
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INTELLIGENT S Y S T E M S

IMPLEMENTATION OF DISTRIBUTED TRANSAC
TIONS IN BPEL

BAKALÁRSKA P R A C E
B A C H E L O R ' S T H E S I S

AUTOR PRÁCE IVO BEK
A U T H O R

BRNO 2012

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF INTELLIGENT S Y S T E M S

IMPLEMENTACE PODPORY DISTRIBUOVANÝCH
TRANSAKCÍ V BPEL
I M P L E M E N T A T I O N O F D I S T R I B U T E D T R A N S A C T I O N S IN B P E L

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S T H E S I S

AUTOR PRÁCE IVO BEK
A U T H O R

VEDOUCÍ PRÁCE Ing. ZDENĚK LETKO
S U P E R V I S O R

BRNO 2012

Abstrakt
Cílem t é t o baka l á ř ské p r á c e je implementovat podporu d i s t r i buovaných t r a n s a k c í do pro
jek tu Rif tSaw tak, aby webové s lužby mohly bý t volány v r á m c i d i s t r i buovaných t r a n s a k c í
p o d n i k o v ý m i procesy. A to pouze v tom p ř í p a d ě , že operace webové s lužby vyžadu je bý t
provedena v r á m c i d i s t r i b u o v a n é transakce. Opro t i již funkčním i m p l e m e n t a c í m př ináš í
podporu specifikace WS-Bus inessAc t iv i ty a j iný z p ů s o b kontroly, zda m á p o d n i k o v ý proces
použ í t d i s t r i b u o v a n é transakce u volaných webových s lužeb.

Abstract
The goal of this work is to implement a support of distr ibuted transactions into the project
Rif tSaw so that web services can be invoked wi th in distr ibuted transactions by business
processes. A n d only if a web service operation requires to be performed wi th in a distr ibuted
transaction. Compar ing to already working implementations, the presented sulution brings
support of WS-Bus inessAc t iv i ty specification and a different way of checking that a business
process use distr ibuted transactions for invoked web services.

Klíčová slova
řízení podn ikových procesů , d i s t r i b u o v a n é transakce, webové služby, B P E L , Rif tSaw,
Switchyard, JBoss Transactions

Keywords
business process management, distr ibuted transactions, web services, B P E L , Rif tSaw,
Switchyard, JBoss Transactions

Citace
Ivo Bek: Implementation of Dis t r ibu ted Transactions i n B P E L , b a k a l á ř s k á p ráce , Brno ,
F I T V U T v B r n ě , 2012

Implementation of Distributed Transactions
in BPEL

Declaration
I hereby declare that this thesis is my original authorial work which I have worked out by
my own under supervision of Zdeněk Letko and J i ř í Pechanec. A l l sources, references and
literature used or excerpted during elaboration of this work are properly cited and listed in
the bibliography.

Ivo Bek
M a y 16, 2012

Acknowledgements
Special thanks to my colleagues, G a r y Brown , Jeff Y u and Marek Ba luch for consulting and
technical help. A l so thanks must be given to Zdenek Letko for reading and correcting the
thesis.

© Ivo Bek, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Transaction Processing 4
2.1 Dis t r ibuted Transactions 5
2.2 Two-Phase C o m m i t Pro toco l 6

3 W e b Services 7
3.1 Us ing and Implementing Web Services 8
3.2 WS-Coord ina t i on 9
3.3 WS-AtomicTransac t ion 10
3.4 WS-Bus ines sAc t iv i ty 10

4 JBoss Transactions 11

5 Business Process Management 12
5.1 Business Process Execut ion Language 12
5.2 Rif tSaw 13
5.3 Switch Y a r d for Business Processes 15

6 P rob lem Analysis 16
6.1 Cr i t e r ia of a Satisfactory Solut ion 16
6.2 Related Works 17
6.3 Sub-problems 18
6.4 Possibilities of a Solut ion 20

7 Design of Integration 21
7.1 Intended Cooperat ion 21

8 Implementation in the RiftSaw 23
8.1 Check Po l i cy 23
8.2 Transaction Context in the S O A P Header 24
8.3 Subordinate Transaction in a Business Process 24
8.4 Business A c t i v i t y Support 25

9 Testing and Results 26
9.1 Demo App l i ca t ion 26
9.2 Basic Testing Scenarios 28
9.3 Review 30

1

10 Conclusions 31

A JBoss A S 7 X T S Configuration 35

B Compact Disk 36

2

Chapter 1

Introduction

Information systems today continue to become more complex and t ry to raise rel iabil i ty
and availability. Because the number of clients increases, the parts of information systems
are separated on different machines. To follow the trend even in the area of information
system reliability, we use dis tr ibuted transactions. Interfaces of information systems are
often available through web services which are managed by business processes. Because we
have to ensure that some of web service operations w i l l be performed wi th in a distr ibuted
transaction, it is necessary to have the support of distr ibuted transactions i n the business
processes.

This thesis is about implementing the support of distr ibuted transactions i n the project
Rif tSaw so that web services can be invoked wi th in distr ibuted transactions by business
processes running i n the Rif tSaw. To decide which web service operation needs to be
invoked wi th in a distr ibuted transaction, we have to choose a suitable way that we use
because there are at least two existing possibilities.

Every theoretical part of this thesis is very large so it is briefly introduced and describes
the most important things for the thesis. In the following Chapter 2, we describe the trans
actions, especially the dis tr ibuted transactions. Then we focus on web services i n Chapter 3
and business processes i n Chapter 5 because we w i l l use them to test the implementat ion
of distr ibuted transactions in business processes. We come to the pract ical part of thesis
and do an analysis of the problem i n Chapter 6. We discover that the implementations
of distr ibuted transaction in business processes already exist i n Chapter 6.2 but because
they are commercial and we need own support in JBoss community projects, we have to deal
w i th i t . In Chapter 7, we design the integration of JBoss Transactions i n the Rif tSaw and
describe an intended cooperation between a business process, web service and transaction
manager. Then we look at the interesting parts of implementat ion like subordinate trans
actions or WS-Bus inessAc t iv i ty support i n Chapter 8. Final ly , we evaluate the solution
in Chapter 9.3 wi th the cri teria defined i n the analysis of the problem and wi th required
functionality that was tested by basic testing suite i n Chapter 9.2.

3

Chapter 2

Transaction Processing

In this chapter we w i l l focus on a transaction processing. Its meaning, possibilities and
usability. Because the thesis targets implementat ion of distr ibuted transactions, it leads
to the transaction processing on several machines.

Transaction is a series of operations which have to be performed al l or none [25]. To de
cide what should be done, there are two operations that we can use, the commit and
rollback. The commit operation confirms a transaction and the rollback operation aborts
a transaction. Transactions are required i n some specific situations when we need to be
absolutely sure that operations was successfully accomplished. A n example applicat ion is
a bank transaction. The bank transaction withdraws money from one account and deposits
to another. These operations have to be performed al l or none because i f not, the account
credits would be inconsistent and the money could be lost.

Place where we store data and do transaction processing is usually called a transaction
resource. For a resource we can use databases, message queues or file systems. Transaction
resource which is registered i n a transaction is called transaction participant. Th is term
occurs i n the technical articles or books if it describes more than one resource used in
a transaction [25]. Transactions usually follow properties which are collectively referred as
A C I D :

• Atomicity - In order to ensure that i f a transaction is successful, then a l l the operations
happen, and i f unsuccessful, then none of the operations happen.

• Consistency - The applicat ion performs va l id state transitions at completion.

• Isolation - The effects of the operations are not shared outside the transaction unt i l
it completes successfully.

• Durability - Once a transaction successfully completes, the changes are final and can
be recovered after a failure.

M u t u a l l y agreed outcome labeled as atomicity is not the only th ing to be achieved. We
need to be sure that transaction resources w i l l do changes from one va l id state to another
va l id state labeled as consistency. These changes have to be stored on a durable place
because they have to survive possible failures. Th is property is usually labeled as durability.
W h a t about i f we have more opened transactions using the same resources? For this, we
need to specify how the changes w i l l be visible outside the transaction which is labeled as
isolation.

4

2.1 Distributed Transactions

Dist r ibuted transaction is a transaction that runs i n mult iple processes, usually on several
systems, and involves actions against two or more transaction resources [25]. Dis t r ibuted
systems present risk i n reliability. Decentral izat ion can cause that some parts of the system
could fail whereas another parts could work. It could tend to abnormal behavior i n an
applicat ion. Thus, for using resources in a dis tr ibuted system and increase the reliability,
the dis tr ibuted transactions are used.

Transaction resource is managed by resource manager that is responsible for communica
t ion wi th transaction manager v i a 2 P C protocol. We need the resource manager because the
transaction manager using the resource can be on another machine. Transaction manager
is the component that manages and coordinates transactions across a distr ibuted system.
Each of the machine from distr ibuted system has its own transaction manager. Client ap
plicat ion communicates w i th transaction manager to create a distr ibuted transaction and
commit or abort the transaction.

Because we can have lot of transactions we need to recognize each of them. For this
purpose we have an identifier to recognize the part icular transaction. The identifier is
a part of transaction context. Transaction context is described by coordination context
and contains addi t ional information about transaction. To determine that the context
is transactional, the coordination type have to be set properly. The transaction context
is received from transaction manager after a request to create a distr ibuted transaction.
Then every request or response contains the transaction context i n its message header.
Coordinat ion contexts and coordination type values are described in Chapter 3.2.

