAVRO. Nerostné suroviny a jejich využití. Ostrava: Ministerstvo školství, mládeže a tělovýchovy ČR & Vysoká škola báňská - Technická univerzita Ostrava, 2008. ISBN 978-80-248-1378-3. Dostupné také z: http://geologie.vsb.cz/loziska/suroviny/uvodem.html
- [24] TASMANIA, LTD. Weight Coat Grade Magnetite. *Tasmania Mines*. 2019. Dostupné také z: https://www.tasmines.com.au/products/weight-coat-grade
- [25] HLAVÁČ, J. Základy technologie silikátů. Praha: SNTL Nakladatelství technické literatury, 1988, .
- [26] ŠKVÁRA, F. Technologie anorganických pojiv I. Část 1: Hydraulické maltoviny, cementy. Praha: Ústav skla a keramiky VŠCHT, 1994.
- [27] WANG, T. World and U.S. cement production 2010-2019. 2020. Dostupné také z: https://www.statista.com/statistics/219343/cement-production-worldwide/
- [28] STN EN 197-1: 2012. Cement. Časť 1: Zloženie, špecifikácie a kritériá na preukazovanie zhody cementov na všeobecné použitie. Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky, 2012. 28 s.
- [29] MLYNKOVÁ, B. Spojivá vhodné a používané pre hĺbkové vrty. Vhodné materiálové zloženie kompozitných pažiacich zmesí zohľadňujúce náročné fyzikálne a chemické podmienky v hlbinných vrtoch, cementy a iné spojivá, prímesi, prísady a iné prídavné

materiály.Bratislava:Centrum aplikovaného výskumu kompozitných materiálov pre
hĺbkovú geotermiu., 2010.Dostupné také z:
http://www.geothermy.ustarch.sav.sk/docs/Aktivita22.pdf

- [30] DYCKERHOFF, GMBH. *Grauzement.* 2019. Dostupné také z: https://www.dyckerhoff.com/grauzement
- [31] HELA, R. *Technologie betonu, Studijní opory pro studijní programy s kombinovanou formou studia.* Brno: Fakulta stavební, Vysoké učení technické v Brně, 2005.
- [32] CEMMAC, a. s. a Zväz výrobcov cementu Slovenskej republiky . *Výrobný proces*. 2017. Dostupné také z: http://www.cemmac.sk/dev/language/sk/vyrobny-proces/
- [33] EŠTOKOVÁ, A. Základy chemických technológií. Košice: Stavebná fakulta, Technická univerzita v Košiciach, 2013. Dostupné také z: https://docplayer.cz/105394748-Zakladychemickych-technologii-ucebne-texty.html
- [34] HNATKO, M. a J. KŘESŤAN. *MatNet Slovensko*. Bratislava: Ústav anorganickej chémie SAV, 2006. Dostupné také z: http://www.matnet.sav.sk/index.php?ID=358
- [35] BRODŇAN, M., A. ČAVOJCOVÁ a J. JOŠT. Stavebné materiály Návody na cvičenia. *Návody na cvičenia*. Žilina: EDIS-vydavateľské centrum Žilinskej univerzity, 2015.
- [36] LEA, F. a T. MASON. *The Major Cements: Composition And Properties, Portland cement.* Encyclopædia Britannica, inc., 2019. Dostupné také z: https://www.britannica.com/technology/cement-building-material
- [37] AITCIN P.-C. a S. MINDESS. Sustainability of Concrete. New York, 2011, 17. Dostupné také http://web.a.ebscohost.com.ezproxy.lib.vutbr.cz/ehost/detail/detail?vid=0&sid=cad714 76-db6b-47ec-9a4d-d4104cef687c%40sdc-vsessmgr02&bdata=Jmxhbmc9Y3Mmc2l0ZT1laG9zdC1saXZl#AN=358206&db=nlebk
- [38] EURÓPSKA PROJEKTOVÁ SKUPINA. *Európske smernice pre samozhutniteľný betón; Požiadavky, výroba a použitie.* 2005. Dostupné také z: http://www.savt.sk/images/Dokumenty/VerejneDokumenty/Europske-smernice-presamozhutnitelny-beton.pdf
- [39] STACHEMA s. r. o. *Stabilan KC03; Karta Techniczna*. Swidnik, 2012. Dostupné také z: http://www.stachema.pl/images/pdf/KT/KT-Stabilan-KC03-08_01_2018.pdf
- [40] STN EN 934-2+A1: 2013. Prísady do betónu, mált a zálievok. Časť 2: Prísady do betónu. Definície, požiadavky, zhoda, označovanie a etiketovanie (Konsolidovaný text). Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky , 2013. 28 s.
- [41] SIDDIQUE, R. Waste Materials and By-Products in Concrete. Berlin, Heidelberg: Springer, 2008. DOI: https://doi.org/10.1007/978-3-540-74294-4. Dostupné také z: https://link.springer.com/book/10.1007/978-3-540-74294-4
- [42] AITCIN, P.-C. High Performance Concrete. London: E&FN Spon, 2004, ISBN 0 419 19270 0.
- [43] UTVAR GM PRE ENVIRONMENT. Návrh vedľajších produktov prevádzky Vysoké pece spol. U. S. Steel Košice, s. r. o. Vysokopecná troska. 2013. Dostupné také z: https://www.google.com/search?q=N%C3%A1vrh+ved%C4%BEaj%C5%A1%C3%AD

