
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y

DEPARTMENT OF INFORMATION S Y S T E M S

NATIVE XML INTERFACE
FOR A RELATIONAL DATABASE

DIPLOMOVÁ PRAČE
MASTER'S THESIS

AUTOR PRÁCE Be. KAREL PIWKO
AUTHOR

BRNO 2010

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION T E C H N O L O G Y

DEPARTMENT OF INFORMATION S Y S T E M S

NATIVNÍ XML ROZHRANÍ PRO RELAČNÍ DATABÁZI
NATIVE XML INTERFACE FOR A RELATIONAL DATABASE

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE Bc. KAREL PIWKO
AUTHOR

VEDOUCÍ PRÁCE Ing. PETR CHMELAŘ
SUPERVISOR

BRNO 2010

Abstrakt
X M L je dominatním jazykem pro výměnu dat. Vzhledem k velkém množství dostupných
X M L dokumentů a jejich vzájemnému přenosu, vzniká protřeba jejich ukládání a dota­
zování v nich. Jelikož většina firem stále používá systémy založené na relačních databázích
pro ukládání dat, a často je nutné kombinovat nově získané X M L data s původním daty
uloženými v relační databázi, je vhodné se zabývat uložením X M L dokumentů v relačních
databázích.
V této práci jsme se zaměřili na strukturované a semi-strukturované X M L dokumenty, pro­
tože jsou nejčastěji používanými formáty pro výměnu dat a mohou být snadno validovány
pomocí X M L schémat. Předmětem teoretického rozboru je modifikovaný Hybrid algorit­
mus pro rozdělení dokumentu do relací na základě X S D schémat a dále umožňujeme zavést
redundanci pro urychlení dotazování. Naším cílem je vytvořit systém podporující nejnovější
standardy, který zároveň poskytne větší výkon a vertikální škálovatelnost než nativní X M L
databáze.

Abstract
X M L has emerged as leading document format for exchanging data. Because of vast
amounts of X M L documents available and transfered, there is a strong need to store and
query information in these documents. However, the most companies are still using a
R D B M S for their data warehouses and it is often necessary to combine legacy data with
the ones in X M L format, so it might be useful to consider storage possibilities for X M L
documents in a relation database.
In this thesis we focused on structured and semi-structured data-based X M L documents,
because they are the most common when exchanging data and they can be easily validated
against an X M L schema. We propose a slightly modified Hybrid algorithm to shred doc­
uments into relations using an X S D scheme and we allowed redundancy to make queries
faster. Our goal was not to provide an academic solution, but fully working system sup­
porting latest standards, which will beat up native X M L databases both by performance
and vertical scalability.

Klíčová slova
X M L , perzistence X M L v RSŘBD, Hybrid algoritmus, X S D mapování, X M L : D B A P I ,
XPath LL(*) parser, výkonnost dotazování, redundance dat.

Keywords
X M L , X M L persistence in R D B M S , Hybrid algorithm, X S D mapping, X M L : D B A P I ,
XPath LL(*) parser, query performance, data redundancy.

Citace
Karel Piwko: Native X M L Interface for a Relational Database, diplomová práce, Brno, F IT
V U T v Brně, 2010

Native X M L Interface for a Relational Database

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana
Ing. Petra Chmelaře.
Uvedl jsem všechny literální prameny a publikace, ze kterých jsem čerpal.

Karel Piwko
May 26, 2010

© Karel Piwko, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakulté infor­
mačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 A im of the work 3
1.2 Organization of the work 4

2 X M L , X M L schemas and query languages 5
2.1 X M L language and document types 5

2.1.1 Document-centric X M L type 6
2.1.2 Data-centric and semi-structured X M L type 6

2.2 X M L schemas 6
2.3 X M L query languages 8

2.3.1 XPath 2.0 language 9
2.3.2 Complex XPath expressions 13
2.3.3 XQuery 1.0 language 14

2.4 Summary 15

3 Persistence of X M L schemas and X M L documents 16
3.1 Storage means for X M L documents 16
3.2 Storage of X M L data in relational databases 18

3.2.1 Generic methods 18
3.2.2 User-defined and user-driven methods 19
3.2.3 Schema-driven methods 19

3.3 Schema driven mapping 19
3.3.1 The Hybrid method 21

3.4 Shredding X M L document into relations 22
3.5 Retrieving and modifying X M L data 22
3.6 Summary 23

4 Implementing N e X D 24
4.1 Selecting the build tool 24
4.2 Implementing the Hybrid method 26

4.2.1 Algorithm life-cycle 28
4.3 XPa th processing 29

4.3.1 NeXD metadata 29
4.3.2 Parsing XPath language expression 30
4.3.3 Binding contexts 31
4.3.4 Retrieving X D M instances from database 31

4.4 Selecting the underlying database 33
4.5 Selecting the supported APIs 35

1

4.5.1 X M L i D B A P I 35
4.5.2 XQuery A P I for Java 35
4.5.3 Relational access 36

4.6 NeXD code overview 36

5 Evaluation of performance 38
5.1 Testing framework 39
5.2 Comparing performance of NeXD with other databases 39

5.2.1 Running XPath queries 40
5.3 Summary 40

6 Conclusion 41
6.1 Summary 41

6.2 Promoting NeXD as an open source project 42

References 43

List of used abbreviations 47

List of Appendices 49

A Configuration used for testing 50
A . l Hardware 50

A.2 Software 50

B X M L schemas for the Cassini document 51

C XPath 2.0 and XQuery 1.0 grammar snippets 55
C . l XPath 2.0 grammar snippets 55

C.2 XQuery 1.0 grammar snippets 55

D N e X D command line interface 57

E Relational database schema of N e X D 58

2

Chapter 1

Introduction

The X M L [11] language has emerged as the most commonly used language for data de­
scription and information exchange nowadays. It virtually replaced all proprietary solutions
used before. Obviously, these amounts of data must be stored and users would like to query
them.

Data is usually stored in a database. Although, there are various ways how to define a
database, we consider database being a storage and retrieval engine and we prefer properties
bounded to traditional relation databases over high availability and horizontal scaling, as
some of databases, for instance Apache HBase [3] or Bigtable [42], which are not object
relational databases and which follow NoSQL movement.

We are convinced that relational databases are still the best solution for managing
middle size data (up to 10 GiB) within a company, although the one-solution-fits-all might
not be ideal in general [54]. However, there are more comfortable ways to work with
data than using multiple SQL commands glued together with an arbitrary middleware,
although even in this area things are getting easier for developers, such as new Java JSR-
299 specification which will be a part of Java E E 6.

By all means, using R E S T (REprestational State Transfer) interface and XQuery [30]
language, possibly combined even with XForms to get X R X [33], is much more comfortable
to an average user[50]. However, we must often integrate legacy data with these relatively
newly obtained X M L documents and provide unified access to both of them. Naturally,
storing the X M L documents in a relational database seems the most appropriate solution.

1.1 A i m of the work

This work shortly describes X M L , X M L schemas and X M L query languages, in summary
an environment established around X M L . Since we would like to persist its state, the means
of storing and querying are described as well. The scientific research was led in late 90s and
in the beginning of this century, such as documented in [53, 38, 39, 49, 35]. Therefore, we
have chosen and modified already existing methods, with respect to our needs, that is the
generality of the solution and its performance. A part of this work was developed as term
project, namely skeletons for chapters 2, 3 and partial decisions of implementation details
described in 4.

Storing X M L documents in a relation database has a lot of advantages, such as men­
tioned in chapter 3. However, the reader of this work should get deeper knowledge of its
disadvantages as well, that covers possible weak points of the architecture with respect

3

to his application domain. We are convinced that the description of implementation in
chapter 4 will show mapping between two areas (the X M L world emerging after 1996 with
its hierarchy structure on the one side and the relational one, based on solid mathematical
theory by E . F . Codd in 1970, on the other one).

Moreover, this work was not considered as a master thesis, but even as awesome op­
portunity to become a part of the open source community, represent the results to other
developers and coordinate the work within tight time schedule. Because the work was al­
ready promoted as an open source project called NeXD1, it is an ideal candidate to be
developed even after the master's thesis is finished, improving its functionality either by
author itself or by other developers from recruited from the community and the academic
sphere.

1.2 Organization of the work

This paper is organized as follows. Chapter 2 describes in further details the X M L lan­
guage, its validation using X M L schemas and languages used for querying X M L documents.
Section 2.3.1 represent the core for readers interested in query language used in the im­
plementation. The following chapter (chapter 3) describes possible means of storing X M L
documents with focus on relational databases, detailing the method called Hybrid.

The largest chapter of the document, chapter 4, contains both description details and
limitations of our implementation as well as fine grained explication of the code base with
respect to the query language. The results are evaluated in chapter 5, which describes
testing framework and comparison of performance to other established X M L database.
The conclusion is presented in the last chapter (chapter 6).

xSee project page and source code at http:/ /gitorious.org/nexd

4

http://gitorious.org/nexd

Chapter 2

X M L , X M L schemas and query
languages

The X M L language was created in 1996, as a formal simplification and application of the
S G M L language [11]. Its aims are to be flexible, readable and independent of both character
encoding and language. Shortly after its creation, X M L language was massively adopted.
In this chapter, we briefly describe the language itself and a document content classification,
followed by means of X M L validation. Then we will show how querying X M L documents
has evolved in time, focusing on current status and details needed for our implementation.

2.1 X M L language and document types

It was mentioned before that X M L language is nowadays de-facto standard for information
exchange. The Internet itself is adopting X M L more and more often, going for H T M L 5 and
X H T M L 5 standards, using X M L for Web Services and even frequent Web 2.0 buzz-word,
A J A X , is an abbreviation which contains X M L in its name. Lets conclude reasons which
have led to massive adoption of X M L language [50]:

Flexibility X M L allows to describe arbitrary data structures, including recursion. It is
not language or character encoding dependent and it can be used both by humans
(visual representation) and by computers (raw data). X M L itself can be used as a
metadata language.

