
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

ADAPTATIONOFZEPHYRRTOSANDSOUNDOPEN
FIRMWAREONAHIFI4DSPOFTHENXP I.MXRT685
MCU
ADAPTACE RTOS ZEPHYR A SOUND OPEN FIRMWARE NA HIFI4 DSP ČIPU NXP I.MX RT685

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR VÍT STANIČEK
AUTOR PRÁCE

SUPERVISOR Ing. VÁCLAV ŠIMEK
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Computer Systems (DCSY)

Student: Staniček Vít

Programme: Information Technology

Category: Operating Systems

Academic year: 2023/24

Assignment:

1. Analyze and describe the NXP i.MX RT685 microcontroller, along with its subsystems. Propose
suitable use cases for this device.

2. Familiarize yourself with the Zephyr RTOS and its distinguished features.
3. Familiarize yourself with the Sound Open Firmware project, describe its purpose and features.

Compare it against the Maestro and Xtensa Audio Framework software layers.
4. Port the Zephyr RTOS to the Cadence HiFi4 DSP core on the mentioned microcontroller and test

basic functions.
5. Port the Sound Open Firmware project and implement a suitable inter-core communication

mechanism.
6. Create an application demonstrating audio processing flow using implemented solutions from points

4) and 5).
7. Evaluate the results and propose possible ways to continue this project.

Literature:
• According to the instructions of the supervisor.

Requirements for the semestral defence:
Fulfillment of points 1 to 4 of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Šimek Václav, Ing.

Head of Department: Sekanina Lukáš, prof. Ing., Ph.D.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 30.10.2023

Bachelor's Thesis Assignment
156783

Adaptation of Zephyr RTOS and Sound Open Firmware on a HiFi4 DSP of the
NXP i.MX RT685 MCU

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This thesis analyzes the specifics of the i.MX RT685 microcontroller made by NXP Semicon-
ductors, the Cadence Tensilica HiFi 4 DSP processing core implemented in it and describes
an effort of porting the Zephyr RTOS along with Sound Open Firmware to that platform.
An application demonstrating an audio processing pipeline on those technologies is im-
plemented in this work as well. The thesis is motivated by the aim to both efficiently
implement digital audio processing techniques and streamline their use on the said device.

Abstrakt
Tato práce se zabývá analýzou mikrokontroléru i.MX RT685 vyráběného firmou NXP Semi-
conductors, v něm realizovaného Tensilica HiFi 4 DSP jádra a popisuje úsilí adaptace RTOS
Zephyr společně s vrstvou Sound Open Firmware na tuto platformu. Aplikace demonstrující
zpracování digitálních zvukových signálů nad těmito technologiemi je v této práci imple-
mentována rovněž. Práce je motivována záměrem jak efektivně realizovat techniky pro
digitální zpracování zvukových signálů na této platformě, tak sjednotit jejich použití.

Keywords
microcontroller, embeddded system, digital signal processing, operating system

Klíčová slova
mikrokontrolér, vestavený systém, signál, digitální zpracování signálů, operační systém

Reference
STANIČEK, Vít. Adaptation of Zephyr RTOS and Sound Open Firmware on a HiFi4
DSP of the NXP i.MX RT685 MCU. Brno, 2024. Bachelor’s thesis. Brno University of
Technology, Faculty of Information Technology. Supervisor Ing. Václav Šimek

Rozšířený abstrakt
Jedním z přístupů k realizaci řídídích úloh současných mikroelektronických zařízení či rov-
nou k realizaci celé jejich funkce je tvorba tzv. vestavěného systému, tedy systému, který je
řízen integrovaným obvodem obsahujícím jedno či více mikroprocesorových jader. Takový
přístup přesouvá značnou část charakteru zařízení z hardwarové domény do domény soft-
warové. Tento charakter lze v průběhu celého životního cyklu zařízení měnit, narozdíl od
návrhových rozhodnutí učiněných v hardwaru, která lze měnit jen nahrazením celého za-
řízení či relevantní fyzické součásti za kus vyrobeného dle aktualizovaného návrhu. Na vývoj
softwaru pro taková zařízení lze rovněž aplikovat přístupy softwarového inženýrství použí-
vané v jiných odvětvích informačních technologií (návrh, dekompozice, projektové řízení,
statická analýza, ...), které systematizují tvorbu tohoto specializovaného programového vy-
bavení a umožňují tvořit produkty, které lépe plní zadání, jsou otestované a spolehlivější.

Mezi takové obvody patří mikrokontroléry. Ty se obzvlášť hodí pro realizaci vestavěných
systémů se značnými návrhovými omezeními (rozměry, prodleva při uvedení do chodu,
spotřeba elektrické energie, ...), protože nejsou tak sofistikované jako běžné mikroproce-
sory (menší kapacita pamětí, pracovní frekvence, ...) a zároveň integrují vše potřebné
v jednom pouzdře - vstupně-výstupní periferie, komunikační rozhraní, regulátory napětí,
apod. V současné době již nejde o součástky určené výhradně na jednoduché řídící ap-
likace sestávající se z obsluhy jednoduchých součástí (LED diod, tlačítek, segmentových
displejů, jednoduché mechatroniky apod.), moderní mikrokontroléry poskytují celou řadu
komplexních periferií a výpočetních jader a zároveň zachovávají řečené atributy. Tyto bloky
existující vedle hlavního procesorového jádra umožňují konstrukci zařízení se zajímavými
funkcemi, vysokou propustností, pokročilou konektivitou s vnějším prostředím a o to více
sníženou spotřebou elektrické energie.

Jedním z těchto výpočetních jader je DSP jádro Tensilica Xtensa HiFi 4 od firmy Ca-
dence Design Systems. Toto jádro představuje blok procesoru uzpůsobeného pro zpracování
digitálních signálů - je optimalizováno na úlohy jakými jsou spektrální analýza, filtrování,
detekce příznaků, ztrátová komprese, dekódování komprimovaných proudů apod. Před-
stavuje to prostředek pro efektivnější implementaci řečených úloh než procesorová jádra
uzpůsobená na obecná použití (Arm Cortex-M, i8051, AVR, PIC, MSP430, ...), čímž jejich
využití může pomoci při plnění řečených návrhových omezení.

Řečené jádro Tensilica Xtensa HiFi 4 se, přinejmenším v případě součástek od firmy
NXP Semiconductors, nevyskytuje jako jediné procesorové jádro ale v kontextu těchto
součástek funguje jako dodatečný, specializovaný procesor. Tímto se otevírají možnosti
rozdělení odpovědností - řečené DSP lze výlučně naprogramovat pro zpracování digitál-
ních signálů a zbytek funkce zařízení (komunikace s okolím, uživatelské rozhraní, řízení
napájení, ...) lze ponechat na hlavním aplikačním procesoru. Dynamicky konfigurovaným
modulárním softwarovým vybavením pro řečený DSP blok lze vytvořit prostředí s funkčními
bloky, jejichž konfiguraci a topologii lze z pohledu aplikačního procesoru dynamicky určo-
vat. Toto by zcela abstrahovalo problémy spojené se zpracováním digitálních signálů a v
zásadě předepisuje obecný, opětovně využitelný rámec (framework) pro tyto úlohy.

Programování těchto jader však vyžaduje dodatečné úsilí. Přinejmenším je potřeba
odpovědnosti řešené realizovaným systémem vhodně rozdělit, zajistit synchronizaci a ab-
strahované komunikační kanály. Řešení úloh citlivých na časování implikuje nutnost zvláštní
péče při realizaci a využití synchronizačních mechanismů. Programování DSP jader, vzhle-
dem k jejich specializovanosti, rovněž vyžaduje jim uzpůsobené nástroje (překladač, linker)
a dodatečné kroky optimalizace kódu, aby bylo možné využít speciální instrukce, které
zpravidla tato jádra poskytují.

Motivací této práce je zjednodušit realizaci aplikací využívajících toto DSP jádro pro
zpracování zvukových signálů a abstrahovat jej do opětovně využitelné podoby. Tímto
problémem se zabývá v kontextu mikrokontroléru i.MX RT685 vyráběného firmou NXP
Semiconductors.

Adaptation of Zephyr RTOS and Sound Open
Firmware on a HiFi4 DSP of the NXP i.MX RT685
MCU

Declaration
I hereby declare that this Bachelor’s thesis was done as an original work by the author
under the supervision of Ing. Václav Šimek while consulting colleagues working at NXP
Semiconductors. I have listed all the literary sources, publications and other sources, which
were used in this thesis.

. .
Vít Staniček
May 7, 2024

Acknowledgments
First and foremost, I would like to sincerely thank my colleagues at NXP Semiconductors
who endured my endless stream of beginner questions and provided me with valuable in-
sight, which has helped immensely both in developing my professional skills and in writing
this thesis. This thesis couldn’t be written without the technical insight of Daniel Baluta
and Iuliana Prodan. The list also includes my direct colleagues - Ing. Tomáš Bařák, Ing.
Petr Lukáš, Ing. David Jurajda, Ing. Stanislav Pobořil, Ing. Ivo Solanský, Ing. Pavel Kovář
and Ing. Samuel Mudrík, all of them helped me tremendously during solving other tasks
at this company and even with getting myself familiar with programming microcontrollers.

I would also like to thank Ing. Václav Šimek who supervised this thesis and fellow
students, who helped me with distracting myself from mundane duties throughout my time
at this university. At last, a very special thanks goes to my parents and my grandparents,
who raised me with love, care and were with me every step of the way throughout my life.

Contents

1 Introduction 4

2 Commonalities of microcontrollers 5
2.1 Definition and brief history . 5
2.2 Common interfaces . 5
2.3 Programmer’s model . 9
2.4 DMA . 11

3 The i.MX RT685 microcontroller 12
3.1 Overview . 12
3.2 Memory architecture, interrupt handling . 12
3.3 DMA . 13
3.4 Inter-core communication . 14
3.5 Evaluation boards . 15
3.6 Possible use cases . 17

4 The Zephyr RTOS for Embedded Domain 18
4.1 Overview . 18
4.2 Configuration . 19
4.3 Development toolset . 19
4.4 Driver model . 20
4.5 Device trees . 21
4.6 Audio driver APIs . 23
4.7 Comparison with other systems . 24

5 The HiFi 4 DSP core 26
5.1 Overview . 26
5.2 Instruction set . 26
5.3 ABI . 27
5.4 Available tools . 28

6 The Sound Open Firmware layer 29
6.1 Overview . 29
6.2 Programmer’s model . 29
6.3 Architecture . 30
6.4 Comparison with similar layers . 31

7 Porting the Zephyr RTOS 33

1

7.1 First steps . 33
7.2 Project structure . 34
7.3 DSP code loading and starting . 34
7.4 Enabling basic drivers . 35
7.5 Interrupt handling . 35
7.6 Testing and debugging . 35
7.7 GCC toolchain porting . 36
7.8 Audio input and output . 37
7.9 Basic IPC . 38
7.10 Memory layout . 39

8 Porting the Sound Open Firmware layer 40
8.1 First steps . 40
8.2 IPC . 41
8.3 Audio data exchange between domains . 42
8.4 Audio input and output . 43

9 Test application 44
9.1 Overview . 44
9.2 Memory usage . 45

10 Conclusion 46

Bibliography 48

A Optical media contents 50

B The Zephyr RTOS port 51

C Sound Open Firmware port 53

2

List of Figures

2.1 Timing diagram of an 8-N-1 transmission 6
2.2 Timing diagram of a simple I2C transaction 7
2.3 Timing diagram of a simple SPI transaction 8
2.4 Timing diagram of a classic I2S frame bearing 16-bit stereo data 9

3.1 Photo of the MIMXRT685-EVK evaluation board 15
3.2 Photo of the MIMXRT685-AUD-EVK evaluation board 16

4.1 Interactive configuration tools . 19

3

Chapter 1

Introduction

Microcontrollers, highly integrated computers suited for use in embedded use cases, now
form the basis of today’s microelectronics. As time progressed, they evolved from simple
microprocessor cores with primitive I/O peripherals made for simple controlling applications
(utilising LED diodes, buttons, segmented display devices, simple mechatronics) to complex
devices containing sophisticated peripherals and acceleration blocks. These blocks can help
implement more sophisticated devices while, at the same time, meeting design constraints
typical for compact embedded systems, such as physical dimensions, power consumption,
cold start latency and, last but not least, cost.

One of those blocks is the Xtensa Tensilica HiFi 4 DSP from Cadence Design Systems.
This IP core implements a microprocessor specialised towards the processing of digital
signals - it’s optimised for tasks like spectrum analysis, filtering, feature detection, lossy
compression, decoding of compressed signals, etc. This specialisation makes it more efficient
at those workloads than microprocessor cores designed towards more general use cases
(ARM Cortex-M, i8051, AVR, PIC, MSP430, ...), which can help to further meet said
design constraints. Chapter 5 discusses the specifics of that core and its instruction set
extensible by the silicon vendor.

Software development for cores such as the HiFi 4 DSP, however, presents extra chal-
lenges. At the very least, because of their position in devices that contain them, essentially
forming an AMP system, it is necessary to implement needed synchronisation primitives
and inter-core communication mechanisms. That can present an additional burden when
dealing with time-sensitive tasks. Also, cores like the HiFi 4 DSP block are best utilised
with a specialised compiler, which can emit code containing special instructions specific to
the HiFi 4 DSP itself and its instance in a particular device.

This thesis is oriented towards audio applications of the NXP’s i.MX RT685 microcon-
troller, which instantiates said HiFi 4 DSP core as a coprocessor. Specifics of that micro-
controller are discussed in Chapter 3. Some of those said burdens associated with utilising
DSPs as an audio processing engine can be mitigated by developing an audio processing
framework, which presents the DSP as an environment with discrete processing blocks,
which configuration and topology can be changed dynamically. The Sound Open Firmware
(SOF) framework is exactly that. Its porting effort is described in Chapter 6. SOF requires
an RTOS to run and one of the supported RTOSes is Zephyr, which is discussed in Chapter
4 and ported in Chapter 7.

