
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF CONTROL AND INSTRUMENTATION
ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY

SKETCHUP VISUALIZATION OF STATIONARY ROBOTS
VIZUALIZACE STACIONÁRNÍHO ROBOTU VE SKETCHUP

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Egor Iutkin
AUTOR PRÁCE

SUPERVISOR Ing. František Burian, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

T BRNO FACULTY GF ELECTRICAL
UNIVERSITY ENGINEERING
OF TECHNOLOGY AND COMMUNICATION

Bachelor's Thesis
Bachelor's study program Automation and Measurement

Department of Control and Instrumentation

ID:203568

Academic year: 2019/20

Sketchup visualization of statrionery robots

INSTRUCTION:

The aim of this thesis is to build simple visualisation system for robot manipulator in software Sketchup.

1. Learn possibilities of software Sketchup Make 2017 and Ruby scripting inside Sketchup.

2. Create plugin in Ruby, that enables visualisation of selected stationery robot (Kuka K R C 6 sixx).

3. Create software in any language, that will parametrize the Sketchup model through T C P connection.

4. Create software in any language that bridges Sketchup (or software from point 3) and robot. This software will

transfer positions of robot joints into Sketchup model.

Student: Egorlutkin

Year of
study:

TITLE OF THESIS:

RECOMMENDED LITERATURE:

S P O N G , Mark W., Seth H U T C H I N S O N a M. V I D Y A S A G A R . Robot modeling and control. Hoboken, N J : John

Wiley, C2006. ISBN 978-0471649908.

Date of project
specification:

3.2.2020

Supervisor: Ing. František Burian, Ph.D.

Deadline for submission: 8.6.2020

doc. Ing. Václav Jirsík, CSc.
Chair of study program board

WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Abstract

This thesis focuses on building a simple visualization system for a robot
manipulator in the software SketchUp. The three-dimensional interface of the
software is employed to visualize the movement of a virtual robot under the control
of an external application (initially under the control of a real robot), which uses a
suite of TCP/IP protocols to track the robot's position.

Communication with the project is done via Ruby code using the SketchUp API,
and the values of the angles of the individual robot's joints are interpreted in form
of a parametric movement of the virtual robot. The client-server-client application
is created in C++, C# and Ruby, and the network sockets are used to establish a TCP
connection in the local network.

In the application, the Ruby plugin, which provides the communication
interface, acts as the first client. The C# custom application acts as the second client,
called the "control client", which provides a user interface to configure the server
connection and set individual joint angles of the virtual robot. Communication
between the two clients is facilitated by the C++ TCP server (console application),
which retrieves data from the control client and forwards it to the Ruby side.

Keywords

SketchUp, Ruby, API, robot, KUKA, visualization, parametric motion, TCP, IP,
socket, network interface, server, client.

Rozšířený abstrakt

Pokud jde o parametrickou vizualizaci pohybů robota, první, co přichází na
mysl, je demonstrace schopností robota, jeho pracovního rozsahu, přesnosti,
maximálního dosahu a rychlostí; za druhé, uživatel může zvážit vizualizaci
technologického procesu nebo testování zdrojových kódu.

V každém případě je rozsah aplikací pro tuto technologii široký, ale programy,
které umožňují správu virtuálních robotů, obvykle přicházejí za vysokou cenu a jsou
obvykle dostupné pouze velkým společnostem. V praxi vizualizace parametrických
robotických pohybů může být nezbytná pro menší společnosti nebo organizace, jako
jsou vysoké školy.

Prvním cílem této práce je prostudovat mechanismus interakce mezi
uživatelem a virtuálním robotem v rámci bezplatné verze aplikace SketchUp Make
2017, která má velké množství nástrojů pro vytváření 3D objektů a především má
své vlastní API, které umožňuje rozšířit funkčnost programu prostřednictvím kódu
Ruby. Dalším rokem je otestovat možnost vytvoření pluginu, který může
komunikovat s objekty ve scéně SketchUp v reálném čase a vyměňovat data s
externími aplikacemi prostřednictvím standardního komunikačního modelu (v
našem případě prostřednictvím protokolů TCP / IP). Realizace tohoto úkolu může
vést k podrobnějšímu zkoumání možnosti využití rozhraní SketchUp k vizualizaci
průmyslových procesů.

Návrh řešení je rozdělen na 3 části: implementaci parametrického pohybu
robota ve scéně SketchUp pomocí Ruby pluginu; implementace serveru, ze kterého
bude Ruby plugin přijímat data s novými úhly pro změnu polohy robota;
implementaci testovacího klient. Výsledkem této práce bude program klient-server-
klient který dohromady tvoří simulační nástroj pro vizualizaci stacionárního robotu.

3D model robota ve SketchUp je řízen pluginem, který zaprvé vykonává funkci
skriptu, který převádí přijata hodnoty uhlů jednotlivých kloubů na parametrický
pohyb robota. Za druhé, obsahuje rozhraní soketu a vykonává funkci TCP klienta
(dále Ruby klient). Klient neposílá data o své poloze na server, ale ze serveru pouze
přijímá data s novými úhly. Pouze během prvního připojení odesílá zprávu na
server, aby jej server mohl mezi ostatními identifikovat. Klient Ruby má také
uživatelské rozhraní pro připojení k serveru a odpojení od něj a změnu parametrů
připojení.

Testovací TCP klient - je C# klient. Aplikace má rozhraní pro připojení k
serveru, okno pro zobrazení informací, pole pro zadaní uživatelských hodnot a
výstupní pole s aktuální pozicí robota. Klientská aplikace obdrží ze serveru aktuální
polohu, pokud byla poloha robota změněna jiným klientem. Uživatel může nastavit
úhly pro každý spoj zvlášť. Informace z polí jsou zapsány v jednom bajtkódu a
odeslány na server stisknutím tlačítka „Seť. „Continuous Mode" - úhly jsou
rozděleny do menších kroků pro každý kloub a posílány postupně na server. Tento

režim interakce mezi klientem a serverem vytváří situaci, ve které jsou data posílána
na server jako datový tok v reálném čase, čímž vydává spojení se skutečným
robotem.

TCP server - funguje jako přesměrovače a nezpracovává data přijatá od
klientů. K serveru lze připojit několik klientů, každý klient je připojen k
samostatnému portu a je zpracován v samostatném vlákně. Připojený klienti jsou
zahrnuti do seznamu navázaných spojení - do pole soketů. Když server přijme data
od klienta C#, je tato zpráva přeposlána všem ostatním klientům, z nichž jedním je
klient Ruby. V tomto případě obdrží další klienti ze serveru informace o změnách
polohy robota jedním z ostatních aktivních klientů, současně Ruby klient
interpretuje přijatá data do úhlů a mění polohu robota. Server je konzolová aplikace,
která uživatele informuje o klientech, kteří jsou k němu aktuálně připojeni, a o
přenosu dat. První zprávou serverové aplikace je vždy IP adresa a port, na kterém
pracuje. Pokud se klient úspěšně připojí, server zapíše parametry připojeného
zařízení a přiřadí mu ID. Když server obdrží zprávu od klienta, vypíše do konzole
jeho ID a přijatý úhly pro robota v pořadí kloub 1 - kloub 6. Pokud je klient odpojen,
konzole zobrazí příslušnou zprávu.

Implementovaný simulační nástroj má řadu výhod a nevýhod, které jsou
uvedeny níže.

První část práce je zaměřena na implementaci parametrického pohybu robota
v prostředí SketchUp. Toho bylo dosaženo pomocí hierarchického uspořádaní prvků
robotu, kde spodní kloub v hierarchii je spojen s horním a vázán k jeho otočnému
bodu. Tato realizace je optimálním a pravděpodobně jediným řešením úlohy v
prostředí Free SketchUp.

Plugin Ruby nepoužívá podprocesové funkce, které by mohly být použily k
implementaci zpracování toku dat ze serveru v samostatném vláknu. Bohužel,
podprocesové funkce uvnitř SketchUp nefungovaly i když samotný Ruby má jejích
podporu. V důsledku toho bylo přijímání dat ze serveru slabě implementováno.
Funkce přijímání dat byla implementována pomocí časovače, což způsobuje
zpoždění ve zpracování dat a komplikuje program. Toto řešení není optimální.

Implementace serveru je nejúspěšnější. Použitím podprocesových funkcí a
pole soketů bylo dosaženo dobré podpory několika klientů najednou. Nevýhody na
straně serveru: program nemůže určit IP adresu počítače v síti a nemůže si vybrat
volný port. Ruční zadání těchto parametrů snižuje rychlost a jednoduchost interakce
s aplikací.

Výhodou aplikace C# klientu je jednoduché rozhraní pro připojení k řízení
serveru a robota; implementace informačního okna; příjem a zpracování dat ze
serveru ve vláknové funkci.

Nevýhodou je slabá implementace „Continuous mode"; použití neplatných
hodnot v polích může způsobit výjimku (dvojité tečky nebo dvojité čárky). Což není
velký problém, ale stále není opraveno.

Obecnou nevýhodou klientů a serveru je to, že neexistuje žádné dynamické
přidělení paměti pro přijatí rámců, když server přijímá zprávy od klientů nebo
naopak Jediným řešením bylo poslat 2 rámců, jeden s velikostí zprávy, druhý se
samotnou zprávou, což snižuje přenosovou rychlost, a proto nebylo
implementováno.

Stručně řečeno, nastroj implementuje počáteční úlohu - vytvoření
jednoduchého simulačního nástroje pro vizualizaci stacionárního robota v aplikaci
SketchUp. Níže jsou uvedeny možné nápady, jak tento nástroj vylepšit.

Vytvořit univerzální řešení pro import různých robotů; upravit plugin Ruby
tak, aby ovládal více robotů ve scéně současně; vytvořit klient, který rozumí
programovacím jazykům (jako například KRL) a interpretuje kód pro plugin Ruby;
přidat rozhraní pro připojení k programovatelnému logickému automatu. Nakonec
tato technologie může vést k vývoji vlastní platformy pro vytváření digitálních
továren založených na Free SketchUp.

Klíčová slova

SketchUp, Ruby, API, robot, KUKA, vizualizace, parametrický pohyb, TCP, IP,
socket, síťové rozhraní, server, klient.

Bibliographie citation:

IUTKIN, Egor. Sketchup visualization of stationary robots. Brno, 2020. Also
available from: https://www.vutbr.cz/studenti/zav-prace/detail/127093.
Bachelor's thesis. Brno University of Technology, The Faculty of Electrical
Engineering and Communication, The Department of Control and Instrumentation.
Supervisor: František Burian.