Validation Processing X M L documents by a computer can be automated because we
expect documents to be well-formed [11]. Additionally, further constrains on the
document content can be posed by using an X M L schema or even an composition of
X M L schemas.

Tooling support Virtually every programming language contains support for X M L lan­
guage. The documents can be parsed, transformed to another document instances,
combined or queried. User can build an ecosystem based on X M L , using X M L only
as an intermediate format.

Since X M L documents have an arbitrary content, we classify them into three distinct
categories [50], which are important for us because each category has different requirements
for the persistent storage. Documents can be divided into document-centric, data-centric
and semi-structured types, the last one being a subtype of the data-centric one.

5

2.1.1 Document-centric X M L type

Document-centric X M L instances have an irregular structure, data is represented by bigger
fragments, such as paragraphs, pages or even the document itself. Elements are often mixed
and nested, and their ordering is always important. Usually, these documents are intended
to be read by an user and they are created manually. A perfect example of such document
is a master's thesis written in DocBook [5]. We are not interested in this kind of documents
for database storage, the reasons are explained in chapter 3.

2.1.2 Data-centric and semi-structured X M L type

Data-centric X M L documents have very regular structure in contrary, as they are usually
intended to be processed by a computer. Data is represented by single elements or attributes
on the level of atomicity. Very often, these documents are created as intermediate transport
format between programs or companies. Any existing information, which can be divided
to atomic elements, can be easily dumped into X M L format. Science measurements are
natural sources of these documents, with one (fictional) presented as 2.1 example.

Semi-structured documents have regular structure, however this structure changes in
time frequently. The same information can be represented by multiple means, such as
using different elements. Data can be very sparse, interleaved with metadata information,
making the storage in relational databases challenging.

Source code 2.1: Cassini: an X M L (data-type) document example

<nasa-data>

<probe>

<name>Cassini</name>

<launch-date>

<day>15</day>

<month>October</month>

<year>1997</year>

</launch-date>

</probe>

<measure id="1234ABC">

<distance>

<value>1000</value>

<unit>km</unit>

</distance>

<destination>Titan</destination>

<data>

<water>0.7</water>

<albedo>0.23</albedo>

<temperature>93.7</temperature>

</data>

</measure>

</nasa-data>

2.2 X M L schemas

The need to specify and constraint information contained in documents had led to the
creation of X M L schemas. These usually restricts ordering and nesting of elements and

G

attributes, their data types and can even enforce element uniqueness and referential integrity
[29]. The validation of an X M L document is performed after the document is proven to be
well-formed. This is usually an automatic operation, as most of X M L parsers can be set to
validate during the document parsing phase.

This section describes available schema languages, explaining their advantages, disad­
vantages and details important for document persistence. The most commonly used X M L
schema languages are D T D , X M L Schema (written with the uppercase "S") and R E L A X
N G . The X M L schema languages are:

D T D D T D (Document Type Definition [7]) has been created as a markup declaration
language for S G M L languages. This schema describes the document content by nested
lists of possible elements and attributes. It does not allow further constraints on an
element or an attribute (e.g. value type or length). The schema itself is not an X M L
document and it usually too general [47], so programmatic construction of a graph
based on it is unnecessarily complex.

X M L Schema X S D (X M L Schema Document [34], a W3C recommendation) defines doc­
uments as collections of elements and attributes, modeling relations of elements as
well. Moreover, it defines types of elements and attributes, their default values and
accepted content. X S D enforces mapping of the X M L data types to the types of
hosted language. For Java, these mapping are a part of J A X B (Java Architecture
for X M L Binding [13]) specification. It also allows to define order and to constraint
repetition of elements by exact numbers. Additionally, X S D supports namespaces, so
multiple schema definitions can be easily nested.

While validating a document against X M L Schema, this schema must be referenced
from the document for each namespace explicitly or namespace mapping must be
supplied to parser. X S D is not only used for validation, it frequently serves for
document or code generation. The latter allows X M L documents to be represented
as a primary object of hosted language (using J A X B) , allowing programmer to use
X M L without any knowledge of it.

X S D has it disadvantages as well, namely the schema for document is very awkward
to be read, it lacks mathematical background, does not support unordered content
well and it is not consistent within its specification (for instance, the description
between elements and attributes differ in X S D language) [18]. The other schemas,
such as R N G , were introduced to overcome this problems, however we have chosen
X S D due to solid Java support and tooling. Moreover, the most of research explained
in section 3.2 holds for schemas based on X S D . X S D schema for document example
2.1 is presented as appendix B . l .

R E L A X N G R E L A X N G (REgular LAnguage for X M L Next Generation [18]) or simply
R N G defines documents as patterns, which are compared to elements in document
instance. It is based on a formal theory of tree automata. R N G provides both
X M L and non-XML (compact, RNC) syntax for defining schemas, based on E B N F
(Extended Backus-Naur Form) and regular expressions, it aims to be simple for users
with knowledge of regular expressions and tries to unify elements with attributes as
much as possible. As well as X S D , R N G supports namespaces, data types and complex
definitions. The research applied to X S D holds for R N G as well, because these schema
languages can be transformed between each other with very few exceptions [23].

7

We wanted to use this schema language because it is much more readable and easier to
learn, however the tools we have chosen for schema generation were not able to create
R N G schemas without X S D intermediate step, which will obviously make document
insertion unnecessarily slower. The R N G and R N C samples for the Cassini document
(source 2.1) are presented as appendices B.2, resp. B.3.

Schematron Schematron [19] is rule based validation language, which asserts either pres­
ence or absence of an pattern in the X M L tree. It is represented as mix of X M L and
XPath language, which is quite similar to X S L T (extensible Stylesheet Language
Transformations). However, Schematron can constraint documents in way X S D nor
R N G cannot. For example, it can control content of element by its sibling, or require
parent element to contain specific content. Additionally, it can specify relations be­
tween multiple X M L files. Moreover Schematron provides an easy way how to show
application defined errors during validation.

Others To complete the enumeration, we list the obsolete X M L schemas: X D R (X M L -
Data Reduced), R E L A X , T R E X , SOX (Schema for Object-Oriented X M L) , D D M L
(Document Definition Markup Language) and DSD (Document Structure Description)
and schema validation frameworks: D S D L (Document Schema Definition Languages),
which contains both R N G and Schematron.

2.3 X M L query languages

Two years after X M L (that is in year 1998), there was already enough X M L documents that
W3C has discussed need of existence of a query language for Web, in particular for X M L
and R D F (Resource Description Framework) documents. Requirement for such language
were identified from lots of proposals. Since W3C was developing another XML-aware
specifications, such as X S L , X S L T and XPointer in the same time, the first standardized
X M L query language, X M L Path Language 1.0, XPath [26], provides a common syntax
between those specifications.

There are basically two types of operation when retrieving data from a persistence
storage [47]. The first one, called extraction, in its pure way retrieves the whole document.
Extraction can be combined with selection, to get a fragment of a stored document, so we
have to be able to access its elements, attributes and values and then evaluate predicate
conditions. The latter operation is called querying, it further applies transformations,
sorting and aggregation on a result of extraction, or multiple extractions from different
documents. Querying basically creates documents with X M L schemas, which never existed
in original documents.

The XPath 1.0 version, released in 1999, is very limited in its query abilities. It can
select and aggregate nodes from the X M L document tree and test the content of elements
and attributes using very simple functions returning string, numeric or boolean values.
The XPath language consists of sequence of steps, where each contains an axis, a node
test and optional predicates. Each step selects a subtree from the current context. In
example 2.2 we can see both of XPath syntaxes, an unabbreviated one, which contain all
of three elements (axis self, node test destination and predicate [. ='Titan']) as well
as abbreviated one (operator / / actually represents /descendant-or-self : :node()). The
results of this query is shown as example 2.3. We will explain the axis meaning in section
2.3.1 considering XPath 2.0 language.

8

Source code 2.2: XPa th 1.0 expression on the Cassini document - query

//measure[id='1234ABC']/self::destination[.='Titan']/preceding-sibling::distance

Source code 2.3: XPa th 1.0 expression on the Cassini document - result

<distance>

<value>1000</value>

<unit>km</unit>

</distance>

2.3.1 X P a t h 2.0 language

As it was said before, XPath 1.0 language is quite limited. Up to few exceptions, we can
retrieve results by instantiating an X M L as a D O M tree, and then execute steps in the
sequence they were defined. Each step use previous step result as its own D O M tree. The
limitation has led to specification of XPath 2.0 language, in 2007. The XPath 2.0 (hence­
forth "XPath") is much larger than its predecessor, and even some basic concepts of the
language such as its data model and type system are changed. XPath is in fact a subset of
XQuery 1.0 language, sharing X D M data model. The language provides backward compat­
ibility mode, which enforces the same behaviour as the older version of the specification,
however its availability is implementation dependent.

The X D M (W3C XQuery 1.0 and XPath 2.0 Data Model [31]) is a data model for
XPath, X S L T 2.0 and XQuery. The model defines all permissible values of expressions and
valid inputs for an arbitrary language processor. A l l mentioned languages are closed with
respect to X D M , that means any evaluated expression is part of X D M as well. X D M was
created in order to support following features: Support of X M L Schema types, represen­
tation of document collections, complex values, atomic types and ordered, heterogeneous
sequences (n-tuples). The data model does not specify concrete binding to any program­
ming language, is simply states what information must be accessible.

X D M models document as a tree of items. Item is either an atomic value (a primitive
type, e.g. xs: string or type derived from primitive one) or a node (document, element,
attribute, text, namespace, processing instruction or comment). Each item has a content
and a type assigned. The list of available types with relations between them is shown in
figure 2.1.