4

Chapter 2

Commonalities of microcontrollers

2.1 Definition and brief history
A microcontroller can be defined as a highly integrated computer system suited towards
single-purpose (embedded) applications, which exists on a single integrated circuit, requir-
ing a minimal set of external electronic components to properly operate. This fact is in
direct contrast with microprocessors, often times used as well in embedded applications
to achieve similar goals. Microprocessors can’t work standalone - they require external
parts to fully function. These include the RAM (for runtime volatile storage), ROM or
another type of permanent memory element (for storing its program and configuration),
input-output hardware, clock sources, etc.

Because they are generally small and compact, their historical use was to replace elec-
tronically controlled systems built with discrete logic gate chips, with the added benefit
of being able to change the ”control logic“ (program) in the future, thus easily altering
the function of a constructed device. This is possible with microcontrollers that feature
an erasable type of program memory (EPROM, EEPROM or flash) and, with the advent
of current microcontrollers with integrated communication peripherals, is possible ”in the
field“ via computer networks (OTA - Over the Air).

2.2 Common interfaces
There are a number of low-speed, low-complexity serial interfaces that can be found on
contemporary microcontrollers. These usually serve the purpose of interfacing with various
external components, such as power management ICs, mixed-signal processing ICs (codecs,
DACs, ADCs, ...), sensors, input and output peripherals, wireless communication devices
and alike.

2.2.1 UART
The simplest of them all is the UART interface. This interface provides an asynchronous,
generally point-to-point link oriented at transferring values of an arbitrary length (usually
8 bits) in length with optional parity and flow control. The usual manifestation of it in
microcontrollers is as the Rx/Tx pair of signals at the raw TTL voltage level, providing a
full-duplex serial link without flow control suitable for communication at shorter distances,
however, devices operating with conformance to standards like RS-232, RS-422 and RS-485
also fall under the definition of a UART peripheral.

5

A driven UART line (Tx exposed by the master device, order of signals is swapped at
the other end) is held high when idle - no transmission of data is in progress. When a
transmission is triggered, the line is held low for the period of a single bit, transmitting a
start bit. Then follow the desired data bits, LSB first, an optional parity bit and then stop
bits, transmitted as high. A UART line has to be configured beforehand, specifying the
baud rate (frequency of bits on the line), number of stop bits and the type of the parity
bit. Usual baud rates include 9600, 19200, 57600 and 115200 baud. The timing diagram of
a typical 8-N-1 (8 data bits, no parity, 1 stop bit) transmission is shown in Figure 2.1.

StartDATA

Idle Idle

D0

1/fbaud

D1 D2 D3 D4 D6 D7 StopD5

Figure 2.1: Timing diagram of an 8-N-1 transmission

This scheme allows the asynchronous transmission of data - without providing a clock
signal, against which the bits are referenced. UART receivers usually run at a higher
clock rate than the configured baud rate and sample each bit either in the middle of its
period or multiple times during it, performing a vote on its final value. As a receiver is
effectively resynchronised at the start of each transmission by the start bit, any clock skew
is eliminated.

This interface can be used wherever point-to-point serial communication is necessary,
such as for exchanging data between microcontrollers or to provide diagnostic (debug)
communication, a usual use case for this interface. This interface has the advantage of
being easy to implement and use, however, communication parameters have to be manually
configured and is best used only as a point-to-point link because there’s no arbitration,
although implementing a simplex link routed to a number of slave devices is possible.

2.2.2 I2C
I2C is also an interface that is commonly used in embedded systems. It’s a synchronous
bus exposing two signals - SDA (shared, bidirectional data line) and SCL (clock), that
allows the communication of a number of slave devices with a master device. Usually, the
master device is singular, but it’s possible to have multiple masters on the same bus with
arbitration. Each slave device is addressed by a 7-bit address, although the standard also
describes a voluntary extension that expands the address to 10 bits.

Commonly used modes of I2C have both lines configured as open drain - both lines are
pulled high with pull-up resistors (that are either integrated into the master device or are
placed externally) and are ”grounded“ by driving transistors of each participant. The SCL
line is primarily driven by the master and all participants take turns in driving the SDA
line. This way, if any device drives any of the lines low, it will be measured as low by all
devices. Bus arbitration happens by comparing the current state of signals to the values
the device expects. For example, a slave can pull the SCL line low when it acknowledges
a request but can’t respond yet (data is not yet available), a technique known as clock
stretching.

6

A simple transaction is illustrated in Figure 2.2. When the bus is in the idle state, both
signals are not driven, thus high. Upon starting the transaction, SDA is pulled low and
SCL is held high for the duration of a single bit. Then SCL goes low and on its rising edge,
the 7-bit address is signalled. Then a read-write flag follows, along with an acknowledge
bit. That bit is driven low by the slave device if it acknowledges the transaction. If no
slave acknowledged the transaction, it is terminated in a fashion described below. If it was
acknowledged, 8 data bits follow, MSB first. If a write transaction was signalled, the master
signals those bits and, conversely, slave signals them for a read transaction. Acknowledge
bit, driven by the receiving side (master for read, slave for write), then follows. The
transaction is terminated (stopped) by driving that bit high and the master signalising a
stop condition - SCL is left high, SDA is driven low for the period of one bit and then driven
high. The transaction can continue with multi-byte values by driving the acknowledge bit
low and continuing with the next byte up until another acknowledge bit.

SDA

SCL

Start
cond.

Stop
cond. IdleIdle

R ACK
(slv.)

NACK
(mst.)A3A6 A5 A4 A1A2 A0 D7 D6 D5 D4 D3 D2 D1 D0

Figure 2.2: Timing diagram of a simple I2C transaction

The bus is defined on a number of signalling modes:

• Standard (Sm) - 100 kbit/s

• Fast (Fm) - 400 kbit/s

• Fast plus (Fm+) - 1 Mbit/s

• High-speed (Hs) - 1.7 Mbit/s and 3.4 Mbit/s

The typical use case for this bus is interfacing with various low-speed devices, such as
GPIO expanders, sensors, ADCs/DACs, digital potentiometers, programmable gain ampli-
fiers, audio codecs, EEPROMs, touch panel controllers and others. Its advantages include
the fact that it’s a multidrop bus, allowing the connection of multiple slaves and masters.
Ease of use is also one of its properties - this bus requires just a couple of pull-up resistors
and its low speed doesn’t pose any extra requirements for signal routing (length matching,
microstrips, ...). However, it’s not that easy to emulate in software (bitbang), is inherently
half-duplex and its speed, depending on its application, can also be a disadvantage. Low
speeds are implied by the fact that the lines are configured as open drain - signal rise times
(transitions from low to high) tend to be high because of the parasitic properties of the
used conductors.

2.2.3 SPI
SPI is a serial, synchronous, full-duplex bus implemented on 4 signals - MISO (Master
In, Slave Out), MOSI (Master Out, Slave In), CLK (clock) and CS (Chip Select). Slave
devices should use tri-state output drivers for the MISO signal, controlled by the CS signal,

7

thus, when the slave is inactive (particular CS is high), the signal should be in the high-
impedance (practically disconnected) state. Failure to ensure this can result in short circuits
and hardware destruction.

A transaction is begun by the master selecting a device by pulling a particular CS line
to low and by simultaneously generating the CLK signal and outputting data on the MOSI
signal in reference to the clock. Selected slave can respond by outputting data on the
MISO line in the same fashion. SPI can be considered as a simple interface between the
shift registers of each participant - there aren’t any facilities for data framing, flow control
and others. A simple transaction is illustrated in Figure 2.3.

MISO

MOSI

CS

CLK

Request byte

Response byte

Figure 2.3: Timing diagram of a simple SPI transaction

The SPI interface has 4 different modes (0 to 3), implying when data is transmitted and
when sampled (combinations of rising/falling edge of the CLK signal and CS).

SPI can be used for higher speed peripherals, such as LCD controllers, faster ADCs,
DACs, communication adaptors (IEEE 802.3, IEEE 802.15.4, USB, ...), flash memories
(including SD cards) and others. Its primary advantage is simplicity - data is transmitted
and sampled against a clock without any framing, transaction control or flow control. This
implies that the communication can be easily bitbanged. As the clock frequency is not
defined, the possibility of using higher rates is entirely dependent on the capabilities of
each participant and parasitic properties of the utilised wiring. On the other hand, exactly
those properties are a limiting factor that can prevent such higher speeds (in the magnitude
of tens Mbit/s) and the fact that an SPI interface consists of 4 signals, 3 of which are shared
(CLK, MISO, MOSI) and 1 of which is a simplex signal unique to each device (CS) can
make this interface somewhat cumbersome to utilise with more slaves.

2.2.4 I2S
The I2S interface is a serial, point-to-point, simplex, synchronous interface designed for
transmitting audio data over short distances between ICs. The interface consists of 3
signals - SD (serial data), SCK (clock) and WS (word select). All of those 3 signals are,
in the case of audio playback configurations, usually generated by the transmitter device
producing the audio data, however, it’s possible for the receiving device to dictate timing
by it generating the SCK and WS signals instead. [19]

A transmission of an I2S frame is demonstrated in Figure 2.4. The audio samples are
simply transmitted MSB first on the SD line and clocked against the SCK signal - bits

8

are sampled on each rising edge of that clock. The WS signal is used for channel selection
- unused for mono audio, low for the left channel and high for the right channel when
transmitting stereo audio data. The WS signal is shifted against the SD line by 1 bit into
the past - upon changing the value of the WS signal, there’s still a single bit of a current
sample to be transmitted before moving to transmit the MSB of the following channel. [19]

SD

WS

SCL

Left sample

Left Right

D0...

...

D15 D0...

...

Right sample

D15Fn-1 Fn+1

Figure 2.4: Timing diagram of a classic I2S frame bearing 16-bit stereo data

The variant described above is sometimes referred to as classic I2S in the field. There are
other variants of I2S interface, however. For example, the left-justified mode eliminates the
1-bit shift shift when changing the WS signal, upon it changing, the MSB of the following
sample is available on the rising edge of the SCK signal. For configurations with more than
2 channels of audio, the TDM mode is used. This mode pulls the WS signal up with the
falling edge of SCK when the LSB of a last sample is being transmitted and pulls it low
at the next falling edge, keeping it low for the remainder of the frame until the last LSB
is being transmitted. Samples then follow a predefined order arbitrarily specified by the
devices. [5]

The advantages of this interface is that it’s easy to implement, use and that it’s a
de facto standard for exchanging audio data between various ICs and systems - there is a
staggering number of I2S-compatible parts from competing vendors. I2S was strictly defined
by then Philips Semiconductors (now NXP Semiconductors), however, the other variants
aren’t ratified anywhere.

2.3 Programmer’s model
Contemporary microcontrollers can be frequently seen with RISC-style processor cores
(ARM, RISC-V, Xtensa, ...), peripherals that are exclusively memory-mapped and op-
tional memory protection. Because of their scale and ultimately target application, the
programming environment differs from, for example, desktop computers running contem-
porary operating systems. These differences can be:

• limited resources - computing power, the capacity of available memory devices

• no sophisticated memory management features (virtual memory, paging, lazy alloca-
tion, file views, ...)

9

• exclusively static linking of software libraries

• linking against particular memory segments, no relocations

• direct access to hardware peripherals

• need for more careful sequencing of actions and events - greater desire for deterministic
behaviour

• specialised toolchains and development environments

Virtual memory, as usually implemented in application SoCs or personal computers,
is generally not present in microcontrollers and isn’t even desirable for applications which
microcontrollers can fulfil. Page faults can bring non-deterministic behaviour into the
application and modify the timing of events, a crucial aspect of real-time applications.
Mapping of a whole 4 GiB virtual address space can be considered as hard to achieve
in constrained environments, as an application-accessible TLB requires extra hardware,
implying increased power consumption. A tree of page tables, as seen in the Intel IA-32
instruction set, would also require extra hardware to facilitate address translation and also
implies requirements for application memory to store such trees - a resource that is already
scarce.

The desire to link object files against a set of predefined memory addresses and not to
have any dynamic libraries is implied by the fact that the address space of microcontrollers is
usually statically defined in the hardware, thus all code has to be linked with those statically
defined addresses in mind. As microcontrollers don’t provide any ”runtime environment“ to
speak of, which could handle dynamic linking and relocations, execution of application code
is commenced by directly transferring execution (jumping) to the application’s entry point.
All addresses to all symbols (static variables and subroutines) thus have to be resolved
beforehand, at the time of compiling and linking the code. Self-modifying code which could
relocate itself is difficult or even impossible to implement - application code can be stored in
an EPROM/EEPROM, which can’t be directly changed, as well as flash memories, which
require special procedures to be reprogrammed. However, it can be possible to relocate
certain symbols outside the ROM/flash to RAM to speed up execution of frequently used
code, the code just has to be copied before used. Microcontrollers featuring Harvard-
style processor cores (AVR, PIC), by definition, forbid direct write accesses to instruction
memory.

Requirements for specialised toolchains and environments are mandated by the lack of
a runtime environment integral to the target platform itself and, as Chapter 5 discusses,
those toolchains have to properly handle specialised devices that are fundamentally different
to regular desktop computers, such as processor architectures that are reconfigurable by
the hardware vendor. Special debuggers have to be used for microcontrollers as analysing
their state and influencing their behaviour means accessing a low-level interface exposed
by them. Such debuggers have to have facilities for statefully interfacing with the system’s
flash memory, to allow program upload. ”Creature comfort“ features, such as fault state
analysis, peripheral state analysis, data logging, execution tracing, time profiling, simulated
breakpoints and others are also highly desirable, if not necessary for the development of
embedded applications.

10

2.4 DMA
DMA is a technique for transferring blocks of data where peripherals can directly access sys-
tem memory independently. This technique is useful for efficiently implementing transfers
of data from various sources to various destinations - instead of the processor core perform-
ing them by itself, a DMA-capable peripheral or a DMA controller can be programmed to
perform the transfer independently and notify the processor upon finishing such transfer
by raising an interrupt request. As an effect, the act of copying data is offloaded off the
processor and the processor time spent by the application is reduced. That saved processor
time can be then spent by other parts of it. Data is usually transferred using DMA between
blocks of memory or between a block of memory and an input/output peripheral.