Bibliografická citace:

IUTKIN, Egor. Vizualizace stacionárního robotu ve Sketchup. Brno, 2020.
Dostupné také z: https://www.vutbr.cz/studenti/zav-prace/detail/127093.
Bakalářská práce. Vysoké učení technické v Brně, Fakulta elektrotechniky a
komunikačních technologií, Ústav automatizace a měřicí techniky. Vedoucí práce
František Burian.

https://www.vutbr.cz/studenti/zav-prace/detail/127093
https://www.vutbr.cz/studenti/zav-prace/detail/127093

P r o h l á š e n í

„Prohlašuji, že svou bakalářskou práci na téma Sketchup visualization of
stationary robots jsem vypracoval samostatně pod vedením vedoucího bakalářské
práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou
všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti
s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob,
zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv
osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a
následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních
důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku
č. 40/2009 Sb.

V Brně dne: 7. června 2020
podpis autora

ACKNOWLEDGEMENT

I would like to thank my supervisor of the bachelor thesis Ing. František
Burian, Ph. D., for his help, his professional view, quick answers to my questions,
good recommendations and good theoretical support of my ideas and suggestions.

In Brno: 7. June 2020
author's signature

Content
1. Introduction 13
2. SketchUp 14

2.1 Pricing policy 14
2.2 SketchUp API 15

2.2.1 Scripting tools in SketchUp 15
2.2.2 Ruby - SketchUp interaction 15

3. TCP/IP model and protocol stack 17
3.1 Network Access Layer 18

3.1.1 Physical layer 18
3.1.2 Link layer 18

3.1.2.1 Logical Link Control [LLC) 19
3.1.2.2 Media Access Control (MAC) 19

3.2 Internet layer 20
3.2.1 IP protocol 20
3.2.2 DCHP protocol 22
3.2.3 ARP protocol 23
3.2.4 ICPM protocol 23
3.2.5 Routing 23
3.2.6 Fragmentation 25

3.3 Transport layer 25
3.3.1 UDP protocol 26
3.3.2 TCP protocol 27

3.4 Application layer 29
3.4.1 FTP protocol 29
3.4.2 DNS protocol 29

3.5 Conclusion 30
4. Socket interface 31
5. Robot KUKAKR6 33

5.1 Real robot specification 33
5.2 3D model of KUKA KR6 35

6. Implementation 39
6.1 TCP/IP server in C++ 39

6.1.1 Required headers 39
6.1.2 Initialize the wsock32.dll library 40
6.1.3 SOCKET function 40
6.1.4 SOCKADDRJN structure 41
6.1.5 BIND function 42
6.1.6 LISTEN function 42

7

6.1.7 ACCEPT function 43
6.1.8 Create Thread function 43
6.1.9 RECV function 44
6.1.10 SEND function 45
6.1.11 CLOSESOCKET 45

6.2 C# Test Client 45
6.2.1 Headers 46
6.2.2 Socket declaration and connection setup 47
6.2.3 Sending data to the server 47
6.2.4 Receiving data from the server 48
6.2.5 Close client application 49

6.3 Rubyplugin 50
6.3.1 Ruby plugin menu 50
6.3.2 Ruby socket interface 52
6.3.3 Robot movement implementation 53
6.3.4 Robot import 54

7. Tests and results 55
7.1 Server 55
7.2 C# Test client application 56
7.3 Ruby client 57

8. Conclusion 58

8

Abbreviations
Abbreviation:

API ... Application programming interface
ARP ... Address Resolution Protocol
BUT ... Brno University of Technology
DCHP ... Dynamic Host Configuration Protocol
DNS ... Domain Name System
FEEC ... The Faculty of Electrical Engineering and

Communication
FTP ... File Transfer Protocol
HTTP ... Hyper Text Transfer Protocol
IANA ... Internet Assigned Numbers Authority
ICPM ... Internet Control Message Protocol
IEEE ... The Institute of Electrical and Electronics Engineers
IMEI ... International Mobile Equipment Identity
IP ... Internet Protocol address
IPv4 ... Internet Protocol version 4
IPv6 ... Internet Protocol version 6
KRL ... KUKA Robot Language
LLC ... Logical Link Control
MAC ... Media Access Control
MPLS ... Multiprotocol label switching
NAT ... Network Address Translation
TCP ... Transmission Control Protocol
SMTP ... Simple Mail Transfer Protocol
UDP ... User Datagram Protocol
UI ... User Interface

9

List of Figures
Figure 2-1 SketchUp API default code 15
Figure 2-2 Entities of the "Model" class [4] 16
Figure 3-1 Layers of TCP/IP model 17
Figure 3-2 Frame transfer structure 19
Figure 3-3 The process of obtaining an address in a network 22
Figure 3-4 Routing 24
Figure 3-5 UDP protocol 26
Figure 3-6 TCP protocol 28
Figure 3-7 FTP servers at the BUT 29
Figure 3-8 Domain name and IP address 30
Figure 3-9 TCP / IP protocol stack communication model 30
Figure 4-1 Socket point to point communication principle (part 1) 31
Figure 4-2 Socket point to point communication principle (part 2) 32
Figure 5-1 Rotation direction of robot axes [11] 34
Figure 5-2 Workspace, side view [11] 34
Figure 5-3 Workspace, top view [11] 35
Figure 5-4 3D model of the KUKA KRC6 35
Figure 5-5 Adding central rotation points - pivot points, a) before b) after.. 36
Figure 5-6 Changing the origin of an axis in a SketchUp component 36
Figure 5-7 Components hierarchy in SketchUp 37
Figure 5-8 Hierarchical structure in SketchUp 38
Figure 6-1 Communication scheme 39
Figure 6-2 Initialize the wsock32 library 40
Figure 6-3 Socket declaration 40
Figure 6-4 SOCKADDRJN structure 41
Figure 6-5 SOCKADDRJN client structure 41
Figure 6-6 BIND function 42
Figure 6-7 "listen" function 42
Figure 6-8 "accept" function 43
Figure 6-9 Storage new client socket in sockets array 43
Figure 6-10 "CreatThread" function 44
Figure 6-11 "recv" function 44
Figure 6-12 "send" function 45
Figure 6-13 "closesocket" and "WSACleanup" functions 45
Figure 6-14 C# test application 46
Figure 6-15 C# headers 46
Figure 6-16 C# socket declaration 47
Figure 6-17 C# SendData function 48

10

Figure 6-18 ServerResponse function 49
Figure 6-19 Close client application 49
Figure 6-20 Plugin menu in SketchUp 50
Figure 6-21 SketchUp UI 51
Figure 6-22 Create submenu in SketchUp 51
Figure 6-23 Create input window in SketchUp 51
Figure 6-24 "listening_start" function 52
Figure 6-25 "listening_stop" function 52
Figure 6-26 "joint_rotation" function 53
Figure 6-27 "do_transform" function 54
Figure 6-28 "Add_robot" function 54
Figure 7-1 Server console application 56
Figure 7-2 «info» message. C# client 57

11

List of Tables
Table 2-1 SketchUp «Pro» and «Make» version comparing [1] 14
Table 5-1 UDP header 26
Table 5-2 TCP header 27
Table 3-1 Technical data [11] 33
Table 3-2 Axis range [11] 33

12

l.INTRODUCTION
When it comes to the parametric visualization of robot motion, the first thing

that comes to mind is a visual demonstration of the robot's capabilities, its working
range, accuracy, maximum reach and speed; secondly, a user may consider
visualizing the technological process in which the robot is involved; it may also
involve training and testing software code.

In any case, the range of applications for this technology is wide, but programs
that enable virtual robot management usually come at a high price and are usually
only available to large companies. In practice, the visualization of parametric robot
movements may be necessary for smaller companies or organizations such as
universities and special schools.

The first objective of this thesis is to study the mechanism of interaction
between the user and the virtual robot within the free version of SketchUp Make
2017, which has a large number of tools for creating 3D objects, and above all, it has
its own API that allows extension the functionality of the program through the use
of Ruby code. The second goal is to test the possibility of creating a plugin that can
interact with objects within the SketchUp scene in real time and exchange data with
external applications through the standard communication model (in our case,
through the TCP/IP protocols). The implementation of this task may lead to a more
detailed investigation of the possibility of using the SketchUp interface to visualize
industrial processes, to realize digital twins or digital factories based on it.

13

2.SKETCHUP
SketchUp is a tool for creating 3D models of varying complexity and tasks, from

simple interior elements to building structures. It has a very intuitive interface that
can be managed for several hours. It also supports different languages and includes
courses and tips for beginners, which are built directly into the program interface.
Another feature of SketchUp is a parametric modeling program that allows you to
create fairly accurate models. It also supports a large library of ready-made scripts
and plugins that allow users to save time and design more complex objects. The user
extends the functionality of the program by using these plugins in parallel with an
increased level of understanding. The program also supports API - writing custom
plugins and scripts in the Ruby programming language. The pricing policy of the
company is very user-friendly; there are paid and free versions. Thanks to this
feature set, SketchUp is becoming one of the leaders in its segment.

2.1 Pricing policy
In 2012 Google sold SketchUp to Trimble Navigation. Now Trimble supports 4

versions of SketchUp [1]: Free, Shop, Pro, Studio
• The "Make" version wil l no longer be supported after 2017. In any case, it

has the same range of functions as a "Free" version. One difference between
the "Make" version and the "Free" version is that the "Free" version works
directly in the web browser and does not work without the Internet. "Make"
normal installation application.

• The "Shop" version ($119/year) differs from the "Free" version mainly by
more options for data import/export and the possibility of commercial use.

• The "Pro" version ($299/year) has more tools than the previous version.
• The "Studio" version ($1199/year) includes a special design tool that

allows you to perform energy, ventilation and heating analyses in the
building.

In order to compare the paid version and the free version, only a few important
aspects were selected.

Table 2-1 SketchUp «Pro» and «Make» version comparing [1]
Make Pro

Pricing free 299$ /year
Commercial use No Yes

Drawing No Yes
Dynamic Components No Yes

Extensions No Yes
Import/export 15 formats 33 formats

14

"Dynamic Components" - a powerful presentation tool that allows you to add
the dynamic attributes of the object, such as opening/closing doors, windows, lifting
shutters, etc. With this tool it is possible to implement the movement of the robot. If
the thesis had been done in the "Pro" version, this tool would most likely have been
used and the implementation would have been different from the current version.

"Extensions" - a large library of plugins and scripts that allows to extend the
SketchUp options. Also, as in the case of "Dynamic Components", there was no access
to the library.

2.2 SketchUp API
SketchUp API (Application Programming Interface) - is a set of Ruby modules

and classes that allow interaction with the SketchUp project at the Ruby
programming code level. This tool extends SketchUp's capabilities, allowing you to
access the project, create and edit models, work with geometry and SketchUp
instruments in general by creating tasks in Ruby code.

There are currently more than eighty classes in the SketchUp API. See
Literature [2] for a complete list.

2.2.1 Scripting tools in SketchUp

Writing your own code in the Ruby programming language is possible with
"Ruby Console". This console is the part of the SketchUp application. To open it, go
to the SketchUp top menu - "Window" - "Ruby Console". In any case, it is
inconvenient to use it for writing scripts.

For ease of working with Ruby code within SketchUp, is recommended to
install "Ruby Code Editor" [3]. This is an extension that allows you to write full-
format code, install libraries, use snippets, etc.