9

XPath 2.0 and
XQuery 1.0
Type Hierarchy

_L
xsistrlng

xs: normalized String

xs: token

xs: language

xsNMTOKEN

xs:Namc

xs:NCName

xs:ID

xs:IDREF

1- xs [ENTITY

item xs: an/Type

x5;anySirnpleType use-r-de-fined
complex types

(xs:anyAtomlcType)̂

—(̂ xs: untyped Atomic ^

— xs:datB

—\ xs: duration —

— xs:double

— xs:gYcarMonth

xs:dateTime

xs time.

xs decimal

xs:gY&ar

— xs:gMonthDay

— xs:gDay

— XR:gMoiith

xs: boolean

— x$:b3$eG4Binary

— xs:hexBinary

— xs:anyURI

— xs;QName

'— xs: NOTATION

c xs: untyped

xs:IDREFS

xsNMTOKENS

xa:ENTITIES

user-defined list
and union types

^ xs:yearMo nth Duration)̂

xs:dayTimeDuratlon j

I— xsiinteger

« s : n a n P « s i l i v e Integer

T
xs: ncgati vol nteg c r

xs:long

xs:inl
X

xs:short

xsibyte

xs: no nNeg ativel nteger

— xs: unsigned Long
X

xs: unsigned I nt

xsiuriviiynctiShurt

X
xs:unsignedByte

XSipOSitivelnteger

llem type • Ussr-cMmad types (utar defined atonic types not shewn]:
' Either given as Eiaquerna Type or as part of a defined type

Bulll-m atomic types Q Built-in complex types r j Bdilt-ln simple, non-atomic types

^ | Node types

Figure 2.1: X D M model types hierarchy, original source at [31]

In our implementation, we map atomic X D M datatypes to SQL ones. Because X D M
uses X M L Schema, we can validate documents against X M L Schema(s), shred them to
generated relational tables and store in the persistent layer. The query languages use X D M
model as well, which provides us advantage while reconstructing documents. More details
are provided in chapter 4.

XPath language allows processing of X D M conforming values. The evaluation of expres­
sion is always a sequence allowed by X D M . The main distinction between XPath versions
1.0 and 2.0 apart from underlying data model lies in existence of expression context, which

10

affects the query evaluation. The context can be divided into two parts:

Static context Static context contains information available during static analysis, prior
to expression evaluation. It contains many elements, we mention statically known
namespaces, default element, type and function namespace, in-scope schema defini­
tions, in-scope variables, which are used for evaluation, and statically known docu­
ments and collections, which act as the input source if no other source is defined.

Dynamic context In contrary to the static context, the dynamic one is available during
expression evaluation. If evaluation relies on a part of dynamic context without
assigned value, implementation raises an error. The context consists of many elements,
such as context item (the definition of item from X D M holds), context position and
size, variable values, function implementations, available documents and collections
and the default collection.

XPath expressions are evaluated in two phases, static and dynamic one. The first one
basically prepares input X D M instance by resolving function names, variable names and
namespace specific information from static context, while the latter uses dynamic context
to assign values and creates an output sequence. The resulting X D M sequence is returned
to the client as-is or transformed by serialization to a string.

The grammar of XPath language is vast and path expressions, which have actually given
language its name, are only a part of it. The language defines a limited F L W O R expression
explained in section 2.3.3. We will enumerate path expressions because implementation
details provided in section 4.3 require their knowledge by reader.

XPath 2.0 path expression extends sequence of steps as known from XPath 1.0. Step
domains are larger and filter expressions using arbitrary condition over dynamic context are
added. Their E B N F definition is available in appendix C . l . The axes available in XPath
are summarized in tables 2.1 and 2.2 [27].

11

Table 2.1: List of XPath 2.0 forward axes
Axis name Explanation
child Represents all children of the context node. Only doc­

ument and element nodes have children. The child of
node can either be an element, a processing instruc­
tion, a comment or a text node.

descendant Represents transitive closure of the child axis, that is
all descendants of the context node.

attribute Contains the attributes of the context node. This axis
is allowed only for elements.

self Contains node itself.
descendant-or-self Contains context node itself and its descendants.
following-sibling Contains children of the context node's parent that

occur after the context node in document order.
following Contains all nodes which occur in tree defined by root

node, are not descendants of context node and occur
after context node in document order.

namespace Contains namespaces of the context node. This axis
is deprecated, and should be used only if backward
compatibility mode is enabled, otherwise static error
should be raised.

Tab e 2.2: List of XPath 2.0 reverse axes
Axis name Explanation
parent Contains parent of context node, empty sequence if

the node has no parent. Attribute nodes can have a
parent as well, their enclosing element node.

ancestor Represents transitive closure of the parent axis, that
is all ancestors of the context node.

preceding-sibling Contains children of the context node's parent that
occur before context node in document order.

preceding Contains all nodes which occur in tree defined by root
node, are not descendants of context node and occur
before context node in document order.

ancestor-or-self Contains context node itself and its ancestors.

After the axis is evaluated and appropriate nodes are selected, a node test is executed
on each item of resulting sequence. The node test basically match name (of the element,
attribute etc., depending on the axis type) or a wildcard represented by *. In X D M ,
names consist of namespace prefix and local name delimited by :, called QName (Qualified
Nname). A wildcard can match either both the prefix and the local name, just the prefix
or just the local name.

The filtered nodes which fulfilled conditions posed in previous step, are then matched
against predicates. In XPath , the predicate can be an arbitrary expression including nested

12

queries. This makes the evaluation quite difficult to implement. According to XPath
specification, predicates are evaluated from left to right against an inner focus, the context
item for the current predicate evaluation (that is one of the filtered nodes). Nodes are then
sorted according to the document order (if a forward axis predicate is used) or the reverse
document order (for reverse axis predicates); they maintain the document original order
otherwise. The possibility of a reverse ordering during evaluation does not alter ordering
of the results. The example of XPath query (check if some measure in the document is
further than 1,000 km) with multiple predicates is present as sources 2.4 and 2.5.

Source code 2.4: XPath 2.0 path expression with multiple predicates on the Cassini
document - query

(: this is a comment, we check the distance of measure :)

some $d in //distance[value][unit/text()='km']/value satisfies $d > 1000

Source code 2.5: XPath 2.0 path expression with multiple predicates on the Cassini
document - result

false

2.3.2 Complex X P a t h expressions

The complex expression can either pose a requirement on the position in the document,
such as operator « does. Therefore, we have to index positions of elements in files. We
propose D L N (Dynamic Level Numbering [41]), and store this information additionally
within tables. The advantage of D L N is that it can be easily stored in bit vectors, thus
compared rapidly and this method of indexation can cope even with updates and removals.
D L N is based on Dewey Decimal Classification, which is a sequence of ordinals and delimiter
characters. We can use it to index X M L documents of arbitrary lengths, including streamed
and unbalanced ones.

The D O M graph with D L N classification for a part of input document 2.1 is shown in
figure 2.2. Further details, especially about how updating documents modifies D L N indexes
can be found in [41, 50].

Figure 2.2: D L N indexation example

13

2.3.3 X Q u e r y 1.0 language

XQuery 1.0 (henceforth "XQuery") represents a superset of the XPa th language. It was
designed as language in which queries are easily understood, concise and versatile enough
to handle the broad world of X M L . The usage of the same X D M model often leads to a
single XQuery /XPath parser, because any expression syntactically valid in XPath can be
executed in XQuery 1.0 and must yield the same results. XQuery binds each expression
two contexts (dynamic and static ones), whose content is very similar to the one described
in 2.3.1.

For the purposes of selecting an input, XQuery (as well XPath) defines following func­
tions:

• fn:doc, with an argument representing URI of the document in available documents:
and

• fn:collection, with an optional argument representing URI of the collection in
available collections, without arguments it returns the default collection.

As mentioned before, the core of XQuery expressions lies in the F L W O R expression,
which supports iteration and binding of variables to intermediate results. This can be
used for joining multiple input sources and transforming data. The abbreviation F L W O R
(pronounced "flower") stands for for, let, where, order by and return.

The for and let clauses generate a sequence of tuples, consisting of bound variables.
The sequence is filtered by a where clause, which is optional as well as an order by clause,
which enforces the filtered sequence order. Results of the query are transformed according
to a return clause and then returned as an ordered sequence (that is, either in the document
order or in its reverse). The source example 2.6 returns average temperature on Titan, a
satellite of Saturn, based on Cassini document1.

Both for and let clause can contain more than one variable binding. Although they
seem very similar, the manner how variables are bound differs. The for clause iterates over
the sequence using the return clause as a cycle body. Contrary, the let clause creates
a sequence, with value accessible under a bounded variable. A very nice example, which
illustrates the difference can be found in section 3.8.3 of W3C XQuery 1.0 recommendation
available as [30].

Source code 2.6: XQuery 1.0 query for the average temperature on Titan - query

for $d in fn:doc("cassini.xml")/nasa-data

let $e := $d/measure

where $e/destination = 'Titan'

return

<titan>

{

<measured-by>{ $d/probe/name }</measured-by>,

<temperature>{ fn:avg($e/data/temperature) }</temperature>

</value>

}
</titan>

The result of the query is a completely different document (shown as source example
2.7), still a valid instance of X D M model.

1Averaging one value is nonsense, but according to X M L schemas, the document can contain more
measures, which is not the case of the sample.

14

Source code 2.7: XQuery 1.0 query for average temperature on Titan - result

<titan>

<measured-by>Cassini</measured-by>

<temperature>93.7</temperature>

</titan>

Even such a powerful language as XQuery has its limitations and it is still developing
(there is currently XQuery 1.1 processed by an W3C committee). The main restriction
of the XQuery language is that it does not allow updates. This is addressed by XQuery
Update Facility 1.0 [32], which introduces new types of expression allowed for XQuery,
extensions to its processing model, static context and minor grammar updates. However,
XQuery Update facility, though partially supported in our parser, was not a subject of the
work, as further explained in chapters 3 and 4.

