

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

NÁVRH STENDU PRO TESTOVÁNÍ PROTETICKÝCH CHODIDEL

DESIGN OF STEND FOR TESTING OF PROSTHETIC FEET

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

MICHAELA ŠVACHOVÁ

VEDOUCÍ PRÁCE SUPERVISOR

Ing. DANIEL KOUTNÝ, Ph.D.

BRNO 2014

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav automobilního a dopravního inženýrství Akademický rok: 2013/2014

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

student(ka): Michaela Švachová

který/která studuje v bakalářském studijním programu

obor: Stavba strojů a zařízení (2302R016)

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce:

Návrh stendu pro testování protetických chodidel

v anglickém jazyce:

Design of stend for testing of prosthetic feet

Stručná charakteristika problematiky úkolu:

Cílem práce je konstrukční návrh stendu pro statické a životnostní zkoušky protetických chodidel s těmito parametry:

- pneumatický pohon
- zatížení dle normy
- průběh zatěžující síly dle krokového cyklu.

Cíle bakalářské práce:

Bakalářská práce musí obsahovat: (odpovídá názvům jednotlivých kapitol v práci)

- 1. Úvod
- 2. Přehled současného stavu poznání
- 3. Analýza problému a cíl práce
- 4. Návrh konstrukčních řešení
- 5. Výsledné konstrukční řešení
- 6. Diskuze
- 7. Závěr
- 8. Seznam použitých zdrojů

Forma práce: průvodní zpráva, výkres sestavení, digitální data Typ práce: konstrukční; Účel práce: výzkum a vývoj Rozsah práce: cca 27 000 znaků (15 - 20 stran textu bez obrázků). Zásady pro vypracování práce: http://dokumenty.uk.fme.vutbr.cz/BP_DP/Zasady_VSKP_2014.pdf Šablona práce: http://dokumenty.uk.fme.vutbr.cz/UK sablona praci.zip Seznam odborné literatury:

1) HSU J., MICHAEL J., FISK J., AAOS Atlas of Orthoses and Assistive Devices. 4th ed. Philadelphia: Mosby/Elsevier, 2008. ISBN 0323039316.

2) SHIGLEY, J. E. MISCHKE, Ch. R. BUDYNAS, R. G. KONSTRUOVÁNÍ STROJNÍCH SOUČÁSTÍ. VUTIUM, 2008. 1300 s. ISBN 978-80-214-2629-0.

Vedoucí bakalářské práce: Ing. Daniel Koutný, Ph.D.

Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku 2013/2014. V Brně, dne 20.11.2013

L.S.

prof. Ing. Václav Píštěk, DrSc. Ředitel ústavu

prof. RNDr. Miroslav Doupovec, CSc., dr. h. c. Děkan fakulty

ABSTRAKT

Bakalárska práca obsahuje stav súčasného poznania, ktorý zahŕňa biomechaniku chôdze, definíciu a klasifikáciu protézy dolnej končatiny a používané spôsoby testovania transtibiálnych protéz. Ďalej obsahuje popis a zaťažovacie podmienky hlavnej životnostnej a statickej skúšky protetického chodidla podľa normy EN ČSN 10 328. Práca sa odvíjala od analýzy problému cez konštrukčné riešenia, ktoré spĺňajú požiadavky skúšania.

Výstupom tejto práce je konštrukčný návrh testovacieho stendu s pneumatickým pohonom ako 3D model vytvorený v programe Inventor 2013 s príslušnými výpočtami v programe MathCad 14 spolu s výkresom zostavy, výkresmi zvarkov a výkresovou dokumentáciou ostatných súčastí.

KĽÚČOVÉ SLOVÁ

Transtibiálna protéza, testovací stend, protetické chodidlo, ISO ČSN 10328, pneumatický pohon

ABSTRACT

The Bachelor's Thesis first reviews the general body of knowledge related to biomechanics of gait. The paper also provides definition and classification of a lower leg prosthesis together with a review of the most widely used transtibial prosthesis testing methods. The project also provides description and loading conditions of the main dynamical and statical test of a lower leg prosthesis acording to EN ČSN 10 328. The paper starts with analyzing the problem and continues with construction solutions complaint with testing requirements.

The main output of the project is a 3D model of a test stand design with pneumatic actuator created in Inventor 2013 with related calculations in MathCad 14. The project includes also an assembly drawing, drawings of the welded pieces and drawings of other components.

KEYWORDS

Transtibial prosthesis, testing stand lower leg prosthesis, ISO ČSN 10328, pneumatic actuator

BIBLIOGRAFICKÁ CITÁCIA

ŠVACHOVÁ, M. *Návrh stendu pro testování protetických chodidel*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2014. 50 s. Vedoucí bakalářské práce Ing. Daniel Koutný, Ph.D..

ČESTNÉ PREHLÁSENIE

Prehlasujem, že bakalársku prácu *Návrh stendu pro testování protetických chodidel* som vypracovala samostatne pod vedením vedúceho práce Ing. Daniela Koutneho, Ph.D. a uviedola som všetky použité literárne a odborné zdroje.

V Brne, dňa 23.5.2014

POĎAKOVANIE

Týmto by som chcela poďakovať Ing. Danielovi Koutnemu Ph.D., za užitočné a cenné rady, za trpezlivosť a odbornú pomoc pri vypracovávaní bakalárskej práce. Ďalej ďakujem všetkým ostatným, ktorí mi k riešeniu tejto práce pomohli radou alebo odbornou konzultáciou.

OBSAH

Ú	vod		13
1	Prehl'a	d súčasného stavu poznania	14
	1.1 Bic	omechanika chôdze	14
	1.1.1	Funkčné fázy normálnej chôdze	14
	1.1.2	Krokový cyklus	15
	1.1.3	Tiahové zaťaženie	16
	1.2 Pro	téza dolnej končatiny	17
	1.2.1	Klasifikácia protéz dolnej končatiny	17
	1.2.2	Stupne aktivity užívatelov protéz dolnej končatiny	17
	1.2.3	Transtibiálna protéza (bércova)	18
	1.3 Ma	teriály a ich vlastnosti	18
	1.4 Sta	tické a životnostné skúšky protetických chodidiel	19
	1.4.1	Clenková a chodidlová náhrada	19
_	1.4.2	Clenková a nožná náhrada pre deti	23
2	Analýz	a problému a cieľ práce	25
	2.1 Ana	alyza problemu	25
	2.1.1	Staticke a zivotnostne skusky protetických chodidiel podľa USN	EN
	150 10	328 Dravá d-lastá a a žie desdav	25
	2.1.2		20
2	Z.Z Cle Náveh	n prace konštrukšných viešení	20
Л	Navrii Výslad	ná konštrukčná riašania	21
4	4.1 Un	ínacia dosky	29 20
	4.1 Op.	Funkcia a umiestnenie v zostave	29
	412	Kontrolný výpočt počtu skrutiek v upípacích doskách a podložke	29
	42 Lin	eárne pneumo motory	31
	4.2.1	Voľba lineárnych pneumo motorov a ich naklonenie	31
	4.2.2	Určenie dĺžky zdvihu pneumatických piestov	31
	4.3 Na	dstavba pneumo motorov	33
	4.3.1	Kontrolné výpočty pre lineárne valivé vedenie	34
	4.4 Rái	n	35
	4.4.1	Funkcia a umiestnenie v zostave	35
	4.4.2	Kontrola vrchného vodorovného zvarku rámu namáhaného ohy	bom
	vzhľado	om k medzi klzu	36
	4.4.3	Kontrola sverného spoja	40
5	Diskus	ia	41
6	Záver		43
Z	oznam po	užitých zdrojov	44
Z	oznam po	užitých skratiek, symbolov a veličín	46
Z	oznam ob	rázkov	48
Z	loznam prí	loh	49

ÚVOD

Skúšobný stroj obecne slúži k posúdeniu fyzikálnych a mechanických vlastností materiálov a výrobkov v ťahu, tlaku a ohybe. Rieši taktiež únavovú životnosť a iné vlastnosti za normálnych klimatických podmienok i za vysokých, či nízkych teplôt. V dnešnej dobe mikroprocesormi riadená technika v spojení so snímačmi veličín dosahuje vysokú presnosť. Užívateľovi je tak poskytnutý komfort ovládania skúšobného procesu a vyhodnotenie dosiahnutých výsledkov experimentu.

Testovací stend pojednávaný v tejto práci by mal byť zameraný na statické i cyklické skúšky protetických chodidiel, ktoré sú väčšinou vyrobené z polymérov.

Popis takýchto skúšok je presne daný európskou normou ČSN EN ISO 10328 Protetika - Zkoušení konstrukce protéz dolních končetin: Požadaky a zkušební metody [6]. Táto norma presne definuje veľkosť, smer a pôsobisko silového zaťaženia na protetické chodidlo, počet cyklov pri životnostných skúškach, časové rozpätie statických skúšok a popis zhody s touto medzinárodnou normou protetického skúšobného vzorku podrobeného skúškam.

Jedny z najznámejších firiem, ktoré sa venujú problematike skúšania protetických pomôcok, návrhu a výrobe skúškových zariadení sú napríklad Zwick Roel, ING corporation, s.r.o. a Test resources. História protetiky síce siaha až do starovekých dejín Egypta [18] ale aktívne sa táto téma v dnešnom merítku začala riešiť nedávno, a preto sa výrobe zariadení pre tieto skúšky nevenuje veľa spoločností. Toto je jeden z dôvodov konštrukčného návrhu testovacieho stendu.

Hlavný dôvod, ktorý ma k výberu témy tejto práce motivoval je potreba skúšania a testovania protetických pomôcok, konkrétne protetických chodidiel pred ich uvedeným do spotrebiteľského života. Je to vhodné pre bezpečie, ktoré zahŕňa istotu a pohodlie užívateľa týchto nožných náhrad.

1 PREHĽAD SÚČASNÉHO STAVU POZNANIA

1.1 Biomechanika chôdze

1.1.1 Funkčné fázy normálnej chôdze

Ak chceme pochopiť účel jednotlivých kĺbov a svalov a spôsob ovládania ich pohybu je nevyhnutné vziať do úvahy končatinu ako celok, kde sú jednotlivé časti navzájom ovplyvňované. Počas krokového cyklu sa podľa [1] končatina pohybuje v ôsmych funkčne odlišných posturálnych sekvenciach, takzvaných fázach chôdze. Každá z nich sa skladá z jednej alebo viacerých častí, ktoré sú nevyhnutné k naplneniu jeho účelu. Tieto fázy sú zlúčené do troch hlavných úloh.

Obr. 1-1: Fázy krokového cyklu zobrazené v rovnakom poradí ako v texte [2]

1. Úloha: Prevzatie hmotnosti (Weight acceptance)

Fáza 1 – Počiatočný kontakt (Initial contact): Počiatočný kontakt chodidla a podložky je prvým vplyvom na štruktúru zaťaženia končatiny.

Fáza 2 – Štádium zaťažovania (Loading response): Tri hlavné funkcie sú vstrebanie nárazu, inak povedané otupenie nárazovej sily chodidla o podložku, stabilita končatiny prijímajúc tiahu tela a zotrvanie v pohybu vpred.

2. Úloha: Jednoduchá končatinová opora (Single-limb support)

Fáza 3 – Medzistoj (Midstance): Členok slúži ako hojdacie kreslo, ktoré umožňuje druhej nohe prejsť cez stacionárnu nohu.

Fáza 4 – Konečný stoj (Terminal stance): Prednú časť chodidla môžeme taktiež chápať ako hojdacie kreslo. Umožňuje nám presun chodidla i celej končatiny vpred.

3. Úloha: Posun končatiny švihom (Swing limb advancement)

Fáza 5 – Pred švihová fáza (Preswing): Súhra členku a bedrového kĺbu nezaťaženej končatiny iniciuje flexiu kolena, takzvanú vnútornú rotáciu tíbie (holennej kosti), viď. obr. 2.

Fáza 6 – Počiatočný švih (Initial swing): Svalová činnosť bedrového kĺbu, kolena a členku zdvíhajú chodidlo a posúvajú končatinu smerom dopredu.

Fáza 7 – Medzi švih (Midswing): Končatina je v pokročilom štádiu pokračujúcej flexie bedrového kĺbu a v skorej extenzii kolenného kĺbu, viď. obr. 1 a obr.2. Stabilná podpora druhej končatiny je nevyhnutná.

Fáza 8 – Konečný švih (Terminal swing): Pohyb končatiny vpred je dokončený extenziou v kolene, čo je opak flexie, zatiaľ čo flexia v bedrovom kĺbe je zadržaná pri príprave na stoj.

Obr. 1-2 Flexia a extenzia kolenného kĺbu [3]

Obr. 1-2 Flexia a extenzia bedrového kĺbu

1.1.2 Krokový cyklus

Krokový cyklus opisuje opakujúci sa charakter chôdze. Podľa [1] je rozdelený do opornej fáze, kde sa chodidlo dotýka podložky a švihovej fáze, kde sa chodidlo nachádza nad podložkou a smeruje dopredu. Počiatok a koniec krokového cyklu tvorí úder tej istej päty. Oporná fáza bežne zaberie približne 60% krokového cyklu a švihová fáza 40% (viď. obr. 4). Oporná fáza je rozdelená do dvoch dôb dvojopory a jednej doby jednoopory. Dvojopora začína počiatočným kontaktom chodidla a podložky, kde chodidlo získa plný kontakt s podložkou v 7% a končí odrazom palca druhého chodidla pri 12% cyklu. Jednoopora sa potom v cykle vyskytuje až do 50% cyklu, kedy druhé chodidlo dopadá na podložku a začína druhá dvojopora. Medzi tým sa v 34% cyklu začne odvaľovanie päty, čo je práve v momente, kedy druhá končatina v švihovej fáze míňa stojacu končatinu. Nasledovne dôjde k odrazu palca v 62% cyklu, ktorý iniciuje začiatok švihovej fáze.

Obr. 1-3 Krokový cyklu a jeho časti [1]

1.1.3 Tiahové zaťaženie

Úder päty, čiže náraz chodidla na podložku iniciuje vertikálnu silu, ktorá tvorí približne 80% telesnej hmotnosti. Tá rapídne rastie na približne 115% telesnej hmotnosti, čo odpovedá momentu odvalenia sa palca druhej nohy. Počas tohto počiatočného vrcholu zaťaženie rastie v sínusovej podobe ako sa telo pohybuje cez rozkročené nohy. Druhá končatina končí svoju švihovú fázu, čo značí pokles zaťaženia na 80% telesnej hmotnosti. Druhý vrchol, asi 110% telesnej hmotnosti prislúcha odrazu prednej časti chodidla.

Obr. 1-4 Zaťažujúca krivka vertikálnej sily počas normálnej chôdze

1.2 Protéza dolnej končatiny

Protéza je externe aplikovaná pomôcka, ktorá nahrádza chýbajúcu alebo nevyvinutú časť končatiny, poprípade končatinu celú (definícia podľa ISO 8549). Protézy sa aplikujú u pacientov po amputáciach z dôvodov cukrovky, vaskulárnych ochorení, onkologických ochorení, úrazov, alebo vrodených defektoch.