2.2.2 Ruby - SketchUp interaction

Ruby is an object-oriented language. All data are objects, so everything the
user works with has a class. Every function is a method.

Every SketchUp script begins by accessing three basic data structures:
Sketchup, Model, and Entities. When a new script is created, it has default code with
these structures. It is important to understand this code so that you can write your
own scripts.

1 # Default code, use or d e l e t e . . .
2 mod = Sketchup.active_inodel # Open model

3 ent = mod.entities # A l l e n t i t i e s i n model
s e l = mod.selection # Current s e l e c t i o n

Figure 2-1 SketchUp API default code

15

Module "Sketchup"
The methods in the Sketchup module provide access to the entire SketchUp

application. The most important method in the Sketchup module is "active_model".
This method returns the class Model that corresponds to a currently open project. If
the Sketchup module itself represents a SketchUp program, Model represents a
single SketchUp file (*.skp) that contains all the information about the objects it
contains. The methods in the Model provide information about the current design
and various ways to interact with it. See Literature [4] for more details.

Entity

Layers) Texture Vertex Drawing
clement Page(s) Definition

List Material(s)

Image Text Edge Face Group
Component
Definition

Component
Instance

Figure 2-2 Entities of the "Model" class [4]

For example, the entity "materials" controls the materials used in a current
project, the entity "layers" controls the visibility and behavior of the layer.

The "Entities" class is also the entity of the "Model" class (in Figure 2-2 it is
called "Drawing element"). It represents all the geometric objects in a SketchUp
project, i.e. "lines", "faces", "images", "text", "groups" and "components".

Module "Geom"
To change an existing geometry (its position, size, inclination), you need to use

the "Transformation" class located in the "Geom" module. The "Transformation"
class contains methods such as "Rotation", "Translation", "Scaling", which are used
to interact with an object.

Module "UI"
It contains a number of methods for creating simple user interfaces for data

entry. The user interface in SketchUp does not support the user entering or changing
data in real time. Calling the UI always stops the currently running program, which
actually limits the user's ability to interact with the program.

16

3. TCP/IP MODEL AND PROTOCOL STACK
TCP/IP model - a model of network organization that specifies the layers of a

network and the rules that must be followed to achieve proper data transfer
between computers, correct merging and separating of networks, and building large
composite networks.

The TCP / IP model is a de facto standard; no one has specified a standard for
this model. The model includes 4 base layers [5]:

Application layer

Transport layer

Internet layer

Network access
layer

FTP HTTP DNS SMTP other
protocols

TCP UDP other
protocols

IP DCHP i A R P ! ICPM other
protocols

Link sublayer

Phisical sublayer

Figure 3-1 Layers of TCP/IP model

Each layer contains more protocols than shown in Figure 3-1. For example, the
application layer contains more than 150 protocols [6], and it is not the goal to learn
all of them. For this paper had selected some of the most popular protocols that form
a basis of the TCP/IP model.

Short description of the layers:
1) Network Access layer. The layer is designed to interact with network

technologies that are not formally part of the TCP / IP protocol stack.
2) Internet layer. This layer enables addressing in the global network using

the IP protocol and additional protocols that ensure the data
transmission.

3) Transport layer. It contains the TCP protocol, which ensures data
transmission with a delivery guarantee, and UDP, which enables fast data
transmission, but without a delivery guarantee.

4) Application layer. Contains protocols that serve to work with the
received data and represent it to the user.

17

TCP/IP protocol stack - is not one protocol, but several protocols, of which TCP
and IP are the two most important. TSP / / IP is named after the two most popular
protocols from the stack

Each of the layers and the most common protocols will be discussed in more
detail in future chapters.

3.1 Network Access Layer
In fact, a layer consists of two layers that were taken from the OSI model.

3.1.1 Physical layer
The main task of the Physical layer is to represent bits of information in the

form of signals that are transmitted via the medium. How exactly the data
transmission takes place is not of interest. It is important to know only the
parameters of the data channel:

1) Data transfer environment
• Coaxial cable
• Twisted pair
• Optical cable
• Wireless technology

2) Bandwidth (bit / s)
3) Delay - time of message passing from the sender to the recipient
4) The number of errors
5) Type of communication channel

• Simplex
• Duplex
• Half Duplex

The physical layer does not analyze the information it transfers.

3.1.2 Link layer
Once the problem of transmitting bits over the communication channel has

been solved on the Physical layer, the question of how to extract a message from the
bit stream arises on the Link layer.

The main method of detecting a message in a bitstream is to insert a special
sequence of bytes or bits at the beginning and end of the frame. In Ethernet, for
example, the latter takes 56 bits and is an alternating sequence of 0 and 1.

18

LAYER

Internet

Link

Phisical

HOST 1 HOST 2

frame packet frame
heade packet footer

frame
heade packet frame

footer
/

Figure 3-2 Frame transfer structure

The task of the Link layer is also to address and consistently access the channel
- if there are several devices on the communication channel, it must determine for
which device this message is intended and which of the hosts occupies the channel
in case of a simultaneous request for data transmission.

3.1.2.1 Logical Link Control (LLC)

This sublevel of the Link layer is responsible for data transmission - frame
generation, error handling. The level is common to the various technologies. LLC
frame is called Protocol Data Unit, PDU and described in the IEEE 802.2 standard.

3.1.2.2 Media Access Control (MAC)

The MAC address is used to identify physical network interfaces of network
devices (routers). It is used to define the physical interface for which the data is
intended. MAC Addresses are used in common Ethernet and WI-FI Link layer
technologies.

MAC addresses are regulated by the IEEE 802 standard. The address length is
6 bytes - 48 bits. The recording format consists of six hexadecimal numbers
separated by a colon or dash:

30 - SA - 3A - AB - FF - 32
30: 5A: 3A:AB:FF: 32

In a network segment the MAC addresses must be unique. If there are two
computers with the same MAC address, one of the two computers will not work.

Assign MAC addresses:
• An address is assigned by the hardware manufacturer. The assignment

rules are described by the IEEE 802 regulations.
• An address is assigned by the network administrator.

The second bit of the high byte in the MAC address indicates that an address is
assigned by the manufacturer - 0 or an address is assigned locally - 1 .

To find out the MAC address of your computer in Windows, use the command
"ipconfig / all" in the command line.

19

3.2 Internet layer
The main task of the Internet layer is to coordinate differences in technology

on the Network Access Layer. The layer provides the ability to build a large composite
network based on individual local networks. Even if the individual networks use
different technologies of 'the Link layers such as Ethernet, wi-fi, 5G/4G/3G, MPLS etc.
In other words, it enables data transfer from an Ethernet network to a WI-FI
network.

To negotiate addresses on the Internet layer, the concept is used when the
address is divided into global and local.

Local address - the Link layer addresses. It is associated with a specific data
transfer technology. For example, MAC addresses in Ethernet or IMEI addresses in
4G. These addresses cannot be used to build a composite network that uses different
technologies.

Global address - an address that is not associated with the Link layer
technology and allow to build composite networks. In TCP / IP protocol stacks, these
are known as IP addresses.

The tasks of the Internet layer:
1) Internetworking - theory of combining small local networks into global

networks.
2) Address aggregation - working with addresses blocks, not with individual

addresses (address block - network).
3) Routing - i n large networks there are always several active paths for data

transmission from the sender to the receiver. In this situation, the
question of choosing the optimal data transmission path arises.

4) Protects the composite network from overload.
5) Detects and prohibits the forwarding of "garbage" packets in the

network.

3.2.1 IP protocol
The purpose of the IP protocol is to combine networks that use different Link

layers technologies and uniquely identify the device on the network by means of an
IP address. The IP protocol allows data transmission without any guarantee of
delivery and correct message sequence. IP protocol - the protocol uses data
transmission without establishing a connection. If the packet does not arrive for any
reason, no attempt is made to notify the sender and no attempt is made to request
the packet again. The error must be corrected by higher layer protocols.

IP address - used to uniquely identify computers in global network [7].
IP version:

• IPv4 - address length 4 bytes
• IPv6 - address length 16 bytes

20

How IPv4 addresses work:
The length of 4 bytes is 32 bits. To facilitate work with IP addresses, they are

represented by 4 parts, each part has 8 bits. This part is called an octet. Each octet is
written in decimal format. The entry form consists of 4 octets separated by dots.

32 bits

11000000 10101000 00011111 01100101
' . M , M , ' ' . 1

192 168 31 101
192.168.31.101

Maximum number of IPv4 addresses is 2 3 2 = 4 294 967 296. This number of
IP addresses was not sufficient for the whole world. Now almost all IP addresses of
version 4 are distributed. Solution - using IPv6 or NAT technology.

Subnet - a set of computers that have the highest part of the IP address the
same.

192.168.31.101
192.168.31.102
192.168.31.103

Highest bits - the number of the subnet.
Low bits - the host number - number of individual computers on the network.
To find out where the subnet address and where the host address is, use the

subnet mask. The mask has the same length as the IP address and contains 1 where
the network number is set and 0 where the host number is set.

To calculate the subnet address from IP and mask, use the AND operation:

IP decimal: 192.168.31.101
IP binary: 11000000.10101000.00011111.01100101

AND
Mask: 11111111.11111111.11111111.00000000
Subnet binary: 11000000.10101000.00011111.00000000
Subnet decimal: 192.168.31.0
In practice, you write the mask with the IP address using a slash:

192.168.31.101/24, which means that the last 24 bits are part of the subnet and the
first 8 are the host number.

Reserved IP addresses [8]:
• 0.0.0.0 - current host. Used when the computer has not yet received its

IP address

21

• 255.255.255.255 - limited broadcast address (all hosts in the current
subnet)

• 127.0.0.0/8 - "Loopback" network for testing. Data is not sent to the
network but comes back to the computer. Often used 127.0.0.1 -
localhost

• 198.18.0.0/15- used for benchmark testing of inter-network
communications between two separate subnets

• 169.254.0.0 - link-local address is a network address that is valid only
for communications within the network segment or the broadcast
domain that the host is connected to

• 10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16 - local communications
within a private network. Not routed on the Internet, used internally
without contacting IANA. It is possible to connect a network built based
on private addresses to the Internet by NAT technology

3.2.2 DCHP protocol
When you connect your computer to a new network (for example, when you

connect to wi-fi in a restaurant), it must be given an IP address to work on the
network. The address can be assigned manually or automatically using the DHCP
protocol.

DCHP client-server technology is used to assign IP addresses.
• DCHP client - computer that receives an IP address
• DHCP server - assigns IP addresses to computers and maintains a table

of dedicated addresses to avoid duplication
•

DCHP client DCHP server
(r / "\

dicover DCHP sgrv e r

offer IP address

_ACK, IP address
ACK, IP address

I < I

Figure 3-3 The process of obtaining an address in a network

When a client connects to a new network that it has no information about, the
client sends a request to the broadcast address to browse the DCHP server. After
receiving the request, the DHCP server sends its IP address to the new client. After

22

that, a few confirmation messages go out. The IP address is assigned in the network
for a limited time. After the time expires, the IP is taken back from the user and can
be passed on to another client.