Current DMA controllers can have rich sequencing capabilities. For example, transfers
can be started (triggered) upon a peripheral asserting a special trigger signal, or by external
signals. In addition, programmed transfers can repeat (loop) or link to other programmed
transfers, leaving the programmer with the option of completely offloading the act of de-
sirably sequencing and timing the transfers from the processor and it not participating in
the data flow itself. Configuring transfers this way may have the benefit of being able to
implement continuous, uninterrupted flows of data. This is an important aspect of use
cases where interruptions of such flows are highly undesirable, such as audio playback and
capture.

The use of ping-pong transfers is a manifestation of this. Such a configuration im-
plements a pair of buffers, where one of the buffers is used for storing data about to be
transferred by a DMA controller and the other one holds data which is actively being trans-
ferred by it. Upon completing a DMA transfer, the two buffers are switched and a new
DMA transfer is programmed and triggered. If the timing is correct and the data to be
transferred is present before the buffers are switched, the result is an uninterrupted sequence
of DMA transfers and thus a flow of data. Such a technique can also can be extended to a
ring of buffers.

Various addressing modes, such as modulo or scatter-gather addressing, can also be
found and used. Modulo addressing is useful for transferring data to and from ring buffers
and scatter-gather is about linking various blocks of memory and treating them as a single
block, both for transferring to and from. A scatter-gather addressing mode can be useful
for receiving, modifying and retransmitting data, for example for routing computer net-
work traffic, where different portions of a processed packet can be handled and modified
separately and even concurrently, if the hardware is constructed in such a way that permits
this.

11

Chapter 3

The i.MX RT685 microcontroller

3.1 Overview
The i.MX RT685 is a 32-bit microcontroller made by NXP Semiconductors. It is based
around the Cortex-M33 processor core running at 300 MHz and has 4.5 MiB of SRAM
available in total for application use. Atypically, the program flash memory is not built
in - the device utilises an external SPI quad-port or octa-port flash memory chip. It does
so by utilising the FlexSPI peripheral, which can provide a transparent memory-mapped
interface for external memory devices, even SRAMs. 8 Flexcomm peripherals are provided,
which function can be switched between providing UART, I2C, I2S or SPI interfaces. 2
eMMC/SD/SDIO interfaces are available, as well as a reconfigurable clock distribution
system and power domains controllable by software. The chip offers 2 USB 2.0 interfaces,
which can both implement a device and a host. Debugging and tracing is possible using the
exposed SWD interface, commonly used with SEGGER’s J-Link and NXP’s LPC-LinkII
debuggers. Common algorithms used in cryptography (such as AES-256 and SHA-2) are
accelerated with an extra hardware peripheral - the CAMMU block.

This device is marketed by NXP as a crossover microcontroller, meaning some of the
features provided are not typical for a classic microcontroller (high-speed SDIO interfaces,
ability to transparently utilise external memory, high-resolution LCD interfaces, ...). While
NXP’s portfolio is not unique in this regard - one of the competing products is the highly
advanced ESP32 series of microcontrollers from Espressif Systems, this fact shows that
the line between application SoCs (MPUs) and microcontrollers gets blurrier with each
development.

One of the highlighted features of this device is the inclusion of a Cadence HiFi 4 DSP
processor block, around which this thesis revolves. Its specifics are mainly discussed in
Chapter 5 and Chapter 7.

3.2 Memory architecture, interrupt handling
Like comparable devices, the i.MX RT685 employs a flat, non-virtualised memory model
with memory-mapped input/output (MMIO) peripherals. The discussed 4.5 MiB of built-
in SRAM is directly accessible both by the main Cortex-M33 core and the DSP, optionally
facilitating shared memory. That main SRAM block is also accessible by all DMA-enabled
peripherals, so that various DMA transfers can occur.

12

The Cortex-M33 core is attached to peripherals using a multi-layer AHB matrix. Higher
speed peripherals (Flexcomm, FlexSPI, SDIO, USB, ...) are attached to the matrix directly.
Lower speed peripherals (timers, system control, reset control, ...) are attached using an
AHB to ABP bridge. The FlexSPI peripheral directly maps external storage devices (such
as quad-SPI or octal-SPI flash devices) to a block of system memory, both visible by the
Cortex-M33 and the DSP core. It also provides transparent encryption and decryption of
memory contents and data caches.

Although virtual memory is not implemented on this device (and isn’t generally desirable
in microcontrollers), region-based memory protection is available. Arm’s MPU built into
the Cortex-M33 core facilitates this. It can divide the whole address space into 8 segments,
access permissions (read, write) to which can be controlled. [2]

The HiFi 4 DSP has direct access to SRAM TCMs assigned directly to it - these are the
DTCM (data memory) and the ITCM (instruction memory), both sized at 64 KiB. Although
the DSP can use any piece of the main SRAM, both for data and code (instructions), the
default vector table is expected in the ITCM, thus it’s mandatory when using the DSP in
the target application.

Interrupts of the main Cortex-M33 core are controlled and handled using the standard
ARM NVIC controller. It is instantiated with 52 vectored interrupts with 8 priority levels
and hardware priority masking.

Interrupts on the DSP are handled using an interrupt controller integral to the Xtensa
architecture. It offers 32 interrupts in total, 27 of which are external, wired to peripherals.
Priority allocation is static - implied by the interrupt number. The external interrupt lines
are multiplexed using an interrupt multiplexer implemented in the INPUTMUX peripheral
of the microcontroller, which attaches the external interrupt lines to selected peripherals.
There are 34 total sources (Flexcomm, GPIO, timers, DMA, ...) which can be attached to
those lines through the multiplexer. [18]

3.3 DMA
The microcontroller has 2 DMA controllers, DMA0 and DMA1. Their capabilities are identical,
however, it’s recommended to utilise both controllers if both domains (Cortex-M33 and HiFi
4 DSP) are intended to program DMA transfers and/or secure and non-secure domains are
implemented. [18] The first case applies to the use case, which this thesis discusses, thus
the Cortex-M33 core uses DMA0 for peripherals driven in its domain and the DSP uses DMA1.

Each of the DMA controllers has 33 channels, which can be triggered by various events.
By default those channels are triggered by software (by supplying and the validating channel
configuration), but channels can also be triggered by hardware events from various periph-
erals on the device (timers, Flexcomm, ...). The selection of a peripheral trigger source is
done by selecting a channel and enabling a peripheral trigger in the controller’s registers -
trigger sources are defined in hardware and there are channels without a peripheral trigger
source. In addition, DMA transfers can be triggered by a second set of trigger sources
that are selected using the INPUTMUX peripheral. Both DMA peripherals provide trigger
outputs which can be routed back as selectable trigger inputs using the same peripheral,
enabling chained operation, which can be used to implement more involved DMA transfers
(such as ping-pong transfers).

13

3.4 Inter-core communication
As this microcontroller has 2 separate cores, extra hardware helping implement inter-core
communication mechanisms should be expected. And that is the case - the i.MX RT685
microcontroller has two peripherals which help meet that goal.

One of those peripherals is the MU (Message Unit). This peripheral implements a simple
mailbox mechanism - one core can write (post) a value and the other one can retrieve it.
Upon writing a value, an IRQ is generated to notify the other core. The MU works with
32-bit values and has 4 channels - 4 registers which can be written and 4 registers which
can be read. It’s divided into 2 ports, each one mapped at a different base address and
separately utilised by respective cores. Each port has separate read and write registers
reflecting their counterparts in the opposing port. IRQs can also be generated without the
need of posting a value - MU can facilitate generating plain IPIs. The interrupts can be
masked to abandon notifications using IRQs, letting the receiving cores poll the peripheral
instead, as the MU has status registers. [18]

The remaining peripheral is the SEMA42 peripheral, which provides 16 gates - hardware-
assisted state machines exposed as registers, helping with the implementation of simple
spinlocks. Each register holds a 4-bit value, with 0 signifying an unlocked state and all
other values signifying a locked state by a particular bus master (processor core). An
attempt to lock a gate is made by writing a bus master index (0 for the Cortex M33 core,
1 for the DSP) incremented by one, then reading the particular register back and checking
if the read value is the same as the one written. Unlocking is made by writing a zero to
that particular register. Only the core which locked the gate can unlock it - the index of a
particular bus master accessing a given register is checked against its value. This eliminates
the need for atomic instructions and a coherent cache across all cores, otherwise needed if
spinlocks were to be implemented with just shared memory locations.

14

3.5 Evaluation boards
The i.MX RT685 microcontroller is integrated on two evaluation boards made and dis-
tributed by NXP.

The MIMXRT685-EVK (fig. 3.1) integrates the microcontroller with the PCA9420
PMIC featuring 2 programmable LDOs and 2 programmable buck converters, the Macronix
MX25UM51345GXDI00 octal SPI flash memory, apmemory APS6408L-OBM-BA PSRAM,
an accelerometer, a digital microphone with a PDM interface, the Wolfson WM8960 stereo
audio codec, dual class D power amplifiers and an SD card slot. [13]

Figure 3.1: Photo of the MIMXRT685-EVK evaluation board

15

The MIMXRT685-AUD-EVK (fig. 3.2) differs slightly in the form factor, the flash,
interfaces and supplemental ICs. The power audio amplifiers are absent and the flash chip
has been substituted with the MX25U51245GXDI00 from the same manufacturer. [12]
Also the audio codec has been replaced - the board contains the CS42448-DQZ from Cirrus
Logic, which allows to transmit (output) up to 8 and receive (capture) up to 6 channels
of digital audio over a standard I2S interface or its modifications. [5] An M.2 E-key slot
is also exposed for connecting SDIO devices, such as IEEE 802.11 (Wi-Fi), IEEE 802.15.1
(Bluetooth) or IEEE 802.15.4 (used for 6LoWPAN, Zigbee, ...) radios.

Figure 3.2: Photo of the MIMXRT685-AUD-EVK evaluation board

The difference of flash memories (and their configured interfaces) makes the boards
object-code incompatible.

16

3.6 Possible use cases
Subjectively, the discussed microcontroller can be rightfully used in these applications:

• network audio streamer

• Bluetooth A2DP compatible speaker device

• smartwatch

• IoT sensor or control device

• voice assistant client device

These use cases were implied from the connectivity, processing and low power capabili-
ties of the discussed microcontroller. One distinguished application of a related device, the
i.MX RT595, is the use in Garmin and Xiaomi smartwatches. [8, 17] Fact sheet for both of
these devices ([15]) lists more possible use cases for them.

17

Chapter 4

The Zephyr RTOS for Embedded
Domain

4.1 Overview
Zephyr is an RTOS suited for use in resource-constrained embedded devices. It’s written
in C with platform-specific routines written in assembly and supporting tools in Python.
Zephyr is built using the CMake build system. The kernel implements preemptive multi-
tasking, synchronisation facilities, a unified device and driver model, memory management
(focused on just implementing heaps) and power management. Additional components
such as file systems, logging support, communication stacks and POSIX support are also
provided by Zephyr. Currently, these platforms are supported:

• ARCv2, ARCv3

• Arm Cortex-M, Cortex-A and Cortex-R

• x86, x86-64

• MIPS Release 1

• NIOS II Gen2

• RISC-V

• SPARC V8

• Cadence Tensilica Xtensa family cores

Zephyr originated in Wind River Systems, where it was eventually released and licensed
under the Apache 2.0 license. Currently, Zephyr is an open-source project managed by
The Linux Foundation and development is steered by a committee formed with indus-
try representatives. This committee includes members from, among others, NXP, Nordic
Semiconductor, Meta, Linaro, Intel, Synopsys and Wind River.

Zephyr can be considered as a unikernel operating system - instead of implementing a
completely abstracted runtime environment for applications, in reality, it functions more
like a software framework for developing embedded applications. It runs in a single address
space, thus in the same address space as the application code, and all Zephyr routines are

18

statically linked, resulting in a single image where system services are invoked directly. All
abstractions provided by it are implemented just to provide unified, conventional structures
and facilities for writing applications.

4.2 Configuration
Zephyr RTOS and the components associated with it use the Kconfig mechanism for the
configuration of compile-time features and variables. [22] The result of the Kconfig mech-
anism is a C header file containing all of the set properties, which all have the CONFIG_
prefix. Properties available for configuration are described hierarchically in Kconfig files
with, optionally, implications, automatic selections and constraints. Based on this descrip-
tion, the resulting configuration is validated against this database at build time, which can
rule out inconsistent or unsupported set of settings. The configuration can be fragmented
- there are separate Kconfig files for SoCs, boards, application projects themselves and the
resulting configuration can be overridden (overlaid) on the application-board level. Inter-
active configuration tools, such as menuconfig (fig. 4.1a) and guiconfig (fig. 4.1b) are
also provided. They are available as CMake targets of each properly instantiated project.

(a) The menuconfig tool (b) The guiconfig tool

Figure 4.1: Interactive configuration tools

4.3 Development toolset
Zephyr offers West - a command-line tool written in Python for managing a set of multiple
Git repositories and executing implemented commands on those repositories. [22] Through
the West manifest, located in each workspace and each repository in that workspace, it man-
ages revisions of each repositories and provides a way to change (checkout) those revisions
in bulk. This makes tasks like branching (and keeping dependent repositories at a specific
revision) and updating repositories to a newer version easier. This works subjectively well
especially because the Zephyr RTOS itself is structured into multiple repositories. Among
those is the base repository, HAL repositories and additional components like communica-
tion components, debugging extensions, file systems and others.

Zephyr also uses West as a way to build applications (by invoking the correct CMake
targets), flash them and start their debugging sessions. Zephyr does this by having custom
commands defined in the included repositories, which can be parameterised by configuration

19

supplied at the board layer. For example, it’s possible to directly start a GDB server for
the proper part, for which the debug session is being started.

By default, Zephyr is built with the Zephyr SDK - a collection of prebuilt toolchains,
QEMU variants and other tools. Each of these toolchains consists of a version of GCC
set up for cross compiling, C and C++ runtime libraries and a version of GDB. User can
select which toolchains to install and just has to execute a setup script - no other steps
(like including the toolchain paths in environment variables) are necessary. The toolchains
are built with crosstool-NG, an environment for building toolchains, which enables building
toolchains based on source tree overlays and a Kconfig-style configuration. This makes the
adaptation of the toolchains for new platforms and subsequent maintenance less difficult
than having a separate source tree for each target.