There exist two way how to communicate across network between transaction part ici
pants and coordinator. We presume to have transaction participants on another machine
than the coordinator. The basic way is that coordinator communicates w i th transaction
participant like they are on the same machine as coordinator. W h e n we increase num
ber of transactions or participants, the network traffic rapidly growing. To moderate the
network traffic growing we can use interposition. Interposition uses hierarchy of coordi
nators. E a c h coordinator can be placed on machine where is the resource manager. It is
even part icular ly useful for web service transactions (discussed in Chapter 3) to increase
performance.

Dis t r ibuted systems can be absolutely different and wri t ten i n different programming
languages. If we run a remote service it should not be important i n which programming
language it is implemented. For example, there are some implementations which can run
a remote service only wi th information about name of the service and Inter-operable Ob
ject Reference (IOR) , the address of service. C o m m o n Object Request Broker Archi tec
ture (C O R B A) is a standard which was developed as a common interconnection bus for
distr ibuted objects [20]. Communica t ion of distr ibuted systems is based on Internet Inter-
O R B Pro toco l (H O P) . "The Object Request Broker (O R B) is the basic mechanism by
which objects transparently make requests to and receive responses from each other on the
same machine or across a network." [20]

5

2.2 Two-Phase Commit Protocol

To guarantee consensus between transaction participants we use Two-phase commit (2PC)
protocol. Transactions can be coordinated by this protocol to be able to use more transac
t ion resources.

B o t h phases depicted i n Figure 2.1 consists from coordinator and transaction partic
ipants. Coordinator is responsible for governing the outcome of the transaction. Dur ing
the first preparation phase, the transaction coordinator attempts to communicate w i th a l l
of the participants to determine whether they w i l l commit or abort. A n abort reply, or
no reply, from any participant acts as a veto, causing the entire action to abort. If the
coordinator decide to commit , this decision is recorded on a durable storage. In the second
commit or recover phase, the coordinator forces the participants to carry out the decision.
A n y participant should not change the decision in the second phase because it could cause
heuristic outcome which is mentioned further.

The transaction resources are blocked and unavailable for use by other actions unt i l
a commit / ro l lback response message from the coordinator is received. Imagine that we
have simultaneous transactions using same transaction resources. We presume to have
a well-formed design which does not cause deadlock. If one of the coordinators would
fail before delivery the commit / ro l lback message, the transaction resources would remain
blocked for the second transaction for an indefinite per iod of time. Some applications
(flight systems, stock exchange systems etc.) and participants cannot tolerate this blocking.
To break this blocking, participants which get past the prepare phase are allowed to make
autonomous decision. They can commit or rollback transaction on their decision from
the prepare phase. There is no problem when the transaction outcome from coordinator
is same as choice the participant made. However, if the coordinator detect after failure
recovery that decisions are contrary, then a possibly non-atomic (may heuristic) outcome
has happened. Because the participant has logs about the changes, one of possible solution
is that coordinator w i l l cal l functions to take back changes i n the transaction participant.
After that transaction manager w i l l raise heuristic rollback exception to the client which
requested commit . It might happen that one transaction participant would make a commit
and another transaction participant would make a rollback. This is the worst scenario
which could happen and the transaction manager would raise a heuristic mixed exception.
The ways how to figure out are complex and we do not need to go so deep. Some solutions
can be found in the book Java Transaction Processing [25].

Phase 1 Phase 2

Figure 2.1: Two-phase commit protocol

6

Chapter 3

Web Services

Web services are web based applications that use open standards based on Extensible
M a r k u p Language (X M L) and transport protocols to exchange data w i th clients [28]. They
are designed to support inter-operable machine-to-machine interaction over a network [16].
Of the protocols in existence today, Hypertext Transfer P ro toco l (H T T P) is the one specific
protocol that a l l platforms tend to agree on. Web service developer can use any language he
wish and a web service consumer can use standard H T T P to invoke web service operations.

Web services can be represented as a modular, reusable software components that are
created by exposing business functionality through a web service interface. The founda
t ion of most Service Oriented Archi tecture (S O A) applications are web services for their
interoperability.

The following basic specifications originally define the web services space.

• Simple Object Access Protocol (S O A P) is a lightweight protocol for exchange of in
formation i n a decentralized, dis tr ibuted environment [13].

• Web Service Definition Language (W S D L) is an X M L format for describing network
services as a set of endpoints operating on messages [16].

• Universal Description, Discovery and Integration (U D D I) provides an X M L / S O A P
standards based framework for describing, discovering and managing web services [].

Web services can be composed i n two ways, orchestration and choreography. This
paradigms describe the ways how to deal w i th complex operation which is separated to sev
eral tasks. E a c h task is implemented as a web service. In the orchestration paradigm which
is usually used i n business processes, a central process takes control of the tasks and co
ordinates the execution of different operations on the web services [21]. O n l y the central
coordinator of the orchestration is aware of operation goal. Choreography, i n contrast,
does not rely on a central coordinator and each web service involved knows exactly when
to execute operations and wi th whom to interact. Orchestrat ion is more flexible paradigm,
but choreography is better aimed on goal of operation.

7

3.1 Using and Implementing Web Services

This chapter presumes better understanding i n J a v a E E because the chapter describes some
of details how to use and implement a web service. For testing purposes we w i l l need
to create web services so there are information of proceeding.

Firs t , we focus on using already implemented web services. To invoke a web service
operation, we need to know some details. These details are provided by a W S D L inter
face [16]. In the W S D L interface there are placed data type definitions, abstract definitions
of messages, port type as a set of abstract operations, b inding and service definition used
to aggregate a set of related ports. To invoke the operation we need to know a web service
endpoint from the service definition and operation described in binding, especially input
and output message types which define how to create a S O A P message.

If we know only an endpoint of a web service, there is a rule to obtain the W S D L
interface. To get the W S D L interface we add to the end of the endpoint " ?wsdV O n this
address we w i l l find the W S D L interface.

W h e n we know how to invoke an operation, we can create a S O A P message to do i t .
We w i l l also receive response i n S O A P message, if an operation is i n request-response type.

Figure 3.1 describes a S O A P message structure. We have an envelope which is composed
of two parts, the header and body. The header is opt ional and it can contain transactional
context or security related information. To do an operation request we set the body part.
The response details are received i n the body part.

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">

<env:Header>
<!— can contains transactional context or security related information —>

</env:Header>
<env:Body>

<!— message content which can contains an operation request or response —>
</env:Body>

</env:Envelope>

Figure 3.1: S O A P message

For creating web services i n Java, The Java A P I for X M L Web Services (J A X - W S) [14]
is used. It is not the only A P I to define web service, the alternative could be for instance
an Apache Axi s2 [2].

Fol lowing paragraphs are about implementat ion details how to create a web service in
the J A X - W S .

We need to mark where we can find the web service which methods are operations, define
their parameters and results. To do i t , we are using annotations. A Java class annotated
wi th a Ojavax. jws. WebService annotation w i l l be used as a web service. Class package
is mapped to a wsdl:definitions element and an associated targetNamespace attribute by
following rules.

• The package name is tokenized using the dot character as a delimiter.

• The order of the tokens is reversed.

8

http://www.w3.org/2003/05/soap-envelope

• The value of the targetNamespace attribute is obtained by concatenating "http://"
to the list of tokens separated by "http://" and ' / ' .

The Java package "org.jboss. example" e.g. would be mapped to the target namespace
"http://example.jboss. org".

Web service operations are a l l public methods which are not static or final. B y anno
tat ion Ojavax. jws.WebMethod w i th attr ibute exclude, we can specify operation to ex
clude from web service interface. Also we can specify i n detai l the web method pa
rameters w i th annotation 0j avax. j ws. WebParam or an operation result by annotation
Ojavax.jws.WebResuit.

We have two ways how to deploy web Services on applicat ion server. A s a servlet in
web archive *.war or as an E J B in Java archive *.jar. If we choose E J B , the web service
have to be annotated wi th ©Stateless annotation.

3.2 WS-Coordination

WS-Coord ina t i on is a specification describing an extensible framework for providing proto
cols that coordinate the actions of dis tr ibuted applications [27]. The framework introduces
a generic service based on the coordinator service model . It is a controller service known as
a coordinator or coordination service used for coordinating participants. The coordinator
controls following three services:

• Activation service is responsible for the creation of a new context and for associating
this context to a part icular activity.

• Registration service allows part ic ipat ing services to use context information received
from the act ivation service to register for a supported context protocol.

• Protocol-specific services represent the protocols supported by the coordinator's co
ordination type.

A service that wants to take part i n an act ivi ty managed by WS-Coord ina t i on must
request the coordination context from the act ivation service. It can then use this context
information to register for one or more coordination protocols. A service that has received
a context and has completed registration is considered a participant i n the coordinated
act ivi ty [17].

The completion process begins wi th client service request to the coordination service.
Then the coordinator sends completion request messages to a l l coordination participants.
Each participant service responds wi th a completion acknowledgment message [17].

