BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION

FAKULTA ELEKTROTECHNIKY A KOMUNIKACNICH TECHNOLOGI{

DEPARTMENT OF CONTROL AND INSTRUMENTATION

USTAV AUTOMATIZACE A MERICI TECHNIKY

SKETCHUP VISUALIZATION OF STATIONARY ROBOTS

VIZUALIZACE STACIONARNIHO ROBOTU VE SKETCHUP

BACHELOR'S THESIS
BAKALARSKA PRACE

AUTHOR Egor Iutkin
AUTOR PRACE

SUPERVISOR Ing. FrantiSek Burian, Ph.D.
VEDOUCI PRACE

BRNO 2020

BRNO FACULTY OF ELECTRICAL

UNIVERSITY ENGINEERING
OF TECHNOLOGY AND COMMUNICATION

Bachelor's Thesis

Bachelor's study program Automation and Measurement

Department of Control and Instrumentation

Student: Egor lutkin ID: 203568
:f:;y‘jf Academic year: 2019/20
TITLE OF THESIS:

Sketchup visualization of statrionery robots
INSTRUCTION:

The aim of this thesis is to build simple visualisation system for robot manipulator in software Sketchup.

1. Learn possibilities of software Sketchup Make 2017 and Ruby scripting inside Sketchup.

2. Create plugin in Ruby, that enables visualisation of selected stationery robot (Kuka KRC6 sixx).

3. Create software in any language, that will parametrize the Sketchup model through TCP connection.

4. Create software in any language that bridges Sketchup (or software from point 3) and robot. This software will
transfer positions of robot joints into Sketchup model.

RECOMMENDED LITERATURE:

SPONG, Mark W., Seth HUTCHINSON a M. VIDYASAGAR. Robot modeling and control. Hoboken, NJ: John
Wiley, c2006. ISBN 978-0471649908.

Date of project

e 3.2.2020 Deadline for submission: 8.6.2020
specification:

Supervisor: Ing. FrantiSek Burian, Ph.D.

doc. Ing. Vaclav Jirsik, CSc.
Chair of study program board

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technicka 3058/10 / 616 00 / Brno

Abstract

This thesis focuses on building a simple visualization system for a robot
manipulator in the software SketchUp. The three-dimensional interface of the
software is employed to visualize the movement of a virtual robot under the control
of an external application (initially under the control of a real robot), which uses a
suite of TCP/IP protocols to track the robot's position.

Communication with the project is done via Ruby code using the SketchUp AP],
and the values of the angles of the individual robot's joints are interpreted in form
of a parametric movement of the virtual robot. The client-server-client application
is created in C++, C# and Ruby, and the network sockets are used to establish a TCP
connection in the local network.

In the application, the Ruby plugin, which provides the communication
interface, acts as the first client. The C# custom application acts as the second client,
called the "control client", which provides a user interface to configure the server
connection and set individual joint angles of the virtual robot. Communication
between the two clients is facilitated by the C++ TCP server (console application),
which retrieves data from the control client and forwards it to the Ruby side.

Keywords

SketchUp, Ruby, API, robot, KUKA, visualization, parametric motion, TCP, IP,
socket, network interface, server, client.

Rozsireny abstrakt

Pokud jde o parametrickou vizualizaci pohybt robota, prvni, co ptichazi na
mysl, je demonstrace schopnosti robota, jeho pracovniho rozsahu, presnosti,
maximalniho dosahu a rychlosti; za druhé, uZzivatel milZe zvazit vizualizaci
technologického procesu nebo testovani zdrojovych kodu.

V kazdém pripadé je rozsah aplikaci pro tuto technologii Siroky, ale programy,
které umoziuji spravu virtualnich robott, obvykle ptichazeji za vysokou cenu a jsou
obvykle dostupné pouze velkym spole¢nostem. V praxi vizualizace parametrickych
robotickych pohybti mliZe byt nezbytna pro mensi spole¢nosti nebo organizace, jako
jsou vysokeé Skoly.

Prvnim cilem této prace je prostudovat mechanismus interakce mezi
uzivatelem a virtudlnim robotem v ramci bezplatné verze aplikace SketchUp Make
2017, ktera ma velké mnoZstvi nastrojl pro vytvareni 3D objektd a predevSim ma
své vlastni API, které umoziuje rozsirit funk¢nost programu prostiednictvim kédu
Ruby. Dalsim rokem je otestovat mozZnost vytvoreni pluginu, ktery miuze
komunikovat s objekty ve scéné SketchUp v redlném case a vyménovat data s
externimi aplikacemi prostrednictvim standardniho komunikacniho modelu (v
nasSem pripadé prostrednictvim protokold TCP / IP). Realizace tohoto ukolu mtiZe
vést k podrobnéjsimu zkoumani moZznosti vyuziti rozhrani SketchUp k vizualizaci
pramyslovych procest.

Navrh teSeni je rozdélen na 3 ¢asti: implementaci parametrického pohybu
robota ve scéné SketchUp pomoci Ruby pluginu; implementace serveru, ze kterého
bude Ruby plugin prijimat data s novymi uhly pro zménu polohy robota;
implementaci testovaciho klient. Vysledkem této prace bude program klient-server-
klient ktery dohromady tvori simulacni néstroj pro vizualizaci stacionarniho robotu.

3D model robota ve SketchUp je fizen pluginem, ktery zaprvé vykonava funkci
skriptu, ktery prevadi prijata hodnoty uhli jednotlivych kloubli na parametricky
pohyb robota. Za druhé, obsahuje rozhrani soketu a vykonava funkci TCP klienta
(dale Ruby klient). Klient neposila data o své poloze na server, ale ze serveru pouze
prijima data s novymi dhly. Pouze béhem prvniho ptipojeni odesila zpravu na
server, aby jej server mohl mezi ostatnimi identifikovat. Klient Ruby ma také
uzivatelské rozhrani pro pripojeni k serveru a odpojeni od néj a zménu parametrt
pripojeni.

Testovaci TCP klient - je C# klient. Aplikace ma rozhrani pro pripojeni k
serveru, okno pro zobrazeni informaci, pole pro zadani uzivatelskych hodnot a
vystupni pole s aktualni pozici robota. Klientska aplikace obdrZi ze serveru aktualni
polohu, pokud byla poloha robota zménéna jinym klientem. Uzivatel miiZe nastavit
uhly pro kazdy spoj zvlast. Informace z poli jsou zapsany v jednom bajtkédu a
odeslany na server stisknutim tlac¢itka ,Set“. ,Continuous Mode“ - tuhly jsou
rozdéleny do mensich krokt pro kazdy kloub a posilany postupné na server. Tento

rezim interakce mezi klientem a serverem vytvari situaci, ve které jsou data posilana
na server jako datovy tok v redlném case, ¢imZ vydava spojeni se skutecnym
robotem.

TCP server - funguje jako presmérovace a nezpracovava data prijata od
klientd. K serveru lze pripojit nékolik klientli, kazdy klient je pripojen k
samostatnému portu a je zpracovan v samostatném vlakné. Pripojeny klienti jsou
zahrnuti do seznamu navazanych spojeni - do pole soketti. KdyzZ server prijme data
od klienta C#, je tato zprava preposlana vSem ostatnim klientim, z nichZ jednim je
klient Ruby. V tomto pripadé obdrzi dalsi klienti ze serveru informace o zménach
polohy robota jednim z ostatnich aktivnich Kklientli, soucasné Ruby Kklient
interpretuje ptijata data do ihlti a méni polohu robota. Server je konzolova aplikace,
ktera uzivatele informuje o klientech, ktefi jsou k nému aktualné pripojeni, a o
prenosu dat. Prvni zpravou serverové aplikace je vzdy IP adresa a port, na kterém
pracuje. Pokud se klient uspéSné pripoji, server zapiSe parametry pripojeného
zarizeni a priradi mu ID. KdyZ server obdrZzi zpravu od Kklienta, vypiSe do konzole
jeho ID a prijaty uhly pro robota v poradi kloub 1 - kloub 6. Pokud je klient odpojen,
konzole zobrazi prislusnou zpravu.

Implementovany simula¢ni nastroj ma radu vyhod a nevyhod, které jsou
uvedeny niZe.

Prvni ¢ast prace je zamérena na implementaci parametrického pohybu robota
v prostredi SketchUp. Toho bylo dosazeno pomoci hierarchického uspoiadani prvkt
robotu, kde spodni kloub v hierarchii je spojen s hornim a vazan k jeho oto¢nému
bodu. Tato realizace je optimalnim a pravdépodobné jedinym reSenim ulohy v
prostredi Free SketchUp.

Plugin Ruby nepouzivd podprocesové funkce, které by mohly byt pouzity k
implementaci zpracovani toku dat ze serveru v samostatném vlaknu. BohuZel,
podprocesové funkce uvniti SketchUp nefungovaly i kdyZ samotny Ruby ma jejich
podporu. V diisledku toho bylo prijimani dat ze serveru slabé implementovano.
Funkce prijimani dat byla implementovana pomoci ¢asovace, coz zpilisobuje
zpoZdéni ve zpracovani dat a komplikuje program. Toto feSeni neni optimalni.
pole soketti bylo dosaZeno dobré podpory nékolika klientli najednou. Nevyhody na
strané serveru: program nemitze urcit IP adresu pocitace v siti a nemuze si vybrat
volny port. Ru¢ni zadani téchto parametri sniZuje rychlost a jednoduchost interakce
s aplikaci.

Vyhodou aplikace C# klientu je jednoduché rozhrani pro pripojeni k rizeni
serveru a robota; implementace informacniho okna; ptijem a zpracovani dat ze
serveru ve vlaknové funkci.

Nevyhodou je slaba implementace , Continuous mode“; pouZiti neplatnych
hodnot v polich miiZe zptsobit vyjimku (dvojité tecky nebo dvojité ¢arky). Coz neni
velky problém, ale stale neni opraveno.

Obecnou nevyhodou klientli a serveru je to, Ze neexistuje zadné dynamické
pridéleni paméti pro prijati ramci, kdyZ server prijima zpravy od Kklientd nebo
naopak. Jedinym reSenim bylo poslat 2 rdmci, jeden s velikosti zpravy, druhy se
samotnou zpravou, coZ sniZzuje prenosovou rychlost, a proto nebylo
implementovano.

Stru¢né feceno, nastroj implementuje pocatecni ulohu - vytvoreni
jednoduchého simula¢niho nastroje pro vizualizaci stacionarniho robota v aplikaci
SketchUp. NiZe jsou uvedeny mozné napady, jak tento nastroj vylepsit.

Vytvorit univerzalni feSeni pro import riznych robotli; upravit plugin Ruby
tak, aby ovladal vice robotli ve scéné soucasné; vytvorit klient, ktery rozumi
programovacim jazyktm (jako naptiklad KRL) a interpretuje kod pro plugin Ruby;
pridat rozhrani pro pripojeni k programovatelnému logickému automatu. Nakonec
tato technologie miize vést k vyvoji vlastni platformy pro vytvareni digitalnich
tovaren zaloZenych na Free SketchUp.

Klicova slova

SketchUp, Ruby, API, robot, KUKA, vizualizace, parametricky pohyb, TCP, IP,
socket, sitové rozhrani, server, klient.

Bibliographic citation:

IUTKIN, Egor. Sketchup visualization of stationary robots. Brno, 2020. Also
available from: https://www.vutbr.cz/studenti/zav-prace/detail /127093.
Bachelor's thesis. Brno University of Technology, The Faculty of Electrical
Engineering and Communication, The Department of Control and Instrumentation.
Supervisor: FrantiSek Burian.

