
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

OF LIFE S C I E N C E S P R A G U E

Diploma Thesis

Comparison between different API architectures
(Graphql, REST)

Muhammad Raufur Rahman, B.Sc.

© 2020-2021 CULS Prague

1

Declaration

I declare that I have worked on my diploma thesis titled "Comparison

between different API architectures (Graphql, REST)" by myself, and I have used only the

sources mentioned at the end of the thesis. As the author of the diploma thesis, I declare

that the thesis does not break the copyrights of any person.

In Prague on 30.11.2021

2

Acknowledgement

I would like to thank Professor Josef Pavlíček, Ph.D., for his valuable

advice and support during my work of this thesis. I would also like to thanks my parents

and family, who always encourage my study and provide supports.

3

Comparison between different API architectures
(Graphql, REST)

Abstract

The aim of the work is to compare different API architectures of GraphQL and REST

depends on the parameters of implementation, speed, usability, and maintainability. The

final result will contain the basic guide of implementation and a detailed comparison list.

Keywords: Graphql, REST, API, Comparison, Implementation

4

Table of content

1 Introduction 11

2 Objectives and Methodology 12
2.1 Objectives 12
2.2 Methodology 12
2.3 Structure 12

3 Literature Review 13
3.1 REST (Representational State Transfer) 13

3.1.1 History 13
3.1.2 Constraints 13
3.1.3 Resource 15
3.1.4 Components 16
3.1.5 Connectors 16
3.1.6 ROA(Resource oriented architecture) 17

3.2 GraphQL 18
3.2.1 History 19
3.2.2 Architectural overview 20
3.2.3 Data Types 22
3.2.4 Queries 23
3.2.5 Mutation 25
3.2.6 Subscription 27
3.2.7 Introspection 27
3.2.8 Schema 28

3.3 Result 32

4 Practical Part 33
4.1 Tools 33

4.1.1 Apollo 33
4.1.2 Postman 34
4.1.3 Github 34
4.1.4 Visual Studio Code 34
4.1.5 Technologies 35

4.2 Practical setup 35
4.2.1 Source code 35
4.2.2 REST Server 36
4.2.3 GraphQL Server 39

5

4.2.4 Test Platform 42
4.2.5 Data 44

4.3 Workflow 45
4.3.1 Initial 45
4.3.2 Express Server 46
4.3.3 GraphQL Server 46
4.3.4 Postman Setup 46
4.3.5 Testing parameters 46

5 Results and Discussion 47
5.1 Implementation 47
5.2 Speed 49
5.3 Usability 53
5.4 Maintainability 55
5.5 Conclusion 59

6 Bibliography 61

6

List of figures:

Figure 3.1: Simple client-server data flow architecture (16)

Figure 3.2: A simple graphql query example (17)

Figure 3.3: GraphQL history (18)

Figure 3.4: GraphQL direct DB diagram (19)

Figure 3.5: GraphQL legacy architecture (20)

Figure 3.6: GraphQL hybrid architecture (21)

Figure 3.7: GraphQL query aggregate example (23)

Figure 3.8: Fragment example (23)

Figure 3.9: query for repository (24)

Figure 3.10: mutation for change data (24)

Figure 3.11: query after data update (25)

Figure 3.12: schemaingithubAPI (26)

Figure 3.13: GraphQL schema type example (27)

Figure 3.14: Schema types (28)

Figure 3.15: One to One connection (29)

Figure 3.16: One to one connection data flow (29)

Figure 3.17: One to many connection query (30)

Figure 3.18: Many to Many connection (30)

Figure 4.1: Package entry file (36)

Figure 4.2: ExpressJs server creation (37)

Figure 4.3: Express 4.0 bin file (38)

Figure 4.4: Express router example (39)

Figure 4.5: GraphQL server config (40)

Figure 4.6: GraphQL schema (40)

Figure 4.7 : GraphQL query resolvers (41)

Figure 4.8: REST integration (42)

Figure 4.9: Postman interface (43)

7

Figure 4.10: Session data example (43)

Figure 4.11: Speaker data example (44)

Figure 5.1: Speed test 1 chart (48)

Figure 5.2: Data flow from GraphQL to REST (49)

Figure 5.3: Speed test 2 chart (50)

Figure 5.4: Query granularity (51)

Figure 5.5: Maintainability features (55)

8

List of tables

Table 3.1: REST constraints

Table 3.2: REST resource types [1, 5]

Table 3.3: Graphql Data types

Table 4.1: Test machine's attributes

Table 5.1: Test case 1 data

Table 5.2: Test case 2 data

Table 5.3: Usability ranking .
Table 5.4: Maintainability ranking

List of abbreviations

UI User Interface
SDLC Software Development Life Cycle
API Application Programming Interface
REST Representational State Transfer
JSON JavaScript Object Notation
HTTP Hypertext Transfer Protocol
ROA Return On Assets
SOAP Simple Object Access Protocol
JWT JSON Web Token
URI Uniform Resource Identifier
URL Uniform Resource Locator
X M L Extensible Markup Language

JS Javascript

SDL Schema Definition Language

DDR3 Double Data Rate Type 3

GHZ Giga Hertz

CRUD Create Read Update Delete

OOP Object Oriented Programming

SSO Single sign on

I/O Input and output

DB Database

10

1 Introduction

Software development depends on data flow in various layers. It is an orchestration from

the server to UI. A l l the pieces should work as they should be to maintain an outstanding

user experience.

In the modern era of SDLC, data becomes a very complex attribute to manage.

Continuously increasing user, role, features are summing up to more data top on previous

data. The progressed amount of data is exponential.

Software developers usually manage their data via API and distribute them within a secure

API gateway.

REST is the most competitive and used API architecture, and simplicity of usage creates

enough user base. However, it has its downsides and gets over-engineered easily in

industrial SDLC.

GraphQL is the latest addition in the data flow market, developed by Facebook Inc in 2010

to tackle the downsides of REST, which is not a protocol system like REST but a

middleware layer top on the gateway. Enable data flow is more sophisticated than ever.

The comparison is not easy. The technologies are new and, not too many examples are

there to analyze. Also, as stated, GraphQL is not an architecture or gateway itself. It is a

query language system. This thesis tries to give a technical comparison between REST

and GraphQL and choose the best platform for the appropriate usage.

11

2 Objectives and Methodology

2.1 Objectives

The objective of this thesis to compare REST and GraphQL in different parameters, like

complexity, usability, sped, maintainability, and provides a guideline to both directions via

implementation examples.

In this thesis, the following questions should be addressed and solved.

• What is the advantage of using GraphQL?

• When to integrate GraphQL and when to use REST itself?

• GraphQL is a schema language and, REST is an architecture, and why the

comparison?

• When not use GraphQL?

2.2 Methodology

The methodology for this thesis will reflect a practical approach. Research on selected

technologies depends on research findings, design a sustainable and testable solution with

proper test-case and used-case. A l l code and technical assets related to this thesis will share

on a public repository, which will be visible and reusable.

Depends on the test result and, other research findings will conclude and regulate the

objectives previously defined.

2.3 Structure

The rest of the thesis will separate into parts, and Chapter 3 will provide a detailed

literature overview for technologies(REST, GraphQL). Chapter 4 will contains the

experimental part setup and execution in chapter 5, discussion, and conclusion.

12

3 Literature Review

3.1 REST (Representational State Transfer)

REST is a software architectural style that defines a set of constraints to be used for

creating web services. REST strength is heavy load-balancing and scalability. It is also

user-friendly because of using JSON and HTTP protocols.[l]

REST has three architectural element classes:

• Resource

• Connectors

• Components

3.1.1 History

Back in 2000, Roy Fielding proposed the REST architectural style as his Ph.D.

dissertation. He develops REST as a similar service to HTTP. Before that, API architecture

was heavily dependent on SOAP(Simple Object Access Protocol) methodology, which was

very complex to develop. Compared to SOAP, REST is much lighter and protocol-

friendly. [1] [2]

3.1.2 Constraints

Constraints are a set of rules that web service needs to obtain to be defined as REST. There

are 5 constraints defined for REST architecture. For data, the payload transfer server

should follow all of the constraints to maintain architectural integrity. Those are:

1. Client-Server decoupled, which defines that server and UI should be different

layers and can not communicate with each other without proper API authentication.