1.2.1 Klasifikácia protéz dolnej končatiny

Podľa výšky amputácie

Rozlišujeme amputáciu v chodidle, alebo chodidla či členku, transtibiálnu amputáciu, niektorá literatúra ju uvádza taktiež ako bércovú (je predmetom tejto práce), exartikuláciu v kolennom kĺbe, transfemorálnu amputáciu (stehennú), exartikuláciu v bedrovom kĺbe (viď. obr. 6) [5].

Podľa prevedenia protézy

Rozlišujeme protézy prvovybavené, štandardné a špeciálne. Pri stanovení typu protézy sa vychádza z výšky amputácie, očakávaného stupňa aktivity užívateľa (viď. nižšie) a jeho hmotnosti.

Obr. 1-5 Druhy protéz podľa miesta amputácie [4]

1.2.2 Stupne aktivity užívatelov protéz dolnej končatiny

Podľa [5] stupeň aktivity užívatela je určený fyzickými a psychickými predpokladmi užívatela, užívatelským priestorom apod. Je mierou schopností a možností užívateľa naplniť prevádzanie bežných denných aktivít.

1 – Interiérový typ užívateľa

Chôdza pomalou rýchlosťou po rovnom povrchu s využitím pomôcok (napr. barle). Príklad: Málo aktívni geriatriční pacienti.

2 – Obmedzený exteriérový typ užívateľa

Chôdza konštantnou rýchlosťou, prekonávanie malých nerovností (schody, svahy), poprípade s využitím pomôcok (napr. barle). Príklad: Geriatriční pacienti.

3 – Nelimitovaní exteriérový typ užívatela

Chôdza premennou rýchlosťou, prekonávanie takmer všetkých nerovností, poprípade rekreačný šport a pohybové aktivity. Príklad: Aktívni užívatelia protéz, pracujúci.

4 – Vysoko aktívny typ užívateľa

Aktivity prevyšujúce bežného užívateľa protézy, vysoké rázové zaťaženie protézy. Príklad: Športujúci užívatelia protéz, deti.

1.2.3 Transtibiálna protéza (bércova)

Transtibiálna (TT) protéza je umelá náhrada dolnej končatiny po transtibiálnej amputácii. To znamená, že amputácia je prevedená medzi členkovým a kolenným kĺbom. Protéza teda nahrádza stratenú funkciu členka a chodidla, ktorá je nevyhnutná pre plynulú a prirodzenú chôdzu. Protéza je komplexný celok, ktorý musí byť vždy prispôsobený pre daného pacienta [7].

1.3 Materiály a ich vlastnosti

Podľa článku známej spoločnosti ING corporation, spol. s.r.o. zameranej na výrobu protéz [10] sú najnovšie používané materiály v stavbe protéz DK kompozitné materiály ktoré účinne nahrádzajú rôzne zliatiny a prírodné materiály. Majú viacero výhod, napríklad zníženie hmotnosti, úplne nový prístup ku konštrukcii stavebnicových dielov protéz, zlepšenie kombinácie nosnosti a životnosti a predovšetkým stavbu dynamicky ladených dielov protéz.

Trendom v tejto oblasti začínajú byť kompozitné diely protéz s umelou inteligenciou, u ktorých je aplikované riadenie pohybu a funkcie pomocou mikropočítačových systémov, zabudovaných priamo v protéze. Ako napríklad élan od firmy Endolite [12].

Obr. 2-6 Členková a chodidlová protéza s mikroprocesorovým riadením rýchlosti a reakcie na terén élan od Endolite [12].

Podľa [10] pre zhotovenie individuálnych lôžok protéz sa bežne používajú kompozitné materiály na bázy sklo-epoxi. Nevýhodou týchto materiálov je relatívne vyššia hmotnosť, výhodou hlavne nízka cena a dobré mechanické vlastnosti. Výrobnou metódou je ručné laminovanie pomocou podtlaku, ktorá je vhodná pre kusovú výrobu. Nedostatkom tejto výrobnej metódy sú nižšie mechanické hodnoty

kompozitov v porovnaní s modernejšími výrobnými metódami ako sú napríklad RTM (metóda vstrekovania pojiva do výstuže, ktorá je uzavretá vo výrobnej forme), lisovanie prepregu (prepreg je dopredu nasýtená forma pojivom), autoklávová metóda (veľmi univerzálna metóda, používa sa však len pri vývoji a malosériovej výrobe).

Pre výrobu stavebnicových dielov protéz sa takmer výhradne používajú kompozitné materiály na báze uhlík-epoxi. Majú výborné mechanické vlastnosti, nízku mernú hmotnosť. Nevýhodou je vyššia cena, ktorá je ovplyvnená jednak vyššou cenou materiálu, ale tiež zavedením pokrokových výrobných metód (RTM, autoklávová metóda, lisovanie prepregu a pod.).

Uhlíkové kompozity sa používajú pri stavbe dynamických protetických chodidiel a ďalej u spojovacích trubkových adaptéroch. Hlavným prínosom týchto dielov okrem už spomínaných vlastností je vysoká životnosť, zlepšené dynamické vlastnosti a schopnosť uhlíkových kompozitov akumulovať mechanickú energiu a následne ju uvoľňovať (dynamický skelet protetického chodidla) [10].

1.4 Statické a životnostné skúšky protetických chodidiel

1.4.1 Členková a chodidlová náhrada

Majorov článok [13] hovorí o skúšaní mechanických vlastností protéz v spojitosti s pohodlím a prirodzenosťou chôdze pacienta, konkrétne pre 27 cm dlhé protetické chodidlo Flex–Foot[™] s kozmetickým obalom (Össur hf., Reykjavik, Iceland), adaptérom chodidla JR3 Model 51E20A (JR3 Inc., CA, USA) so spojovacím adaptérom s pyramidovým pripojením Otto Bock pyramid adaptor (Otto Bock Gmbh, Duderstadt, Germany).

Zaoberá sa skúškami pre meranie odvalovacích kriviek viď *Obr. 2-8*, meraním tuhosti v bodoch dotyku chodidla s podložkou viď *Obr. 2-9* a meraním schopnosti protézy tlmenia nárazov. Tuhosť a schopnosť tlmenia rázov protézy sú kvalifikované statickou a cyklickou skúškou väčšinou prevádzané v sagitálnej rovine.

Obr. 2-7 Schéma zariadenia pre skúšky zaťažením

Meranie odvalovacích kriviek, ktoré reprezentujú tuhosť a geometriu protetického chodidla prebieha nadstavením osi spojovacieho adaptéru do piatich referenčných uhlov, ktoré odpovedajú fázam krokového cyklu. Jedná sa o uhly medzi podložkou pod chodidlom a osou spojovacieho adaptéru: (1.) počiatočný kontakt 73°, (2.) pozícia medzi počiatočným kontaktom a vertikálnou polohou protézy 81°,

(3.) vertikálna poloha protézy 90°, (4.) pozícia uprostred konečného stoja 110°,

(5.) pred švihová fáza 124°. So zväčšovaním hodnôt zaťaženia môžeme pozorovať prírastky vzdialeností nelineárnych odvalovacích kriviek. Krivky tiež ukazujú ako dotykový bod postupuje pozdĺž chodidla po kontaktnej ploche, čo znázorňuje závislosť krivky na geometrii chodidla rovnako ako na tuhosti chodidla meniacej sa spolu s uhlami spojovacieho adaptéru.

Obr. 2-8 Skupina odvalovacích kriviek pri zaťažení vhodnom pre hmotnosť pacienta 80 kg: 400N, 600N, 800N a 1000N.

Meranie tuhosti v tangenciálnych smeroch je uskutočnené pôsobením šmykovej sily pridaním závažia na voľnom konci lana, ktoré je vedené cez kladku viď *Obr. 2-7* a pripojené k lineárnemu ložisku. Šmykové napätie vyvolané vychýlením kontaktnej plochy na rozdiel od prvého zaťažovacieho testu odráža kombinovanú tuhosť protetických komponentov. Prvé zaťaženie zodpovedá približne telesnej hmotnosti pacienta o nominálnej hodnote 800N a slúži k zabezpečeniu dostatočného trenia medzi nohou a kontaktným povrchom. Ďalej sa aplikujú šmykové sily od 0 do 240N (23% telesnej hmotnosti) pridávaním po 120N v piatich referenčných uhloch, ktoré boli zadefinované vyššie. Výsledkami merania sú deformácie znázornené posuvom bodov (šedý trojuholník) od odvalovacích bodov (čierna bodka) viď *Obr. 2-9*.

Obr. 2-9 Posun odvalovacích bodov pri zaťažení šmykovou silou.

Meranie tlmenia nárazov sa skladá z troch krokov: (1) Pridanie závažia o nominálnej hodnote 80 kg. (2) Zaťaženie vzorku a dosiahnutie maximálneho priehybu. (3) Rýchle uvoľnenie zaťaženia. Týmto náhlim zaťažovaním a uvoľňovaním sa vytvárajú oscilačné reakcie, z ktorých tlmiaci pomer ζ je možné

vyjadriť nasledovne
$$\zeta = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$$

kde $\delta = \left(\frac{1}{n}\right) \ln\left(\frac{x_i}{x_{i+n}}\right);$

 x_i je amplitúda prvého kmitu *i* a x_{i+n} je amplitúda kmitu i+n. Tlmiaci pomer závisí na tuhosti ,k, a poddajnosti, c, a efektívnej hmotnosti, m.

$$\varsigma = \frac{c}{\left(2\sqrt{km}\right)};$$

kde efektívna hmotnosť závisí na geometrii a vlastnostiach použitých materiálov.

Firma Zwick Roel s oficiálne autorizovaným zástupcom v Českej republike je výrobcom elektromechanických a servo-hydraulických skúšobných strojov pre nízke i vysoké zaťaženia s digitálnou technológiou riadenia a merania. Medzi ich produkty patrí taktiež zariadenie pre životnostné a statické skúšky (ťah, tlak a ohyb) členkovej a chodidlovej náhrady viď *Obr. 2-10* a spojovacieho adaptéru viď *Obr. 2-11* so servo-hydraulickým pohonom. Parametre zariadení sú volené takto, zaťaženie do 10kN, frekvencia do 100Hz, zdvih priamočiareho hydraulického piestu 400 mm s koncovým pribrzďovaním.

Obr. 2-10 Zariadenie pre životnostné a statické skúšky členkovej a chodidlovej náhrady [14]

Obr. 2-11 Zariadenie pre životnostné a statické skúšky spojovacieho adaptéru Zwick Roel [15]

Cieľom štúdie Strojníckej fakulty Washigtonskej univerzity [16] bolo zmenšiť výrobné náklady a hmotnosť danej transtibiálnej protézy. Vhodnosť konštrukčných zmien oproti pôvodnému prevedeniu bola preverovaná metódou konečných prvkov a experimentálnym spôsobom na skúšobnom zariadení viď. *Obr.* 2-12 taktiež podľa ISO 10328.

Obr. 1-12 Zariadenie pre životnostné a statické testovanie transtibiálnej protézy podľa ISO 10328 [16]

1.4.2 Členková a nožná náhrada pre deti

Literatúra zaoberajúca sa skúšaním transtibiálnych protéz sa väčšinou týka dospelých ľudí zatiaľ čo len v málo z nich sú prítomné deti. Vzhľadom na ciele určené v tejto bakalárskej práci, čiže požiadavka na schopnosť skúšania i detských veľkostí, sa táto problematika stáva taktiež cieľom záujmu.

Práca Technickej univerzity v Miláne [17] rieši testovanie transtibiálnej protézy pre 12 ročného chlapca, ktorého maximálna telesná hmotnosť je 45 kg, rozpätie dĺžky chodidla je od 18 do 21 cm.

Vzhľadom na to, že najnižšia zaťažovacia úroveň P3 podľa ISO 10328 je určená pacientom do 60 kg, bolo treba nájsť spôsob zistenia hodnôt zaťaženia tejto úrovne pre nízke hmotnosti detí. Na základe tejto štúdie bola nájdená súvislosť medzi vzdialenosťou kolenného kĺbu a podpernej podložky viď *Obr. 2-13* medzi dospelým človekom a dieťaťom, ktorá sa dá vyjadriť nasledujúcim vzťahom

$$k = \frac{u_{k12}}{u_{dospely}}$$

Kde k je koeficient, ktorým sa vynásobia zaťaženia v zaťažovacej úrovni P3 viď Tab. 2-1

 u_{k12} je vzdialenosť kolenného kĺbu od podložky 12 ročného chlapca a

 $u_{dospels}$ je vzdialenosť kolenného kĺbu od podložky dospelého človeka.

Obr. 2-13 Tranzverzálne roviny ľudského tela [17].

Hodnoty vzdialeností tranzverzálnych rovín boli odobraté z presnej geometrie figurín, určených pre crash testy motorových vozidiel, ktoré sú navrhované s krátkym vekovým rozdielom (0,3,6, 10 a staršie), čo umožňuje takmer presnú interpoláciu dát.

Tab. 2-1 Prepočítané skúšobné sily statickej skúšky z úrovne P3 pre 12 ročného chlapca [17]

Test	Load			
	P3 ISO 10328		12-years old	
	Ι	Π	Ι	II
Separate static proof	1610 N	1610 N	1290 N	1290 N
Separate static ultimate strength	2415 N	2415 N	1935 N	1935 N
	3220 N	3220 N	2580 N	2580 N
Separate cyclic (min)	50 N			
(max)	970 N	970 N	777 N	777 N
(number of cycles)		2000	0000	
Separate static in torsion		50 1	Nm	

Obr. 2-14 Zariadenie určené pre statickú i životnostnú skúšku [17].

Existuje ešte jeden spôsob ako tento problém vyriešiť. Je daný normou ČSN EN ISO 10 328, vychádzajúc z prílohy 1, kde vzdialenosť od počiatku súradnicového systému viď *Príloha 1* do bodu zaťaženia P_B je

$$S_B = \sqrt{f_B^2 + o_B^2}$$

Kde f_B a $o_B ext{subscript{u}} f$ a o posuny (ofsety) bodov aplikácie dolného zaťaženia P_B daného v *Prílohe* 6.

Výber veľkosti chodidla a možné následné prispôsobenie skúšobnej sily musí byť prevedené nasledovne:

- a) zvolí sa veľkosť, ktorá dáva správny kombinovaný dolný posun (ofset) S_{B} ;
- b) ak správna veľkosť chodidla nie je k dispozícii, použije sa ďalšia väčšia velkosť;
- c) ak veľkosť chodidla, ktorá je k dispozícii, je kratšia než správna dĺžka, potom sa zvyšuje aplikovaná skúšobná sila *F* na *F'*, kde:

$$F' = F \cdot \left(\frac{S_{B \ spec}}{S_{B \ act}}\right)$$

a kde $S_{B spec}$ je špecifikovaný kombinovaný dolný posun (ofset) viď Príloha 7 a

 $S_{B act}$ je skutočný kombinovaný dolný posun (ofset).