Bibliograficka citace:

IUTKIN, Egor. Vizualizace staciondrniho robotu ve Sketchup. Brno, 2020.
Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/127093.
Bakalarska prace. Vysoké uceni technické v Brné, Fakulta elektrotechniky a
komunikaé¢nich technologii, Ustav automatizace a méfici techniky. Vedouci prace
FrantiSek Burian.

Prohlaseni

,Prohlasuji, Ze svou bakaldrskou praci na téma Sketchup visualization of
stationary robots jsem vypracoval samostatné pod vedenim vedouciho bakalarské
prace a s pouzitim odborné literatury a dalSich informacnich zdroji, které jsou
vSechny citovany v praci a uvedeny v seznamu literatury na konci prace.

Jako autor uvedené bakalarské prace dale prohlasuji, Ze v souvislosti
s vytvorenim této bakalairské prace jsem neporusil autorska prava tietich osob,
zejména jsem nezasahl nedovolenym zplsobem do cizich autorskych prav
osobnostnich a jsem si plné védom nasledkii poruseni ustanoveni § 11 a
nasledujicich autorského zakona ¢. 121/2000 Sb., véetné moZnych trestnépravnich
disledkt vyplyvajicich z ustanoveni ¢asti druhé, hlavy VI. dil 4 Trestniho zakoniku
¢.40/2009 Sb.

V Brn¢€ dne: 7. Cervna 2020
podpis autora

ACKNOWLEDGEMENT

[would like to thank my supervisor of the bachelor thesis Ing. FrantiSek
Burian, Ph. D,, for his help, his professional view, quick answers to my questions,
good recommendations and good theoretical support of my ideas and suggestions.

InBrno: 7. June 2020
author’s signature

Content

1. INEFOAUCTION ettt seseeeeesssssssesesessssss s ssesssssss s sss s sess s 13
2. SRETCHUP ettt eeessss s esssssssss s sssss s ss s ss s seees 14
2.1 PriCING POLICY wureiriereereererreererser s ses s sssssssssnes 14
2.2 SKELCHUD AP ..ttt s st st 15
2.2.1 Scripting tools in SKeTChUD ... 15
2.2.2 Ruby — SKetchUp iNteractionooerceneneenseseeseeseessssesssssssssssesssssssssssssssens 15

3. TCP/IP model and protocol Stack.......eereesssssnneees 17
3.1 NetwOrKk ACCESS LAY ... ssssssesass 18
3.1.1 PhysSical |ayer ... ssesssssssens 18
3.1.2 LINK LAY €T e sssssess s ssessssssesssssssesssssssssssssssssssssssssssnsans 18
3.1.2.1 Logical Link Control (LLC)...c.ccmmmemirnessesssssessesssssssssesssessens 19

3.1.2.2 Media Access CONtrol (MAC).....omenmnenenmnsssesensssessssssssssssneans 19

R T 0 L=) o U] ol =) (P 20
3.2.1 TP PrOtOCO] ittt ssssnnans 20
3.2.2 DCHP ProtoCOL... s sssssesssessssssesssssssesssssssesssssssssssssssssssssans 22
TN IV 24 o o) (010 1ol o) P 23
3.2.4 TCPM PIOtOCOL...uicrecirtrise ettt ssssssnsans 23
3.2.5 ROULINEG ..ottt ssasens 23
3.2.6 Fragmentation.....ooeeneencerereesersessessessesssssesssssesssssssssssssssssssssssssssssssssssesssssees 25

1 T0S T 1 =V 53 o0 i ol 2) TP 25
3.3.1 UDP ProtoCOL.... et sessssssssesssessssssessesssssssssssssesss s sssssssssssssssens 26
3.3.2 TCP PIrOtOCOL .ttt sssnnans 27
R 2N o) o) 0r= 10 U] o U -) P 29
3.4.1 FTP ProtOCOL..cscrecresiss st sssse s sssssssssnsans 29
ST 0 D)L\ I 0 0 0T o) PP 29
3.5 CONCIUSION .ottt bbbt 30
4, SOCKET INTETTACEoooooteet ettt 31
5. RODOt KUKA KR ...oeeeeteecevessessses st sssesssssssesssssssessssssssssssssssanns 33
5.1 Real robot SpecifiCation......oueinenenersesreseessss e 33
5.2 3D model of KUKA KRGoeererireeritreieesssiseessssssssesesssssssssssessssssssssssssssssaseens 35
6. IMPleMENTATION ...ttt ssessssss s 39
6.1 TCP/IP SEIVEr iN CH s sssssessssssens 39
6.1.1 ReqUired headers. ... ssssssssssens 39
6.1.2 Initialize the wsock32.dll IDrary ... 40
6.1.3 SOCKET fUNCLION cevueeeeceeeceeeeeseeeseesessessessessesssssessssssssssssssssssssessssssssssssssens 40
6.1.4 SOCKADDR_IN StIUCLULIE weveeviirrcerserresssesscssssesssssssesssssssessssssssssssssssssssssssssessessns 41
6.1.5 BIND fUNCHION .ot ssens 42
6.1.6 LISTEN fUNCHON c..cooierereeiseeessesesessessessssssss s sssss s ssssss st ssssssssssssssns 42

0.1.7 ACCEPT fUNCLION 1ottt s e see e sessesssrssesessssesssesesssesssssssssssssesssnssssssssses 43

6.1.8 CreateThread funNCLiON ... sesaees 43
6.1.9 RECV fUNCHON. ...ttt sssss s sssssssssssssssssssees 44
6.1.10 SEND fUNCHON cc..cuieeecececeeeeeeeeessesessssse e sssses s s s s s ssssssssens 45
6.1.11 CLOSESOCKETeereetereerereemreesesssesssssessesssesssssssssessesssesssssssssssssssssssssssssssssees 45
5.2 CH TEST CHENT oottt s s s bbb s s sntns 45
LI R 5 (T U6 L) PP 46
6.2.2 Socket declaration and connection SEtUPcernrrerssssessssssssssssssens 47
6.2.3 Sending data to the SEIVer ... 47
6.2.4 Receiving data from the SEIVer ... neineneeneseesessessessesessssssessees 48
6.2.5 Close client application ... s 49
6.3 RUDY PIUGIN .o ssnnnns 50
(70 200 B 1 0128 0 10 oy 141 =) L O 50
6.3.2 Ruby SOCKet INTEITACEcoueerererrrcerirrse s 52
6.3.3 Robot movement implementation ... 53
6.3.4 RODOT IMPOT .. sssasens 54

7. TeStS aNd FeSULLS oottt 55
7.1 SEIVET ettt 55
7.2 C# Test client apPliCatioNc.occecercereereereeseeseererseeseeseesessessessessesssssessessesssssessesseses 56
8 T 210} ATl 1= oL 57
8. CONCIUSTON ..ottt s 58

Abbreviations

Abbreviation:

API
ARP
BUT
DCHP
DNS
FEEC

Communication

FTP
HTTP
IANA
ICPM
IEEE
IMEI
IP
IPv4
[Pv6
KRL
LLC
MAC
MPLS
NAT
TCP
SMTP
UDP
Ul

Application programming interface
Address Resolution Protocol

Brno University of Technology

Dynamic Host Configuration Protocol
Domain Name System

The Faculty of Electrical Engineering and

File Transfer Protocol

Hyper Text Transfer Protocol

Internet Assigned Numbers Authority
Internet Control Message Protocol

The Institute of Electrical and Electronics Engineers
International Mobile Equipment Identity
Internet Protocol address

Internet Protocol version 4

Internet Protocol version 6

KUKA Robot Language

Logical Link Control

Media Access Control

Multiprotocol label switching

Network Address Translation
Transmission Control Protocol

Simple Mail Transfer Protocol

User Datagram Protocol

User Interface

List of Figures

Figure 2-1 SketchUp API default cOde ... 15
Figure 2-2 Entities of the “Model” class [4] ...ccenmmeneneeneeneeneeserssesesseeeessseseesees 16
Figure 3-1 Layers of TCP/IP model.....c.couninseninrsssesesesessssssesssesssseens 17
Figure 3-2 Frame transfer StrUCLUIEovereeneenesnsesesseseesssesessessssssessesssessssssssees 19
Figure 3-3 The process of obtaining an address in a network.........c.ccoucveereenees 22
Figure 3-4 ROULING ..o 24
Figure 3-5 UDP ProtoCOL....... s sssssssssssssssssssenns 26
Figure 3-6 TCP PIroOtOCOL ...t sssssssssssssssssssesns 28
Figure 3-7 FTP servers at the BUT ... ssessesesenns 29
Figure 3-8 Domain name and IP address.........umennenenessnessessssesssesssseens 30
Figure 3-9 TCP / IP protocol stack communication modelcc.cccovnrerirneenenn. 30
Figure 4-1 Socket point to point communication principle (part 1).....ccccoceu.... 31
Figure 4-2 Socket point to point communication principle (part 2)......cccoceveen. 32
Figure 5-1 Rotation direction of robot aXes [11]....cccrmreereereeneeseeneeseesessessesseesenns 34
Figure 5-2 Workspace, side VIEW [11] ...cciremnenniserisssesessssssssessessssssssessssseens 34
Figure 5-3 Workspace, top VIEW [11].mnesssssssssesssssssssesssessssssssesssssseens 35
Figure 5-4 3D model of the KUKA KRC6creereereenrreereerernereeneeseeseeseesesseesessesseseesenns 35
Figure 5-5 Adding central rotation points - pivot points. a) before b) after..36
Figure 5-6 Changing the origin of an axis in a SketchUp component................ 36
Figure 5-7 Components hierarchy in SKetchUp ... 37
Figure 5-8 Hierarchical structure in SKetcChUp.....c.coconrennenencneneseseseereeeene 38
Figure 6-1 Communication SCheME ... ssesseseens 39
Figure 6-2 Initialize the WSOCK32 liDrary ... 40
Figure 6-3 Socket declaration ... sssssesseens 40
Figure 6-4 SOCKADDR_IN STrUCTUTIEccouvierriiriressiresse e sesssesens 41
Figure 6-5 SOCKADDR_IN client StrUCtUTE......c.ocveereereereererreereeseeseesessesseesessessessssseseens 41
Figure 6-6 BIND fUNCHON ... sessssesss e ssssssssens 42
Figure 6-7 "listen" funCHioN ... 42
Figure 6-8 “accept” fUNCHION ... 43
Figure 6-9 Storage new client socket in SOCKets array........omesreereesesseeseenens 43
Figure 6-10 "CreatThread” funCtioN......coeeneneneeneeseereeseeseesee e 44
Figure 6-11 “Tecv” fUNCHION ..ot ssssssees 44
Figure 6-12 “send” fUNCHION ... ssssesees 45
Figure 6-13 “closesocket” and “WSACleanup” functions.......cocmereereereeseeseeneens 45
Figure 6-14 C# test appliCation ... sessesssssesaees 46
Figure 6-15 CH# hEAAETS ...ttt ssens 46
Figure 6-16 C# socket declarationoeerenenensssesneseesssssessesssssessessssssssessens 47
Figure 6-17 C# SendData funcCtion ... ssesssssesseens 48

Figure 6-18 ServerResponse function ... 49

Figure 6-19 Close client appliCationocereenrneeneenernssnenessersessessessessessessessesssssesseens 49
Figure 6-20 Plugin menu in SKetChUD ... 50
Figure 6-21 SKetChUD Ul ... sessssssssssssssssssseens 51
Figure 6-22 Create submenu in SKetChUP ... 51
Figure 6-23 Create input window in SKetChUP ... 51
Figure 6-24 "listening_start” funCtion......cenenseeseeeesesessesessesseseessssseesees 52
Figure 6-25 "listening_stop” fUNCLION ... 52
Figure 6-26 "joint_rotation" funCtioN......ccuemnenenr s 53
Figure 6-27 “do_transform” funcCtion ... seeeessesseesees 54
Figure 6-28 "Add_robot" fUNCLION ... ssessesseens 54
Figure 7-1 Server console appliCationoeeneeneenemnernessesnssseesesseesssseesessesssssesseens 56
Figure 7-2 «info» message. C# ClieNt......counneninersensnesessssssessssssssssessssseens 57

11

List of Tables

Table 2-1 SketchUp «Pro» and «Make» version comparing [1]...c..cueeemenreens 14
Table 5-1 UDP NEAAET ... essses s sssssssssssees 26
Table 5-2 TCP header ... sssssessssaseens 27
Table 3-1 Technical data [11] ..o sssssessssessssssseans 33
Table 3-2 AXiS 1ange [L1] i saseens 33

12

1.INTRODUCTION

When it comes to the parametric visualization of robot motion, the first thing
that comes to mind is a visual demonstration of the robot's capabilities, its working
range, accuracy, maximum reach and speed; secondly, a user may consider
visualizing the technological process in which the robot is involved; it may also
involve training and testing software code.