2.4 Summary

While working with the X M L language, due to its flexibility, we often have to validate input
documents. There are multiple X M L schemas, which are used for this validation. Before
the validation itself, the document must be verified to be well-formed. Because validation
means automatic processing, we will bind to the validation life cycle and use it to persist
X M L documents, as it is explained in the next chapter.

X M L query languages, especially XQuery 1.0 are very versatile, due to the X M L struc­
ture. They can be used to query multiple documents, documents hierarchies and/or collec­
tions, which make them natural languages for obtaining data from X M L databases.

15

Chapter 3

Persistence of X M L schemas and
X M L documents

In the previous chapter we discussed X M L and X M L schemas and we have chosen the X S D
schema. In the current chapter, we will describe the way how X M L documents1 can be
stored in a persistent data warehouse. We focus on available approaches of their storing in
a relational database. Most of the means were developed during late 90s, and their usage
was and maybe still is considered obsolete by production X M L databases. Since community
is quite sceptic about the performance achieved by any of these methods, we will try to
convince them that we can pick one of these methods (the Hybrid algorithm, to be precise)
and by a few modifications we can obtain the implementation with quite promising results.

This chapter is organized as follows. Firstly, we provide the short categorization of
available means, including the categorization of storage methods based on the document
type. We narrow the possibilities: relational databases, which are the core of our work
in section 3.2, later we focus on schema-driven methods, detailing the Hybrid method in
section 3.3.1. To conclude, we will discuss the strong and weak points, which occur once
we allow database modifications by XQuery language extensions in sections 3.4 and 3.5.

3.1 Storage means for X M L documents

X M L documents can be stored in multiple ways either in a specialized storage, e.g. modeled
as a graph structure and stored into graph or specialized databases. The latter case, for
instance eXist [10], usually creates huge number of indices. Another approach is to consider
X M L documents structured enough for application purposes and store them in a key-value
based storage and/or use some kind of a middleware to provide X M L querying functionality.
Obviously, the native approach seems to be the most effective, because storage techniques
are tailored to fulfil needs of X M L tree structure.

The choice of best available technique depends on purpose of the application. Either
a) we store X M L documents as whole; b) we use X M L only for data transfers, so we store
only values which it contains; and c) we use an X M L data model.

The X M L document-type documents are ideal candidate to be stored using the first
case. Documents are stored in a key-value storage, file system hierarchy or as objects in

xWe do not discuss storage of X M L schemas in a relational database and retrieval of the schema from
relational schema created by the process described in this chapter. Nevertheless, an X M L schema in the XSD
form is an ordinary X M L document, which can be stored by the same way as the other X M L documents.

16

a relational database. Typically, whole documents will be retrieved in most queries and
cache query will be hit during an evaluation of smaller fragments. Stored documents are
expected to be kept intact or being updated rarely. Additionally, X M L schema generated
is either too complicated or the suspect to change frequently [47].

The second case is a perfect use case for relational databases. Firstly, for each document
we will determine its X M L schema, which is later used to create an appropriate relational
schema. The document is divided into fragments, which correspond to the relations to be
stored (shredding) and these are inserted in the database. When querying data, the query
must be translated into series of SQL queries and the result is reconstructed (publishing).
This expects that X M L schemas are changing rarely and they can be easily mapped using an
algorithm presented in section 3.2. We don't have to preserve original document's structure
and in general, the structure of the extracted documents differ.

Lastly, the third case models data in a X M L model, which is the most convenient way
how to store semi-structured X M L documents. X M L model represents data as well as
hierarchic, relational, object and other models, the closest similar model is the hierarchical
one. Typically, there is a ordered direct acyclic graph (DAG) with typed and named inner
nodes and unnamed leaves for storing data themselves. The X M L model must contain
at least the order of elements in the document, their attributes and P C D A T A (Parsed
Character DATA) . There is no limitation on persistent storage, so model can be stored
either in relational, hierarchic or object-oriented database, as a collection of indexed files
or in another proprietary format [40].

We consider storing X M L documents in a relational database, which provide us following
advantages:

• Technologies used in the relational databases have been developed for a long period
of time and the are considered mature, effective and covered by a solid mathematical
background:

• Relational databases provide transaction (more precisely, A C I D transaction) support
and allow multi-concurrent access with a locking scheme.

• Interface provided and programming language support of R D B M S is huge.

• Relational (legacy) and X M L content can be easily mixed in one application.

• Relational databases can be used as source for data-mining much easier than X M L
documents, although there is a research related to information retrieval in X M L data
warehouses as well [52].

On the other hand, we have to cope with following drawbacks, diminished if we sacrifice
some properties of R D B M S (to be more precise, properties associated with the design of
RDBMS-based applications, such as data redundancy):

• We have to develop techniques of storing the X M L tree structure in relations.

• We cannot scale horizontally easily [55], or with enormous costs, which makes our
system unusable in the environment where high-availability is required.

• We have to establish a way of querying data in a relational database and reduce the
price of X M L fragment reconstruction.

17

For our system, we will use X D M stored in a relational database. The X D M model was
described in section 2.3.1. However, our system will rather be a hybrid between cases b)
and c), because we focus on data-type documents, but at the same time, we have to track
relations between elements in source documents, that is to provide the same functionality
as native X M L databases. For querying mixed elements, we will rely on XML-awareness of
the underlying R D B M S and we introduce specialized storage structure for mixed elements.

3.2 Storage of X M L data in relational databases

As explained in the previous section, we choose the storage method according to the doc­
ument type. We will omit the whole document method, as it will be awfully slow during
query processing and it will limit maximum document size to available memory, since every
document is supposed to be retrieved from database and parsed into a D O M or X D M tree
respectively while evaluating the query. The remaining methods can be divided into three
categories, readers interested in further details can follow [49].

3.2.1 Generic methods

Generic methods do not use any schema of document, since it is not guaranteed to exist
and/or it can change very often. The relational schema must be either created general
enough to handle all types of documents or usage of this storage is restricted to a limited
set of documents.

The first type representative, Generic tree mapping models X M L document as a D A G ,
assigning unique identifier to each inner node, leaves carrying either element or attribute
content. Relations between elements are mapped by named edges, where name stands for
the element (or attribute) name. We have different means of storing this D A G in a relational
database, edges can be stored in different tables according to their type (element, attribute,
inner) or in one universal table. A leaf table can be created for each datatype or leaves
are backed by one super table. The universal approach creates lots of NULL values, whereas
the fine-grained table leads to numerous joins, causing a low performance of Generic tree
mapping [53].

When modelling a D A G , we can use even an algorithm called Structure-centred mapping,
which maps nodes instead of edges. The relations between nodes are represented by a list
of children, each node consists of a type, a name, a text content and a list of children. It
allows database to traverse and reconstruct an arbitrary document using depth-first-search
traversal. However, the approach poses constraints on the node identification, instead of
simple number, dynamic level numbering should be used to allow updates.

Describing unlimited generic methods, we mention Simple-path mapping, which was
an ideal mapping for documents queried in XPath 1.0 language. This mapping stores an
XPath for each node, including the position and the order in the D O M tree. Then we can
directly map XPath operator to SQL ones, however updating documents and retrieving
their fragments will be costly operations.

The last generic method representative Table based mapping generates a database
schema, which exactly fits the document. This is ideal for data transfers, however too
much limiting for our purposes.

18

3.2.2 User-defined and user-driven methods

In these methods, user manually creates a mapping between an X M L document and tables
in a relational database. This is no doubt the most flexible method and furthermore the
easiest one to be implemented. However, this approach is interactive and user is required to
be skilled both in X M L and relational databases to yield the most efficient schema mapping.

User can generate the schema either completely or with the aid of a middleware, using
declarative mapping, such as annotations in X M L documents. The latter approach is called
user-driven mapping. It provides reasonable default fixed mapping and ability to influence
it. User simply selects fragments whose storage methods will differ and defines how they
will be stored within available mapping bounds. The method used in Mapping Definition
Framework [35] or in XCacheDB[37].

3.2.3 Schema-driven methods

Relation schema is a transformation from either an existing X M L schema or the X M L
schema is generated from document sample(s). The relation schema can be further fine­
grained and optimized by various methods. This area will be the main focus of proposed
work.

However, the way how to classify the methods is not standardized. Another classification
is presented in table 3.1, adopted from [47].

Table 3.1: Alternative classification of X M L to R D B M S mapping

Approach Exploited information

Fixed (schema-obvious) X M L data model
User-defined Purely user-specified mapping
Schema- DTD-driven X M L schema
driven XSD-driven

Constants preserving
Adaptive Cost-driven Single-candidate

Multiple-candidate
X M L schema, X M L documents and queries

User-driven Direct
Indirect

X M L schema, annotations

3.3 Schema driven mapping

Schema driven mapping tries to generate an optimal relational schema by using the following
concept: For each D O M element generate a relation, which contains attributes and element
content. Mappings between D O M nodes are represented by database primary and foreign
keys. Schema driven mapping tries to overcome limitations of relational schemas derived
from E R diagrams based on elements present in the document, which likely leads to the
excessive fragmentation.

During the description of this approach, we focus on data-type X M L documents and
X S D schema. It must be said, that the most of schema-driven transformations have
these limitations and therefore require an enhanced functionality of underlying relational
database:

19

• Identity constraints of the schema are usually mapped to constraints on relational
tables, but a relational table contains just a subset of the whole X M L document,
where the schema constraint is valid.

• Wildcards enable storing of an arbitrary element at place of the definition in the
schema and thus it can be stored only in a general data type column of a relational
database, which must obviously be XML-aware to process wildcard elements.