2 ANALÝZA PROBLÉMU A CIEĽ PRÁCE

2.1 Analýza problému

Konštrukčný návrh stendu pre testovanie protetických chodidiel by sa mal odvíjať od požiadaviek medzinárodnej normy ČSN EN ISO 10 328 Protetika -Zkoušení konstrukce protéz dolních končetin: Požadaky a zkušební metody, ktorá opisuje a presne definuje súradnicový systém zaťažovania, polohy zaťažovacích bodov, hodnoty veľkostí a smerov síl pôsobiacich na prednú časť nohy a pätu zospodu a priebeh zaťažovania pre tri zaťažovacie úrovne, ktoré sa volia podľa hmotnosti pacienta. Bližší opis požiadoiek tejto normy je v nasledujúcej podkapitole.

Jedny z najznámejších firiem, ktoré sa venujú problematike skúšania protetických pomôcok, návrhu a výrobe skúškových zariadení sú napríklad Zwick Roel, ING corporation, s.r.o. a Test resources.

2.1.1 Statické a životnostné skúšky protetických chodidiel podľa ČSN EN ISO 10 328

Na skúšobnom zariadení, bude testovaná protéza podľa medzinárodnej normy ČSN EN ISO 10 328 [6] hlavnou cyklickou a statickou skúškou kotníkových a nožných náhrad. Podľa [6], kapitola 16.3.1.3, je súčasťou cyklickej skúšky konečná statická skúška, ktorá môže nahradiť hlavnú statickú kontrolnú skúšku, ak je aplikovaná na jedno upnutie bez opätovného usporiadania vzorku. Parametre zaťažovacieho cyklu môžeme vydieť v *Prílohe 3*.

Vzhľadom na maximálnu hmotnosť pacienta budú číselné hodnoty skúšobných síl a predpísaných počtov cyklov použité zo zaťažovacej úrovne *P6* viď *Príloha 4*. Zaťažovacie úrovne sa volia podľa hmotnosti užívateľa protézy, *P3* je vhodná do 60 kg telesnej hmotnosti, *P4* do 80 kg, *P5* do 90 kg a *P6* do 100 kg telesnej hmotnosti.

Zaťažovacia podmienka I sa týka zaťažovania päty a zaťažovacia podmienka II sa týka zaťažovania prednej časti chodidla.

2.1.2 Prevádzkové požiadavky

Za účelom splnenia hlavnej cyklickej skúšky kotníkovej alebo chodidlovej náhrady musí skúšobný vzorok vyhovieť nasledujúcim prevádzkovým požiadavkám. Maximálne predpísané hodnoty zaťažujúcich síl môžeme pozorovať v *Prílohe 4*. Počet požadovaných skúšok pre zhodu s touto medzinárodnou normou môžeme vidieť v prílohe 5.

- a) Skúšobný vzorok musí vydržať statické zaťaženie od maximálnej skúšobnej sily $F_{c \max}$ predpísanej hodnoty po dobu potrebnú pre meranie a zaznamenanie odchýlenia pohybujúceho sa bodu aplikácie zaťaženia z jeho referenčnej polohy v skúšobnom zariadení.
- b) Skúšobný vzorok musí vydržať striedavé cyklické namáhanie od pulzujúcej sily $F_c(t)$ na predpísanej úrovni a oblasti pre predpísaný počet cyklov.
- c) Každý skúšobný vzorok musí vydržať statické zaťaženie konečnej statickej skúšobnej sily F_{fin} predpísanej hodnoty po dobu (30±3) s.

Obr. 3-1 Poloha chodidla v skúšobnom zariadení [6]

2.2 Cieľ práce

Hlavným cieľom práce je konštrukčný návrh testovacieho stendu pre protetické chodidlá, ktorý bude spĺňať požadované prevádzkové požiadavky, a bude určený pre transtibiálnu protézu s týmito parametrami:

- Pneumatický pohon
- Zaťaženie podľa normy ČSN EN ISO 10328

Ďalej má byť umožnené testovanie ako detských, tak i pánských veľkostí obuvy pri rôznych stupňoch aktivity a hmotnosti pacienta. A preto je testovatelný rozsah veľkosti obuvy volený od 31 (190 mm) do 50 (320 mm) zároveň s najvyššou možnou skúšobnou zaťažovaciou úrovňou P6 (do 100 kg) podľa normy ČSN EN ISO 10328.

Čiastočné ciele práce sú:

- Zabezpečenie možnosti pohybu pneumomotoru voči skúšobnému vzorku v jednej rovine a dvoch na sebe kolmých osiach počas prípravy na testovanie.
- Zaistenie definovaných smerov zaťažujúcich síl
- Voľba pneumo motoru a jeho zdvihu
- Návrh odmeriavania veľkostí zaťažovacích síl
- Umožnenie pohybu skúšobného vzorku s nízkym trením vo všetkých tangenciálnych smeroch.
- Návrh spôsobu ustavenia skúšobného vzorku do počiatku súradnicového systému zaťažovania.
- Úmožnenie upínania protéz s rôznou dĺžkou trubkových adaptérov a umožnenie upínania trubkového adaptéru pod uhlom.

3 NÁVRH KONŠTRUKČNÝCH RIEŠENÍ

Počiatočný konštrukčný návrh je na *Obr. 4-1.* Z hlbšieho študovania normy však vyplynulo, že tento konštrukčný návrh je nepoužiteľný. A to preto, že je nevyhnutné zabezpečiť možnosť nastavovania ofsetov z počiatočného bodu do bodov pôsobenia záťaže v dvoch na sebe kolmých osiach, zatiaľ čo v tomto návrhu je možnosť posunu pneumo motorov len v jednej osi.

Obr. 4-1 Počiatočný konštrukčný návrh

Hodnoty ofsetov týkajúce sa dolnej vzťažnej roviny sú uvedené v *Prílohe 6* a grafické znázornenie je v *Prílohe 1*. Pre lepšiu názornosť sú hodnoty súradníc z tejto tabuľky nanesené na osiach, v ktorých sa body pôsobenia silovej záťaže nastavujú, viď *Obr. 4-2*.

Obr. 4-2 Vynesené hodnoty súradníc zaťažovacích bodov na osi fB pre zaťažovaciu úroveň P3, P4 a P5.

Obr. 4-3 Vynesené hodnoty súradníc zaťažovacích bodov na osi OB pre zaťažovacie úrovne P3, P4 a P5.

Počiatočný konštrukčný návrh nerieši umožnenie pohybu skúšobného vzorku s nízkym trením vo všetkých tangenciálnych smeroch. V tomto návrhu guľôčkové lineárne ložisko poskytuje pohyb skúšobného vzorku len v jednom smere.

Ďalej neposkytuje variabilitu nastavenia zariadenia pre rôzne dĺžky trubkových adaptérov, ktoré sú u každého pacienta rozdielne v závislosti na telesných rozmeroch a mieste rezu transtibiálnej amputácie.

Chodidlo musí byť upnuté do polohy v ktorej bude skúšané podľa *Prílohy* 8. Vychýlenie osi trubkového adaptéra ako dôsledok použitia podpätku pri nastavovaní polohy chodidla si vyžaduje upnutie trubkového adaptéra pod uhlom.

Finálny konštrukčný návrh na *Obr. 4-4* má všetky tieto problémy konštrukčne vyriešené. Potrebné výpočty sú prevedené v programe MathCad 2014.

Obr. 4-4 Finálny konštrukčný návrh

4 VÝSLEDNÉ KONŠTRUKČNÉ RIEŠENIE

4.1 Upínacie dosky

4.1.1 Funkcia a umiestnenie v zostave

Upínacie dosky viď *Obr. 5-1* sú tri. Jedna veľká s pohodlvastými T- drážkami, uchytená štyrmi skrutkami s valcovou hlavou s v nútorným šestihranom (ďalej len skrutky) k rámu a dve malé s T - drážkami, priečne uchytené na veľkej doske takisto štyrmi skrutkami.

Slúžia k zabezpečeniu možnosti pohybu pneumomotoru voči skúšobnému vzorku v jednej rovine a dvoch na sebe kolmých osiach počas prípravy na testovanie.

Sú to kupované komponenty od firmy *Kipp* viď *Príloha* 9, kde veľká doska má dĺžku na vyžiadanie 860 mm rozličnú od konvenčne vyrábanej.

Obr. 5–1 Upínacie dosky ZERO Lock s T – drážkami

4.1.2 Kontrolný výpočt počtu skrutiek v upínacích doskách a podložke

Vo výpočte, ktorý je prevedený podľa vzoru *Príklad 8-6* [19], sú použité maximálne možné zaťažovacie sily z najvyššej zaťažovacej úrovne P6 z dôvodu overenia najkritickejšieho stavu, ktorý môže nastať.

Skrutky sú kontrolované na strih a otlačenie, a preto sa bude ďalej počítať so silami v smere osi x, F_{Ix} a F_{IIx} .

Obr. 5-2 Rozklad zaťažujúcich síl

Rozklad zaťažujúcich síl:

 $F_{II \ stab, \ horni \ mez} = 4425 \ N$ $F_{II \ x} = F_{II \ stab, \ horni \ mez} \cdot \sin \beta = 1513N$ $F_{II \ y} = F_{II \ stab, \ horni \ mez} \cdot \cos \beta = 4158N$

$$F_{I \text{ stab, horní mez}} = 4880 N$$

$$F_{I x} = F_{I \text{ stab, horní mez}} \cdot \sin \beta = 1263N$$

$$F_{I y} = F_{I \text{ stab, horní mez}} \cdot \cos \beta = 4714N$$

Návrhová predpínacia sila:

 $F_{P, C} = 0.7R_{m_s.dosky} \cdot A_{S_s.dosky} = 23604N$,

kde $A_{S_s,dosky} = 84,3 \ mm^2$ je výpočtový prierez skrutky (Tab. 8 – 1 [19]) a trieda pevnosti je 4.6, z čoho vyplýva $R_{m_s,dosky} = 400 \ MPa$ (Tab. 8-8 [19])

Návrhová únosnosť jednej skrutky:

 $F_{s,Rn} = \frac{k_s i_t f_s}{\gamma_{M3}} F_{P,C} = \frac{1 \cdot 4 \cdot 0.5}{1.25} \cdot 23604 = 37766 \ N,$

kde súčiniteľ trenia je $f_s = 0.5$, súčiniteľ obyčajného otvoru, $k_s = 1$, a dielčí súčiniteľ spoľahlivosti materiálu pre styčníky je $\gamma_{M3} = 1.25$.

Návrhová únosnosť oslabeného prierezu:

 $F_{net, Rn} = \frac{0.9S_o R_{mP}}{\lambda_{M2}} = \frac{0.9 \cdot 5758 \cdot 470}{1.25} = 1948 kN,$

kde $S_o = 5758mm^2$ je obsah oslabeného prierezu, $R_{mP} = 470 \ MPa$ je medza pevnosti materiálu upínacích dosiek a λ_{M2} je dieplčí súčiniteľ spoľahlivosti materiálu pre styčníky (*str. 474* [19])

Únosnosť spoja: $4F_{s,Rn} < F_{net,Rn}$ $(4 \cdot 18,88 = 75,52kN) < 1948kN$

Únosnosť spoja je 75,52kN, čo je rádovo nižšia hodnota ako majú sily F_{Ix} a F_{IIx} , ktoré budú vyvíjať striedavú záťaž.

4.2 Lineárne pneumo motory

4.2.1 Vol'ba lineárnych pneumo motorov a ich naklonenie

Pneumo motory viď *Obr.5- 3* zaisťujú pôsobenie zaťažujúcich síl na prednú časť nohy a pätu. Sú dva a oba rovnaké. Sú to kupované komponenty od firmy Bosch Rexroth. Priemer piestnice je zvolený ako *100 mm* na základe hodnôt daných silových zaťažení, ktoré sú značné spolu s ostatnými parametrami z katalógového listu v *Prílohe 10*.

Zaistenie definovaných smerov zaťažujúcich síl podľa *Obr. 3-1* je vyriešené naklonením pneumo motorv o dané uhly α a β pomocou podložiek pre zošikmenie, ktoré sú privarené k spodným upínacím podložkám. Tie sú k priečnym upínacím doskám prichytené štyrmi upínacími skrutkami do T – drážok.

Obr. 5-3 Pneumo motor Bosch Rexroth

4.2.2 Určenie dĺžky zdvihu pneumatických piestov

Štúdia [9], Analýza metódou konečných prvkov pre hodnotenie štrukturálneho správania protézy pre transtibiálnu amputáciu, poukazuje na priehyb protézneho chodidla pri odraze zo špičky viď *Obr. 5-4*, pri použitých materiáloch *Tab. 5-1* súčastí chodidla *Obr. 5 -5*.

Obr. 5-4 Pohľad v reze na celkovú deformáciu protetického chodidla pri zaťažení špičky [9]

Tab. 5-1 materiály súčastí použité v MKP [9]

Component	Material	Mater, model	Young's modulus (MPa
Pylon	Al, alloy	Isotropic, homogeneous linearly elastic	0.7×10^5
Foot adapter			
Tube clamp	Steel		2,1 × 10 ⁵
Male pyramid			
Adjusting screw			
Base plate			
Toe spring	Carbon composite		0.585×10^{5}
Heel spring	-		
Foot cover – heel	PUR foam		0.85
Foot cover – toe			2,40

Obr. 5-5 Popis častí chodidla použitého v MKP analýze [9]

Podobná analýza bola vykonaná v [8]. Vyhodnotenie môžeme vidieť v *Tab. 5-2*. Materiál bol zadaný ako lineárny izotropný matriál PC, kde modul pružnosti v ohybe je E = 2200 MPa s vymenitelnými PUR dorazmi.

Síla [N]	Zdvih špice [mm]	Zdvih paty [mm]
88	11,5	10
177	21,3	14,5
353	27,3	17
530	29,5	17,3
707	30,9	17,3
884	32,1	17,4
1060	33,3	17,4
1237	34.1	17.5

Tab. 5-2 Hodnoty priehybu podľa MKP [8]

Vzhľadom k získaným informáciam, zaťažovacej úroveni P6, rôznorodosti používaných materiálov a rôznorodosti konštrukcií protéznych chodidiel je zdvih pneumatických piestov volený ako 75 mm.

4.3 Nadstavba pneumo motorov

Nadstavba pozostáva z komponentov zobrazených na Obr. 5.6 a na oboch stranách je rovnaká.

Umožnenie pohybu skúšobného vzorku s nízkym trením vo všetkých tangenciálnych smeroch ako požaduje poznámka na *Obr. 3-1* je dosiahnuté lineárnym ložiskom s valčekovými valivými elementmi viď *Príloha 11* v kombinácii s guľkovým ložiskom s kosouhlým stykom. K zlepšeniu priľnavosti chodidla k lineárnemu ložisku je na jeho vozík prilepená gumová podložka.

Aplikovanie presných hodnôt pôsobiacich síl je dosiahnuté silovým snímačom od firmy HBM viď *Príloha 16*, ktorého maximálna záťaž je *12,5 kN*.