2. Statelessness, client request should not contain and bind by application state or

specific context. Client requests maintain defined properties, those only provide

13

enough parameters to retrieve exact data which require to fulfil the specific need.

No session and token should be passed or maintained by API itself.

3. Caching, the server must include a cacheable or cacheable tag to the request

payload, which should not be defined by the client.

4. Layer approach, client, and server should be connected via multiple middleware

layers. A client should not have direct access to the server, only load-balancer

should enable the client to a specified server. Also, the security layer should be a

separate part of the client and the server.

5. Uniform interface, is the most important from a development perspective. It is more

likely to maintain integrity across codebase and server requests. The purpose of a

uniform interface is visibility and transparency. Below constraints are part of the

Uniform interface:

The resource should be identified via request, a server can return JSON, X M L ,

a) H T M L response depends on request.

b) The client should have enough information to manipulate the resource itself.

c) A l l messages should be self-describing.

d) Hypermedia as the engine of the application.

Another optional constraint, Code-on-Demand, a server can execute or send code to client

ad-hoc. [2] [3]

Constraint Explanation
Client-Server UI and server should be different integrity
Statelessness Client request should not contain/bin any

state.
Cacheable Server should include cacheable tag in

payload.
Uniform Interface Maintain integrity across codebase.

Table 3.1: REST constraints.

14

3.1.3 Resource

To understand REST, familiarization with its elements is essentials. From an architectural

point, REST consist of 6 elements. A l l of the elements represent different resource types

and the connector between them. At a glance

Element Description Example
Resource URI based data output. JSON, Image.
Identifier An U R L which identify

resource path.
Czu.com/student.

Metadata Description of resource,
provide controlled payload

information, status,
location.

Link, Network payload
description.

Controller Logical data distribution Authentication,
authorization.

Table 3.2: REST resource types :i ,5]

Resources work as representational of any kind of data that a REST service will provide

via some controlled system or not. A resource should be identified and use separately from

other resources via the identifier. Unique design identifiers act as a different data endpoint

in web-based architecture. Generally, the client knows the list of identifiers, which can be

called depends on the requirement.

Example: Below identifier U R L represent a online e-com data endpoint

• www.example.com/all_customer
• www.example.com/customer/id
• www.example.com/customer/id/cart
• www.example.com/item/id

Another important feature of a resource is the controller, which defines who can access and

how many resources can get based on what identity provides.

Controller act as a gate-keeper of a resource URI. Different authorization and

authentication protocols should be in place to control resources. Control resources use

different parameters of credentials and JWT to allocate resources for a specific or

extensive time.

15

http://Czu.com/student
http://www.example.com/all_customer
http://www.example.com/customer/id
http://www.example.com/customer/id/cart
http://www.example.com/item/id

3.1.4 Components

There are four main classes in the REST components.

• Origin server

• User-agent

• Proxy

• Gateway

The origin server works as a resource holder, the server connector gives access to the

resource inside the origin server.

User-agent is the client-side class, which responsible for resource calls and display and

collect constraints, it calls the client controller to connect with the origin server.

Proxy and Gateway components usually handle requests and connections. Proxy works as

a client-side data translator, and security provider. Gateway act similar as proxy from

server-side

3.1.5 Connectors

The connector represents the middle layer between components. It maintains components

communication and provides encapsulation of code implementation. According to Roy

Thomas Fielding, there are 5 types of connectors.[l]

1. Client

2. Server

3. Cache

4. Resolver

5. Tunnel

Encapsulation also provides simplicity to the connectors. Connectors hide implementation

complexity from components, which enable replacement or agile development.

16

From top level server and client, connector performs basic operations such, a client sends a

request, the server responds with a resource.

The cache can be used both layer, server, or client, which help to store part of a resource

for future use.

Resolver, transpose identifier to network address and create a connection to the requested

resource.

Figure 3.1: Simple client-server data flow architecture

3.1.6 ROA(Resource oriented architecture)

Understand REST guidelines can be relevant with R O A architecture understanding.

Resource oriented architecture focus on software development resources such as data,

piece of code, or specific functionality.

With REST discussion, R O A has to be included due to the interconnectivity of both topics.

According to Richardson and Ruby R O A as follows: "The R O A is a way of turning a

problem into a RESTful web service: an arrangement of URIs, HTTP, and X M L that

works like the rest of the Web, and those programmers will enjoy using" [6,7,8]

R O A provides addressability and statelessness to the REST guideline with the resource.

17

As we discussed before the resource identification, each resource much identifies with

address/name. In R O A this address/name identify via URL. If there is no X M L to identify

the resource, there is no accessibility to that resource.[6]

3.2 GraphQL

In core, GraphQL is a query language, which can be used in any database even on top of

an existing API. [9]

Sometimes, GraphQL term can be flawed by the naming, it is very important to remember:

GraphQL is not any Javascript library or binds to the only Javascript, queries define as an

object which can be translated to any programming language.

GraphQL is not a data transport protocol, it can be used with any protocol, like HTTP,

Web Socket.

And GraphQL does not provide any authentication or authorization or any data

manipulation layer.

GitHub GraphQL API Signed in as RaufR. You're ready to explore! Sign out

Heads up! GitHub's GraphQL Explorer makes use of your real, live, production data.

GraphtQL • Prettify History Explorer < Docs
1

1 T query{ {
2 * userClogin:"RaufR"){ "data": {
3 name "user": {
4 websiteUrl "name": "Raufur Rahman",
5 url "websiteUrl": "https://raufrahman.com",
6 repositories! "url": "https://github.com/RaufR",
7 totalCount "repositories": {
8 } "totalCount": 54
9 gists{ },
10 totalCount "gists": {
11 } "totalCount": 6
12 } }
13 > }

}
}

QUERY VARIABLES

1

Figure 3.2: A simple graphql query example

18

https://raufrahman.com
https://github.com/RaufR

Above example generated from

https://docs.github.com/en/free-pro-team&Jatest/graphql/overview/explorer

Which is opensource GraphQL API explorer for testing and fetching GitHub data and

represent them. In the above example, we query for user RaufR via login name, then we

fetch name, websiteUrl, url from graphql API, after that, we also requested two other field

repositories and gists with specific totalCount argument.

On the right side, we have our data as a JSON object which is ready to use in any web

implementation.

3.2.1 History

In 2012, Lee Byron, Nick Schrock, and Dan Schafer employees of FaceBook Inc start to

rethink their way of data fetching. Because from beginning facebook mobile application

both in IOS and Android platform is a wrapper around the website. At that time Facebook

had REST server and because of complex queries and very decoupled data architecture,

they are facing heavy performance issues and continued crash.

After 3 years, in 2015, they have released the initial production version under name of

graphqlJs. Today GraphQL power almost 100% data fetching and many other industry

giants like IBM, SAP, Airbnb has started to using GraphQL.

History of GraphQL

Prototype Evolution Open Source

Feb'i2 Aug'12 July '15 May '17

Figure3.3: GraphQL history[ll]

19

https://docs.github.com/en/free-pro-team&Jatest/graphql/overview/explorer

3.2.2 Architectural overview

GraphQL describes the behaviour of the server, every aspect of data transport, such as how

to request and respond should behave, the format of the data server and the client accept,

written down and describe in GraphQL layer. The request made by the client is called

QUERY. GraphQL also is a transport layer agnostic, which means, it can use in any

platform or protocol. As document GraphQL server can be implemented in three ways:

a) GraphQL with direct DB connection

This is the simplest architecture, GraphQL Query request data and server read the query

and response with data from the direct database. This process is also known

as Resolve. The below Figure provides a basic understanding of direct DB connected

Client

Database

R E S O L V E Q

Response

Q U E R Y

GraphQL Layer

•

Figure 3.4: GraphQL direct DB diagram

20

b) GraphQL on existing system

Usually, application with complex data flow which has a legacy system and very non­

linear data architecture can be benefitted by this architecture. Usually, GraphQL servers

behave as a layer on different service mesh, each service mesh can consist of

microservices, DB, other APIs.