In any case, the range of applications for this technology is wide, but programs
that enable virtual robot management usually come at a high price and are usually
only available to large companies. In practice, the visualization of parametric robot
movements may be necessary for smaller companies or organizations such as
universities and special schools.

The first objective of this thesis is to study the mechanism of interaction
between the user and the virtual robot within the free version of SketchUp Make
2017, which has a large number of tools for creating 3D objects, and above all, it has
its own API that allows extension the functionality of the program through the use
of Ruby code. The second goal is to test the possibility of creating a plugin that can
interact with objects within the SketchUp scene in real time and exchange data with
external applications through the standard communication model (in our case,
through the TCP/IP protocols). The implementation of this task may lead to a more
detailed investigation of the possibility of using the SketchUp interface to visualize
industrial processes, to realize digital twins or digital factories based on it.

13

2.SKETCHUP

SketchUp is a tool for creating 3D models of varying complexity and tasks, from
simple interior elements to building structures. It has a very intuitive interface that
can be managed for several hours. It also supports different languages and includes
courses and tips for beginners, which are built directly into the program interface.
Another feature of SketchUp is a parametric modeling program that allows you to
create fairly accurate models. It also supports a large library of ready-made scripts
and plugins that allow users to save time and design more complex objects. The user
extends the functionality of the program by using these plugins in parallel with an
increased level of understanding. The program also supports API - writing custom
plugins and scripts in the Ruby programming language. The pricing policy of the
company is very user-friendly; there are paid and free versions. Thanks to this
feature set, SketchUp is becoming one of the leaders in its segment.

2.1 Pricing policy

In 2012 Google sold SketchUp to Trimble Navigation. Now Trimble supports 4
versions of SketchUp [1]: Free, Shop, Pro, Studio
e The "Make" version will no longer be supported after 2017. In any case, it
has the same range of functions as a "Free" version. One difference between
the "Make" version and the "Free" version is that the "Free" version works
directly in the web browser and does not work without the Internet. "Make"
normal installation application.
e The "Shop" version ($119/year) differs from the "Free" version mainly by
more options for data import/export and the possibility of commercial use.
e The "Pro" version ($299/year) has more tools than the previous version.
e The "Studio" version ($1199/year) includes a special design tool that
allows you to perform energy, ventilation and heating analyses in the
building.
In order to compare the paid version and the free version, only a few important
aspects were selected.

Table 2-1 SketchUp «Pro» and «Make» version comparing [1

Make Pro
Pricing free 299% / year
Commercial use No Yes
Drawing No Yes
Dynamic Components No Yes
Extensions No Yes
Import/export 15 formats 33 formats

14

"Dynamic Components" - a powerful presentation tool that allows you to add
the dynamic attributes of the object, such as opening/closing doors, windows, lifting
shutters, etc. With this tool it is possible to implement the movement of the robot. If
the thesis had been done in the "Pro" version, this tool would most likely have been
used and the implementation would have been different from the current version.

"Extensions" - a large library of plugins and scripts that allows to extend the
SketchUp options. Also, as in the case of "Dynamic Components", there was no access
to the library.

2.2 SketchUp API

SketchUp API (Application Programming Interface) - is a set of Ruby modules
and classes that allow interaction with the SketchUp project at the Ruby
programming code level. This tool extends SketchUp's capabilities, allowing you to
access the project, create and edit models, work with geometry and SketchUp
instruments in general by creating tasks in Ruby code.

There are currently more than eighty classes in the SketchUp API. See
Literature [2] for a complete list.

2.2.1 Scripting tools in SketchUp

Writing your own code in the Ruby programming language is possible with
"Ruby Console". This console is the part of the SketchUp application. To open it, go
to the SketchUp top menu - "Window" - "Ruby Console". In any case, it is
inconvenient to use it for writing scripts.

For ease of working with Ruby code within SketchUp, is recommended to
install "Ruby Code Editor" [3]. This is an extension that allows you to write full-
format code, install libraries, use snippets, etc.

2.2.2 Ruby - SketchUp interaction

Ruby is an object-oriented language. All data are objects, so everything the
user works with has a class. Every function is a method.

Every SketchUp script begins by accessing three basic data structures:
Sketchup, Model, and Entities. When a new script is created, it has default code with
these structures. It is important to understand this code so that you can write your
own scripts.

mod = Sketchup.
ent = mod.

sel = mod.

Figure 2-1 SketchUp API default code

15

Module “Sketchup”

The methods in the Sketchup module provide access to the entire SketchUp
application. The most important method in the Sketchup module is "active_model".
This method returns the class Model that corresponds to a currently open project. If
the Sketchup module itself represents a SketchUp program, Model represents a
single SketchUp file (*.skp) that contains all the information about the objects it
contains. The methods in the Model provide information about the current design
and various ways to interact with it. See Literature [4] for more details.

Entity
Drawing Definition .
Layer(s) Texture Vertex clement Page(s) List Material(s)
Component Component
Image Text Edge Face Group Definition Instance

Figure 2-2 Entities of the “Model” class [4]

For example, the entity "materials" controls the materials used in a current
project, the entity "layers" controls the visibility and behavior of the layer.

The "Entities" class is also the entity of the "Model" class (in Figure 2-2 it is
called "Drawing element"). It represents all the geometric objects in a SketchUp
project, i.e. "lines", "faces"”, "images", "text", "groups” and "components".

Module "Geom"

To change an existing geometry (its position, size, inclination), you need to use
the "Transformation” class located in the "Geom" module. The "Transformation"
class contains methods such as "Rotation”, "Translation"”, "Scaling", which are used
to interact with an object.

Module "UI"

It contains a number of methods for creating simple user interfaces for data
entry. The user interface in SketchUp does not support the user entering or changing
data in real time. Calling the UI always stops the currently running program, which
actually limits the user's ability to interact with the program.

16

3. TCP/IP MODEL AND PROTOCOL STACK

TCP/IP model - a model of network organization that specifies the layers of a
network and the rules that must be followed to achieve proper data transfer
between computers, correct merging and separating of networks, and building large
composite networks.

The TCP / IP model is a de facto standard; no one has specified a standard for
this model. The model includes 4 base layers [5]:

-)
Application layer i E other
pricationtyer 't) (HTTP) (DNS] (sMTP) (0]
\. J
TPreifig other
pOI‘t layer TCP UDP hrotocols
— : ’
Internet layer (IP } ﬁ)CHP} EARPE (ICPMJ E,Izt::,tt)lgj
Network access Link sublayer
layer ;o
Phisical sublayer
_ J

Figure 3-1 Layers of TCP/IP model

Each layer contains more protocols than shown in Figure 3-1. For example, the
application layer contains more than 150 protocols [6], and it is not the goal to learn
all of them. For this paper had selected some of the most popular protocols that form
a basis of the TCP/IP model.

Short description of the layers:

1) Network Access layer. The layer is designed to interact with network
technologies that are not formally part of the TCP / IP protocol stack.

2) Internetlayer. This layer enables addressing in the global network using
the IP protocol and additional protocols that ensure the data
transmission.

3) Transport layer. It contains the TCP protocol, which ensures data
transmission with a delivery guarantee, and UDP, which enables fast data
transmission, but without a delivery guarantee.

4) Application layer. Contains protocols that serve to work with the
received data and represent it to the user.

17

TCP/IP protocol stack - is not one protocol, but several protocols, of which TCP
and IP are the two most important. TSP / / IP is named after the two most popular
protocols from the stack

Each of the layers and the most common protocols will be discussed in more
detail in future chapters.

3.1 Network Access Layer

In fact, a layer consists of two layers that were taken from the OSI model.

3.1.1 Physical layer

The main task of the Physical layer is to represent bits of information in the
form of signals that are transmitted via the medium. How exactly the data
transmission takes place is not of interest. It is important to know only the
parameters of the data channel:

1) Data transfer environment
Coaxial cable

Twisted pair

Optical cable
e Wireless technology
2) Bandwidth (bit / s)
3) Delay - time of message passing from the sender to the recipient
4) The number of errors
5) Type of communication channel
e Simplex
e Duplex
e Half Duplex
The physical layer does not analyze the information it transfers.

3.1.2 Link layer

Once the problem of transmitting bits over the communication channel has
been solved on the Physical layer, the question of how to extract a message from the
bit stream arises on the Link layer.

The main method of detecting a message in a bitstream is to insert a special
sequence of bytes or bits at the beginning and end of the frame. In Ethernet, for
example, the latter takes 56 bits and is an alternating sequence of 0 and 1.

18

LAYER HOST 1 HOST 2

— —
Internet packet packet
S —
Y Y Y Y
Link frame - frame frame feo frame
heade | PA“*€!| footer heade | P2“*“¢Y| footer
AL _A AL A
Phisical ‘ T

Figure 3-2 Frame transfer structure

The task of the Link layer is also to address and consistently access the channel
- if there are several devices on the communication channel, it must determine for
which device this message is intended and which of the hosts occupies the channel
in case of a simultaneous request for data transmission.

3.1.2.1 Logical Link Control (LLC)

This sublevel of the Link layer is responsible for data transmission - frame
generation, error handling. The level is common to the various technologies. LLC
frame is called Protocol Data Unit, PDU and described in the IEEE 802.2 standard.

3.1.2.2 Media Access Control (MAC)

The MAC address is used to identify physical network interfaces of network
devices (routers). It is used to define the physical interface for which the data is
intended. MAC Addresses are used in common Ethernet and WI-FI Link layer
technologies.

MAC addresses are regulated by the IEEE 802 standard. The address length is
6 bytes - 48 bits. The recording format consists of six hexadecimal numbers
separated by a colon or dash:

30—-54A—3A—-AB —FF —32
30:5A:3A: AB: FF: 32

In a network segment the MAC addresses must be unique. If there are two
computers with the same MAC address, one of the two computers will not work.

Assign MAC addresses:

e An address is assigned by the hardware manufacturer. The assignment
rules are described by the IEEE 802 regulations.
e An address is assigned by the network administrator.

The second bit of the high byte in the MAC address indicates that an address is
assigned by the manufacturer - 0 or an address is assigned locally - 1.

To find out the MAC address of your computer in Windows, use the command
"ipconfig / all" in the command line.

19

3.2 Internet layer

The main task of the Internet layer is to coordinate differences in technology
on the Network Access Layer. The layer provides the ability to build a large composite
network based on individual local networks. Even if the individual networks use
different technologies of the Link layers such as Ethernet, wi-fi, 5G/4G/3G, MPLS etc.
In other words, it enables data transfer from an Ethernet network to a WI-FI
network.