3.2.3 ARP protocol
Allows you to automatically determine the MAC address of a computer based

on its IP address. An ARP request with an IP address is sent to the broadcast MAC
address (FF:FF:FF:FF:FF:FF). Al l computers on the subnet receive this request. A
computer that finds out its IP address sends an ARP response with its MAC address.

The ARP protocol allows you to find out the MAC addresses of computers that
are on the same network. Reason: The broadcast traffic does not go through the
router, so computers in another ARP subnet do not receive the request.

ARP table - a table that stores the correspondence of MAC -IP addresses and
their type (static - set manually, dynamic - received by an ARP request).

"arp -a" - Windows command to display the ARP table on the computer.

3.2.4 ICPM protocol
IP protocol used only for data transmission over a network without delivery

guarantee. Sometimes it is necessary to inform sides about errors that occurred
during data transmission, or to test or diagnose a low-layer network without using
higher layer protocols. The ICPM protocol is used for this purpose.

"ping" - Windows command that informs if a computer is available on the
network.

"tracert" - Windows command that allows to determine the route from the
sender to the receiver. Returns a list of all routers the packet passes through.

3.2.5 Routing
Hardware that works on the Internet layer is called a router. Routers are used

to connect local networks to a global network. Each device has several connection
interfaces through which computers connect to it. Each of these interfaces has its
own local and global address.

Routers are used to deliver data from one network to another. It also analyzes
the topology of the network in which it operates. The structure of the global network
may change - new routers may appear; old routers may fail. The next important task
is load balancing in the network - the efficient use of network bandwidth. The path
search for each data packet is performed independently.

Figure 3-4 explains how data is transferred from one network to another.

23

IP: 192.168.1.212
MAC: BBB

IP: 10.255.7.18
MAC: RRR

IP: 172.18.0.34
MAC: FFF

o o o o o o IP: 100.64.0.1 ̂

IP: 192.168.!
MAC: EEE

MAC: KKK

IP: 10.255.7.17
MAC: PPP

IP: 100.64.0.6
MAC: SSS

o o o o o o
IP: 172.24.0.2
MAC: LLL

IP: 172.24.0.0/24

PC2

IP: 172.24.0.112
MAC: YYY

Figure 3-4 Routing

Data transfer principle [9]:
To transfer data from PCI to PC2, it must know an IP address of PC2. First PCI

packs the packet into headers with its own IP address, the IP address of the
destination computer (PC2), its own MAC address and MAC address of the next
router.

Abstract scheme:

Source IP address Destination IP address
MAC address of current package owner MAC address of next router

24

First step - packet transfer from computer to router:
192.168.1.1 172.24.0.112

AAA BBB
Now data on the first router. It has two ways to deliver data: via subnet

172.18.0.0/24 or 10.0.0.0.0/24. To select a path, use the values of the metric field in
the routing table. Metric is a number that describes the distance and number of
routers from one network to another. For example, it was decided that subnet
172.18.0.0/24 is better.

Second step - packet transfer from one router interface to another:
192.168.1.1 172.24.0.112

BBB CCC
Third step - packet transfer from one router to another:

192.168.1.1 172.24.0.112
ccc FFF

It continues until the last router receives a packet and finds the same subnet
address as the destination address in its own router table and sends the packet from
that network directly to the computer.

The router table contains IP and MAC addresses of networks and other routers
connected to the interfaces of this router.

Last step:
192.168.1.1 172.24.0.112

LLL YYY

3.2.6 Fragmentation
Splitting a single package into several segments. If the packet size exceeds the

maximum packet of the interface it is currently passing through, it is split into
smaller segments. Fragmentation at the Internet layer is hidden from the sender and
receiver. You do not need to know which networks the data must pass through and
what size of data can be sent over these networks.

3.3 Transport layer
The Transport layer has the task of transferring data between processes on

hosts. When the data packet is received on the computer, it must understand for
which application or process it is intended. "Port" is used to address specific
processes on a single computer. A port is a number from 1 to 65535 that represents
the "address" of an application or process on the computer. Port numbers on a single
host must not be repeated. To connect to the service on another computer, the
original computer must know the IP address of the computer and the port on which
the service is running.
A port is written after the address with a colon:

25

192.168.31.101:8081

IP address port
The Transport layer provides a "pass-through connection" between two hosts.

There can be multiple network devices between two interacting hosts, but they do
not interfere with the Transport layer. The Transport layer allows you to hide details
of network interaction from developers.

3.3.1 UDP protocol
The UDP protocol specifies the port of the sender and the port of the receiver.

It does not provide a delivery guarantee, and there is no guarantee that the sequence
of packets will be followed.

Table 3-1 UDP header
source port destination port

len checksum
Data

• len - total length of the UDP header
• checksum - is used to check whether the data is supplied correctly. If the

checksum calculated by the receiver does not match the checksum in the tcp
header, this segment is removed.

• data is followed after UDP header

26

3.3.2 TCP protocol
Both the TCP protocol and the UDP protocol are used to specify the port of the

sender and the port of the receiver. The TCP protocol takes care of the data
transmission and guarantees the correct order of the packets.

Before data can be sent via the TCP protocol, a connection must be established.
The connection is established by setting a SYN flag in a TCP header. The connection
fulfills the following functions:

• Agreement on the numbering of the segments
• Agreement on the maximum segment sizes

Proper connection termination consists of setting a FIN flag and a two-way
confirmation on the hosts. An RST flag is used for one-way (emergency) connection
termination.

Table 3-2 TCP header
source port destination port

sequence number
acknowledgement number

len reserved flags window
checksum urgent pointer

[options]
data

- sequence number - first byte number in the segment. Specifies the location of the
segment in the byte stream

- acknowledgement number - number of the next expected byte
- len - total length of the TCP header
- flags:

o URG - flag indicates that packet contains urgent data that needs to send
to application first. This flag is used with the urgent pointer

o ACK - acknowledgement
o PSH - indicate that data must be passed to the application without

writing to the buffer
o SYN - establish a connection
o RST, FIN - break a connection

window - in this field, the recipient specifies how much data it can accept
checksum - is used to check whether the data is supplied correctly. If the
checksum calculated by the receiver does not match the checksum in the tcp
header, this segment is removed
common options:

o maximum segment size
o selective confirmation

27

The TCP protocol receives a stream of bytes from an application. This stream
is divided into separate segments and sent separately to a receiver. A receiver
accepts these segments, collects them into one large stream of bytes and sends this
stream of bytes to an application. After a segment is sent, a timer is started on the
transmitter side. If no acknowledgement response is received after the timer
expires, the segment is retransmitted. In practice, an acknowledgement response
from the receiver is not sent after each segment, but only after several segments
have been received to save time (cumulative acknowledgement). There is also a
selective acknowledgement, which is used to acknowledge a single segment from
the stream.

Confirmations and resending are not sufficient for reliable data transmission.
This method only guarantees the delivery of segments, not their sequence.
Therefore, each segment is numbered to avoid duplication and to maintain their
order in the byte stream when a segment is reached faster than the previous one.
The numbering is by the first byte of the segment from the byte stream.

SENDER RECEIVER

SYN

SYN

.segment l .QhvŕP
ACK, 1500 byte

segment? K n n h . t r

ACK, 3000 byte S»*
<:

segment 3. 30QQ byte
ACK, 4500 byte

•*e
segment 3, 3000 bvtP

ACK, 4500 byte >

. FIN

•< FIN

ACK

• • connection setup

• segment 1 starts with byte 0
and its lenght is 1499 bytes

' • ACK-acknowledgment.
• 1500 byte - next expected byte

• segment with the first byte
1500 was lost
• resend if there is no
acknowledgment from receiver

segment with the first byte
\ 3000 already been recieved

remove dublicate segment

> • connection closing

Figure 3-6 TCP protocol

28

Interaction with the transport layer
The Transport layer is the first level with which the programmer can interact

with. The interface of the Transport layer, which allows you to write programs for
the network, is called the "socket interface". The socket interface is discussed in the
next chapter.

3.4 Application layer
The application layer is used for the interaction between network applications

and data that represent for users. Examples of such applications can be a Web
browser that uses the HTTP protocol to transfer http files and demonstrate Web
pages, or mail services that use the SMTP protocol to transfer mail. In this paper
some information about two protocols is given to get an idea of what kind of
protocol works at the Application layers.

3.4.1 FTP protocol

The protocol uses the client-server model. The server gives the client access to
its file system - the catalog structure in which the files are located. The Client must
authenticate, enter a user name and password, and then the Client is given access to
the structure where it can change directories, upload, modify and download folders
and files. The URL is used to address the files. URL is a path to the file written as:
ftp://lockalhostcom/

An example of a program that uses the FTP protocol is FileZilla. Example of an
FTP server at a university BUT Figure 3-7. The student gets access to FTP servers
after user identification.

- Network Location $)
. 203 563

WDATA (PO t >' (Wd.feec. vuAr.cz glomes.id\iutbr....

app (. f e e t .v ut f ar ,c r) (Q:) doc (^Vfeza.feec.vutbr.g) (ftp
' — & ^ ™ "1

402 « free of 512 GB 250 GB free of 512 GB

UREL(U:) 2D3568

10,5 GB free of 1, HTB • ^ 8
fltakjaddc2.ro. vutfr .aTGIGAPISKz\..

Figure 3-7 FTP servers at the BUT

3.4.2 DNS protocol

For addressing on the Internet, it is difficult for users to use a numerical
representation of addresses. It is easier to remember a meaningful letter name. This

29

ftp://lockalhostcom/
file:///iutbr
http://fltakjaddc2.ro

is done by the DNS protocol, which allows the use of letter names that correspond
to the IP addresses of servers and computers.

"nslookup" - Windows command that allows to find out the address of a
computer or server by its domain name. If you set "nslookup www.fekt.vut.cz" at the
command line, it will say that for the domain name "www.fekt.vut.cz", an address
will correspond to "147.229.71.28". Use this address in the URL field of a browser
to open our faculty website.

<r -> C • 147.229.71.28

• FEKT VUT - Home - 147.229.71.28

Q. 147.229.71.28 - IIouck Google

Figure 3-8 Domain name and IP address

3.5 Conclusion
LAYERS

Application

Transport

H O S T I

data

TCP
header data

Internet IP
header

TCP
header data

Link
•> r > 1 \ t \

Frame IP TCP data Frame
header header header

data
footer

* . • >

ROUTER

data

TCP
header data

IP
header

TCP
header data

Frame
header

IP
header

TCP
header

data

HOST 2

data

TCP
header data

>

IP
header

TCP
header data

Frame
footer

* f >
Frame IP TCP data Frame
header header header

data
footer

^ L J

J
Figure 3-9 TCP / IP protocol stack communication model

The data is transferred between two hosts (computers) via network routers.
There may be several routers on the path (in our case one). In most cases, a router
is a device that operates on the first three layers of the TCP/IP model. On the Link,
Internet and Transport layers and does not process received data packets, but only
redirects them. However, there are also routers that work on the Application layer.
These could be content filters, for example - devices that analyze data traffic. Content
filters can restrict access to certain resources.