ch+produktov+prev%C3%A1dzky+Vysok%C3%A9+pece+spol.+U.+S.+Steel+Ko%C5%A1ice%2C+s.r.o&oq=N%C3%A1vrh+ved%C4%BEaj%C5%A1%C3%ADch+produkt ov+prev%C3%A1dzky+Vysok%C3%A9+pece+spol.+U.+S.+Steel+Ko%C5

- [44] MINISTERSTVO DOPRAVY, VÝSTAVBY A REGIONÁLNEHO ROZVOJA SR, SEKCIA CESTNEJ DOPRAVY A POZEMNÝCH KOMUNIKÁCIÍ. Umelé hutné kamenivo z vysokopecnej trosky. Bratislava, 2016. Dostupné také z: https://www.ssc.sk/files/documents/technicke-predpisy/tkp/tkp_39_2016.pdf
- [45] STN EN 15167-2: 2007. Mletá granulovaná vysokopecná troska na použitie do betónu, mált a injektážnych mált. Časť 1: Definície, požiadavky a kritériá zhody. Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky, 2007. 24 s.
- [46] ČESKOMORAVSKÝ BETON. Přiručka technologa, Beton, suroviny-výroba-vlastnosti. 1. vydání. 2010. Dostupné také z: http://www.betonuniversity.cz/uploads/sources/publikace/dd005446dfc8af01490e11d6 a4f2c0df43bb981a_uploaded_prirucka-technologa-beton.pdf
- [47] GAZDIČ, D., M. FRIDRICHOVÁ a J. NOVÁK. Využití vysokopecní strusky a přírodního anhydritu k přípravě struskosíranového pojiva. Brno: Fakulta stavební VUT v Brně, 2008. Dostupné také z: https://s3.eu-central-1.amazonaws.com/uploads.mangoweb.org/sharedprod/svcement.cz/uploads/2016/07/sd2008-prednaska-dg-struskosiranove-pojivo.pdf
- [48] CHADIMOVÁ, V., M. CHVÁTAL, J. KÜHN a D. MATĚJKA. Abecední přehled minerálů. *Mineralogie pro školy.* 2000. Dostupné také z: https://web.natur.cuni.cz/ugmnz/mineral/mineraly.html
- [49] KOGEL, J., N. TRIVEDY, J. BARKER a S. KRUKOWSKI. Industrial Minerals & Rocks – Commodities Markets and Uses. Littleton (Colorado): Society for Mining, Metallurgy and Exploration, 2006. Dostupné také z: https://link.springer.com/chapter/10.1007/978-3-540-74294-4_2
- [50] ČSN EN 933-9 +A1 (721193): 2013. Zkoušení geometrických vlastností kameniva -Část 9: Posouzení jemných částic - Zkouška methylenovou modří. Praha: Český normalizační institut, 2013, s. 16.
- [51] ČSN EN 13639: 2018. Stanovení celkového obsahu organického uhlíku ve vápenci. Praha: Český normalizační institut, 2018, s. 32.
- [52] HELA, R. *Příměsi do betonu*. Praha: Beton TKS, 2015, (2), s. 4–10. Dostupné také z: http://www.betontks.cz/sites/default/files/2015-2-04.pdf
- [53] SHARMA, R. a R. KHAN. Influence of copper slag and metakaolin on the durability of self compacting concrete. 2018, 171, s. 1171-1186. DOI: https://doi.org/10.1016/j.jclepro.2017.10.029. Dostupné také z: https://wwwsciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S095965261732320X
- [54] OKAMURA, H. a M. OUCHI. *Self-Compacting Concrete*. Japan Concrete Institute, 2003, 1(1), 5.-15. Dostupné také z: https://www.jstage.jst.go.jp/article/jact/1/1/1_1_5/_pdf
- [55] HUDOBA, I. *Vsokohodnotný betón; Materiály, vlastnosti, výroba, využitie*. 1. vydanie. Bratislava: Vydavateľstvo STU, 2008.