To negotiate addresses on the Internet layer, the concept is used when the
address is divided into global and local.

Local address - the Link layer addresses. It is associated with a specific data
transfer technology. For example, MAC addresses in Ethernet or IMEI addresses in
4G. These addresses cannot be used to build a composite network that uses different
technologies.

Global address - an address that is not associated with the Link layer
technology and allow to build composite networks. In TCP / IP protocol stacks, these
are known as IP addresses.

The tasks of the Internet layer:

1) Internetworking - theory of combining small local networks into global
networks.

2) Address aggregation - working with addresses blocks, not with individual
addresses (address block - network).

3) Routing -in large networks there are always several active paths for data
transmission from the sender to the receiver. In this situation, the
question of choosing the optimal data transmission path arises.

4) Protects the composite network from overload.

5) Detects and prohibits the forwarding of “garbage” packets in the
network.

3.2.1 IP protocol

The purpose of the IP protocol is to combine networks that use different Link
layers technologies and uniquely identify the device on the network by means of an
IP address. The IP protocol allows data transmission without any guarantee of
delivery and correct message sequence. IP protocol - the protocol uses data
transmission without establishing a connection. If the packet does not arrive for any
reason, no attempt is made to notify the sender and no attempt is made to request
the packet again. The error must be corrected by higher layer protocols.

IP address - used to uniquely identify computers in global network [7].

IP version:

e [Pv4 - address length 4 bytes
e [Pv6 - address length 16 bytes

20

How IPv4 addresses work:

The length of 4 bytes is 32 bits. To facilitate work with IP addresses, they are
represented by 4 parts, each part has 8 bits. This partis called an octet. Each octet is
written in decimal format. The entry form consists of 4 octets separated by dots.

32 bits

}10000001 }0101000' (30011111' (‘)1100101'
Y Y

T

192 168 31 101
192.168.31.101

Maximum number of IPv4 addresses is 232 = 4 294 967 296. This number of
IP addresses was not sufficient for the whole world. Now almost all IP addresses of
version 4 are distributed. Solution - using IPv6 or NAT technology.
Subnet - a set of computers that have the highest part of the IP address the
same.
192.168.31.101
192.168.31.102
192.168.31.103
Highest bits - the number of the subnet.
Low bits - the host number - number of individual computers on the network.
To find out where the subnet address and where the host address is, use the
subnet mask. The mask has the same length as the IP address and contains 1 where
the network number is set and 0 where the host number is set.
To calculate the subnet address from IP and mask, use the AND operation:

IP decimal: 192.168.31.101

[P binary: 11000000.10101000.00011111.01100101
AND

Mask: 11111111.11111111.11111111.00000000

Subnet binary: 11000000.10101000.00011111.00000000

Subnet decimal: 192.168.31.0

In practice, you write the mask with the [P address using a slash:
192.168.31.101/24, which means that the last 24 bits are part of the subnet and the
first 8 are the host number.

Reserved IP addresses [8]:

e 0.0.0.0 - current host. Used when the computer has not yet received its
I[P address

21

e 255.255.255.255 - limited broadcast address (all hosts in the current
subnet)

e 127.0.0.0/8 - “Loopback” network for testing. Data is not sent to the
network but comes back to the computer. Often used 127.0.0.1 -
localhost

e 198.18.0.0/15- wused for benchmark testing of inter-network
communications between two separate subnets

e 169.254.0.0 - link-local address is a network address that is valid only
for communications within the network segmentor the broadcast
domain that the host is connected to

e 10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16 - local communications
within a private network. Not routed on the Internet, used internally
without contacting IANA. It is possible to connect a network built based
on private addresses to the Internet by NAT technology

3.2.2 DCHP protocol

When you connect your computer to a new network (for example, when you
connect to wi-fi in a restaurant), it must be given an IP address to work on the
network. The address can be assigned manually or automatically using the DHCP
protocol.

DCHP client-server technology is used to assign IP addresses.

e DCHP client - computer that receives an IP address
e DHCP server - assigns IP addresses to computers and maintains a table
of dedicated addresses to avoid duplication

DCHP client DCHP server

<
| ==

ACK, IP address
| \ |

ACK, IP address

dicover DCHp server

offer IP address

— = —[0 ||I]

Figure 3-3 The process of obtaining an address in a network

When a client connects to a new network that it has no information about, the
client sends a request to the broadcast address to browse the DCHP server. After
receiving the request, the DHCP server sends its [P address to the new client. After

22

that, a few confirmation messages go out. The IP address is assigned in the network
for a limited time. After the time expires, the IP is taken back from the user and can
be passed on to another client.

3.2.3 ARP protocol

Allows you to automatically determine the MAC address of a computer based
on its [P address. An ARP request with an IP address is sent to the broadcast MAC
address (FF:FF:FF:FF:FF:FF). All computers on the subnet receive this request. A
computer that finds out its I[P address sends an ARP response with its MAC address.

The ARP protocol allows you to find out the MAC addresses of computers that
are on the same network. Reason: The broadcast traffic does not go through the
router, so computers in another ARP subnet do not receive the request.

ARP table - a table that stores the correspondence of MAC -IP addresses and
their type (static - set manually, dynamic - received by an ARP request).

"arp -a" - Windows command to display the ARP table on the computer.

3.2.4 ICPM protocol

[P protocol used only for data transmission over a network without delivery
guarantee. Sometimes it is necessary to inform sides about errors that occurred
during data transmission, or to test or diagnose a low-layer network without using
higher layer protocols. The ICPM protocol is used for this purpose.

"ping" - Windows command that informs if a computer is available on the
network.

"tracert" - Windows command that allows to determine the route from the
sender to the receiver. Returns a list of all routers the packet passes through.

3.2.5 Routing

Hardware that works on the Internet layer is called a router. Routers are used
to connect local networks to a global network. Each device has several connection
interfaces through which computers connect to it. Each of these interfaces has its
own local and global address.

Routers are used to deliver data from one network to another. It also analyzes
the topology of the network in which it operates. The structure of the global network
may change - new routers may appear; old routers may fail. The next important task
is load balancing in the network - the efficient use of network bandwidth. The path
search for each data packet is performed independently.

Figure 3-4 explains how data is transferred from one network to another.

23

IP: 192.168.1.1
IP: 192.168.1.0/24 MAC: AAA

IP: 192.168.1.212
MAC: BBB IP:10.0.2.5 1P:10.0.2.101

| MAC: DDD Y MAC: HHH
[ooooooJ o~ Loooooo}

IP: 172.18.0.12 IP: 10.255.7.18
MAC: CCC MAC: RRR
IP: 172.18.0.34 IP: 10.255.7.17
MAC: FFF MAC: PPP

A ((\.-/\/\ 4
[o O 0 0 0 O JIP:100.64.0.1 7 IP:100.64.06 (O O O O O o}

IP: 192.168.88.6 MAC: KKK MAC: SSS IP: 172.24.0.2
MAC: EEE MAC: LLL

IP: 192.168.88.0/24 1P: 172.24.0.0/24

PC2

[P:172.24.0.112
MAC: YYY

Figure 3-4 Routing

Data transfer principle [9]:

To transfer data from PC1 to PC2, it must know an IP address of PC2. First PC1
packs the packet into headers with its own IP address, the IP address of the
destination computer (PC2), its own MAC address and MAC address of the next

router.
Abstract scheme:

Source IP address Destination IP address

MAC address of current package owner MAC address of next router

24

First step - packet transfer from computer to router:

192.168.1.1

172.24.0.112

AAA

BBB

Now data on the first router. It has two ways to deliver data: via subnet
172.18.0.0/24 or 10.0.0.0.0/24. To select a path, use the values of the metric field in
the routing table. Metric is a number that describes the distance and number of
routers from one network to another. For example, it was decided that subnet
172.18.0.0/24 is better.

Second step - packet transfer from one router interface to another:

192.168.1.1 172.24.0.112
BBB CCC
Third step - packet transfer from one router to another:
192.168.1.1 172.24.0.112
CCC FFF

It continues until the last router receives a packet and finds the same subnet
address as the destination address in its own router table and sends the packet from
that network directly to the computer.

The router table contains I[P and MAC addresses of networks and other routers
connected to the interfaces of this router.

Last step:

192.168.1.1 172.24.0.112
LLL YYY

3.2.6 Fragmentation

Splitting a single package into several segments. If the packet size exceeds the
maximum packet of the interface it is currently passing through, it is split into
smaller segments. Fragmentation at the Internet layer is hidden from the sender and
receiver. You do not need to know which networks the data must pass through and
what size of data can be sent over these networks.

3.3 Transport layer

The Transport layer has the task of transferring data between processes on
hosts. When the data packet is received on the computer, it must understand for
which application or process it is intended. "Port" is used to address specific
processes on a single computer. A port is a number from 1 to 65535 that represents
the "address" of an application or process on the computer. Port numbers on a single
host must not be repeated. To connect to the service on another computer, the
original computer must know the IP address of the computer and the port on which
the service is running.

A port is written after the address with a colon:

25

192.168.31.101: 8081

\

T

[P address

The Transport layer provides a "pass-through connection” between two hosts.
There can be multiple network devices between two interacting hosts, but they do
not interfere with the Transport layer. The Transport layer allows you to hide details
of network interaction from developers.

3.3.1 UDP protocol

)

port

The UDP protocol specifies the port of the sender and the port of the receiver.
It does not provide a delivery guarantee, and there is no guarantee that the sequence

of packets will be followed.

RECEIVER

SENDER
|
REQ packet

| =
segment 1

‘ = segmentz

| : segment 3

-

Figure 3-5 UDP protocol

Table 3-1 UDP header

source port

destination port

len

checksum

Data

e [en - total length of the UDP header

e checksum - is used to check whether the data is supplied correctly. If the
checksum calculated by the receiver does not match the checksum in the tcp
header, this segment is removed.

e data is followed after UDP header

26

3.3.2 TCP protocol

Both the TCP protocol and the UDP protocol are used to specify the port of the
sender and the port of the receiver. The TCP protocol takes care of the data
transmission and guarantees the correct order of the packets.

Before data can be sent via the TCP protocol, a connection must be established.
The connection is established by setting a SYN flag in a TCP header. The connection
fulfills the following functions:

e Agreement on the numbering of the segments
e Agreement on the maximum segment sizes

Proper connection termination consists of setting a FIN flag and a two-way
confirmation on the hosts. An RST flag is used for one-way (emergency) connection
termination.

Table 3-2 TCP header
source port destination port

sequence number

acknowledgement number

len reserved ‘ flags window
checksum urgent pointer
[options]
data

- sequence number - first byte number in the segment. Specifies the location of the
segment in the byte stream
- acknowledgement number - number of the next expected byte
- len - total length of the TCP header
- flags:
o URG - flag indicates that packet contains urgent data that needs to send
to application first. This flag is used with the urgent pointer
o ACK - acknowledgement
o PSH - indicate that data must be passed to the application without
writing to the buffer
o SYN - establish a connection
o RST, FIN - break a connection
window - in this field, the recipient specifies how much data it can accept
checksum - is used to check whether the data is supplied correctly. If the
checksum calculated by the receiver does not match the checksum in the tcp
header, this segment is removed
common options:
o maximum segment size
o selective confirmation

27

The TCP protocol receives a stream of bytes from an application. This stream
is divided into separate segments and sent separately to a receiver. A receiver
accepts these segments, collects them into one large stream of bytes and sends this
stream of bytes to an application. After a segment is sent, a timer is started on the
transmitter side. If no acknowledgement response is received after the timer
expires, the segment is retransmitted. In practice, an acknowledgement response
from the receiver is not sent after each segment, but only after several segments
have been received to save time (cumulative acknowledgement). There is also a
selective acknowledgement, which is used to acknowledge a single segment from
the stream.