Obr. 5-6 nadstavba pneumo motorov

4.3.1 Kontrolné výpočty pre lineárne valivé vedenie

Lineárne valivé vedenie je volené z katalógu firmy *HBK*, konkrétne model *SRN 35R* s valčekovými valivými elementmi.

Maximálne dovolené ohybové momenty, ktorých hodnoty a umiestnenie je znázornené v katalógovom liste v *Prílohe 11* sú rádovo vyššie ako maximálne momenty, ktoré môžu v danej zostave nastať, čo vyplýva z nasledujúcich výpočtov.

Výpočty ohybových momentov, ktoré môžu na vozíku lineárneho valivého vedenia pod prednou časťou chodidla nastať:

$$M_{AII} = F_{IIy}L_{linear} = 4158 \cdot 0,125 = 0,520 \ kNm < 1,66 \ kNm$$
$$M_{BII} = 0$$
$$M_{CII} = F_{IIy}W_{linear} = 4158 \cdot 0,07 = 0,291 \ kNm < 2,39 \ kNm$$

Obr. 5-7 Názorná schéma pre overenie vhodnosti použitia lineárneho valivého vedenia SRN 35R pod prednou časťou chodidla. K označeniu dĺžkových hodnôt prislúcha index *linear*.

Výpočty ohybových momentov, ktoré môžu na vozíku lineárneho valivého vedenia pod pätou nastať:

$$M_{AI} = F_{Iy}L_{linear} = 4714 \cdot 0,125 = 0,589 \ kNm < 1,66 \ kNm$$
$$M_{BI} = 0$$
$$M_{CI} = F_{Iy}W_{linear} = 4714 \cdot 0,07 = 0,0,330 \ kNm < 2,39 \ kNm$$

Obr. 5-8 Názorná schéma pre overenie vhodnosti použitia lineárneho valivého vedenia SRN 35R pod pätou. K označeniu dĺžkových hodnôt prislúcha index *linear*.

Výpočet životnosti:

$$L_{linear} = \left(\frac{C}{P}\right)^{\frac{10}{3}} \cdot 100 = \left(\frac{59100}{4713,7}\right)^{\frac{10}{3}} \cdot 100 = 457 \ km,$$

kde C [kN] je základná dynamická únosnosť a P je aplikované zaťaženie [N]. V tomto prípade je uvažované najvyššie možné zaťaženie, ktoré môže v zostave nastať. Ak zoberieme do úvahy maximálny zdvih vedenia a vynásobíme ho počtom cyklov jednej cyklickej skúšky, čiže 70mm krát 3 milióny cyklov, vyjde nám 180 km, čo je menej ako 457 km.

4.4 Rám

4.4.1 Funkcia a umiestnenie v zostave

Rám je zváraná konštrukcia z uzavretých tenkostenných profilov s materiálovým označením *S355J0 (11 523)*. Okrem nosnej funkcie umožňuje upnutie rôznych dĺžok trubkových adaptérov a umožňuje upínania trubkového adaptéru pod uhlom. Tak je dosiahnuté pomocou otvoru vo vrchnom tráme a sverným spojom s otvorom pod uhlom. Spomínaná drážka taktiež slúži k pohybu skúšaného vzorku počas upínania. Zo spodnej strany sú k rámu priskrutkované nastaviteľné patky od firmy Haberkorn *Príloha 14*.

Obr. 5-9 Rám a sverný spoj

4.4.2 Kontrola vrchného vodorovného zvarku rámu namáhaného ohybom vzhľadom k medzi klzu

Určenie maximálneho ohybového momentu bolo dosiahnuté nasledovným postupom. Na začiatku bola záťaž v bode C (Obr. 5-10) vyjadrená statickou ekvivalenciou medzi silami pôsobiacimi na chodidlo a na rám. Všetky rovnice sú zostavované pre najnebezpečnejší stav ktorý môže nastať. Následne boli vyjadrené výsledné vonkajšie účinky (Obr.5-11), z ktorých spolu so statickou neurčitosťou vyplynulo 6 neznámych parametrov. Pre ich vyjadrenie boli zostavené 3 rovnice statickej rovnováhy a 3 rovnice, Castiglianove vety pre posunutie v oboch smeroch a natočenie, čo viedlo na sústavu šiestich rovníc o šiestich neznámych. Vďaka riešeniu tejto sústavy bolo možné dosadiť za neznáme parametre v rovniciach výsledných vnútorných účinkov a vypočítať ohybové momenty v bode A, kde x = 0, v bode C, kde x = a a v bode B, kde x = L - a.

Obr. 5-10 Schéma pre výpočet statickej ekvivalencie
Statická ekvivalencia:

 $F_{x} = F_{IIstab_horni_mez} \sin(\beta) - F_{Istab_horni_mez} \sin(\alpha) = 250,4 N$ $F_{y} = F_{IIstab_horni_mez} \cos(\beta) - F_{Istab_horni_mez} \cos(\alpha) = -555,58 N$ $M_{z} = -F_{IIstab_horni_mez} \sin(\beta)l_{2} + F_{Istab_horni_mez} \sin(\alpha)l_{1} + F_{IIstab_horni_mez} \cos(\beta)r_{2} - F_{Istab_horni_mez} \cos(\alpha)r_{1} = 242312 Nmm$

Obr. 5-11 Schéma pre vyjadrenie VVÚ

Výsledné vnútorné účinky:

$$\begin{split} x_{1} &\in (0, a) \\ N &= -F_{Ax} \\ T &= -F_{Ay} \\ M_{o} &= -M_{Az} - F_{Ay} x \\ x_{2} &\in (0, L_{1} - a) \\ N &= -F_{Ax} - F_{x} \\ T &= -F_{Ay} + F_{y} \\ M_{o} &= -M_{Az} - F_{Ay} (a + x) - M_{z} + F_{y} x \end{split}$$

Rovnice statickej rovnováhy:

$$\Sigma F_{x} = 0; -F_{Ax} + F_{x} - F_{Bx} = 0$$

$$\Sigma F_{y} = 0; -F_{Ay} + F_{y} - F_{By} = 0$$

$$\Sigma M_{Az} = 0; M_{Az} + M_{Z} - M_{Bz} + F_{y}a - F_{By}L_{1} = 0$$

Castiglianove vety:

Posunutie v bode A v x- ovom smere: $u_A = 0 = \frac{\partial W}{\partial F_{Ax}}$

$$\int_{0}^{a} (-M_{Az} - F_{Ay}x) \cdot 0 \ dx + \int_{0}^{L1-a} [-M_{Az} - F_{Ay} \cdot (a+x) - M_{z} + F_{y}x] \cdot 0 \ dx = 0$$

Posunutie v bode A v y- ovom smere: $w_A = 0 = \frac{\partial W}{\partial F_{Ay}}$

$$\int_{0}^{a} (M_{Az} + F_{Ay}x)dx + \int_{0}^{L_{1}-a} [M_{Az} + F_{y} \cdot (a+x) + M_{z} - F_{y}x] \cdot (a+x) dx = 0$$

Natočenie v bode A:

$$\varphi_A = 0 = \frac{\partial W}{\partial M_{Az}}$$

$$\int_{0}^{a} (M_{Az} + F_{Ay}x) \cdot 1dx + \int_{0}^{L1-a} [M_{Az} + F_{Ay} \cdot (a+x) + M_{z} - F_{y}x] \cdot 1dx = 0$$

Výsledné riešenia sústavy šiestich rovníc o šiestich neznámych:

$$F_{Ax} = 250 \ N$$

 $F_{Ay} = -1134 \ N$
 $M_{Az} = 544523 \ Nmm$
 $F_{Bx} = 0 \ N$
 $F_{By} = 578,9 \ N$
 $M_{Bz} = -498422 \ Nmm$

Výpočet ohybového momentu v bode A:

 $M_{oA} = -M_{Az} - F_{Ay} \cdot 0 = -544523$ Nmm

Výpočet ohybového momentu v bode C:

$$M_{oC} = -M_{Az} - F_{Ay} \cdot a = 73760 Nmm$$

Výpočet ohybového momentu v bode B:

$$M_{oB} = -M_{Az} - F_{Ay} \cdot L_1 - M_z + F_y(L_1 - a) = 498422$$
 Nmm

Obr. 5-12 Priebeh ohybového momentu v závislosti na pozícii skúmaného prierezu

Z priebehu ohybového momentu vyplýva, že maximálny ohybový moment je v bode B, *182349 Nmm*.

Pre overenie rozmerovej, tvarovej a materiálovej vhodnosti zvarku je nevyhnutné vypočítať koeficient bezpečnosti vzhľadom na medzu klzu. Vychádza zo vzťahu napätia v ohybe.

Kvadratický moment prierezu:

$$I_{xT} = \frac{1}{12}bh^{3} - \left[\frac{1}{12}(b-2t)(h-2t)^{3}\right] = 566532 \ mm^{4}$$

Kde šírka tenkostennej trubky b = 100 mm, výška tenkostennej trubky h = 100 mma hrúbka steny tenkostennej trubky t = 100 mm.

Prierezový modul:

$$W_o = \frac{I_{xT}}{\frac{h}{2}} = 18884 \ mm^3$$

Napätie v ohybe:

$$\sigma_o = \frac{M_{o\max}}{W_o} = 9,656 \ MPa$$

Koeficient bezpečnosti vzhl'adom k medzi klzu:

$$k_k = \frac{R_{e_ram}}{\sigma_o \alpha_{ram}} = 17,088$$

Kde $R_{e_ram} = 330 \ MPa$ je minimálna medza klzu materiálu rámu S355J0 (11 523) a $\alpha_{ram} = 2$ je súčiniteľ tvaru. Je volený na základe pomerov šírky drážky s hrúbkou steny a šírky drážky s šírkou tenkostennej trubky (*Tab. A-15* [19])

4.4.3 Kontrola sverného spoja

V svernom spoji sú použité 3 skrutky s valcovou hlavou a vnútorným šesťhranom ISO 4762 - M6x35 – 12.9. Nosná plocha skrutky $A_s = 20,1 mm^2$, medza pevnosti materiálu skrutky $R_m = 1200 MPa$, medza klzu skrutky $R_e = 1080 MPa$, priemer upínanej trubky D = 30 mm, šírka spoja b = 50 mm, počet skrutiek i = 3 a súčiniteľ trenia $\mu = 0,15$.

Osová sila v jednej skrutke:

 $F_o = 0.9R_{e_s.spoj}A_{s_s.spoj} = 0.9 \cdot 1080 \cdot 20.1 = 19.5 \ kN$

Stykový tlak:

$$p_{s.spoj} = \frac{iF_{o_s.spoj}}{D_{_spoj}b_{_spoj}} = \frac{3.19537,2}{30.50} = 39,074MPa$$

Sverná sila:

 $F_{p_{s,spoj}} = \pi D_{spoj} b_{s,spoj} \cdot \mu = \pi \cdot 30 \cdot 50 \cdot 39,074 \cdot 0,15 = 27,6 \ kN$

Z vypočítanej svernej sily vyplýva, že navrhnutý spoj vyhovuje, $F_{p_s,spoj} > F_{1x}$.

5 DISKUSIA

Stend pre testovanie protetických chodidiel je určený pre chodidlá veľkostí od 31 (190 mm) do 50 (320 mm) zároveň s najvyššou možnou skúšobnou zaťažovaciou úrovňou P6 (do 100 kg) podľa normy ČSN EN ISO 10328. Definované zaťaženia pre dané zaťažovacie úrovne sú zabezpečené lineárnymi pneumomotormi pod prednou časťou nohy a pod pätou. Oba sú rovnaké. Jedná sa o lineárne pneumo motory od firmy Bosch Rexroth s lineárnym vedením piestnice v bloku valca kvôli veľkosti požadovaných vyvíjaných síl pneumo motorom. Jedná sa o jednu z posledných rád, ktoré sú schopné vyvíjať tieto sily. V prípade, že by boli požadované sily väčšie, použitie hydraulického pohonu by bolo vhodnejšie. Zdvih pneumomotora obsahuje maximálny možný priehyb chodidla, vôľu medzi chodidlom a pneumomotorom počas upínania protetického chodidla a následného nastavovania polôh valcov a rozmerovú rezervu. Smer pôsobenia zaťažovacích síl je zaistený naklonením pneumo motorov do normou predpísaných uhlov. Skúšobné vzorky sú zo širokej škály rozmerov, materiálov a konštrukčných riešení, čo si vyžaduje odmeriavanie generovanej sily kvôli rôznym priehybom chodidiel. Toto je zaistené silovým snímačom od firmy HBM.

Úmožnenie pohybu skúšobného vzorku s nízkym trením vo všetkých tangenciálnych smeroch umožňuje axiálne súdočkové ložisko s kosouhlým stykom, ktorého krúžky sú po vonkajších stranách zalisované do dvoch podložiek. Vrchnej podložke je umožnený rotačný pohyb ktorý sa spojí s priamočiarym pohybom poskytnutým lineárnym vedením. Dĺžka lineárneho vedenia je určená z trojuholníka maximálneho možného priehybu prednej časti chodidla a maximálnej vzdialenosti zaťažovacieho bodu od počiatku. Pre lepšiu fixáciu chodidla k vozíku vedenia je na jeho povrch prilepená gumová podložka.

Konštrukcia zariadenia umožňuje upínanie rôznych dĺžok trubkových adaptérov vďaka drážke vo vrchnom diele zváraného rámu. Drážka nemá žiadny vplyv na ohybovú pevnosť nosníka. Tento diel je namáhaný ohybovým napätím. Pri výpočte koeficientu bezpečnosti vzhľadom k medzi klzu bol výskyt drážky do výsledku vnesený pomocou koeficientu tvaru. Jeho zvolená veľkosť je väčšia ako reálna, čo nás privádza na bezpečnejšiu stranu riešenia. Napriek tomu je hodnota koeficientu bezpečnosti vysoká, až 17. Takto zvolený namáhaný prierez má svoje opodstatnenie v cyklickom namáhaní a vo vyžadovanej pevnosti konštrukcie. Vzhľadom na vyhodnocovanie vyvíjaných síl je vhodné minimalizovať vstupné rázy a vibrácie okolia. Taktiež nevhodné sú vystupujúce rázy vibrácie z neustále sa opakujúcich cyklov zaťažení.

Na *Obr.6-1* je znázornené upínanie a ustavovanie skúšobného vzorku pomocou prípravku na to určeného. Na jeho čelnej strane je nónius (v 3D modely, nie na obrázku, textúru nejde vyrendrovať) s vyžadovaným rozlíšením 1 mm s vyznačeným počiatočným bodom, ktorý sa nachádza vždy v rovnakom mieste medzi pneumo motormi. Jeho poloha je zaistená dorazmi upínacej dosky určujúcimi polohu prípravku. Od tohto bodu sa odmeriava vzdialenosť ofsetov (súradníc) záťažových bodov. Protéza musí byť upnutá podľa *Prílohy 8* a umiestnenie jej záťažovej osi je dané štvrtinou celkovej

dĺžky chodidla meranej od päty podoprenej 20 mm vysokým opätkom. Toto podoprenie je riešené pomocou pod uhlom navŕtaného otvoru v svernom spoji. Počiatočný bod znázornený na prípravku a na ďalšej milimetrovej stupnici, ktorá je súčasťou čela dolnej upínacej dosky pretína zaťažovacia os chodidla, ktorá nie je zhodná s osou trubkového adaptéru.