- [56] GOODIER, Ch. The Development of Self-compacting Concrete in the UK and Europe. ICE Publishing, 2003, (156), s. 405-414. Dostupné také z: https://www.researchgate.net/publication/261360924_The_Development_of_Selfcompacting_Concrete_in_the_UK_and_Europe
- [57] KANELLOPOULOS, A., P. SAVVA, I. M. F. PETROU a S. PANTAZOPOULOU. Assessing the quality of concrete – reinforcement interface in Self Compacting Concrete. ELSEVIER, 2020, 240, s. 117933. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117933. Dostupné také z: http://www.sciencedirect.com/science/article/pii/S0950061819333860
- [58] SHAHIDAN, S., B. TAYEH, A. JAMALUDIN, N. BAHARI, S. ZUKI, N. ALI a F. KHALID. Physical and mechanical properties of self-compacting concrete containing superplasticizer and metakaolin. IOP Publishing, 2017, 271. DOI: 10.1088/1757-899x/271/1/012004. Dostupné také z: https://doi.org/10.1088%2F1757-899x%2F271%2F1%2F012004
- [59] NICOLAE, C., B. AURELIA a F. NICOLAE. Self Compacting Concrete in Building Industry. Gheorghe Asachi Technical Universityi of Jassy, 2016, 62(1), s. 85-94. Dostupné také z: https://search.proquest.com/docview/1818060690/fulltextPDF/2E65992ED052480BP Q/1?accountid=17115
- [60] BAMONTE, P. a P. GAMBAROVA a T. HSU, Ch.-L. WU, J.-L. LI. Properties of Concrete Required in Nuclear Power Plants. *Wiley Online Library*. John Wiley & Sons, Ltd, 2013.
 DOI: https://doi.org/10.1002/9781118536254.ch25. Dostupné také z: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118536254.ch25
- [61] HOBST, L., J. JAŠEK a L. VÍTEK. Ťežké betony a speciální stínící betony. Betonové konstrukce 21. století - betony s přidanou hodnotou. Praha: BETON TKS, 2012. Dostupné také z: http://www.betontks.cz/sites/default/files/2012-7-134.pdf
- [62] STN EN 12390-1 (73 1302):2013. Skúšanie zatvrdnutého betónu. Časť 1: Tvar, rozmery a iné požiadavky na skúšobné telesá a formy. Bratislava: Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2013. 16 s.
- [63] DRAGOMIROVÁ, J. a M. PALOU. TZB info. Praha: Ústav stavebníctva a architektúry SAV Bratislava, 2019. Dostupné také z: https://stavba.tzb-info.cz/beton-maltyomitky/18841-priprava-a-vlastnosti-vysokopevnostnych-tazkych-betonov
- [64] PALOU, M., M. BOHÁČ, E. KUZIELOVÁ a et al. Use of calorimetry and thermal analysis to assess the heat of supplementary cementitious materials during the hydration of composite cementitious binders. Springer Berlin Heidelberg, 2020. DOI: https://doi.org/10.1007/s10973-020-09341-3. Dostupné také z: https://link.springer.com/article/10.1007/s10973-020-09341-3#citeas
- [65] E. KUZIELOVÁ, M. ŽEMLIČKA, J. MÁSILKO, a M. T. PALOU. Effect of additives on the performance of Dyckerhoff cement, Class G, submitted to simulated hydrothermal curing. Springer, 2018, 133(1), s. 63–76. DOI: https://doi.org/10.1007/s10973-017-6806-2. Dostupné také z: https://link.springer.com/article/10.1007/s10973-017-6806-2#citeas
- [66] BAS RUDICE, a. s. Ruční spektrometr Vanta. *Best Analytical Systems*. 2019. Dostupné také z: https://www.bas.cz/xrf-vanta-rucni-spektrometr/vanta-rucni-rtg-analyzator.php