TCP headers - the first layer containing the address of the specific application
on the recipient host for which the data is intended (port). The next layer, the IP
header, contains the global address of the host to which the data is to be delivered.
The last layer is the frame header/footer, which adds local network device
addresses (MAC addresses), which send packets from one router to another until a
device with the specified global address is reached. The MAC addresses along the
path change after each router, and the global IP address does not change.

30

http://www.fekt.vut.cz
http://www.fekt.vut.cz

4.SOCKET INTERFACE
Socket is an interface (standard) for the interaction between programs and

the TCP / IP Transport layer [10]. Sometimes a socket is called the "endpoint" of
network communication. The communication model that uses the socket interface
is the server-client communication model.

Server - a program on a computer with a known IP address and a port that
waits for a connection request in passive mode.

Client - a program that connects to the server.

Socket operations are divided into several stages:
The first stage — sockets creation:

1) Socket - creating a new socket
2) Bind - binding an IP address and port to a server socket
3) Listen - declaring that the socket is ready to connection

The second stage — establish connection:
4) Accept - accepting a connection request from the client
5) Connect - request to establish a connection with server

The third stage — data transmission:
6) Send - send data over the network
7) Receive - get data over the network

The fourth stage — closing a connection
8) Close - closing a connection

STEP 1:
SOCKET

declaration

STEP 2:
BIND

SERVER CLIENT

(S O C K E T) [S O C K E T]

SOCKET
BIND

192.168.31.1:81

(S O C K E T)

Figure 4-1 Socket point to point communication principle (part 1)

31

STEP 3:
LISTEN

my address
192.168.31.1:81

(SOCKET Y
l 192.168.31.\&\J~

STEP 4:
ACCEPT

and CONNECT

DUBLICATE
SOCKET

(S O C K E T)

\\ let's go!

SOCKET
CONNECT

192.168.31.1:81

SOCKET
CONNECT

192.168.31.1:81

STEP 5:
SEND

and RECEIVE

established connection

send me them i have data
for you

f SOCKET Y
V 192.168 31.1:81/^

>
SEND SOCKET

DUBLICATE ^ RECEIVE
SOCKET

CONNECT
192.168.31.1:81

f packet)

STEP 6:
CLOSE

CONNECTION

f SOCKET Y
I 192.168.31.1:8lJ~

(CLOSE \
I SOCKET J

CLOSE
SOCKET J

Figure 4-2 Socket point to point communication principle (part 2)

32

5. ROBOT KUKAKR6

5.1 Real robot specification
This abstract gives the reader an idea of the real robot behavior. Its industrial

purpose, technical parameters. Its navigation, communication and programming
tools.

KUKA KRC6 R900 is an industrial robot that belongs to a group of small
robots with low payload, with high speed, repeatability and accuracy. The most
common purpose of this robot is painting, gluing, welding packaging, sorting and
measuring.

Table 5-1 Technical data [11]
Maximum reach 901.5 mm
Maximum payload 6 kg
Pose repeatability ± 0.03 mm
Number of axes 6
Mounting position Floor, Inverted, Angle
Robot mass 52 kg
Footprint 320 mm x 320 mm
Protection rating IP54
Ambient temperature during operation 5 °C to 45 °C

Axis range - range of motion in degrees or millimeters that defines the
maximum and minimum rotation angle for each axis.

Table 5-2 Axis range [11]
Axis 1 ± 170°
Axis 2 + 45° /-190°
Axis 3 + 156°/-120°
Axis 4 ± 185°
Axis 5 ± 120°
Axis 6 ± 350°

Workspace - define area within which a robot may move and how far it can
reach. Workspace based on the axis range.

33

•Q A1

Figure 5-1 Rotation direction of robot axes [11]

Dimensions: mm

Figure 5-2 Workspace, side view [11]

34

Figure 5-3 Workspace, top view [11]

The workspace and range of motion of each j oint tells you how far it can reach.
This information results in correct robot positioning in SketchUp dimensions. It can
be used to control the collision of robot parts within the motion.

5.2 3D model of KUKA KR6
The 3d model of the robot as a part of the thesis was provided by the BUT. The

original format of the model is "stl".

Figure 5-4 3D model of the KUKA KRC6

35

To implement the robot motion in SketchUp, it was necessary to transfer the
control method of a real robot in three dimensions. The design of this "control
method" is based on a simple term "changing the position of an industrial robot",
which primarily means changing the angles of the individual joints. In order to
represent a similar working principle in the virtual model, it was decided to redesign
the model and to add rotation points in places where the joints are connected. These
points are used as pivot points inside SketchUp.

Figure 5-5 Adding central rotation points - pivot points, a) before b) after

Axis of rotation of a component in SketchUp, formed by a pivot point on a
model and a vector starting from that point. Further change in the angle of the joint
occurs around this vector.

Figure 5-6 Changing the origin of an axis in a SketchUp component

Each joint has its own pivot point and axis of rotation. These axes are firmly
connected to components.

Ultimately, the problem arises when a model part has to be held in the correct
position relative to other parts during rotation. The solution to this problem is based
on the ability to group objects (create components) and create a hierarchy in
SketchUp. Component can contain not only model objects, but also other
components. By inserting one component into another, a hierarchy tree is created.

[ft] robot_KUKA_KRC6_v3
[=]•• K <KUKA KR6>

< Pedesta >

[=]•••:: <Joint i >

SS < Rotation base>

S - SS <Joint 2>

SS < Big arrn>

SS <Joint 3>
SS < Elbow>

SS <Joint 4>
SS < Small arm>

SS <Joint 5>

I SB < Wrist>

SS <Joint 6>

SS < Handlers-

Figure 5-7 Components hierarchy in SketchUp

Now the robot consists of the 7 components - "KUKA KR6", "Joint 1" - "Joint 6".
Each component has its own pivot point and its own axis of rotation. Components
that are higher up in the hierarchy cover all components that are lower down. For
example:

"Joint 2" is the component consisting of the model part "Large Arm" and the
next component "Joint 3", at the same time the component "Joint 3" consists of the
model part "Elbow" and the next lower component "Joint 4".

Consequently, when the SketchUp target is directed at a component, it selects
all model parts below it in the hierarchy and allows all embedded elements to rotate
fixedly around the axes of the highest selected component.

This design has two advantages:
• for the motion execution only the rotation vector and angle for each joint

must be specified
• thanks to strong component binding, it is not possible to lose model

integrity

37

Figure 5-8 Hierarchical structure in SketchUp

6. IMPLEMENTATION
The data is transmitted according to the TCP/IP model and via socket

interfaces.

STEP 1

C# TEST CLIENT

STEP 2

C++ SERVER

STEP 3

<—•

RUBY
CLIENT

Figure 6-1 Communication scheme

Ruby client - the 3D model of the robot in SketchUp is controlled by a plugin
that simultaneously performs the function of a TCP client (it has a socket interface
through which it connects to the server) and a script that converts data received
from the server into angles for each joint of the robot.

C# test client - is a TCP test client that also uses a socket interface through
which it connects to the server. The C# application also has a user interface that
allows the user to set the angles for each joint. Data in the form of a string is
transmitted to the server via the TCP protocol.

TCP server - acts as a relay and does not process data received from clients.
Several clients can be connected to the server. Each client is connected to a separate
port and is processed in a separate thread. Connected clients are included in the
array of established connections - the array of sockets. When the server receives
data from the C# client, this message is forwarded to all other clients, one of which
is the Ruby client. In this case, other clients receive information from the server
about changes in the robot's position by one of the other active clients. The Ruby
client interprets the received data into angles and changes the position of the robot.

6.1 TCP/IP server in C++
To build a TCP / IP server in C++, the Winsock API will be used.

6.1.1 Required headers

#pragma comment (lib, "Ws2_32.1ib") — instructs the linker to add the library
"Ws2_32.1ib" to the list of library dependencies.

39

<WinSock2.h> — Winsock API. This header contains functions like accept,
bind, listn, recv, send etc.

<WS2tcpip.h> — the header file contains definitions introduced in the
WinSock 2 Protocol-Specific Annex document for TCP/IP, which contains newer
functions and structures used to retrieve IP addresses.

"iostream"
<string.h>

6.1.2 Initialize the wsock32.dll library
WSAData data;
WORD v e r s i o n = MAKEW0RD(2, 2) ;
i n t winsock = WSAStartup(version, &data);
i f (winsock != 0) {

s t d : : c e r r << "WSAStartup f a i l e d " << s t d : : e n d l ;
r e t u r n WSAStartup_failed;

>

Figure 6-2 Initialize the wsock32 library

WSAData data - structure contains information about the Windows Sockets
implementation.

MAKEWORD(a, b) - macro containing a version of the Winsock interface. Byte
a - version, byte b - under, version. Possible versions are 1.0, 1.1, 2.0, 2.2. Later
versions have new functions and extension mechanisms.

WSAStartup - function for initializing Winsock. Returns 0 if the initializing
was successful.

6.1.3 SOCKET function

If the socket declaration was successful, this function returns a socket
descriptor - a non-negative integer number. If an error was detected during the
operation, the function returns "-1" (INVALID_SOCKET).

Connections = socket(AF_INET, SOCK_STREAM., NULL);
i f (Connections == INVALID_SOCKET) {

s t d : : c e r r << "Socket Connections. Getting d i s c r i p t o r f a i l e d " ;
s t d : : c e r r << "Error: " << WSAGetLastErrorf) << std::endl;
WSACleanup();
return D i s c r i p t o r _ f a i l e d ;

}

Figure 6-3 Socket declaration

Parameters:
1) Address family

40

• AFJNET - The Internet Protocol version 4 (IPv4) address family
• AFJNET6 - The Internet Protocol version 6 (IPv6) address family.

2) Type - specification for the new socket.
• SOCK_STREAM - with establish connection. Socket type that use

TCP protocol.
• SOCK_DGRAM - without establish connection. Socket type that use

TCP protocol.
3) Transport protocol. If this argument is set to 0, then the default protocol

will be used:
• IPPROTO_TCP for SOCK_STREAM
• IPPROTOJJDP for SOCK_DGRAM

Two variables of SOCKET type must be declared for the server-client
connection. One is used to listen on an open port and the other to accept a
connection.

6.1.4 SOCKADDRJN structure

This structure contains parameters of the socket (server)

char s e r v e r _ i p [] = "192.168.0.101";
i n t server_port = 8082;
SOCKADDR_IN parameters;
parameters.sin_family = AF_INET;
parameters.sin_port = h t o n s (s e r v e r _ p o r t) ;
parameters.sin_addr.s_addr = i n e t _ a d d r (s e r v e r _ i p) ;

Figure 6-4 SOCKADDRJN structure

Structure methods:
sin_family - defines the address family (protocol suite). For TCP/IP it must be

A F J N E T or AFJNET6.
sin_port - contains port number
sin_addr - contains address (IP). To represent addresses in numerical form,

use the function inet_addr.