4.4 Driver model
Zephyr encompasses all structures associated with a particular device and its driver in
the device structure. Major items of that structure are name, initial driver configuration
(information such as base addresses, IRQ numbers, custom configuration, etc.), a structure
with pointers to API functions which the driver implements and its internal state. [22]

When booting, Zephyr calls registered initialisation functions of all devices defined in
the system. Initialisation function then initialises the driven hardware device and can
make calls to other drivers or subsystems to facilitate initialisation (such as clock control
or interrupt handling). Priority with which are those functions called can be adjusted, as
Zephyr implements 5 different initialisation levels, which differ in the execution context and
the range of services available [22]:

• EARLY - executed immediately after and invoking Zephyr’s C entry point (z_cstart),
no kernel services are available

• PRE_KERNEL_1 - suitable for initialising devices with no dependencies outside the
microcontroller, no kernel services are available except interrupt attach functions

• PRE_KERNEL_2 - intended for initialising devices which depend on devices initialised
in previous levels, availability of kernel services is the same as in PRE_KERNEL_1

• POST_KERNEL - used for devices depending on kernel services for initialisation, possible
use case is initialisation of devices existing on dedicated buses or communication
channels (UART, SPI, I2C, ...)

• APPLICATION - dedicated for user components, such as parts of communication stacks

Initialisation functions are mainly used for drivers, but don’t have to be associated
with drivers. Using the SYS_INIT and SYS_INIT_NAMED macros, it’s possible to define
an arbitrary initialisation function at any level. Initialisation functions can fail (return
a negative errno). If such condition occurs, the device is considered as not ready. By
convention, any code that uses a device through the Zephyr’s driver model is supposed to
check device’s readiness with the device_is_ready function.

A driver can expose an API in the form of a pointer to an arbitrary structure containing
pointers to functions implementing the desired API. Those can be directly consumed by
the application or wrapped by a subsystem layer, which conceptually implements syscalls.

20

Those subsystem layers can range from simple wrapper functions invoking functions refer-
enced in the API structure to subsystems with extra handling logic. By convention, all of
those functions consume a pointer to the device’s device structure as a first parameter.

Devices (driver instances) can be defined only statically in Zephyr - dynamic device
discovery and creation is not supported. Not considering DTs, this is done using the
DEVICE_DEFINE macro, which statically allocates the device structure, fills it out with
supplied data and registers an initialisation function, if one was given.

Zephyr also supports power management. Drivers can optionally provide a pm_device
structure (defined by the PM_DEVICE_DEFINE or PM_DEVICE_DT_DEFINE macros) which ex-
poses a callback function used for controlling the power state of a particular device. Fol-
lowing actions are supported:

• PM_ACTION_SUSPEND - causes the device to enter a low-power state

• PM_ACTION_RESUME - causes the device to exit a low-power state

• PM_ACTION_TURN_ON - powers up the device completely

• PM_ACTION_TURN_OFF - powers down the device completely

Structures associated with devices instantiated under the Zephyr driver model are com-
piled into special sections (device_area, device_states), which implies the possibility of
moving those sections into different memory segments (thus different memory devices). This
can help speed up the execution of driver routines and, by extension, the whole application,
if the driver routines present a hot spot.

4.5 Device trees
Together with a unified driver model described above, the Zephyr RTOS implements device
trees.

A device tree (example in Listing 4.1) is a hierarchical structure that describes specifics
of different pieces of hardware (base addresses, interrupt vectors, variants / quirks, param-
eters, ...), relationships between such devices and references to compatible drivers, which
then control the described devices. [22] The overall concept is the same as device trees
in Linux and, in fact, source representations of both have the same syntax and similar
conventions.

All definitions in a device tree are structured into nodes. Each node has a name (1)
and can have a unit address (2), label (3), properties (4) and child nodes (5). Properties
are defined by their name (6) and value (7). Value can be a string (8), a reference to
another node (a phandle, 9), a tuple of 32-bit integers (cells value, 10), an array of bytes
or a list consisting of items of any said types. A root node, / (11), is always defined in a
valid resulting device tree. Nodes can be later located by their absolute path (for example,
/soc/peripheral/clkctl@21000) or referenced by their label (3), which must be unique
in the whole tree.

There are properties which have a fixed, defined meaning (such as ranges, compatible,
status and others) and properties which are specific to each node, or more precisely a
driver which is instantiated from a given node.

21

/ 11 {
soc 1 {

peripheral 3 : peripheral@40000000 2 {
ranges = <0x0 0x40000000 0x10000000>; 4
#address-cells = <1>;
#size-cells = <1>;

clkctl1: clkctl@21000 { 5

reg = <0x21000 0x1000> 10 ;
compatible 6 = "nxp,lpc-syscon" 7 ;

#clock-cells = <1>;

status = "okay";
};

i3c0: i3c@36000 {
reg = <0x36000 0x1000>;
compatible = "nxp,mcux-i3c" 8 ;

interrupts = <49 0>;
clocks = <&clkctl1 9 0x600>;

status = "okay";

redundantproperty = <1>;

audio_codec: wm8904@1a 12 {
reg = <0x1a 0 0>;
compatible = "wolfson,wm8904";

status = "okay";
};

};
};

};
};

Listing 4.1: A simplified device tree example

Among those is the reg property specifies the base register of the device being described
- usually its address and length. If the base addresses are translated (using the ranges
property in the parent node), then this address is relative (non-translated). The contents
of the reg value are dictated by special properties in the parent node - #address-cells
and #size-cells. This can cover both definitions for devices directly mapped to memory
(5) and for devices on a special bus (12, such as I2C, where devices are accessed only by a
device address).

Similarily, there are bindings for common resources, such as GPIO pins, clock signals and
interrupts. The structure of a binding is dictated by a cell count property (#clock-cells,
#gpio-cells, ...) of a node providing that resource. These are then interpreted by the
driver providing that resource and can be used to further describe that binding (pin direc-
tion, desired clock frequency, interrupt priority, ...).

22

Device trees can be merged - overlaid on top of each other. An example of an overlay
is in Listing 4.2. Device tree overlays mainly contain changed properties of nodes, new
values of existing nodes or new nodes, but by prefixing node and property names with
delete prefixes (/delete-property/ and /delete-node/ respectively), information can be
removed.

The ability to overlay device trees enables developers of different pieces of a resulting
application to structure device definitions as different, abstracted device tree fragments
(part, board, application, ...), promoting abstraction, problem isolation and application
migratability. If an application is developed solely against the Zephyr’s unified driver
model, migrating it between hardware platforms, theoretically, can be just a matter of
compiling the application with a suitable toolchain and a different device tree.
i3c0 {

/delete-property/ redundantproperty;
status = "okay";

};

Listing 4.2: An example of an overlay modifying the i3c node

Contrary to Linux, Zephyr does not directly use compiled device trees (DTBs - device
tree blobs), but translates the structure into a C header file and object files with associated
binary contents. This structure is then statically traversed using C preprocessor macros,
from which drivers are instantiated at compile time and from which all required values are
acquired.

Compiler errors produced from this process can be cryptic and thus device tree issues
can be quite difficult to grasp and rectify, but this technique guarantees allocations and
relationships between drivers that are known at compile time and also eliminates runtime
costs of traversing device trees and instantiating drivers. This also makes the final sizes of
structures associated with drivers known statically, making predictions about the developed
application’s memory requirements easier by that amount.

4.6 Audio driver APIs
Zephyr currently offers 2 APIs for audio input and output peripherals. These are the i2s
and the dai APIs.

The i2s API is the one that is subjectively more straightforward to use. It presents a
completely abstracted audio device with a defined direction. Like the name suggests, it’s
centred around peripherals implementing the I2S bus and its variants. Its configuration
accepts a heap (k_mem_slab), which is used as a queue for storing audio data about to be
consumed (transmitted) or audio data that was produced (received) over the interface. The
application then uses the i2s_write, i2s_buf_write, i2s_read or i2s_buf_read func-
tions respectively to provide or gather that data. If the peripheral is configured as an I2S
transmitter, the queue must be prefilled before starting the transmission (i2s_trigger),
as queue overflows and underflows result in transitions into an error state. The act of
sequencing transmissions is completely abstracted by the driver. If DMA transfers are em-
ployed, the driver is responsible for interfacing with a driver of an assigned DMA periph-
eral to facilitate those transfers. This API is thoroughly demonstrated in Zephyr examples
(samples/drivers/i2s/output, samples/drivers/i2s/echo).

On the other hand, drivers implementing the dai API do not abstract the sequencing
of transmissions and don’t even provide a way to directly write or read data from the

23

peripheral’s internal queue. Instead, the internal queue is described in a properties structure
exposed by the driver (dai_get_properties). The API then offers just a way to trigger a
continuous transmission (dai_trigger) and the responsibility of reading or writing to the
peripheral’s queue is shifted to the application. This API isn’t demonstrated anywhere in
Zephyr, but it’s relevant for Sound Open Firmware, as is discussed in Section 8.4.

4.7 Comparison with other systems
RTOSes like FreeRTOS, NuttX and XTOS strive to achieve goals similar to Zephyr.

FreeRTOS is a simple system implementing just preemptive multitasking, synchronisa-
tion primitives and heap-based memory management. It is very small, but doesn’t solve
some of the more complex problems that Zephyr does solve (unified driver model, commu-
nication stacks, file systems, ...). FreeRTOS can be already found in existing SDKs made
by microcontroller vendors (such as the ESP-IDF from Espressif Systems, MCUXpresso
SDK from NXP and STM32 Cube from ST Microelectronics). Each SDK thus offers dif-
fering drivers with differing interfaces, preventing application portability and accentuating
differences between those SDKs and thus microcontroller platforms. CMSIS standards and
interfaces try to rectify this, but they abstract just a handful of hardware and software com-
ponents. Some of those SDKs are also tied to development tools created or supported by
the vendor, making them difficult or impossible to use with different IDEs and toolchains,
if a situation requires such a choice. Some of those included drivers also may not be fully
utilising services provided by the RTOS kernel (synchronisation primitives, for example),
as they also need to run in bare-metal applications. One of those examples is the sdmmc
driver in the MCUXpresso SDK - it uses active waiting for waiting on peripheral conditions
in both bare-metal and RTOS applications. Such implementations make use of available
processor time inefficiently.

NuttX is an RTOS that strives to create a POSIX-compatible operating environment
for target applications, thus it maps all hardware interactions as Unix-style file accesses.
Subjectively, not every device can be well abstracted with a file, devices requiring complex
operations that go beyond simple reads and writes from a byte (for character devices)
or a block (for block devices) stream have to be implemented by either ioctl() calls or
by dynamically creating extraneous files representing each possible point for data input
or output. Compared to just consuming an API made of function calls that are not a
product of an abstraction, both of these methods can significantly impact the readability
and simplicity of the target application, aspects which are both desirable especially in
constrained environments like microcontrollers. Zephyr also offers a POSIX layer, but it’s
not integral to the operating system and thus not mandatory for applications to utilise.

Another relevant aspect of NuttX is how drivers are implemented and instantiated.
NuttX does not instantiate drivers using a device tree, drivers are instantiated using code
in the board layer and configured using Kconfig variables.

XTOS is an RTOS developed by Cadence targeted only at Xtensa platforms. It can
support all of the extensions of an Xtensa instance directly - unlike Zephyr, context switches
include switching the contents of registers used in SIMD instructions. However, the level of
features provided by XTOS itself is even lower than the one of FreeRTOS - it provides only
basic synchronisation primitives, manual context switching and heap management appears
to be implemented by a tightly coupled C runtime library. As can be implied, XTOS
does not provide the same level of functions as Zephyr - apart from the ones listed above,

24

facilities like a comprehensive device and driver model, communication stacks, logging, file
systems and others are absent.

25

Chapter 5

The HiFi 4 DSP core

5.1 Overview
The Tensilica Xtensa HiFi 4 DSP is an extension to the base Xtensa processor architecture
bringing specialised facilities (instructions, registers, ...) tailored to tasks involving digital
signal processing (DSP) work. Despite the name itself referencing only that extension,
this thesis refers to the Xtensa processor with the HiFi 4 extension implemented as it is
implemented in the i.MX RT685 microcontroller as the HiFi 4 DSP and just the DSP, to be
inline with existing documentation and associated texts produced by NXP Semiconductors.

Initial IP was developed by Tensilica, Inc., which was subsequently bought out by
Cadence Design Systems, Inc. in 2013. One of the distinguished features of that IP is that
the resulting processor core can be reconfigured based on the silicon vendor’s requirements.
Parameters like size of caches, MMU presence, ECC or parity support, exception handling
specifics and others can be modified. In addition, the whole instruction set can be modified -
both by deciding on the inclusion of predefined instruction set extensions and by developing
custom extensions to the instruction set written in the proprietary TIE language. Based
on those parameters and extensions, a hardware description is generated for synthesis and
simulation, as well as a support package for software development along with a cycle-
accurate simulation system. These tools integrate tightly with the Xtensa Xplorer - an
Eclipse based IDE for software development for Xtensa instances. Deep runtime analyses
can be done with this environment, for example processor pipeline usage can be studied.

5.2 Instruction set
The Xtensa base instruction set is a RISC-style ISA intended for general computing tasks.
This is apparent in the Espressif’s ESP32 series of microcontrollers, where Xtensa LX6 and
LX7 cores are used as primary ones. [7] Despite the base instruction set being presented as
RISC-like, the base Xtensa ISA employs conditional register move instructions (MOVxxx) and
implicit bitwise shifts when adding (ADDMI, ADDXn). Among others, the following optional
facilities extending the minimal core instruction set are available: [4, 10]

• variable instruction length (shorter instruction lengths)

• zero-overhead loops (loops of a known number of iterations without branching)

• 16-bit MAC instructions

26

• integer arithmetic instructions (CLAMPS, MAX, MIN, SEXT, ...)