Client query will execute through GraphQL server and response data from the multi-

source format as desire data structure via GraphQL server.

Client

&
R e s p o n s e Mic ro -serv ice

<
R E S O L V E O m

w
Q U E R Y

\ ^ Legacy D B

• G r a p h Q L Layer ©
R E S T - A P I

Figure 3.5: GraphQL legacy architecture

21

c) Hybrid

This approach combined the previous two approaches. In this approach, the GraphQL

server connects top on a DB, which connect to different data transport protocols.

The main challenge to overcome is data integrity.

3.2.3 Data Types

GraphQL as a language some very strong data types to define objects and response data

structure. A l l 5 types serve different output and their implementation process also different

from each other.

Below table represent different data types and there used case in GraphQL

22

Type Example Use case Example

Scalar Int, Float, String,
Boolean, ID

Scalar can hold single value, so any
usual implementation can have multiple

scalar.

name: String
age: Int

Object object Object type can holds other type and
consist of multiple fields.

type student {
name: String

age: Int}

Query Object Query used for requesting data. type Query {
name: String}

Mutation Object Mutation type used for data manipulation
in server, like create, update, delete

type Mutation
addStudent{
name: String,

age: Int}

ENUM Scalar ENUM usually a scalar type, with multiple
option value. An ENUM data type can
consist multiple value but output only

single value.
ENUM define with snakecase.

type city select {
PRAGUE

WSHINGTON
DELHI
DHAKA

}

List Array List can hold array of scalar type value. type Query {
students: [student]}

Not-
Nullable

This special character type can use to
restrict null value in any field.

type student {
ID: Int!

Name: String
Age: Int

}
Table 3.3: Graphql Datatypes

3 24 Queries

Queries are the connection layer of the GraphQL server. It is responsible for requesting

data and responding with values. A successful query return JSON data and unsuccessful

query return a different type of HTTP errors. A query can be executed single-threaded,

which means the query can be called at one time. But by default GraphQL will aggregate

queries into one.

In figure 3.2.5, left side both queries aggregate into a single query on the right side.

23

_

Graphi'QL • Prettify 1 History Explorer

1 # Type queries into this side of the screen, and you will
2 # see intelligent typeaheads aware of the current GraphQL type schema,
3 * live syntax, and validation errors highlighted within the text.

5 # He'll get you started with a simple query showing your username!
6> query userDetails {
7» user(logln:"RaufR"){
1 company
9 bio
10 email
11 }
12 }
13
14 . query viewerDetails {
15 • viewer {
16 avatarUrl
17 websiteUrl
18 gist: name
19 1 20 }
21 }

Graphi'QL [Vl Prettify History Explorer

1 # Type queries into this side of the screen, and you will
2 # see intelligent typeaheads aware of the current GraphQL type schema,
3 # live syntax, and validation errors highlighted within the text.

5 # He'll get you started with a simple query showing your username!
6> query userDetails .{
7» user(login:"RaufR"){
1 company
9 bio
10 email
11 }
12 • viewer {
13 avatarUrl
14 websiteUrl
15 gist: name
16
17 }
18

Figure 3.7: GraphQL query aggregate example

Depends on need, queries can be customized. Query structure will define the response

structure. A query can also have argument, in figure 3.2.5, the left side query userDetails

has one argument, login, which define which user data we are requesting.

Another important piece of the query is Fragment.

Fragments are reusable piece of a query, sometimes same data request for different query

than fragments are useful. Which reduce development time.

24

Graphi'QL • Prettify History Explorer < Docs

1. query userDetails { {
2 user(login:"RaufR"){ "data": {
3 ...data "viewer": {
4 } "avatarUrl": "https://avatarsZ.githubusercontent.com/u/14043821?
5 } u=81ac5b0Zeccae79e4a8c3e3cdbZ81194e5qf5f40&v=4",
6 "bio": "I do JS",
7. query viewerDetqils .{ "gists": {
8 viewer { "totalCount": 6
9 ...dqtq }
18 } }
11 I }
12 }
13
14. fragment data on User {
15 avatarUrl
16 bio
17 gists{
18 totalCount
19 }
Z0 }

Figure 3.8: Fragment example

3.2.5 Mutation

In GraphQL data manipulation can be done through mutation. Mutation defines procedures

exactly similar to query with parameter. A mutation field should have a defined payload

structure and not-nullable argument to find the exact record in data.

Graphi'QL • Prettify History Explorer < Docs

1. query getrepo { {
2. repository(name:"protfolio2", owner:"RaufR"){ "data": {

3 createdAt • "repository": {

4 description "createdAt": "2018-10-07T13:05:05Z",

5 sshUrl "description": "Initial Repo description",

6 url "sshUrl": "git^github.com:RaufR/protfolioZ.git",

7 id "url": "https://github.coni/RaufR/protfoUo2",

8 } "id": "MDEw0lJlcG9zaXRvcnkxNTE5NDIx0TE="

9 } }
10 _ }

Figure 3.9: query for repository

In above example, we have executed a query for get data for a repository with fields of

createdAt, description, sshUrl, url and id

In left side, GraphQL server return exact output for the query.

25

https://avatarsZ.githubusercontent.com/u/14043821
http://github.coni/RaufR/protfoUo2

Graphi'QL • Prettify History Explorer < DOCS

11. mutation changeRepo {
{

"data": {
"updateRepository": {

"repository": {

12 updateRepositoryC {
"data": {

"updateRepository": {
"repository": {

13
14
15
16.

input:{repositoryId:"MDEw01JlcG9zaXRvcnkxNTE5NDIxOTE",
description:"Change description for test"}

)

-

{
"data": {

"updateRepository": {
"repository": {

13
14
15
16. {

"description": "Change description for test"
}

>
17 repository!.

"description": "Change description for test"
}

> 18 description

"description": "Change description for test"
}

>

19 } }
> 20 }

}
>

21 }
22
23
24
25
26

Figure 3.10: mutation for change data

In the second step, we have written a mutation for update data which takes two arguments

in the input field, repositoryld, and description, repositoryld is a mandatory argument but

description is the field that contains the data we are going to change. We can put any other

editable field as a second argument to change the value of that field.

After that, we define the exact field reference we need to update, in this case, it is

description under repository. In GraphQL data manipulation can be done through mutation.

Mutation defines procedures exactly similar to query with parameter. A mutation field

should have a defined payload structure and not-nullable argument to find the exact record

in data.

< Docs

• {

. "data": {
"'repository": {

"creotedAt": "Z018-10-07T13:05:05Z",
"description": "Change description for test",
"sshUrl": "gitegithub.com:RaufR/protfolioZ.git",
"url": "https://github.com/RaufR/protfolio2",
"id": "MDE«OUlcG9zaXRYCnkxNTE5NDIxOTE="

}
}

}

Figure 3.11: query after data update

Graphi'QL • Prettify History Explorer

1 • query getrepo {
z. repository(name:"protfolioZ", owner:"RaufR"){
3 createdAt
4 description
5 sshUrl
6 url
7 id

8 }

9 }
10
11
1Z
13
14
15
16

26

http://github.com/RaufR/protfolio2

At this time, we can observe the updated description field in query result, which propagate

similar as previous mutation.

Another way to handle mutation is using query variable. But this not so much popular in

common use due to JS syntax.

3.2.6 Subscription

After mutation, the third type of operation in GraphQL is subscription, it use for

communicate real-time data update similar to web-socket. It is also a root type, and

implement in a similar way of mutation.

GraphQL does not specify the data transport protocol, usually it use web-socket, but

developer can use any like long-polling and e-mail.

3.2.7 Introspection

A most powerful feature of GraphQL, which also the documentation generate feature. For

understanding and exploring any GraphQL server and queries option, developers have a

powerful introspect query name schema. Any given time, schema query can be

executed over a GraphQL server, and the developer doesn't have to define this query, this

is auto-generated via GraphQL server itself.