Each coordinator is based on a coordination type. The most commonly associ
ated coordination types wi th WS-Coord ina t i on are WS-AtomicTransac t ion and W S -
BusinessAct ivi ty . These extensions provide a set of coordination protocols. A protocol
is a set of rules that are imposed on activities and the rules must be followed by a l l regis
tered participants [17].

Coordinat ion context contains information about coordination type, identifier and regis
t ra t ion service. Example of coordination context support ing a transaction service in S O A P
message is described i n the WS-Coord ina t i on specification [27].

9

http://example.jboss

3.3 WS-AtomicTransaction

WS-AtomicTransac t ion specification provides the definition of the atomic transaction co
ordination type that is to be used wi th the extensible coordination framework described
in the WS-Coord ina t i on []. It enables shared resources to be protected from concurrent
applications.

The specification defines three protocols for atomic transactions []. They are often
used to enable a two-phase commit .

1. Completion Protocol initiates commit processing and is based on each protocol of reg
istered participants, the coordinator begins w i t h Volat i le 2 P C and then proceeds
through Durable 2 P C . The final result is signaled to the client application.

2. Volatile 2PC Protocol is used for the participants managing volatile resources such
as a cache register.

3. Durable 2PC Protocol is used for the participants managing durable resources such
as a database register.

If we want to use an atomic transaction for participants i n a web service, the S O A P
message wi th a request has to contain coordination context w i th coordination type set
to the value http://docs.oasis-open.org/ws-tx/wsat/2006/06.

3.4 WS-BusinessActivity

Business activities consist of long-running, complex transactions involving numerous ser
vices []. Per iod of a business act ivi ty can be hours, days or even weeks.

The important different against to WS-AtomicTransac t ion is that WS-Bus inessAc t iv i ty
does not offer rollback capability. Instead, business activities provide an optional compen
sation process that, much like a "plan B , " can be invoked when exception conditions are
encountered [].

WS-Bus inessAc t iv i ty specification provides the definition of two coordination types
that are to be used wi th the extensible coordination framework described in the W S -
Coordinat ion specification [26]. The first A t o m i c O u t c o m e 1 coordinator type determines
that coordinator must direct a l l participants either to close or to compensate. Coordinator
for the second M i x e d O u t c o m e 2 coordination type must direct a l l participants to an outcome
but may direct each ind iv idua l participant to close or compensate.

WS-Bus inessAc t iv i ty specification also defines two specific Business A c t i v i t y agreement
coordination protocols [18].

1. Business Agreement With Participant Completion Protocol allows a participant to de
termine when it has completed its part i n the business activity.

2. Business Agreement With Coordinator Completion Protocol requires that a partic
ipant rely on the business act ivi ty coordinator to notify it that it has no further
processing responsibilities.

1http://docs.oasis-open.org/ ws-tx/wsba/2006/06/AtomicOutcome
2 http: //docs, oasis-open, org/ ws-tx / wsba/2006/06/MixedOutcome

10

http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/

Chapter 4

JBoss Transactions

JBoss is a trademark and a divis ion of R e d Hat , Inc that specializes in Java enterprise mid
dleware. JBoss Transactions is a Java transaction service that supports transaction process
ing, compliant w i th Java Transaction A P I (J T A) [1], Java Transaction Service (JTS) [] and
web service standards. W h a t does it mean for us? It enables managing and creating local
transactions wi th J T A , dis tr ibuted transactions w i t h J T S or web service transactions wi th
X M L Transaction Service (X T S) [23]. The most important part of the JBoss Transactions
for this thesis is the X T S component.

J T A specifies standard Java interfaces between a transaction manager and the par
ties involved in a distr ibuted transaction system, the resource manager, the application
server, and the transactional applications []. Transaction manager can be obtained from
the Java N a m i n g and Directory Interface (J N D I) location java:/TransactionManager. It
is not recommended to use it because transaction manager associates transactions wi th
threads therefore the operations w i l l be associated wi th the cal l ing thread. We should use
UserTransaction instead which allows an applicat ion to expl ici t ly manage transactions.

J T S is Java binding to the C O R B A Object Transaction Service (O T S) [3]. Th is service
is important for providing an interoperabili ty between the transaction managers to support
the distr ibuted transactions. L o c a l transactions are faster than distr ibuted transactions
because the dis tr ibuted transactions require O R B to communicate.

X T S provides support for general coordination framework WS-Coord ina t i on and web
service transactions WS-AtomicTransac t ion and WS-Bus inessAct iv i ty . J T A or J T S trans
actions are s imilar but not identical to web service transactions. JBoss Transactions en
ables bi-directional interoperabili ty between J T A , J T S and W S - T component. Web service
transactions are not adequate by themselves because they require integration wi th back-end
solutions (J T S) .

The client is free to use any appropriate A P I to do invocations on transactional Web
Services. B u t there are two requirements imposed on the client side. The header of the
S O A P message for invoke must contain details of the current transaction. The second re
quirement is that client must process any responses in the transaction context of the correct
transaction. The X T S includes handlers which put or read the context automatically.

JBoss Transactions supports interposition for impl ic i t and explicit transaction context
propagation. A n explicit transaction context propagation means that transaction context is
passed as parameter whereas impl ic i t transaction context propagation is passed from client
to object impl ic i t ly and al l operations are assumed transactional.

11

Chapter 5

Business Process Management

Business process management is a systematic approach to making an organization's work
flow more effective. Approach of business process management is composed from six activ
ities: vision, design, modeling, execution, moni tor ing and opt imizat ion. We focus on the
modeling and execution of business processes because we only need to model and execute
business processes to test the implementat ion of dis tr ibuted transactions.

A business process is a set of logically related tasks performed to achieve a well-defined
business outcome []. It is typical ly associated wi th operational objectives and business
relationships described i n Business Process M o d e l and Nota t ion (B P M N) model . B P M N
is a graphical notat ion that depicts the steps i n a business process.

In the following sections we see that a business process can be represented by specific
language. That the language is managed by an engine. We w i l l be interested i n Rif tSaw
engine because it is the part which w i l l be modified to support dis tr ibuted transactions.
A n d finally, we look at Switch Y a r d project where the Rif tSaw is part of i t . For that reason
we need to know how a business process must be configured to be run i n Switch Y a r d .

5.1 Business Process Execution Language

Business Process Execut ion Language (B P E L) is an imperative markup language used for
definition and execution of business processes using web services. It is a dialect of X M L
supporting specifications like web services support, the S O A P , W S D L and U D D I . B P E L
specification defines a model and a grammar for describing the behavior of business process
based on interactions between the process and its partners [12].

The a im of B P E L is to provide system-to-system interaction. B P E L provides a way
to compose several web services into composite service which presents business process [21].
W i t h the aid of orchestration paradigm, described i n Chapter 3, we can invoke web services
in specific order and share data between them. To model relationships between B P E L
process and partner services we define partner l inks. Figure 5.1 shows a B P E L process
which can be presented i n two roles. For receive activity, the current process has role
defined by myRole attribute. W h e n we want to invoke the B P E L process from another
process, it has role defined by partnerRole attribute.

B P E L is used by programmers creating business systems i n Service Oriented Archi tec
ture (S O A) and by analysts searching ways to make business processes more effective. S O A
can be realized through composit ion, orchestration and coordination of web services. B P E L
does not provide a standard visual notat ion for representing business processes. However,
there is B P M N to B P E L mapping.

12

> WSDL port type

myRole

x^Partner link type

partnerRole

> WSDL port typs

Figure 5.1: B P E L partner l ink

B P E L engine is a process manager which interprets a process definition defined by B P E L
specification. The engine creates process instances from process definitions and manages
their performing. Act iv i t i es of process instance are performed by B P E L engine. B P E L
engine also responds for handling exceptions and security. M a n y implementations of B P E L
engine exist but we w i l l focus only on Rif tSaw i n next Section 5.2 because it is the engine
where the distr ibuted transactions w i l l be implemented.

Business processes are important part of service oriented applications which manage
services therefore they have to be run always i n any t ime and si tuation. Al though , we would
need to update B P E L process, a communicat ion could be interrupted or machine could
be broken, the B P E L processes should not be stopped. The importance depends on every
business process. Versioning of process has influence on support secure updat ing of process.
B P E L engine which supports versioning can decide in dependency of configuration what way
a running process can continue after deploy a new version of B P E L process. The running
process which is updated by B P E L engine can be terminated, restarted or can continue
running in old or new version of B P E L process. W h e n communicat ion is interrupted while
a process is invoking service, the process instance is paused and B P E L engine w i l l save the
process state to database. After a specific time, the process instance is restored by B P E L
engine and t ry to invoke service again.

In the B P E L language we can construct control structures wi th condit ional statements,
loops, declare variables, copy and assign values, define fault handlers and more. B y com
bining a l l these constructs we can define any business processes. B P E L allows the modeling
of highly concurrent activities w i th native support of flows and advance synchronization
of these flows.

5.2 RiftSaw

Project Rif tSaw is a B P E L 2.0 engine that is opt imized for the JBoss App l i ca t ion Server
container [19]. Rif tSaw provides a JBoss A S integration for the Apache Orchestration
Director Engine (O D E) [] that implements B P E L specification.

