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Abstract

Ongoing climate change examining scenarios, accurate precipitation esti-
mation and understanding runoff dynamics are vital in managing hydrol-
ogy, meteorology, and water resources. While different in focus, these two
domains contribute to an intricate understanding of water cycle compo-
nents, particularly in regions experiencing water resource degradation. In
both studies presented within this doctoral thesis, sophisticated machine
learning techniques deliver in-depth insights. Specifically, this research
delves into two distinct facets of hybrid modelling: the disaggregation of
satellite-based precipitation data and the reconstruction of historical runoff
reconstruction.

The first study focuses on the methodological hybrid machine learn-
ing modelling framework for achieving accurate precipitation estimation
at high spatial and temporal resolution. Downscaling or disaggregation
is a key method for enhancing the spatial-temporal resolution of satellite
data. The authors propose a non-parametric method involving a hybrid
Extreme Gradient Boosting (XGBoost) approach combined with multivari-
ate spatial-temporal Fuzzy clustering. This clustering relies on Integrated
Multi-satellite Retrievals for GPM (IMERG) precipitation and Shuttle Radar
Topography Mission (SRTM) Digital Elevation Data.

Experimentation was conducted to downscale 255 months of IMERG
satellite data over the Czech Republic. The utilization of eight stations for
training and validation, and 19 additional stations for validation, showed
a strong agreement with ground-observed precipitation. The proposed
methodology substantially enhances the accuracy of IMERG precipitation
data and holds promise for applications in other regions with remotely
sensed data, particularly where ground-measured station data is sparse.
Apart from precipitation, runoff plays a significant role in the water cycle.

The second study emphasizes the reconstruction of historical runoff
provides vital information for climate change adaptation. However, the
conventional hydrological models can exhibit bias, leading to the necessity
of machine learning-based computing models.

A novel Hybrid Ensemble Multi-Model Framework (HEMMF) was pro-
posed to reconstruct the gridded runoff of Europe over 500 years. The
HEMMF combines non-parametric extended data pattern recognition and
data-drivenmethods, employing nine differentmachine learning algorithms
and four ensembles of ML. Using different datasets, including Moran’s spa-
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tial autocorrelation (SPA) index and various climate-reconstructed data, the
study found that the HEMMF offers the best reconstruction performance
with a merged dataset.

The reconstructed runoff, made possible by this advanced methodol-
ogy, helps explain runoff trends, drought propagation, and relationships
with climate variables. The proposed methodology has wide-ranging ap-
plications, including potential usage for past hydroclimatic data and related
analyses across diverse temporal periods, climate scenarios, and geograph-
ical scales.

Both methodologies play a crucial role in aligning and refining hydro-
logical and meteorological observational records. Utilizing hybrid machine
learning techniques for disaggregating precipitation and reconstructing
historical runoff becomes particularly important when considering climate
extremes. Notably, discerning trends on land becomes increasingly chal-
lenging in areas with limited data coverage. Addressing and bridging these
data gaps is paramount. This ensures that such inconsistencies don’t influ-
ence future projections, guiding our mitigation and adaptation strategies
more effectively.
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Introduction

1.1 Disaggregation of precipitation . . . . . . . . . . . 5
1.2 Historical runoff reconstruction . . . . . . . . . . . 6
1.3 Hybrid modelling . . . . . . . . . . . . . . . . . . . 8
1.4 The thesis aim . . . . . . . . . . . . . . . . . . . . . 9
1.5 The structure of thesis . . . . . . . . . . . . . . . . 10

Policymakers, scientists, and various stakeholders express a growing
need for precise and dependable weather and climate-gridded data. These
data are crucial formultiple applications such asmanagingwater resources,
as highlighted by Barnett et al. in 2005 [1], planning infrastructure based
on insights from Brody et al. in 2007 [2], and constructing ecosystem mod-
els as shown by the IPCC in 2013. High-resolution precipitation data and
historical gridded runoff records are crucial for hydrology, meteorology,
policymakers and related fields, especially considering the ongoing climate
change scenario driven by global warming [3]. Hydrologists and climatolo-
gists are highly interested in predicting watershed runoff caused by rainfall
events [4].

Accurate precipitation data is indispensable for diverse sectors rang-
ing from flood forecasting and water resource management to urban plan-
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Chapter 1

ning and ecosystem health [5, 6, 7, 8, 9]. Specifically, such data enables
the quantification of rainfall’s spatial and temporal characteristics, which
is crucial for predicting flood events [5]. In water-dependent regions, this
information informs the management of reservoirs, lakes, and rivers, effec-
tively influencing water availability [6]. Concurrently, it supports agricul-
tural decision-making processes, such as planting, irrigation, and harvest
scheduling [10]. Urban infrastructure, particularly drainage systems and
stormwater management, also relies on high-resolution precipitation fig-
ures [7, 8]. Moreover, a nuanced understanding of precipitation patterns is
essential for maintaining ecosystem health and predicting habitat changes
[9]. As climate change intensifies, the role of accurate precipitation data
in monitoring long-term weather and runoff trends becomes increasingly
critical [11].

The significance of historical runoff data in engineering and environ-
mental assessments is undeniable. Engineers utilize this data to design in-
frastructural elements such as bridges, culverts, and dams, ensuring their
resilience against past extremes and adaptability for anticipated environ-
mental shifts [12]. These records are pivotal for flood risk evaluations,
shaping floodplain management strategies and influencing insurance rates
[13]. Furthermore, understanding past runoff trends is instrumental in
forecasting groundwater availability—integral for regions grappling with
water scarcity and renewable energy implications [14]. Such historical
records furnish critical context to contemporary environmental occurrences,
enabling researchers to discern between anomalous events and established
long-term trends. The pressing need for precise rainfall and river flow data
cannot be overstated in a world where environmental patterns profoundly
impact human societies and their interactions with nature and surround-
ings are intrinsically intertwined. The demand for meticulous gridded data
on precipitation and runoff escalates as global warming intensifies, yield-
ing more pronounced climate alterations. This ensures safety, effective wa-
ter management, and food security. This thesis, therefore, underscores the
importance of disaggregating satellite precipitation, reconstructing histor-
ical runoff, and exploring their innovative hybrid methodologies. Detailed
discussions of these facets are presented in sections 1.1, 1.2, and 1.3, which
focus on addressing the existing research voids.
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Introduction

1.1 Disaggregation of precipitation

Understanding precipitation is essential to studying extreme hydro- mete-
orological events, irrigation, water resources, and runoff modelling. While
rain gauges or automatic weather station networks are commonly used
for precipitation measurements, their sparse distribution poses challenges
in remote areas with extensive spatial coverage. Since rain gauge mea-
surements are point-specific, they do not adequately represent the spatial
variability of precipitation across larger regions. Hence, satellite-based es-
timates serve as a compelling alternative.

Numerous satellites data, including the Tropical Rainfall Measuring
Mission (TRMM), Climate Prediction Center Morphing (CMORPH), Cli-
mate Hazards Group InfraRed Precipitation with Station Data (CHIRPS),
and Precipitation Estimation from Remotely Sensed Information using Ar-
tificial Neural Networks (PERSIANN), offer precipitation estimation. Among
them, the Integrated Multi-satellite Retrievals for GPM (IMERG) stands out
for its reliability in measuring precipitation [15, 16]. While IMERG pro-
vides precipitation data at a spatial resolution of 0.1◦x 0.1◦ (around 11 x
11 km at the equator), there’s a need for higher resolution data to gain a
more nuanced understanding of spatial rainfall variability and local-scale
land-atmosphere interactions. The technique of spatial disaggregation ad-
dresses this by downscaling precipitation, providing more precise data for
hydrological applications. This process helps to bridge the gap between
resolution discrepancies and uncertainties, facilitating more localized cli-
mate change impact assessments.

Numerous studies have explored downscalingmethods to enhance spa-
tial resolution and diminish the uncertainty of satellite-based precipitation.
They have done this by using vegetation indices such as the Normalized
Difference Vegetation Index (NDVI) [17, 18], the Enhanced Vegetation In-
dex (EVI) [18], and environmental factors like the Land Surface Temper-
ature (LST) [17]. These studies often employ exponential regression (ER)
and multiple linear regression (MLR) techniques. Yet, introducing ER and
MLR can add further uncertainty and error to the downscaled precipita-
tion [19]. To address the limitations of MLR, there is a shift towards the
Geographically Weighted Regression (GWR) method [20]. Notably, NDVI
and LST have been employed to downscale precipitation using GWR and
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machine learning, complemented with ground truth data [17]. Chen et
al. (2019) [20] noted that beyond a certain threshold, NDVI fails to cap-
ture precipitation patterns, leading to the adoption of EVI to mitigate this
problem. However, vegetation indices prove problematic for monthly scale
precipitation disaggregation, especially as leaves drop in seasons like au-
tumn and winter [21]. Methods combining elevation and NDVI functions
have proven effective in downscaling TRMM precipitation [22].

The local climate system, elevation, and atmospheric circulation sig-
nificantly influence the spatial-temporal patterns of monthly precipitation
[23, 24, 25, 26]. By using clustering techniques, climatic and atmospheric
conditions are assessed based on specific and separate groups, aiding in
prediction and numerical model simulations [27, 28]. Clustering of differ-
ent time series patterns is based on intra-group similarities and differences
between group patterns.. The hierarchical clustering approach has been
employed for IMERG precipitation bias correction by grouping stations
with similar climatic and geographical characteristics using precipitation
quantiles [29]. Due to the limited availability of high-resolution precip-
itation data, the K-means spatial clustering method aids in the temporal
disaggregation of extreme rainfall from daily to hourly scales in selected
Indian metro cities [30]. Various studies have leveraged the Poisson clus-
ter for spatial-temporal precipitation disaggregation [31, 32, 33]. However,
combining clustering with regression techniques enhances the reliability
of precipitation disaggregation [32].

1.2 Historical runoff reconstruction

Runoff denotes the volume of water originating from a specific land re-
gion (represented as a set of grid cells) that ultimately enters river systems.
Such runoff is pivotal for evaluating water resources [34]. Presently, wa-
ter resource scarcity, attributed to droughts [35] and influenced by climate
change [36], impacts 66% of the worldwide population. The availability of
water resources, influencing potable water, agriculture, industry, and other
societal facets, is determined by runoff [37]. As a fundamental natural pro-
cess on Earth, runoff is a crucial element of the hydrological cycle.

The runoff process influences the intricate and ever-changing water
distribution patterns across the Earth. Runoff represents the result of the
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inherent hydrological mechanisms associated with a river basin. This basin
collects the cumulative runoff data from smaller regions nested within its
boundaries. Typically, runoff information is accessible in the form of grid-
ded fields within that river basin area. This data can be represented as spa-
tial averages of these gridded fields corresponding to specific river basin
territories.

To illustrate the long-term fluctuations in runoff fields, the Budyko
models, as detailed in [38], have been established and adopted as a primary
method for the description of long-term runoff variability [39, 40, 41, 42].
These models elucidate the connection between long-term inputs and out-
puts in many hydrological systems, offering hydrological time series with
time frames exceeding a year. Their primary function is to delineate how
water input, signified by precipitation, is divided between the two principal
components of a hydrological system: actual evapotranspiration (E) and
long-term runoff. The comprehensive portrayal of runoff, precipitation,
and E relies on average yearly data collected over a standard three-decade
observation period [43].