Confirmations and resending are not sufficient for reliable data transmission.
This method only guarantees the delivery of segments, not their sequence.
Therefore, each segment is numbered to avoid duplication and to maintain their
order in the byte stream when a segment is reached faster than the previous one.
The numbering is by the first byte of the segment from the byte stream.

SENDER RECEIVER

| I
——— .

| SYN | * connection setup

| < |

ACK, 1500 byte * ACK-acknowledgment.
| 5 4 | « 1500 byte - next expected byte

| Ségment 2, 1500 byte |

segment 1, 0 byte « segment 1 starts with byte 0
| \ ‘ and its lenght is 1499 bytes
N

» segment with the first byte
1500 was lost

(21

segment 2, 1 « resend if there is no
| 500 byte | | acknowledgment from receiver
| ACK, 3000 byte |
<— J
| segment 3, 3000 byte 1
E | 3 ACK, 4500 byte | « segment with the first byte
3000 already been recieved
| segment 3, 3000 byte | | +remove dublicate segment
| ACK, 4500 byte |
< /
l— m N
| ACK |
| <— FIN | « connection closing

Figure 3-6 TCP protocol
28

Interaction with the transport layer

The Transport layer is the first level with which the programmer can interact
with. The interface of the Transport layer, which allows you to write programs for
the network, is called the "socket interface". The socket interface is discussed in the
next chapter.

3.4 Application layer

The application layer is used for the interaction between network applications
and data that represent for users. Examples of such applications can be a Web
browser that uses the HTTP protocol to transfer http files and demonstrate Web
pages, or mail services that use the SMTP protocol to transfer mail. In this paper
some information about two protocols is given to get an idea of what kind of
protocol works at the Application layers.

3.4.1 FTP protocol

The protocol uses the client-server model. The server gives the client access to
its file system - the catalog structure in which the files are located. The Client must
authenticate, enter a user name and password, and then the Client is given access to
the structure where it can change directories, upload, modify and download folders
and files. The URL is used to address the files. URL is a path to the file written as:
ftp://lockalhost.com/

An example of a program that uses the FTP protocol is FileZilla. Example of an
FTP server at a university BUT Figure 3-7. The student gets access to FTP servers
after user identification.

* Metwork Location (8)

o & ZD-ES’EFS! th dvuth
-;,.r WDATA (D:) ._:‘f (Viad. feec.vutbr.czYrhomes.id\wutbr, ...
_app (\\deza.feec.vutbr.cz) (Q:) - doc (\\deza.feec.vutbr.cz) (R:)

"_&v"’ FGBHEQ of 512 GB qv"’ 200 GB free of 512 GB
_ UREL () _ 203568
_ __-,.""? W] qu (I'l.'glgadlskz.ro.vutbr.LI'-.GIGPJIEK.Z'I....]

Figure 3-7 FTP servers at the BUT

3.4.2 DNS protocol

For addressing on the Internet, it is difficult for users to use a numerical
representation of addresses. It is easier to remember a meaningful letter name. This

29

is done by the DNS protocol, which allows the use of letter names that correspond
to the IP addresses of servers and computers.

"nslookup" - Windows command that allows to find out the address of a
computer or server by its domain name. If you set "nslookup www.fekt.vut.cz" at the
command line, it will say that for the domain name "www.fekt.vut.cz", an address
will correspond to "147.229.71.28". Use this address in the URL field of a browser
to open our faculty website.

c 147.229.71.28
FEKT VUT - Home - 147.229.71.28
Q 147.229.71.28 - Touck Google

Figure 3-8 Domain name and IP address

3.5 Conclusion

LAYERS HOST 1 ROUTER HOST 2
)) S
Application data data data
" — ~—
TCP TCP TCP
Transport header data header data header data
— A — A/ — A
Y - R Y ' 3'Es D
IP TCP IP TCP IP TCP
Internet [header header| 93t [header header| 922 [header header| 92t
/ A J A / A /
Y Y Y Y n Y ' N 7~
. Frame | [P TCP Frame Frame | I[P TCP Frame Frame | IP TCP Frame
Link [;wadetheader header gaa footer] [headel]header header gats footer] E)eader}leader header data footer]
A A A A y . A y

f

A

Figure 3-9 TCP / IP protocol stack communication model

The data is transferred between two hosts (computers) via network routers.
There may be several routers on the path (in our case one). In most cases, a router
is a device that operates on the first three layers of the TCP/IP model. On the Link,
Internet and Transport layers and does not process received data packets, but only
redirects them. However, there are also routers that work on the Application layer.
These could be content filters, for example - devices that analyze data traffic. Content
filters can restrict access to certain resources.

TCP headers - the first layer containing the address of the specific application
on the recipient host for which the data is intended (port). The next layer, the IP
header, contains the global address of the host to which the data is to be delivered.
The last layer is the frame header/footer, which adds local network device
addresses (MAC addresses), which send packets from one router to another until a
device with the specified global address is reached. The MAC addresses along the
path change after each router, and the global IP address does not change.

30

4.SOCKET INTERFACE

Socket is an interface (standard) for the interaction between programs and
the TCP / IP Transport layer [10]. Sometimes a socket is called the "endpoint” of
network communication. The communication model that uses the socket interface
is the server-client communication model.

Server - a program on a computer with a known IP address and a port that
waits for a connection request in passive mode.

Client - a program that connects to the server.

Socket operations are divided into several stages:

The first stage — sockets creation:

1) Socket - creating a new socket

2) Bind - binding an IP address and port to a server socket

3) Listen - declaring that the socket is ready to connection
The second stage — establish connection:

4) Accept - accepting a connection request from the client

5) Connect - request to establish a connection with server
The third stage — data transmission:

6) Send - send data over the network

7) Receive - get data over the network
The fourth stage — closing a connection

8) Close - closing a connection

SERVER CLIENT

-

SOCKET SOCKET

L

BIND
192.168.31.1:81

Figure 4-1 Socket point to point communication principle (part 1)

STEP 1:

SOCKET
declaration

STEPR 2:
BIND

31

STEP 3: my address
192 168.31.1:81
LISTEN
SOCKET SOCKET
\192 16831181)' -
STEP 4. ready for let’s go'
connectlon
ACCEPT
and CONNECT
SOCKET recvecst -/~ SOCKET _ \
K192 168.31.1: 81} for connection CONNECT
192.168.31.1:81
. Who . @
SOCKET /~ SOCKET _ \
\192 168.31.1: 81)' CONNECT
192.168.31.1:81
(DUBLICATE)
SOCKET established connection
STEP 5: wndmeﬂmm i have data
mr ou
SEND
and RECEIVE
SOCKET SEND / SOCKET _ \
\ 192.168.31.1: 81)‘ CONNECT
192.168.31.1:81
DUBLICATE RECE]VE
STEP 6:
CLOSE
CONNECTION
SOCKET CLOSE
K192 168.31.1: 81)' SOCKET

CLOSE
SOCKET

Figure 4-2 Socket point to point communication principle (part 2)

32

5. ROBOT KUKA KR6

5.1 Real robot specification

This abstract gives the reader an idea of the real robot behavior. Its industrial
purpose, technical parameters. Its navigation, communication and programming
tools.

KUKA KRC6 R900 is an industrial robot that belongs to a group of small
robots with low payload, with high speed, repeatability and accuracy. The most
common purpose of this robot is painting, gluing, welding, packaging, sorting and

measuring.
Table 5-1 Technical data [11]

Maximum reach 901.5 mm
Maximum payload 6 kg
Pose repeatability +0.03 mm
Number of axes 6
Mounting position Floor, Inverted, Angle
Robot mass 52 kg
Footprint 320 mm x 320 mm
Protection rating P54
Ambient temperature during operation | 5°Cto 45 °C

Axis range - range of motion in degrees or millimeters that defines the
maximum and minimum rotation angle for each axis.

Table 5-2 Axis range [11]

Axis 1 +170°
Axis 2 +45° /-190°
Axis 3 +156° /-120°
Axis 4 +185°
Axis 5 +120°
Axis 6 + 350°

Workspace - define area within which a robot may move and how far it can
reach. Workspace based on the axis range.

33

Figure 5-1 Rotation direction of robot axes [11]

420 80 Dimensions: mm
©
i S
o
s o
(= 0] —
o
o
<
) /
8 LS—_:\ /
851,56 2455 656 83,2

Figure 5-2 Workspace, side view [11]

Figure 5-3 Workspace, top view [11]

The workspace and range of motion of each joint tells you how far it can reach.
This information results in correct robot positioning in SketchUp dimensions. It can
be used to control the collision of robot parts within the motion.

5.2 3D model of KUKA KR6

The 3d model of the robot as a part of the thesis was provided by the BUT. The
original format of the model is "stl".

Figure 5-4 3D model of the KUKA KRC6

35

To implement the robot motion in SketchUp, it was necessary to transfer the
control method of a real robot in three dimensions. The design of this "control
method" is based on a simple term "changing the position of an industrial robot",
which primarily means changing the angles of the individual joints. In order to
represent a similar working principle in the virtual model, it was decided to redesign
the model and to add rotation points in places where the joints are connected. These
points are used as pivot points inside SketchUp.

Figure 5-5 Adding central rotation points - pivot points. a) before b) after

Axis of rotation of a component in SketchUp, formed by a pivot point on a
model and a vector starting from that point. Further change in the angle of the joint
occurs around this vector.

Figure 5-6 Changing the origin of an axis in a SketchUp component

36

Each joint has its own pivot point and axis of rotation. These axes are firmly
connected to components.

Ultimately, the problem arises when a model part has to be held in the correct
position relative to other parts during rotation. The solution to this problem is based
on the ability to group objects (create components) and create a hierarchy in
SketchUp. Component can contain not only model objects, but also other
components. By inserting one component into another, a hierarchy tree is created.

[@] robot_KUKA_KRC6_v3
. ma <KUKA KRG>
.28 < Pedestal>
El % <Joint 1=
- 3@ < Rotation base>
. == <Joint 2>
------ &% < Bigarm=
El 28 <loint 3=
.38 < Elbow>
EI i <loint 4=
------ 88 < Small arm=>
5. == <loint 5>
. me < \Wrist>
El 22 <loint 6>

“.. B < Handler=

Figure 5-7 Components hierarchy in SketchUp

Now the robot consists of the 7 components - "KUKA KR6", "Joint 1" - "Joint 6".
Each component has its own pivot point and its own axis of rotation. Components
that are higher up in the hierarchy cover all components that are lower down. For
example:

"Joint 2" is the component consisting of the model part "Large Arm" and the

next component "Joint 3", at the same time the component "Joint 3" consists of the
model part "Elbow" and the next lower component "Joint 4".

Consequently, when the SketchUp target is directed at a component, it selects
all model parts below it in the hierarchy and allows all embedded elements to rotate
fixedly around the axes of the highest selected component.

This design has two advantages:

¢ for the motion execution only the rotation vector and angle for each joint
must be specified

e thanks to strong component binding, it is not possible to lose model
integrity

37

Figure 5-8 Hierarchical structure in SketchUp

38

6. IMPLEMENTATION

The data is transmitted according to the TCP/IP model and via socket
interfaces.

STEP 1 STEP 2 STEP 3
- RUBY
C# TEST CLIENT C++ SERVER CLIENT

Ruby client - the 3D model of the robot in SketchUp is controlled by a plugin
that simultaneously performs the function of a TCP client (it has a socket interface
through which it connects to the server) and a script that converts data received
from the server into angles for each joint of the robot.