Because we w i l l need to test the implementat ion of distr ibuted transactions i n the

13

RiftSaw we look at how business processes can be created in the Rif tSaw. To provide
a business process w i th Rif tSaw it is necessary to:

• create a B P E L process,

• define a W S D L interface for the B P E L process,

• add W S D L interfaces for web service invocations and configure them by setting part
ner l ink roles,

• define a deployment descriptor which declares the B P E L process and its partner l inks.

B P E L process can be created manual ly wr i t ing X M L B P E L process or w i th Rif tSaw
B P E L Designer which is part of JBoss Tools []. We can use JBoss Developer Studio which
contains a l l the tools.

W S D L interface of B P E L process has a service definition which must tel l us where
the process is located. The W S D L also contains interface of B P E L operations and their
messages. Different against to common W S D L of web service is that we have to specify
partner l ink roles.

Figure 5.2 shows an example of deployment descriptor for the Business Travel B P E L
process. Deployment descriptor contains nonzero process nodes. E a c h process node defines
their partnerLink and service which provides. The process definition tells Rif tSaw about
processes to be deployed. W h e n we have a web service to be invoked, we add invoke node
under the provide node because the Rif tSaw must know about web service invoke details.

<deploy ... >
<process name="examples:BusinessTravel">

<provide partnerLink="client">
<service name="examples:BusinessTravelService"

port="BusinessTravelPort"/>
</provide>
<invoke partnerLink="airport">

<service name="airport:AirportService"
port="AirportServicePort"/>

</invoke>
</process>

</deploy>

Figure 5.2: Deployment descriptor for the B P E L process

Rif tSaw supports clustering and we can use it for two reasons, to increase performance
and raise reliabili ty. To increase performance, Rif tSaw distributes every incoming S O A P
request by load balancer. The second reason for clustering is to raise reliability. W h e n
some of clustered machine wi th running processes fail, another one restore the processes
from a last known state and continue from this state.

14

5.3 Switch Yard for Business Processes

This section introduces using the Switch Y a r d for creating and using B P E L processes.
Switch Y a r d is a lightweight service delivery framework providing full life-cycle support
for developing, deploying, and managing service-oriented applications [6]. We w i l l use the
Switch Y a r d to show integration of distr ibuted transaction in Rif tSaw.

Switch Y a r d uses Rif tSaw as a B P E L component to execute business processes. W h e n
there is a S O A P message for business service, it is propagated from Switch Y a r d into Rif tSaw
which executes the process. Invoke operation causes that request message leaves the process
and is delivered internally into Switch Y a r d wi th invoke details. The Switch Y a r d transforms
the message to needed format and invokes the service operation which was requested by
business process. Then a result is returned back to the business process.

Creat ing B P E L process for Swi tch Y a r d is different against to older versions of Rif tSaw.
F i n a l step of creating B P E L process is about specifying details about configuration of B P E L
service i n switchyard.xml which is located i n the folder META-INF.

The Switch Y a r d configuration of B P E L service in Figure 5.3 contains a component and
service definitions. The component consists of an implementat ion node to identify the
B P E L process and a service W S D L interface which is for access B P E L process. It can also
contain references to services which can be invoked from the process. The service defines
B P E L process name Business TravelService and binding details where are specified a socket
address :18001 and context path of the service wstdemo. Then full pa th of the service is
"http://127.0.0.1:18001/wstdemo/BusinessTravelService"

<switchyard xmlns="urn:switchyard-config:switchyard:1.0" ...
targetNamespace="urn:switchyard-quickstart:wstdemo:0.1.0"
name="wstdemo">

<sca:composite name="wstdemo" targetNamespace="urn:bpel:test:1.0">
<sca:service name="BTravelService" promote="BTravelService">

<soap:binding.soap>
<soap:wsdl>BusinessTravelArtifacts.wsdl</soap:wsdl>
<soap:socketAddr>:18001</soap:socketAddr>
<soap:contextPath>wstdemo</soap:contextPath>

</soap:binding.soap>
</sea:service>
<sca:reference name="AirportService"> ... </sca:reference>
<sca:component name="BusinessTravelService">

<bpel:implementation.bpel xmlns:sh=".../bpel/examples"
process="sh:BusinessTravel" />

Figure 5.3: B P E L service in Swi tchYard configuration

Rif tSaw has become a Swi tchYard B P E L component since version 3. Rif tSaw 3 itself is
not responsible for invoking web services. This job is performed by Swi tchYard . Rif tSaw
only sends internal messages wi th a specific details to invoke service. The great advantage
of Rif tSaw is that it is not l imi ted only on web services but it can invoke every service
available through W S D L interface which Swi tchYard provides.

15

http://127.0.0.1:18001/wstdemo/BusinessTravelService

Chapter 6

Problem Analysis

The goal of this work is to ensure that web service operations w i l l be performed wi th in
a distr ibuted transaction in the business processes. In the next section, we specify cri teria
of satisfactory solution and the goals. Because this thesis should be innovative, we look
at existing implementations of related works to discover absences. T h e n we analyze sub-
problems which must be considered and t ry to find suitable solution which fits the defined
criteria. A n d finally, we specify the possibilities of solution how to check a web service oper
ation i f it needs to use a distr ibuted transaction. Depending on the advantages of possible
solutions, we choose one solution to be implemented.

6.1 Criteria of a Satisfactory Solution

The finally solution should allow to determine which web service operation w i l l be used
wi th in a distr ibuted transaction. To review the accomplishment of thesis and decide which
possibili ty w i l l be used, we specify the criteria. Some of them are described more detailed
below the summary.

(a) Dis t r ibu ted transaction processing should be autonomous to make creating and using
B P E L process comfortable.

(b) A d d i n g support of distr ibuted transactions should require least count of changes in
existing service oriented applications.

(c) Process operation which has WS-AtomicTransac t ion or WS-Bus inessAc t iv i ty policy
requirement should create subordinate transaction i f invoked service operation requires
distr ibuted transaction.

(d) W i t h the previous cri terion it should be possible to use own distr ibuted transaction
which would be propagated through B P E L process into services.

(e) We must be sure that if some failure occurs i n B P E L process, the distr ibuted transaction
w i l l be rolled back.

(f) W h e n distr ibuted transaction is not required in any of service used by B P E L process,
X T S does not have to be run.

16

Automat ic creating and completing distributed transaction. Th is is a more de
tailed description of criterion (a). Rif tSaw w i l l automatical ly create distr ibuted trans
action for an operations wi th pol icy assertion requiring WS-AtomicTransac t ion or W S -
BusinessAct ivi ty . In the end of business process the transaction w i l l be automatical ly com
pleted. Au tomat i c creating and completing distr ibuted transaction makes it transparent
and the user application of business process does not have to care about it.

Using own distributed transaction. Th is is a more detailed description of crite
r ion (c) and (d). B P E L process operation which has W S - A t o m i c Transaction or W S -
BusinessAct iv i ty policy requirement w i l l create subordinate transaction i f invoked service
operation requires dis tr ibuted transaction. Then a requester, the client of B P E L process,
should be able to create a distr ibuted transaction, provide the context to the B P E L process
and commit or rollback transaction itself.

X T S requirement. Th is is a more detailed description of cri terion (f). JBoss Transac
tions X T S is not i n the default profile configuration on applicat ion server JBoss A S 7 wi th
Switch Y a r d . Because of that it should be required only i f some of B P E L processes have
a WS-AtomicTransac t ion or WS-Bus inessAc t iv i ty pol icy assertion requirement. T h e n i f
the user is conscious that he requires X T S , he should set the applicat ion server properly.
How to set the applicat ion server to use the X T S is described i n Append ix A .

6.2 Related Works

There exist some already working implementations which integrate dis tr ibuted transac
tions into B P E L engine. The B P E L engines wi th support of distr ibuted transactions are
commercial so the information are only from the related documents.

Oracle B P E L Process Manager [] is a component of Oracle S O A Suite [10] supporting
distr ibuted transactions. The Oracle Fusion Middleware Developer's Guide for Oracle S O A
Suite l l g [] describes how a B P E L process must be set to support WS-AtomicTransac t ion .
There is composite .xml file which resembles d e p l o y x m l and contains B P E L component and
web service references. To add support of atomic transaction into B P E L process it is
necessary to add transaction properties into binding. B P E L process which is invoked by
another B P E L process can be enlisted in the transaction if we set bpel.config.transaction
property to required [22, 9]. In Figure 6.1 notice these properties (tagged as property) how
they are set.

There are some web service optimizations which do not allow to use atomic transac
tions so we should be aware when we can use them. In documentations of Oracle Fusion
Middleware Search there were not any information about support WS-Bus inessAct iv i ty .

Second B P E L engine also support ing distr ibuted transactions is I B M Business Pro
cess Manager []. To enable WS-AtomicTransac t ion , the deployment descriptors for web
and E J B modules must be configured [29]. Ra t iona l App l i ca t i on Developer or WebSphere
Integration Developer set the configurations by default. Every module can be specified
to propagate the transaction or require transaction context to be run in .

We d id not notice about any support of WS-Bus inessAc t iv i ty i n the related works. B u t
our solution w i l l support the WS-Bus inessAc t iv i ty specification. In Chapter 6.4 we analyze
the solution of related works and describe own solution.