Obr. 5-1 Upínanie testovacieho vzorku

6 ZÁVER

Návrh testovacieho stendu protézneho chodidla predstavuje zariadenie vhodné pre životnostné a statické skúšky, ktoré sú dané normou ČSN EN ISO 10 328.

Výpočty, ktoré boli počas navrhovania prevedené zahŕňajú najkritickejšie možné stavy, ktoré môžu nastať. V prípade potreby je možné parametre meniť. Štruktúra výpočtov je zhotovená v MathCad 14.

V zhodnotení miery dosiahnutých cieľov je vhodné spomenúť kalibráciu a presnosť nastavovania, ktorá v tejto práci nie je riešená do hĺbky.

Problémy, ktoré by mohli byť riešené napríklad v ďalšom študíjnom programe sú pneumatický obvod, spracovávanie signálov silového snímača, vyhodnocovanie skúšky pre právoplatné vyhlásenie o zhode skúšobného vzorku s požiadavkami medzinárodnej normy.

ZOZNAM POUŽITÝCH ZDROJOV

[1] FISK, John R., John W. MICHAEL a John D. HSU. AMERICAN ACADEMY OF ORTHOPAEDIC SURGEONS. *AAOS Atlas of Orthoses and Assistive Devices* [online]. Philadelphia : Mosby/Elsevier., 2008 [cit. 2013-11-25]. ISBN 9780323039314. 9780323076319. Dostupné z: eBook Collection (EBSCOhost)

[2] MÍKOVÁ, M. *Vyšetření a terapie chůze*. Olomouc, 2006. Přednáška. Fakultní nemocnice a Lékařské fakulty UP Olomouc.

[3] BERNACIKOVÁ, Martina, Miriam KALICHOVÁ a Lenka DOVRTĚLOVÁ. Analýza pohybů v kloubech. FAKULTA SPORTOVNÍCH STUDIÍ MASARYKOVY UNIVERZITY. Základy sportovní kineziologie[online]. 2010 [cit. 2013-11-25]. Dostupné z: http://is.muni.cz/do/1451/e-learning/kineziologie/elportal/pages/analyza_v_kloubech.html

[4] Co je protéza?. MS ortoprotetika s.r.o. [online]. 2010, č. 2006100004 [cit. 2013-11-30]. Dostupné z: <u>http://www.ms-protetik.cz/view.php?cisloclanku=2006100004</u>

[5] Služby: Protézy. ORTOPEDICKÁ PROTETIKA FRÝDEK MÍSTEK [online]. 2013 [cit. 2013-11-30]. Dostupné z: http://www.protetikafm.cz/sluzby-protetika.html

[6] ČSN EN ISO 10328. Protetika - Zkoušení konstrukce protéz dolních končetin: Požadaky a zkušební metody. Praha: Český normalizačný institut, 2007.

[7] LUSARDI, Michelle M a Caroline C NIELSEN. *Orthotics and prosthetics in rehabilitation*. 2nd ed. St. Louis, Mo.: Saunders/Elsevier, c2007, xix, 904 p. ISBN 07-506-7479-2.

[8] KOPECKÝ, M. Konstrukce transtibiální protézy s využitím aditivní technologie výroby. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2013. 103 s. Vedoucí diplomové práce Ing. Daniel Koutný, Ph.D..

[9] OMASTA, Milan, David PALOUŠEK, Tomáš NÁVRAT a Jiří ROSICKÝ. Finite element analysis for the evaluation of the structural behaviour, of a prosthesis for trans-tibial amputees. *Medical Engineering & Physics* [online]. 2012, č. 34 [cit. 2014-03-11]. Dostupné z: http://www.sciencedirect.com/science/article/pii/S1350453311001524

[10] ROSICKÝ, Jiří. Stavba protéz DK z kompozitních materiálů: ING corporation, spol. s r.o. - Ortopedická protetika Frýdek-Místek. *FOPTO - Federace ortopedických protetiků technických oborů* [online]. 2012, č. 1 [cit. 2014-03-16]. Dostupné z: http://www.ortotikaprotetika.cz/oldweb/Wc3b55e2a2d63d.htm

[11] GERSCHUTZ, Maria J., Michael L. HAYNES, NIXON a James M. COLVIN. Tensile strength and impact resistance properties of materials used in prosthetic check sockets, copolymer sockets, and definitive laminated sockets. *WorldWideScience.org: The Global Science Gateway* [online]. 2011 [cit. 2014-03-16]. Dostupné z: http://worldwidescience.org/topicpages/s/socket+inhibits+oral.html

[12] Élan. *Blatchford: Endolite* [online]. 2014 [cit. 2014-03-17]. Dostupné z: http://www.endolite.com/products/elan

[13] MAJOR, Matthew J., Martin TWISTE, Laurence P.J. KENNEY a David HOWARD. Amputee Independent Prosthesis Properties—A new model for description and measurement. *Journal of Biomechanics* [online]. 2011, č. 14, s. 2572-2575 [cit. 2014-03-18]. Dostupné z: http://www.sciencedirect.com/science/article/pii/S0021929011005227

[14] Fatigue testing on lower leg prosthesis - Ermüdungsprüfung an Unterschenkelprothesen. In: *Youtube.com* [online]. 2012 [cit. 2014-03-18]. Dostupné z: http://www.youtube.com/watch?v=M5rsQXKCXI0

[15] *Testing Machines and Systems for the Medical Industry: Brochure.* Zwick Testing Machines Ltd., 2002.

[16] HAHL, Jill a Minoru TAYA. Experimental and numerical predictions of the ultimate strength of a low-cost composite transtibial prosthesis. *Center for Intelligent Materials and Systems. Department of Mechanical Engineering, University of Washington, Seattle, WA* 98195-2600. 2000, s. 405-413.

[17] COLOMBO, C., E.G. MARCHSIN, L. VERGANI, E. BOCCAFOGLI a G. VERNI. Study of an ankle prosthesis for children: adaptation of ISO 10328 and experimental tests. *Procedia Engineering* [online]. 2011 [cit. 2014-03-18]. Dostupné z: http://www.sciencedirect.com/science/article/pii/S1877705811007661

[18] Vědci otestovali nejstarší protézy na světe. *KADUCEUS.cz* [online]. 2011, - [cit. 2014-05-20]. Dostupné z: http://www.kaduceus.cz/online/poznani/151/vedci-otestovali-nejstarsi-protezy-na-svete.aspx#top

[19] SHIGLEY, J. E, MISCHKE, Ch. R, BUDYNAS, R. G. KONSTRUOVÁNÍ STROJNÍCH SOUČÁSTÍ. VUTIUM, 2008. 1300 s. ISBN 978-80-214-2629-0.

[20] SHIGLEY, Joseph E. *Mechanical engineering: Shigley's Mechanical engineering Design* [online]. Eighth Edition. 2006 [cit. 2014-05-02]. ISBN 0-390-76487-6. Dostupné z: http://www.primisonline.com

ZOZNAM POUŽITÝCH SKRATIEK, SYMBOLOV A VELIČÍN

Symbol

F	[N]	Sila
F_{I}	[N]	Zaťažujúca sila pod pätou
F_{II}	[N]	Zaťažujúca sila pod prednou časťou nohy
F _{II stab, horní mez}	[N]	Maximálna zaťažujúca sila pod prednou časťou nohy
$F_{I \ stab, \ horn i \ mez}$	[N]	Maximálna zaťažujúca sila pod pätou
β	°]	Uhol určujúci smer sily F_{II}
α	[°]	Uhol určujúci smer sily F_I
F_{IIx}	[N]	Zložka sily F_{II} v x – ovej osi
F_{IIy}	[N]	Zložka sily F_{II} v y – ovej osi
F_{Ix}	[N]	Zložka sily F_1 v x – ovej osi
F_{Iy}	[N]	Zložka sily F_I v y-ovej osi
<i>i</i> _t	[–]	Počet skrutiek v upínacej doske
A_{s}	$[mm^2]$	Výpočtový prierez skrutky
R_m	[MPa]	Medza pevnosti materiálu
R_{e}	[MPa]	Medza klzu materiálu
$F_{P,C}$	[N]	Návrhová predpínacia sila
f_s	[–]	Súčiniteľ trenia medzi upínacími doskami
k_s	[-]	Súčiniteľ obyčajného otvoru
γ_{M3}	[-]	Dielčí súčiniteľ spoľahlivosti materiálu pre styčníky
$F_{S,Rn}$	[N]	Návrhová únosnosť jednej skrutky
S _o	$[mm^2]$	Obsah oslabeného prierezu
$F_{net,Rn}$	[N]	Návrhová únosnosť oslabeného prierezu
M_{o}	[Nmm]	Ohybový moment
b	[mm]	Šírka tenkostenného uzavretého profilu
h	[mm]	Výška tenkostenného uzavretého profilu
t	[mm]	Hrúbka steny tenkostenného uzavretého profilu
I_{xT}	mm^4	Kvadratický moment prierezu v ťažisku k ose x
W_{o}	mm^3	Prierezový modul v ohybe
α_{ram}	[-]	Súčiniteľ tvaru oslabeného prierezu hornej časti rámu
$\sigma_{_o}$	[MPa]	Napätie v ohybe
k_k	[-]	Koeficient bezpečnosti vzhľadom k medzi klzu
L_{linear}	[m]	Dĺžka vozíka
W _{linear}	[m]	Dĺžka vozíka

D_{spoj}	[mm]	Priemer trubkového adaptéra
b_{spoj}	[mm]	Šírka sverného spoja
i	[-]	Počet skrutiek vo svernom spoji
μ	[-]	Súčiniteľ trenia medzi trubkovým adaptérom a spojom
$P_{s.spoj}$	[MPa]	Stykový tlak
$F_{p_s.spoj}$	[N]	Sverná sila
DK	Dolná	končatina

ZOZNAM OBRÁZKOV

Obr. 1-1: Fázy krokového cyklu zobrazené v rovnakom poradí ako v texte [2]	14
Obr. 1-2 Flexia a extenzia kolenného kĺbu [3]	15
Obr. 1-3 Krokový cyklu a jeho časti [1]	16
Obr. 1-4 Zaťažujúca krivka vertikálnej sily počas normálnej chôdze	16
Obr. 5-1 Upínanie testovacieho vzorku	42

ZOZNAM PRÍLOH

- Príloha 1:Skúšobná zaťažovacia podmienka I a IIPríloha 2:Súradnicový systém
- Príloha 3: Parametre zaťažovania
- **Príloha 4:** Skúšobné sily všetkých samostatných skúšok členkových náhrad a predpísané počty cyklov skúšky [6]
- **Príloha 5:** Počet skúšok a skúšobné vzorky požadované pre potvrdenie o zhode s medzinárodnou normou ČSN EN ISO 10 328 [8]
- Príloha 6: Hodnoty posunov (ofsetov) pre všetky hlavné skúšky
- Príloha 7: Hodnoty kombinovaných posunov (ofsetov)
- Príloha 8: Určenie geometrie chodidla
- Príloha 9: Katalógový list Kipp: Výměnné desky ZERO lock s T drážkama
- Príloha 10: Katalógový list Bosch Rexroth: lineárny pneumo motor
- **Príloha 11:** Katalógový list THK: lineárne valivé vedenie s valčekovými valivými elementmi, model SRN 35R
- Príloha 12: Katalógový list THK výpočty
- Príloha 13: Katalógový list HBM silový snímač, model 12k5
- Príloha 14: Katalógový list HABERKORN nastavovacie patky
- Príloha 15: Výkresová dokumentácia

Príloha 15 Skúšobná zaťažovacia podmienka I a II

Legenda

- 1 Levá noha
- 2 Zatěžovací přímka
- 3 Efektivni střed hlezenního kloubu
- 4 Efektivní středová přímka hlezenního kloubu
- 5 Efektivni střed kolenního kloubu
- A. Moment kotniku Mat, vztažná přímka
- Ao Moment kotniku MAD, vztažná přimka
- Ke Moment kolena Mkr. vztažná přímka
- Ko Moment kolena Mko vztažná přímka a efektivní středová přímka kolenního kloubu
- P₁ Horní bod aplikace zatížení
- Px Vztažný bod zatižení kolena
- PA Vztažný bod zatižení kotniku
- P_B Dolní bod aplikace zatižení

Aplikace specifické zkušební zatěžovací podmínky II na levostranný zkušební vzorek, znázomující souřadnicový systém s up = 0 se vztažnými rovinami, vztažnými přímkami, vztažnými body a komponentami vnitřního zatížení generovaného aplikaci zkušební síly F.

Príloha 17 Parametre zaťažovania

Príloha 18: Skúšobné sily všetkých samostatných skúšok členkových náhrad a predpísané počty cyklov skúšky [6]

Zkušebn	í postup a zkušební		Jednotka	Zkušební zatěžo zkušební zatěž	ovací úroveň P6 – ovací podmínka	
	zatiženi			1	11	
Stabilizujíc zkušebr síla		F _{stab}	N	(50	
Pos stati a cyk zkou	Vyrovnávací zkušební síla	Fset	N	1 224	1 120	
Kontrolní zkušební síla Mezní statická	Kontrolní zkušební síla	F _{sp}	N	2 490	2 263	
	Mezní statická	Fsu, dolni mez	N	3 760	3 4 1 9	
A S N	zkušební síla	F _{stab, homi mez}	N	4 880	4 425	
	Minimální zkušební síla	Fcmin	N	50		
ð.	Cyklický interval	Fcr	N	1 530	1 400	
zkoušl	Maximální zkušební síla	F _{cmax} F _{cmax} = F _{cmin} + F _{cr}	N	1 580	1 450	
klické	Střední zkušební síla	F_{cstled} $F_{cstled} = 0.5 \cdot (F_{cmin} + F_{cmax})$	N	815	750	
tup cy	Cyklická amplituda	F_{ca} $F_{ca} = 0.5 F_{cr}$	N	765	700	
Pos	Konečná statická síla	F _{fin} F _{fin} = F _{sp}	N	2 490	2 263	
	Předepsar	ný počet cyklů	1	3	× 10 ⁶	

Tabulka D.2 – Zkušební síly všech hlavních zkoušek a předepsané počty cyklů cyklické zkoušky pro zkušební zatěžovací úroveň P6 (viz 16.2 a 16.3) Príloha 19: Počet skúšok a skúšobné vzorky požadované pre potvrdenie o zhode s medzinárodnou normou ČSN EN ISO 10 328 [8]