Budyko models primarily rely on long-term precipitation data and po-
tential evapotranspiration (E0) as inputs. The E0 denotes the amount of
atmospheric water demand when there’s ample water available for evapo-
transpiration. Within Budyko models, these inputs are utilized to estimate
both E and runoff, where E stands for actual evapotranspiration [42, 43].

Budyko models have been utilized to evaluate the implications of cli-
mate change on future predictions of runoff and evapotranspiration fields
[43]. Furthermore, they have been employed to recreate past runoff from
the 1970s to 2000s over twelve significant basins in China [44]. Various
attempts to reconstruct historical climate data have predominantly relied
on palaeoclimatic proxies. For instance, there are reconstructed datasets
for precipitation [45] and temperature [46]. These reconstructions offer
advanced insights into past spatial and temporal trends that are vital for
Budyko models.

The patterns in space and time are strongly correlated with other sig-
nificant environmental variables. Among these variables is data derived
from the Palmer Drought Severity Index (PDSI), a metric grounded in a
straightforward water balance model [47]. PDSI reconstructions have been
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employed in multiple research projects to characterize historical hydrocli-
matic conditions [48, 49]. Additionally, the spatial correlation frameworks
across all spatio-temporal fields offer another critical source of intercon-
nected data.

The Budyko models frequently exhibit systematic errors due to various
sources of uncertainties, such as parametric, structural, and uncertainties
in spatial-temporal fields, among others [50]. Machine learning (ML)meth-
ods could offer viable ways to enhance long-term runoff reconstruction.
These methods enable the creation of non-linear models with multiple in-
puts but a single output, factoring in data from diverse sources like PDSI,
precipitation, and other environmental factors. A crucial consideration is
how input data spatial autocorrelation (SPA) patterns are represented. In-
corporating the SPA of the spatial fields of input data intoMLmodels might
boost their accuracy [51]. Yet, ML models fail to replicate the intricate hy-
drological processes, especially when the training data doesn’t sufficiently
capture climate variable extremes [52]. Merging hydrological models with
ML techniques could be synergistic, paving the way for a hybrid ML strat-
egy [52].

1.3 Hybrid modelling

Hybridmodelling combines predictions fromphysics-based dynamical weather
or climate models with data-driven models to improve hydroclimatic pre-
dictability. While dynamical models numerically solve for system property
changes over time, data-driven models range from simple linear regression
to advanced AI methods, such as machine learning and deep neural net-
works. Hybrid prediction strategically merges the unique advantages of
both dynamic and AI models. Hybrid modelling is gaining popularity in
hydroclimatic areas due to its capability to form a robust predictive model
[53].

Disaggregating satellite precipitation data and reconstructing historical runoff
present a significant challenge using predictivemachine learning or physically-
based models due to uncertainty propagation in satellite or input data [28,
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54]. This uncertainty also generates a bias in the output of the physical-
based hydrological model [28]. However, this can be minimised using ma-
chine learning (ML) models, but in case the training data is extreme range
unavailable, it leads to generating the bias in prediction output [52, 28].
The coupling of the physical hydrological model or statistical information
with machine learning (ML) or ensemble of ML leads to the development
of the hybrid model, which is a very robust model for runoff prediction
or reconstruction as well precipitation disaggregation [52, 28, 54]. This
coupling leads to complement each other (hydrological and ML models) to
minimise the bias and is currently widely applied in the field of hydrology
and climate data reconstruction [52, 54, 28].

1.4 The thesis aim

In today’s world of rapid computational progress and increasing climate
variability, it’s crucial to have precise weather forecasting and resilient hy-
drological models. The present-day challenges brought about by climate
changes emphasize the necessity for novel, holistic strategies to decode
complex meteorological trends and retrace past climate records. Yet, de-
spite the proven efficiency of hybrid modeling, only a handful of studies
have ventured into reconstructing the 500-year historical runoff and dis-
aggregating precipitation using such techniques. This doctoral research
aspires to bridge this gap, harnessing advanced machine learning (ML)
methods and hybrid ensemble models to craft frameworks tailored for pre-
cipitation disaggregation and retracing historical runoff trajectories.

To succinctly encapsulate the objectives of this thesis, this work turns
focus to two pivotal case studies, as detailed below:

Development of a Hybrid Learning Model for Precipitation Dis-

aggregation:

• To explore the potential of a hybrid Extreme Gradient Boosting (XG-
Boost)model combinedwith fuzzymultivariate spatial-temporal clus-
tering for disaggregating IMERG satellite precipitation.

• To scrutinize the efficacy of XGBoost when coupled with multivari-
ate clustering techniques and assess its potential in capturing com-
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plex precipitation patterns.

• To augment the spatial resolution of the IMERG precipitation data,
enhancing it from approximately 11 to 1 kilometer through inte-
grated modelling.

Development of the Hybrid Ensemble Multi-Model Framework

(HEMMF) for Historical Runoff Reconstruction:

• To develop the HEMMF, integrating spatial patterns correlation, hy-
drological Budyko models, and ensemble ML techniques for recon-
structing historical spatio-temporal patterns of runoff fields over Eu-
rope for the period 1500–1999.

• To interconnect spatial patterns for palaeoclimatic reconstructions
(like drought, precipitation, and temperature) with the estimation of
historical runoff, utilizing Budyko models.

• To investigate the incorporation of Spatial Auto-correlation (SPA)
patterns into ML models and its resultant influence on runoff pre-
diction accuracy.

• To analyze different individual ML techniques’ potentials and com-
pare them against ensemble ML models to mitigate uncertainties in-
herent in the modelling process.

• To introduce and test a two-stage validation procedure for recon-
structing palaeoclimatic patterns of runoff time series.

1.5 The structure of thesis

Chapters 2 and 3 delve into the intricacies of hybrid modelling and ad-
vanced clustering. Chapter 4 describes the evaluation metrics relevant to
these models. Chapter 5 offers comprehensive details regarding the model
implementation for the study. Chapters 6 and 7 outline the required data
and present the results of the case studies. From Chapters 8 to 10, the out-
comes of each case study are detailed, followed by an in-depth discussion
and conclusion. Lastly, Chapter 10 shows the list of publications on this
thesis work.
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Chapter 2

Disaggregation of precipita-
tion

2.1 Related work . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Hybrid modelling . . . . . . . . . . . . . . . . . . . 15

2.2.1 Resampling methods . . . . . . . . . . . . . 16
2.2.2 Fuzzy multivariate spatio-temporal clustering 17
2.2.3 XGBoost ML model . . . . . . . . . . . . . . 17

As this thesis work discusses above, "hybrid learning" refers to the
amalgamation of multiple components, such as statistical or physics-based
models, which often yield more realistic predictive outputs [28, 55]. How-
ever, as far as this work is aware, no existing studies delve into the dis-
aggregation of precipitation using a hybrid method that combines the Ex-
treme Gradient Boosting (XGBoost) model with fuzzy multivariate spatial-
temporal clustering specifically for disaggregating IMERG satellite precipi-
tation data. While previous studies have identified the effectiveness of XG-
Boost in disaggregating time-series precipitation data [56, 57], the model
has not been pairedwithmultivariate clustering techniques tomaximize its
benefits. The use ofmultivariate clustering provides a richer perspective on

13



Chapter 2

intricate weather patterns, accounting for a web of interrelated meteoro-
logical and climatic elements. This approach enhances the accuracy of pre-
diction models, leading to more reliable weather forecasts [58]. This chap-
ter introduces a technique for disaggregating IMERG precipitation data
by effectively combining two powerful tools: XGBoost and fuzzy spatial-
temporal clustering, addressing the existing research gap. This pairing of-
fers mutual benefits, enabling us to refine the spatial resolution of IMERG
data from roughly 11 kilometers down to 1 kilometer.

2.1 Related work

Current disaggregationmethods primarily utilize statistical techniques, draw-
ing from high-resolution explanatory variables such as soil moisture, veg-
etation, evapotranspiration, and temperature to generate detailed precipi-
tation information [59]. In this context, methods like partial least squares
regression (PLSR), Artificial Neural Networks (ANN), and Random Forest
(RF) have gained popularity [60, 61, 62]. Machine learning models, notably
ANN, RF, and mixed geographically weighted regression (MGWR), have
shown considerable promise [59, 63]. The MGWR model stands out for
adeptly addressing both stationary and non-stationary characteristics of
explanatory variables [64]. However, the patterns of these variables are in-
fluenced by local environments or climatic dynamics and often interrelate
with each other [65]. The organization of these variables is represented
by clusters of principal components [66]. Merging such components, like
clusters, with regression techniques often leads to enhanced predictive ac-
curacy [67].

The auto-searched Orographic and Atmospheric effects of De-trended
Kriging, termed the ASOADeK regression method, is a current strategy for
spatially downscaling precipitation in mountainous areas [68]. However,
past efforts in this area haven’t incorporated multivariate clustering, opt-
ing instead for data from Next Generation Radar (NEXRAD) precipitation
fields. A notable limitation of this method is NEXRAD’s inability to deter-
mine snow precipitation rates, as pointed out in Guan’s 2009 research [68].
Additionally, the Microcanonical Multiplicative Random Cascade (MMRC)
model, when paired with k-means clustering, is used for the temporal dis-
aggregation of precipitation across specific Indian cities [30]. Regrettably,
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Deka, P. et al. (2023) [30] work overlooks sensitive variables impacting
precipitation for multivariate clustering. The Tropical Rainfall Measuring
Mission (TRMM) 3B43 monthly precipitation satellite data has been bro-
ken down spatially using longitude, latitude, and elevation as predictors,
and station data as the response variable within a multiplicative random
cascade regression framework [69].

2.2 Hybrid modelling

IMERG 
Satellite data

Resampling Techniques

Resampling  
Median

Cubic Cubic Spline Lanczos

Fuzzy Multivariate Spatio-temporal 
Clustering

XGBoost

Disaggregation

SRTM
DEM

Figure 2.1: Flow chart of the methodology for disaggregation of precipita-
tion.

The methodology’s flowchart is illustrated in Figure 2.1. The thesis
commences by procuring the IMERG and SRTM satellite data, followed by
its resampling. For this, this work employs the ’Cubic’, ’Cubic Spline’, and
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’Lanczos’ resampling techniques on the IMERG and SRTM satellite data
using the resample() function available in the ’terra’ R package [70]. Al-
though the nearest-neighbour method is typically favoured for resampling
extensive raster data [29, 71], it has shortcomings. This method can yield
images with a patchy appearance, potentially leading to the omission or
duplication of pixel values [72]. Resampling serves as a tool to recalibrate
the satellite data’s resolution to my desired scale, specifically, one kilome-
ter in this context. Through resampling, the research work enhances the
quality of my satellite data, paving the way for effective disaggregation.
Resampling in satellite imagery, disaggregation upholds local data while
ensuring a balance in similarity and diversity among pixel values. Thus,
this work chooses these specific resampling methods in the research.

2.2.1 Resampling methods

Cubic: This method involves cubic resampling. It determines the weighted
average of the closest 16 pixels, yielding a more refined pixel output than
the nearest-neighbour technique [73].

Cubic Spline: Utilizing cubic spline interpolation, thismethod smoothly
integrates cubic polynomials to ensure seamless continuity between ad-
jacent raster data pixels. Recognized for its efficiency, the cubic spline
methodmaintains image clarity and often outperforms the nearest-neighbour
and bilinear interpolation strategies [72, 74].

Lanczos: With the primary objective of retaining image intricacy dur-
ing resizing, Lanczos resampling leverages awindowed sinc function, termed
the Lanczos kernel, for convolution. This approach notably minimizes
aliasing disturbances while amplifying edge definition [75].