C# test client - is a TCP test client that also uses a socket interface through
which it connects to the server. The C# application also has a user interface that
allows the user to set the angles for each joint. Data in the form of a string is
transmitted to the server via the TCP protocol.

TCP server - acts as a relay and does not process data received from clients.
Several clients can be connected to the server. Each client is connected to a separate
port and is processed in a separate thread. Connected clients are included in the
array of established connections - the array of sockets. When the server receives
data from the C# client, this message is forwarded to all other clients, one of which
is the Ruby client. In this case, other clients receive information from the server
about changes in the robot's position by one of the other active clients. The Ruby
client interprets the received data into angles and changes the position of the robot.

[OIII]

I 1
| I
I I
I I
| I
| |
| I
| |
| I
I I
I |

Figure 6-1 Communication scheme

6.1 TCP/IP server in C++
To build a TCP / IP server in C++, the Winsock API will be used.

6.1.1 Required headers

#pragma comment (lib, "Ws2_32.lib") — instructs the linker to add the library
"Ws2_32.1ib" to the list of library dependencies.

39

<WinSock2.h> — Winsock APIL. This header contains functions like accept,
bind, listn, recv, send etc.

<WS2tcpip.h> — the header file contains definitions introduced in the
WinSock 2 Protocol-Specific Annex document for TCP/IP, which contains newer
functions and structures used to retrieve IP addresses.

"iostream”

<string.h>

6.1.2 Initialize the wsock32.dll library

WSAData data;

WORD version = MAKEWORD(2, 2);

int winsock = WSAStartup(version, &data);

if (winsock != 0) {
std::cerr << "WSAStartup failed" << std::endl;
return WSAStartup failed;

Figure 6-2 Initialize the wsock32 library

WSAData data - structure contains information about the Windows Sockets
implementation.

MAKEWORD(a, b) - macro containing a version of the Winsock interface. Byte
a - version, byte b - under. version. Possible versions are 1.0, 1.1, 2.0, 2.2. Later
versions have new functions and extension mechanisms.

WSAStartup - function for initializing Winsock. Returns 0 if the initializing
was successful.

6.1.3 SOCKET function

If the socket declaration was successful, this function returns a socket
descriptor — a non-negative integer number. If an error was detected during the
operation, the function returns “-1" (INVALID_SOCKET).

Connections = socket(AF_INET, SOCK_STREAM, NULL);
if (Connections == INVALID SOCKET) {
std::cerr << "Socket Connections. Getting discriptor failed";

std::cerr << "Error: " << WSAGetLastError() << std::endl;
WSACleanup();
return Discriptor_failed;
}
Figure 6-3 Socket declaration
Parameters:

1) Address family

40

e AF INET - The Internet Protocol version 4 (IPv4) address family
e AF INET6 - The Internet Protocol version 6 (IPv6) address family.
2) Type - specification for the new socket.
e SOCK STREAM - with establish connection. Socket type that use
TCP protocol.
e SOCK_DGRAM - without establish connection. Socket type that use
TCP protocol.
3) Transport protocol. If this argument is set to 0, then the default protocol
will be used:
e [PPROTO_TCP for SOCK_STREAM
e [PPROTO_UDP for SOCK_DGRAM
Two variables of SOCKET type must be declared for the server-client
connection. One is used to listen on an open port and the other to accept a
connection.

6.1.4 SOCKADDR_IN structure

This structure contains parameters of the socket (server)

char server_ip[] = "192.168.0.101";

int server_port = 8@82;

SOCKADDR_IN parameters;

parameters.sin_family = AF_INET;
parameters.sin_port = htons(server_port);
parameters.sin_addr.s_addr = inet_addr(server_ip);

Figure 6-4 SOCKADDRL_IN structure

Structure methods:

sin_family - defines the address family (protocol suite). For TCP/IP it must be
AF_INET or AF_INET®6.

sin_port - contains port number

sin_addr - contains address (IP). To represent addresses in numerical form,
use the function inet_addr.

SOCKADDR_IN client;
int clientsize = sizeof(client);

Figure 6-5 SOCKADDR_IN client structure

SOCKADDR_IN client - empty structure that will contain parameters of a new
client after connection.

41

6.1.5 BIND function

Function associates SOCKADRR_IN structure, that contains server properties,
with a socket.

int error_bind = bind(Listen, (sockaddr*)¶meters, sizeof(parameters));
if (error_bind == SOCKET_ERROR) {
std::cerr << "Socekt Listen. Bind failed.";
std::cerr << "Error: " << WSAGetLastError() << std::endl;
closesocket(Listen);
WSACleanup();
return Bind_failed;

Figure 6-6 BIND function

Parameters of “bind” function:
1) Socket descriptor
2) SOCKADDR_IN structure
3) SOCKADDR_IN structure size
If successful, function returns 0, otherwise - "-1". If the return value is -1, it is
necessary to close the declared sockets.

6.1.6 LISTEN function

Function used by the server socket to inform the OS that it is waiting
("listening") for communication requests on the agreed port. Without such a
function, any request to communicate with this socket will be rejected.

int error_listen = listen(Listen, SOMAXCONN);
if (error_listen == SOCKET_ERROR) {
std::cerr << "Listening failed.";
std::cerr << "Error: " << WSAGetLastError() << std::endl;
closesocket(Listen);
WSACleanup();
return Listen_failed;

Figure 6-7 "listen” function
Parameters:
1) Socket for “listening”.
2) SOMAXCONN - is a positive integer that determines how many
communication requests can be received on the socket simultaneously.
This number is not related to the number of connections that the server
can support. This argument refers only to the number of connection

42

requests that arrive simultaneously. The number of connections
established may exceed this number.

6.1.7 ACCEPT function

The function extracts first connection request from the queue and returns a
descriptor to the new socket that has the same properties as the socket specified by
the first argument. This new descriptor must be used in subsequent data exchange
operations.

Connections = accept(Listen, (sockaddr*)&client, &clientsize);
if (Connections == SOCKET_ERROR) {
std::cerr << "Accept failed.";
std::cerr<< "Error: " << WSAGetLastError() << std::endl;
closesocket(Connections);
WSACleanup();
return Accept_failed;

Figure 6-8 “accept” function

Parameters:

1) “listening” socket descriptor.

2) Structure describing the address of the client socket through which he
has made his connection request. For TCP/IP networks this is the
sockaddr_in structure.

3) The size of this structure.

If the request queue is empty, the program switches to the state of waiting for
requests from clients. If acceptance by the client has failed, the function returns a
negative value. If the connection was successful, the new connection will place the
client into the socket array.

Connections_count[client_count] = Connections;
client_count++;

Figure 6-9 Storage new client socket in sockets array

6.1.8 CreateThread function

Provide function to work with a new client in the thread.

The ReciveMessage thread function implements the continuous reception of
messages from the client using the recv function and forwarding them to other
clients using the send function. These two functions are part of the infinite loop.

The ReciveMessage function accepts one parameter - the index belonging to a
client in the socket array.

43

HANDLE thread_handle = CreateThread(NULL, NULL,

(LPTHREAD_START_ROUTINE)ReceiveMessage, (LPVOID)(client_count - 1), NULL, NULL);
if (thread_handle == NULL) {

std::cerr << "Thread hendl failed.";

std::cerr << "Error: " << WSAGetLastError() << std::endl;

WSACleanup();

return Thread_failed;

Figure 6-10 "CreatThread” function

Parameters:
1) Security descriptor.
2) Initial stack size, in bytes. If this value is zero, the new thread uses the
default stack size of the executable program.
3) Function to be executed by the thread.In this case function
“ReciveMessage”
4) Variables that belong to thread function. In this case parameter is client’s
descriptor.
5) Flag
6) Variable that will get an identifier (id) of the thread.
Function returns handle (descriptor) to the new thread or returns NULL if the
function failed.

6.1.9RECV function

Receive data from a network communication partner.

int recive = recv(Connections_count[client_id], buffer, sizeof(buffer), 0);
if (recive == SOCKET_ERROR || recive == @) {
closesocket(Connections_count[client_id]);
std::cout << std::endl << "Client disconected.";

std::cout << "Client ID : " << (int)Connections_count[client id] << std::endl;
break;

Figure 6-11 “recv” function

Parameters:
1) Security descriptor through which data is received
2) Pointer that points to a valid area of memory to accommodate received
data.
3) The length of this area in bytes.
4) Flags
The function returns the number of bytes declared in the third parameter. If
the message contains 0 bytes, this means that the client has completed the

44

connection. If the client disconnects, the server places the message with the client
ID in the console.

6.1.10 SEND function

Send data to a network communication partner.

for (int 1 = @; i < client_count; i++) {
send(Connections_count[i], buffer, sizeof(buffer), NULL);

}

Figure 6-12 “send” function

Send data to all clients that are in socket array by looping.
Parameters:
1) Security descriptor for which data is sending
2) Pointer that points to a memory area that accommodate sending data
3) The length of this area in bytes
4) Flags

6.1.11 CLOSESOCKET

If the socket descriptor is a positive number, then the socket is not closed.

for (int i = @; i < client_count; i++) {
if ((int)Connections_count[i] > @) closesocket(Connections_count[i]);

}

if ((int)Connections > @) closesocket(Connections);
if ((int)Listen > @) closesocket(Listen);
WSACleanup();

Figure 6-13 “closesocket” and “WSACleanup” functions

Call the closesocket function if the descriptor number is greater than 0.
WSACleanup - test function. Do the same as closesocket function.

6.2 C# Test Client

This application implements a user interface for testing the server side.
Testing the correct client connecting, disconnecting, sending data, real-time process
data flow, receiving and interpreting data.

Application contains next functionality:
e [P field for an IP address of server
e PORT filed for a port of the server process
¢ Connect - button to connect to the server

45

https://docs.microsoft.com/windows/desktop/api/winsock/nf-winsock-closesocket

¢ Info - information lines. Contains information about success connecting
and disconnecting

e Set position - column where the user can enter his own values for each

joint

e Current position - column containing information about the current joint

position of the robot

e Set - button that sends user data on the server

e Reset - button that sends zeros for each joint on server
e Continuous mode - sends data to the server every n millisecond

e Exit - disconnect server. Close application

6.2.1 Headers

IP
Port

Info

Robot Arm - client app

- O X

[152.168.0.100

|

8082

Conncetion success

IPport 192.168.0.10

Joint 1
Joint 2
Joint 3
Joint 4
Joint 5
Joint &

Set position

11

=
S

T

08082
Uoles

Current posttion

Reset
it

Continuous mode

Figure 6-14 C# test application

using
using
using
using
using
using
using
using
using

System.
System.

.Drawing;
.Text;
.Windows.Forms;
.Net;
.Net.Sockets;
.Threading;

Globalization;
Threading.Tasks;

Figure 6-15 C# headers

46

Non-standard libraries:

e System.Net and System.Net.Sockets are used to declare the client socket
and establish connection to the server

e System.Threading is used to create stream function, which processes data
received from the server in a separate thread

e System.Globalization is used to correctly convert string variable to float

e System.Threading.Tasks is used to implement delay; the function does not
stop the current thread, as in sleep method

6.2.2 Socket declaration and connection setup

When the user clicks the Connect button, the program reads and parses the IP
and port fields. Then a new socket is declared with the following parameters:

e Addressfamily.InterNetwork - declare that the connection will be
established by using IPv4 address

e SocketType.Stream - support two-way byte streams in establish
connection mode

e ProtocolType.Tcp - specify the network protocol that is used to
communicate with server. In this case is used TCP.

ip = TPAddress.Parse(ip_box.Text);
port = int.Parse(port box.Text);

Client = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);
Client.Connect(ip, port);

thread_ServerRespons = new Thread(delegate() { ServerResponse(); 1});
thread_ServerRespons.Start();
Figure 6-16 C# socket declaration

Thread_ServerRespons - Execute the ServerRepons() function in a separate thread.
This allows the client application to receive data from the server while processing
user data.