SOCKADDR_IN c l i e n t ;
i n t c l i e n t s i z e = s i z e o f (c l i e n t) ;

Figure 6-5 SOCKADDRJN client structure

SOCKADDRJN client - empty structure that wil l contain parameters of a new
client after connection.

41

6.1.5 BIND function

Function associates SOCKADRRJN structure, that contains server properties,
with a socket.

i n t error_bind = bind(Listenj (sockaddr*)¶meterSj sizeof(parameters));
i f (error_bind == SOCKET_ERROR) {

std::cerr << "Socekt Listen. Bind f a i l e d . " ;
std::cerr << "Error: " << WSAGetLastErrorQ << std::endl;
closesocket(Listen);
WSACleanupQ;
return B i n d _ f a i l e d ;

}
Figure 6-6 BIND function

Parameters of "bind" function:
1) Socket descriptor
2) SOCKADDRJN structure
3) SOCKADDRJN structure size

If successful, function returns 0, otherwise - "-1". If the return value is -1, it is
necessary to close the declared sockets.

6.1.6 LISTEN function

Function used by the server socket to inform the OS that it is waiting
("listening") for communication requests on the agreed port. Without such a
function, any request to communicate with this socket will be rejected.

i n t e r r o r _ l i s t e n = l i s t e n (L i s t e n , SOMAXCONN);
i f (e r r o r _ l i s t e n == SOCKET_ERROR) {

std : : c e r r << " L i s t e n i n g f a i l e d . " ;
s t d : : c e r r << "Er r o r : " << WSAGetLastErrorQ << std::endl;
c l o s e s o c k e t (L i s t e n) ;
WSACleanupQ;
return L i s t e n _ f a i l e d ;

}
Figure 6-7 "listen" function

Parameters:
1) Socket for "listening".
2) SOMAXCONN - is a positive integer that determines how many

communication requests can be received on the socket simultaneously.
This number is not related to the number of connections that the server
can support. This argument refers only to the number of connection

42

requests that arrive simultaneously. The number of connections
established may exceed this number.

6.1.7 ACCEPT function

The function extracts first connection request from the queue and returns a
descriptor to the new socket that has the same properties as the socket specified by
the first argument. This new descriptor must be used in subsequent data exchange
operations.

Connections = accept(Listenj (sockaddr*)&clientj & c l i e n t s i z e) ;
i f (Connections == SOCKET_ERROR) {

std: : c e r r << "Accept f a i l e d . " ;
std::cerr<< "Error: " << WSAGetLastErrorQ « std::endl;
closesocket(Connections);
WSACleanupQ;
return A c c e p t _ f a i l e d ;

}
Figure 6-8 "accept" function

Parameters:
1) "listening" socket descriptor.
2) Structure describing the address of the client socket through which he

has made his connection request. For TCP/IP networks this is the
sockaddr_in structure.

3) The size of this structure.

If the request queue is empty, the program switches to the state of waiting for
requests from clients. If acceptance by the client has failed, the function returns a
negative value. If the connection was successful, the new connection will place the
client into the socket array.

Connections_count[client_count] = Connections;
client_count++;

Figure 6-9 Storage new client socket in sockets array

6.1.8 CreateThread function

Provide function to work with a new client in the thread.
The ReciveMessage thread function implements the continuous reception of

messages from the client using the recv function and forwarding them to other
clients using the send function. These two functions are part of the infinite loop.

The ReciveMessage function accepts one parameter - the index belonging to a
client in the socket array.

43

HANDLE thread_handle = CreateThread(NULL., NULL,
(LPTHREAD_START_ROUTINE)ReceiveMessage, (LPVOID)(client_count - 1), NULL, NULL);
i f (thread_handle == NULL) {

std::cerr << "Thread hendl f a i l e d . " ;
std::cerr << "Error: " « WSAGetLastError() << std::endl;
WSACleanupO;
return Thread_failed;

>

Figure 6-10 "CreatThread" function

Parameters:
1) Security descriptor.
2) Initial stack size, in bytes. If this value is zero, the new thread uses the

default stack size of the executable program.
3] Function to be executed by the thread. In this case function

"ReciveMessage"
4] Variables that belong to thread function. In this case parameter is client's

descriptor.
5) Flag
6) Variable that will get an identifier (id) of the thread.

Function returns handle (descriptor) to the new thread or returns NULL if the
function failed.

6.1.9RECV function

Receive data from a network communication partner.

int recive = recv(Connections_count[client_id], buffer, sizeof(buffer), 0);
i f (recive == S0CKET_ERR0R || recive == 9) {

closesocket(Connections_count[client_id]);
std::cout << std::endl << "Client disconected.";
std::cout << "Client ID : " << (int)Connections_count[client_id] << std::endl;
break;

}
Figure 6-11 "recv" function

Parameters:
1) Security descriptor through which data is received
2) Pointer that points to a valid area of memory to accommodate received

data.
3) The length of this area in bytes.
4) Flags

The function returns the number of bytes declared in the third parameter. If
the message contains 0 bytes, this means that the client has completed the

44

connection. If the client disconnects, the server places the message with the client
ID in the console.

6.1.10 SEND function

Send data to a network communication partner.

for (int i = 9; i < client_count; i++) {
send(Connections_count[i], buffer, sizeof(buffer), NULL);

}

Figure 6-12 "send" function

Send data to all clients that are in socket array by looping.
Parameters:

1) Security descriptor for which data is sending
2) Pointer that points to a memory area that accommodate sending data
3) The length of this area in bytes
4) Flags

6.1.11 CLOSESOCKET

If the socket descriptor is a positive number, then the socket is not closed.

f o r (i n t i = 0; i < client_count; {
i f ((int)Connections_count[i] > 0) closesocket(Connections_count[i]);

}
i f ((int)Connections > 8) closesocket(Connections)j
i f ((i n t) L i s t e n > 0) c l o s e s o c k e t (L i s t e n) ;
WSACleanupQ;

Figure 6-13 "closesocket" and "WSACleanup" functions

Call the closesocket function if the descriptor number is greater than 0.
WSACleanup - test function. Do the same as closesocket function.

6.2 C# Test Client
This application implements a user interface for testing the server side.

Testing the correct client connecting disconnecting, sending data, real-time process
data flow, receiving and interpreting data.
Application contains next functionality:

• IP field for an IP address of server
• PORT filed for a port of the server process
• Connect - button to connect to the server

45

Info - information lines. Contains information about success connecting
and disconnecting
Set position - column where the user can enter his own values for each
joint
Current position - column containing information aboutthe current joint
position of the robot
Set - button that sends user data on the server
Reset - button that sends zeros for each joint on server
Continuous mode - sends data to the server every n millisecond
Exit - disconnect server. Close application

Robot Arm - client app • X

IP

Port

Wo

192 1680.100
3:32

Connect

Connection success
IP.port 192.158.0 100:8082

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

Set position

|45

|66S
|-17 34

\\2A

|B8

15

Current position

-13.5

|66.8
| 17 34

fsT

Set •
Continuous mode Exit

6.2.1 Headers

Figure 6-14 C# test application

- using System;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Net;
using System,Net.Sockets;
using System,Threading;
using S y s t e m , G l o b a l i z a t i o n ;
using System,Threading.Tasks;

Figure 6-15 C# headers

46

Non-standard libraries:
• System.Net and System.Net.Sockets are used to declare the client socket

and establish connection to the server
• System. Threading is used to create stream function, which processes data

received from the server in a separate thread
• System.Globalization is used to correctly convert string variable to float
• System. Threading. Tasks is used to implement delay; the function does not

stop the current thread, as in sleep method

6.2.2 Socket declaration and connection setup

When the user clicks the Connect button, the program reads and parses the IP
and port fields. Then a new socket is declared with the following parameters:

• Addressfamily.InterNetwork - declare that the connection wil l be
established by using IPv4 address

• SocketType.Stream - support two-way byte streams in establish
connection mode

• ProtocolType.Tcp - specify the network protocol that is used to
communicate with server. In this case is used TCP.

i p = I P A d d r e s s . P a r s e (i p _ b o x . T e x t) ;
por t = i n t . P a r s e (p o r t b o x . T e x t) ;

C l i e n t = new S o c k e t (A d d r e s s F a m i l y . I n t e r N e t w o r k j
SocketType.Stream, P r o t o c o l T y p e . T c p) ;

C l i e n t . C o n n e c t (i p , p o r t) ;

thread_ServerRespons = new T h r e a d (d e l e g a t e {) { ServerResponse{); }) ;
t h r e a d S e r v e r R e s p o n s . S t a r t () ;

Figure 6-16 C# socket declaration

ThreadJServerRespons - Execute the ServerReponsQ function in a separate thread.
This allows the client application to receive data from the server while processing
user data.

6.2.3 Sending data to the server

By clicking on the Set button, the data from the fields Joint 1 - Joint 6 are stored
in the string variables and passed as parameters to the SendData function.

By clicking the Reset button, the client sends a string of 6 zeros to the server.
This sets the robot to the default position.

47

SendData function
The function creates a buffer with the same length as the message, then

generates the bytecode of our message and writes the code into the buffer. To send
a message to the server, use the Send method. If the send was not successful, the
function will output a message, close the socket, and stop the thread function to
receive messages from the server.

void SendData(string message)

{
t r y

{
byte[] b u f f e r = new byte[message.Length];
b u f f e r = Encoding.UTF8.GetBytes(message);
C l i e n t . S e n d (b u f f e r) ;

}
catch

{
info_box.ForeColor = Color.Red;
I n f o b o x . T e x t = " E r r o r ! Connection l o s t \ n I P : p o r t " + i p + ":" + port;
i f (threadServerRespons != n u l l) thread_ServerRespons.Abort();
C l i e n t . C l o s e {) ;
LockWindows(false);

}
}

Figure 6-17 C# SendData function

6.2.4 Receiving data from the server

The ServerResponse - thread function is used to receive messages from the
server.

To receive messages, a 1024-byte buffer has been declared. It is obviously
impossible to know how long the bytecode from the server will be. A constant value
of 1024 bytes is used, assuming that the server will not be able to go beyond that.

When the byte code is received from the server, it is decoded and stored in a
string variable and then displayed on the application screen.