The aforementioned resampling strategies each present unique strengths.
Consequently, research work computes the ensemble median of all these
methods to harmonise and tap into their collective benefits. This ensures
heightened precision in the enhanced resolution of IMERG and SRTM raster
data. Post-resampling, this thesis work employs the resulting medians to
formulate a multivariate cluster, the subsequent step. This clustering pro-
cess is based on the resampled medians of IMERG and SRTM data originat-
ing from the Czech Republic.
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2.2.2 Fuzzy multivariate spatio-temporal clustering

This work utilizes the Fuzzy spatial-temporal multivariate clustering ap-
proach to categorize similar patterns of time series precipitation and SRTM
elevation data. The clustering leverages the Fuzzy C-Means algorithm, a
concept pioneered by Bezdek JC [76]. Each cluster’s centroid is ascertained
using the FuzzyC-Means (FCM) techniquewithin this algorithm. Addition-
ally, to gauge the ’distance’ or disparity between time series data points, the
algorithm incorporates the foundational Dynamic Time Warping (DTW)
approach. This process is executed with the help of the "dtwclust" R pack-
age [77]. The C-Means clustering has showcased significant robustness
when handling time series data [78].

Thiswork has designated eight clusters based on the thesiswork’s com-
prehensive understanding of the Czech Republic’s precipitation dynamics.
These clusters collectively encapsulate the diverse spatial-temporal precip-
itation data as visualized in Figure 7.2 a). This classification strategy guar-
antees that each cluster contains one or more observation stations. Out of
27 ground observation stations aiding in training and validating the disag-
gregated precipitation, themost precise station corresponding to each clus-
ter—contributing 80% of the data—is allocated for training. Notably, 20% of
the data from the eight training stations, which remain outside the purview
of model training, are designated for validation. Furthermore, comprehen-
sive datasets from 19 other stations play a pivotal role in validating both
the IMERG and the disaggregated precipitation via the XGBoost machine
learning framework.

2.2.3 XGBoost ML model

Chen and Guestrin introduced the XGBoost model [79], drawing inspi-
ration from the principle of boosting – the technique of morphing weak
learners into potent ones. The methodology hinges on ensemble learning,
where a succession of weak models (typically decision trees) are trained
iteratively. Their collective predictions amalgamate to craft a final, potent
model. The essence of boosting revolves around honing in on data points
preceding models struggled to classify or predict correctly, subsequently
ameliorating the aggregate performance through each iteration. XGBoost

17



Chapter 2

stands out as a formidable machine learning technique for forecasting time
series, even eclipsing the deep learning-based Long Short-Term Memory
(LSTM) model under certain circumstances [80, 81].
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Historical runoff reconstruc-
tion

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Hybrid ensemble multi-model framework . . . . . . 22

3.2.1 Base learners . . . . . . . . . . . . . . . . . 24
3.2.2 Ensemble learning . . . . . . . . . . . . . . 25

3.3 Physical hydrological models . . . . . . . . . . . . . 26
3.4 Spatial autocorrelation . . . . . . . . . . . . . . . . 27
3.5 Two-stage validation . . . . . . . . . . . . . . . . . 28

Recent advancements in hybrid frameworks have demonstrated no-
table effectiveness in runoff estimation, as evidenced by various studies
[82, 83, 84, 52]. My research introduces a comprehensive Hybrid Ensemble
Multi-Model Framework (HEMMF), detailed in subsequent sections, dedi-
cated to predicting and historically reconstructing continental-scale runoff.
This innovative method seamlessly merges the strengths of process-driven
hydrological models andmachine learning (ML) techniques [84, 52]. Break-
throughs in hybrid ML and pattern recognition [85, 52] further pave the
way for my ensemble ML model, which synthesizes insights from a range
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of ML methodologies [86, 87].

The essence ofmy hybrid approach lies in its amalgamation ofML com-
ponents, hydrological modelling [52], and ensemble ML techniques [88].
One can envision enhancing this model further by integrating an ensem-
ble of ML models, SPA, and process-based hydrological models, a synergy
seldom explored in the existing literature. The proposed architecture lever-
ages ML, ensemble ML models, Budyko models, and SPA to heighten the
precision of annual runoff reconstructions collaboratively.

In this research, my primary accomplishment has been formulating and
evaluating HEMMF, aimed at recreating the historical spatio-temporal dy-
namics of runoff across Europe between 1500 and 1999. HEMMF syner-
gistically merges spatial pattern correlations, data-driven SPA calculations,
hydrological model estimations, and singular and ensembleML techniques.
Building upon the pioneering work of Konapala et al. (2020) [52], which
advocated for the inclusion of Budyko model outputs into ML algorithms,
this research has established a link between spatial patterns of past cli-
mate phenomena, such as droughts [48], precipitation [45], and tempera-
ture [46], with historic runoff estimations using Budyko models.

Additionally, my study broadens the data palette by incorporating SPA
representations across all input time series. While the influence of SPA on
ML-based time series predictions is undeniable [51], its inclusion in runoff
forecasting through ML remains sparse. My runoff reconstruction utilizes
a grid-based climate dataset, encompassing precipitation [45], temperature
[46], and the Palmer Drought Severity Index (PDSI) [48], aggregated annu-
ally over Europe. TheHEMMF strategy allowed us to gauge the potential of
individual ML models, juxtaposing them with ensemble ML. To minimize
model-related uncertainties, this work trialled a variety of ML ensemble
configurations. This research introduces a dual-phase validation method
for recreating runoff time series paleoclimatic dynamics.

3.1 Related work

Over recent decades, various ML models have been effectively utilized for
pattern recognition in time series data and reconstructing runoff [89, 90,
91, 92]. For instance, the quantile regression forest (QRF) was employed
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across 511 U.S. basins to predict daily streamflow [93]. In this research,
a QRF model corrected the streamflow simulated by a physics-driven hy-
drological model using precipitation and E0 as inputs. Another study by
Zhang, Yuhang, et al. [94] employed QRF for streamflow estimation in 522
sub-basins of the Yangtze River. These studies’ results affirmed the QRF
model’s enhanced accuracy in daily streamflow prediction [94, 93].

S. Gangopadhyay et al. [95] implemented the K-nearest neighbors (KNN)
for annual streamflow reconstruction on the upper Colorado River, using
a tree ring proxy for the period from 1400–2005. Their findings showed
that the reconstructed streamflow closely aligned with observed data dur-
ing the validation phase [96, 95]. Additionally, KNN was integrated into
a hybrid ML model to predict water flow reliably in the Indus river basin
[97].

The extreme gradient boosting (XGBoost) model was employed to fore-
cast a 10-day streamflow for China’s Three Gorges Dam [98]. This model
utilized 10-day inflow data and showed efficacy in forecasting from 1990
to 2015. The XGBoost model also delivered satisfactory results for daily
streamflow simulations [99].

Additionally, the multivariate adaptive regression spline (MARS) was
utilized formonthly streamflow forecasting in locations like the Tigris River
in Baghdad and the mountainous Swat river basin in Pakistan [100, 101].
MARS demonstrated promising potential for streamflow predictions, and
its hybrid version further improved accuracy [102]. However, it’s notable
that limited studies leverage ML models like QRNN, RPART, RLM, CTREE,
and GBCSS for streamflow time series pattern reconstruction. Methods like
QRF, XGBoost, and MARS haven’t been extensively explored for paleocli-
matic historical runoff reconstruction.

ML model accuracy for time series runoff simulation has improved, es-
pecially with the hybrid ML model that uses outputs from physics-driven
hydrological models [103, 52]. For instance, the hybrid approach, which
integrates ML and hydrological models using various meteorological in-
puts, has proven superior in estimating runoff compared to solely relying
on physics-based models or data-driven algorithms [104, 105]. Although
this hybrid framework hasn’t been extensively tested for historical runoff,
it has exhibited reduced biases in simulations [52].
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Another evolution in the modeling landscape is ensemble ML tech-
niques [106, 107, 108]. These methods combine outputs from multiple ML
models to produce a joint output. Many studies have demonstrated that
ensemble-focused approaches offer superior prediction accuracy compared
to individual ML models [109]. For example, Tyralis et al. [110] show-
cased the effectiveness of an ensemble approach, integrating models like
LM, MARS, XGBoost, and NN, for runoff forecasting. Ensemble methods
have also shown promise in reconstructing historical patterns of paleocli-
matic data [111, 112, 113]. Collectively, these ensemble models have con-
sistently elevated the accuracy of hydrological time series predictions in
multiple studies [114, 115, 116, 117, 118].

3.2 Hybrid ensemble multi-model framework

Figure 3.1: Methodological flowchart. The initial dataset incorporates
seven-time series inputs: precipitation, temperature, PDSI, along with
runoff from using Budyko models (QS, QO, QTB, and QB) that are de-
scribed in the works of Schreiber [39], Ol’Dekop [40], Turc-Pike [41, 42],
and Budyko [119]. The subsequent datasets represent the primary dataset’s
Spatial Autocorrelation (SPA). The final dataset is an amalgamation of the
first two. The Global Runoff Reconstruction (GRUN) and Global Runoff
Data Centre (GRDC) datasets serve as reference points for a specific time-
frame.

The hybrid framework blends various components for enhanced ef-
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ficiency, integrating expanded input data patterns with a set of machine
learning algorithms, as depicted in Fig. 3.1. This diagram illustrates the
three-stage implementation of my HEMMF proposal.

In the initial stage, HEMMF’s extended input data patterns draw upon
climatological fields (see Section 6.2), the spatial autocorrelation of input
data (detailed in Section 3.4), and outputs from parsimonious hydrologi-
cal models that are physics-based (refer to Section 3.3). While these input
data are in raster forms, they transform vector data, readying them for the
subsequent phase of HEMMF’s ML models.

During the second phase, the case study tests the HEMMF using ex-
tended input data patterns and a duo of ML model types: base learners
and ensemble learning, incorporating 10-fold cross validation as depicted
in Fig. 3.1. Here, base learners get their input from the extended data pat-
terns, with nine specific ML models processing the vector data to simulate
runoff. The base learner’s predictions are then fed into ensemble learning
to fine-tune the runoff simulation. A deep dive into these nine ML mod-
els nested within the base learners, and the ensemble models tested in the
HEMMF’s ensemble learning can be found in Sections 3.2.1 and 3.2.2 re-
spectively.

In the concluding third phase, simulations are calibrated, cross-checked,
and reshaped concerning the chosen ML ensemble and benchmark data, as
elaborated in Sections 3.2.1 and 3.2.2.

The selection of the nine ML models and four ensemble methods was
made judiciously from a plethora of modern ML and ensemble techniques.
The primary criterionwas to ensure a rich diversity of high-performingML
methodologies [120, 121]. The ensemble’s composition hinges on selecting
base learners that collectively present a complementary performance [122].
The exact number of these learners varies based on factors like data pat-
terns, the problem’s nature, and ensuring diversity and accuracy [122, 123].
Odd numbers of base learners have historically proven more effective for
ensemble learning [124, 125, 126, 127]. Thus, my choice of nine base and
four ensemble learners was deliberate, aimed at optimizing each ensem-
ble model’s performance, emphasizing algorithmic diversity and similar-
ity. This approach aids in assessing ensemble output variations and con-
gruence. Among the chosen ensemble models, multi-linear regression and
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random forest have previously proven their robustness [128]. However,
combining the ML ensemble with the Bayesian generalized linear model
and Bayesian ridge regression in a model average is a novel approach. Opt-
ing for a limited ensemble structure in my hybrid framework is strategic,
aiming to reduce computational overhead [121].