Methods driven by a schema traversal can be divided into two categories, the fixed one
or the flexible one [36]. The former is based on X M L schema only while the latter uses
more than one X M L schema for a set of X M L documents and evaluates speed of sample
queries performed by relational database. Further information of query evaluation can be
found in sections 3.5 and 4.3.

For both of the methods, X M L schema of a document can be further simplified and
transformed up to the following constrains are met [53]:

• Any document conforming to the X M L schema can be stored in resulting relational
schema.

• Any XQuery executable over X M L document can be executed in relational database
instance.

The basic idea of the schema simplification is to follow repeatedly a three types of
transformation, that is a) flattening structure (e.g. inlining elements into their parents):
b) reduction of unary operators to the single one; or c) grouping sub-elements (e.g. opti­
mizing of sub-element possible count for parent element) [53]. In document [38] was further
shown that grouping sub-elements into more than one group (more precisely, for 1. . * E R
mapping, create groups of size 1 and *) can leverage performance depending on the statistic
distribution of the sub-element. Dealing with elements groups make processing of a schema
more difficult, but does not involve any limitations of getting this done.

According to the simplification mechanisms, we classify following fixed methods, which
are [46]:

Basic The Basic method creates a relation for each element in the table, allowing any
element to be the root. The children nodes are inlined into the parent table for every
possible case (that is all except wildcard and recursion descendants). This can lead
to the creation of multiple relations for single element, if used in the X S D differently.

Shared On the other hand, the Shared method tries to map each element only once. It
generates inlined elements in the same way as the Basic algorithm does. However, it
stores elements in standalone relations only if they satisfy the degree of the possible
appearance or they are ancestors of a wildcard node. The conditions are presented
in document [53]. The Shared method is able to process recursive element definitions
by creating the relation for only one of the mutually linked elements.

Hybrid The Hybrid method combines Basic and Shared method, to reduce the number of
created relations. The method is described in section 3.3.1.

Constraints preserving mapping This mapping generates an extended entity-relational
diagram. It models elements and complex data types as an entities, an attributes.
Relations between elements and their degrees of presence are represented as cardi­
nalities. Other meta information extracted from X S D (for instance, data types) are
mapped as well.

20

3.3.1 The H y b r i d method

The Hybrid method was proposed in [53]. It is based on the Shared method, however it
additionally inlines elements, which match given conditions: 1) their in-degree (number of
edges coming into the elements in the D A G representation) is greater than 1; 2) they are
not recursive; and 3) they are not reached through a wildcard node. The Hybrid method
works for both ordered and unordered documents and according to [47], it can achieve
fourth normal form (4NF) decomposition into relations.

The method is considered as the best fixed methods, because it reduces fragmentation
of the document and when reconstructing elements, it is on a par with the Shared method
considering number of required joins and SQL queries. Because Hybrid inlines more than
Shared, it has lower number of joins but greater number of queries. Therefore, we postpone
the execution of the queries (more details in section 4.2) until the longest possible one is
constructed and thus we have lower number of required inner SQL joins, reducing state
space during query evaluation.

The Hybrid method was created for generation of relational schemas based on DTDs,
which do not contain so much information about elements as XSDs, which NeXD is us­
ing. We modified it not to inline elements which are complex, including its nested child.
This reduced the time of schema traversal during its generation by removing unnecessary
recursion descent. The schema generated for Cassini document is shown as source 3.1.

Source code 3.1: Relational schema generated for the Cassini document, PostgreSQL
dump

Table "public.nasa-data_l.nasa-data_0"

Column | Type | Modifiers
+ +

id | integer | not null default

nextval('"schema_l.nasa-data_0 id_seq"'::regclass)

document_id | integer |

encoding | character varying(15) I

probe.name | text |

probe.launch-date.day I integer |

probe.launch-date.month I text |

probe.launch-date.year I integer |

measure.destination | text |

measure.distance.value I integer |

measure.distance.unit I text |

measure.data.water | numeric(10,6) I

measure.data.albedo | numeric(10,6) I

measure.data.temperature I numeric(10,6) I

Indexes:

"nasa-data_l.nasa-data_0_pkey" PRIMARY KEY, btree (__id)

Foreign-key constraints:

"nasa-data_l.nasa-data_0 document_id_fkey" FOREIGN KEY (document_id)

REFERENCES xdocument(id) ON UPDATE CASCADE ON DELETE CASCADE

The example identified the problem of each schema-basen mapping, that happens if
input document does not state explicitly multiple occurrence of the elements. The source
3.1 thus contains only one table, because NeXD had no clue multiple elements measure can

21

occur. This means that user have to carefully choose the first document stored in database,
because it actually generates schema for the rest of nasa-data documents. If the document
is not appropriately chosen, the other documents can be rejected considered not valid.

3.4 Shredding X M L document into relations

After a relational schema is generated, we have to divide the documents into such pieces,
which represent records in created relations. This operation is called shredding. The main
question is whether to allow the storage of documents not conforming to given schema. We
have basically four possibilities:

1. Allow the storage of these documents by dynamically creating database relations
based on their schema:

2. Store parts of documents not conforming to the schema using general tables - we call
them junk tables:

3. Reject the documents as not being valid for our storage schema; and

4. Transform documents on-the-fly to the schema in our database.

On the one hand, accepting the non-conformant documents can allow us being more
general but on the other hand, it will greatly augment the complexity of queries because
unions of results gained from different schema mapping are required. Further, it is difficult
for an user to query data non-conforming to the schema, because he is simply not aware of
their existence.

When queried data is an input for another processing tools, elements not defined in
the X M L schema unnecessarily leverage complexity of these tools. As the result, we prefer
rejecting not-conforming X M L documents with the detailed description why that happened.
This allows user to visualize them and verify the need of invalid data or to convert them
easily.

The most appropriate approach would be to let an user define if the not conforming
part of document must either be transformed or cut off and the rest of document stored
in the database. Since the insertion of data into R D B M S should be non-interactive, this
part of data preprocessing is not performed automatically and user is recommended to
clean data himself. We recommend to use Visua lXML, which was presented in [43]. Once
the documents are transfered to the valid schema, they can be inserted into our system
seamlessly.

However, simply avoiding the documents not conforming the X S D schema does not solve
the whole shredding problem. Still, mixed elements of the document must be stored. X S D
marks mixed elements explicitly by mixed attribute. Therefore, NeXD introduces a special
table which can be used for storing text within mixed elements called xtext. This table
contains text parts, which are bound to the enclosing element. The implementation details
can be found in the following chapter, namely in sections 4.2 and 4.6.

3.5 Retrieving and modifying X M L data

NeXD was from the very beginning considered a fast storage system. X M L query languages
specified in section 2.3 work on X D M model, which is created on-the-fly from the relational

22

database. In this section, we describe possible approaches of speeding up the model creation,
with respect to the performance.

The two fundamental operations - extraction and querying (described in section 2.3)
have different time and space complexity characteristics when the Hybrid method is used.
When an X M L document is shredded into relations, the extraction is extremely difficult
and time consuming operation. To overcome the problem, we allowed data redundancy.
Thus, we additionally store complete X M L document in R D B M S as a CLOB object. This
way, we are able to preserve additional data, such as comments and processing instructions,
and speed up the query as well, because it becomes basically a simple SELECT operation.
It would be nice to provide the same data redundancy for other frequently retrieved and
relatively large X M L chunks.

We expect our storage system to be used mostly for retrieval of information, which are
rather static and do not modify over time much. The naive way how to change parts of
the document is to construct a new document, then to generate its X M L schema, shred
it into relations by the Hybrid algorithm, wipe out the original data and insert the new
document. This way, we make the change at document level granularity. This approach
keeps the consistency of the database, but is highly inefficient.

Next, if we allow a modification of the schema by the previous operation, we will even­
tually end up with lots of nearly empty tables, junk tables, mixed content or we will shade
modifications by another data structure. This dilutes all the advantages provided by the
sophisticated shredding and hurts the performance as well, so we have decided to limit
the update of the data to document level. By all means, our system aims to be a storage
with fast retrieval of either X M L chunks or whole X M L documents and fine grained query
evaluation optimizations would raise its complexity significantly.

3.6 Summary

In this chapter, we described means of storing X M L documents, focusing on relational
databases. Since there are multiple ways how to use a R D B M S as the persistence storage, we
classified available methods into generic, schema-based and user-driven, resp. user-defined
categories. The schema-based methods seem the most promising for our implementation,
so we followed with their description, more detailed for Hybrid method. Once the method
is chosen, the documents are shredded to generated relations, with respect to the facts
included in this chapter. We concluded the chapter with an introduction to the document
retrieval. The next chapter shows how these methods are implemented.

23

Chapter 4

Implementing NeXD

This chapter is the core of master's thesis. It describes issues and pitfalls of the current
implementation, as well as its advantages. However, it is not a listing of source code
snippets with comments, for a reader interested in this kind of information please read
Javadocs and even better the source itself, but it provides deeper description of relations
between technologies and modules used in NeXD.

We describe the shift performed from the older implementation, the choice of the build
tool and the emphasis on unit and integration testing in section 4.1. The description of
X M L query languages in chapter 2 will be used in section 4.3, considering the XPath
parser, enriched with internal details. Section 4.2 explains how the Hybrid algorithm is
implemented.

The chapter continues with constraints posed on underlying R D B M S in section 4.4.
Once we have described all parts necessary for the implementation, we will follow with the
selection of the A P I used for data storage/retrieval in section 4.5. The chapter is concluded
in by a code overview in section 4.6.

4.1 Selecting the build tool

NeXD has become a project, which will be used in various environments, therefore we have
chosen Maven [15] as the build management system for it. Maven is a well established tool
in Java build process, used virtually by all important players on the Java E E market, such
as Oracle/Sun, JBoss by Red Hat, I B M , B E A , Apache Software Foundation, Springsource
and much more others.