17

<component name="WSATBPELClient">
<implementation.bpel src="WSATBPELClient.bpel"/>
<property name="bpel.config.transaction"

many="false" type="xs:string">required</property>
</component>
<reference name="BankAccountService" ui:wsdlLocation="http://...?WSDL">

<interface.wsdl interface="..."/>
<binding.ws port="..." location="http://...?WSDL" soapVersion="l.1">

<property name="weblogic.wsee.wsat.transaction.flowOption"
type="xs:string" many="false">SUPPORTS</property>

<property name="weblogic.wsee.wsat.transaction.version"
type="xs:string" many="false">WSATll</property>

</binding.ws>
</reference>

Figure 6.1: Example of composite .xml

6.3 Sub-problems

The goal of this work is to ensure that web service operations w i l l be performed wi th in
a distr ibuted transaction i n the business processes. Below the summary of sub-problems,
we analyze the sub-problems which must be considered.

1. distr ibuted transaction requirement

2. propagation of transaction context

3. distr ibuted transaction completing

4. simultaneous processes

5. clustering

6. distr ibuted transaction recovery

Distr ibuted transaction requirement. F i r s t , we need to determine on what suggestion
the transaction w i l l be created. Every business process does not have to create distr ibuted
transaction because the transaction is needed only when the process uses web services
requiring dis tr ibuted transaction. We focus on this problem closely in Section 6.4.

Propagation of transaction context. W h e n we have the transaction created, the sec
ond problem we discover is how we propagate transaction context into web services. We can
propagate the transaction automatical ly or manually. Au tomat i c propagation is performed
by context handlers which are set i n b inding of the service. W i t h this b inding instance we
cal l operations as methods. B u t because we use Switch Y a r d to invoke services, we must
choose manually put t ing transaction context into message header. The reason is that the
message in this state is not a S O A P message yet but only an internal message.

18

http://...?WSDL
http://...?WSDL

Distr ibuted transaction completing. We l l , the final part of basic functionality is com
pleting dis tr ibuted transaction. Because the process does not have any ways how to return
information about result of the transaction, we have to figure out some alternative ways.
The part of problem are one-way operations where the process cannot respond wi th fail
message.

W h e n a user applicat ion needs to know if everything or "nothing" has been done, it
has own ways how to check. For example we can have a participant which sends Java
Messaging Service (J M S) or S O A P message when the participant does commit or rollback.
The message would invoke another business process to do some activities or user application
would have J M S listener which would inform about transaction completion.

Simultaneous processes. For a one thread we can have only one distr ibuted transaction.
Every business process instance is run i n own thread and composes from jobs (e.g., actions
from receive act ivi ty to wait ac t ivi ty) . The problem is that we need to put the distr ibuted
transaction from previous job into following (e.g., actions from wait act ivi ty to reply
act ivi ty) . We should have a map of distr ibuted transactions which would keep information
for the process instances about the related distr ibuted transactions. Then the distr ibuted
transaction of process instance would be set at the beginning of job.

Clustering. Very interesting area is clustering (two or more running application servers).
In the current version of Rif tSaw 3 it is not possible to use clustering but in the near future
it w i l l be supported. After that there w i l l be cr i t ica l problems (e.g., fail over). It would be
nice to support fail over including dis tr ibuted transaction.

Distr ibuted transaction recovery. A key requirement of a transaction service is to be
resilient to a system crash by a host running a participant, as well as the host running the
transaction coordination services []. To guarantee reliability, there should be implemented
support for transaction recovery of coordinator and its participants. Act iv i t i es of business
process like invoke or wait are safe-points. The last safe-point of business process is saved
in database so whether applicat ion server go down, the processes are recovered from last
safe-point after the applicat ion server is restarted. If the recovered process uses distr ibuted
transaction, the transaction must be recovered too. Approach of transaction recovery is
different for before the prepare phase and after the prepare phase of 2 P C protocol. The
phases are described below.

before the prepared phase After the restart of application server which crashed, the
coordinator sends rollback to a l l participants. Because business process can continue
from the middle of process, it is the problem. The transaction was rolled back and
next invoke requiring web service transaction could create another one. Then the
process is done i n half way.

prepared phase and later After the restart of an applicat ion server which crashed, the
coordinator sends commit to a l l participants. We do not have to be worried about re
delivery because the X T S participant implementat ion is resilient to re-delivery of the
commit messages. If the participant implements recovery functions, the coordinator
w i l l send commit messages even i f coordinator and the participant fail together.

Unfortunately, the recovery of process does not work i n Rif tSaw 3 either because the
clustering is not supported yet. The fail over processing should also recover processes after

19

the crash but un t i l it w i l l be implemented we do not have to do anything for the transaction
recovery before the prepared phase.

Thus the result of these thoughts is that the transaction recovery should work par t ia l ly
for some cases. For example when the participants fail on the other machine than the
coordinator does, they can be recovered.

6.4 Possibilities of a Solution

From the user point of view, we need to describe that B P E L process has to use distr ibuted
transaction to interact w i th web services. F i rs t thoughts were about providing the de
scription to deployment descriptor, the deploy.xml file as Oracle B P E L Process Manager
has in the composite.xml. The deployment descriptor contains information about process
and its partner l inks. We would only add attribute to the partner links which web service
extension should be used, WS-AtomicTransac t ion or WS-Bus inessAct iv i ty . There are un
fortunately some fundamental negatives of this thought. We would not be able to describe
which operation should use distr ibuted transaction and which should not. A n d it would
need to change deployment descriptor schema. Then , the deployment descriptor schema
would be transferred into Java classes by Apache X M L B e a n s .

The second idea was about use policy assertion in W S D L interface. The W S D L describes
web service and wi th the pol icy assertion we would be able to mark each operation wi th
a pol icy requiring WS-AtomicTransac t ion or WS-Bus inessAct iv i ty . Rif tSaw, the B P E L
engine, would create distr ibuted transaction for the first operation wi th this policy. Then
it would propagate transaction context for each operation even for that which would not
require WS-AtomicTransac t ion or WS-Bus inessAct iv i ty . Propagat ion transaction context
to the web service operation which does not require web service transaction should not
cause any issues, i f we check every t ime the W S D L operation, we could decide whether we
w i l l propagate the transaction context or w i l l not.

A s we defined the criteria we choose the idea which requires least changes i n existing
service oriented applications. The changes for both possibilities are almost same but for
the second idea it is more clear why the web service transaction policy is there. O n the
other hand an user must know or find how to define the policy for W S D L interface and
the properties and attributes are more easier to remember or can be easily integrated into
B P E L Designer plugin. F ina l ly , the second idea had been chosen because it does not require
any changes i n the deployment descriptor and it is innovative comparing to related works.

20

Chapter 7

Design of Integration

This chapter describes the design of integration to implement the distr ibuted transactions
into the Rif tSaw. To run a B P E L business process we use the Rif tSaw 3 so the most
important changes w i l l be made there. JBoss Transactions X T S component w i l l provide
the support of WS-AtomicTransac t ion and WS-Bus inessAc t iv i ty implementations in the
business processes. Because Rif tSaw 3 is used as B P E L component of Switch Y a r d , some
changes w i l l be made i n the Switch Y a r d as well.

The Figure 7.1 shows integration between the projects. Rif tSaw 3 is already integrated
in Switch Y a r d through the B P E L component. Our work w i l l be the part between Rif tSaw
and JBoss Transactions X T S . B u t the Riftsaw 3 should not absolutely depend on the JBoss
Transactions X T S . W h e n the X T S is not required i n any of business processes, the JBoss
Transactions X T S does not have to be run i n the applicat ion server.

The Rif tSaw communicates w i th the Swi tchYard and the Switch Y a r d communicates
wi th the Rif tSaw. JBoss Transactions X T S w i l l be used only by Rif tSaw.

RiftSaw

IBoss Transactions
XTS

Switchyard

BPEL component

Figure 7.1: Design of integration

7.1 Intended Cooperation

Intended cooperation of a business process, web service, transaction manager and its trans
action coordinator is described on Figure 7.2. In the collaboration diagram of Figure 7.2,
we have the business process w i th invoke act ivi ty requiring web service transaction. The
transaction manager and the coordinator are the parts which are not implemented in the
business process workflow.

21

The workflow of Figure 7.2 is described by an enumeration. Every request or order is
marked wi th a number which fits the enumeration below.

1. The idea is that before the web service invocation is performed, the business process
creates a dis tr ibuted transaction v ia transaction manager.

2. T h e n the transaction manager requests act ivat ion service to create a coordination
context for a web service transaction.

3. W h e n we have a transaction context i n the process, we can begin wi th invoking web
service. To invoke web service wi th support of web service transactions we need
to propagate the transaction context.

4. Web service creates transaction participants which are enlisted in the transaction.

5. The participants are registered v ia registration service.

6. After a l l performed tasks i n the process it is decided to commit or rollback and the
request is sent into transaction manager.

7 - 8 . The transaction manager commands coordinator protocol service to do transaction
completion wi th 2 P C protocol. If the commit or rollback is successfully done, the
business process properly ends.