3.2.1 Base learners

HEMMF’s ML models employ climatic and hydrological data to produce
yearly runoff, with each ML model rendering unique features in recon-
structing the runoff pattern. The nine ML models serving as HEMMF’s
base learners are outlined below:

Quantile Regression Neural Network (QRNN): This model, rooted
in the standard multilayer perceptron-based ANN [129], synergizes the ad-
vantages of both neural networks and quantile regression [130]. QRNN, a
versatile form of quantile regression, was pioneered by Taylor and Cannon
[130, 131]. QRNN incorporates a differentiable approximation to its regres-
sion cost function, pivotal to enhancing parameter estimations through the
finite smoothing algorithm [132]. This approximation also rectifies expec-
tile regression or conventional least squares regression issues.

Gradient Boosting with Component wise Smoothing Splines

(GBCSS): Introduced by Buhlmann and Yu [133], GBCSS utilizes a boost-
ing algorithm that centers on component-wise base learners. It employs
P-splines with B-spline basis base learners [134], optimizing prediction ac-
curacy while averting overfitting [135].

Recursive Partitioning and Regression Trees (RPART): Crafted
by Breiman et al. [136], RPART continuously divides a dataset until a set
termination criterion emerges. Each division focuses on the independent
variable, aiming to minimize variability in the predicted variable. This
method’s impurity, a measure of leaf node heterogeneity, is quantified us-
ing the Gini index.

Conditional Inference Tree (CTREE):CTREE, also termed unbiased
recursive partitioning, was put forth by Hothorn, Zeileis, and Strobl [137,
138, 139]. It estimates the regression relationship via binary recursive par-
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titioning within a conditional inference framework. The CTREE process
comprises a series of tests and splits, recursively evaluating the relation-
ship between input and response variables.

EXtreme Gradient Boosting (XGBoost): Chen and Guestrin intro-
duced XGBoost in 2016 [79]. It’s a conversion technique transforming a
weak learner into a strong one, where the former marginally surpasses
random guesses and the latter boasts high accuracy. At its core, XGBoost
leverages a gradient boosting tree as its booster.

Multivariate Adaptive Regression Spline (MARS): Conceived by
Friedman in 1991 [140], MARS automatically formulates a segmented lin-
ear model, proficiently capturing the nonlinear characteristics of polyno-
mial regression by interpreting knots as step functions.

Robust Linear Model (RLM): An extended linear regression variant,
RLM integratesM-estimation using the Hubermethod [141]. RLM employs
iterated re-weighted least squares (IRLS) for model fitting and stands out
for its efficacy in data with outliers.

k-Nearest Neighbors (KNN): Presented by Huber [142], KNN cate-
gorizes data based on the features of neighboring data points [143]. Using
kernel functions, KNN emphasizes neighbours according to their proxim-
ity, making predictions rooted in local approximations.

Quantile Regression Forest (QRF): An augmentation of the random
forest, QRF broadens the full conditional spread of a predictive variable,
aiding outlier detection [144]. While a random forest furnishes compre-
hensive details about the mean conditional distribution of the response
variable, QRF refines predictions of conditional quantiles for predictor vari-
ables.

3.2.2 Ensemble learning

The ensemble learning approach in HEMMF integrates four distinct en-
semble ML models. These models use the results from their base learners
as inputs, refine these results, and deliver error-adjusted runoff predictions.
A description of each ensemble ML model follows.
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Multilinear Regression (MLR) is a fundamental model employed to
delineate the linear correlation between input and output parameters.

Random Forest (RF) operates in a manner akin to bagging but with
specific modifications [145]. Multiple trees are generated within RF using
varied bootstrapped samples from the input data. The RF model then en-
hances the model’s robustness by averaging the predictions from all trees,
a method that also helps in preventing overfitting. The methodology of
Breiman’s random forest is employed in this study [146].

Bayesian Generalized Linear Model (BayesGLM) operates simi-
larly to generalized linear regression. It’s grounded in a Gaussian family
linear model and produces credible interval statements. Additionally, it
imposes a prior restriction using a t-distribution [147]. The fitting of the
BayesGLM is achieved using the modified expectation-maximization (EM)
and the pseudo-data technique [148].

BayesianRidgeRegressionwithModelAveraged (BRRWMA) fore-
casts the regression coefficients based on posterior evaluations. The resul-
tant regression model averages out predictions using posterior estimates,
aiming to address model uncertainty [149]. This machine learning model
uses the default parameter settings found in the original ”monomvn” R
package [150]. For HEMMF, various R packages are employed, with details
provided in the supplementary materials.

3.3 Physical hydrological models

In my endeavor to reconstruct the spatial runoff field, this study utilizes
four contemporary Budyko models. These models provide estimates of
long-term water balance, focusing on the interplay between long-term an-
nual precipitation and E0 [151, 152].

The fundamental tenets of these models can be articulated as:

Q = P − E, and E = f (P,E0) . (3.1)

Here, P , Q, E, and E0 signify annual precipitation, runoff, actual evapo-
transpiration, and potential evapotranspiration, respectively [153].

The Budykomodels’ potential evapotranspiration (E0) is deduced from
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Table 3.1: Overview of Budyko hydrological models adopted in this re-
search.

Budyko Model Evapotranspiration Model NameReferenceOriginator

E = 1− exp

(
−E0

P

)
QS [39] Schreiber

E =
E0

P
tanh

(
E0

P

)−1

QO [40] Ol’Dekop

E =

E0

P[(
E0

P

)2

+ 1

] 1
2

QTP [41, 42] Turc,Pike

E =

√
E0

P
tanh

(
E0

P

)−1 [
1− exp

(
−E0

P

)]
QB [119] Budyko

temperature, as proposed by the Oudin method [154]. Table 3.1 concisely
represents the chosen non-parametric Budyko models. This work incor-
porates four such non-parametric models in my study to estimate runoff
[119, 39, 40, 41, 42].

3.4 Spatial autocorrelation

All raster-based inputs within theHEMMF dataset exhibit varying SPA pat-
terns. This research work employ the Local Moran’s I, a local indicator of
spatial association (LISA) devised by Anselin in 1995, to encapsulate SPA
[155].

Ii =
xi − x̄

S2
i

n∑
j=1,i ̸=j

wij (xj − x̄), (3.2)
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where,

S2
i =

n∑
j=1,i ̸=j

wij(xj − x̄)2

N − 1
.

(3.3)

In this research, Ii symbolizes the Local Moran’s I for the grid cell i.
The value of the grid cell i is denoted by xi, while x̄ represents the mean
value across all grid cells. The spatial relationship between the grid cells i
and j is captured by wi,j . The term n signifies the total grid cell count. S2

i

defines the cumulative spatial weight of these grid cells. In my research,
This finding employed a 3 × 3 neighbourhood spatial weights matrix to
determine the "Queen’s case" Local Moran’s indices.

These Local Moran’s indices map out the spatial layout of all values
across grid cells, serving as estimated input variables. The spatial fields
show the autocorrelation for each dataset or attribute span an identical
grid count as their input spatial field. In the context of my research, these
attributes are depicted through the spatial layouts of precipitation, temper-
ature, PDSI, and annual runoff, as deduced by four distinct Budyko models.

3.5 Two-stage validation

The evaluation of the reconstructed runoff undergoes a two-stage valida-
tion process across two distinct time frames. In the first stage, from 1901
to 1999, the reconstructed runoff is assessed against the spatio-temporal
patterns of grids relative to the GRUN datasets. Meanwhile, in the second
stage covering 1800 to 1899, the runoff evaluation is based on grids spatially
combined over the chosen river basin in relation to the GRDC datasets.

During each validation phase, this study determines evaluation metrics
for every ML model. The foundational metrics for these learners include
Root Mean Square Error (RMSE) [156], Mean Absolute Error (MAE) [156],
and Coefficient of Determination (R2) [156]. This research employs RMSE,
MAE, R2, and KGE metrics for training and validating ensemble learning
outcomes using the first two input datasets. In contrast, ensemble learning
results from the third input dataset are validated using two specific indices:
spatio-temporal accuracy and the quality of fit for the reconstructed runoff.
These are represented by the normalized root mean square error (NRMSE)
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and Kling–Gupta Efficiency (KGE) [157]. The metrics utilized in the sec-
ond stage evaluation, when applying the third input data, are RMSE, MAE,
R2, and KGE. These evaluation metrics have been described in Chapter 4
(Models evaluations metrics)
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Models evaluations metrics

4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 31

Evaluation metrics serve as quantitative indicators that gauge the ef-
fectiveness of models or algorithms, especially within machine learning,
statistics, and data analytics. These indicators aid in understanding the
proficiency of a model or algorithm relative to a specific standard or refer-
ence point. The relevant metric often depends on the task’s nature, such
as classification, regression, clustering, and so on.

4.1 Metrics

RMSE has been utilized to assess accuracy on a grid-by-grid basis when
compared to benchmark data.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.1)

Here, yi represents the benchmark value, ŷi denotes the reconstructed
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value for the ith grid cell, and n stands for the overall count of non-missing
grid cell values.

R2
: This coefficient of determination is employed to gauge the corre-

lation magnitude between benchmarked and predicted values.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4.2)

Here, yi symbolizes the benchmark value, ŷi stands for the reconstructed
value, ȳ is the average of reconstructed values, i refers to the specific grid
cell, and n indicates the total count of non-missing grid cell values.

MAE: This metric quantifies the average absolute disparity between
benchmark and reconstructed data.

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.3)

In this context, yi is the benchmark value, ŷi signifies the reconstructed
value, and i denotes the specific grid cell, withn as the total grid cells count.

NRMSE: This study employs NRMSE to assess temporal accuracy in
relation to benchmark data.

NRMSE =
RMSEEM

SDGRUN
(4.4)

Where,RMSEEM and SDGRUN represent the temporal RMSE of the
HEMMF output and the temporal standard deviation of GRUN data, re-
spectively. A higher NRMSE value indicates greater bias, while a lower
one implies reduced bias in model output.

KGE: Introduced by Gupta et al. in 2009, the Kling–Gupta Efficiency
(KGE) index evaluates the goodness of fit [157].

KGE = 1−

√
(r − 1)2 +

(
σsim
σobs

− 1

)2

+

(
µsim

µobs
− 1

)2

(4.5)

32



Models evaluations metrics

Here, r is the linear correlation between simulated and observed runoff,
σsim and σobs are the standard deviations of simulations and observations
respectively, while µobs and µsim are the means of observations and sim-
ulations. KGE values can range from −∞ to 1, with 1 indicating perfect
model accuracy and larger negative values revealing a more biased model
output. KGE is seen as a multi-objective criterion.

NSE (Nash-Sutcliffe Efficiency) is a commonly employed metric for
gauging the efficacy of hydrological models. Introduced by J. E. Nash and
J. V. Sutcliffe in their work [158], the NSE is formulated as:

NSE = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4.6)

In this equation, yi symbolizes the actual observations, ŷi stands for the
predicted values from themodel, ȳ is the average of the actual observations,
and n represents the total count of observations. The NSE value can range
from −∞ to 1. A value of 1 implies an impeccable alignment between
predictions and actual observations, whereas values drifting away from 1
signify deviations in the model’s predictions.
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Implementation

5.1 Models execution . . . . . . . . . . . . . . . . . . . 35
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5.3 HPC utilisation . . . . . . . . . . . . . . . . . . . . 37

ML execution necessitates the careful configuration of hyperparame-
ters to optimize predictive accuracy. Hyperparameters are pre-defined set-
tings that govern how an algorithm learns from data. Unlike model param-
eters which are learned during training, hyperparameters must be set prior
to this phase. Selecting the right combination can significantly influence
model performance. Hence, systematic approaches such as grid search or
random search are often used to test various hyperparameter combinations
to ensure the most accurate and efficient predictions for the disaggregation
of precipitation and historical runoff reconstruction.