• VLIW facility, enabling the explicit issue of multiple instructions in parallel, both
base instructions and defined by the vendor (TIE)

The HiFi 4 extension exists as a coprocessor to the base Xtensa LX processor, that can
be included during configuration of the Xtensa IP. It exploits the aforementioned VLIW
(FLIX) facility by enabling the programmer to program and issue certain instructions in
parallel. Some of the instructions offered by the HiFi 4 DSP extension include: [3]

• circular buffer (modulo) loads and stores

• multiply and accumulate

• fixed-point arithmetic (round, truncate, saturate, multiply, divide, ...)

• floating-point arithmetic

• codebook loads and stores

In the case of the i.MX RT685 microcontroller, the HiFi 4 DSP coprocessor has been
instantiated on an LX6 processor.

5.3 ABI
One of the configuration options enabled for the discussed instance of the Xtensa processor
IP is the Windowed Register Option. This replaces the 16-entry general-purpose register file
(AR) with a register file that has 64 registers instead. This option then imposes a register
window onto this file, making 16 registers of this file available at any time and mapping
them to original names of the AR file. The window is rotated on each subroutine call
and return using the CALLn (PC-relative call) and CALLXn (call target, address in register).
When a write access of a register belonging to the caller’s window is made, a window
overflow exception is raised and serviced, handler of which is responsible for saving the
accessed value and rotating the window manually. Conversely, on subroutine return, the
window underflow exception will be generated for restoring the overwritten values, if such
accesses were made. [4] This enables high-performance subroutine invocations without the
need for explicitly programming register store instructions for saving callee-saved registers
and then restoring them upon a return from an invoked subroutine.

The Windowed Register Option works in conjunction with the Xtensa windowed ABI.
First 8 registers of the available window are reserved for data usually found on the beginning
of the stack frames - return address, subroutine arguments, stack frame pointer and return
values. The rest of the registers are intended for the application and for subroutine calls.
The fixed window variant rotates the window by 8 registers, the variable window variant
can, depending on the needs of the programmer, rotate the register window by 4, 8 or
12 registers. Call parameters are provided before the call and the window rotation - first
argument given to the subroutine is located in the a2 register and, if using the fixed variant,
should be provided in a10 in the callee’s window.

The Xtensa architecture also employs the CALL0 ABI, which doesn’t work with any
register windows and, instead, uses the default 16-register window as it is, with the scratch
registers being callee-saved.

27

5.4 Available tools
Cadence offers a C/C++ retargetable compiler based around LLVM - xt-clang, together
with a complete GNU toolchain (linker, assembler, debugger and adapted GNU binutils).
That toolchain is entirely proprietary - source code is not released to the public and us-
age licenses are provided at Cadence’s discretion. 1 Older versions of toolchain packages
also included xt-xcc - Cadence’s optimised GCC variant, however, current versions don’t
include that particular compiler anymore.

Standard GCC supports the Xtensa ISA as well and can be adapted to work with the
different Xtensa profiles and extensions (such as the Fusion F1 DSP, HiFi 4 DSP and even
vendor-specific TIE extensions). Support packages for the toolchain and Xtensa Xplorer
available from Cadence contain, despite the access and license to those packages being
restrictive, MIT-licensed source files that describe that particular core and can be just
copied into the GCC source tree. This is further discussed in Section 7.7.

No study on compiler characteristics comparing xt-clang and GCC was found or done.
Thus it is generally believed by NXP employees with whom this thesis was consulted, that
the Xtensa toolchain is superior in the terms of size and execution performance of the
compiler output. An internally discussed case with a prominent customer also discovered
that the GCC’s maths library for Xtensa is not complete and lacks some functions, making
it unusable for DSP work and favouring xt-clang.

1http://tensilicatools.com

28

http://tensilicatools.com

Chapter 6

The Sound Open Firmware layer

6.1 Overview
Sound Open Firmware (SOF) is a community developed audio framework covered by The
Linux Foundation. It’s a modular, pipeline-based audio framework centred around ab-
stracting DSPs as a flexible audio processing domain controlled using messages exchanged
over an IPC channel. The initial use case of this project was its use on Cadence HiFi DSP
instances in desktop computer audio solutions manufactured by Intel, but it was quickly
adapted for other targets, such as the i.MX series of application SoCs featuring the same
DSPs or even ARM Cortex-A cores segregated by a hypervisor running in conjunction with
Linux.

This project is closely tied, but not tightly coupled by the ALSA subsystem in Linux.
The ALSA subsystem is capable of offloading tasks like volume control, stream mixing,
equalisation, multiplexing and others. This is done by utilising an ASoC platform driver,
that abstracts the audio processing domain as a whole and interprets topology configuration
files generated beforehand, that describe the desired arrangement and configuration of
defined processing blocks. [1] In case of SOF, the platform driver associated with it converts
these topology blobs to a sequence of IPC messages, which then the SOF instance running
on the audio domain interprets. As this is the only coupling between the host and the DSP
and is inherently loose, making SOF functional with different hosts doesn’t imply the need
to replicate any of the facilities or mechanisms implemented in ALSA.

6.2 Programmer’s model
From a programmer’s perspective, the root object around which all work with SOF revolves
is the pipeline. Components, processing blocks with a desired function, are created in the
context of it. They’re linked to each other using buffers, which have a defined size. Each
component has a list of buffers attached to the source (receiving) and sink (producing) side
of it, and between both of these lists the core function of a component (comp_ops.copy)
takes place. Buffers in a pipeline are practically queues (ring buffers), which keep track
of how much data was produced and consumed by adjacent components. If not enough
data was produced (samples can’t be dequeued) or the buffer is full (samples can’t be
enqueued), the copy function of a component attached to such buffer should fail. Each
pipeline has a component considered as a host component, which serves as the entry point
of the pipeline - a pipeline is triggered (started or stopped) by performing a trigger operation

29

on its host component. That component can be a true host component (SOF_COMP_HOST),
which is responsible for exchanging audio data with the host, but any other accordingly
implemented component can be used, such as the tone component (SOF_COMP_TONE), which
function is to generate a sine wave.

Depending on the configuration, pipelines can be traversed in two ways. Playback
pipelines (downstream direction) are traversed in the downstream direction, starting with
the source (first) component and by following buffers in the sink buffers list, with the
copy function being invoked before recursing. Capture pipelines (upstream direction) start
with the sink (last) component and follow the source buffers, with the copy function being
invoked after recursing. This scheme ensures that the copy function of a source component
is always being invoked first.

Each instantiated object (pipeline, buffer or a component) is configured with a numer-
ical ID, by which it is referenced in all operations. A pipeline is also configured with its
scheduling priority, execution period (timer period at which the pipeline is traversed copy
functions of its components are invoked), computing core index on which the pipeline will
run, underrun or overrun reporting maximum limit and other parameters. The traversal
can be scheduled upon a DMA interrupt, but this possibility is in the process of being
deprecated, in favour of scheduling the traversal using a timer.

A component is instantiated on the basis of its ID, type index, pipeline ID and con-
figuration specific to the particular component type. Some component types are identified
not by a defined numerical index, but by an UUID. The instantiation is then carried out
by formatting a component create message that references a special, virtual component
type index (SOF_COMP_ADAPTER) and by extending the message with a UUID. A component
creation message is then dispatched accordingly based on the specified UUID.

To establish a working pipeline which can be triggered to start, the pipeline object
is created first. Then all other associated objects (components and buffers) are created.
These are then connected together and a complete operation is performed on the pipeline.
The host component is then configured with stream parameters (such as the sample rate,
sample format, channel count, ...), which are then automatically distributed among other
components in the pipeline. At last, the pipeline, as described above, can be started by
triggering its host component, which starts repeatedly scheduling the function responsi-
ble for accordingly traversing the pipeline and invoking copy functions of all components.
Conversely, the pipeline is stopped by triggering the host component to stop.

6.3 Architecture
SOF currently can be compiled against two different operating systems - Cadence’s XTOS
for Xtensa-family processors and the Zephyr RTOS. Because of this, one of the basic sections
of SOF is an abstraction layer responsible for abstracting basic services (heap allocation,
task management and scheduling, synchronisation, interrupt control, ...) of the underlying
operating system.

As SOF was initially developed only against XTOS, which doesn’t have any sort of a
comprehensive device and driver model, SOF has its own driver model. Integral drivers
(such as interrupt controllers, an IPC channel or timers) are implemented as plain functions
written against common headers, which are then linked in by CMake configuration and
the linker. Devices, of which multiple counts are expected, are described using device
structures, which house attributes, private data and a function table, pointing to API
functions implemented by a driver of each particular device. Lists of such device structures

30

are then provided by platform sources, which exist for each target that is supported by
SOF. Among those device types are DMA controllers and audio interfaces.

In case of the Zephyr RTOS, a subjectively preferred operating system for new platforms,
SOF drivers, which SOF is able to directly utilise, wrap around common Zephyr driver APIs.
If SOF is built against Zephyr and Zephyr-native SOF drivers are enabled, the discussed
device structures contain an additional field, z_dev, which points to the Zephyr’s device
structure. The platform sources then check for particularly named nodes in the utilised
Zephyr device tree and statically populate the lists with those nodes. This enables SOF to
utilise drivers that are already a part of the Zephyr RTOS.

Other than, of course, preemptive multitasking in the underlying RTOS, SOF has its
own task scheduling system, that schedules and cooperatively executes different functions
that are being scheduled. These include the tasks carrying out IPC operations (the han-
dling of IPC messages is deferred outside the interrupt context), traversals of actual audio
pipelines and other tasks which are needed to be executed periodically. The scheduler works
as part of a domain object, which executes a selected scheduler as a consequence of a do-
main event. Every task is then checked if their execution is due (domain_is_pending) and
marked as pending if so. SOF offers two domains - a timer domain and the DMA domain.
Timer domain uses the system timer to run the scheduler and a task is determined if its
execution is due based on the current timer value. The DMA domain differs in that it exe-
cutes its handler function (to which the scheduler is attached) on DMA transfer completion
interrupts. SOF also offers two schedulers - a simple scheduler based on a linked-list as
a queue and a scheduler implementing the Earliest Deadline First (EDF) algorithm. The
EDF scheduler is used in SOF only for IPC work.

6.4 Comparison with similar layers
Maestro is an openly licensed audio framework developed by NXP Semiconductors targeted
towards this company’s ARM microcontrollers. As of the time of writing this thesis, a
publicly released version is implemented as a software library fully functional on top of
FreeRTOS with a Zephyr port in progress. Its conceptual model is similar - it offers an
environment where different audio processing blocks (sources, codecs, transforms, sinks, ...)
can be connected together as a processing pipeline. However, unlike SOF, Maestro is closely
tied to the developed application itself, as it doesn’t utilise any RPC or IPC frameworks
for exchanging control messages and audio data - merely a simple command queue is used
as it is provided by the operating system and abstracted away with an API layer. It can be
concluded that its use in AMP systems would require extra adaptation work, now making it
impossible to use on high-end microcontroller devices with multiple cores. The possibilities
of pipeline construction are greater in SOF, as pipelines can be linked together and the size
of buffers associated with each processing block can be explicitly adjusted in the pipeline
definition, allowing the use of, for example, crossovers. This use case proved problematic
in Maestro. In addition, none of the Xtensa variants is among the set of supported targets,
thus prohibiting its use on the HiFi 4 DSP and special instructions tailored for DSP work.
However, judging from general observations, Maestro does not have such heavy memory
requirements as SOF.

XAF is a proprietary audio framework developed by Cadence solely for Xtensa plat-
forms. Like SOF and Maestro, it also offers a pipeline-based processing environment. Unlike
Maestro, XAF completely exposes its function over an API accessible in the same domain in
which it runs. Example projects in MCUXpresso SDK utilising XAF are running XAF on

31

the secondary DSP core of the given target device and use the RPMsg-Lite RPC component
to exchange control messages and audio data. That access layer, though, is application-
specific, as it’s part of the application itself and deals with messages for audio data exchange
and pipeline control (create, play, stop, ...) - the application does not view the abstracted
DSP side as a complete audio processing framework.

32

Chapter 7

Porting the Zephyr RTOS

7.1 First steps
First steps were to properly instantiate the SoC and board layers in the Zephyr source tree.
When the work on this porting task began (August 2023), it was discovered that a Google
employee has submitted a pull request on Zephyr’s upstream GitHub repository, which
did that for the similarly situated Fusion F1 DSP in the i.MX RT595. That device is a
close relative to the i.MX RT685 in the terms of hardware structure, overall characteristics
and possible use cases. [20] The pull request provided a linker file, Kconfig definitions,
default Kconfig configuration fragments, YAML board description, and modified layers for
other Xtensa-enabled parts made by NXP to properly separate hardware differences. These
changes don’t result in a fully functional Zephyr port - no peripherals were instantiated,
handling of interrupts from peripherals was not implemented and no code loading and run
control facilities for the DSP core were implemented. With this port as it is, it is only
possible to run a Zephyr application on the RT595 through a debugger and peripheral
usage is up to the application, completely overriding the Zephyr’s driver model. However,
this pull request helped greatly in understanding Zephyr’s structure and developing the
port for the RT685. Contents of the pull request were studied, copied, names referencing
the particular microcontroller were changed and, in the end, a new device tree was written.

The soc/xtensa/nxp_adsp/rt6xx/include/_soc_inthandlers.h file is the only file
that was machine-generated. This was done using the xtensa_intgen.py script located in
arch/xtensa/core of the Zephyr source tree. It generates the _soc_inthandlers.h file
from the result of preprocessing arch/xtensa/core/xtensa_intgen.tmpl using a C pre-
processor. That template file includes core-isa.h from the Xtensa core support package
provided by Cadence. This file implements root interrupt handlers for all external inter-
rupts that can be raised - these handlers infer the particular interrupt number based on
the interrupt’s controller level and mask and then transfer execution to a service routine
registered for that particular IRQ.