(3) Invoke (context)

Process

(1) con tex t = C r e a t e r j i s t r i b u t e d T r a n s a c t i o n O
< H

(4) C rea te t con tex t , data)

Participant

[6) COMMIT. R O L L B A C K (context]

ransactiom
manager

Database

(2) contex t = C r e a t e C o o r d i n a t i o n C o n t e x t t]

Coordinator

Activation
Service

[WS-AT or WS-BA]
Protocol
Service [7) COMMIT. R O L L B A C K (context)

Registration
Service

Figure 7.2: Col labora t ion diagram

22

Chapter 8

Implementation in the RiftSaw

This chapter provides a description how the dis tr ibuted transactions were implemented
in the Rif tSaw. The implementat ion was split into the parts which could be completed
separately. General a im was to provide a simple functional implementation.

A t first it is necessary to check a pol icy i n W S D L as a transaction requirement when
a distr ibuted transaction has to be created and propagated. The next step is transaction
context propagation which had to be implemented manual ly for the reason described in
Chapter 6.

To support the use of own distr ibuted transaction, we use the subordinate transactions.
The main difference against to the already existing solutions is WS-Bus inessAc t iv i ty sup
port. Because the implementat ion of business act ivi ty transactions is more complicated
than implementat ion of atomic transactions, we w i l l focus on them.

8.1 Check Policy

A s we determined i n the Chapter 6, we have to specify when a distr ibuted transaction
w i l l be used. Thus, we decided to check the policies. The Figure 8.1 shows how the W S -
AtomicTransac t ion pol icy can be set. Checking pol icy is based on searching the pol icy ref
erence i n the invoked operation which is checked to referring on the WS-AtomicTransac t ion
or WS-Bus inessAc t iv i ty policy.

<wsp:Policy wsu:Id="TransactedPolicy" >
<wsat:ATAssertion wsp:optional="true" />

</wsp:Policy>

<wsdl:binding name="AirportServiceSoapBinding" type="tns:AirportService">
<wsdl:operation name="order">

<wsp:PolicyReference URI="#TransactedPolicy" wsdl:required="true" />

Figure 8.1: Setting the WS-AtomicTransac t ion pol icy i n W S D L .

The searching is operated through al l b inding operations to find the operation which is
invoked. W h e n we find the operation, we check that the pol icy reference is present. Every
policy reference has a Uni fo rm Resource Identifier (URI) property. T h e n we w i l l go through

23

al l policies denned i n W S D L definition and compare reference U R I wi th a pol icy U R L If
the matched pol icy contains W S - A t o m i c Transaction or WS-Bus inessAc t iv i ty requirement,
the dis tr ibuted transaction is created and propagated.

8.2 Transaction Context in the SOAP Header

In Chapter 6, we decided to put the transaction context manual ly into S O A P header. Th is
section contains the approach of manual ly put t ing the transaction context into a S O A P
header as an element.

Transaction context can be taken from the com. arj una. mw.wst 11 . Transact ion-
Manager v ia current Transact ion method. There is a class to serialize and deserialize
the transaction context into or from the S O A P header. It is the com.arjuna.mw.wst 11 .
common.CoordinationContextHelper and the parameters for the serialization are header
element and coordination context type. Before we use the serialization function, we have
to prepare the header and get the coordination context type.

The coordination context type can be obtained from the transaction context v ia context
method and getCoordinationContext then. To prepare the header we add an element
representing coordination context which has to have a name of the element set to Coordi-
nationContext1 i n http://docs.oasis-open.org/ws-tx/wscoor/2006/06 namespace 2 .

After that we are prepared to ca l l the static method s e r i a l i s e i n the com. ar juna. mw.
wst l l . common.CoordinationContextHelper. The s e r i a l i s e method w i l l add a l l neces
sary information about the distr ibuted transaction into S O A P header. W h a t information
are added is described i n Chapter 3.2.

8.3 Subordinate Transaction in a Business Process

One of cri teria is the support of own distr ibuted transactions. A user application can prop
agate its own distr ibuted transaction through the transaction context i n the S O A P header.
W h e n the invocation of web service requires the distr ibuted transaction, the Rif tSaw creates
a new subordinate transaction from the propagated transaction. The Figure 8.2 shows how
to create the subordinate transaction from the propagated transaction and the following
paragraphs describe a l l necessary steps to create the subordinate transaction.

A t first we have to resume the dis tr ibuted transaction from the transaction con
text. In the previous section we had the com.arjuna.mw.wstll .common.Coordination
ContextHelper where we used the s e r i a l i s e method. The class also provides dese
r i a l i s e method which can be used exactly for our needs, to get the coordination con
text type from the S O A P header element. Then we create own TxContext instance
v i a com.arjuna.mwlabs.wstll .at. context .TxContextlmple for atomic transaction and
com.arjuna.mwlabs.wstll.ba.context.TxContextlmple for business act ivi ty transac
t ion. The constructor needs only one parameter, the coordination context type that
we obtained in the previous step. A n d we resume the propagated transaction wi th
resume (txcontext) method from the transaction manager.

We obtain the propagated transaction v i a UserTransaction.getUserTransactionO
or UserBusinessActivity.getUserBusinessActivityO. B u t that is not a l l because we

recommended using CoordinationConstants.WSCOOR_ELEMENT_COORDINATION_CONTEXT
2recommended using CoordinationConstants.WSCOORJNfAMESPACE

24

http://docs.oasis-open.org/ws-tx/wscoor/2006/06

boolean subordinate = false;
CoordinationContextType cct = CoordinationContextHelper.deserialise(header);
i f (cct != null) {

TxContext ctx = new TxContextlmple(cct);
TransactionManager.getTransactionManager().resume(ctx);
subordinate = true;

}
// get the (propagated)? transaction

UserTransaction tx = UserTransaction.getUserTransactionO;
i f (subordinate) {

// get the subordinate transaction
tx = UserTransaction.getUserTransactionO.getUserSubordinateTransactionO;

}
tx.begin();

Figure 8.2: Implementation of subordinate transaction from the propagated transaction.

need to create subordinate transaction which can be self completed when the business pro
cess ends. To create subordinate transaction we cal l getUserSubordinateTransactionO
method from the propagated transaction instance.

8.4 Business Activity Support

The WS-Bus inessAc t iv i ty specification is designed for long running transactions. Because
some of business processes are run long t ime and we do not want to block transaction
resources for indefinite period of time, it is obvious that we use the business act ivi ty trans
action.

Beginning of the business act ivi ty transaction is performed by begin method as the
atomic transaction does. The distr ibuted transaction is par t ia l ly completed every contin
uous block of activities by complete method which informs a l l the participants enlisted
for business agreement w i th coordinator completion. The another option is that part ici
pant completes itself and enlists for business agreement w i th participant completion. In
the end of the business process, the distr ibuted transaction is closed or canceled. W h e n
the distr ibuted transaction closes and some of participants are completed, the participants
are informed to compensate which should rollback the changes or do any other necessary
actions.

There are two options how to define pol icy requirements for business activity, the atomic
outcome and the mixed outcome requirements. B u t , they are not considered so it is not im
portant i f the pol icy is set to BAAtomicOutcomeAssertion or BAMixedOutcomeAssertion.

25

Chapter 9

Testing and Results

This chapter describes the testing used to check the implementat ion of distr ibuted trans
actions in B P E L . For the testing purposes we created a demo applicat ion which should be
able to test the ma in approaches of atomic transaction and business act ivi ty transaction.

9.1 Demo Application

The demo applicat ion presents Business Travel System. A l l the components (business
process, airport and hotel services) used i n the demo applicat ion are depicted in Figure 9.1.
Business travel system simulates ordering fly tickets and hotel rooms by using external
services i n a distr ibuted transaction.

Business Travel Service

invoke o rde r fly t i cke t * .

Airport Service

get f l ight ident i f ier

o r d e r fly t icket

Hotel Service

invoke o r d e r ho te l room

Figure 9.1: Demo application

General part of demo applicat ion is a B P E L process which plan a business travel. The
business travel process designed i n B P E L editor is depicted i n Figure 9.2. B y requesting
the process we can order fly tickets and hotel rooms. The orders are accomplished in the
end of process by complete operation. The complete operation can also simulate exception
if we set the simulateException parameter to true.

Order and complete operations i n the B P E L process are correlational. It means that i f
we send a request w i th a specific i d and a second request has the same id , the process w i l l
continue from previous process state. Imagine that we would have lot of running processes.
Some of them would be i n the same state and wait ing for a specific message. Correlat ion
provide the way how to say which process w i l l receive the message by correlation identifier.

26

Business TraveL Process

4 Pick

H

WS-AtomicTransact ion order

> prepare order response

I set request for getFLTID operation

Get FLTID for order first fly ticket

X
] set fLtid to order response

' set request for getFLTID operation

<?" Get FLTI • for order second fLy ticket

! set return fLtid to order response

X
* For each person

set request for order fLy tickets

& Order first fLy ticket

i set return request for order fLy tickets

Order second fLy ticket

w WS-Business.Activity order

] set request for getFLTI D operation

& Get FLTID for order first fLy ticket

I
', set fLtid to order response

] set request for getFLTI D operation

& Get FLTID for order second fLy ticket

\ set return fLtid to order response

I ~
™' For each person

i set request for order fLy tickets

$ Order first fLy ticket

\ set return request for order fLy tickets

<^ Order second fLy ticket

i set request for order hoteL rooms

Order rooms

' set hoteLid to order response

•9 RepLy order detaiLs

I set request for order hoteL rooms

<?" Order rooms

X
', set hoteLid to order response

i
<9 RepLy order detaiLs

CompLeteOrderRequest

simuLate exce ption | ~

^ * Throw exception

Figure 9.2: Business travel process i n B P E L designer.