5.1 Models execution

For the disaggregation of precipitation, we utilized the "xgboost" R package
[79], exploring a spectrum of hyper-parameters: nrounds = 50, 100, 200,
max depth = 2, 5, 10, eta = 0.1 − 0.3 with increments of 0.1, gamma =
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0, colsample bytree = ranging from 0.5 to 1.0 with an increment of 0.1, min
child weight spanning from 1 to 10, and subsample set between 0.5 to 1.0,
increasing by 0.05. The best-fit hyperparameters correspond to the lowest
RootMean Square Error (RMSE) as determined by ten-fold cross-validation
in both case studies.

In the second case study, three distinct datasets are used (detailed in
Chapter 6, section 6.2) to assess the robustness of HEMMF. The first dataset
incorporates seven raster variables (including temperature, precipitation,
PDSI, and runoff from four Budyko models). The second is solely the SPA
of the initial dataset, while the third merges datasets one and two. All these
datasets comprise 98 raster layers, showcasing spatial-temporal maps from
1902 to 1999. Fig. 3.1 illustrates HEMMF’s process, detailing how various
inputs, benchmarks (GRUN and GRDC), and ML models are integrated.

Spatially, our proposed approach is applied to every HEMMFMLmodel
for runoff reconstruction using the three datasets. Training for these ML
models uses 79 raster layers (spanning 1902–1980) for each input dataset,
processed on a grid cell-by-cell basis. For validation (from 1981 to 1999),
this case study set aside specific amounts of data from each dataset. Opt-
ing for a spatial approach ensures ML models receive adequate data. In
contrast, a temporal model would provide limited data for training and
validation per cell, potentially compromising model robustness.

Nine primary learners are trained with the three datasets, their cross-
validated predictions serving as inputs for the four ensemble ML models
within the HEMMF. Utilizing 10-fold cross-validation, each dataset is seg-
mented into ten portions, with one acting as a test set for the other nine.
Model accuracy hinges on the average error from the tested portions. Vari-
ous metrics, including RMSE, R2, and MAE, gauge each model’s efficiency
and accuracy.

All ensemble models predict HEMMF’s final outputs. Leveraging ex-
tended input patterns and SPAs, the HEMMF effectively captures Europe’s
runoff pattern. Training incorporates GRUN data from 1902–1980, while
validation (1981–1999) uses the expanded dataset. The HEMMF’s assess-
ment also includes a century’s worth of river basin runoff, detailed further
in supplementary materials.

The underlying assumption is that if HEMMF accurately captures data
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spanning 200 years, it should equally effectively reconstruct data for the
preceding 300 years. This is premised on the large dataset’s capacity to
offer a comprehensive runoff pattern view, makingMLmodels more stable,
as referenced in various studies.

Regarding hyperparameters, we’ve primarily used the default method
from the R package for efficient ML algorithm performance at reduced
computational costs. We’ve employed a grid search for default hyperpa-
rameter determination, adjusting ranges as necessary until attaining the
desired performance. Both "caret" and "caretensemble" R packages serve
this purpose, with specific hyperparameters detailed in the supplementary
material, Table 5.1. Notably, the BayesGLM and BRRWMA models, as im-
plemented through the "caret" package, don’t require hyperparameters.

5.2 Models Execution R Packages

This study utilizes the default hyperparameters of the "caret" [159] and
"caretensemble" [160] packages to execute eachMLmodel and an ensemble
of ML in the R programming language.

ML models, including QRNN, GAMBoost, RPART, CTree, XGBoost,
MARS, RLM, KNN, and QRF, are implemented using respective R packages:
"qrnn" [161], "mboost" [162], "rpart" [163], "ctree" [164], "xgboost" [165],
"earth" [166], "MASS" [167], "kknn" [168], and "quantregForest" [144].

Ensemble models like RF, BayesGlm, and Bayesian Ridge Regression
with Model Averaged are implemented using the "randomForest" [169],
"arm" [170], and "monomvn" [150] packages, respectively.

5.3 HPC utilisation

This study harnesses the immense computational power of the Czech Na-
tional Grid Infrastructure (NGI), made possible through the cutting-edge
facilities provided by Massive Computations (MetaCentrum) resource. To
conduct our comprehensive case studies, this thesis leverages the capabil-
ities of a parallel computing cluster, employing anywhere from 20 to 80
cores within the available RAM range of 100 to 7000 GB. It is worth not-
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ing that, in the context of R programming, the number of cores used di-
rectly influences the RAM requirements. This work is executed through
a meticulously designed "qsub" shell script, ensuring efficient and high-
performance computation.
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Chapter 6

Reqired Data

6.1 Precipitation and its linked variable . . . . . . . . . 43

Runoff reconstruction and precipitation disaggregation are advanced
hydrological techniques to refine water flow and rainfall data for improved
water resource management. Runoff reconstruction involves using avail-
able hydrological data to estimate river discharge or surface runoff pat-
terns, often in areas or periods with missing data. Precipitation disaggre-
gation, on the other hand, entails breaking down coarse temporal or spatial
rainfall data into finer scales, enhancing its utility for localized or detailed
analyses. The accuracy of these methods heavily relies on the quality and
reliability of input data, such as precipitation records, satellite observa-
tions, ground-measured station data, and digital elevation models, ensur-
ing that results reflect actual hydrological conditions.

6.1 Precipitation and its linked variable

The disaggregation accuracy depends on the quality and reliability of input
data [171]. Satellite observations of precipitation from IMERG, which are
less biased, are being used in this study. IMERG offers a global precipitation
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product with a spatial resolution of 0.1 degrees and is available in half-
hourly, daily, and monthly temporal resolutions. This study employs the
IMERGV06 final run (gauge corrected) on a monthly scale. This product
maintains high accuracy compared to ground-measured stations [172] and
is available from June 2000 onwards. Precipitation patterns are observed to
have a direct linkwith elevation, as highlighted in the study by [173]. Given
this relationship, elevation data is being incorporated into my analysis.

The study uses the Shuttle Radar Topography Mission (SRTM) Digital
Elevation Data Version 4, accessed online at [174]. This dataset, available
from the 11th to the 22nd of February 2002, provides high-quality, global-
scale data with a spatial resolution of 90 meters.

In-situ data from twenty-seven rain-gauge locations spread across the
Czech Republic (Chapter 7 Figure 7.2 a) serve to validate the disaggre-
gated precipitation datasets. The study assumes that there isn’t any het-
erogeneity in precipitation at a one-kilometer spatial resolution. Disaggre-
gated precipitation undergoes validation at twenty-seven stations, match-
ing each pixel within its spatial coordinates from 2000 to 2021.

In predictor variables, this work considers climate-reconstructed grid-
ded data represented by spatial fields of precipitation [45], temperature
[46], and Palmer Drought Severity Index (PDSI) [48]. This research recon-
structs precipitation, temperature, and PDSI through principal component
analysis and point-by-point regression. I take all the aforementioned raster
input data for 1500–1999 with a spatial resolution of 0.5 degrees.

This study uses the Global Gridded Runoff dataset (GRUN) [175] as
the first benchmark data for HEMMF. I employ the GRUN benchmark data
runoff fields as the target variable for the European continent available for
1902–1999 with a 0.5-degree spatial resolution and a temporal resolution
of one month. This research derives this benchmark product using the
RF algorithm with precipitation and temperature as predictor variables.
The target variable is the in-situ measured streamflow observations avail-
able at the Global Streamflow Indices and Metadata Archive (GSIM) [175,
176]. This Archive provides station-based data with detailed information
on spatio-temporal runoff at a global scale from 1902 to 2014.

The proposed HEMMF utilizes a different benchmark data set, which
I refer to as the ’second benchmark data’. This data set provides a unique
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historical discharge time series, representing spatially averaged river basin
runoff. To validate the proposed HEMMF, I employ observed runoff time
series data from 16 distinct river basins. These observed data were sourced
from the GRDC database and are presented on amonthly scale [177]. How-
ever, as I focus on reconstructing annual runoff data, I have aggregated
these monthly datasets into yearly time steps. Detailed information about
the second benchmark data can be found in Table 7.7.
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Case studies
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7.2.2.2 Second-stage validation from
1800 to 1901 . . . . . . . . . . . . 68

In this PhD thesis, two pivotal case studies are presented: the first
delves into the result of precipitation disaggregation over the Czech Repub-
lic, while the second focuses on runoff reconstruction across the European
continent using hybrid modelling. The initial section provides a detailed
description of the outcomes of the precipitation disaggregation study. This
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is followed by exploring the results of the runoff reconstruction in the sub-
sequent stage.

7.1 Precipitation disaggregation over theCzechRe-

public

This section shows each cluster’s time series patterns of disaggregated pre-
cipitation data. Following this, the thesis presents the training and valida-
tion accuracy of the XGBoost model using designated evaluation metrics.
Lastly, this chapter illustrates an evaluation of both IMERG and the disag-
gregated data compared with respect to ground-based observational sta-
tion datasets.

7.1.1 Clustering

The IMERG data consists of 1096×255 usable pixels after removing invalid
or NaN values. Each pixel is about 11 kilometers apart. The 255 refers to
monthly data layers from June 2000 to September 2021. By using a median
ensemble resampling method, the resolution improves to one kilometer,
expanding the pixel count to 119851 × 255. This data is then split into
eight groups. The pixel counts for these groups, from Cluster 1 to 8, are
19848× 255, 6157× 255, 18077× 255, 17491× 255, 2848× 255, 22953×
255, 12757× 255, and 19684× 255.

There’s a time series plot for each pixel, as shown in Figure 7.1. By
comparing this with elevation details in Figures 7.1 and 7.2 parts a), b), and
c), it’s clear that areas in the Czech Republic with higher elevations get
more rain. Table 7.1 lists the range values of IMERG, disaggregated rain,
and elevation for each cluster. This table highlights that while IMERG data
does not change much with elevation, disaggregated rain rates vary across
clusters.
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Table 7.1: Disaggregated precipitation, IMERG, and elevation variation for
each cluster.