- [67] FAKULTA CHEMICKÁ, VUT BRNO. Metody UV/VIS, Luminiscenční techniky. Instrumentální a strukturní analýza. 2019. Dostupné také z: https://moodle.vutbr.cz/pluginfile.php/137271/mod_resource/content/1/ISA_UV_VIS_2. pdf
- [68] STN EN 196-3: 2020. Metódy skúšania cementu. Časť 3: Stanovenie času tuhnutia a objemovej stálosti. Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky, 2020. 16 s.
- [69] BOHÁČ, M., M. PALOU, R. NOVOTNÝ a al ET. Influence of temperature on early hydration of Portland cement-metakaolin-slag system. 2017, (127), s. 309-318. DOI: https://doi.org/10.1007/s10973-016-5592-6. Dostupné také z: https://link.springer.com/article/10.1007%2Fs10973-016-5592-6#citeas
- [70] STN EN 12350-2: 2020. Skúšanie čerstvého betónu. Časť 2: Skúška sadnutím. Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky , 2020. 12 s.
- [71] STN EN 12350-9 (73 1312): 2011. Skúšanie čerstvého betónu. Časť 9: Samozhutniteľný betón. Skúška V-lievikom. Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky, 2011. 8 s.
- [72] FAKULTA STAVEBNÁ V BRNĚ, ÚSTAV STAVEBNÍHO ZKUŠEBNICTVÍ. Zkoušení a analýza mikrostruktury. Brno, 2019. Dostupné také z: http://www.szk.fce.vutbr.cz/vyuka/BI002/Kap.%204%20ZKOU%C5%A0EN%C3%8D% 20A%20ANAL%C3%9DZA%20MIKROSTRUKTURY.pdf
- [73] WASEDA Y., E. MATSUBARA a K. SHINODA X-Ray Diffraction Crystallography : Introduction, Examples and Solved Problems. Berlin, Heidelberg: Springer, 2011. DOI: https://doi.org/10.1007/978-3-642-16635-8. Dostupné také z: https://link.springer.com/book/10.1007%2F978-3-642-16635-8
- [74] STN EN 12390-7: 2020. Skúšanie zatvrdnutého betónu. Časť 7: Objemová hmotnosť zatvrdnutého betónu. Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky, 2020. 12 s.
- [75] STN EN 12390-5: 2020. Skúšanie zatvrdnutého betónu. Časť 5: Pevnosť v ťahu pri ohybe skúšobných telies. Bratislava: Úrad pre normalizáciu, metrológiu a skúškobníctvo Slovenskej republiky, 2020. 12 s.
- [76] STN EN 12390-3 (73 1302): 2020. Skúšanie zatvrdnutého betónu. Časť 3: Pevnosť v tlaku skúšobných telies. Bratislava: Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej Republiky, 2020. 20 s.
- [77] STN EN 12504-4: 2005. Skúšanie betónu. Časť 4: Určenie rýchlosti ultrazvukového impulzu. Bratislava: Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky, 2005. 14s.
- [78] ŠEVČÍK, P., I. NAJDENÁ a kol., *Stavebnícka ročenka 2010. Betón a konštrukcie z betónu. Modul Pružnosti betónu*. Bratislava: JAGA, 2010. ISBN 978-80-8076-076-2.
- [79] ULTRATEST GMBH, Germany. IP-8 Measuring System. *UltraTest: Non-destructive testing*. 2018. Dostupné také z: https://www.ultratest.de/wp-content/uploads/2020/04/UltraTest_IP-8-Info-EN.pdf

- [80] LI, H., H. SUN, W. ZHANG, H. GOU a Q. YANG. Study on Mechanical Properties of Self-Compacting Concrete and Its Filled in-Line Multi-Cavity Steel Tube Bundle Shear Wall. MDPI, 2019, 12(18). DOI: 10.3390/en12183466. Dostupné také z: https://search.proquest.com/docview/2316676790/fulltextPDF/59C56BE75D0F45CBP Q/1?accountid=17115
- [81] LENG, Y. Materials Characterization : Introduction to Microscopic and Spectroscopic Methods. 2. John Wiley & Sons Incorporated, 2013. Dostupné také z: https://ebookcentral.proquest.com/lib/vutbrno/detail.action?docID=1333091#
- [82] KLOUŽKOVÁ, A., P. ZEMENOVÁ, J. KLOUŽEK a W. PABST. *Termická analýza*. Praha: VŠCHT, 2012. Dostupné také z: http://tresen.vscht.cz/sil/sites/default/files/Termick%C3%A1%20anal%C3%BDza.pdf
- [83] WANG, Y. a V. PETROVA, G. PADUA, Q. WANG. Scanning Electron Microscopy. 1. John Wiley & Sons, Incorporated, 2012. Dostupné také z: https://ebookcentral.proquest.com/lib/vutbrno/reader.action?docID=821887&ppg=119
- [84] SHONDEEP L. S., X. AIMIN, V. S. RAMACHANDRAN a J. BEAUDOIN. Scanning Electron Microscopy, X-Ray Microanalysis of Concretes. William Andrew Publishing/Noyes, 2001. Dostupné také z: https://app.knovel.com/hotlink/pdf/id:kt0052L031/handbook-analyticaltechniques/scanning-electron-introduction