33

7.2 Project structure
Because the microcontroller used in the considered scenario is essentially an AMP system,
any project developed in that scenario must be structured to separately build images for
the ARM core and the DSP. Given the position of the HiFi 4 DSP in the microcontroller,
where the ARM core starts first and its intended responsibility is to initialise and start
the DSP, such a project must be structured in a way where the code associated with the
DSP must be located in a subproject and linked as a dependency for the primary project
targeted towards the ARM core.

That was done using the CMake ExternalProject_Add call in the CMakeLists.txt
of the primary project. To facilitate code loading, an extra build artefact was added to
the subproject - binary images of data and text memory regions for the DSPs. These are
created using the xt-objcopy tool, which copies them from the resulting zephyr.elf ELF
image. Such files are then included as content in the adspimgs.S assembly source file of
the parent project and exported as symbols.

7.3 DSP code loading and starting
The general flow of initialisation is to configure necessary blocks in the microcontroller’s
clock system, enable power to the DSP, enable its clock signals, copy program sections to
associated memory devices and start the DSP.

Clock configuration was copied from the dsp_xaf_usb_demo_cm33 example project lo-
cated in the MCUXpresso SDK for the i.MX RT685. Power control and clock enablement
is indirectly handled by the fsl_dsp.c driver, which the MCUXpresso SDK instance in the
NXP Zephyr HAL provides and which is used directly in the port. Starting and stopping
the DSP is done by directly accessing the DSPSTALL register in the SYSCTL0 peripheral. Its
C definition is also provided by the MCUXpresso SDK.

The part that required the deepest investigation in the process of starting the DSP
is loading the code. First attempts to copy the DSP code simply utilised the memcpy
function implemented by the picolib runtime library, which was invoked to copy the objects
from wherever they were placed (in the particular instance where development took place
the microcontroller’s flash memory) to the DSP’s TCMs. While the invocation of that
function succeeded, in case of the ITCM the memory remained unchanged. An attempt to
examine the memory’s contents using the J-Link GDB server attached to the ARM core
failed with the message that the particular section was not readable. A byte write invoked
from the debugger, likewise, did not do anything. When a byte read from the application
was attempted, a HardFault exception was raised. I discovered that it is possible to access
the ITCM only with the granularity of 32 bits, given how the DSP’s PIF is implemented
and interfaced to the rest of the microcontroller, thus accesses of smaller sizes are illegal.
A tailored memory copy routine was implemented that copies the code by 32 bits. This
property was found experimentally - it was not mentioned in any documentation that NXP
provides for the microcontroller.

The drivers/misc/nxp_rtxxx_adsp_ctl/nxp_rtxxx_adsp_ctl.c file located in the
Zephyr tree ultimately integrates all of the said routines and implements a driver responsible
for DSP initialisation, code copying, starting and stopping.

34

7.4 Enabling basic drivers
The GPIO and Flexcomm UART were chosen to be enabled at this stage. That way,
blinking an LED and transmitting textual messages to a serial terminal becomes possible,
easily assessing the system’s state.

Because all peripherals on the APB bridges 0 and 1 are accessible from the DSP’s
address space, getting those peripherals to work didn’t require any additional effort, despite
their drivers being originally developed for the ARM core of the microcontroller. Only
instantiating them properly in the DT, resolving unmet dependencies and appropriately
modifying the port’s Kconfig configuration fragments was required.

Those unmet dependencies were related to the NXP’s Zephyr HAL, as its encompassing
mcux/CMakeLists.txt did not include all the necessary include paths and source files re-
lated to used drivers and definitions in the MCUXpresso SDK, on which this HAL is based.
Simple conditional inclusion sufficed.

7.5 Interrupt handling
As was discussed in Chapter 3.2, the microcontroller provides an additional multiplexer
that, among other signals, routes interrupt lines from the device’s peripherals to the HiFi 4
DSP core. There are 27 external interrupt lines exposed by the core and 38 available sources.
The priority of each interrupt is selected by its number - different interrupt numbers can
have different priorities. [18]

This presents a challenge while instantiating drivers of peripherals emitting interrupt
requests, as not all interrupts can be mapped into the space of interrupts created by the
DSP’s interrupt controller. While prioritising peripherals most likely to be used by the
DSP and employing a fixed allocation scheme is possible, it reduces a number of possible
use cases of the DSP. Thus it was decided that the allocation of interrupts is best left to the
developer - based on the project requirements, the developer can manually select needed
interrupts, allocate them based on the priority desired and overlay the board’s DT with the
required definitions.

There was an effort of implementing an interrupt controller driver that would config-
ure both the interrupt controller integral to the DSP and the interrupt multiplexer men-
tioned above. That collides with the way how Zephyr manages interrupts - it is pos-
sible to specify an interrupt controller DT node with required interrupts nodes bearing
meaning specific to that particular interrupt controller driver, but it is not possible to
statically traverse the DT for interrupt attributes related to that particular interrupt con-
troller DT node. Because of that, a simpler and more expressive approach was chosen
- a separate driver instantiated by a separate DT node responsible for just the multi-
plexer, or rather the INPUTMUX peripheral as a whole. That driver is implemented in
drivers/misc/nxp_inputmux/nxp_inputmux.c of the Zephyr tree and provides a way to
describe interrupt allocations in the DT, among other signal assignments by which the
INPUTMUX peripheral can be controlled.

7.6 Testing and debugging
Testing was done by adapting, compiling, manually building the hello_world, blinky,
synchronization and philosophers projects, running them on the board and observing

35

their effects. That way, basic functional tests of the instantiated drivers mentioned in
Section 7.4 could be (and were) carried out. The mentioned adaptation step consisted
of copying the project’s code and definitions into a test project, where it existed as a
subproject, build result of which is included in the image running on the ARM core.

Since SEGGER J-Link suite version V7.70, direct debugging of the DSP core is sup-
ported. [21] As a result of this, debugging was done using the J-Link GDB server both
for the ARM core and the DSP. The arm-none-eabi-gdb and xt-gdb tools were used as
well respectively. It is possible to debug code that is not first loaded by the ARM core by
starting a debugging session with a desired ELF file and issuing the load GDB command.
The clock and power subsystems have to be initialised first, otherwise just attaching to the
DSP with the GDB server suffices.

xt-ocd is a GDB server providing an alternative way of debugging the DSP core, pos-
sessing the ability of debugging the CM33 core and the DSP simultaneously. This server
can use the J-Link probe as a backend, thus not implying any extraneous hardware re-
quirements for simultaneous debugging. This is very useful, for example, for debugging
synchronisation issues, IPC problems and AMP systems generally. The steps are described
in [16].

7.7 GCC toolchain porting
A GCC port (as provided by the Zephyr SDK described in Section 4.3) is required for
a complete port, as the Cadence’s toolchain containing xt-clang, however subjectively
superior, is restrictively licensed and not even considered for testing work and CI (GitHub
Actions) pipelines by the Zephyr committee.

Creating that port is, supposedly, a matter of acquiring the Zephyr SDK repository, com-
piling crosstool-ng located in it, creating an overlay directory containing files describing
the Xtensa ISA profile and its specifics for gcc, gdb, nanolib and picolib, creating a
configuration file and compiling the toolchain. For creating the overlay, steps described in
[11] were followed.

The first attempt of porting the GCC toolchain was made with the sources in the
RI2021.8 package. This did not result in a functional toolchain, as the register map which
is used by GDB was empty. (gdb/xtensa-regmap.c in the overlay package)

The second attempt was made with a newer Xtensa support package for the platform -
RI23.11. Every tool in the toolchain did build, but the compiler itself produced an output
that would crash during Zephyr boot. Furthermore, GDB was able to load an executable,
but wasn’t able to connect to the J-Link GDB server. Traffic inspection with Wire shark
1 revealed that the cause is an error response to a g packet, which serves as a load all
general registers command issued by the client. [9] The server responded with an error
code implying that it doesn’t recognise that particular packet type. Manually disabling the
logic for issuing that command in the GDB sources made the GDB client able to connect to
the GDB server, but presented the user with register values of the debug target that were
nonsensical and not in check with the target’s true state. However, run control worked. It
was later discovered during discussions about merging the work on GitHub that 2 extra pa-
rameters for GDB’s build configuration step (--enable-xtensa-use-target-regnum and
--disable-xtensa-remote-g-packet) were required to rectify both problems. Restoring

1https://www.wireshark.org/

36

https://www.wireshark.org/

GDB’s sources to the original state and applying those parameters to the crosstool-NG
overlay configuration produced a working GDB client for the target platform.

Despite the compiler producing insufficient output, it’s still able to lexically, syntac-
tically and semantically analyse input code. Consequently, together with the rest of the
toolchain, it’s still being able to function in CI workflows, where changed code is checked
for build errors.

7.8 Audio input and output
The Flexcomm peripherals configured as I2S interfaces handle audio data input and output
on the RT685. As of this time, Zephyr has a subsystem in place for I2S peripherals and
even contains a driver (i2s_mcux_flexcomm) for the RT685’s Flexcomm peripheral in the
I2S mode, but no codec configuration subsystem is implemented in Zephyr, thus leaving
the problem of configuring codecs entirely up to the application developer. This presents a
challenge as the codec integrated on the MIMXRT685-EVK board, the Wolfson WM8960,
requires configuration to make any audio playback or capture possible and does not ”just
work“ upon applying sufficient voltage to its power rail.

Zephyr demonstrates audio capture and playback using sample projects located in
samples/drivers/i2s/output and samples/drivers/i2s/echo of the Zephyr source tree.
Code on an experimental branch authored by Hake Huang implements a yet not merged
codec configuration subsystem along with a driver for the WM8960 chip and strives to
enable audio I/O on the MIMXRT595-EVK, the MIMXRT685-EVK’s ancestor, using the
same codec and the same Flexcomm peripheral, both driven from a Cortex-M33 core of
each device. However, both boards were tested with code located on this branch, resulting
in no audio signals being produced. Debugging revealed that the I2S driver transitions to
an erroneous state upon receiving an interrupt signalising an underflowed internal FIFO
queue condition while driving a Flexcomm peripheral configured for playback (audio trans-
mission).

After receiving a patch enabling playback on the i.MX RT595’s Cortex-M33 domain,
both of the samples were adapted to the i.MX RT685’s Cortex-M33 domain. This involved
the creation of overlay device trees, adding special nodes for the pin multiplexer of the
device, setting up signal sharing for the Flexcomm peripherals used in the I2S mode (in
the echo example, one is used for transmission and the other one is used for capture - both
peripherals share the MCLK signal) and modifying the sample rate - clock divider constraints
from the codec side forbid using 44.1 kHz as the sample frequency. The MCLK signal
generated by the Flexcomm I2S peripheral is the same regardless of bitstream parameters
and the final clock signal is generated by a divider in the codec, with a limited set of possible
values. [6]

The application of described modifications and fixes led to a situation where capture
and playback was fully functional, however, trying to adapt both of the examples to the
DSP domain in a similar fashion resulted in the same failure as described above. The only
major difference is that, as described in Chapter 3.3, a recommendation of using the 2nd
DMA controller (DMA1) was followed, as also suggested in [14].

Further debugging of the output sample project revealed that the likely culprit exists
between the DMA controller and the DSP. The DMA controller is used for transferring
audio data between any of the portions of available system memory and the FIFO queue
register exposed by the Flexcomm peripheral. The mentioned driver wraps the usage of
that controller together with driving the Flexcomm peripheral itself. Upon receiving the

37

error interrupt (signalising the discussed FIFO underflow) from the Flexcomm peripheral,
exposed registers of the employed DMA controller in the DSP domain were examined.
The DMA controller completed the transfer (invalidated the DMA channel configuration
register with an invalid flag) with no error flags observed as being set. It also likely raised an
interrupt as a result of completing that transfer (flags signalising a yet not acknowledged
interrupt were set), however, that interrupt was never serviced by the DSP, despite the
INPUTMUX peripheral being correctly configured, the interrupt enabled and its service
routing registered. As a likely result, no subsequent DMA transfer was programmed, leaving
the Flexcomm’s FIFO queue with no fresh data. As the Flexcomm peripheral progressed
with the job of transmitting audio data, it drained the queue without it being replenished,
subsequently causing the FIFO underflow condition.

The discussed condition was caused by the driver not enabling the peripheral’s inter-
rupt at all - the call responsible for enabling the configured interrupt in DT was omitted.
Amending the driver initialisation routine enabled the servicing of IRQs generated by the
DMA peripheral and, ultimately, enabled audio capture and playback.

7.9 Basic IPC
As was discussed in Chapter 3.4, the i.MX RT685 has the MU and SEMA42 peripherals
assisting with inter-core communication.

The effort of enabling IPC began with building a testing application implementing a
simple situation - the CM33 core posts a value over a chosen MU channel, the DSP receives
it and prints it to the debug console. The mbox_nxp_imx_mu.c driver implementing the
Zephyr mbox driver API was used for this. The test application was written and necessary
changes in the SoC’s and board’s DT were made, as this driver wasn’t yet instantiated
in those trees. The first attempt to run the application resulted in the target’s CM33
core deeply locking up - the J-Link GDB server reported the inability to stop program
execution, run control became impossible and all registers were read with the hexadecimal
value 0xDEADBEEF. Investigation revealed that the driver did not clear the MU’s reset signal
emitted by the SYSCON peripheral in its initialisation routine. Upon adding adding code
for clearing it, the application became functional as intended.

38

7.10 Memory layout
The linker file used for the target platform is parameterised from nodes in the device tree.
This allows the application developer to change locations of defined memory segments easily
without modifying the linker file or any of the files specific to the SoC or board layer.

At first, the ITCM and DTCM memory blocks directly attached to the DSP were
used for storing its software. This worked right away in all yet executed scenarios (direct
upload by debugger, boot from the CM33 core and boot from the CM33 core starting
with a debugger attached), but these memories don’t have enough capacity to hold more
sophisticated applications, such as the ultimate goal of this thesis - an instance of Sound
Open Firmware.