48

bytG[] buffer = new byte[1024];
f o r (i n t i = 0; i < buffer.Length; i++) { b u f f e r [i] = 0; }
t r y
{

f o r (; ;)
{

C l i e n t . R e c e i v e (b u f f e r) ;
s t r i n g message = Encoding.UTF8.GetString(buffer);
s t r i n g [] s t r L i n e s = message.Split<'\n');
this.Invoke((MethodInvoker)delegate ()
{

j o i n t l c . C l e a r () ;
j o i n t l _ c . A p p e n d T e x t (s t r L i n e s [0]) ;
j o i n t 2 _ c . C l e a r {) ;
joint2_c.AppendText(strLines[1]);
j o i n t 3 _ c . C l e a r () ;
joint3_c.AppendText(strLines[2]);
j o i n t 4 _ c . C l e a r (} ;
joint4_c.AppendText(strLines [3]) ;
j o i n t 5 _ c . C l e a r () ;
j o i n t S c . A p p e n d T e x t (s t r L i n e s [4]) ;
j o i n t 6 _ c . C l e a r () ;
joint6_c.AppendText(strLines[5]);

'})', '
}

}
catch
{

i f {thread_ServerRespons != n u l l) thread_ServerRespons.Abort()j
Client.--"" • •();
infobox.ForeColor = Color.Red;
infobox.Text = "Error! Connection lost\nIP:port " + i p + ":" + port;
LockWindows(false);

}
Figure 6-18 ServerResponse function

6.2.5 Close client application

By clicking the "Exit" button, the program closes the receive thread function,
closes the socket, and closes the application. Before the socket is closed, the program
sends an empty message, which is interpreted as disabling the client on the server
side.
p r i v a t e v o i d e x i t _ b u t t o n _ C l i c k (o b j e c t sender, EventArgs e)

{

i f (thread_ServerRespons != n u l l) t h r e a d S e r v e r R e s p o n s . A b o r t () ;
C l i e n t . C l o s e () ;
A p p l i c a t i o n . E x i t {) ;

}

Figure 6-19 Close client application

49

6.3 Rubyplugin
Ruby plugin performs 4 main functions at once:

1) Providing UI interface, to work with plugin
2) Socket interface
3) Robot movement implementation.
4) Import 3d model.

Before everything it is necessary to puts the «Ruby_robot_plugin» folder on the
following path:

C:\ Users\ %username \ AppData\ Roaming\ SketchUp\ SketchUp 2017\
SketchUp\ Plugins

* "AppData" folder is usually hidden, keep that in mind

In SketchUp top menu open "Window" and select "Extention Manager", click
on "Install Extension" and go to the « Ruby_robot_plugin » folder, that was placed in
the previous step. In this folder find and select the rbz file "su_robot_arm".

If everything is done correctly, in SkecthUp Top menu, in Extension will be new
plugin Figure 9-1.

6.3.1 Ruby plugin menu

$ Untitled - SketchUp Make Z017

File Edit View Camera Draw Tools Window Extensions Help

Figure 6-20 Plugin menu in SketchUp

The plugin includes 4 functional buttons:
• Listening Start - connect to the server
• Listening Stop - disconnect from the server, close socket
• Parameters - opens a window where user can change the IP address and port

of the server
• Add robot - import robot model into a project

50

Parameters

IP

Por t

X

192.16B.0.10C

8082

OK Cancel

Figure 6-21 SketchUp UI

The UI module is used to create the user interface in SketchUp. The
add_submenu method adds a submenu to a SketchUp top menu. The next method,
addjtem, adds click items to a submenu. Each item has its own ruby function that
starts the process when clicked.

unless f i l e _ l o a d e d ? (FILE)

Add p l u g i n menu
menu = UI.menu('Plugins 1). add_s.ubmenu ('Robot Arm")

Add submenu items

m e n u . a d d i t e r (' L i s t n i n g S t a r t ") { R o b o t a r m : : l i s t n i n g s t a r t () }
menu.add_iter('Listning Stop") { Robot_arm::listning_stop()}
menu.add_item('Parameters') { Robotarm: parameters()}
menu.add_item("Add robot") {Robotarm::add_robot()}
f i l e _ l o a d e d (FILE)

end

Figure 6-22 Create submenu in SketchUp

To allow a user to enter his own parameters and change connection settings
uses the inputbox method, which is also part of the UI module.

def Robotarm::parameters^)

prompts = ["IP", " P o r t "]

d e f a u l t s = [$ i p , S p o r t]

i n p u t = UI. inputbox(pirompts., d e f a u l t S j "Parameters")

$ i p = i n p u t [G] . t o _ s

Sport = i n p u t [1] . t o i

l i s t n i n g _ s t a r t ()

end

Figure 6-23 Create input window in SketchUp

51

6.3.2 Ruby socket interface

To use the socket interface, it is necessary to include the socket library:
require 'socket'

def Robotarm: : l i s t n i n g s t a r t Q
@buffer = ,,,r

@ruby_socket = TCPSocket. neLj{$ip,$port)
@ruby_socket.puts 1Sketchup socket connected'
puts "Ruby socket s t a r t "
@stimer = U l . s t a r t t i m e r d & f r e q j t r u e) {

begin

^rubysocket.read_nonblock(509j (Bbuffer)
Robotarm::do_transform()

rescue

end

}
end

Figure 6-24 "listening_start" function

The function listening_start uses a socket to connect to the server and receive
messages from it. The function works as follows: A new socket is declared using the
TCPSocket module and the "new" method, where the input parameters are the IP
address and the port of the server. $ip and $port are global variables of type string,
which store parameters about the server. The test message is sent to the server
using the "puts" method and the socket descriptor (@ruby_socket). This message is
used to inform the server that SketchUp has connected to it. Using the timer and the
"read_nonblock" method, the received message is written to the @buffer string
variable every @freq seconds. The first parameter of the read_nonblock function is
the size of the message, and the second is a variable to write the received message
into. After receiving a message from the server, the do_transform function is
executed, which is responsible for changing the position of the robot.

The listening_stop function stops the timer started in the listening_start
function and closes the ruby socket.

d e f Robot_arm::listning_stop()
UI . s t o p_t liner (rfflst inner)
@ruby_socket.close
puts "Ruby socket c l o s e "

end

Figure 6-25 "listening_stop" function

52

6.3.3 Robot movement implementation

Of an entire rb file, only the joint_rotation function interacts with the robot
model in SketchUp. The function has 2 input parameters:

• index - a number from 1 to 6, the index indicates the joint with which the
function now interacts.

• rotation_axis - vector around which the rotation takes place.

def Robot_arm::joint_rotation(indeXj rotation_axis)
Pant 1. F i n d and s e l e c t component by name

mod = Sketch up.acTive_model

ent = m o d . e n t i t i e s

»od.select on.add(Sketchup.active_model.de-Fir o n s [" J o i n t #{index}"].instances)

j o i n t = mod.selection[0]

tr = j o i n t . t r a n s f o r m a t i o n

p o i n t = t r . o r i g i n

P a r t 2. Step i s a d i f f e r e n c e between the p r e v i o u s and the next angle r e c e i v e d from t h e c l i e n t

s t e p = (S'buff e r . l i n e s [index-1]. - $ j _ l a s t [i n d e x - l] .

$ j _ l a s t [i n d e x - l] = @ b u f f e r . l i n e s [i n d e x - l]

P a r t 3. Do t r a n s f o r m a t i o n

j o i n t _ t r a n s f o r r a = G e o m : : T r a n s f o r m a t i o n . r o t a t i o n p o i n t , r o t a t i o n a x i s , step.degrees

j o i n t . t r a n s f o r m ! j o i n t t r a n s f o r m

P a r t 4. C l e a r s e l e c t i o n

m o d . s e l e c t i o n . c l e a r

end
Figure 6-26 "joint_rotation" function

Part 1.
• connect to the project in SketchUp
• select the component by its name using the index
• extract the pivot point of this component

Part 2.
• calculate the angle of rotation for the component. The angle of rotation is

defined as:
step = new angel — previous angle

• The sign indicates the direction in which the turnaround is going.
• after the calculation, the new position is rewritten to the previous one.

previous angel = new angel

Rotation of the selected component. The "Rotation" method is part of the
"Geom" module and has three parameters: The component's rotation
point, the vector around which the rotation is performed, and the angle.

Part 3.

53

Part 4.
• clear target

The do_transform function calls the joint_rotation function one after the other
for each of the joints.

def Robot_arm::do_transtorm()
Robot_arm::jointrotation(1, [0,0,1])
R o b o t a r m : : j o i n t r o t a t i o n (2 , [0,1,0])
R o b o t a r m : : j o i n t r o t a t i o n (3 , [0,1,0])
Robotarm::joint_rotation(4, [1,0,9])
R o b o t a r m : : j o i n t r o t a t i o n (5 , [0,1,0])
R o b o t a r m : : j o i n t r o t a t i o n (6 , [0,0,1])

end

Figure 6-27 "do_transform" function

6.3.4 Robot import

The robot model is located in the Plugins folder, which we placed in the
SketchUp program folder at the beginning. The path to the Skp file is created and
stored in the variable path_skp. The model should be imported into the project using
the "load_from_url" method, but the model is still not available because the location
of the model was not specified in the SketchUp layout. To do this, we call the
"addjnstance" method with the following parameters: the model we want to place,
the position where the model should be placed.

def Robot_arm::add_robot()

$ j _ l a s t = [0,0,0,0,0,0]

path_skp = S k e t c h u p . f i n d _ s u p p o r t _ f i l e (' P l u g i n s ') + '/su_robot_arrti/robot_KUKA_KRC6_v3.skp'

mod = Sketchup: : a c t i v e m o d e l

begin
l o a d r o b o t = mod. d e f i n i t i o n s . l o a d _ f r o m _ u r l (p a t h _ s k p)

rescue
end
p o i n t = Geom::Point3d::new(0, 0, 0)

add_robot = m o d . a c t i v e _ e n t i t i e s . a d d _ i n s t e (l o a d _ r o b o t , Geom::Transformation::new(point))

end
Figure 6-28 "Add_robot" function

54

7. TESTS AND RESULTS

7.1 Server
The server is a console application that informs the user about the clients that

are currently connected to it and about the data transfer. The server application's
first message is the local IP address and the port on which it is working.

Neither the address nor the port has been selected by the application, its value
has been manually set for network use. To work in another network and on another
device, the file main.cpp must be accessed to change it manually again. To find out
your IPv4 address, use the /ipconfig command in the Window command line.

If the client connects successfully, the server writes out the parameters of the
connected device and assigns it an ID that is also the client's socket descriptor.

When a new socket is connected, its parameters are written and then extracted
from the SOCKADDRJN structure. The structure contains the next information:

• Name of the host in the network
• Local IPv4 address
• The port to which the client is connected
• Client ID - the socket handle of the client

The server collects sockets from connected clients in a "sockets array" that
allows multiple clients to connect and transfer data through the server at the same
time, which is not quite correct from the "one client - one robot" point of view, but
the task was to write a standalone server application that could support multiple
clients at the same time, accept connection requests and easily disconnect.

The server does not perform any data processing. When a message is received,
the server outputs it to the console and sends it to other clients (one of which is the
Ruby client).

The server also recognizes and informs the user if the connected client is a
Ruby client.

When the server receives a message from the client, it outputs the client ID and
the angles for the robot in the order Joint 1 - Joint 6.

If the client is disconnected, the console displays the appropriate message.