27

1 - query schema {
1 * schema{

types{
name
description

}

Q U E R Y V A R I A B L E S

• {
"data": {

" schema": {
F "types": [

{
"name": "AcceptEnterpriseAdministratorlnvitationlnput",
"description": "Autogenerated input type of

AcceptEnterpriseAdministratorlnvitation"

},
{
"name": "AcceptEnterpriseAdministratorlnvitationPayload"
"description": "Autogenerated return type of

AcceptEnterpriseAdministratorlnvitation"

>,
{
"name": "AcceptTopicSuggestionlnput",
"description": "Autogenerated input type of

AcceptTopicSuggestion"
} ,

{
"name": "AcceptTopicSuggestionPayload",
"description": "Autogenerated return type of

AcceptTopicSuggestion"

},
{
"name": "Actor",
"description": "Represents an object which can take

actions on GitHub. Typically a User or Bot."

Figure 3.12: schema in github API

Above introspective query shows as all available query in this server with their description.

3.2.8 Schema

GraphQL schema is the core part of the runtime, every type and function should be

described in schema before use. GraphQL runtime provides a graph-based schema for

publishing and manages different data types and structures.

A schema in simple words can be called, collection of types. Schema architecture should

be the focus on what data clients need to manage the runtime. Developers need to think

about a collection of types that will be used in application development.

GraphQL provides a language to define a schema, called Schema Definition

Language(SDL). SDL also a platform-independent language.

Types are the base of a schema. GraphQL types are a custom object. Which holds different

attributes for that type. Like a student type can consist of name, age, studentld, etc.

Types can hold not-nullable, another types and array.

28

1» type Student {

2 id:IO!

name:String!

4 age: Int

department: String !

6 year: String)

7

Figure 3.13: GraphQL schema type example

Developer can define custom scalar type for use within a type object. Also E N U M type

can be define as a normal type which can be use in later type definition.

1» enum Photo_Category{
2 SMALL
3 LARGE
4 WIDE
5 }
6
7 » type Photo .{|
8 ld:ID!
9 url:String!
10 date: String
11 category:Photo_Category!
12 }.
13
14
15 » type Student {
16 id:lD!
17 name:String!
18 age: Int
19 department: String!
20 year:String
21 photo: Photo
ZZ }

Figure 3.14: Schema types

A types can return multiple type objects as list by putting [] around type field. Which

return a JSON array as output. This feature call connection.

In GraphQL there are three type of connections.

29

1. One-One
2. One-Many
3. Many-Many

Similar with SQL each connect define with a type field which return result within type

definition.

• One-One connection
In graph theory[10] a connection between two different types is called an edge, a

connection between two linear types defined as a one-one connection.

type Student {
name: String
emailrString
id:ID!
year:lnt

}

type PaperSubmission {
id:ID!
name:String
date:Date
type:String
owner:Student!

Figure 3.15: One to One connection

In figure 3.2.12 Student and PaperSubmission type have a one-one connection and the

edge between them is the owner field.

PaperSubmission
owner

PaperSubmission HP
Figure 3.16: One to one connection data flow

One -One connection can represent data flow in linear direction and mutate them within

linear approach.

30

• One-Many Connection

GraphQL provides flexibility to the user via providing unidirectional data fetching. Using

the same analogy from the previous example, a One-Many connection represents as, i f we

query a student we should get all the submitter paper from that entity.

type Student {
name: String
email:String
id:lD!
year:lnt
submission: [PaperSubmission]

}

Figure 3.17: One to many connection query

For achieving that, we need to add an extra field submission to the Student type. In this

way, we can get multiple edges in the same data query.

• Many-Many Connection

Often, the application layer needs multiple edges between data, with our previous analogy,

an exam can have multiple students and a student can be part of multiple exams. Figure

3.18 represents a many-to-many connection diagram.

Figure 3.18: Many to Many connection

31

3.3 Result

As I am progressing through the theoretical explanation, it is become clearer that graphql

holding an edge over technology and approach. REST architectures intend to serve the best

from SOAP world, but the R O A based resource allocation tend toward over data flow,

which can be uncontrolled if the D B A did not architect properly from the beginning.

There can be a very extensive difference between them if we compare the approach and

integration capability.

In one side we have full framework like REST which provides, structure way to API

architecture and resource-based data distribution. Another side graphql is more like a

middleware top on the API layer, capability of integrate with any data layer and flexibility

of data i/o operation.

In the context of this thesis, my best assumption was checking multiple tools available

within opensource platforms. Within a multiple testcase I have decided to choose handful

tools, in the choosing parameters, consideration was, ease of use, documentation, adoption

and knowledge curve.

The important tool is Apollo client, which is the most sophisticated graphql framework

available in current tech stack.

Another important decision was writing the code completely in JavaScript, for the

simplicity and linear codebase I decide not use Django(Python based framework) which

provides much strong typed and structured approach.

It possible due to mature development cycle of various JavaScript runtime and frameworks

like NodeJs, ExpressJs.

32

Further working opportunity for the theoretical part can be data aggregation and

manipulation within different protocols like HTTP, WebSocket. And understand how

GrsphQL can be deployed within them.

4 Practical Part

This thesis goal is not only to define the difference between GraphQL and REST but also,

show a real-world used case scenario with a live server. Which demonstrates the technical

implementation and benchmarking.

4.1 Tools

For tools selection, my focus was sophistication and redundant less solution. After careful

consideration and multiple used-case implementations. I chose the following tools.

4.1.1 Apollo

For simplified GraphQL implementation, there is no other alternative than Apollo clients.

https://www.apollographql.com/

I choose this solution because of their vast solution and stable platform performance with

huge community support. GraphQL alone is a query language, but there is no structured

way for implementation, which introduces so many different implementation examples, it

is not a good maintainable approach. Apollo solves that issue, and it wraps the GraphQL in

a way that the end developer can handle both server-side and client-side data fetching

simultaneously.

Apollo includes various components like Apollo-Server, IDE-Plugin, Apollo-CLI to

reduce clutter in the platform.

33

https://www.apollographql.com/

Another important feature Apollo provides is data federation. Granular microservice data

fetching is not the easy implementation in data architecture point, Apollo makes this

effortless.

4.1.2 Postman

Postman is an API development platform, provides handful API development and

maintenance tool. In this thesis we will comprehensively use Postman client to debug and

test our API endpoints and there performance.

https://www.postman.com/product/api-client/

4.1.3 Github

Git is a source code maintenance technology. Vendor like GitHub, Bitbucket, GitLab

provides a platform to use this technology.

Git usually a code history mapping technology which works with map each

push/commit/merge with a specific tracking number, which can be use in future reference.

Also mentionable features like, rebase, forking.

A l l of the source code in this thesis has been published and maintained in the GitHub

repository. This repository is publicly available so any collaboration can be done without

any authorization.

https:// github. com/RaufR/RestGraphComparison

4.1.4 Visual Studio Code

Lightweight IDE for coding and initial debugging. Opensource solution from Microsoft

and very user friendly. Can be download and use any platform.

https://code.visualstudio.com/

34

https://www.postman.com/product/api-client/
https://code.visualstudio.com/

4.1.5 Technologies

For this thesis, I have aligned the latest technology for encouraging new development. A

stable and maintainable solution was my priority. A l l of the technologies can be found in

various package.json files in the codebase. Some notable example:

• NodeJS

• ExpressJS

• Webpack

• GraphQL

4.2 Practical setup

4.2.1 Source code

The source code structure is tree-defined multi-tier architecture. A l l source code consists of

a single folder with multiple main folders, this approach makes source code modular. In

future use, we can deploy any given application part in any platform with link updates.

Server define in two different folders:

• /GraphqlServer

• /ExpressServer

Each folder contains its package definition in the package.json file, this file defines the

necessary dependencies libraries and execution entry point for the server. As an example in

figure 4.1 contains a JSON object file with root, scripts, dependencies, and

nodemonConfig levels.

Each server entry point runs autonomously which enables a multi-thread operation process,

with ad-hoc requirements this code can be deployed to multiple PaaS solutions with or

without a containerization environment.