It automates not only the building of the software itself, but even the testing (such
as smoke and unit tests) and (continuous) integration testing. Additionally, Maven uses a
concept of repositories, which are simply public servers including various packages, libraries
and Maven plugins (together called artifacts). There are services, which provide a free of
charge creation of the repository, thus making usage of NeXD easier for all users, who would
like to include its functionality in their own project.

The concept of plugins allows appending an arbitrary functionality to the existing
project. For example, the project files satisfying the contract for Eclipse [8] can be generated
just by executing command mvn eclipse: eclipse

1

. This will establish a project metadata
including all the library dependencies as well as their source and Javadoc if desired and
activated by properties -DdownloadSources=true, resp. -DdownloadJavadocs=true. Ob­
viously, there are plugins to generate the same for I D E A IntelliJ, NetBeans and JBuilder.

24

The IDEs themselves should integrate Maven automatically.
However, using Maven didn't only provide us the benefits. There were problems with

internal dependencies, which were not yet mavenized, that is their developers didn't pro­
duced Maven artifacts yet. Fortunately, there are ways how to store an artifact in a local
repository, which is used to obtain the artifact during dependency resolution phase. We
provided a bash script distributed with NeXD to overcome this issue.

We focused on continuous integration to make our project rock stable, so TestNG test-
suite together with maven-surefire-plugin was used to test NeXD automatically before each
commit or even better after each code modification. The plugin will provide nice H T M L
(and X M L as well!) report. To execute the testsuite from scratch 2, simply execute the
commands printed in block 4.1.

Source code 4.1: Running NeXD testsuite

Getting NeXD source code

git clone git://gitorious.org/nexd/nexd.git

Install artifacts to local maven repository

cd nexd/notmavenized

./mvn-install-files. sh

cd -

Executing testsuite

cd nexd

mvn test

The list of supported values, which can be used to launch NeXD or TestNG testsuite,
defining the database database of NeXD, is summarized in table 4.1.

NeXD contains approx. 80 testcases, going through the parser and both implemented
APIs (see section 4.5). We expect that NeXD code is not totally covered by unit tests,
so it would be nice to append the EMMA [9], a free Java code coverage tool, preferably
as a Maven plugin configuration to measure the coverage and identify weak points of the
implementation. This is one of the improvements, which will be surely added during the
project evolution.

1It is possible that the Eclipse workspace might not be initialized to contain the variable that
links to local Maven repository. This can be easily solved by executing another plugin goal, called
eclipse:configure-workspace.

2User is expected to have installed both Git and Maven 2.x. The first run can take a long time, since
Maven must download all artifacts for its run and establish the local repository. The size of the testsuite
can be reduced by modifying TestNG[20] file present in src/test/testng directory.

25

http://ious.org/nexd/nexd

Table 4.1: Java system properties accepted by NeXD
Property name Default value Explanation
nexd.dbName nexd The name of the database on the machine used

as the connection point. NeXD expects the right
database schema including root collection. Ob­
viously, any collection can be selected lated by
its URI, but the root one is necessary. The
testsuite creates the right database schema au­
tomatically.

nexd.host localhost Either the hostname or the IP address of ma­
chine where PostgreSQL database is running.

nexd.port 5432 The port number of PostgreSQL service.
nexd.userName nexd The name of user with fully granted access to

the database specified above.
nexd.password test User's password.
nexd.loginTimeout 10 Time in minutes when the credentials are hold

in memory in case of inactivity. Use 0 in case of
long-running transactions.

nexd.useSSL false Specifies if SSL should be used to connect to the
database. This depends purely on setting of the
underlying database.

nexd.sslFactory The name of factory, which is used
to verify the SSL certificate against
an certification authority. Set it to
org.postgresql.ssl.NonValidatingFactory

if you are connecting to the machine that has
self-signed certificate or certificate not signed by
a C A registered within your Java environment.

4.2 Implementing the Hybr id method

The Hybrid method in NeXD creates a relational schema from an X S D document. The
X S D document is either delivered together with the input document in a place where J A X P
parser can found it; or, which is more usually the case, generated on-the-fly by Trang [23].
Trang is an open source tool, which is able to convert different schema types and generate
a schema from an X M L document instance. It tries to create human readable schemas,
which have led to minor advantages during the implementation.

NeXD modified Trang to be able to use in-memory representations of the schema output.
This was necessary to remove an intermediate step, which required generation of the X S D
to the hard drive and then parsing it again to obtain the X M L schema. Moreover, the
implementation of Trang didn't allow the usage of X S D schema stored in our database
tables, which was a major problem.

The Hybrid algorithm implemented in NeXD, requires metadata tables, which store
information about created tables in the system. Moreover, we implemented NeXD to use a
different namespace for each created schema, so the required tables are (complete database

26

schema is present as source E . l) :

XSCHEMA XSchema table represents the generated schema in NeXD. Schema encapsulates
the private namespace for tables created by the Hybrid algorithm. Schema is identified
by name, which consists of the X S D root element name, and a database generated id.
This way we can easily bound document to the schema with respect to the root
element.

X A P I (see section 4.5) enforces the possibility of multiple schemas for documents
of in one collection (to be precise, X A P I does not define type of documents in the
collection at all). However, NeXD limits this to the schemas of unique names, because
of shredding capabilities. This limitation has impact on number of allowed documents,
once the X S D is generated for a document type, all documents that have the same
root element but differ from the X S D stored in the same collection are always rejected.

XTABLE XTable encapsulates table metadata, by providing information about element present
in X S D . Every table contains parent schema, collection, table, flag whether the table
is inlined and sets of possible elements and attributes. The metadata is used for the
quick querying of the content. XTable contains a pointer to the table generated by
the Hybrid algorithm. The way how data is queried is further described in section
4.3.

However, SQL types are more general than X S D ones. We provided a mapping between
domains, which is enumerated in source file XDM. Java. The part of the mapping is present
in table 4.2.

Table 4.2: Mapping between X D M and SQL data types

X D M type SQL type X D M type SQL type
xs:string TEXT xs NCName TEXT

xs:Name TEXT xs QName TEXT

xs:ID VARCHAR(IOO) xs IDRef VARCHAR(IOO)

xs:integer INTEGER xs positiveInteger INTEGER

xs:int INTEGER xs negat iveInt eger INTEGER

xs:byte SMALLINT xs base64Binary BLOB

xs:long BIGINTEGER xs boolean BOOLEAN

xs:decimal DECIMAL(10,6) xs double DOUBLE PRECISION

xs:float REAL xs date DATE

xs:dateTime TIMESTAMP WITH TIMEZONE xs gDay VARCHAR(2)

xs:duration TEXT xs gMonthDay VARCHAR(5)

xs:time TIME WITH TIMEZONE xs anyURI TEXT

SQL datatypes can further be restricted by using integrity checks, such as CHECK x > 0
for xs :positiveInteger. However, these checks are not necessary, because we don't allow
data modification and the validation against X S D is performed during resource storage
phase.

The last problem to be solved for the Hybrid algorithm is the storage of mixed elements.
NeXD can identify them in X S D schema and provide special treatment of their content for
the shredding phase.

27

4.2.1 Algorithm life-cycle

The Hybrid method is implemented in source file XMapper. j ava. It uses Trang generated
X S D , which is transformed using J A X P to a D O M tree. However, the D O M structure,
representing X M L as a graph, does not directly match the requirements of the algorithm,
because element can contain references to other nodes.

NeXD implements D O M traversal using a standard TreeWalker interface, which is a
part of W3C D O M 2 specification [6]. However, J A X P does not ensure that the available
X M L parser implements this functionality. Therefore, NeXD has its own implementation,
which comes from jStyleParser [14].

The tree traversal is used to navigate in the document tree. The algorithm performs
recursive descent, using name or complex type attributes as references. The first step creates
an empty set of traversed elements and an empty map of created tables. NeXD identifies the
root element from X S D . The root is used as the current element. The recursive traversal
can be simplified to:

Algorithm 4.1 The Hybrid algorithm traversal
1: traversed <— traversed U {current}
2: if current represents X M L element then
3: if current is complex type then
4: table <— process current as complex
5: else if current is simple type then
6: table <— process current as simple
7: end if
8: for Mchild of current do
9: process child with current context table

10: end for
11: else if current represents X M L attribute then
12: column <— create column from current
13: add column to table
14: else
15: for Mchild of current do
16: process child with current context table
17: end for
18: end if
19: return tables

Hybrid uses following conditions to match that element is complex: i) Either X S D
element is of xs: complexType type or it represents an X M L element or an attribute which
contains only one child, which is of xs: complexType type; or ii) the X S D element represents
a typed element, which is not generic and that is complex; or Hi) the X S D element references
a complex type element.

In a similar fashion, the element is considered simple if: i) Either X S D element is of
xs: simpleType type or it represents an X M L element or an attribute, which contains only
one child, which is of xs: simpleType; or ii) the X S D element represents X M L element
or attribute typed with generic type (a subset of generic types was provided in table 4.2);
or Hi) the X S D element represents typed element, which is simple; or iv) X S D element
references the simple type element.

28

The main difference in processing simple and complex elements in algorithm 4.1 lies
in the fact, that simple elements are either represented as standalone tables or they are
added to the current table as columns, whereas the complex elements, if their occurrence
lies within allowed bounds, can be inlined to the current context table. However, both
simple and complex elements can lead to the creation of the standalone table, as allowed
by the Hybrid method presented in section 3.3.1.