55

• ' C:\Users\Erop rO™H\Desktop\B.p. version 3 ... — • X
TCPServer s t a r t
Server IP: 192.168.9.100
Server port: 8082

New conncetion
C l i e n t name: DESKTOP-NL9J EOT. kn vutbr.cz
C l i e n t IP: 192.168.0.100
Connect on port: 49461
C l i e n t ID: 276

This i s SketchUp Socket

New conncetion
C l i e n t name: DESKTOP-NL9J EOT. kn vutbr.cz
C l i e n t IP: 192.168.9.100
Connect on port: 49466
C l i e n t ID: 508

From c l i e n t : 500
0
0
0
0
0
0

Figure 7-1 Server console application

7.2 C# Test client application
The interaction with the virtual robot was implemented via the user interface

(Figure 6-13) of the C# client application, which will serve as an imitation of a real
robot.

Due to the current situation it was not possible to work with a real robot.
The client application has an interface to connect to the server, a window to

display information, input fields for angles and output fields with the current
position of the robot. The client application receives the current position from the
server if the position of the robot was changed by another client.

"Manual test mode" - the user can set the angles for each joint separately.
Information from the fields Joint 1-Joint 6 is written in a one byte code and sent to
the server by pressing the "Set" button.

"Continuous Mode" - implemented to test the ability of the server and Ruby
client to process data and change the robot position in real time. The angles in the
fields Joint 1 - Joint 6 are divided into 10 smaller steps for each joint and sent
sequentially to the server at a frequency of 200 milliseconds. This client-server

56

file://C:/Users/Erop
http://vutbr.cz
http://vutbr.cz

interaction mode creates a situation in which data is sent to the server as a real-time
data stream, thereby issuing a connection to a real robot. The smoothness of
movement of the virtual robot in "Continuous mode" depends primarily on the
computer and network on which the client and server are located. We can observe
the intermittent movement of the joints, but it gives a clear idea of the sequence of
movements of each joint.

The client "Info" window displays the following information:
• Successful connection to the server
• Connection to server failed
• Connection lost
• Error in "Continuous mode".

Connection success
IPport 192.168 0 100:8082

Error! No respons from server
IPport 192.0.0.0:8082

Error! Connection lost
IPport 192.168.0.100:8082

Figure 7-2 «info» message. C# client

7.3 Ruby client
Ruby client (Ruby plugin) functionality:
First of all it contains a script to perform an action with a robot inside a

SketchUp. Two functions are responsible for implementing the movement of the
robot: the functions joint_rotation and do_transform.

Second, the Ruby plugin contains a socket interface and executes the function
of a TCP client. The client does not send data about its position to the server, but
only receives data with new angles from the server. Only during the first connection
does the Ruby client send messages to the server so that the server can identify it as
a Ruby client among others. The Ruby client also has a user interface for connecting
to and disconnecting from the server and changing connection parameters (Figure
6-18 and Figure 6-19).

The final function of the Ruby client is to import the robot into the SketchUp
scene.

57

8.C0NCLUSI0N
The implemented simulation tool has a number of advantages and

disadvantages, which will be discussed in this chapter.
In this work, the robot motion was achieved by using the hierarchical impact

model, where the lower joint in the hierarchy was connected to the upper one and
bound to its pivot point (for more information see chapter 5-2). This realization of
the robot motion implementation is the optimal and probably the only solution to
the task in the Free SketchUp environment.

The Ruby plugin does not use the thread functions that could be used to
implement the processing of the data flow from the server in a separate thread.
Unfortunately, despite the fact that "clean" Ruby supports the thread functions, the
thread functions did not work inside SketchUp. As a result, receiving data from the
server was implemented rather poorly. The data receiving function was
implemented using a timer, which causes delays in data processing and makes the
program more complicated. This solution is not optimal.

The implementation of the server side is the most successful. By using thread
functions and a socket array a good support of several clients at once was achieved.
The disadvantages of the server side: it cannot determine the IP address of the
computer in the network and cannot choose the free port. Entering these
parameters manually reduces the speed and comfort of interaction with the
application.

The good advantage of C# Test Client App is the simple interface for the
connection to the server and robot control; the implementation of an information
window; the reception and processing of data from the server in the thread function.

The disadvantage is a weak implementation of "continuous mode"; the use of
invalid values in fields can cause an exception (double dots or double commas).
Which is not a big deal, but still not fixed.

A general disadvantage of clients and server is that there is no dynamic
memory allocation of memory for packets when the server receives messages from
clients or backwards. The only solution that was considered was to send 2 packets,
one with the message size, the other the message itself, which reduces the transfer
speed and was therefore not implemented.

In summary, the application implements the initial task - creating a simple
simulation tool to visualize a stationary robot in Sketchup. Below are the main
possible ideas for improving this tool.

Create a universal solution for importing different robots that is easy to
control; modify the Ruby plugin to control multiple robots in a scene
simultaneously; create a client that understands the robot's programming
languages (such as KRL) and interprets the code for the Ruby plugin; add an
interface for connecting to a programmable logic controller. Finally, this technology

58

can lead to the development of a custom platform for creating digital factories based
on Free SketchUp.

59

Literature

[I] SketchUp Make vs Pro vs Free vs Shop vs Studio [cit. 2019-11-14]. Available at:
https://mastersketchup.com/sketchup-make-pro-free-shop-studio/

[2] SketchUp Ruby API Documentation [cit. 2020-04-28]. Available at:
https://ruby.sketchup.com/ index.html

[3] Ruby Code Editor [cit. 2019-10-22]. Available at:
https://alexschreyer.net/projects/sketchup-ruby-code-editor/

[4] Automatic SketchUp ..Creation 3-D Models in Ruby" 2010, author: Matthew
Scarpino [cit. 2019-11-08]. Available at:
https://forums.sketchup.com/t/automatic-sketchup-sketchup-scripting-
extension-and-ruby-help /14939

[5] TCP/IP protocol suite [cit. 2020-04-05]. Available at:
https://docs.oracle.com/cd/E23823 01/html/816-4554/ipov-6.html

[6] Application layers protocols suite [cit. 2020-04-08]. Available at:
https://en.wikipedia.Org/wiki/Category:Application layer protocols

[7] IPv4 and IPv6 addresses [cit. 2020-03-12]. Available at:
https://bezopasnikinfo/npoTOKO^bi- ipv4-H-ipv6-B-HeM-pa3HHn i a-H-HTO-
j i V H i i i e /

[8] Routing [cit. 2020-04-20]. Available at:
https: / / geek-university.com/ccna/ip -routing-explained /

[9] Reserved IP addresses [cit. 2019-11-08]. Available at:
https://ru.qwe.wiki/wiki/Reserved IP addresses

[10] What is a Network Socket? [cit. 2020-03-12]. Available at:
https://www.tutorialspoint.com/unix sockets/what is sockethtm

[II] KUKA KR6 manual [cit. 2020-03-24]. Available at:
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20KR%
206%2010 AGILUS.pdf

60

https://mastersketchup.com/sketchup-make-pro-free-shop-studio/
https://ruby.sketchup.com/
https://alexschreyer.net/projects/sketchup-ruby-code-editor/
https://forums.sketchup.com/t/automatic-sketchup-sketchup-scripting-
https://docs.oracle.com/cd/E23823
https://en.wikipedia.Org/wiki/Category:Application
https://bezopasnikinfo/npoTOKO%5ebi-ipv4-H-ipv6-B-HeM-pa3HHnia-H-HTO-
http://geek-university.com/
https://ru.qwe.wiki/wiki/Reserved
https://www.tutorialspoint.com/unix
http://www.wtech.com.tw/public/download/manual/kuka/KUKA%20KR%25

List of appendices
Appendix 1 - The Ruby client connects to the server 62
Appendix 2 - The C# client connects to the server 63
Appendix 3 - Set a new position 64
Appendix 4 - Reset the position 65
Appendix 5 - The clients are disconnected 66
Appendix 6 - CD with simulation tool 67

61

Appendix 1 - The Ruby client connects to the

server

P. • p. p. e
CD 3 ro n>
3 fD 3 D fl
ft n ft rt O

<

0
©

^ ^ >»
^ 1 ^

\

62

O
•M
V)
•M
U
D
fi
C
0
u
•M
fi
D

u
D

H
1
CM
X!

^ £:

E C:\Users\Erap K>TKHH\Desktap\B.p. version 3 — Kanirifl\TCP_Server_rev.2\Relea...

TCPServer start
Server IP: 192.168.0.101
Server port: 8982

New conncetion
Client name: DESKTOP-NL9J EOT.kn.vutbr.cz
Client IP: 192.168.0.101
Connect cm port: 63308
Client ID: 176

This i s SketchUp Socket

New conncetion
Client name: DESKTOP-NL9J EOT.kn.vutbr.cz
Client IP: 192.168.0.101
Connect Dn port: 63335
Client ID: 340

From c l i e n t : 34-0

• X I f Untitled - SketchUp Make 2017

I ^ File Edit View Camera Draw Tools Window Extensions Help

Conncetion success
P .port 192.168.0.101 8082

» a/

0 m
0 0

Robot Arm - client app — n x

Connect

Current position

Set I I Fteaat

Continuous mode
Exl

(£} I Select objects. Shift to exten... I Measurements

file://C:/Users/Erap

New conncetion
Client name: DESKTOP-NL9JEOT.kn.vutbr.cz
Client IP: 192.168.0.101
Connect on port: 63308
Client ID: 176

New conncetion
Client name: DESKT0P-NL91E0T.kn.vutbr.cz
Client IP: 192.168.0.101
Connect on port: 63335
Client ID: 340

From cl i e n t : 340

From cl i e n t :
26
56.13
12.5
3
-70.7

http://DESKTOP-NL9JEOT.kn.vutbr.cz
http://DESKT0P-NL91E0T.kn.vutbr.cz

New connection
Client name: DESKTOP-rJL9JEOT.kn.vutbr.cz
Client IP: 192.168.0.101
Connect on port: 63308
Client ID: 176

New connection
Client name: DESKT0P-NL9IE0T.kn.vutbr.cz
Client IP: 192.168.0.101
Connect on port: 63335
Client ID: 346

From c l i e n t : 340
0
0

0
0
From c l i e n t : 340
20
56.13
12.5
0
-70.7
0
From c l i e n t : 340
0
0
0

http://DESKTOP-rJL9JEOT.kn.vutbr.cz
http://DESKT0P-NL9IE0T.kn.vutbr.cz

Appendix 5 - The clients are disconnected

O Q • • O
3 • Ln M 3

©
>*r «^ c

4 % ^ % &

ntitled

Edit
\

66

Appendix 6 - CD with simulation tool
The compact disc contains the following data:

• "TCP_Server" - Visual Studio Project folder with C++ server. Do not
forget to change an IP address and a port before debugging, otherwise
an exception will occur.

• "Test_Client" - Visual Studio Project folder with C# client.
• "Ruby_robot_plugin" - folder with 3D model of the robot and SketchUp

plugin. Do not forget to put this folder in the folder with SketchUp
Extensions, see chapter 6-3.

67