6.2.3 Sending data to the server

By clicking on the Set button, the data from the fields Joint 1 - Joint 6 are stored
in the string variables and passed as parameters to the SendData function.

By clicking the Reset button, the client sends a string of 6 zeros to the server.
This sets the robot to the default position.

47

SendData function

The function creates a buffer with the same length as the message, then
generates the bytecode of our message and writes the code into the buffer. To send
a message to the server, use the Send method. If the send was not successful, the
function will output a message, close the socket, and stop the thread function to
receive messages from the server.

void SendData(string message)

{
try
{
byte[] buffer = new byte[message.Length];
buffer = Encoding.UTF8.GetBytes(message);
Client.Send(buffer);
¥
catch
{
info_box.ForeColor = Color.Red;
info_box.Text = "Error! Connection lost\nIP:port " + ip + ":" + port;
if (thread_ServerRespons != null) thread ServerRespons.Abort();
Client.Close();
LockWindows(false);
¥
¥

Figure 6-17 C# SendData function

6.2.4 Receiving data from the server

The ServerResponse - thread function is used to receive messages from the
server.

To receive messages, a 1024-byte buffer has been declared. It is obviously
impossible to know how long the bytecode from the server will be. A constant value
of 1024 bytes is used, assuming that the server will not be able to go beyond that.

When the byte code is received from the server, it is decoded and stored in a
string variable and then displayed on the application screen.

48

byte[] buffer = new byte[1024];
for (int i = @; i < buffer.Length; i++) { buffer[i] = 0; }
try
{
for(; 5)
{
Client.Receive(buffer);
string message = Encoding.UTF8.GetString(buffer);
string[] strlLines = message.Split('\n');
;. Invoke ((MethodInvoker)delegate ()
{
jointl c.Clear();
jointl c.AppendText(strLines[0]);
joint2 c.Clear();
joint2_ c.AppendText(strLines[1]);
joint3_c.Clear();
joint3_c.AppendText(striLines[2]);
joint4 c.Clear();
joint4_c.AppendTlext(strLines[3]);
joint5 _c.Clear();
joint5 c.AppendText(strLines[4]);
joint6_c.Clear();
joint6_c.AppendText(strLines[5]);
1)s

}

catch

{

if (thread_ServerRespons != null) thread_ServerRespons.Abort();
Client.Close();

info_box.ForeColor = Color.Red;

info_box.Text = "Error! Connection lost\nIP:port " + ip + ":" + port;
LockWindows(false);

Figure 6-18 ServerResponse function

6.2.5 Close client application

By clicking the “Exit” button, the program closes the receive thread function,
closes the socket, and closes the application. Before the socket is closed, the program
sends an empty message, which is interpreted as disabling the client on the server

side.
private void exit button Click(object sender, EventArgs e)

{

if (thread_ServerRespons != null) thread ServerRespons.Abort();
Client.Close();
Application.Exit();

Figure 6-19 Close client application

49

6.3 Ruby plugin

Ruby plugin performs 4 main functions at once:
1) Providing Ul interface, to work with plugin
2) Socket interface
3) Robot movement implementation.
4) Import 3d model.

Before everything it is necessary to puts the «Ruby_robot_plugin» folder on the
following path:

C:\ Users\ %username \ AppData\ Roaming\ SketchUp\ SketchUp 2017\
SketchUp)\ Plugins

*“AppData” folder is usually hidden, keep that in mind

In SketchUp top menu open “Window” and select “Extention Manager”, click
on “Install Extension” and go to the « Ruby_robot_plugin » folder, that was placed in
the previous step. In this folder find and select the rbz file “su_robot_arm”.

If everything is done correctly, in SkecthUp Top menu, in Extension will be new
plugin Figure 9-1.

6.3.1 Ruby plugin menu

% Untitled - SketchUp Make 2017
File Edit View Camera Draw Tools Window | Extensions Help

HTML InputBox > |
Robot Arm > Listning Start

x| @
@ Listning Stop

Parameters

/ ‘%‘, Add robot

Figure 6-20 Plugin menu in SketchUp

The plugin includes 4 functional buttons:
e Listening Start - connect to the server
e Listening Stop - disconnect from the server, close socket

e Parameters - opens a window where user can change the IP address and port
of the server

e Add robot - import robot model into a project

50

Parameters *

P 192.168.0.10(

Port a0g2

oK Cancel

Figure 6-21 SketchUp Ul

The Ul module is used to create the user interface in SketchUp. The
add_submenu method adds a submenu to a SketchUp top menu. The next method,
add_item, adds click items to a submenu. Each item has its own ruby function that
starts the process when clicked.

unless file_ loaded?(__FILE_)

= UT. {'Plugins'). {'Robot Arm')

('Listning Start') { Robot_arm::listning_start() }
{("Listning Stop') { Robot_arm::listning stop()}
{'Parameters') { Robot_arm::parameters()}
. {("Add robot™) {Robot_arm::add robot()}
file_loaded(__ FILE_)}
end

Figure 6-22 Create submenu in SketchUp

To allow a user to enter his own parameters and change connection settings
uses the inputbox method, which is also part of the Ul module.

def Robot _arm::parameters()
prompts = ["IP", "Port"]
defaults = [$ip,$port]
input = UI. (prompts, defaults, "Parameters™)
$ip = input[@].
$port = input[1].
listning_start()
end
Figure 6-23 Create input window in SketchUp

51

6.3.2 Ruby socket interface

To use the socket interface, it is necessary to include the socket library:
require 'socket’

def Robot_arm::listning start()
@buffer = ""
@ruby_socket = TCPSocket. ($ip,$port)
@ruby_socket.puts 'Sketchup socket connected'
puts "Ruby socket start”
@stimer = UL. (@freq,true) {
begin
@ruby_socket.read nonblock(5080, @buffer)
Robot_arm::do_transform()
rescue

end

}

end

Figure 6-24 "listening_start” function

The function listening_start uses a socket to connect to the server and receive
messages from it. The function works as follows: A new socket is declared using the
TCPSocket module and the "new" method, where the input parameters are the IP
address and the port of the server. $ip and $port are global variables of type string,
which store parameters about the server. The test message is sent to the server
using the "puts" method and the socket descriptor (@ruby_socket). This message is
used to inform the server that SketchUp has connected to it. Using the timer and the
"read_nonblock" method, the received message is written to the @buffer string
variable every @freq seconds. The first parameter of the read_nonblock function is
the size of the message, and the second is a variable to write the received message
into. After receiving a message from the server, the do_transform function is
executed, which is responsible for changing the position of the robot.

The listening_stop function stops the timer started in the listening_start
function and closes the ruby socket.

def Robot_arm::listning stop()
UI. {(@stimer)
@ruby_ socket.
puts "Ruby socket close"
end

Figure 6-25 "listening_stop” function

52

6.3.3 Robot movement implementation

Of an entire rb file, only the joint_rotation function interacts with the robot
model in SketchUp. The function has 2 input parameters:

e index - anumber from 1 to 6, the index indicates the joint with which the
function now interacts.

e rotation_axis - vector around which the rotation takes place.

def Robot_arm::joint_rotation(index, rotation_axis)

mod = Sketchup.

ent = mod.
mod. . (Sketchup. . ["Joint #{index}"].)]
joint = mod. [e]
tr = joint.
= tr.
step = @buffer.lines[index-1]. - $j_last[index-1].

$j_last[index-1] = @buffer.lines[index-1]

joint_transform = Geom::Transformation. , rotation_axis, step.
joint. ! joint_transform
mod.
end
Figure 6-26 "joint_rotation" function
Part 1.

e connect to the project in SketchUp
e select the component by its name using the index
e extract the pivot point of this component
Part 2.
e calculate the angle of rotation for the component. The angle of rotation is
defined as:
step = new angel — previous angle
e The sign indicates the direction in which the turnaround is going.
e after the calculation, the new position is rewritten to the previous one.
previous angel = new angel
Part 3.
e Rotation of the selected component. The "Rotation" method is part of the
"Geom" module and has three parameters: The component's rotation
point, the vector around which the rotation is performed, and the angle.

53

Part 4.
e clear target

The do_transform function calls the joint_rotation function one after the other
for each of the joints.
def Robot _arm::do_transform()
Robot_arm::joint_rotation(l, [©,0,1])
Robot_arm::joint_rotation(2, [©,1,8])
Robot_arm::joint_rotation(3, [©,1,8])
Robot _arm::joint rotation(4, [1,0,8])
Robot _arm::joint rotation(5, [©,1,8])
Robot _arm::joint_rotation(6, [©,0,1])
end

Figure 6-27 “do_transform” function

6.3.4 Robot import

The robot model is located in the Plugins folder, which we placed in the
SketchUp program folder at the beginning. The path to the Skp file is created and
stored in the variable path_skp. The model should be imported into the project using
the "load_from_url" method, but the model is still not available because the location
of the model was not specified in the SketchUp layout. To do this, we call the
"add_instance" method with the following parameters: the model we want to place,
the position where the model should be placed.

def Robot arm::add robot()
$3j last = [0,0,0,0,0,0]
path_skp = Sketchup. ("Plugins') + '/su_robot arm/robot KUKA KRC6 v3.skp'
mod = Sketchup::active model

begin
load_robot = mod. . (path_skp)
rescue
end
= Geom::Point3d::new(@, @, @)
add_robot = mod. : (load_robot, Geom::Transformation::new()}

end

Figure 6-28 "Add_robot" function

54

7. TESTS AND RESULTS

7.1 Server

The server is a console application that informs the user about the clients that
are currently connected to it and about the data transfer. The server application's
first message is the local IP address and the port on which it is working.

Neither the address nor the port has been selected by the application, its value
has been manually set for network use. To work in another network and on another
device, the file main.cpp must be accessed to change it manually again. To find out
your IPv4 address, use the /ipconfig command in the Window command line.

If the client connects successfully, the server writes out the parameters of the
connected device and assigns it an ID that is also the client's socket descriptor.

When a new socket is connected, its parameters are written and then extracted
from the SOCKADDR_IN structure. The structure contains the next information:

¢ Name of the host in the network
Local IPv4 address
e The port to which the client is connected
Client ID - the socket handle of the client

The server collects sockets from connected clients in a "sockets array" that
allows multiple clients to connect and transfer data through the server at the same
time, which is not quite correct from the "one client - one robot" point of view, but
the task was to write a standalone server application that could support multiple
clients at the same time, accept connection requests and easily disconnect.

The server does not perform any data processing. When a message is received,
the server outputs it to the console and sends it to other clients (one of which is the
Ruby client).

The server also recognizes and informs the user if the connected client is a

Ruby client.

When the server receives a message from the client, it outputs the client ID and
the angles for the robot in the order Joint 1 - Joint 6.

If the client is disconnected, the console displays the appropriate message.

55

B | C\Users\Erop HOTkuH\Desktop\B.p. version 3 ... — O x

TCPServer start
Server IP: 192.168.0.100
Server port: 8082

Mew conncetion

Client name: DESKTOP-NL9JEOT.kn.vutbr.cz
Client IP: 192.168.0.1080

Connect on port: 49461

Client ID: 276

This is SketchUp Socket

Mew conncetion

Client name: DESKTOP-NL9JEOT.kn.vutbr.cz
Client IP: 192.168. Ao

Connect on t: 49466

Client ID: 500

From client: 5080
%)

Figure 7-1 Server console application

7.2 C# Test client application

The interaction with the virtual robot was implemented via the user interface
(Figure 6-13) of the C# client application, which will serve as an imitation of a real
robot.