Cluster Elevation (m) IMERG (mm/month) Disaggregated (mm/month)
1 112-272 0.25-384 10-107
2 711-890 0.25-382 18-176
3 506-593 0.25-383 9-302
4 260-345 0.29-382 12-255
5 890-1528 0.26-375 29-477
6 429-507 0.26-375 11-182
7 593-714 0.26-383 13-157
8 344-430 0.27-381 12-272

Figure 7.1: Time series graph of fuzzy spatial-temporal clusters using dis-
aggregated rainfall data. Every pixel in a particular cluster is shown in this
series, with ’n’ indicating the count of raster pixels in each cluster.
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Figure 7.2: Figures marked as a), b), c), and d) display four distinct facets
of our research at a 1km spatial granularity. Specifically, a) highlights a
multivariate cluster featuring training and validation stations, b) presents
topographic elevation, c) depicts average rainfall data derived from the
IMERG ensemble sample, and d) demonstrates the disaggregated precipi-
tation data.
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7.1.2 XGBoost model training and validation results

In each group, the model trains on the top 80% of data from the eight most
accurate stations relative to IMERG data, utilizing data from all the groups.
High-quality data from these stations is key for training, helping the model
predict rain patterns within the same group. The success of this approach
is shown in Table 7.2 and Figure 7.3. The performance of each station is
influenced by the quality of the training data, as evidenced by metrics such
as R2, RMSE, NSE, and KGE. IMERG rain data generally shows less
bias at low places and more at high places. Table 7.2 shows that the data
from the station at the highest elevation, O1LYSA01, often exhibits higher
biases and more pronounced extreme values.
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Figure 7.3: Box plot of validation data from training stations with compar-
ison IMERG and disaggregated precipitation

7.1.3 Assessment of IMERG and disaggregated data with re-

spect to ground observed station datasets

Our table (refer to Table 7.3) shows that most of the rainfall data from the
station aligns closely with the IMERG data. This work has used specific
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metrics to validate this, and they indicate a strong similarity in the precip-
itation patterns between the stations and the IMERG datasets. Key indica-
tors like R2, RMSE (mm/month) NSE, and KGE for the IMERG data vary
in specific ranges across all stations. Data from IMERG at higher altitudes
tends to have more bias than at lower altitudes. By looking at Figures 7.4
and 7.5, This thesis work can see how IMERG captures monthly and sea-
sonal patterns. However, IMERG does not accurately represent the varied
rainfall patterns over the Czech Republic.

When this work enhances the accuracy of IMERG data through disag-
gregation, it matches closely with the data from ground stations, as shown
in Table 7.3. Disaggregated data also seems more accurate than IMERG at
higher altitudes. This enhancement in disaggregated rainfall data means
there’s less bias in IMERG data. If the IMERG data is reliable, the disaggre-
gated rainfall data is more precise. By increasing its spatial resolution to 1
km, disaggregation better represents rainfall variability.

Using station-specific disaggregation, IMERG data’s accuracy improves
and can even pick up extreme rainfall patterns, shown in Figure 7.6. Disag-
gregation maintains the varied rainfall patterns over the Czech Republic,
something that IMERG data sometimes misses. This means disaggregation
can represent monthly and seasonal rainfall patterns better than IMERG,
as shown in Figures 7.4 and 7.5.
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Figure 7.4: Monthly box plots showcasing observed, disaggregated, and
IMERG precipitation across all stations.
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Figure 7.5: Box plots representing observed, disaggregated, and IMERG
precipitation on a seasonal scale across all stations.
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Figure 7.6: Box plot comparing the precipitation from validation stations
with IMERG and disaggregated data.

58



Case studies

7.2 Runoff reconstruction-Europe continents

In this section, this work assesses the performance of the Budyko models
and the proposed HEMMF. This work evaluates HEMMF based on its ef-
ficiency and the capability of each input dataset to reconstruct the runoff
pattern in Europe over a 500-year period (from 1500 to 1999).

7.2.1 Budyko models output

This section assesses various Budyko models, each with unique strengths
and weaknesses, as highlighted by Edoardo Daly et al. (2019)[178]. Ev-
ery Budyko model delivers distinct spatial-temporal time series patterns.
These patterns aid the HEMMF in using the runoff time series as input
data. This thesis work displays the accuracy of the Budyko model in two
ways, related to different periods. For both methods, this work selects pe-
riods based on the ML model’s training and validation years, facilitating
a comparison of accuracy between hydrological and ML models for these
periods. The first representation of accuracy is the spatially aggregated
median, depicted in Fig. 7.7. The second displays accuracy by comparing
grid cells, as detailed in Table 7.4.

This work has plotted the time series runoff, estimated by four distinct
Budyko models in relation to GRUN, in Fig. 7.7 for a side-by-side compar-
ison. This plot suggests that Budyko models can gauge benchmark data
patterns annually, albeit with some uncertainties. Fig. 7.7 a) reveals that
the Schreiber and Ol’dekop models struggle to replicate the annual GRUN
runoff, underperforming in the process. On the flip side, the Budyko and
Turk-Pike models fare better in mirroring the annual GRUN runoff. Yet,
these two models have their limitations, such as biases in estimating runoff
for specific years like 1925, 1940, 1960, and 1980, which the box plot in Fig.
7.7 b), c), and d) also supports. Notably, the validation data for all Budyko
models tends to have more high-end values than the GRUN data runoff, as
visualized in Fig. 7.7 d). Even with these biases, all four models maintain
the GRUN data trend as mentioned in [91]. Both Fig. 7.7 and Table 7.4
indicate that solely relying on the hydrological Budyko models for runoff
reconstruction might not yield satisfactory results. Therefore, this work’s
next move involves enhancing the accuracy of runoff reconstruction using
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our proposed HEMMF hypothesis.
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Figure 7.7: Median runoff estimates for Europe, derived from various
Budyko hydrological models for distinct timeframes, are contrasted with
the reference GRUN datasets. Figures a) and b) depict the runoff spanning
1902 to 1999 in the form of a time series and a box plot, respectively. Mean-
while, Figures c) and d) present box plots of the runoff during the training
period (1902-1980) and the validation period (1981-1999), respectively.
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Table 7.4: Evaluation metrics of Budyko models for both the training and
validation phases, benchmarked against the GRUN data.

Training Period Validation Period

RMSE (mm/year) MAE (mm/year) R2 KGE RMSE (mm/year) MAE (mm/year) R2 KGE

Budyko 155.09 96.43 0.77 0.84 155.56 93.17 0.80 0.85
Schreiber 159.05 105.34 0.77 0.82 159.67 102.43 0.80 0.83
Turc-Pike 155.29 95.49 0.77 0.83 155.80 92.23 0.80 0.84
Ol’dekop 160.06 97.24 0.77 0.78 160.43 94.26 0.80 0.79

7.2.2 HEMMF performance

In this section, the thesis displays how ML and ensemble models perform
against the benchmark data (GRUN) for HEMMF’s first validation step.
The second validation step uses the pre-calibrated HEMMF and the aggre-
gated GRDC data. Nine ML algorithms each utilize three input datasets for
their training and validation. Every ML model and the combined ensem-
ble produce three output sets corresponding to these input datasets. These
datasets demonstrate the consistency of the ML models and the collective
ensemble performance. Tables 7.5 and 7.6 present the performance of ba-
sic learners and ensemble learning, evaluated on a grid-by-grid basis using
RMSE, MAE, and R2.

7.2.2.1 First-stage validation from 1902-1999

This work is examining the performance of different machine learning
models. Using three input datasets, these models’ base learner outcomes
and ensemble learning results are first validated. Table 7.5 (a) details their
performance. QRNN tops the list based on metrics like RMSE, MAE, and
R2. XGBBoost is second, while RPART doesn’t perform as well. Other
models like CIT, QRF, KNN, GBCSS, MARS, and RLM have varying results,
as displayed in the same table. Overall, QRF’s training accuracy is the best
across all input datasets.

In contrast, Table 7.6 (a) shows the results for ensemble machine learn-
ing models under the HEMMF using the first dataset. These ensemble
models generally outperform the individual models. Three ensemble mod-
els, namely BayesGLM, MLR, and BRRWMA, demonstrate similar perfor-
mance, while RF is a bit different, as seen in both the metrics and Fig. 7.8.
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This figure also reveals that the RF’s runoff reconstruction deviates slightly
from the other three models, especially for the year 1995. All models seem
slightly biased in their 1995 runoff estimates compared to the benchmark
GRUN dataset.
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Figure 7.8: Annual European median runoff time series from HEMMF out-
put based on the first input dataset spanning 1981-1999.

Each MLmodel’s performance using the second input dataset is shown
in Table 7.5 (b). QRF is the top model, with value of RMSE, MAE, and
R2 at 135.94 mm/year, 92.37 mm/year, and 0.79, respectively. In compari-
son, GBCSS is the weakest. Other models like KNN, CIT, QRNN, XGBoost,
MARS, RLM, and RPART rank from 2nd to 8th in performance.

Table 7.6 (b) displays the ensemble learning performance of HEMMF
using the second dataset. BayesGLM, MLR, and BRRWMA have similar
performances, while RF lags behind. Fig. 7.9 shows yearly median runoff
patterns for Europe and highlights that ensemble models have more bias in
this second dataset. Finally, Table 7.6 reveals that neither ML nor ensemble
models perform better with the second input than the first.
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Figure 7.9: Annual European median runoff time series from the HEMMF
output, using the second input dataset, spanning 1981-1999.

Table 7.5 (c) displays the cell-by-cell spatial performance of each base
learner for the third input dataset. Each MLmodel shows improved perfor-
mance using this third dataset compared to the first and second datasets.
QRF is the top-performing ML model in validation, with metrics for RMSE,
MAE, and R2 at 127.83 mm/year, 84.47 mm/year, and 0.80 respectively. On
the other hand, RPART performs the worst as indicated by Table 7.5 (c).
The performance rank order for all ML models remains consistent across
all three datasets.

Compared to the base learners of HEMMF, ensemble learning outputs
perform consistently better. Table 7.6 (c) shows the performance of each of
the four ensemble ML models using the third input dataset. Each ensem-
ble model outperforms individual ML models across datasets. While the
performances of BayesGLM, MLR, and BRRWMA are comparable, RF lags
behind. Ensemble models using the third dataset always perform better
than with the first and second datasets, as seen from Table 7.6 (a), (b) and
(c). Fig. 7.10 further visualizes the robustness of these ensemble models.

Fig. 7.11 depicts the yearly median runoff across Europe. The figure,
combined with metrics from Table 7.6 (c), reveals that BayesGLM, MLR,
and BRRWMA have similar performances, with RF slightly trailing. Over-
all, ensemble models perform best using the third dataset. Fig. 7.13 dis-
plays a 500-year annual runoff reconstruction using the third dataset and
BayesGLM. This thesis highlights BayesGLM because of its marginally su-
perior accuracy over BRRWMA and RF, as supported by Table 7.6. The ac-
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curacy of this ensemble model using the third dataset is further illustrated
in Fig. 7.12.
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Figure 7.10: Scatter plot illustrating the outputs of four ensemble ML mod-
els using the third input dataset, spanning the validation period from 1981
to 1999. The blue color signifies the regression line, while the red colour
denotes the 1:1 line.
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Figure 7.11: The proposed HEMMF model’s predictions of the annual Eu-
ropean spatial median runoff, using the third input dataset, span the years
1981-1999.

Table 7.5 (c) displays the cell-by-cell spatial performance of each base
learner using the third input dataset. Every ML model performs better
with this third dataset than with the first two. QRF stands out as the best-
performing ML model in validation, presenting metrics for RMSE, MAE,
and R2 at 127.83 mm/year, 84.47 mm/year, and 0.80, respectively. Con-
versely, RPART is the least effective as seen in Table 7.5 (c). The ranking of
all ML models is consistent across the three datasets.

Ensemble learning outshines the base learners of HEMMF in perfor-
mance. Table 7.6 (c) highlights the achievements of the four ensemble
ML models with the third input dataset, each surpassing individual ML
models across all input datasets. While BayesGLM, MLR, and BRRWMA
show comparable results, RF falls a bit short. Ensemble models using the
third dataset consistently outdo their counterparts from the first and sec-
ond datasets, as evident in Table 7.6 (a), (b), and (c). The robustness of these
ensemble models is further portrayed in Fig. 7.10.