27

9.2 Basic Testing Scenarios

Atomic Transaction C o m m i t Test

To reach the commit of a demo process it is enough to end the process properly. Thus, we
send order request to the demo process and wait on the registration of a l l participants in the
invoked web services. A l l information about invocation of web services and the registration
should be visible i n the server log. T h e n the demo process waits on complete request. After
the complete request is received, the demo process ends and the distr ibuted transaction
is completed through 2 P C protocol. Information that the participants were prepared and
successfully commit ted should be i n the server log. The expected and given output is:

1. Two participants from the airport service and one participant from the hotel service
enlist into the dis tr ibuted transaction.

2. A l l the participants are prepared.

3. A l l the participants are committed.

Atomic Transaction Participant Rollback Test

2 P C protocol gives to participant an opportuni ty to rollback a distr ibuted transaction
because i n the first phase it asks i f participants want to commit or rollback. This test is
not pract ical because for some bad parameters it waits for the prepare phase to inform
coordinator about abort instead of throw an exception. W h e n we know it, it is enough
to send a message w i t h bad parameters and the distr ibuted transaction rollback when we
want to commit . The expected and given output is:

1. Two participants from the airport service and one participant from the hotel service
enlist into the dis tr ibuted transaction.

2. One of the participants want to abort i n the prepared phase of 2 P C protocol.

3. A l l the registered participants are rolled back.

Atomic Transaction Process Rollback Test

The another way how to rollback distr ibuted transaction is w i th exception or terminat ion
of process. The rollback is performed also i f running of some process causes unexpected
exception in the Rif tSaw. This test uses exception which is thrown by demo process. The
expected and given output is:

1. Two participants from the airport service and one participant from the hotel service
enlist into the dis tr ibuted transaction.

2. After the complete operation is sent, the demo process throws exception which causes
that the dis tr ibuted transaction rollback from the demo process.

3. A l l the participants are rolled back without any preparation.

28

Business Act iv i ty Close Test

This test is almost equivalent to the atomic transaction commit test, especially in the
progress. We s t i l l only need to reach the end of demo process to close the distr ibuted
transaction. The difference is between behavior of the WS-Bus inessAc t iv i ty specification
because the participants are completed before the demo process ends. The expected and
given output is:

1. Two participants from the airport service and one participant from the hotel service
enlist into the dis tr ibuted transaction.

2. W h e n the order operation responds i n client (the test), the distr ibuted transaction
completes the participants which were enlisted for business agreement w i th coordina
tor completion.

3. A l l the participants are closed after the complete request is sent.

Business Act iv i ty Compensate Test

In the previous test we noticed that the participants are completed before the demo process
ends. Th is scenario tests that a l l the completed participants are informed to compensate
when the demo process does not end properly. The distr ibuted transaction is canceled i f
the demo process throws any exception or it is terminated. The expected and given output
is:

1. Two participants from the airport service and one participant from the hotel service
enlist into the dis tr ibuted transaction.

2. W h e n the order operation responds i n client (the test), the distr ibuted transaction
completes the participants which were enlisted for business agreement w i th coordina
tor completion.

3. Because the complete operation throws exception, the distr ibuted transaction is
closed and al l the completed participants are informed to compensate.

O w n Atomic Transaction Test

Dur ing the testing an own atomic transaction we found out that we do not have any
possible way how to set handler chain for B P E L process yet. The J A X - W S specification
defines handler chain through that is the request sent but when mustUnderstand attribute
stays after the request leaves the handler chain, the client is informed that the server does
not support the required part. For the web services we use Ojavax. jws.HandlerChain
annotation so there is not any problem. The handler which must be set is com.arjuna.mw.
wst 11. c l i e n t . JaxWSHeaderContextProcessor. It confirms that the server side supports
web service transaction and the mustUnderstand at tr ibute i n the coordination context is
cleared then. The issue could be resolved when we would be able to set the handler chain
in the Switch Y a r d configuration file.

29

9.3 Review

To look back and review the solution, we specified the cri teria i n Chapter 6.1. In this
chapter, we describe which of the cri teria has been accomplished.

Current solution i n the Rif tSaw enables the distr ibuted transaction processing to be
autonomous. Thus, a user applicat ion ca l l a business process without any creating of dis
t r ibuted transaction. The only change, which must be done if we want to use the distr ibuted
transaction, is put t ing the transaction pol icy to a required operation i n the W S D L .

Cr i te r ia (c) and (d) are not fully accomplished because we are not able to set the handler
chain for a business process now. B u t , the creating of subordinate transactions and using
an own distr ibuted transaction are implemented. The most important l imi ta t ion lies i n the
fact that the Switch Y a r d is s t i l l developed 1 .

If an exception occurs in a running process, the cri terion (e) defines that the business
process should rollback the distr ibuted transaction. The performed tests verified that the
distr ibuted transactions are rolled back i f an exception is thrown.

The X T S is required only when any of business processes needs to use the distr ibuted
transactions. B u t then the applicat ion server must be configured properly, like the A p
pendix A describes the JBoss A S 7 X T S configuration.

1Current version of SwitchYard is 0.4 Final.

30

Chapter 10

Conclusions

In the beginning of this thesis we described that we need to guarantee rel iabi l i ty for the
distr ibuted systems. Because the parts of dis tr ibuted system usually communicate v i a web
service interfaces which are managed by business processes, we implemented the support
of distr ibuted transactions i n the business processes.

The implementat ion enables the dis tr ibuted transaction processing to be autonomous in
invoking web service operations. The only requirement is that the web service operation has
to specify transaction pol icy i n the W S D L . We support W S - A t o m i c Transaction and W S -
BusinessAct iv i ty specifications which can be set as transaction policy. Integration of JBoss
Transactions X T S i n the Rif tSaw is not too tight so the Rif tSaw can be run without X T S on
the application server i f we do not use the distr ibuted transactions in the business processes.

This thesis could be extended by support of full recovery processing which would recover
a business process wi th a related distr ibuted transaction. It would need an intervention
into database tables to keep details about the related distr ibuted transaction for a business
process instance. The another useful proceeding could be a pract ical application which
would test the implementat ion and the results would tel l us what changes to improve are
needed.

To be more competitive, the companies start using the business process management be
cause they can easily optimize their business processes and faster react on business changes.
I personally th ink that the distr ibuted transactions w i l l be soon an important part of busi
ness processes i n the near future.

31

Bibliography

[1] JSR-000907 Java(tm) Transaction A P I (J T A) Specification, h t t p : / / d o w n l o a d ,
o r a c l e . c o m / o t n - p u b / j c p / j t a -1.1 - s p e c - o t h - J S p e c / j t a - l _ l - s p e c . p d f ,
2007-02-14 [cit. 2012-01-14].

[2] Apache A x i s 2 / Java - Next Generat ion Web Services [online].
h t t p : / / a x i s . a p a c h e . o r g / a x i s 2 / j a v a / c o r e / , 2011-09-09 [cit. 2012-03-26].

[3] Java Transaction Service (JTS) [online].
h t t p : / /www. o r a c l e . c o m / t e c h n e t w o r k / j a v a / j a v a e e / t e c h / j t s -140022 . h t m l , [cit.
2012-01-14].

[4] Apache Orchestrat ion Director Engine [online], h t t p : / / o d e . a p a c h e . o r g / , [cit.
2012-03-25].

[5] JBoss Tools [online], h t t p : / / w w w . j b o s s . o r g / t o o l s , [cit. 2012-03-25].

[6] Switchyard [online], h t t p : / / w w w . j b o s s . o r g / s w i t c h y a r d , [cit. 2012-03-31].

[7] I B M Business Process Manager [online].
h t t p : / / w w w - 0 1 . i b m . c o m / s o f t w a r e / i n t e g r a t i o n / b u s i n e s s - p r o c e s s - m a n a g e r / ,
[cit. 2012-04-24].

[8] Oracle B P E L Process Manager [online].
h t t p : / / w w w . o r a c l e . c o m / t e c h n e t w o r k / m i d d l e w a r e / b p e l / o v e r v i e w / i n d e x . h t m l ,
[cit. 2012-04-24].

[9] Oracle Fusion Middleware Developer's Guide for Oracle S O A Suite l l g Release 1
[online]. h t t p : / / d o c s . o r a c l e . c o m / c d/E21 7 6 4 _ 0 1 / i n t e g r a t i o n . 1111/e 10224/
sca_b ind ingcomps .h tm, [cit. 2012-04-24].

[10] Oracle S O A Suite [online], h t t p :
/ / w w w . o r a c l e . c o m / t e c h n e t w o r k / m i d d l e w a r e / s o a s u i t e / o v e r v i e w / i n d e x . h t m l ,
[cit. 2012-04-24].

[11] A n d r e w D i n n , K e v i n Connor , and M a r k L i t t l e . Transactions X T S Admin i s t r a t ion
A n d Development Guide [online]. h t t p : / / d o c s . j b o s s . O r g / j b o s s t m / 5 . 0 . 0 . M l /
g u i d e s / x t s - a d m i n i s t r a t i o n _ a n d _ d e v e l o p m e n t _ g u i d e / , [cit. 2012-04-15].