Due to the current situation it was not possible to work with a real robot.

The client application has an interface to connect to the server, a window to
display information, input fields for angles and output fields with the current
position of the robot. The client application receives the current position from the
server if the position of the robot was changed by another client.

"Manual test mode" - the user can set the angles for each joint separately.
Information from the fields Joint 1-Joint 6 is written in a one byte code and sent to
the server by pressing the "Set" button.

"Continuous Mode" - implemented to test the ability of the server and Ruby
client to process data and change the robot position in real time. The angles in the
fields Joint 1 - Joint 6 are divided into 10 smaller steps for each joint and sent
sequentially to the server at a frequency of 200 milliseconds. This client-server

56

interaction mode creates a situation in which data is sent to the server as a real-time
data stream, thereby issuing a connection to a real robot. The smoothness of
movement of the virtual robot in "Continuous mode" depends primarily on the
computer and network on which the client and server are located. We can observe
the intermittent movement of the joints, but it gives a clear idea of the sequence of
movements of each joint.
The client "Info" window displays the following information:

Successful connection to the server

Connection to server failed

Connection lost

Error in "Continuous mode".

Conncetion success

) - 4 O N AN ONO09
IP-port 192.168.0.100:8082
Emor! No respons from server
IP-oot 192 0.0 0-8082

P‘-‘t JEL V.U V.OUOL
Emor! Connection lost

IPport 192.168.0.100:8082

Figure 7-2 «info» message. C# client

7.3 Ruby client

Ruby client (Ruby plugin) functionality:

First of all it contains a script to perform an action with a robot inside a
SketchUp. Two functions are responsible for implementing the movement of the
robot: the functions joint_rotation and do_transform.

Second, the Ruby plugin contains a socket interface and executes the function
of a TCP client. The client does not send data about its position to the server, but
only receives data with new angles from the server. Only during the first connection
does the Ruby client send messages to the server so that the server can identify it as
a Ruby client among others. The Ruby client also has a user interface for connecting
to and disconnecting from the server and changing connection parameters (Figure
6-18 and Figure 6-19).

The final function of the Ruby client is to import the robot into the SketchUp
scene.

57

8.CONCLUSION

The implemented simulation tool has a number of advantages and
disadvantages, which will be discussed in this chapter.

In this work, the robot motion was achieved by using the hierarchical impact
model, where the lower joint in the hierarchy was connected to the upper one and
bound to its pivot point (for more information see chapter 5-2). This realization of
the robot motion implementation is the optimal and probably the only solution to
the task in the Free SketchUp environment.

The Ruby plugin does not use the thread functions that could be used to
implement the processing of the data flow from the server in a separate thread.
Unfortunately, despite the fact that "clean" Ruby supports the thread functions, the
thread functions did not work inside SketchUp. As a result, receiving data from the
server was implemented rather poorly. The data receiving function was
implemented using a timer, which causes delays in data processing and makes the
program more complicated. This solution is not optimal.

The implementation of the server side is the most successful. By using thread
functions and a socket array a good support of several clients at once was achieved.
The disadvantages of the server side: it cannot determine the IP address of the
computer in the network and cannot choose the free port. Entering these
parameters manually reduces the speed and comfort of interaction with the
application.

The good advantage of C# Test Client App is the simple interface for the
connection to the server and robot control; the implementation of an information
window; the reception and processing of data from the server in the thread function.

The disadvantage is a weak implementation of "continuous mode"; the use of
invalid values in fields can cause an exception (double dots or double commas).
Which is not a big deal, but still not fixed.

A general disadvantage of clients and server is that there is no dynamic
memory allocation of memory for packets when the server receives messages from
clients or backwards. The only solution that was considered was to send 2 packets,
one with the message size, the other the message itself, which reduces the transfer
speed and was therefore not implemented.

In summary, the application implements the initial task - creating a simple
simulation tool to visualize a stationary robot in Sketchup. Below are the main
possible ideas for improving this tool.

Create a universal solution for importing different robots that is easy to
control; modify the Ruby plugin to control multiple robots in a scene
simultaneously; create a client that understands the robot's programming
languages (such as KRL) and interprets the code for the Ruby plugin; add an
interface for connecting to a programmable logic controller. Finally, this technology

58

can lead to the development of a custom platform for creating digital factories based
on Free SketchUp.

59

[1]
[2]
[3]

[4]

[5]
[6]
[7]

8]
[9]
[10]

[11]

Literature

SketchUp Make vs Pro vs Free vs Shop vs Studio [cit. 2019-11-14]. Available at:
https://mastersketchup.com/sketchup-make-pro-free-shop-studio/
SketchUp Ruby API Documentation [cit. 2020-04-28]. Available at:
https://ruby.sketchup.com/ index.html

Ruby Code Editor [cit. 2019-10-22]. Available at:
https://alexschreyer.net/projects/sketchup-ruby-code-editor/

Automatic SketchUp ,Creation 3-D Models in Ruby” 2010, author: Matthew
Scarpino [cit. 2019-11-08]. Available at:
https://forums.sketchup.com/t/automatic-sketchup-sketchup-scripting-
extension-and-ruby-help/14939

TCP/IP protocol suite [cit. 2020-04-05]. Available at:
https://docs.oracle.com/cd/E23823 01/html/816-4554/ipov-6.html
Application layers protocols suite [cit. 2020-04-08]. Available at:
https://en.wikipedia.org/wiki/Category:Application layer protocols

[Pv4 and IPv6 addresses [cit. 2020-03-12]. Available at:
https://bezopasnik.info/npoTokoabi-ipv4-u-ipv6-B-4eM-pa3Huna-u-4ro-
Jydiie

Routing [cit. 2020-04-20]. Available at:
https://geek-university.com/ccna/ip-routing-explained/

Reserved IP addresses [cit. 2019-11-08]. Available at:
https://ru.qwe.wiki/wiki/Reserved IP addresses

What is a Network Socket? [cit. 2020-03-12]. Available at:
https://www.tutorialspoint.com/unix sockets/what is socket.htm

KUKA KR6 manual [cit. 2020-03-24]. Available at:
http://www.wtech.com.tw/public/download /manual /kuka/KUKA%20KR%
206%2010 AGILUS.pdf

60

https://mastersketchup.com/sketchup-make-pro-free-shop-studio/
https://ruby.sketchup.com/_index.html
https://alexschreyer.net/projects/sketchup-ruby-code-editor/
https://forums.sketchup.com/t/automatic-sketchup-sketchup-scripting-extension-and-ruby-help/14939
https://forums.sketchup.com/t/automatic-sketchup-sketchup-scripting-extension-and-ruby-help/14939
https://docs.oracle.com/cd/E23823_01/html/816-4554/ipov-6.html
https://en.wikipedia.org/wiki/Category:Application_layer_protocols
https://bezopasnik.info/протоколы-ipv4-и-ipv6-в-чем-разница-и-что-лучше/
https://bezopasnik.info/протоколы-ipv4-и-ipv6-в-чем-разница-и-что-лучше/
https://geek-university.com/ccna/ip-routing-explained/
https://ru.qwe.wiki/wiki/Reserved_IP_addresses
https://www.tutorialspoint.com/unix_sockets/what_is_socket.htm
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20KR%206%2010_AGILUS.pdf
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20KR%206%2010_AGILUS.pdf

List of appendices

Appendix 1 - The Ruby client connects to the server........ccuuu.. 62
Appendix 2 - The C# client connects to the server........unne. 63
Appendix 3 — Set @ NeW POSITION ... sesesssssssesnennens 04
Appendix 4 — Reset the position.....nn.. 65
Appendix 5 - The clients are disconnected.........cccocurnrrrrinrrinieniennnne, 66
Appendix 6 — CD with simulation tool......, 67

61

ient connects to the

Appendix 1 - The Ruby cl

server

DESKTOP-NL9JEOT.kn.vutbr.cz

This is SketchUp Socket

% Untitled - SketchUp Make 2017 — O X

62

File Edit View Camera Draw Tools Window Extensions Help

L3

X
/S
G @
X!
76
&
ce
S
P
7 =

o &
¢ 9 AW

¢
[)

?; e

® @

| HTML InputBox >
Start Listening | Robot Arm >
Stop Listening 7

Parameters
Add robot

Measurements

Appendix 2 - The C# client connects to the

server

start
192.168.0.101
ag82

New conncetion

Client name: DESKTOP-NL9JEOT.kn.vutbr.cz
Client TP: 192.168

Connect on port:

Client ID: 176

This is SketchUp Socket

New conncetion
Client name:
Client IP: 192.168.
Connect on port:
Client ID: 340

client: 340

G

Y
S W

Robot Arm - client app O X
IP 192.168.0.101 .
onnect
Pot [a082
Info

Joint 1

Joint 2

Joint 4
Joint 5

Joirt 6

T—
T
oint3 [b
. [
_
T—
Ex

® @

<

Select objects. Shift to exten...

Measurements

63

tion

i

Appendix 3 - Set a new pos

Connect on port:
Client ID: 176

ketchUp Socket

New conncetion

Client name: DESKTOP-NLSJEOT.kn.vutbr.cz
Client IP: 192.168.6.101

Connect on port: 63335

Client ID: 340

From client: 34

From client: 34
)

Robot Arm - client app

X%

/S
i =

© e

&
7

IP 192.168.0.101
Port ~ Connect
Info
oti coes
Pport 1592 0.1
Set position Curment position
Joint 1 |20 [2

Joint3 125

Joint4 |0
Joint 5 707
Joint& |0

Continuous mode

Reset

Select objects. Shift to exten...

Measurements

64

Appendix 4 - Reset the position

New conncetion

Client name: DESKTOP-ML9YJEOT.kn.vutbr.cz
Client IP: 192.168.

Connect on port: 63308

Client ID: 176

This is SketchUp Socket

New conncetion
Client name: DESKTOP-NL9JEOT.kn.vutbr.cz

Connect on port: 6
Client ID: 340

om client: 340

om client: 340

om client: 34@

Joint 1
Joirt 2
Joint 3
Joint 4
Joint 5

Joint 6

Robot Arm - client app

Set position

P

U

P

n

U

M

n

192.168.0.101

Set | [Reset |

Continuous mode

Connect

<

® @

Select objects. Shift to exten...

Measurements

65

Appendix 5 - The clients are disconnected

New conncetion

Client name: DESKTOP-NL9JEOT.kn.vutbr.cz

Client IP: 192.168.0.101
Connect on port:
Client ID: 176

This is SketchUp

lew conncetion

Client name: DESKTOP-NL9JEOT.kn.vutbr.cz

Client IP: 192.168.
Connect on port:
Client ID: 340

From client: 348
0

340

From client: 340

Client disconected.
Client ID : 176

¥ Untitled - SketchUp Make 2017

File Edit View Camera Draw Tools Window

_

Start Listening

L3
@ Q Stop Listening
Parameters

Extensions Help

HTML InputBox
Robot Arm

>

\ m Add robot
h

T2 M eEd ~ VW HOS ON@
P AN T ARG ULEO

@ @ Measurements

66

Appendix 6 - CD with simulation tool

The compact disc contains the following data:

e “TCP_Server” - Visual Studio Project folder with C++ server. Do not
forget to change an IP address and a port before debugging, otherwise
an exception will occur.

e “Test_Client” - Visual Studio Project folder with C# client.

e “Ruby_robot_plugin” - folder with 3D model of the robot and SketchUp
plugin. Do not forget to put this folder in the folder with SketchUp
Extensions, see chapter 6-3.

67

	VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
	224a6c99cdcfb4de4d968bcffc46ef71c9f7bb28bd1c12e800580bd554bc2760.pdf
	VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