Server run time execution is done on npm[12] package terminal with command

"npm start"

35

which triggers nodemon to index.js file and app.js file into a different location and

different thread.

Both servers can be run concurrently.

REST server does not have dependencies on GraphQL server for any data I/O operation.

GraphQL server certainly fetches a portion of the data object from running the express

server. This is by design to settle much more operational costs to the GraphQL server.

asa p a c k a g e . j s o n x w w w • n» package-lock.json Se t t i ngs

E x p r e s s S e r v e r > a™ p a c k a g e . j s o n > {} sc r i p t s > B star t

1

2 "name": "speakers".

3 "version": "0.0.0",

4 "private": true,
> Debug

5 "scripts": {

6 "start": "nodemon ./bin/www1

7 >.
8 "dependencies": {

9 "body-parser": ""1.19.0",

10 "cookie-parser": "-1.4.4",

11 "debug": "~2.6.9",

12 "express": "«"4.16.1",
13 "http-errors": "-1.6.3",

14 "lodash": ""4.17.15",

15 "morgan": "~1.9.1",

16 "nodemon": ""2.0.3",

17 "sequelize "5.21.10"
18 }

19 >

20

Figure 4.1: package entry file

One level up to the root, node modules folders hold necessary libraries for executing

runtime and build time.

4 2 2 REST Server

For REST implementation I have choose ExpressJs, which is a framework for NodeJs

platform and a very popular server side framework. Theoretical discussion contains more

arguments and details regarding ExpressJs.

36

Figure 4.2 have the code snippet of ExpressJs server entry code. From line 1-11

specifically calling other dependencies, line 15-27 assign the dependencies to Express

module, line 24-27 contain different route address for the server, routes are used as

identifier which support R O A pattern. Each route have specific data exposure for specific

resource.

Line 30-45, error handler for serve requests.

EXPLORER

RESTGRAPHCOMPARISON

^ ExpressServer

> bin

> £ data
> public

- tfi routes

index, js

sessions.js

speakers.js

users.js

app.js

cm package-lock.json

•as package.]scn

rij GraphqlServer

^ .gitignore

GraphqIBenchmark.json

ft LICENSE

»• README.md

«=a package.json app.js Settings

ExpressServer > Js app.js > ...

1 v a r c r e a t e E r r o r = require " h t t p - e r r o r s " ;

v a r e x p r e s s = require " e x p r e s s " ;

v a r path = require " p a t h " ;

v a r c o o k i e P a r s e r = require " c o o k i e - p a r s e r "

c o n s t bodyParser = require " b o d y - p a r s e r " ;

v a r l o g g e r = require "morgan" ;

2

3

4

5

6

7

8

9

ie
n
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

36

31

32

33

34

35

36

37

38

39

46

41

42

43

44

45

v a r i n d e x R o u t e r = require " . / r o u t e s / i n d e x " ;

v a r u s e r s R o u t e r = require " . / r o u t e s / u s e r s " ;

v a r s p e a k e r s R o u t e r = require " . / r o u t e s / s p e a k e r s ") ;

v a r s e s s i o n s R o u t e r = require " . / r o u t e s / s e s s i o n s ") ;

v a r app = expresst.)}

app.use loggeri"dev"));

app.use express.json() ;

app.use express.urlencodedi extended: f a l s e >));

app.use cookieParseri));

app.use bodyParser.urlencodedi extended: t r u e >)};

app.use bodyParser. jsonO);

app.use express.staticipath.joini dirname, " p u b l i c ")) ;

I
app.use " / " , i n d e x R o u t e r ;

app.use " / u s e r s " , u s e r s R o u t e r ;

app.use " / s p e a k e r s " , s p e a k e r s R o u t e r ;

app.use " / s e s s i o n s " , s e s s i o n s R o u t e r ;

// catch 404 and forward to error handler

app.use f u n c t i o n (r e q , r e s , next) {

next createError 404));

>);
// error handler

app.use f u n c t i o n (e r r , r e q , r e s , n e x t) {

// set locals, only providing error in development

res.locals.message = err.message;

res.locals.error = req.app.getC'env") == "development"

// render the error page

res.statusierr.status || 500 ;

res.json(err);

>);
module.exports = app;

Figure 4.2: ExpressJs server creation

This file use as a abstraction to the bin/www.js file, which allocate port and trigger

37

http://www.js

Server run. Figure 4.3 include the ww.js file snippet, line 8-12 create and run the server on

port 3000.
EXPLORER ••• GEM package.json www • Settings

v R E S T G R A P H C O M P A R I S O N ExpressServer > bin > J S www > ® normalizePort

^ ExpressServer 1

v bin 2 var app = require '../app');

JS www 3 var debug = require 'debug' 'speakers:server' ;

v data
4 var i t t p = require *http');

5 var sort = normalizePort process.env.PORT || '3000' ;
sessions.json

sort = normalizePort process.env.PORT || '3000' ;
sessions.json

6 app. set 'port', port ;
speakers.json 7

set 'port', port ;

> li§ node_modules 8 var server = http.createServer app ;
^ H public stylesheets 9

B style.css 10 server.listen port ;

^ fli routes 11 server.on 'error', onError ;

index.js 12 server.on ' l i s t e n i n g ' , onListening ;

sessions.js 13

speakers.js

users.js

14 function normalizePort v a l speakers.js

users.js
15 var port = parselntival, 10);

speakers.js

users.js
16 i f (isNaN port) ß

app.js
(isNaN port) ß

app.js
17 return v a l ;

^ package-lock.json

^ package.json

return v a l ;
^ package-lock.json

^ package.json
18

•
19

^ package-lock.json

^ package.json
18

•
19 i f (port >= 0) {

> • GraphqIServer 28 return port;

4> .gitignore 21 >

GraphqlBenchmark.json 22 return f a l s e ;

ft LICENSE 23

"• README.md 24 function onError e r r o r

25 i f (error.syscall !== ' l i s t e n ') i

26 throw e r r o r ;

27 >
28 var bind = typeof port === ' s t r i n g '

29 ? 'Pipe ' + port

38 : 'Port 1 + port;

31

32 // handle specific listen errors with friendly messages

33 switch (error.code) {

34 case 'EACCES':

35 console.error bind + ' requires elevated p r i v i l e g e s ') ;

36 process.exit(1);

37 break;

38 case 'EADDRINUSE':

39 console.error bind + ' i s already in use');

48 process.exit(1);

41 break;

Figure 4.3: express 4.0 bin file

Express server expose the data within some routes to accessibility, all router must be

included within server implementation, which responsible to create different URI and send

related data to that route. As such

/users routes hold all the user data

/user/{:id) route take id as parameter and map only specific user data.

ExpressJs have its own module to handle this process.

38

http://http.createServer

Figure 4.5 snippet show a common implementation of router, which include get, patch and

post http requests.

E x p r e s s S e r v e r > rou tes > s e s s i o n s . j s > ...

1 var express = require "express" ;

2 var router = express.RouterO;

3 var sessions = require "../data/sessions.json" ;

4 var _ = require "lodash" ;

5

6 router.use " / : i d " , (req, res, next) => {

let session = _ . f i l t e r I s e s s i o n s , id: req.params.id })[0];

8 i f session) {

9 req.session = session;

10 return next();

11 }

12 return res.sendStatus 404 ;

13 });

14 /* GET users l i s t i n g . */

15 router.get "/", function (req, res, next) {

16 res.json sessions ;

17 });

18

19 router.post "/", function (req, res, next) {

res.json message: "not implemented" });

21 });

22

23 router.patch " / : i d " , function (req, res, next) {

24 Object.entries req.body .forEach item =>

25 const key = item[0];

26 const value = item[l];

req.session[key] = value;

28 console.logireq.session);

29 });

Figure 4.4: Express router example

4 2 3 GraphQL Server

GraphQL server also has a similar code structure as the express server, entry script defined

in package.json file and app has node-based runtime. The main difference is in the

implementation of the server.

Figure 4.4 snippet explains the implementation for a GraphQL server. Which import

resolvers, schema, and data sources in lines 1-12. Define the server and trigger the server

executed in lines 14-18.