Typ zkoušky		Požadovaný	Dávka ^b zk pro	ušebních v každý typ	zorků povolená zkoušky	
	Zkušební zatěžovací podminka a způsob aplikace	počet	Vzorky řádné	Možné vzorky náhradní zkoušky		
		ZROUSER	zkoušky	Čislo ^c	Odkaz	
	Hlavní kons	strukční zkoušk	y			
Statická kontrolní	Zkušební zatěžovací podmínka I [7.1.2 a)]	2	2	1	16 2 1 1 12	
(viz 16.2.1.1)	a zkušebni zatěžovací podminka II [7.1.2. b)]	2		1	10.2.1.1.12	
Statická zkouška	Zkušební zatěžovací podminka I [7.1.2 a)]	2	2	1	16.2.2.1.9	
(viz 16.2.2.1)	a zkušební zatěžovací podmínka II [7.1.2. b)]	2	2	1	a 6.2.2.1.10 (možnost volby)	
Cvklická zkouška ^d	Zkušební zatěžovací podmínka I [7.1.2 a)]	2	2	1	10.0.00	
(viz 16.3.2)	a zkušební zatěžovací podmínka II [7.1.2. b)]	2	2 1		16.3.2.22	

Tabulka 16 – Počet zkoušek a zkušební vzorky požadované pro potvrzení o shodě

Príloha 20. Hodnoty posunov	(ofsetov) pr	e všetky hlavne	é skúšky
1 mona 20. moundly posunov	(Orserov) pr	c vsetky mavin	SRusky

		Posun (ofset) ^a												
Iztažná		Numerická hodnota mm												
rovina	Směr a umístění ^b	Zkušební z úrove	Zl zatěžovací eň P5	kušební zatěžo Zkušební z úrove	ovací podmíni zatěžovací eň P4	ka Zkušební zatěžovací úroveň P3								
		1	Ш	1	Ш	I	Ш							
Horpí ^c	fT	82	55	89	51	81	51							
нопп	OT	-79	-40	-74	-44	-85	-49							
Kalana	fĸ	52	72	56	68	49	68							
Kolena	OK	-50	-35	-48	-39	-57	-43							
Katallar	fA	-32	120	-35	-35 115		115							
Kotniku	OA	30	-22	25	-24	24	-26							
Delet	f _B	-48	129	-52	124	-58	124							
Doini	OB	45	-19	39	-22	39	-23							

	And and the second	Kombinované posuny (ofsety) $S_x = \sqrt{f_x^2 + o_x^2}^{a}$										
Vztažná rovina			Angelon (Numerická mi	á hodnota m							
	Rozměr a umístění ^b	Zkušební z úrove	Z zatěžovací eň P5	kušební zatěžo Zkušební z úrove	ovací podmín atěžovací n P4	ka Zkušební zatěžovací úroveň P3						
		I	11	1	11	1	11					
Horni	ST	114	68	116	67	117	71					
Kolena	Sĸ	72	80	74	78	75	81					
Kotniku	SA	44	122	43	118	48	118					
Dolní	SB	66	130	65	126	70	126					
POZNÁMKA zatížení P6 u ^a Pro určer hodnoty (ofsetů) v ^b Pro jedno	Kombinované prčenou v Příloze ní velikosti proteti kombinovaných ztažených k hodr otlivé hodnoty cel	posuny (ofset D. ckého nohy a posunů (ofse notám posunů kových délek	y) specifikova vyrovnání déll tů) (viz 6.8.2) (ofsetů) uved (u _T – u _B) lišící	né pro P5 také ky pák aplikace . Tato tabulka ených v tabulce ch se od hodno	zatiženi moho stanovi hodr 6. ty specifikova	latečnou úrover ou být požadová oty kombinova né v tabulce 5,	ň zkušebníh any specifick ných posun kombinovar					

Príloha 21: Hodnoty kombinovaných posunov (ofsetov)

strana 57

Príloha 22: Určenie geometrie chodidla

- 2 efektivní středová přímka hlezenního kloubu nohy (zkušební zatěžovací podmínka II)
- 3 podélná osa nohy odpovidající 6.7.2
- hr výška podpatku

- L délka nohy
- dolní bod aplikace zatížení na přední část (zkušební zatěžovací podmínka II) PB
- SB kombinovaný dolní bod posunu (ofsetu) dolní aplikace zatížení PB na přední část nohy z osy u

POZNÁMKA Doporučovaná výška podpatku pro kotníkové nebo nožní náhrady podrobené zkoušce je vzato jako $h_r = 20$ mm pokud to není specifikováno jinak výrobcem/zadavatelem.

Príloha 23: Katalógový list Kipp: Výměnné desky ZERO - lock s T - drážkama

K0511

Výměnné desky ZERO lock s T-drážkami

Linn

Výkresy

2násobná s T-drážkami

Príloha 24: Katalógový list Bosch Rexroth: lineárny pneumo motor

Weight [kg]

Piston Ø	100
Stroke 10	-
20	-
25	8.8
30	-
40	-
50	10
75	<mark>11.1</mark>
100	12.2
125	13.7
150	-
160	15.2
200	17

Dimensions, Ø 25 - 100

* Suitable for screws according to ISO 4762

S = stroke Note: Only the Ø10 variants fits to sensor series ST4. The sensor series ST6 and SN3 can be used for all other Ø variants.

Piston Ø	A RTxLB	A 1	B ØdxLA	B1 ØdxD	C RTxLB	D Ø 1)	D2	D4	DX	E RTxLB	E1	E2	F Ø 1)
100	M12x24	135°	6x6	6x7	M12x25	11.2	<mark>39.5</mark>	174	<mark> 32</mark>	M12x25	226	<u>111</u>	M12
Piston Ø	G Ø 2)	Н Ø 2)	K EE	Ľ	1 L2	L3		L4	L5 L	.6 L	.7 Li	B L9	L10
25	6.5	4H8	G 1/8	35 ±0,	1 20.5	4.5	25 ±	0,1	85 3	34 5	6.1	5 12	1.5
32	6.5	4H8	G 1/8	44 ±0,	1 24	5	33 ±	0,1 1	05 2	26 7	0 8.2	2 16.7	2.2
40	8.5	4H8 4H8	G 1/8	53 ±0,1	5 32	6	40 ±0, 48 ±0	15 1 15 1	10 4	5 0	0 8.2	2 16./	2.2
63	10.5	5H8	G 1/4	84 ±0,1	5 39	8	60 ±0,	15 1	47 6	.5 11	2 10.2	2 20.3	6
80	10.5	5H8	G 1/4	100 ±0,1	5 46	9	60 ±0,	15 1	82 54	.5 13	2 10.2	2 20.3	6
<mark>100</mark>	12.5	6H8	<mark>G 3/8</mark>	120 ±0,1	5 <mark>55.5</mark>	9	<mark>60 ±0</mark> ,	<mark>15</mark> 2	206	7 <mark>6 15</mark>	<mark>5 10.2</mark>	2 20.3	6
Piston Ø	L11	L12	L13	L15	L17	L18	L19	L22	L25	L26	L27	L28	L29
25	1.5	5.5	16.5	25	5.5	25	8	32	32	30	81	23	32 ±0,1
32	2.8	9 9	20.5	33	6.5	33	10	42 53	42	32	97	30	42 ±0,1
50	2.8	9	23	48	7.5	48	12	63	63	53	134	40	63 ±0,15
63	6	16	24	60	11	60	12	80	80	63	140	48	80 ±0,15
80	6	16	33.5	60	12	60	13	96	96	80	176	52	96 ±0,15
100	<mark>6</mark>	<mark>16</mark>	32.5	<mark>60</mark>	12	60	<mark>13</mark>	<mark>119</mark>	<mark>119</mark>	<mark>.96</mark>	204	<mark>64</mark> 1	19 ±0,15
Piston Ø	L3	0 L:	31 L	J1 LJ	2 LM1	LM2	LM3	LM4	PL1	PL2	PL3	PL4	Т
25	30 ±0,	2 2	24 29	10 40	2 10 5 12	15.5	93	33	11	11	11	11	6.5
40	32 ±0, 42 ±0,	2 32	.5 37	40.4	4 12	19.5	122	43	13.5	13.0	13.5	13.5	8
50	53 ±0	2 4	40 54	.5 50.	5 15	23.5	146	52	2 13	13	13	13	7.5
63	63 ±0,	2 4	48	57 5	9 15	24	160	67	13.7	13.7	13.7	13.7	11
100	80 ±0,	2 6	50 77 50 60	.5 74.	5 20	30	200	76	23	23	23	23	13.5
	<u> </u>	<u> (</u>			20	<u> </u>	224	04	21.3	21.3	21.3	21.3	<mark>-18.5</mark>
Piston Ø 25	18 +0	1 32.5	T2	T3 30 ±0 05	T4	N6	42 3)						
32	23 ±0,	4 41	±0,4	35 ±0,05	24 ±0,05	N8	46.5						
40	23 ±0,	4 41	±0,4 3	5,5 ±0,1	27 ±0,1	N8	44						
50	27,5 ±0,	4 47,5	±0,4	41 ±0,1	32 ±0,1	N8	46						
63	35 ±0,	4 49,5 5 61	±0,5	39 ±0,1	39 ±0,1	N10	51						
100	50,5 ±0,4	5 65	±0,5	53 ±0,2	40 ±0,2	N10	77						
S = stroke To determ used 1) Through 2) through 3) For stro Two holes	ine the cyli hole with -hole ke 150, ZA C-C 10 mi	nder leng thread . = 52, for n.	th (ZA) fo	r intermedi 5, ZA = 47	ate strokes	s (i.e. strok	e 10 with	dia. 40),	the next av	vailable sta	andard stro	oke size m	ust be
Piston Ø	S=10	S=20	S=25	S=30	S=40	S=50	S=75	S=100	S=125	S=150	S=160	S=200	S=10
100	01	D1	9.5	95	9.5	D1 9.5	01 9.5	D1 9.5	D1 37.5	27.5	D1 37.5	27.5	L14 37
Picton Ø	S-20	5_25	S_20	S_40	S_50	S_75	S-100	S_105	S_160	E-200	S_10	6,10	6.05
FISION	L14	L14	L14	L14	L14	L14	L14	5=125 L14	L14	5=200 L14	L16	5=20 L16	5=25 L16
25	25	25	25	25	25	25	25	25	25	25	35.5	41.5	41.5
32	30	30	33	33	33	33	33	33	33	33	50.5	50.5	50.5
50	25	25	40	48	40	40	40	40	40	40	48	48	48
63	28	28	28	28	28	60	60	60	60	60	52	52	52
80	35	35	60	60	60	60	60	60	60	60	68.5	68.5	68.5
100	37	37	60	60	60	<mark>60</mark>	60	60	60	60	67.5	67.5	67.5
Piston Ø	S=30 L16	S=40 L16	S=50 L16	S=75 L16	S=100 L16	S=125 L16	S=160 L16	S=200 L16	S=40 L16a	S=50 L16a	S=100 L16a	S=125 L16a	S=160 L16a
25	41.5	41.5	66.5	91.5	91.5	91.5	91.5	91.5	65.5		125.5	150.5	185.5
32	53.5	53.5	53.5	86.5	119.5	119.5	119.5	119.5		76		151	186
40 50	71	71	71	71	119	119	140	140				149	184
63	52	52	52	84	84	144	144	204			127	140	187
80	93.5	93.5	93.5	93.5	93.5	153.5	153.5	153.5			143.5		203.5
100	92.5	92.5	92.5	9 <mark>2.</mark> 5	92.5	152.5	152.5	212.5			144.5		204.5