ZOZNAM POUŽITÝCH SKRATIEK A SYMBOLOV

С	Betón (z anglického výrazu <i>Concrete</i>)				
LC	Ľahký betón (z anglického výrazu <i>Lightweight Concrete</i>)				
HWC	Ťažký betón (z anglického výrazu <i>Heavy-Weight Concrete</i>)				
SCC	Samozhutniteľný betón (z anglického výrazu Self-Compacting Concrete)				
SZM	Samozhutniteľná maltová zmes				
RAO	Rádioaktívny odpad				
C ₂ S	Dikalciumsilikát				
C₃S	Trikalciumsilikát				
C ₃ A	Trikalciumaluminát				
C₄AF	Tetrakalciumaluminoferit				
AFt	Etringit, trisulfát				
C-S-H	C-S-H gél, hydrosilikátový gél				
UHKT VP	Umelé hutné kamenivo a štrkovina z vysokopecnej trosky				
MGVT, S	Mletá granulovaná vysokopecná troska, vysokopecná troska (z anglického výrazu <i>Blast Furnace Slag</i>)				
тос	Celkový obsah organického uhlíka (z anglického výrazu <i>Total Organic Carbon</i>)				
L, LL	Vápenec (z anglického výrazu <i>Limestone</i>)				
MK	Metakaolín				
XRF	Röntgenová fluorescenčná spektrofotometria				
XRPD	Röntgenová prášková difrakčná analýza (z anglického výrazu X-Ray Powder Diffraction)				
RTG	Röntgen				
TGA	Termogravimetrická analýza				
DSC	Diferenciálna kompenzačná kalorimetria (z anglického výrazu <i>Differential</i> Compensation Calorimetry)				
SEM	Skenovacia elektrónová mikroskopia				
EDS	Energeticky disperzná spektroskopia				
UZV	Ultrazvuk				

ZOZNAM PRÍLOH

- Príloha 1 RTG difrakčné záznamy
- Príloha 2 Tabuľková a grafická časť stanovenia objemovej hmotnosti
- Príloha 3 Tabuľková a grafická časť stanovenia pevnosti v ťahu pri ohybe
- Príloha 4 Tabuľková a grafická časť stanovenia pevnosti v tlaku
- Príloha 5 Tabuľková a grafická časť stanovenia dynamického modulu pružnosti
- Príloha 6 Termogravimetrické krivky
- Príloha 7 Obrazový záznam EDS analýzy

PRÍLOHY

Príloha 1 – RTG Difraktogramy

Vzorka SZM 100

Vzorka SZM 90

Ca2 (S O4); Calcium Slicate; Lamite; S0: 12 (%); Monochie; P21/n. Ca3 Si O5; Calcium Slicate; Lamite; syn; S0: § (%); Monochie; P21/n. Ca3 Si O5; Calcium Slicate; Lamite; syn; S0: 2 (%); Rhombohedral; R-3ci Ca2 Fe Al O5; Calcium Iron Auminum Oxide; Brownmillerte; SQI 5 (%); Orthorhombic; Ibm2 K2 (Fe2[766 Mg2:321 TD:550) (AI2:413 S5:587 O20) (O H)4; Potassium Iron Magnesium Titanium Aluminum Slicate Hydroxide; Biotite; S0: 7 (%); Monochic; C2/c Ca6 (Al (O H)6)2 (S D4)3 (H2 O)25; 7; Calcium Aluminum Hydroxide Sulfate Hydrate; Ettringite; S0: 1 (%); Hexagonal; P31 c (Mg0:667 AD; 833) (O H)2 (C O3)0.167 (H2 O)0.5; Magnesium Aluminum Hydroxide Carbonate Hydrate; Hydrate; syn; S0: 1 [%]; Rhombohedral; R-3m

Vzorka SZM 80

Magnetitové kamenivo

K2 (Fe2|786 Mg2 321 TID.550) (AD.413 S6 587 O20) (O H)4; Potassium Iron Magnesium Titanium Aluminum Silicate Hydroxide; Biotite; SQ: 3 [%]; Moroclinic; C2/c

(Na0.84 Ca0.16) A11.16 Si2.84 O8; Sodium Calcium Auminum Silicate; Abite calcian low; SQ: 10 [%]; Anorthic; C-1