Yearly median runoff patterns across Europe are depicted in Fig. 7.11.
This visualization, combinedwithmetrics fromTable 7.6 (c), indicates closely
matched performances for BayesGLM,MLR, and BRRWMA,with RF slightly
behind. Generally, the ensemble models excel using the third dataset. Fig.
7.13 presents a 500-year annual runoff reconstructionwith the third dataset
through BayesGLM, which is spotlighted due to its marginally superior ac-
curacy over BRRWMA and RF, as corroborated by Table 7.6. The precision
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of this ensemble model with the third dataset shines in Fig. 7.12.

Because it offers higher accuracy than the other two input datasets, this
work uses predictions from the ensemble learning of the HEMMF model
made with the third input dataset for spatial-temporal evaluation at the
grid cell level. The validation metrics appear in Fig. 7.12. This figure
presents three columns of Europe maps: the first displays estimated tem-
poral mean runoff from all ensemble models against the benchmark GRUN
dataset; the second presents the NRMSE validation metric; and the third
shows the KGE value for the validation period 1981–1999. A model per-
forms better when its NRMSE is lower and its KGE is higher. In north-
ern Europe, the performance validation of each hybrid ensemble model
stands out, evidenced by the high KGE shown in Fig. 7.12. However, hy-
brid ensemble models do not capture runoff exceeding 2000mm/year in the
north of Europe. Their estimated runoff aligns closely with the temporal
mean runoff values relative to the benchmark dataset in the northern re-
gion. Contrarily, the Mediterranean region displays a higher NRMSE and
a lower KGE, as seen in Fig. 7.12.

66



Case studies

Figure 7.12: Normalized RMSE (NRMSE), mean, and Kling–Gupta effi-
ciency (KGE) of temporal runoff are reconstructed by ensemble ML models
using third input datasets for the validation period 1981–1999.
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Figure 7.13: Five hundred years reconstructed annual spatial median runoff
of Europe with respect to GRUN using BayesGLM.

7.2.2.2 Second-stage validation from 1800 to 1901

During the first validation stage, this work focuses on spatially distributed
runoff patterns, while the second validation stage examines the overall
performance of the current HEMMF model, representing the aggregated
runoff pattern over the river basin. This research validates the reconstructed
runoff of 16 chosen river basins using the GRDC dataset from 1800–1901.
This thesis includes the results of this validation stage in the supplemen-
tary material. This thesis work also adds the reconstructed runoff using
the BayesGLM model to the supplementary material, as its accuracy is a
bit higher than the two ensemble models but demonstrates equivalent per-
formance within the same ML category. Fig. ?? in the supplementary ma-
terial presents a scatter plot of the reconstructed versus GRDC runoff for
each GRDC station. Fig. ?? displays hydrographs of the averaged recon-
structed and GRDC runoff time series over basin areas. Fig. ?? reveals that
the GRDC hydrograph for station codes NO 6935051 and 6935052 are very
similar, attributed to their similar catchment areas and their locationwithin
the same grid cell values. Fig. ?? illustrates the median European hydro-
graph for 500 years concerning reconstruction, training, and validation.
Table 7.7 indicates that many GRDC stations align with the reconstructed
runoff dataset, but some stations show a bias in the reconstructed runoff.
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Table 7.5: Evaluation of various ML models’ historical runoff predictions,
serving as the foundational learners in the HEMMF, against the bench-
mark GRUN dataset. These forecasts rely on three distinct data sources
integrated into the HEMMF framework.

(a) Evaluation metrics for various ML models applied to historical runoff prediction using the first input dataset.

Training Validation

RMSE(mm/year) MAE(mm/year) R2 RMSE(mm/year) MAE(mm/year) R2

GBCSS 134.03 85.33 0.77 135.38 84.04 0.80
RPART 176.36 111.29 0.61 188.17 113.41 0.60
QRNN 121.81 75.43 0.82 122.61 70.80 0.84
CIT 115.71 73.21 0.83 127.32 79.43 0.82

XGBoost 119.81 77.44 0.82 126.41 78.48 0.82
MARS 132.94 84.58 0.78 134.75 84.35 0.80
RLM 137.94 86.97 0.76 139.09 85.24 0.79
KNN 92.00 58.04 0.89 135.71 84.68 0.79
QRF 34.81 9.96 0.99 128.42 77.95 0.81
Mean 128.83 81.54 0.78 138.68 85.05 0.78
SD 38.57 27.77 0.09 19.74 11.88 0.07

(b) Evaluation metrics for various ML models when predicting historical runoff using the second input dataset.

Training Validation

RMSE(mm/year) MAE(mm/year) R2 RMSE(mm/year) MAE(mm/year) R2

GBCSS 209.61 148.74 0.45 218.64 156.54 0.47
RPART 202.39 139.98 0.49 209.74 146.37 0.51
QRNN 165.39 107.22 0.66 164.26 105.49 0.70
CIT 162.18 106.59 0.68 162.08 106.00 0.70

XGBoost 166.32 110.76 0.66 166.52 109.86 0.69
MARS 188.22 130.35 0.56 187.51 130.52 0.61
RLM 199.36 130.23 0.51 201.17 132.50 0.55
KNN 154.98 102.76 0.70 154.04 102.27 0.73
QRF 140.38 93.54 0.76 135.94 92.37 0.79
Mean 154.09 118.91 0.61 177.77 126.44 0.64
SD 61.70 18.88 0.11 27.85 25.20 0.11

(c) Evaluation metrics for various ML models when predicting historical runoff using the third dataset.

Training Validation

RMSE(mm/year) MAE(mm/year) R2 RMSE(mm/year) MAE(mm/year) R2

GBCSS 132.74 84.65 0.78 133.54 82.87 0.80
RPART 176.40 125.62 0.61 185.71 132.18 0.62
QRNN 116.73 73.05 0.83 119.73 73.38 0.85
CIT 109.89 69.73 0.85 122.79 78.08 0.83

XGBoost 113.43 74.40 0.84 74.24 74.40 0.85
MARS 125.41 80.91 0.80 127.80 79.24 0.82
RLM 134.80 84.47 0.74 135.69 82.85 0.80
KNN 84.70 52.75 0.91 134.45 84.17 0.80
QRF 27.06 6.45 0.99 116.56 73.04 0.85
Mean 113.46 67.23 0.82 127.83 84.47 0.80
SD 40.69 38.35 0.11 28.68 18.39 0.07
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Table 7.6: Evaluation of the historical runoff’s predictive accuracy across
various machine learning models that constitute the ensemble in the
HEMMF, benchmarked against the GRUN dataset. The predictions rely
on three distinct input datasets fed into the HEMMF framework.

(a) Evaluation measures for various ML model ensembles predicting historical runoff using the first data set.

Training Validation

RMSE(mm/year) MAE(mm/year) R2 KGE RMSE(mm/year) MAE(mm/year) R2 KGE

BayesGLM 89.46 55.75 0.90 0.90 120.59 75.24 0.84 0.86
RF 98.61 60.92 0.89 0.89 121.17 76.51 0.84 0.86
MLR 89.46 55.75 0.90 0.90 120.59 75.24 0.84 0.86

BRRWMA 89.44 55.70 0.90 0.90 120.62 75.22 0.84 0.86
Mean 91.74 57.03 0.90 0.90 120.74 75.55 0.84 0.86
SD 4.58 2.59 0.00 0.00 0.29 0.64 0.00 0.00

(b) Evaluation measures for various ML model ensembles predicting historical runoff based on the secondary input dataset.

Training Validation

RMSE(mm/year) MAE(mm/year) R2 KGE RMSE(mm/year) MAE(mm/year) R2 KGE

BayesGLM 141.09 95.59 0.74 0.84 137.01 91.86 0.79 0.82
RF 146.01 97.26 0.74 0.83 143.87 96.24 0.77 0.81

MLR 141.09 94.59 0.75 0.84 137.01 91.88 0.79 0.82
BRRWMA 141.02 94.52 0.75 0.84 136.97 91.81 0.79 0.82
Mean 142.30 95.49 0.74 0.84 138.72 92.95 0.78 0.82
SD 2.47 1.28 0.01 0.00 3.44 2.20 0.01 0.00

(c) Evaluation metrics for various ML model ensembles in predicting historical runoff with the third input dataset.

Training Validation

RMSE(mm/year) MAE(mm/year) R2 KGE RMSE(mm/year) MAE(mm/year) R2 KGE

BayesGLM 50.31 29.82 0.97 0.95 112.61 71.54 0.86 0.85
RF 64.44 32.20 0.95 0.93 113.41 73.19 0.86 0.86
MLR 50.31 29.82 0.97 0.95 112.61 71.54 0.86 0.85

BRRWMA 50.49 29.88 0.97 0.95 112.68 71.54 0.86 0.85
Mean 53.89 30.43 0.96 0.95 112.83 71.95 0.86 0.85
SD 7.04 1.18 0.01 0.01 0.39 0.82 0.00 0.00
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8.1 Context of precipitation disaggregation

High-resolution products for hydrological parameters are essential to un-
derstanding the patterns, causes, linkages, and impacts of weather and cli-
mate nationally. The present semi-modelled data products on hydrolog-
ical parameters from various satellite constellations offer a fundamental
data source, defining big data from every angle, albeit at a global level
with coarse resolution and rapid temporal frequency. Integrated datasets,
like the IMERG precipitation data, serve as critical ultra-big data sources
for global weather and climate research. Yet, for national-level applica-
tion, which aims to capture local patterns, there’s a need to remodel these
datasets for finer spatial and temporal resolutions. Most current disaggre-
gation methods rely on expert-driven indices, multi-variate regression, or
spatial interpolation, which confines the scope of datasets to specific time
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steps or regions.

In contrast, this study introduces a non-parametric disaggregationmethod
using the Czech Republic as an example. This method leverages ML and
fuzzy clustering combined with elevation data to produce finer-resolution
precipitation data from IMERG. Figures 7.4 and 7.5 show that IMERG data
closelymatches ground-observed data across stations, largely due to its cal-
ibration with rain gauge data [179]. However, discrepancies arise at higher
altitudes, as seen at the O1LYSA01 station, due to significant precipita-
tion variability within short distances [180]. These disparities stem from
satellite data bias, given the considerable heterogeneity within each 11 x
11-kilometer pixel area [181].

Recognizing the IMERG data’s bias concerning elevation, this study
introduces a hybrid method, pairing multivariate clustering with the XG-
Boost model. This aims to disaggregate high-resolution precipitation and
reduce elevation-induced biases. This work validates this method by com-
paring the high-resolution disaggregated precipitation and resampled IMERG
precipitation to the ground-observed station and cluster data, ensuring
they share similar precipitation patterns.

Although IMERG data often masks spatial variability due to its lower
resolution [182], precipitation variability depends largely on elevation [183,
63]. Hence, this study employsmultivariate clustering of elevation and pre-
cipitation, ensuring the disaggregated precipitation reflects higher spatial-
temporal variability based on multivariate cluster outputs combined with
the XGBoost model.

Using multivariate clustering, data groups form based on similar pat-
terns and local climates. Pairing this with XGBoost increases accuracy
by focusing on similar data patterns. This ensures the XGBoost-trained
model, informed by a single station’s observation, effectively reduces bias
within each data group. As the XGBoost algorithm captures these patterns,
it minimizes disaggregation bias. The station with the highest accuracy
compared to IMERG data within each cluster is chosen for the best results,
generating a robust prediction model.

The accuracy of this model heavily depends on the reliability of IMERG
data. The data must be trustworthy even when the most accurate station
within a cluster is selected. Therefore, this study relies on bias-corrected
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IMERG monthly data calibrated with rain gauge information. However,
this work’s disaggregation further enhances the dataset’s accuracy and
resolution. This approach offers vast potential for global applications on
IMERG data or other climate variables, creating high-resolution precipita-
tion data in areas lacking reliable ground-observed stations.