Piston Ø	S=200 L16a	S=20 L20	S=25 L20	S=30 L20	S=40 L20	S=50 L20	S=75 L20	S=100 L20	S=125 L20	S=160 L20	S=200 L20	S=10 L23	S=20 L23
25	225.5	22	32	32	32	32	32	32	32	32	32	30	30
32	226	35	35	42	42	42	42	42	42	42	42	45	45
40	224	30	30	53	53	53	53	53	53	53	53	40	40
50	223	30	30	30	30	30	63	63	63	63	63	42	42
63		30	30	30	30	30	80	80	80	80	80	42	42
80		47	47	47	47	47	96	96	96	96	96	60	60
100		49	49	49	49	49	<mark>49</mark>	119	119	119	119	62	62
Piston Ø	S=25 L23	S=30 L23	S=40 L23	S=50 L23	S=75 L23	S=100 L23	S=125 L23	S=160 L23	S=200 L23	S=40 L24	S=50 L24	S=75 L24	S=100 L24
25	40	40	40	40	74	104	104	104	104	60	70	95	
32	45	52	52	52	94	94	136	136	136				122.5
40	40	63	63	63	63	116	116	169	169			91	
50	42	42	42	42	75	75	138	138	201				116
63	42	42	42	42	92	92	92	172	172				
80	60	60	60	60	109	109	109	109	109				
100	62	62	62	62	<mark>62</mark>	132	132	132	132		l	l	
Piston Ø	S=125 L24	S=160 L24	S=200 L24	S=10 L34	S=20 L34	S=25 L34	S=30 L34	S=40 L34	S=50 L34	S=75 L34	S=100 L34	S=125 L34	S=160 L34
25	145	180	220	26	29	29	29	29	29	29	29	29	29
32		182.5	222.5	35.5	35.5	35.5	37	37	37	37	37	37	37
40			216	35	35	35	40	40	40	40	40	40	40
50		176		35.5	35.5	35.5	47	47	47	47	47	47	47
63	140		215	38	38	38	38	38	38	54	54	54	54
80	160	195		51	51	51	51	51	63.5	63.5	63.5	63.5	63.5
100		195	2351	51	51	51	51	51	625	62 5	62 51	62.5	625
								01	02.0	02.0	02.0	0210	02.0
Piston Ø	S=200 L34	S=10 L35	S=20 L35	S=25 L35	S=30 L35	S=40 L35	S=50 L35	S=75 L35	S=100 L35	S=125 L35	S=160 L35	S=200 L35	S=10 L36
Piston Ø	S=200 L34 40	S=10 L35 4	S=20 L35 4	S=25 L35 4	S=30 L35 4	S=40 L35 4	S=50 L35 4	S=75 L35 6	S=100 L35 6	S=125 L35 6	S=160 L35 8	S=200 L35 10	S=10 L36 4
Piston Ø 40 50	S=200 L34 40 47	S=10 L35 4 4	S=20 L35 4 4	S=25 L35 4 4	S=30 L35 4 4	S=40 L35 4 4	S=50 L35 4 4	S=75 L35 6 4	S=100 L35 6 6	S=125 L35 6 6	S=160 L35 8	S=200 L35 10 8	S=10 L36 4
Piston Ø 40 50 63	S=200 L34 40 47 54	S=10 L35 4 4	S=20 L35 4 4	S=25 L35 4 4	S=30 L35 4 4 4	S=40 L35 4 4	S=50 L35 4 4	S=75 L35 6 4	S=100 L35 6 4	S=125 L35 6 6	S=160 L35 8 8 6	S=200 L35 10 8	S=10 L36 4 4
Piston Ø 40 50 63 80	S=200 L34 40 47 54 63.5	S=10 L35 4 4 4 4	S=20 L35 4 4 4 4	S=25 L35 4 4 4 4	S=30 L35 4 4 4 4	S=40 L35 4 4 4 4	S=50 L35 4 4 4 4	S=75 L35 6 4 4	S=100 L35 6 6 4 4	S=125 L35 6 6 6	S=160 L35 8 8 6 6	S=200 L35 10 8 8 6	S=10 L36 4 4 4 4
Piston Ø 40 50 63 80 100	S=200 L34 40 47 54 63.5 62.5	S=10 L35 4 4 4 4 4 4	S=20 L35 4 4 4 4 4 4	S=25 L35 4 4 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4	S=40 L35 4 4 4 4 4 4 4	S=50 L35 4 4 4 4 4 4 4	S=75 L35 6 4 4 4 4	S=100 L35 6 4 4 4	S=125 L35 6 6 6 6 4	S=160 L35 8 8 6 6 6	S=200 L35 10 8 8 6 6	S=10 L36 4 4 4 4 4 4
Piston Ø 40 50 63 80 100 Piston Ø	S=200 L34 40 47 54 63.5 62.5 S=20 L36	S=10 L35 4 4 4 4 4 4 5=25 L36	S=20 L35 4 4 4 4 4 4 5=30 L36	S=25 L35 4 4 4 4 4 4 4 5=40 L36	S=30 L35 4 4 4 4 4 4 4 5=50 L36	S=40 L35 4 4 4 4 4 4 5=75 L36	S=50 L35 4 4 4 4 4 4 4 5=100 L36	S=75 L35 6 4 4 4 5=125 L36	S=100 L35 6 4 4 4 5=160 L36	S=125 L35 6 6 6 4 S=200 L36	S=160 L35 8 8 6 6 6 5 5 10 ZJ	S=200 L35 10 8 8 6 6 5 20 ZJ	S=10 L36 4 4 4 4 4 5=25 ZJ
Piston Ø 40 50 63 80 100 Piston Ø 25	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4	S=10 L35 4 4 4 4 4 5=25 L36 4	S=20 L35 4 4 4 4 4 5=30 L36 4	S=25 L35 4 4 4 4 4 4 5=40 L36 6	S=30 L35 4 4 4 4 4 4 5=50 L36 6	S=40 L35 4 4 4 4 4 5=75 L36 8	S=50 L35 4 4 4 4 4 5=100 L36 10	S=75 L35 6 4 4 4 4 5=125 L36 10	S=100 L35 6 6 4 4 4 4 5=160 L36 10	S=125 L35 6 6 6 6 4 S=200 L36 10	S=160 L35 8 8 6 6 6 6 5 57.5	S=200 L35 10 8 8 6 6 6 S=20 ZJ 57.5	S=10 L36 4 4 4 4 4 5=25 ZJ 57.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4 4 4	S=10 L35 4 4 4 4 4 4 5=25 L36 4 4 4	S=20 L35 4 4 4 4 4 4 4 5=30 L36 4 4 4	S=25 L35 4 4 4 4 4 4 4 4 5=40 L36 6 4	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6	S=40 L35 4 4 4 4 4 4 4 5=75 L36 8 6	S=50 L35 4 4 4 4 4 5=100 L36 10 8	S=75 L35 6 4 4 4 4 5=125 L36 10 10	S=100 L35 6 6 4 4 4 4 4 5=160 L36 10 10	S=125 L35 6 6 6 6 6 6 6 6 6 4 S=200 L36 10 10	S=160 L35 8 8 6 6 6 6 6 6 5 7.5	S=200 L35 10 8 8 6 6 6 S=20 ZJ 57.5	S=10 L36 4 4 4 4 5=25 ZJ 57.5 82
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4 4 4	S=10 L35 4 4 4 4 4 4 5=25 L36 4 4 4	S=20 L35 4 4 4 4 4 4 4 5=30 L36 4 4 4	S=25 L35 4 4 4 4 4 4 4 4 5=40 L36 6 4 4	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 4	S=40 L35 4 4 4 4 4 4 4 5=75 L36 8 6 6	S=50 L35 4 4 4 4 4 4 4 5=100 L36 10 8 6	S=75 L35 6 4 4 4 4 4 5=125 L36 10 10 8	S=100 L35 6 6 4 4 4 4 5=160 L36 10 10 10	S=125 L35 6 6 6 6 6 6 4 8 S=200 L36 10 10 10	S=160 L35 8 8 6 6 6 6 5 7.5 5 7.5	S=200 L35 10 8 8 6 6 6 57.5 57.5	S=10 L36 4 4 4 4 4 4 4 5 57.5 82 82.6
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4 4 4 4	S=10 L35 4 4 4 4 4 4 5=25 L36 4 4 4 4 4	S=20 L35 4 4 4 4 4 4 5=30 L36 4 4 4 4 4	S=25 L35 4 4 4 4 4 4 4 5=40 L36 6 6 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 4 4	S=40 L35 4 4 4 4 4 4 4 5=75 L36 8 6 6 6 4	S=50 L35 4 4 4 4 4 4 4 5=100 L36 10 8 6 6	S=75 L35 6 4 4 4 4 4 5=125 L36 10 10 8 8 8	S=100 L35 6 6 4 4 4 4 4 5=160 L36 10 10 10 8	S=125 L35 6 6 6 6 6 6 4 S=200 L36 10 10 10 10 10	S=160 L35 8 8 6 6 6 6 57.5 57.5	S=200 L35 10 8 8 6 6 6 57.5 57.5	S=10 L36 4 4 4 4 4 4 4 5 57.5 82 57.5 82 82.6 94.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4	S=10 L35 4 4 4 4 4 4 5=25 L36 4 4 4 4 4 4 4	S=20 L35 4 4 4 4 4 4 5=30 L36 4 4 4 4 4 4 4	S=25 L35 4 4 4 4 4 4 4 5=40 L36 6 6 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 4 4 4 4	S=40 L35 4 4 4 4 4 4 4 5 5 75 L36 6 6 6 4 4 4	S=50 L35 4 4 4 4 4 4 4 4 5=100 L36 L36 6 6 6 6 6	S=75 L35 6 4 4 4 4 4 5=125 L36 10 10 10 8 8 8 6	S=100 L35 6 6 4 4 4 4 4 5=160 L36 10 10 10 10 8 8 8	S=125 L35 6 6 6 6 6 6 6 4 L36 L36 10 10 10 10 10 10 10	S=160 L35 8 6 6 6 6 6 5 7.5 57.5	S=200 L35 10 8 8 6 6 6 57.5 57.5	S=10 L36 4 4 4 4 5 57.5 82 82.6 94.5 94.6
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 4	S=10 L35 4 4 4 4 4 4 5=25 L36 4 4 4 4 4 4 4 4 4	S=20 L35 4 4 4 4 4 4 5=30 L36 4 4 4 4 4 4 4 4 4	S=25 L35 4 4 4 4 4 4 4 5=40 L36 6 6 6 4 4 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 4 4 4 4 4	S=40 L35 4 4 4 4 4 4 4 5=75 L36 6 6 6 6 4 4 4	S=50 L35 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6	S=75 L35 6 4 4 4 4 4 5=125 L36 10 10 10 8 8 6 6	S=100 L35 6 6 4 4 4 4 4 5=160 L36 10 10 10 8 8 8 8	S=125 L35 6 6 6 6 6 6 4 S=200 L36 10 10 10 10 10 10 8	S=160 L35 8 8 6 6 6 6 6 6 5 7.5	S=200 L35 10 8 8 6 6 6 S=20 ZJ 57.5 57.5	S=10 L36 4 4 4 4 5 57.5 82 82.6 94.5 94.6 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 4 4 4	S=10 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S=20 L35 4 4 4 4 4 4 5=30 L36 4 4 4 4 4 4 4 4 4 4 4 4 4	S=25 L35 4 4 4 4 4 4 4 L36 6 6 4 4 4 4 4 4 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 4 4 4 4 4 4 4 4 4	S=40 L35 4 4 4 4 4 4 4 5=75 L36 6 6 6 6 4 4 4 4 4 4 4	S=50 L35 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6 6 6 6	S=75 L35 6 4 4 4 4 4 5=125 L36 10 10 10 8 8 6 6 6 6 6	S=100 L35 6 4 4 4 4 5=160 L36 10 10 10 10 8 8 8 8 8 8 8 8	S=125 L35 6 6 6 6 6 6 4 L36 10 10 10 10 10 10 10 8 8 8	S=160 L35 8 6 6 6 6 6 5 7.5 57.5	S=200 L35 10 8 8 6 6 6 S=20 ZJ 57.5 57.5	S=10 L36 4 4 4 4 5 57.5 82 82.6 94.5 94.6 117.5 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø	S=200 L34 40 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 4 4 5=30 ZJ	S=10 L35 4 4 4 4 4 4 5=25 L36 4 4 4 4 4 4 4 4 4 5=40 ZJ	S=20 L35 4 4 4 4 4 4 4 5=30 L36 4 4 4 4 4 4 4 4 5=50 ZJ	S=25 L35 4 4 4 4 4 4 4 4 5=40 L36 6 4 4 4 4 4 4 4 4 5=75 ZJ	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 4 4 4 4 4 4 5=100 ZJ	S=40 L35 4 4 4 4 4 4 4 4 4 5=75 L36 6 6 6 6 4 4 4 4 2 5=125 ZJ	S=50 L35 4 4 4 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 5=160 ZJ	S=75 L35 6 4 4 4 4 5=125 L36 10 10 10 8 8 8 8 6 6 6 5=200 ZJ	S=100 L35 6 6 4 4 4 4 5=160 L36 100 100 100 100 8 8 8 8 8 8 8	S=125 L35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 8 200 L36 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 5 7.5 5 7.5	S=200 L35 10 8 8 6 6 6 5 7.5 5 7.5	S=10 L36 4 4 4 4 5 57.5 82 82.6 94.5 94.6 117.5 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø 25	S=200 L34 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 4 5=30 ZJ 57.5	S=10 L35 4 4 4 4 4 4 5=25 L36 4 4 4 4 4 4 4 4 4 57.5	S=20 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 57.5	S=25 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5=75 ZJ 68.5	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 4 4 4 4 4 4 5=100 ZJ 68.5	S=40 L35 4 4 4 4 4 4 4 4 4 5=75 L36 6 6 6 6 4 4 4 4 5=125 ZJ 84.5	S=50 L35 4 4 4 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6 5=160 ZJ 84.5	S=75 L35 6 4 4 4 4 4 4 5=125 L36 10 10 10 88 8 8 6 6 6 5=200 ZJ 84.5	S=100 L35 6 6 4 4 4 4 5=160 L36 100 100 100 100 8 8 8 8 8 8 8	S=125 L35 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 10 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 5 7.5 5 7.5	S=200 L35 10 8 8 6 6 6 6 S=20 ZJ 57.5	S=10 L36 4 4 4 4 57.5 82 82.6 94.5 94.6 117.5 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø 25 32	S=200 L34 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 4 57.5	S=10 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5	S=20 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5 82	S=25 L35 4 4 4 4 4 4 4 4 5=40 L36 6 4 4 4 4 4 4 4 4 5=75 ZJ 68.5 82	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 6 4 4 4 4 4 4 4 5=100 ZJ 68.5 82	S=40 L35 4 4 4 4 4 4 4 4 4 5=75 L36 6 6 6 6 6 4 4 4 4 5=125 ZJ 84.5 100	S=50 L35 4 4 4 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 5=160 ZJ 84.5 100	S=75 L35 6 4 4 4 4 4 4 3 5=125 L36 10 10 10 8 8 8 6 6 6 5=200 ZJ 84.5 100	S=100 L35 6 6 4 4 4 4 5=160 L36 100 100 100 8 8 8 8 8 8 8 8	S=125 L35 6 6 6 4 S=200 L36 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 57.5 57.5	S=200 L35 10 8 8 6 6 6 5 7.5 5 7.5	S=10 L36 4 4 4 4 5=25 ZJ 57.5 82 82.6 94.5 94.6 117.5 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø 25 32 40	S=200 L34 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 57.5	S=10 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5	S=20 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5 82 82.6	S=25 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5=75 ZJ 68.5 82 82.6	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 6 4 4 4 4 4 4 4 5=100 ZJ 68.5 82 82.6	S=40 L35 4 4 4 4 4 4 4 4 4 5 5 L36 8 6 6 6 6 4 4 4 4 4 4 5 S=125 ZJ 84.5 100 100.6	S=50 L35 4 4 4 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6 5=160 ZJ 84.5 100 100.6	S=75 L35 6 4 4 4 4 4 4 4 5=125 L36 100 100 8 8 8 6 6 6 5=200 ZJ 84.5 100 100.6	S=100 L35 6 6 4 4 4 4 5=160 L36 100 100 100 8 8 8 8 8 8 8	S=125 L35 6 6 6 4 S=200 L36 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 57.5 57.5	S=200 L35 10 8 8 6 6 6 5 7.5 5 7.5	S=10 L36 4 4 4 4 5 57.5 82 82.6 94.5 94.6 117.5 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø 25 32 40 50	S=200 L34 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 5 57.5	S=10 L35 4 4 4 4 4 5 S=25 L36 4 4 4 4 4 4 4 4 4 57.5	S=20 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5 57.5	S=25 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S=40 L35 4 4 4 4 4 4 4 4 4 4 5 5 L36 6 6 6 4 4 4 4 4 4 5 S=125 ZJ 84.5 100 100.6 124.5	S=50 L35 4 4 4 4 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6 6 5=160 ZJ 5 100 84.5 100 100.6 124.5	S=75 L35 6 4 4 4 4 4 5=125 L36 10 10 8 8 8 6 6 6 5=200 ZJ 84.5 100 100.6 124.5	S=100 L35 6 6 4 4 4 4 5=160 L36 100 100 100 100 8 8 8 8 8 8	S=125 L35 6 6 6 4 S=200 L36 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 57.5 57.5	S=200 L35 10 8 8 6 6 6 57.5 57.5	S=10 L36 4 4 4 4 57.5 82 82.6 94.5 94.6 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø 63 80 100 Piston Ø 25 32 40 50 63 63	S=200 L34 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 4 57.5	S=10 L35 4 4 4 4 4 5=25 L36 4 4 4 4 4 4 4 4 4 57.5	S=20 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5 82 82.6 94.5 94.6	S=25 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5=100 ZJ 68.5 82 82.6 94.5 94.6	S=40 L35 4 4 4 4 4 4 4 4 4 5 5 L36 6 6 6 4 4 4 4 4 4 5 S=125 ZJ 84.5 100 100.6 124.5 124.6	S=50 L35 4 4 4 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6 6 5=160 ZJ 84.5 100 100.6 124.5 124.6	S=75 L35 6 4 4 4 4 4 5=125 L36 10 10 8 8 8 6 6 6 6 5=200 ZJ 84,5 100 100.6 124,5 124,6	S=100 L35 6 6 4 4 4 4 4 5=160 L36 10 10 10 10 8 8 8 8 8 8 8 8	S=125 L35 6 6 6 6 6 6 6 6 6 6 6 6 7 10 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 57.5 57.5	S=200 L35 10 8 8 6 6 6 S=20 ZJ 57.5	S=10 L36 4 4 4 4 57.5 82 82.6 94.5 94.6 117.5 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100	S=200 L34 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 4 57.5	S=10 L35 4 4 4 4 4 5 S=25 L36 4 4 4 4 4 4 4 4 57.5	S=20 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5 82 82.6 94.5 94.6 117.5	S=25 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5=100 ZJ 68.5 82 82.6 94.5 94.6 117.5	S=40 L35 4 4 4 4 4 4 4 4 5 5 L36 6 6 6 4 4 4 4 4 4 5 S=125 ZJ 84.5 5 100 100.6 124.5 124.6 145.5	S=50 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6 6 6 5=160 ZJ 84.5 5 100 100.6 124.5 124.6 124.5	S=75 L35 6 4 4 4 4 4 4 5=125 L36 10 10 8 8 8 6 6 6 6 5=200 ZJ 84,5 100 100.6 124,5 124,6 145,5	S=100 L35 6 6 4 4 4 4 4 5=160 L36 10 10 10 10 8 8 8 8 8 8 8	S=125 L35 6 6 6 6 6 6 6 6 6 6 6 7 10 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 57.5	S=200 L35 10 8 8 6 6 6 S=20 ZJ 57.5	S=10 L36 4 4 4 4 57.5 82 82.6 94.5 94.6 117.5 117.5
Piston Ø 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100 Piston Ø 25 32 40 50 63 80 100	S=200 L34 47 54 63.5 62.5 S=20 L36 4 4 4 4 4 4 4 57.5 57.5	S=10 L35 4 4 4 4 4 5=25 L36 4 4 4 4 4 4 4 4 57.5	S=20 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 57.5 5 82 82.6 94.6 117.5 94.6	S=25 L35 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	S=30 L35 4 4 4 4 4 4 4 4 5=50 L36 6 6 6 6 6 4 4 4 4 4 4 4 4 5=100 ZJ 68.5 82 82.6 94.5 94.6 117.5 117.5	S=40 L35 4 4 4 4 4 4 4 5 5 L36 8 6 6 6 4 4 4 4 4 4 5 S=125 ZJ 84.5 5 100 100.6 124.5 124.6 145.5	S=50 L35 4 4 4 4 4 4 4 4 5=100 L36 6 6 6 6 6 6 6 6 6 6 6 6 5=160 ZJ 84.5 5 100 100.6 124.5 124.6 145.5 5	S=75 L35 6 4 4 4 4 5=125 L36 10 10 8 8 8 6 6 6 6 5=200 ZJ 8 4.5 5 100 100.6 124.5 124.6 145.5	S=100 L35 6 4 4 4 5=160 L36 10 10 10 10 8 8 8 8 8 8 8	S=125 L35 6 6 6 6 6 6 4 V S=200 L36 10 10 10 10 10 10 10 8 8 8	S=160 L35 8 8 6 6 6 6 6 57.5	S=200 L35 10 8 8 6 6 6 S=20 ZJ 57.5	S=10 L36 4 4 4 4 4 57.5 82 82.6 94.5 94.6 117.5 117.5