Ultimately, text and data segments were moved to the microcontroller’s main SRAM, a
512 KiB block was reserved and divided into 256 KiB for code and data each by modifying
the DT. The DSP expects a startup code (reset handler) in the ITCM, so this became the
only item occupying it. This worked when directly loading the segments using the GDB
load command and when the CM33 core booted from the ”cold“ state, but the DSP ended
up attempting executing instructions at nonsensical locations when the CM33 core, with
the function of booting the DSP, was started from a debugging session - the microcontroller
was reset and the program loaded with the load command. This situation was remedied
by resetting the microcontroller again after issuing the said command and writing the
debugged image to the flash. The considered hypothesis is that the microcontroller has a
builtin ROM that ultimately performs hardware initialisation either by itself or by executing
DCD commands located in the stored image. Hardware that is uninitialised by bypassing
the ROM and directly setting the CM33 core’s PC register to the image entry point, which
the J-Link GDB server does, can be the cause of the discussed illegal states.

39

Chapter 8

Porting the Sound Open Firmware
layer

8.1 First steps
Porting Sound Open Firmware began with properly instantiating the platform layer for
the target (src/platform/imxrt685), which provides a CMake file including all necessary
platform-specific files, list of peripherals to be used directly by SOF and other code and
definitions needed to abstract SOF from a given platform. Definitions for a HiFi4 DSP core
on the i.MX 8 series of application SoCs (src/platform/imx8) were copied and modified
to, for this phase, not include any devices in the device lists. After the compilation script
(scripts/xtensa-build-zephyr.py) was modified to fit the build environment and the
new platform, it was discovered that all of all of the memory segments were overflowing once
the build system invoked the xt-ld linker. The application required about 8 MiB of text and
data memory in total because of heap sizes, on which audio buffers are allocated. This was
sufficiently reduced (src/platform/imxrt685/include/platform/lib/memory.h) and all
optional features of SOF (components, algorithms, Zephyr facilities, ...) were excluded
through the Kconfig mechanism. The resulting image almost fills up the entirety of the
HiFi 4 DSP’s ITCM, despite it being an application without any useful functions.

The next step involved constructing a minimal example of making SOF internals work
- a basic pipeline with a null source, volume control component and a null sink. While
this example does not interact with any real hardware and does not implement any user-
perceivable function, it’s a testing ground that doesn’t involve any drivers for external
peripherals and potential problems while driving them. Code that instantiated a static
pipeline by directly invoking RPC handlers was discovered, studied and backported to the
working copy. A single pipeline with a tone source, volume control and a final buffer was
hard coded - SOF does not have a null (dummy) sink component. Debugging of that
situation revealed a mismatch of sizes of IPC messages - a check of an IPC message size
field was present and that field was not filled out by the macros in the committed code.

After SOF was instantiated without any optional facilities, those features were gradually
reenabled. Of course, the capacity of the DSP’s ITCM was hit, so the previously constructed
target device tree was reconfigured to use a portion of the main system SRAM both for
code and data. The ITCM is then used only for the startup code. Those features include
DMA support, timer domain, host components and other components needed to construct
a basic pipeline. Zephyr wrapper drivers adhering to the SOF driver model were used, as

40

they enable the use of already existing Zephyr drivers in SOF without the need to adapt
them in any way. The result was a pipeline that produced a single period of a 32-bit
little-endian 48 kHz sine wave into a buffer. In addition, the use of Zephyr-native drivers
(CONFIG_ZEPHYR_NATIVE_DRIVERS) was enabled, as it’s advantageous to utilise already
implemented Zephyr drivers for peripherals in the targeted platform.

8.2 IPC
Making IPC work in the SOF port required developing a tailored IPC transport layer,
whose function is to transport messages between the two processing cores. This layer uses
the mbox Zephyr API (implemented by the mbox_nxp_imx_mu driver) and shared memory.
It’s synchronous (a message can be transferred in the same direction only after it has been
acknowledged by the recipient) and full-duplex (2 of the 4 MU channels are utilised - one
for transmitting and the other one for receiving messages from one core’s point of view).

When a message is to be sent, the message is copied into a memory location reserved as
shared memory for IPC and its address is posted into the mailbox. The mailbox then rises
an interrupt request aimed at the recipient core, which proceeds with servicing that request
and, consequently, handling that message. Once the message is handled, the mailbox is
then triggered in the signalling mode (a plain IPI is raised) towards the sender, signifying
that the message was handled and concluding the transaction.

On top of this transport layer, a simple host layer was built for the purposes of interfacing
with SOF from the CM33 domain. This layer just provides means to easily construct and
send messages to the DSP core. It also ensures that message send calls are synchronous
(blocking), as it blocks execution until sent messages are acknowledged.

This layer was tested by transmitting test messages from both sides. Upon the SOF start
procedure finishing, a SOF_IPC_FW_READY message is sent to the CM33 domain. Reception
of this message is waited upon before sending any more messages to the DSP. The CM33
host can send a SOF_IPC_GLB_TEST | SOF_IPC_TEST_IPC_FLOOD message, which will be
acted upon by just acknowledging it in the fashion described above.

At first, it was determined that no address translation was necessary, as [18] says, that
the main SRAM is accessible from the DSP at the same address at which it’s mapped to
the CM33 core, omitting memory cache. The data written from the CM33 core, however,
wasn’t visible upon delivering the address through the MU and reading it. The mechanism
started to transmit messages successfully after translating addresses, counter-intuitively,
from the CM33 core to the DSP with cached accesses. This was found out experimentally
and the subjectively probable cause is inaccurate documentation. If this interpretation is
correct, this is the second manifestation of NXP’s documentation shortcomings.

During implementation and debugging efforts concerning this section, the debugging
setup employing the J-Link GDB server was no longer sufficient, as it can’t debug the two
cores, the CM33 core and the DSP, simultaneously. Instead of using that, the CM33 core
was debugged with the J-Link GDB server as usual, but the DSP was debugged with the
xt-ocd server, as was briefly described in Section 7.6. It became the only option to examine
the state and behaviour of both domains that became sequentially bound to each other by
IPC, as the act of detaching from the CM33 core at a desired point and attaching to the
DSP caused the DSP to fetch illegal instructions upon performing instruction steps, driving
the DSP domain into an illegal state and ultimately crashing it.

41

8.3 Audio data exchange between domains
The attempt of enabling audio data exchange started with creating the host component
in the pipeline, which function is to, depending on its configuration, provide audio data
to or from the host domain. As the Zephyr-native SOF drivers were enabled, a Zephyr
variant of the host component (host-zephyr.c) is used. This variant uses the dma API for
facilitating data transfers between domains. The host buffer description is provided as the
SOF_IPC_GLB_STREAM | SOF_IPC_STREAM_PCM_PARAMS IPC message, body of which is the
sof_ipc_pcm_params struct. All components classified as host components, though, are
configured using this message type.

As this component was inserted into the pipeline, it logged that no DMA controllers
were available. This was fixed by conditionally adding a new item populated from the
device tree to a DMA controller list located in SOF platform sources specific to Zephyr. As
the component was written with systems utilising virtual memory (page tables) in mind,
a new function that transforms the host buffer description into an array of scatter-gather
DMA transfer descriptors was written (ipc_process_flat_host_buffer). Because the
i.MX RT685 is a microcontroller with a flat memory model with no concept of virtual
memory and paging, this function generates just a single descriptor, that contains the host
buffer in its entirety.

In addition, the dma_mcux_lpc DMA driver, which is relevant for this platform, had
to be modified. As the device’s memory is flat, there’s no concept of host and local
memory, but SOF operates with those concepts. The support for HOST_TO_MEMORY and
MEMORY_TO_HOST DMA channel directions (dma_channel_direction enumeration type)
was added as an alias to the MEMORY_TO_MEMORY direction. Also because the driver’s in-
ternal data structure (dma_mcux_lpc_dma_data struct) did not contain a valid header for
this structure (dma_context struct), the functions for requesting and releasing channels
provided by Zephyr (dma_request_channel, dma_release_channel) were failing, so that
header was added and properly initialised.

A host buffer was provided in the demonstration application and the function was
tested with a capture pipeline consisting of the tone component and the host component
in order, with necessary buffers also in place. The host component was now invoking the
dma API and the selected driver (dma_mcux_lpc in this case), but no useful DMA activity
was observed. As the pipeline was traversed, few of the first bytes in the host buffer were
overwritten with zero bytes. Other traversals failed to trigger any other DMA transfers,
either if using one-shot transfers (host_copy_one_shot) or transfers with the descriptor
array being continually modified (host_copy_normal). At first, the data memory cache
was suspected, but was ruled out by using addresses that map to the main SRAM without
a cache. The effort wasn’t continued and was abandoned here.

42

8.4 Audio input and output
As was discussed in Section 4.6, Zephyr offers 2 APIs for audio interfaces - the i2s and dai
APIs. The latter one, dai, is the one consumed by a Zephyr variant of the dai component
(dai-zephyr.c). Because of this, the driver responsible for driving Flexcomm peripherals
in the I2S mode (i2s_mcux_flexcomm.c) can’t be used directly. As no implementation
work was done on this matter, following ways are considered for establishing audio inputs
and outputs to and from SOF pipelines:

• bridge the two APIs with an adaptor driver - this would impose extra latency and
processor time requirements, as the audio data would have to be copied one more time,
in addition the dai API doesn’t offer a way to keep and transmit information about
the positions in buffers, ring buffer overruns and underruns could cause irregularities
in audio captures or transmissions (missing or overwritten data, repeated portions)

• write and test a new driver for the Flexcomm peripheral in the I2S mode conforming
to the dai API - this could raise concerns about code duplication and, because of its
sheer scale, is far from trivial

• write and test a new SOF component that enables audio input and output over
peripherals driven by drivers conforming to the i2s API - code duplication would
also be an issue and the act of instantiating such a component would deviate from
the established set of IPC messages - such a component would have to be referenced
by an UUID, as extending the set of default component types would present a greater
deviation from the set

• extend the existing dai-zephyr.c component to enable the use of i2s drivers - this
is subjectively considered as the path of least resistance, while it would also present
a deviation from the already established set of IPC messages, the deviation could be
just an addition of an extraneous member of the sof_ipc_dai_type struct, which,
observing by its already existing members, is extended regularly by adding support
for new platforms

43

Chapter 9

Test application

9.1 Overview
As part of efforts described in Chapter 8, a test application (host_rt685) was created, both
as an ultimate goal of this thesis and as a development vehicle for SOF. This application
uses the i.MX RT685 as an AMP system, where SOF runs in the DSP domain and is
controlled over an implemented IPC channel described in section 8.2 and a minimal host
layer. It includes SOF as a build dependency in the same fashion as described in Section 7.2
and uses the nxp_rtxxx_adsp_ctl driver for bootstrapping the DSP described in Section
7.3.

This host layer consists of an IPC transport and a set of routines responsible for format-
ting messages. In essence, the IPC transport is a reflection of the IPC layer implemented
as part of the SOF port. It’s responsible for transferring messages and acknowledgements
between domains and ensures that the communication is synchronous from the host side
- it uses a Zephyr semaphore to block execution until a message acknowledge condition is
observed. The formatting routines provide a programmer-friendly way to construct IPC
messages and do ensure, within reason, that the constructed IPC messages are valid. As
described in Section 8.2, it uses the device’s MU peripheral to signal IPIs and 32-bit integers
between the two domains - such integers are used as message addresses. Because of the
difference between cached and non-cached accesses, it takes care of address translation as
well.

The test application then uses this host layer as a way to instantiate a pipeline containing
a tone component with a host component connected to its sink side with a buffer. It is then
possible to read out that buffer using an attached debugger and observe a generated sine
wave.

44

9.2 Memory usage
Memory usage of the host_rt685 application, both static and runtime, was studied. Table
9.1 shows the usage of different segments that is statically known for the DSP domain,
Table 9.2 shows the same for the whole image and Table 9.3 shows the runtime heap usage
in the DSP domain. The total heap capacity is statically allocated as part of the data
segment located in the main SRAM. Debug build of the application was used.

Init code (ITCM) Data (SRAM) Text (SRAM)
273 bytes ∼ 210 KiB ∼ 140 KiB

Table 9.1: Static memory usage for the DSP domain

Flash SRAM
∼ 386 KiB ∼ 8 KiB

Table 9.2: Static memory usage of the whole application

Idle (IPC initialised) Pipeline created Heap capacity
1644 bytes 6288 bytes 16 KiB

Table 9.3: Runtime heap usage in the DSP domain

The size and location of the memory segments used by both domains is statically deter-
mined by the device tree of each domain, so its modification should be performed in order
to change how the device’s main SRAM is split between the domains. SOF’s heap size can
be modified in src/platform/imxrt685/include/platform/lib/memory.h.

45

Chapter 10

Conclusion

The Zephyr RTOS was successfully ported to the target platform and the function of all
of its integral facilities (context switching, synchronisation, memory management, ...) was
tested, along with drivers for basic peripherals (UART, GPIO) and peripherals responsible
for audio playback and capture (I3C, Flexcomm in the I2S mode, DMA). Facilities for using
the i.MX RT685 microcontroller as an AMP system (control driver for the DSP, CMake
definitions for project linking) were created. Porting of the GCC toolchain to the target
was also attempted, albeit with only partial success.

The SOF layer has been ported as well and its core facilities (pipeline creation, man-
agement, execution, timing, ...) proved functional. An IPC channel, used for exchanging
control messages between the CM33 domain and the DSP, was implemented along with a
simple host layer and is able to control the SOF instance as far as tasks revolving around
pipeline creation and run control go. A test application (appendix C), was written with
the use of this layer.

The test application is able to generate a single period of a sine wave into a pipeline
buffer. This product had to be adjusted from the original idea of an audio player, that
processes audio data in the DSP domain with SOF, which was initially considered together
with this thesis’ supervisor. The obstacles to the said original idea are the inability to
exchange audio data with the host (Section 8.3) and the difference of audio APIs used in
various parts of the resulting application (Section 8.4).

This deviation was caused by underestimating the practical difficulty of the assignment
- Zephyr itself and the associated components are under active development. As support
for NXP devices seems to be primarily focused on ARM cores and the support of HiFi
4 DSP cores was attempted only on i.MX application SoCs so far in conjunction with
the SOF driver model, the effort of porting Zephyr by itself and its drivers to the target
platform created edge cases that were, subjectively, far from trivial to investigate and solve.
The fact that the documentation for the i.MX RT685 is lacking in discussed respects also
contributed to the said deviation. Consequently, less time remained for matters concerning
SOF itself. Its documentation is also lacking - the work became dependent on colloquially
communicated knowledge from peers and reverse engineering efforts.