39

GraphqIServer > index.js > ...

1 const ApolloServer, = require "apollo-server" ;

2 const SessionAPI = require "./dataSources/sessions" ;
3 const SpeakerAPI = require "./dataSources/speakers" ;
4

5 const typeDefs = require "./schema" ;

6
7 const resolvers = require "./resolvers" ;

8
9 const dataSources = () => ({

10 SessionAPI: new SessionAPH),
11 speakerAPI: new SpeakerAPIi) p

12 });
13

14 const server = new ApolloServer { typeDefs, resolvers, dataSources } ;
15

16 server.listen { port: process.env.PORT || 4888 > .then (url) => {
17 console.logi '"Graphql is running" at ${urlK);
18 })j
19

Figure 4.5: GraphQL server config

Very important part of the server is the schema, which defines the data type and pattern for

the mutation and resolvers to works with. Schema usually define the architecture of data

objects. As GraphQl more focus over data object throught the query/mutation resolvers.

Schema defines how the query will look like. Fire 4.5 have the overview of the schema

inside GraphQL server.

https://github.com/RaufIl/RestGraphComparison/blob/main/GraphqlServer/schema.js

GraphqIServer > i schema.js > ...
1 const gql = require "apollo-server"

module.exports = gql'
type Query {

sessions(
id: ID
ti t l e : String
desc ription: St ring
startsAt: String
endsAt: String
room: Room
day: String
format: String
track: String
level: St ring

): [Session]
sessionByldtid: ID): Session
speakers: [Speaker]
speakerById(id: ID): Speaker

>

enum Room {
Europa
Sol
Saturn

>

type Mutation {
toggleFavoriteSession(id: ID!): 5ession
addNewSessionfsession: Sessionlnput): Session

>

input Sessionlnput {

Figure 4.6: GraphQL schema

40

https://github.com/RaufIl/RestGraphComparison/blob/main/GraphqlServer/schema.js

GraphQL server depends on the resolvers to handle data manipulation, format and

mutation.

Each field in Query is a function which takes a type as parameter and return another type.

This functional operation done by resolvers. When a field executed, the corresponding

resolver return next value. Figure 4.5 represents resolvers for query operations. 4 different

queries take datasource and id as parameter and returning four different query callback

objects.

P

O

B?

EXPLORER

RESTGRAPHCOMPARISON

^ m ExpressServer

> i bin

> £ data

> fig node_modules

> I* public

v «S routes

index.js

JS sessions.js

speakers.js

JS users.js

app.js

package-lock.json

™ package.json

^ GraphqlServer

^ m dataSources

JS sessions.js

JS speakers.js

^ to local Data

sessions.json

> f§ node_modules

v m resolvers

index.js

mutation.js

nuerv.is

package.json

query.js — RestGraphComparison

introspectionSchema.json $ schema.graphql U

P t 5 O 9 GraphqlServer > resolvers > query.js > <unknown> > 0 speakerByld

1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17

module.exports = {
sessions: (parent, args, dataSources , info) => {

return dataSources.sessionAPI.getSessions args ;

},
sessionByld: (parent, { id , dataSources , info) => {

return dataSources.sessionAPI.getSessionsBylD id ;
},

speakers: (parent, args, \ dataSources , info) => {
return dataSources.speakerAPI.getSpeakersi);

},

speakerByld: (parent. id dataSources , info) => <
return dataSources.speakerAPI.getSpeakerBylD id ;

Figure 4.7 : GraphQL query resolvers

Resolvers for this thesis implement to the public repo for further work.

https://github.com/RaufR/RestGraphComparison/tree/main/GraphqlServer/resolvers

GraphQL server has 2 different data sources one is local file another data source is the

express server which running on localhost:300

41

https://github.com/RaufR/RestGraphComparison/tree/main/GraphqlServer/resolvers

This integration have done via apollo-datasource-rest library, which is a very sophisticated

wrapper function around the rest json object. Figure 4.6 has the coding implementation of

this integration.

GraphqIServer > dataSources > 1 speakers.js > ...
1 const RESTDataSource = require "apollo-datasource-rest"

2

3

4

5

6

7

8

9

IB

11

12
13

14

15

16

17

18

19

20

21

class SpeakerAPI extends RESTDataSource

c o n s t r u c t o r) {

super();

this.baseURL = "http://localhost:3Be0/speakers";

}

async getSpeakersi) {
const data = await this.get ("/");
return data;

}

async getSpeakerByID{id) {
const data = await this.getSpeakerBylDC/{id}');
return data;

}

module.exports = SpeakerAPI;

Figure 4.8: REST integration

4 2 4 Test Platform

The main objective of this thesis consists 4 different methods:

• Implementation

• Speed

• Usability

• Maintainability

Implementation tools are common IDE and public repository with enough authorization

granularity.

For speed benchmark, all of them test against the local development environment. Which

have the below attributes.

42

http://localhost:3Be0/speakers

Model Apple Notebook 2015 pro 13 inch

R A M 8GB DDR3

Processor Intel core i5 2.7 GHZ

Operating system macOSBig Sur 11.2.1

Table 4.1: Test machine's attributes

I used Postman API client. I have defined and share one workspace with multiple

endpoints. With no other env-setup or external server setup, both of the run in local env on

http.

Figure 4.9: Postman interface

With this approach, our test cases are direct and fewer setup steps.

Usability used cases define as standard SDLC used case scenario and I have used Postman

to demonstrate data fetching levels.

For maintainability demonstration, an abstract software development team scenario have

used.

43

42 5 Data

For the speed test, seed data. Have collected from public repository. Data are mostly by
relational and integrated within a single object value. For external data sources both data
REST and GraphQL have similarity and common architecture

" i d " : 84473,

" t i t l e " : "Secure Programming f o r the E n t e r p r i s e " ,

" d e s c r i p t i o n " : " E s t sunt n o s t r u d o f f i c i a f u g i a t sunt r e p r e h e n d e r i t c u p i d a t a t . Et i n c i d :

" s t a r t s A t " : "8:00",

"endsAt": "5:00",

"speakers": [

-C
" i d " : "2bda8276-b7b6-4653-a7c5-lbcc59dlla49",

"name": "Jean Ryan"

}

1.
"room": "Europa",

"day": "Wednesday",

"format": " F u l l D a y Workshop",

" t r a c k " : ".NET",

" l e v e l " : " I n t e r m e d i a t e "

Figure 4.10: Session data example

Data consist main to segments session and speakers. Session data include the details of the

session and another level depth object which contains the pointers toward speakers with a

reference id and name.

This data response over both server within a high density recursive request. Below link

contains the full data source.

https://github.com/RaufR/RestGraphComparison/blob/main/ExpressServer/data/sessions.js

on

Another data set is the speakers data which use monstly GraphQL layer for integration

purpose, In figure 4.6 speaker data consist with attribute related with individual speaker

personal information. With unique identifier.

Speaker details initially render within ExpressJs layer and then integrate with GraphQL

layer with a map call back function which return granular speaker details with related

session.

44

https://github.com/RaufR/RestGraphComparison/blob/main/ExpressServer/data/sessions.js

Speaker data can be seed from below link:

https://githubxom/RaufR/RestGraphComparison/blob/main/ExpressServer/data/speakers.j

son

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

id":"381b010e-f51d-4fca-a249-271f72a6a5b9",

bio":"Anim anim cupidatat cupidatat consequat n i s i mollit v e l i t o f f i c i a nulla et eiusm

sessions":[

' {

"id":129718,

"name":"Batching Vs Streaming"

0.
"name":"Macey Duncan"

"Íd":"c5e306ae-3f40-4ff0-92a2-503e2fldc6al",

"bio":"Ex amet e l i t anim qui consectetur fugiat consequat dolor occaecat. Pariatur eu d

"sessions":[

"id":85318,

"name":"Azure you want to use AWS IoT?"

"name":"Jerome Parker"

Figure 4.11: Speaker data example

4.3 Workflow

I came across several solutions to implement the workflow, which consists, cloud test,

SSR, or third-party testbed. After careful consideration and completing the benchmark

step, I conclude the workflow step as below

4.3.1 Initial

• Install nodeJS in local machine. Latest LTS version should be enough.