Fe2 O3; Iron Oxide; Hematite, syn; SQ: 3 [%]; Rhombohedral; R-3c

Príloha 2 – Tabuľková a grafická časť stanovenia objemovej hmotnosti

Objemová hmotnosť [kg.m ⁻³]					
Vek zmesi	Meranie Zmes	SZM 100	SZM 90	SZM 80	
2 dni	1	3 399	3 401	3 424	
	2	3 403	3 397	3 449	
	3	3 389	3 340	3 406	
	Priemer	3 397	3 380	3 426	
7 dní	1	3 359	3 305	3 349	
	2	3 348	3 288	3 363	
	3	3 342	3 335	3 356	
	Priemer	3 350	3 309	3 356	
	1	3 418	3 393	3 418	
29 daí	2	3 410	3 415	3 391	
28 ani	3	3 406	3 410	3 413	
	Priemer	3 411	3 406	3 407	
90 dní	1	3 334	3 414	3 407	
	2	3 361	3 355	3 402	
	3	3 367	3 378	3 405	
	Priemer	3 354	3 382	3 405	

Tabuľka stanovených hodnôt objemovej hmotnosti vzoriek SZM 100 až 80 do veku 90 dní.

Vzorka SZM 90

Grafické znázornenie časovej závislosti objemovej hmotnosti vzoriek SZM 90 a 80 vo veku 2, 7, 28 a 90 dní.

Príloha 3 – Tabuľková a grafická časť stanovenia pevnosti v ťahu pri ohybe

Pevnosť v ťahu pri ohybe [MPa]								
Vek zmesi	Zmes Meranie	SZM 100	SZM 90	SZM 80				
	1	7,92	7,28	7,70				
2 dai	2	8,61	7,43	8,37				
2 011	3	8,39	7,09	7,69				
	Priemer	8,31	7,27	7,92				
	1	9,14	8,94	8,93				
7 daí	2	9,18	9,14	10,10				
7 011	3	8,95	9,15	9,90				
	Priemer	9,09	9,08	9,27				
	1	9,77	11,65	11,70				
29 daí	2	11,40	11,86	11,50				
20 011	3	11,65	10,52	10,75				
	Priemer	10,94	11,35	11,31				
	1	11,61	11,88	10,70				
90 dní	2	11,02	10,50	12,05				
30 um	3	10,70	11,42	12,25				
	Priemer	11,11	11,27	11,66				

9,2

8,9

8,8

8,94

1

Tabuľka nameraných hodnôt pevností v ťahu pre vzorky SZM 100 až 80 do veku 90 dní.

SZM 90

SZM 90_7d

9,14

2

9,15

3

9,08

priemer

Grafické zobrazenie časovej závislosti pevnosti v ťahu pri ohybe vo vzorkách SZM 90 a 80 v časových intervaloch stanovenia 2, 7, 28 a 90 dní.

Príloha 4 – Tabuľková a grafická časť stanovenia pevnosti v tlaku

Pevnosť v tlaku [MPa]							
Vek zmesi	Zmes Meranie	SZM 100	SZM 90	SZM 80			
	1	35,00	27,69	30,58			
	2	35,38	27,69	31,73			
	3	36,92	Paj SZM 90 SZM 80 27,69 30,58 27,69 31,73 27,88 31,54 27,69 30,77 28,46 30,38 28,46 30,96 27,98 30,99 53,08 46,54 45,77 46,50 45,00 48,65 43,27 46,15 42,31 46,54 42,50 45,77 45,32 46,92 66,92 63,46 63,08 62,90 62,31 60,77 61,92 61,92 65,00 60,77 62,69 61,92 63,65 62,69 64,23 65,77 64,23 65,77 64,23 65,00 68,46 65,00 68,46 65,00 68,46 65,00 68,46 65,00 68,46 65,00 68,46 65,00				
Vek zmesi 2 dni 7 dní 28 dní 90 dní	4	35,38	27,69	30,77			
	5	37,50	28,46	30,38			
	6	34,23	28,46	30,96			
	Priemer	35,74	27,98	SZM 80 30,58 31,73 31,73 31,54 30,77 30,38 30,96 30,99 46,54 46,50 48,65 46,54 46,54 46,54 46,54 46,54 46,54 46,54 46,54 46,54 46,77 46,92 63,46 62,90 60,77 61,92 61,92 61,92 62,69 65,77 69,62 65,00 69,23 66,92 66,54			
	1	47,00	53,08	46,54			
Vek zmesi 2 dni 7 dní 28 dní 90 dní	2	49,23	45,77	46,50			
	3	48,15	45,00	48,65			
	4	47,23	43,27	46,15			
	5	50,81	42,31	46,54			
	6	49,92	42,50	45,77			
	Priemer	48,72	45,32	46,92			
	1	61,54	66,92	63,46			
	2	59,62	63,08	62,90			
	3	57,31	62,31	SZM 90SZM 8027,6930,5827,6931,7327,8831,5427,6930,7728,4630,3828,4630,9627,9830,9953,0846,5445,7746,5045,0048,6543,2746,1542,3146,5442,5045,7745,3246,9266,9263,4663,0862,9062,3160,7761,9261,9265,0060,7762,6961,9263,6562,6964,2365,7764,2369,6268,4665,0068,4669,2363,0862,9064,2365,7764,2369,6268,4669,2363,0866,9266,2266,54			
28 dní	4	63,46	61,92				
	5	62,69	65,00	60,77			
	6	61,15	62,69	61,92			
	Priemer	60,96	63,65	61,92			
	1	45,00	68,85	62,69			
	2	60,77	64,23	65,77			
	3	61,92	64,23	69,62			
90 dní	4	62,69	68,46	65,00			
	5	64,23	68,46	69,23			
	6	68,46	63,08	66,92			
90 dní	Priemer	60,51	66,22	66,54			