The Hybrid method, using described kind of traversal, however, has following limita­
tions:

• The selection of the root element is quite simplified, because we do not construct a
D A G to find the root element, but we use Trang generated schema to deliver the root
element. Trang intends to generate human readable X M L schema, which ends in the
generation of an X S D root node which matches the Hybrid root node definition as
well. However, this behaviour was verified only on a set of tested documents and it
is not formally verified.

• Due to the recursive descent, it is difficult to process elements with circular depen­
dencies, which usually occur if X S D contains complex recursive definitions.

4.3 X P a t h processing

NeXD implements a XPath 2.0 language parser for querying data, as already stated before.
In this section we focus on implementation details of the query processing. XPath is quite
complicated language and according to details presented in 2.3.1, we describe here the
evaluation of path expressions. The evaluation itself can be divided into three distinct
parts, which are: i) parsing and validating query; ii) binding static and dynamic contexts:
and in) converting result to an X D M instance or its serialization to a string. We describe
the processing of simple XPath path expressions, because they are more illustrative and,
in general, their execution flow is the same as for complicated ones. To process an XPath
expression, NeXD must load metadata from the database.

4.3.1 N e X D metadata

As it is mentioned in the previous section, the Hybrid method uses XSCHEMA and XTABLE
metadata tables. However, these are not only metadata tables required. NeXD must store
information about documents and encapsulating collections. In this concept collection
represents a set of documents. However, a collections can contain other collections as well,
so in the database collection structure is modeled as a tree. Each X S D document is bound
to the X S D schema. Relations are illustrated in figure 4.1. NeXD caches the metadata in
memory, making subsequent queries faster by skipping the metadata loading phase.

29

Required database schema

id : Integer
name : String
parent_collection ; Integer

xtable

id : Integer
collection ; Integer
parent_table : Integer
inlined : Boolean
element_name : String
table name : String
elements : String[]
attributes : StringU
schema : Integer

xschema

id : Integer
name : String
collection ; Integer
uri : Stringf]
xsd : String

xdocument

id : Integer
collection : Integer
name : String
content : String
schema : Integer

id : Integer
position : Integer
document : Integer

Tables / mappings generated by Hybrid algorithm

1
table root

d : Integer
document : Integer
encoding : String
attributel : AttributelType
attribute2 : Attribute2Type

table_element
table element

table element

id : Integer
parent: Integer
position : BitString
attributel : AttributelType
attribute2 : Attribute2Type

table element

d : Integer
parent: Integer
position : BitString
attributel : AttributelType
attribute2 : Attribute2Type

Figure 4.1: Metadata tables used in system

The tables used for metadata are (including tables already presented before):

XDOCUMENT XDocument represents the document content as it was stored in the database.
Table further contains document identifier, generated by NeXD and used for managing
documents in collection and the document name.

XCOLLECTION XCollection encapsulates documents in sets, modelling hierarchy.

XTEXT XText is used for storing text of mixed elements, linking them to enclosing parent
table element and storing their relative position with respect to the parent element.

XSCHEMA XSchema table represents the generated schema in NeXD. Schema encapsulates
the private namespace for tables created by the Hybrid algorithm. Schema is identified
by name, which consists of the X S D root element name, and a database generated i d .
This way we can easily bound document to the schema with respect to the root
element.

X A P I (see section 4.5 enforces the possibility of multiple schemas for documents
of in one collection (to be precise, X A P I does not define type of documents in the
collection at all). However, NeXD limits this to the schemas of unique name, because
of shredding capabilities. This limitation has impact on number of allowed documents,
once the X S D is generated for a document type, all documents that have the same
root element but differ from the X S D stored in the same collection are always rejected.

XTABLE XTable encapsulates table metadata, by providing information about element present
in X S D . Every table contains parent schema, collection, table, flag whether the table
is inlined and sets of possible elements and attributes. The metadata is used for the
quick querying of the content. XTable contains a pointer to the table generated by
the Hybrid algorithm. The way how data is queried is further described in section
4.3.

4.3.2 Parsing X P a t h language expression

The language parsing core is based on LL(*) type grammar, which describes XPath 2.0
together with part of XQuery 1.0 language. The grammar is written in A N T L R (ANother

30

Language Recognition Tool [2]) parser. This tool was chosen because it allow an easy
binding between Java and the grammar itself and author's previous experience with it
(jStyleParser, a part of CSSBox toolkit).

NeXD uses A N T L R both for parsing XPath expressions and parsing URIs of X A P I
collections, as specified in section 4.5. The A N T L R parser can process an arbitrary textual
input or, using a high level abstraction, an abstract syntax tree (AST) representation of
the input. NeXD uses the latter way, that is combining input lexer and parser to generate
a stream of A S T nodes, which is then parsed using high level structure definitions.

The approach has drawbacks, since the query must be actually parsed twice, it is more
time consuming. Fortunately, the speed is compensated by an easier parser modification,
better ability to recover for errors, thus providing nicer error messages and possibility to
change lexer implementation on-the-fly. Although, this is not used in NeXD, since XQuery
is not implemented, usual approach combines X M L and XQuery parser, because F L W O R
expressions can contain arbitrary X H T M L constructs.

The speed reduction can be balanced by caching of pre-compiled expressions. This pos­
sibility is proposed by X Q J A P I , however it is not implemented. The parser is represented
in file XParsingContext .Java. It allows program to use an arbitrary node of XPa th gram­
mar as entry point (starting symbol) and provides an automatic connection of the low-level
parser with the high-level one. The choice of entry point is extremely useful. Apart from
testing, it allows to switch between XPath path expression support to the full XPa th 2.0
support or even XQuery 1.0 (if implemented) by simple code modification, making the
parser very universal tool.

4.3.3 Binding contexts

When creating an XPath expression representation in NeXD (see remarks in section 4.5), we
have to access database metadata created during the application of the Hybrid algorithm.
However, mapping between X D M and SQL data types is not a bijection, so we have to store
the actual datatype during query evaluation. This information is stored in the dynamic
context, since it differs for each evaluation.

NeXD in actual implementation doesn't support binding external variables for they are
not supported by the implemented A P I . So, static binding consists of selecting the collection
according to the URI used to connect to the database and making it available as default
collection during path expression execution. This way, we follow required A P I contract
and we are able to evaluate the XPa th 2.0 subset without having to implement the whole
specification X Q J specification.

4.3.4 Retrieving X D M instances from database

A part of the dynamic context, called the evaluation context, consist of an actual XPath
step, an actual table and intermediate results. Evaluation context is used to chain execution
of the SQL commands. It is modeled by class XContext. Java.

The actual XPath step must be mapped to metadata, precisely to XTables available in
the system. Since tables are organized in a hierarchical structure in the database, we can
narrow the selection of appropriate document fragments even before touching the database
content itself simply by determining if such path can be reached in metadata extracted
from documents. Every step is implements its SQL command fragment, which return
intermediate nodes, entry points for the next steps.

31

The biggest problem lies in axes, which are transitive closures or require a document to
traverse its structure. Obviously, we can't mirror relations between elements in shredded
document to the schema, because one element can be used in multiple positions in the
document and so the fact that a relation exists between two relational tables does not
guarantee the same relation exists for the current step and the evaluation context.

The evaluation of steps in sequence provides lower number of SQL joins, but the higher
number of SQL commands required to execute the query. This is expected behaviour, such
as it was identified while performance of Hybrid was compared to Shared and Basic in [53].

Before an X D M instance is created, the table structure determined for the XPath axis
is used to impact following SQL query which selects elements from the database. The query
differs based on the inline flag:

• For inlined tables the query must be executed immediately, narrowing the possible
elements.

• for standalone tables we can append SQL WHERE clause which will filter elements.

The result of the query is used for two purposes: 1) To construct the X D M instance, if
the step is the last one in the path expression; or 2) To identify the root of execution for the
next step. The first case becomes complicated if the last step retrieves an element, which is
not a leaf node in the graph representation, because transitive closure of child relation must
be retrieved from the database as well. The D O M tree, which represents an X D M instance,
is constructed from nodes which are transformations of relational database records. This
way, NeXD execution chain prefers selection of atomic values instead of whole document
fragments.

The latter case represents the core of the NeXD retrieval system. Intermediate results
are transformed to a sequence, and for each item the rest of XPath step expression is
executed. The entire execution chain is shown in figure 4.2

32

retrieves query

Is responsible for parsing the query and reconstruction of results.
Processing of invalid queries omitted for brevity.

Query

~7\~

no next step

next step available

XStep

evaluate together with context

parse rest

spawn according to infered paths

Takes intermediate results from XContext and checks their validity,
s able to do arbitrary transformations on recieved XDM tree.

take available XDM

XResultEvaluator

V

Contains actual XStep, actual XTable and intermediate results XDM.

a general step XStep

I
Modify intermediate

Updates XDM according
to predicates

Modify SQL constrainsts \

Limits number of results
and required joins to fetch
data into XDM in next step

evaluation finished

Figure 4.2: Process of X D M instance retrieval

4.4 Selecting the underlying database

NeXD is the implementation of native X M L database over a relational one. In this section
we explain what R D B M S we have chosen, what are the limitations of our solution and what
functionality is required from the underlying relational database.

NeXD aims to be an open source project, so while selecting the database we wanted
to use an open source R D B M S as well 3 . The selection was narrowed both by the required
functionality as well as production versions installed, namely NeXD was required to run on
the PostgreSQL [17] 8.3.x database instance installed on server minerva2.fit.vutbr.cz.
Moreover, we consider PostgreSQL the most advanced open source database.

The query functionality relies on a raw J D B C with precompiled SQL commands. We
identified following restrictions on the database side:

3Surprisingly, the code of the relational database has proven useful while searching for limitations of the
schema naming, as explained in [48]. The schema name is limited to 63 characters using lower part of UTF-8
table.