• Download and install GIT

45

https://githubxom/RaufR/RestGraphComparison/blob/main/ExpressServer/data/speakers.j

Clone public repository from https://github.com/RaufR/RestGraphComparison

4.3.2 Express Server

• Navigate to ./Expressserver folder

• Run npm install in terminal and then run npm start

• Successful execution should start an express server in http://localhost:3000/

4 3 3 GraphQL Server

• Navigate to ./GraphqlServer folder

• Run npm install in terminal and then run npm start

• Successful execution should start an graphql-pi ay ground server in http://localhost:4000/

4.3.4 Postman Setup

• Download and install Postman Api client

• Sigin and open

• Click on import on left side bar

• Upload GraphglBenchmark. json file, which can be found in repository.

A l l above workflow must be done before any benchmark step.

4.3.5 Testing parameters

Before reaching out to the final conclusion, I have decided to granular test parameters to

relatively linear.

Testing in Postman requires no specific setup on its own but to make this test more aligned

with real-time usage I have set network throttle to mid-low, which provides a higher

response time for each request.

46

https://github.com/RaufR/RestGraphComparison
http://localhost:3000/
http://localhost:4000/

Postman also provides specific recursion mechanism to an URI which will be extensively

used in a

Some parameters I have to consider especially in our TestBed.

• B andwi dth(generate vi a network throttl e)

• Processing time

• C P U usage

• Memory usage

5 Results and Discussion

5.1 Implementation

Implementation comparison can be defined by the complexity and learning curve between

Rest and GraphQL architecture.

Both of the parameters contain very dynamics attributes and differ on developer

experience and exposure towards aligned technologies.

From my personal perspective, both of the architecture have positive and negative sides

when it comes to implementation steps.

REST

• Structured architecture. Developer with strong CRUD experience can easily adopt,

also this introduce heavily depends on similar architecture and rigid data

manipulation step.

• Widely used, examples are more available.

• Strong community support, helped to smooth the learning curve.

• Codebase moderately followed years long M V C architecture, easy to understand.

• Client have very low control over data fetching, resource output size defined via

server side, and without calling whole response client can not do any other

calculation, which push runtime higher.

• More granularity means more endpoints, which become very complex in heavy

data manipulation.

47

• Middleware connectivity and usage of multiple data source is possible but

introduce more complexity within codebase.

GraphQL

• Non-linear flexible architecture, developers with functional programming

experience adopt easily. Which can be overwhelming for OOP focus developers.

• Newer technology, much more strong prospectus, have support from big-techs.

• Well-written documentation, fewer but very defined tutorials, learning curve can be

smooth but comparatively still higher.

• Very flexible data fetching from client side, don't need to write whole endpoint for

each type of fetching. Client have full control of how much data needed. Which

reduce runtime significantly.

• Support multiple languages and modern frameworks. Easy to adopt within different

codebase.

• Very easy and native support for multiple data connector.

Implementation learning curve higher for GraphQL also implementation flexibility is

much higher in GraphQL. While REST force developer to maintain the structure and give

zero control to the client, GraphQL gives total flexibility over implementation and

response size.

I have come to the final conclusion that GraphQL is a much more sophisticated solution

when the developer is experienced, and REST will be very developer-friendly at the

beginning but a rigid CRUD system can be a big issue in future development, I have

discussed more in maintainability section.

48

5.2 Speed

As the previous discussion define, GraphQL has some clear edges over REST. Also, data

properties and multiple foreign key connections within data show more clear sign of fetch

time difference.

Gradual data load increase, our graphql server show performance downgrade but hold the

key parameters when the data have multiple levels of depth.

The testbed was predefined; the initial data connector contain local preload data, which

contains several object layers, and both datasets integrated.

The endpoints were implemented with specific resources and URI from REST API divided

into two URI, speakers and speakerByld. Both sections have different payload properties

and different exposure URLs.

From GraphQL, there are several depth layers sessions; the session includes a speaker, and

the speaker includes multiple sessions.

For demonstration more details, two HTTP fetch operations on both API with a similar

data payload create a fair comparison point.

In first fetch operation, data payload identical in both API and there is no integration

between both API.

I used Oms throttle, payload of 131382 with 2 level depth connection for each request. I

have run 5 iteration of the test. As result show, GraphQL have 23ms to 33ms range and

Rest has 39ms 5ms range.

Rest is the winner in lowest data fetch result but runtime consistence is not there, while

GraphQL show clear sign of runtime declaration over each run. I would also identify that

REST use server cache policy more often than GraphQL. Which probably the lower the

time cost in continues data fetching operation. Hence both server can be modify to use

cache as much operation needed.

49

Throttle(ms) Payload Depth Rest GraphQL
Time(ms) Size(kb) Time(ms) Size(kb)

0 131382 2 39 131.601 33 131.601
19 23

5 30
35 29
35 27

Table 5.1: Test case 1 data

Speed Test (1)

1 2 3 4 5

Number of iteration

Figure 5.1: Speed test chart

For the second operation, data layers are integrated into a singular point. This fetch call

executes from the GraphQL layer and connects to REST with GraphQL. Graphql layer

passes session.id to REST middleware and fetches a specific speaker with the given

session.id param.

50

getSess ionwt ihSpeakerO

Gel

Figure 5.2: Data flow from GraphQL to REST

This test's expectation is needed to justify the GraphQL layer requesting data from the

REST layer, but the REST layer does not. As both data have 90% similar attributes so for

the comparison, deducted REST fetch time from GraphQL fetch time and observed.

Opertion speed counting formula looks like:

Total response time - REST response time = GraphQL response time

For this operation I used 10ms throttle, payload of 1 with 4 level depth connection for each

request. I have run 5 iteration of the test. As result show, GraphQL have 25ms to 21ms

range and Rest has 19ms to 15ms range.

Throttle(ms) Payload Depth Rest GraphQL
Time(ms) Size(kb) Time(ms) Size(kb)

10 1 4 25 1.33 17 1.33
24 17

21 19
21 15
24 17

Table 5.2: Test case 2 data

Test Result in chart overview.

51

Speed Test (2)

0
1 2 3 4 S

Number of iteration

Figure 5.3: Speed test 2 chart

Second test case pattern is similar between two set. GraphQL pattern have range between

15-19ms and REST pattern 21-25ms. Due to similar data depth and linear connectivity

GraphQL show a potential 4ms threshold with REST.

Our test cases produce a very clear judgement which lean toward GraphQL speed

execution. The main reason is caching capability and linear JSON object based data

manifestation. Both test cases have significant difference between payload to understand

the both technologies capability with workload variety.

Future working opportunity and enhancement can be done with a live server in a PaaS

solution within different protocol to understand the much more complex test cases.

Also Authentication is another very strong point which can be tested.

One of the objective of this thesis was test the execution speed, and I can abbreviate that

GraphQL and REST both has very similar execution speed on low payload, with complex

multiple depth data fetch operation GraphQL is bit faster.

52

5.3 Usability

This term reflects the usage of different architecture in different SDLC. Usability traces the

amount of granularity of data manipulation inside an implemented API and also measures

the total number of application support toward API lifecycle.

As a comparison of granular data manipulation GraphQL has an edge over REST because

of schema-based data fetching and mutation architecture.

UUfcKY

1 • Write your
2 query {
3 speakers
4 id
5 bio
6 name
7 Session{
8 id
9 t i t l e

10 }
11 }
12 }

1
2
3
4

5

6
7

f Write your query or mutation here
query {

speakers {
id
bio
name

}

Figure 5.4: Query granularity

Like the above example, both queries executing in the same schema object left query

calling speakers with Session object and right query just fetching speakers with its

respective fields.

From the data quality perspective, this granular fetching provides much more clean data

output and the amount of data gets reduced. The main objective here is "only fetch the data

application need to load that component" which supports the AOT compilation method and

widely supports via modern Javascript frontend frameworks like React, Angular.

Similar data manipulation can not be done in REST without creating another endpoint and

extends URI links. Which overloads the development time for both ends and introduces

non-DRY code inside the codebase.