[12] Andrews, Tony. Web Services Business Execut ion Language (W S - B P E L) 2.0 [online],
h t t p : / / d o c s . o a s i s - o p e n . o r g / w s b p e l / 2 . 0 / 0 S / w s b p e l - v 2 . 0 - 0 S . h t m l , 2007-04-11
[cit. 2011-10-29].

32

http://download
http://axis.apache.org/axis2/java/core/
http://ode.apache.org/
http://www.jboss.org/tools
http://www.jboss.org/switchyard
http://www-01.ibm.com/software/integration/business-process-manager/
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.oracle.com/technetwork/middleware/soasuite/overview/index.html
http://docs.jboss.Org/jbosstm/5.0.0.Ml/
http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.html

[13] Box , D o n and Ehnebuske, D a v i d and Kak ivaya , G o p a l and Layman , Andrew and
Mendelsohn, N o a h and Nielsen, Henr ik Frys tyk and Thatte , Satish and Winer , Dave.
Simple Object Access Pro toco l (S O A P) 1.1 [online].
http://www.w3.org/TR/2000/N0TE-S0AP-20000508/, 2000-05-08 [cit. 2011-11-09].

[14] C h i n n i c i R . , Hadley M . , M o r d a n i R . J S R 224: J a v a T M A P I for X M L - B a s e d Web
Services (J A X - W S) 2.0 [online], h t t p : / / w w w . j c p . o r g / e n / j s r / d e t a i l ? i d=224,
2006.

[15] Clement, L u c and Hately, A n d r e w and V o n Riegen, Claus and Rogers, Tony. U D D I
Version 3.0.2 [online], h t t p : / / w w w . u d d i . o r g / p u b s / u d d i_v3 . h t m , 2004-10-19.

[16] E r i k Christensen, Francisco Curbera , Greg Meredi th , Sanjiva Weerawarana. Web
Services Descript ion Language (W S D L) 1.1 [online]. h t tp: / /www.w3 .org/TR /wsdl ,
2007-03-15 [cit. 2011-11-05].

[17] E r l , Thomas. The WS-Coord ina t i on Context Management Framework [online].
h t t p : / / w w w . s o a s p e c s . c o m / w s - c o o r d i n a t i o n . p h p , [cit. 2011-12-05].

[18] E r l , Thomas. Long-Running Transactions w i th WS-Bus inessAc t iv i ty [online],
h t t p : / / w w w . w h a t i s s o a . c o m / s o a s p e c s / w s - b u s i n e s s a c t i v i t y . p h p , [cit.
2012-03-31].

[19] G a r y Brown , K u r t Stam, Heiko Braun , Jeff Y u . Riftsaw 2.3.0.Final [online].
h t t p : / / d o c s . j b o s s . o r g / r i f t s a w / r e l e a s e s/2.3.0.F i n a l / u s e r g u i d e / h t m l / ,
2011-07-12.

[20] Interoperability, Corba . C o m m o n Object Request Broker Archi tecture (C O R B A)
Par t 1 : C O R B A Interfaces [online].
http:/ /www.omg.org/spec/C0RBA/3.2 /Interfaces/PDF/, 2011-11-01.

[21] Jur ic , Mat jaz . A Hands-on Introduction to B P E L [online].
h t t p : / / w w w . o r a c l e . c o m / t e c h n o l o g y / p u b / a r t i c l e s / m a t a z _ b p e l l . h t m l , [cit.
2011- 10-29].

[22] Koser, Stefan. Web Service Transactions Par t 2: WS-AtomicTransac t ion wi th S O A
Composite cal l ing E J B - W e b Service [online], h t t p : / / s t e f a n k o s e r . b l o g s p o t . c o m /
2010/08 / w e b - s e r v i c e - t r a n s a c t i o n s - w i t h - w s_13 . h t m l , 2010-08-13 [cit.
2012- 04-24].

[23] L i t t l e , M a r k . W h a t is X T S ? [online].
h t t p : / / w w w . j b o s s . o r g / d m s / j b o s s t m / r e s o u r c e s / w h i t e p a p e r s / W h a t l s X T S . p d f ,
2006-01-24 [cit. 2012-01-14].

[24] L i t t l e , M a r k and Wi lk in son , Andrew. Web Services A t o m i c Transaction
(WS-AtomicTransact ion) Version 1.2 [online], h t t p : / / d o c s . o a s i s - o p e n . o r g /
w s - t x / w s t x - w s a t-1.2 - s p e c - o s / w s t x - w s a t - l .2- s p e c - o s . h t m l , 2009-02-02.

[25] M . L i t t l e , J . M a r o n , G . Pav l ik . Java Transaction Processing: Design and
Implementation. Prentice H a l l , 2004. I S B N 0-13-035290-X.

33

http://www.w3.org/TR/2000/N0TE-S0AP-20000508/
http://www
http://jcp.org/en/
http://www.uddi.org/pubs/uddi_v3.htm
http://www.w3.org/TR/wsdl
http://www.soaspecs.com/ws-coordination.php
http://www.whatissoa
http://docs.jboss.org/riftsaw/releases/2.3.0.Final/userguide/html/
http://www.omg.org/spec/C0RBA/3.2/Interfaces/PDF/
http://www.oracle.com/technology/pub/articles/mataz_bpell.html
http://stefankoser.blogspot.com/
http://www.jboss.org/dms/jbosstm/resources/whitepapers/WhatlsXTS.pdf
http://docs.oasis-open.org/

[26] Newcomer, E r i c and Robinson, Ian. Web Services Business A c t i v i t y
(WS-BusinessAct iv i ty) Version 1.2 [online], h t t p : / / d o c s . o a s i s - o p e n . o r g / w s - t x /
w s t x - w s b a - 1 . 2 - s p e c - o s / w s t x - w s b a - l . 2 - s p e c - o s . h t m l , 2009-02-02.

[27] Newcomer, E r i c and Robinson, Ian. Web Services Coordina t ion (WS-Coordinat ion)
Version 1.2 [online].
h t t p : / / d o c s . o a s i s - o p e n . o r g / w s - t x / w s t x - w s c o o r - 1 . 2 - s p e c . h t m l , 2009-02-02.

[28] Papazoglou, M . Web services: principles and technology. Pearson Prentice H a l l ,
2008. I S B N 978-0-321-15555-9.

[29] X u , Peter. Transactionally integrate Web services w i th B P E L processes i n WebSphere
Process Server [online], h t t p : / / w w w . i b m . c o m / d e v e l o p e r w o r k s / w e b s p h e r e /
l i b r a r y / t e c h a r t i c l e s / 0 7 0 3 _ x u / 0 7 0 3 _ x u . h t m l , 2007-03-07 [cit. 2012-04-04].

34

http://docs.oasis-open.org/ws-tx/
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec.html
http://www.ibm.com/developerworks/websphere/

Appendix A

JBoss AS7 XTS Configuration

This appendix describes how to configure JBoss A S 7 to use X T S and how to change modified
Switch Y a r d . Append ix B contains pre-configured JBoss A S 7 wi th modified Switch Y a r d but
we w i l l describe how it was done.

The JBoss A S 7 and Switch Y a r d can be downloaded from the h t t p : / / w w w . j b o s s . o r g .
Switch Y a r d project offer the JBoss A S 7 wi th integrated Switch Y a r d so it can be used instead
instal l ing Switch Y a r d into JBoss A S 7 . The way how to instal l Switch Y a r d into JBoss A S 7
is described in the guide 1 .

W h e n we have the JBoss A S 7 wi th Swi tchYard , we prepare X T S configuration. Pre
pared X T S configuration is i n jbossas7/docs/examples/configs/standalone-xts.xml. Copy
this configuration into standalone/configuration folder but we have not finished yet. E x
ample configuration does not contain Swi tchYard module. We copy al l Swi tchYard parts
from standalone.xml configuration, the extension module and Swi tchYard subsystem.

To start the JBoss A S 7 we run the script "./standalone.sh -c standalone-xts.xmV It
seams to work but i f we t ry to run B P E L process requiring X T S it throws ClassNot-
FoundExcept ion on some X T S class. It can be thrown because of missing dependency in
B P E L module. Shutdown the application server and add this dependency

<module name="org.jboss.xts"/>

into jbossasl'/modules/'org/'switchyard/'component/bpel/main/module.xml. T h e n the B P E L
process requiring X T S should work after restarting the JBoss A S 7 .

1https://docs.jboss.org/author/display/SWITCHYARD/Getting+Started

35

http://www.jboss.org
https://docs.jboss.org/author/display/SWITCHYARD/Getting+Started

Appendix B

Compact Disk

Attached C D contains:

• source code of Rif tSaw and Switch Y a r d components in the impl directory

• source code of this thesis in L a T e X format i n the doc directory

• this thesis i n P D F format

• source code of demo applicat ion i n the test/wstdemo.zip

• pre-configured JBoss A S 7 wi th modified Switch Y a r d and deployed demo application
in the test/jboss-as-wstx.zip

• readme that describes Rif tSaw instal lat ion from the sources and testing wi th the demo
application

36