8.2 Context of historical runoff reconstruction

Climate-reconstructed data contains uncertainty, and as a result, hydro-
logical models, ML, and the ensemble of ML cannot reconstruct less biased
runoff from biased input data. This work promotes amethod that addresses
this challenge by harnessing the capabilities of hydrological models, ML,
and the ensemble of ML, collectively termed as HEMMF. This study aims to
demonstrate the potential of HEMMF in reconstructing long-term runoff
patterns using various extensive input datasets and two kinds of ML, ac-
companied by a two-stage validation. The comprehensive input data pat-
terns also encompass the SPA of the spatial cell values of the extended in-
puts. To comprehend the potential contribution of SPA and Budyko mod-
els’ output, the thesis work compares the effects of three distinct input
datasets on two different types of ML models during the HEMMF imple-
mentation.

Fig. 7.7 reveals that Budyko models exhibit bias when reconstructing
accurate runoff from climate-reconstructed data due to uncertainties in the
reconstruction of Pauling precipitation [184]. This primary input for the
Budyko models is susceptible to these uncertainties. Such uncertainties in
climate-reconstructed data also carry forward into the reconstruction of
hydrological processes [185]. This work proposed that HEMMF notably
reduces the uncertainty of hydrological balance models in achieving accu-
rate runoff estimations using climate-reconstructed data. This thesis work
validates this with this work results benchmarked against specific datasets
(Figs. 7.10, 7.11). Hence, this thesis work supports and expands upon the
insights from Konpala et al. [52], which advocate for integrating Budyko
models withMLmodels to diminish bias and enhance adaptability in runoff
predictions. This work approach infuses more flexibility by integrating
SPA and an ensemble of ML models into HEMMF.
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Thiswork implements the proposedHEMMFusing three separate datasets,
evaluating the efficacy of each component [186], such as spatio-temporal
correlation [187], the intricate hydrological patterns generated by the phys-
ical model [188], and ML combined with an ensemble of ML algorithms
[128]. Subsequent investigations into HEMMF might look into utilizing di-
verse climate-reconstructed datasets or other products, such as hydrome-
teorological patterns produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF), General CirculationModels (GCMs), and datasets
crafted within the framework of Coupled Model Intercomparison Project
Phase 5 (CMIP5) and Phase 6 (CMIP6) [53, 189]. While there are studies
that analyze the aforementioned datasets [190, 191, 192] and report pre-
cise runoff estimations, they typically work on datasets with short tempo-
ral and spatial scopes and minimal intrinsic bias. Conversely, this work
framework consistently excels on gridded, extensive historical continental
scale datasets, especially considering the pronounced uncertainty inherent
in precipitation data [184]. This framework holds promise in performing
sturdily across various climate-reconstructed datasets that reconstruct di-
verse environmental spatial fields, such as runoff and evapotranspiration.

The outcomes of this study indicate that the input gridded data, which
includes their information on SPA, yields higher accuracy in runoff pattern
recognition compared to inputs solely composed of gridded data or the in-
formation from SPA gridded datasets. The performances of the ML and
ensemble of ML models are the poorest when the inputs come only from
the SPA of gridded data, based on the correlation of neighboring spatial
fields. Yet, only varying the neighbourhood’s correlation in gridded cells
doesn’t sufficiently capture the variation in the runoff pattern. Thus, ML
and ensemble models don’t represent the runoff patterns accurately using
only the input from the neighbourhood correlation of precipitation, tem-
perature, PDSI, and runoff data estimated by the four Budyko models.

The GRUN benchmark datasets undergo reconstruction using RF, so
this study avoids using RF in the base learners of the thesis work proposed
HEMMF, choosing QRF instead. However, RF is part of the ensemble learn-
ing of HEMMF. The QRF model, an extension of the RF family, displays
the best overall performance (both in training and validation) among all
nine ML models across all three input datasets, mainly because the GRUN
benchmark dataset also comes from RF. Each base learner model’s perfor-
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mance hinges on the reliability or noise of the input datasets, the model ar-
chitecture, and the strengths and weaknesses of the algorithm. The perfor-
mance of all nine ML models improves with the third input dataset, which
includes information on the SPA estimated for all gridded data. Further-
more, the accuracy of these nine ML models increases when used within
an ensemble ML framework for runoff reconstruction.

The three ensemble models, MLR, BayesGLM, and BRRWMA, display
similar performance in runoff reconstruction across all datasets, reflecting
the diversity and complementarity of each ensemble’s ML algorithms. The
RF ensemble adopts a distinct algorithmic approach compared to the other
three ensembles, resulting in slightly different performance. Generally, the
outputs of all four ensemble models are expected to be similar, as ensemble
models tend to offer comparable performance on large input data. This
study demonstrates that the third input dataset holds the most promise for
reconstructing runoff using the HEMMF. Some recent studies have shown
that the BayesGLMmodel reliably forecasts both flash floods and historical
tropical species in relation to climate.

Fig. 7.12 shows the comparative performance of the ensemble models
using NRMSE and KGE metrics. Higher NRMSE and lower KGE values in
certain Mediterranean regions indicate that the ensemble model does not
predict the runoff accurately in these areas. This might stem from the dis-
tinct hydrological climate systems present in these regions and uncertain-
ties in the predictor variables, such as precipitation [45] and temperature
[46]. Since 1971, the Mediterranean region sees a relatively high percent-
age change in annual runoff [91]. The ensemble model struggles to account
for this deviation in the runoff due to uncertainty in the predictor vari-
ables. Furthermore, the Mediterranean region displays significant runoff
anomalies since 1950 [37, 193]. This anomaly suggests that the training
data patterns differ from the validation data patterns. The predictor vari-
ables might not capture this difference, making the model’s predictions less
precise during the validation period.

There is an increasing tendency of runoff rate in northern Europe [175],
and uncertainty exists in predictor variables. Because of this, the ensemble
model does not capture runoff above 2500 mm/year; the values higher than
2500 mm/year appear in Fig. 7.10 and 7.12. Each ensemble ML model cur-
rently underestimates the runoff compared to benchmark data, especially
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for extreme values (above 2500 and below 100 mm/year), as depicted in
Fig. 7.10. This uncertainty indicates that the noise in predictor variables
significantly affects the performance of hybrid frameworks, including the
HEMMF framework this work proposes.

The main limitation of the hybrid framework this work presents is that
its performance mainly depends on the individual MLmodels that form the
ensemble, and it does not allow for optimization of the hyperparameters.
This thesis assumes that non-optimal tuning of the ML hyperparameters
on large input datasets either marginally affects performance or does not
impact model performance at all [121]. Optimizing the hyperparameters of
the HEMMF framework with extensive datasets does not justify the com-
putational resources [121]. As this work mentions, the default selection
of hyperparameters used in this study results in satisfactory performance
of ML models with reduced computational costs [110, 194]. Besides this
limitation, the framework’s performance is also influenced by noise in the
input data [121]

8.3 Future Perspectives

Hybrid modelling represents a compelling frontier for gridded climate data
processing, particularly when addressing challenges related to gridded cli-
mate data disaggregation and reconstruction in both spatial and temporal
gaps. Combining the strengths of multiple modelling approaches, hybrid
models can leverage the best features of each, offering enhanced accuracy
and flexibility in predictions. Especially in the context of climate change,
where uncertainties in data are commonplace, hybrid frameworks like the
HEMMF demonstrate the potential to mitigate errors arising from individ-
ual modelling techniques. By synergizing traditional hydrological models,
clustering, machine learning, and ensemble methods, these combined ap-
proaches can achieve superior results in reconstructing past climate pat-
terns, filling data voids, and enhancing the resolution of coarse datasets.

The evolution of hybrid modelling can pave the way for more robust
climate data analyses, fostering better-informed decision-making in envi-
ronmental planning, policy development, and disaster management. As
this work witnesses a growth in computational capabilities and as method-
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ologies become increasingly sophisticated, there is a growing expectation
that hybrid models will be adept at managing more extensive datasets, re-
fining hyperparameters with greater efficiency, and incorporating the lat-
est machine-learning techniques to yield enhanced results. With the ongo-
ing challenges posed by climate change, the role of advanced hybrid mod-
elling in providing more accurate and comprehensive climate data repre-
sentations will be indispensable, potentially revolutionizing how this work
understands and addresses the changing environment and climate.
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9.1 Overall remarks on precipitation disaggrega-

tion and historical runoff reconstruction

This thesis has unveiled an advanced hybrid learning strategy that syn-
ergizes multivariate clustering and the XGBoost model to spatially disag-
gregate precipitation. This work bridged the gap between the IMERG data
and ground-measured station inputs by capitalising on sensitive parame-
ters like elevation and precipitation. This process culminates in a disag-
gregated precipitation dataset rigorously authenticated against ground ob-
servations. This work shows how leveraging SRTM elevation data aids in
proficiently disaggregating monthly precipitation over the diverse Czech
Republic landscape, producing a high-resolution precipitation dataset. The
intricacies of multivariate clustering not only deliver the much-needed
one-kilometer resolution and maintain consistency within each segmented
cluster. This work’s findings demonstrate a remarkable concordance be-
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tween the disaggregated and actual observed precipitation, thus boosting
the precision and practicality of monthly-scale IMERG data.

The preliminary coarse-scale IMERG precipitation data portrayed a
growing bias at soaring elevations. Yet, this thesis’s groundbreaking ap-
proach to precipitation disaggregation has risen to this challenge, enhanc-
ing its precision when juxtaposed with ground data. Although there are
avenues to further perfect the accuracy, especially in high-altitude zones,
this work methodology has augmented the spatial granularity and preci-
sion of precipitation data across all terrains, emphasizing elevated terrains.
Given the transformative climate scenarios, the high-resolution precipita-
tion dataset this work has formulated is a beacon of hope for myriad hydro-
meteorological ventures.

Simultaneously, this thesis’s paper delves deep into the merits of a
groundbreaking hybrid ML framework, the Hybrid Ensemble Multi-Model
Framework (HEMMF), purpose-built to revitalize historical runoff. This in-
corporates reconstructed climatic data, Budyko model outputs, and the nu-
ance of spatial autocorrelation. The outcome of this work includes a histor-
ical runoff reconstruction characterized by minimal bias. These work en-
deavours underscore themerit of harmonizing hydrological andMLparadigms
within an integrated framework like HEMMF, paving the way for the in-
tricate mapping of runoff patterns. The HEMMF’s prowess is steered by
an ensemble of factors, including the nature of input data and ML model
selection. The framework’s calibre is palpable in its robust runoff recon-
structions, especially when juxtaposed against substantial datasets. The re-
constructed runoff coheres well with most GRDC runoff stations, although
deviations exist due to the coarse resolution and spatial mismatches. The
invaluable insights from the reconstructed runoff stand are poised to steer
water resourcemanagement in Europe amidst the caprices of climate change.

Building upon this, the HEMMF boasts the versatility to interface with
various climate datasets. Its efficacy hinges on the trustworthiness of input
data and the ensemble of model performances. Despite some intrinsic lim-
itations, this hybrid framework emerges as a beacon for spatio-temporal
data reconstruction, primarily driven by the amalgamation of multi-ML,
Budyko, and SPA models. Future trajectories will probe into the inclusion
of eclectic components and advanced algorithms, refining the selection of
single-based learners. These work methods signal a paradigm shift in data
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disaggregation and historical runoff reconstruction, poised to guide policy-
making and climate modelling endeavours.
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