Príloha 25:Katalógový list THK: lineárne valivé vedenie s valčekovými valivými elementmi, model SRN 35R

	Outer dimension							LM b	lock d	limen	sions					
Model No.	Height M	Width W	Length L	в	с	s×ℓ	Li	т	к	N	Е	e,	fo	Do	Grease nipple	Hs
SRN 35R SRN 35LR	44	70	125 155	50	50 72	M8×9	82.2 112.2	7.5	38	6.5	12	8	7	5.2	B-M6F	6
SRN 45R SRN 45LR	52	86	155 190	60	60 80	M10×11	107 142	7.5	45	7	12	8.5	7.6	5.2	B-M6F	7
SRN 55R SRN 55LR	63	100	185 235	75	75 95	M12×13	129 179.2	10.5	53	8	16	10	9.8	5.2	PT1/8	10
SRN 65LR	75	126	303	76	120	M16×16	229.8	19.5	65	14	16	9	13	5.2	PT1/8	11.5

														Onic min								
		LM	rail dir	mensions		Basic lo	ad rating	Static	permis	sible m	oment l	kN-m*	Ma	188								
Width		Height	Pitch		Length*	с	Co	₹¢		E				M⊂(II)						sζþ	LM block	LM rail
W, 0 -0.05	W2	M	F	d₁×d₂×h	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m								
34	18	30	40	9×14×12	3000	59.1 76	119 165	1.66 3.13	10.1 17	1.66 3.13	10.1 17	2.39 3.31	1.1 1.4	6.9								
45	20.5	36	52.5	14×20×17	3090	91.9 115	192 256	3.49 6.13	20 32.2	3.49 6.13	20 32.2	4.98 6.64	1.9 2.5	11.3								
53	23.5	43	60	16×23×20	3060	131 167	266 366	5.82 10.8	33 57	5.82 10.8	33 57	8.19 11.2	3.2 4.5	15.8								
63	31.5	49	75	18×26×22	3000	278	599	22.7	120	22.7	120	22.1	9.4	21.3								

Príloha 26: Katalógový list THK - výpočty

Basic Static Load Rating Co

If an LM system receives an excessively large load or a large impact when it is stationary or operative, permanent deformation occurs between the raceway and the rolling element. If the permanent deformation exceeds a certain limit, it will prevent the LM system from performing smooth motion. The basic static load rating is a static load with a constant direction and magnitude whereby the sum of the permanent deformation of the rolling element and that of the raceway on the contact area under the maximum stress is 0.0001 times the rolling element diameter. With an LM system, the basic static load rating is defined for the radial load.

The basic static load rating C_0 is used for calculating the static safety factor relative to the working load.

Specific values of each LM system model are indicated in the specification table for the corresponding model number.

Static Permissible Moment Mo

the permissible moments of each model.

When an LM system receives a moment, the rolling elements on both ends receive the maximum stress due to uneven distribution of the stress on the rolling elements within the LM system.

The permissible static moment (M_0) means the moment with constant direction and magnitude, under which the sum of the permanent deformation of the rolling element and the permanent deformation of the raceway accounts for 0.0001 times of the rolling element's diameter in the contact area where the maximum stress is applied.

With an LM system, the static permissible moment is defined in three directions: MA, MB and Mc.

Static Safety Factor fs

The Linear Motion system may receive an unexpected external force while it is stationary or operative due to the generation of an inertia caused by vibrations and impact or start and stop. It is necessary to consider a static safety factor against such a working load.

[Static Safety Factor fs]

The static safety factor (f_s) is determined by the ratio of the load capacity (basic static load rating C₀) of an LM system to the load applied on the LM system.

[Static Safety Factor fs]

The static safety factor (f_{s}) is determined by the ratio of the load capacity (basic static load rating C₀) of an LM system to the load applied on the LM system.

$$f_s = \frac{f_c \cdot C_o}{P}$$
 or $f_s = \frac{f_c \cdot M_o}{M}$ (1)

fs : Static safety factor

- fc : Contact factor (see Table2 on 0-11)
- Co : Basic static load rating
- Mo : Static permissible moment (MA, MB and Mc)
- P : Calculated load
- M : Calculated moment

[Measure of Static Safety Factor]

Refer to the static safety factor in Table1 as a measure of the lower limit under the service conditions.

Table1 Measure of Static Safety Factor

Kinetic conditions	Load conditions	Lower limit of $f_{\mbox{\scriptsize s}}$
Constantly stationary	Impact is small, and deflection of the rail is also small	1.0 to 3.5
Constantity stationary	Impact is present, and a twisting load is applied	2.0 to 5.0
Normal motion	A normal load is applied, and the deflection of the rail is small	1.0 to 4.0
Normal mouon	Impact is present, and a twisting load is applied	2.5 to 7.0

Life Calculation Formula

The nominal life (L) of an LM system is obtained from the following equation using the basic dynamic load rating (C) and the applied load (P).

[LM System Using Balls]

$$L = \left(\frac{C}{P}\right)^3 \times 50 \qquad \dots \qquad (2)$$

[LM System Using Rollers]

$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} \times 100 \dots (3)$$

L	: Nominal life	(km)
С	: Basic dynamic load rating	(N)
Ρ	: Applied load	(N)

In most cases, it is difficult to calculate a load applied on an LM system.

In actual use, most LM systems receive vibrations and impact during operation, and fluctuation of the loads applied on them is assumed. In addition, the hardness of the raceway and the temperature of the LM system unit greatly affect the service life.

With these conditions considered, the practical service life calculation formulas (2) and (3) should be as follows.

Príloha 27: Katalógový list HBM - silový snímač, model 12k5

Mounting dimensions of connection variants

_____ НВМ

B1444-2.0 en

Dimensions of U10M with fitted adapter

Nom. (rated)	ØA	ØB	D	E	ØF	G	G1	н	ØK	L	N	ØP ^{H8}
force												
1.25-25kN	104.8	88.9	22.5°	45°	30.4 ¹⁾	M16x2-4H 28.4 deep	M16x2-4H 22.1 deep	4	<mark>31.8</mark>	60.3	63.5	16.5
50-125kN	153.9	130.3	15°	30°	61.2 2)	M33x2-4H 35.6 deep	M33x2-4H 35.6 deep	6.4	57.2	85.	89	33.5
250kN	203.2	165.1	11.25°	22.5°	95.5	M42x2-4H 54.6 deep	M42x2-4H 44.5 deep	7.5	76.2	108	114.3	43
500kN	279	229	11.25°	22.5°	122.2	M72x2-4H 82.6 deep	M72x2-4H 69.8 deep	10	114	152.4	165.1	73
1) 12.5 kN an	d 25 kN	31.5		2) -	125 kN: 6	7.3						

Dimensions of U10M without adapter

Nominal (rated) force	ØA	ØB	ØS	ØF	ØJ ^{H8}	G	v	R	Z
1.25 kN				30.4					
2.5 kN				30.4					
5 kN	104.8	8 <mark>8.9</mark>	<mark>6.8</mark>	<mark>30.4</mark>	78	M16x2-4H	<mark>31.7</mark>	<mark>34.9</mark>	
12.5 kN				31.5					2.5
25 kN				31.5					
50 kN	153.0	130.3	10.4	62.2	111.5	M33×2-4H	41 4	44.5]
125 kN	100.0	100.0	10.1	67.3	111.5	MOOX2 III	11.1	11.5	
250 kN	203.2	165.1	13.5	95.5	143	M42x2-4H	57.2	63.5	3.5
500 kN	279	229	16.8	122.2	175	M72x2-4H	76.2	88.9	6

Connector and cable assignment

Accessories (to be ordered separately):

Cables / Plugs	Ordering number
Connection cable with bayonet locking: IP67; 3 m long; TPE outer sheath; 6 x 0,25 mm ² ; free ends, shielded; outside diameter 6,5 mm	1-KAB157-3
Connection cable with threaded locking; IP64, 3 m long; TPE outer sheath; 6 x 0,25 mm ² ; free ends, shielded; outside diameter 6,5 mm	1-KAB158-3
Loose cable socket, bayonet locking	3-3312.0382
Loose cable socket, threaded terminal end	3-3312.0354

Specifications (VDI/VDE 2638)

Nominal (rated) force	Fnom	kN	1.25	2.5	5	12.5	25	50	125	250	500
Nominal (rated) sensitivity	Cnom	mV/V	1	to 1.5 ¹)			2	to 2.5 ¹⁾		
Relative deviation from zero	d _{s,o}	%		<±1							
		% _{vl}	<	< 0.075		< 0.1		< 0.125			< 0.15
Relative reversibility error (0.4F _{nom}) ²⁾	u _{0,4}	% _{vc}		0.03		0.	04		0.05		0.06
Relative repeatability error without rotation		%					0.	025			
Linearity deviation	d _{lin}	%	<	±0.03	3	< ±	0.04		< ± 0.04		$<\pm 0.06$
Temperature influence on sensitivity/10K relative											
to the sensitivity	TKc	%					< ±	0.015			
Temperature influence on zero signal/10K relative to the sensitivity	TK ₀	%					< ±	0.015			
Bending moment influence (at 10 % x F _{nom} x 10 mm)	dq	%		< 0.01							
Relative creep over 30 min	$d_{\text{crF+E}}$	%	< ± (< ± 0.04 < ± 0.025							
Input resistance	Ri	Ω		> 345							
Output resistance	Ro	Ω		280 to 360							
Insulation resistance	Ris	Ω					> 2	x 10 ⁹			
Reference excitation voltage	Uref	V		5							
Operating range of the excitation voltage	BU,G T	V					0.5	to 12			
Nominal (rated) temperature range	B _{t,nom}	٥C		-10 to +45							
Operating temperature range	B _{t,G}	°C					-30 t	to +85			
Storage temperature range	Bts	°C					-30 t	to +85			
Reference temperature	t _{ref}	°C					+	-23			
Maximum operating force	(F _G)	%		230							
Breaking force	(F _B)	%	% > 400								
Static lateral limit force (transducer with adapter) ³⁾	(F _Q)	%	6 100								

Maximum permissible torque		N·m	30	60	125	315	635 ⁴⁾	1270	3175 ⁴⁾	5715	11430
Maximum permissible bending moment		N·m	30	60	125	315	635	1270	3175	5715	11430
Material measuring body			higi alum	high-strength stainless material aluminium alloy				ial			
Weight with adapter without adapter		kg kg		1.2 3 10 23 0.5 1.3 5 11				23 11	60 28		
Rel. permissible vibrational stress to DIN 50100	Frb	%		200							
Degree of protection to DIN 60529				IP67 ⁵⁾							
Natural frequency		kHz	4.5 5.9 9.3		6.6	9.2	6.5	8.1	6.6	6.1	
Nominal (rated)displacement		mm		0.02		0.03		0.03	0.04	0.05	0.06
Transducer identification				TEDS, in accordance to IEEE 1451.4							

Option: Adjustment of sensitivity to 2 mV/V (or 1 mV/V)
 Specifications at 200 % typically corresponds to those at nominal (rated) force
 Pure lateral force related to half the measuring body height (0.5 x V, see drawing on page 3)
 Transducer with 25 kN adapter: 370 N ⋅ m; 125 kN: 2640 N ⋅ m
 For plug-in bayonet connector version

Obr. 1-1: Fázy krokového cyklu zobrazené v rovnakom poradí ako v texte [2]	14
Obr. 1-2 Flexia a extenzia kolenného kĺbu [3]	15
Obr. 1-3 Krokový cyklu a jeho časti [1]	16
Obr. 1-4 Zaťažujúca krivka vertikálnej sily počas normálnej chôdze	16
Obr. 5-1 Upínanie testovacieho vzorku	42

Príloha 28: Katalógový list HABERKORN - nastavovacie patky

Knuckle Foot D60, M12x75, black <u>Art</u>. No.: 0.0.439.22

<u>Spindle</u> , St, bright zinc- <u>plated</u> <u>foot</u> plate, die- <u>cast zinc</u> , black Hexagon nut DIN 934-M12, St, bright z	inc-plat	ed	
Properties			
Property		=	black
Delivery <u>Unit</u>		=	1 pce.
<u>Force</u> max	F _{max.}	=	5000 N
Angle	α	=	7 °
Weight	m	=	162 g