Tabuľka stanovených hodnôt pevností v tlaku pre vzorky SZM 100 až 80 do veku 90 dní.

Vzorka SZM 80

Grafické zobrazenie časovej závislosti pevností v tlaku stanovených vzoriek SZM 90 a 80 v časových intervaloch stanovenia 2, 7, 28 a 90 dní.

Príloha 5 – Tabuľková a grafická časť stanovenia dynamického modulu pružnosti

Dynamický modul pružnosti [GPa]							
Vek zmesi	Zmes Meranie	SZM 100	SZM 90	SZM 80			
	1	47,88	43,93	46,73			
2 dni	2	48,44	45,14	ZM 90 SZM 80 13,93 46,73 15,14 46,42 13,81 47,21 14,29 46,79 54,07 55,97 54,58 55,63 54,24 54,93 54,29 55,42 52,96 63,75 53,47 64,04 52,67 64,13 53,03 63,97 56,72 62,31 55,29 63,20 56,08 62,06 56,03 62,52			
2 011	3	47,54	43,81	47,21			
	Priemer	47,95	44,29	46,79			
	1	57,00	54,07	M 90 SZM 80 3,93 46,73 5,14 46,42 3,81 47,21 4,29 46,79 4,07 55,97 4,58 55,63 4,24 54,93 4,29 55,42 2,96 63,75 3,47 64,04 2,67 64,13 3,03 63,97 5,72 62,31 5,29 63,20 5,08 62,06 6,03 62,52			
7 dpí	2	55,96	54,58				
	3	56,47	54,24	54,93			
	Priemer	56,48	54,29	55,42			
	1	62,91	SZM 90SZM 8043,9346,7345,1446,4243,8147,2144,2946,7954,0755,9754,5855,6354,2454,9354,2955,4262,9663,7563,4764,0462,6764,1363,0363,9766,7262,3165,2963,2066,0862,0666,0362,52				
29 daí	2	61,76	63,47	64,04			
26 011	3	62,22	62,67	64,13			
	Priemer	62,30	63,03	63,97			
	C Priemer 1 2 3 9 Priemer 1 2 3 Priemer 1 2 3 Priemer 1 2 3 Priemer 2 3 2 2 3 Priemer 2	62,70	66,72	62,31			
90 dní	2	62,98	SZM 100SZM 90SZM 8047,8843,9346,7348,4445,1446,4247,5443,8147,2147,9544,2946,7957,0054,0755,9755,9654,5855,6356,4754,2454,9356,4854,2955,4262,9162,9663,7561,7663,4764,0462,2262,6764,1362,3063,0363,9762,7066,7262,3162,9865,2963,2062,5966,0862,0662,7666,0362,52				
Juli	3	62,59	66,08	62,06			
	Priemer	62,76	66,03	62,52			

Dynamický modul pružnosti stanovený vo vzorkách SZM 100 až 8 do veku 90 dní UZV impulzovou metodou.

Vzorka SZM 90

62,2

1

2

3

priemer

79

Grafické zobrazenie časovej závislosti dynamického modulu pružnosti zmesí SZM 90 a 80 stanovenej v časovom intervale 2, 7, 28 a 90 dní stanoveného UZV impulzovou metódou.

Hodnoty dynamického modulu pružnosti vzoriek do veku 28 dní stanovené systémom UltraTest.