The completion of the SOF port is the natural direction in which this thesis can be
continued. One could also develop applications with components not used in this thesis or
try to implement their own with the accelerating facilities of the DSP core, such as yet not
integrated audio codecs. As of the time of writing this thesis, all the work performed here
is in the process of upstreaming - merging with originating code repositories. It will remain
open source.

46

47

Bibliography

[1] ALSA project. ALSA topology online. 2024. Available at:
https://www.alsa-project.org/wiki/ALSA_topology. [cit. 3 May 2024].

[2] Arm Ltd. Arm Cortex-M33 Devices Generic User Guide online. Available at:
https://developer.arm.com/documentation/100235/latest/. [cit. 25 Jan 2024].

[3] Cadence Design Systems Inc. HiFi 4 DSP User’s Guide. 2021. Proprietary -
available at author’s discretion.

[4] Cadence Design Systems Inc. Xtensa Instruction Set Architecture (ISA)
Summary online. 2022. Available at: https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/tools/ip/tensilica-ip/isa-summary.pdf.

[5] Cirrus Logic Inc. CS42448 Product Data Sheet online. 2017. Available at:
https://statics.cirrus.com/pubs/proDatasheet/CS42448_F5.pdf. [cit. 18 Jan 2024].

[6] Cirrus Logic Inc. WM8904 Product Datasheet online. 2018. Available at:
https://statics.cirrus.com/pubs/proDatasheet/WM8904_Rev4.1.pdf. [cit. 22 Apr 2024].

[7] Espressif Systems. ESP32-S3 Series Datasheet online. 2023. Available at:
https://www.espressif.com/sites/default/files/documentation/esp32-
s3_datasheet_en.pdf. [cit. 20 Nov 2023].

[8] Fidan’ın, F. Garmin Fenix 7X Solar Teardown (Non Destructive). F Tipi Blog
online, 2022. Available at:
http://www.f-blog.info/garmin-fenix-7x-solar-teardown-non-destructive/. [cit. 18
Jan 2024].

[9] GDB developers. GDB: The GNU Project Debugger online. Available at:
https://sourceware.org/gdb/current/. [cit. 17 Jan 2024].

[10] Leibson, S. Designing SOCs with Configured Cores: Unleashing the Tensilica Xtensa
and Diamond Cores. Morgan Kaufmann Publishers, 2006. Electronics & Electrical.
ISBN 9780123724984. Available at: https://books.google.cz/books?id=h79BlQEACAAJ.

[11] Linux/Xtensa Wiki. Toolchain Overlay File online. 2017. Available at:
https://wiki.linux-xtensa.org/index.php?title=Toolchain_Overlay_File. [cit. 20
Nov 2023].

[12] NXP Semiconductors B.V. i.MX RT600 Audio Evaluation Kit online. Available
at:
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-

48

https://www.alsa-project.org/wiki/ALSA_topology
https://developer.arm.com/documentation/100235/latest/
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ip/tensilica-ip/isa-summary.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/ip/tensilica-ip/isa-summary.pdf
https://statics.cirrus.com/pubs/proDatasheet/CS42448_F5.pdf
https://statics.cirrus.com/pubs/proDatasheet/WM8904_Rev4.1.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
http://www.f-blog.info/garmin-fenix-7x-solar-teardown-non-destructive/
https://sourceware.org/gdb/current/
https://books.google.cz/books?id=h79BlQEACAAJ
https://wiki.linux-xtensa.org/index.php?title=Toolchain_Overlay_File
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-audio-evaluation-kit:MIMXRT685-AUD-EVK
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-audio-evaluation-kit:MIMXRT685-AUD-EVK
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-audio-evaluation-kit:MIMXRT685-AUD-EVK

and-development-boards/i-mx-rt600-audio-evaluation-kit:MIMXRT685-AUD-EVK. [cit.
18 Jan 2024].

[13] NXP Semiconductors B.V. i.MX RT600 Evaluation Kit online. Available at:
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-
and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK. [cit. 18 Jan
2024].

[14] NXP Semiconductors B.V. AN12749: I2S(Inter-IC Sound Bus) Transmit and
Receive on RT600 HiFi4 online. 2020. Available at:
https://www.nxp.com/docs/en/application-note/AN12749.pdf. [cit. 18 Mar 2024].

[15] NXP Semiconductors B.V. I.MX RT500 and i.MX RT600 Crossover MCUs -
Fact Sheet online. 2020. Available at:
https://www.nxp.com/docs/en/fact-sheet/IMXRT500RT600FS.pdf. [cit. 26 Jan 2024].

[16] NXP Semiconductors B.V. Getting started with Xplorer for EVK-MIMXRT595
online. 2021. Available at:
https://www.nxp.com/docs/en/supporting-information/GSXEVKMIMXRT595.pdf. [cit. 20
Nov 2023].

[17] NXP Semiconductors B.V. NXP i.MX RT MCU Technology Powers Our
Smartwatch Future. Smarter World Blog online, 2022. Available at:
https://www.nxp.com/company/blog/nxp-i-mx-rt-mcu-technology-powers-our-
smartwatch-future:BL-NXP-IMX-RT-MCU-TECHNOLOGY. [cit. 26 Jan 2024].

[18] NXP Semiconductors B.V. UM11147 - RT6xx User manual online. Sep 2022.
Proprietary - available at author’s discretion.

[19] NXP Semiconductors B.V. UM11732 - I2S bus specification online. 2022.
Available at: https://www.nxp.com/docs/en/user-manual/UM11732.pdf. [cit. 8 Apr
2024].

[20] NXP Semiconductors B.V. i.MX RT500 Low-Power Crossover MCU Reference
Manual. Jan 2023. [cit. 18 Jan 2024]. Proprietary - available at author’s discretion.

[21] SEGGER Microcontroller GmbH. Release notes for the J-Link / Flasher
Software and Documentation Package online. Available at:
https://www.segger.com/downloads/jlink/ReleaseNotes_JLink.html. [cit. 19 Nov
2023].

[22] Zephyr Project members and contributors. Zephyr Project Documentation
online. Available at: https://docs.zephyrproject.org/latest/index.html. [cit. 5 May
2024].

49

https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-audio-evaluation-kit:MIMXRT685-AUD-EVK
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-audio-evaluation-kit:MIMXRT685-AUD-EVK
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-audio-evaluation-kit:MIMXRT685-AUD-EVK
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt600-evaluation-kit:MIMXRT685-EVK
https://www.nxp.com/docs/en/application-note/AN12749.pdf
https://www.nxp.com/docs/en/fact-sheet/IMXRT500RT600FS.pdf
https://www.nxp.com/docs/en/supporting-information/GSXEVKMIMXRT595.pdf
https://www.nxp.com/company/blog/nxp-i-mx-rt-mcu-technology-powers-our-smartwatch-future:BL-NXP-IMX-RT-MCU-TECHNOLOGY
https://www.nxp.com/company/blog/nxp-i-mx-rt-mcu-technology-powers-our-smartwatch-future:BL-NXP-IMX-RT-MCU-TECHNOLOGY
https://www.nxp.com/docs/en/user-manual/UM11732.pdf
https://www.segger.com/downloads/jlink/ReleaseNotes_JLink.html
https://docs.zephyrproject.org/latest/index.html

Appendix A

Optical media contents

The included optical disc bears the following contents:

/
thesis/

xstani07-bthesis.pdfThis thesis text rendered as a PDF file.
xstani07-bthesis-src.zip LATEX sources of this thesis.

code/
zephyr.7z Archived West workspace Zephyr RTOS with

dependencies. (appendix B)
zephyr/Ported Zephyr RTOS. (chapter 7)
sdk-ng/Zephyr SDK with the attempted toolchain

port. (section 7.7)
apps

test_rt685_amp_blinkAMP test application - ”Hello World“ with
a blinking LED and button control with a
GPIO interrupt.

test_rt685_amp_mboxAMP test application demonstrating the use
of the MU peripheral.

test_rt685_amp_output ...Demonstrates audio playback on the DSP do-
main.

test_rt685_amp_echoDemonstrates audio playback and capture.
modules/

hal/
nxp/Modified NXP HAL.
xtensa/Modified Xtensa HAL.

sof.7zArchived West workspace containing SOF
with dependencies. (appendix C)

sof/SOF itself. (chapter 8)
apps/

host_rt685Test application with the host layer.
(chapter 9)

50

Appendix B

The Zephyr RTOS port

The Zephyr RTOS port is recorded on the included optical disc as a compressed West
workspace with Git repositories checked out at necessary revisions - code/zephyr.zip. The
zephyr (/zephyr), hal_nxp (/modules/hal/nxp/), hal_xtensa (/modules/hal/xtensa)
and sdk-ng (/sdk-ng) repositories are of interest. The repositories contain all of the done
changes up to the point of making audio playback work (section 7.8), retargeting program
segments (section 7.10) and trying to adapt the GCC toolchain. The different changes are
separated into commits to track progress. Revisions relevant to this thesis are:

• zephyr: vitstanicek-nxp/rt685support-i2s

• hal_nxp: vitstanicek-nxp/rt685support-provisional

• hal_xtensa: 4f3293cbb79b9d210c0fe0a4b238417043c5438b (work upstreamed)

• sdk_ng: vitstanicek-nxp/rt685support

The code is also available online on personal repositories hosted on GitHub, however,
as further development of all codebases is expected, it may change outside the scope of this
thesis as it was turned in and published. 1

Zephyr prerequisites (Zephyr SDK, Python, West, CMake, Ninja, device tree compiler,
...) need to be installed on the target machine to build and debug this code, as well as
the SEGGER J-Link suite and the Cadence Xtensa toolchain with a support package for
the i.MX RT685’s HiFi 4 DSP instance. This thesis worked with the RI-2021.8-win32
toolchain and the nxp_rt600_RI2021_8_newlib core, but it’s likely that newer versions
of both will also provide a satisfactory result. Using a GNU/Linux-based environment is
highly recommended, but it’s possible to build this instance on Windows under the MSYS2
environment. Using WSL2 on Windows also should be possible, but wasn’t tested.

1https://github.com/VitekST/zephyr, https://github.com/VitekST/hal_nxp, https://github.com/
VitekST/sdk_ng

51

https://github.com/VitekST/zephyr
https://github.com/VitekST/hal_nxp
https://github.com/VitekST/sdk_ng
https://github.com/VitekST/sdk_ng

To build applications directly for the DSP domain, specify these environment variables
and use the west build . -b nxp_adsp_rt685 command:

• ZEPHYR_TOOLCHAIN_VARIANT=xt-clang

• XTENSA_CORE=<xtensa_core_name>

• XTENSA_TOOLCHAIN_PATH=<path_to_XtDevTools/install/tools/>

• TOOLCHAIN_VER=<toolchain_version>

These (<project_dir>/build/zephyr/zephyr.elf) then can be launched using the
xt-gdb debugger from the Xtensa toolchain and either the J-Link GDB server or the
xt-ocd server. However, the DSP domain needs to be initialised first by the CM33 core
(section 7.3), so it’s possible to run and debug those examples only with code utilising
the nxp_rtxxx_adsp_ctl driver in place, preferably not sequentially bound. Complete
platform reset is desirable before the CM33 core booting the DSP and launching them.
These example projects were tested this way:

• samples/hello_world

• samples/philosophers

• samples/basic/blinky

The /apps directory of the zephyr.zip archive also contains the test_rt685_hybrid
application, which provides a minimal example of an AMP system - an example where an
image for the DSP domain is built as an dependency for the CM33 domain and the CM33
core boots the DSP. To build and test, omit the ZEPHYR_TOOLCHAIN_VARIANT environment
variable from the list above and build like described.

52

Appendix C

Sound Open Firmware port

Likewise, a compressed West workspace containing everything related to Sound Open
Firmware is included on the disc - as code/sof.zip. Repositories which are of interest
include the repositories discussed in appendix B and the sof repository (/sof) at the
branch vitstanicek-nxp/rt685support.

Standalone SOF image can be built with the sof/scripts/xtensa-build-zephyr.py
script. The toolchain version and core name are hardcoded in it, it just needs to be invoked
with the Xtensa toolchain root path set as an environment variable and with the target
name passed as an argument. Use this command to do so:

XTENSA_TOOLS_ROOT=<path_to_XtDevTools> python
sof/scripts/xtensa-build-zephyr.py -p imxrt685

The apps/host_rt685/ directory contains an AMP project that targets the CM33
domain and builds the SOF as a dependency for booting the DSP with it. It also contains
the host IPC layer for controlling SOF from the CM33 domain, which it demonstrates with
a simple pipeline, which is then briefly triggered and stopped. Build it in the same fashion
as the test_rt685_hybrid example described in appendix B.

53

	Introduction
	Commonalities of microcontrollers
	Definition and brief history
	Common interfaces
	Programmer's model
	DMA

	The i.MX RT685 microcontroller
	Overview
	Memory architecture, interrupt handling
	DMA
	Inter-core communication
	Evaluation boards
	Possible use cases

	The Zephyr RTOS for Embedded Domain
	Overview
	Configuration
	Development toolset
	Driver model
	Device trees
	Audio driver APIs
	Comparison with other systems

	The HiFi 4 DSP core
	Overview
	Instruction set
	ABI
	Available tools

	The Sound Open Firmware layer
	Overview
	Programmer's model
	Architecture
	Comparison with similar layers

	Porting the Zephyr RTOS
	First steps
	Project structure
	DSP code loading and starting
	Enabling basic drivers
	Interrupt handling
	Testing and debugging
	GCC toolchain porting
	Audio input and output
	Basic IPC
	Memory layout

	Porting the Sound Open Firmware layer
	First steps
	IPC
	Audio data exchange between domains
	Audio input and output

	Test application
	Overview
	Memory usage

	Conclusion
	Bibliography
	Optical media contents
	The Zephyr RTOS port
	Sound Open Firmware port