I do not completely agree that data granularity is better in GraphQL, hence REST also

provides, much more sophisticated way to handle data manipulation. But in the simplicity

of granular operation GraphQL of course ahead of the comparison.

53

And the second part, application support. From a development perspective, both have a

wide range of language choices and flexibility of coding style. GraphQL has it own

dependability toward Javascript because of primarily developed for frontend data

granularity purpose, at the same time all other modern languages like python, C#, Java can

have the same opportunity.

Another hand, REST support almost all modern language and has more mature support and

user base.

In this case, REST should be used in lower relational data architecture where structure data

have more priority.

Usability describes also, the capability of the tool/tools to perform specific task for the

users effectively. Human interaction with both technologies within SDLC defines the

testing ground for usability. Usability elaborates the satisfaction rate of the tool and the

overall quality of the tool.

As per standard ISO/IEC 9126-1:2001 software engineering product quality the main

attribute of the software usability with human interaction can be judge by:

• Understandability

• Learnability

• Operability

• Attractiveness

54

According to my finding and analyze, I prepare a simple table with rating system from

1 to 5.

Standard REST GraphQL
Understandability Score : 5

Reason: Very easy to understand for
beginner level. Complexity spikes
with the design depth itself.

Score: 3
Reason: Very complex in the
beginning, but the complexity
reduce with further understanding.

Learnability Score: 4
Enough resources available.

Score: 3
Enough resources available.

Operability Score: 3
Reason: Operation with flexibility is
not so simple due to very structure
data flow.

Score: 5
Reason: Very easy to operate, high
flexibility and integration capability.

Attractiveness Score: 0
Not Applicable

Score: 0
Not Applicable

Total 12 11

Table 5.3: Usability ranking

From the perspective of usability both technologies have almost same position. It is

depending on user preferences and use case.

5.4 Maintainability

Modern API maintenance consists of layers of service maintenance. A normal API can

consist of at least 3 layers:

1. Connector layer (DB, other services)
2. Security (SSO, Token)
3. Endpoints/Resources

So maintaining an API is not a linear codebase maintain. The good news is in the current

technological structure cloud computing providers like Azure, AWS has a very

sophisticated solution for API management.

55

API call numbers can vary on application architecture which is not measurable at the

beginning, also developer experience and coding skills can affect the total number of API

calls.

Other than call, all other layers can be predefined and pre-estimated on architecture. The

security layer is the most important maintenance layer, which does not affect the

performance but of course, affects usability and access. GraphQL and REST both support

token and SS.O implementation. Also, modern security frameworks like, OAuth support

seamlessly with any architecture.

Certainly, GraphQL or REST does have a direct connector layer. A REST or GraphQL can

have multiple data input resource which calls and execute in code and give output to

endpoints or schema. Both architectures have their connector functions, REST attached

with resource within a single monolith call or microservice, also GraphQL has flexibility

over connectors integration. The data layer does not care about the connector layer but

rather depends on it.

Maintainability refer the ease of maintain the currently build complete product in order to

• Patch release.
• Bug finding and fix.
• Protect product competitiveness.
• Maximize efficiency.
• New requirements.
• Future adoption
• Integration integrity.

According to ISO/TEC 9126
Maintainability contains 5 specific features.

56

A

Maintainability

Figure 5.5: Maintainability features

For the purpose of showing the difference between of our selected technologies I used

table method with ranking which similar as usability.

Rank between 1 to 5.

Standard REST GraphQL
Analyzability Score: 5 Score: 4

Reason: Analyzing a data structure
is very simple due to structured
approach.

Reason: Analyzing a schema can be
bit difficult, with some external
tooling this can be done.

Modularity Score: 2
Reason: Not modular due to R O A
based data flow. Specific identifier
can only handle specific set of data

Score: 5
Reason: Modularity is the key of
GraphQL. Robust inter connectivity
and object based approach make
this more easy

Modifiability Score: 3
Reason: Easily modifiable, due to
linear code structure.

Score: 3
Reason: Initially complex to
modify existing parts, i f developer
do not have architectural overview

Reusability Score: 4
Reason: REST endpoint can be
reusable but not the resource within
different request.

Score: 5
Reason: Very strong reusable
functionality. With D R Y approach
codebase can be very redundant
free.

Testability Score: 5
Reason: Various tools and methods.

Score: 5
Reason: Various tools and methods.

Total 19 22

57

Table 5.4: Maintainability ranking

From the ranking, the output lean toward GraphQL due to the characteristic of the

technology. Also, I would like to mention that, all of this standards can impact various

project in different ways. In case of project, where modularity is not so important as

testability.

In verdict, I can say that hence the GraphQL show much positive result toward

maintainability, it can also be REST if the usage perspective is different.

Software projects need to very well evaluate before going for specific solution. In my

opinion, all require standard related with ISO/IEC 9126 should be individually consider as

a parameter, not put in a group.

This thesis objective on maintainability conducted and provides specific result with

sufficient reasoning and valuation.

58

5.5 Conclusion

The main objective of the thesis was is to analyse both technology and the architectural

approach and provides a clear differential value between them. Modern applications and

services became very complex and data became more and more non-linear relational. From

data generate to fetching and manipulation through application layers getting complex and

costly for development. On the other hand, application, frontend layer depends on browser

engines, which have limited memory capacity and limited internet speed. So, any data

manipulation cost can have an effect on usability which affects the direct SDLC chain.

The theoretical and practical parts describe the current state and minimal capability of the

technologies and present an open-source codebase to manipulate and reuse.

In the second part, I have defined the main difference between REST and GraphQL with

clear recommendations on a case basis.

The goal was to demonstrate and catalyst the decision of API architecture for software

development. To achieving that, several tests have been done with technological

separation. Also, Broad theoretical differences have been established with a detailed

overview.

As a software development process gets more complex and technologically jargon, this

thesis clarifies the API architecture point of view, when to use GraphQL and when to use

REST.

This thesis can be extended to cloud-based deployment to test both architecture

performance in the different cloud platforms, which is a significant next step. Another

improvement can be made to implement real-time DB with more industrial microservices

to test WebSocket protocol performances.

I had enjoyed the time of the thesis and exploration of different technologies. A warm

thanks to my faculty for continuous support and available resources.

59

Base on the study, this thesis can be concluded that GraphQL is a better solution when the

data relation is non-linear, data fetching size needs to be reduced, and when the frontend of

the application has complex representation logic.

In the case of REST can be very useful on, any linear relational data with minimum

representational complexity with high data fetching capacity.

However, the methodological procedure and research conclusions have great potential to

explain, analyse and evaluate current API architectural distinction between GraphQL and

REST and clarify the technological decision for software development requirements.

60

6 Bibliography

[1] http s: // searchapparchitecture. techtarget. com/definiti on/RE S T-REpre sentati onal -
State-Transfer

[2] Fielding, R. T. REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation, University of California, Irvine,
2000.

[3] Jian Meng, Shujun Mei, Zhao Yan. RESTful Web Services: a Solution for
Distributed Data Integration. International Conference on Computational
Intelligence and Software Engineering. December, 2009.

[4] S. Vinoski. RESTful Web Services Development Checklist. IEEE Internet
Computing. November, 2008.

[5] Haibo Zhao, Prashant Doshi. Towards Automated RESTful Web Service
Composition. IEEE International Conference on Web Services. 2009.

[6] RESTful Web Services by Leonard Richardson, Sam Ruby.

[7] Richardson, L. , and Ruby, S. Restful web services, l.st ed. O'Reilly,2007

[8] Erik Wilde, Cesaro Pautasso. REST: From Research to Practice. Springer
Science+Business Media. 2011.

[9] Learning GraphQL: Declarative Data Fetching for Modern Web Apps
Book by Alex Banks and Eve Porcello

[10] Introduction to Graph Theory Richard J Trudeau

[11] http s: // about, sourcegraph. com/graphql/ graphql -cli ent-dri ven-devel opment/

[12] https://docs.npmj s. com/about-npm

61

https://docs.npmj