Dynamický modul pružnosti [GPa]								
Vek zmesi	Zmes Meranie	SZM 100	SZM 90	SZM 80				
	1	44,90	39,30	43,10				
2 dni 2	2	44,90	39,30	43,40				
2 0111	3	44,31	ZM 100SZM 90SZM 8044,9039,3043,1044,9039,3043,4044,3138,7042,5044,7039,1043,0052,7148,3051,4052,7148,3051,4052,7148,3051,4052,7154,7056,3057,2154,7056,3057,2154,7056,3057,2154,7056,3057,2154,7056,30					
	Priemer	44,70						
	1	52,71	48,30	51,40				
7 doi	2	52,71	48,30	51,40				
	3	52,71	48,30	51,40				
	Priemer	52,71	48,30	51,40				
	1	57,21	54,70	56,30				
29 dpí	2	57,21	54,70	56,30				
20 0111	3	57,21	54,70	56,30				
	Priemer	57,21	54,70	56,30				

Príloha 6 – Termogravimetrické krivky

DTG krivky vzoriek SZM 100 až 80 vo veku 2, 7 a 28 dní.

TG/DTG krivky vzorky SZM 100 vo veku 2, 7 a 28 dní.

TG/DTG krivky vzorky SZM 90 vo veku 2, 7 a 28 dní.

TG/DTG krivky pre vzorku SZM 80 do veku 28 dní.

Príloha 7 – Obrazový záznam EDS analýzy

Časť povrchu vzorky SZM 100.

Snímky vybraných oblastí povrchu vzoriek SZM 100 až 80 zachytené EDS metódou.

^{50μm} Časť povrchu vzorky SZM 90.

Spectrum 1

Spectrum 11

Časť povrchu vzorky SZM 80.

	Spektrum 19		Spektrum 20		Spektr	um 21	Spektrum 22		
Prvok	m [%]	Atomic	m [%]	Atomic	m [%] Atomic		m [%]	Atomic	
		[%]		[%]		[%]		[%]	
С	11,09	27,03	11,06	20,18	12,81	26,65	11,43	25,24	
0	19,98	36,55	36,56	50,08	24,21	37,81	23,77	39,4	
Na	_	-	0,19	0,18	_	_	_	-	
Mg	-	-	0,53	0,48	0,26	0,26	0,45	0,49	
AI	_	_	2,25	1,83	1,00	0,92	0,6	0,59	
Si	0,25	0,26	7,27	5,67	5,79	5,15	4,09	3,86	
S	-	-	1,18	0,81	0,93	0,72	0,05	0,36	
К	-	-	0,83	0,46	0,58	0,37	0,39	0,26	
Ca	0,41	0,3	29,54	16,15	21,3	21,3 13,28		6,46	
Ti	0,86	0,53	-	-	-			0,13	
Fe	67,4	35,33	10,59	4,16	33,13	14,82	0,3	23,2	

Hmotnostné a atómové percentuálne zastúpenie prvkov na vybraných častiach povrchu vzorky SZM 100 (Spektrum 19 až 22).

	Spektr	rum 11	Spektrum 13		
Prvok	m [%]	Atomic [%]	m [%]	Atomic [%]	
С	7,63	22,34	11,23	22,56	
0	11,74	25,81	35,29	53,17	
Na	_	-	_	_	
Mg	-	-	0,72	0,71	
AI	0,32	0,41	0,31	0,27	
Si	0,57	0,72	0,84	0,72	
S	_	_	_	_	
K	_	_	—	_	
Ca	1,96	1,72	1,73	1,04	
Ti	_	_	_	_	
Fe	77,79	49,00	49,88	21,53	

Prvkové zloženie spektier 11 až 13 na povrchu vzorky SZM 90.

Prvkové zloženie spektier 11 až 13 na povrchu vzorky SZM 80.

	Spektrum 2		Spek	trum 3	Spekt	trum 4	Spektrum 5		Spektrum 6	
Prvok	m [%]	Atomic	m [%]	Atomic	m [%]	Atomic	m [%]	Atomic	m [%]	Atomic
		[%]		[%]		[%]		[%]		[%]
С	9,46	20,67	8,35	16,86	13,06	19,67	8,51	17,13	7,45	14,98
0	30,72	50,39	29,44	44,64	53,97	61,01	0,23	54,56	36,24	54,75
Na	_	_	_	_	-	_	_	_	—	-
Mg	0,19	0,2	0,79	0,81	0,22	0,16	0,28	0,28	0,39	0,39
AI	0,26	0,26	1,28	1,15	0,53	0,36	0,82	0,74	1,44	1,29
Si	0,46	0,43	9,14	7,89	23,51	15,14	4,35	3,75	5,26	4,52
S	_	-	-	-	-	_	0,36	0,27	0,64	0,49
К	-	-	-	-	-	_	-	_	-	-
Са	1,98	1,29	2,65	1,98	6,65	3	10,57	6,38	14,96	9,02
Ti	-	-	-	-	-	-	-	-	-	-
Fe	56,92	26,75	23,54	11,64	2,05	0,67	39,03	16,9	33,61	14,55