33

http://minerva2.fit.vutbr.cz

• Database must support schemas or other means how to nest table names under an
unique namespace. Schemas are supported quite well in PostgreSQL 8.x. PostgreSQL
allows different schemas in the database to be owned by different users. Additionally,
database implicitly creates schema called public, which is not defined in the SQL
standard, and it is implicitly used when no schema is defined. The SQL standard
actually defines schema based on user name and do not force its implementation to
include support for different namespace names.

This limitation can be easily overridden in the Hybrid algorithm processing, explained
in section 4.2, by using generating table names with prefix based on a X S D root
element name. Our implementation uses the X S D root element as a part of schema
name. However, the element name in X M L can be in Unicode, schema name only
in a subset of Unicode. This can lead to rejection of documents containing elements
named in other than Latin alphabet.

• Database must support a procedural language with triggers. This requirement is
enforced by the previous one, since we are dropping whole namespace once the row
from Xschema table is deleted. Such a trigger written in PL /pgSQL language is a
part of the thesis as source E.2.

• The code poses additional restrictions on J D B C driver, the connection bridge between
database and Java code. The driver must support following functionality:

1. Creating the ARRAY of given type using Java, sql.Connection factory method
for arrays of Java (primitive) objects. NeXD stores a lot of the metadata in
arrays on the SQL side.

2. Driver must support Datasource implemenation for connection pooling and
proxying physical connections.

3. The J D B C driver should support getGeneratedKeysO method, which returns
ResultSet with all columns representing the values obtained from sequences or
other generators. However, the J D B C driver for PostgreSQL 8.3 didn't support
the functionality, so the code was eventually rewritten to form of REHIRING
inserts statements. RETURNING is an extension of PostgreSQL, even if the same
concept is used in Oracle database.

• The database must support S Q L / X M L specification from SQL 2003 standard. This
is used to reconstruct content of mixed elements from database relations.

• The database must hold the A C I D (Atomicity, Consistency, Isolation, Duration)
constraints.

Our implementation was tested against PostgreSQL 8.3 and 8.4. NeXD expects to run
under user who has enough rights to create schema, database with installed P L / p g S Q L
language extensions and a authentication based on user name and password, although
indent method should work as well.

NeXD can be ported to an other database, which holds the constraints. However, it
does not support any database abstraction layer, and all SQL statements are written in
the PostgreSQL dialect. Thus the migration represents revisiting the SQL statements (not
necessarily all of them) and binding the J D B C data source properties to the properties
supported by NeXD.

34

4.5 Selecting the supported A P I s

Currently, there are two APIs which are standard for XPath/XQuery enabled storage sys­
tems within Java. The first one, X M L : D B A P I was proposed to be implemented in the
formal specification, the latter one XQuery for Java is newer and its draft was finalized
after the master's thesis specification was created. In this section, we shortly describe both
APIs and show what parts we have implemented in NeXD. Java also defines the third A P I ,
which was not considered since it does not allow processing richer languages than XPath
1.0. J A X P (Java A P I for X M L Processing [22]) focuses rather on X M L document pars­
ing, X S L T transformations and D O M model then on query functionality. J A X P is in fact
used to retrieve a platform available X M L parser for processing X M L documents and X M L
schema representation in NeXD.

4.5.1 X M L : D B A P I

X M L : D B A P I (X A P I [25]) was designed as a common access to X M L databases. It allows
applications to store, retrieve, modify and query data in the database. The A P I claims to
be equivalent with technologies such as J D B C or O D B C .

X A P I is very modular and allows vendors to implement functionality beyond the spec­
ification. The specification is based on core levels, which show what parts of X A P I had
been implemented. These are:

Core Level 0 This is the minimum level to claim the conformance. Database must im­
plement A P I base and XMLResource modules; and

Core Level 1 Additionally contains XPathQueryService module

NeXD implements Core Level 1, however the XPath language version specified by X A P I
is unclear. NeXD implements a subset of XPa th 2.0. It the base A P I consists of defini­
tion and abstractions of collections, resources (documents or their parts) and their sets.
XPathQueryService allows (originally) usage of XPath 1.0 against the database. NeXD
additionally provides DocumentLoaderService, which can store any resource defined by
U R L This can be used for example to allow your application to store documents using
R E S T protocol, which is quite easy to be implemented using a third party library, how­
ever, it is not present in the current version of NeXD.

However, implementing X A P I in the application has several flaws. First, X A P I was
defined in 2001, and it wasn't clear in some points important for vendors, furthermore the
draft wasn't standardized. This has led to situation, where general interoperability is hard
to achieve. Therefore, NeXD used rather the modification of X A P I proposed by eXist,
which additionally allows running the testsuite in an easier way. Second, it simply seems
that nobody forces X M L : D B A P I evolution and the project is virtually dead. Therefore,
we have decided, that having support for another A P I will be very convenient.

4.5.2 X Q u e r y A P I for Java

XQuery A P I (also known as X Q J , Java Specification Request Java 255 [21]) is a generic
data access framework, which provides a uniform interface for XQuery implementations in
the Java language. Applications using X Q J can execute queries, bind data and process
query results. X Q J , as an enterprise specification, provides support for J2SE 1.4 and its
goals can be stated as following:

35

• Ensure consistency with XQuery 1.0 specification.

• Provide access to any XQuery data source.

• Create a simple A P I , which may resemble J D B C , which is already familiar to many
developers.

NeXD implements X Q J up to a limited part, it just provides a way how to obtain a
data source, collection and execute a query. However, since the functionality of XPath was
reduced to simple expressions, we do not implement external data binding and sophisticated
result processing. We do not support a precompiled expressions at the moment. The
precompiled expressions will skip A N T L R generating phase. Since XQConnection class
already caches expressions, we can cache expressions for longer periods, which may result
in significantly faster execution for repeated queries.

NeXD uses X Q J , which has a better implementation for XQuery processing, as a system
wide A P I for querying. X A P I , is additionally able to control the database itself, that is to
control creation of (nested) collections and to store data to the database. The connection
between two APIs seems promising, as it virtually allowed as to have very limited X Q J
support for free, and overhead caused by injecting X Q J into X A P I is very limited.

The bridge is implemented in XPathQueryService, mentioned in the previous section.
The service simply wraps X A P I Collection to its X Q J equivalent, injects the collection to
the XQuery static context default collection. This ensures there are available data in the
collection bounded to the service only. Additionally, the bridge didn't force any modification
of X Q J contract, apart from reduction of XPa th expression power, which was done anyway.

4.5.3 Relational access

NeXD allows modification of the data directly by accessing the relational tables by any mean
convenient for relational databases. However, user must be aware that the modifications are
not automatically reflected to the document cache, which may lead to inconsistent query
results. Moreover, because of redundancy, it user modifies the atomic relation data, for
instance any row in a table representing a Hybrid generated element, it will end up with
stale data in XDOCUMENT table.

Therefore, the only operation advised by an unexperienced user is removing a schema
from the database. By deleting a line from the XSCHEMA table user removes database
schema generated for this schema, including nested tables and documents as well, because
the deletion triggers the cleaning trigger.

4.6 N e X D code overview

The NeXD code is mavenized, so it follows Maven's typical contract for Java project. That
is, in the root directory checked out from the Git [12] repository, you will find only Maven
Project Object Model (POM) file pom.xml and directory src, which contains subdirectories
with own source code (main and test source code directory test). As an add-on, the
directory contains notmavenized directory, which contains artifacts not available in public
Maven repositories and an installation script for their installation.

The original code base from [45] was massively rewritten. Moreover A P I comments were
translated from Czech to English, to make project useful for the community. This was an
extremely tiring task, but at least the traversal provided me deep knowledge of the system,

36

both its benefices and limitations. Nowadays, NeXD A P I is considered stable. It includes
following packages, considering namespace prefix cz.vutbr .f i t .nexd:

common Contains both files shared by X M L : D B A P I and X Q J A P I and utilities:

map Contains generator for X S D from X M L documents, shredder to fragments and X D M
(re)constructor:

xapi Implementation of X M L : D B API :

xqj Partial implementation of X Q J ; and

xquery Parser of XPath language, generated by A N T L R .

NeXD was compiled and tested on various versions of Java 6 (Sun/Oracle 1.6.0_17,
I B M 6 SR7, OpenJDK 1.6.0_18), all of them 64bit versions. We considered backward
support for Java 5 as well, but since Java 5 entered end-of-life phase in 2007 and even
end-of-service-life in 2009, this was considered an extra work not worth of it.

37

Chapter 5

Evaluation of performance

As was stated in chapter 1, NeXD aims to be a fast query engine system with the support of
querying by an X M L query language, that is to act as a native X M L database. During the
implementation we described strong and weak points of the implementation, so we have to
verify the theoretical outputs with the real based data measured on current implementation.

The measuring performance of the application in not an easy task. Firstly, we have
to decide which parts and which kind of benchmark we are interested in and then we
have to find means, which perform the measuring itself. Following evaluations were found
interesting for NeXD:

• Storage time for various X M L document, including the complex schema generation,
exercising Trang and the Hybrid method components.

• Ratio between the real size of document and the space used in NeXD.

• Memory requirements for processing of documents.

• Query time, including different means of serialization.

• Clustering performance.

NeXD contains TestNG unit tests, which act both as smoke and functional tests. NeXD
contains an interface, which allows easy testing of the query time, the results are presented in
current chapter. Benchmarking of X M L query languages is quite difficult nowadays, because
the standardized testsuite does not exist yet. Sure, benchmarks do exist for particular
application scenarios, but there are no standardized specifications [44]. Despite the facts,
there exists an excellent service, called XQBench [1], which allows measurement of X M L
query performance, however it does not support other language than XQuery. Still, this
would allow us using a subset of XQuery to test the performance. Alas, our limitation, which
bounds X A P I collection to the dynamic context is not portable and thus this frameworks
could not be used.

The real performance of NeXD depends on the ratio between select and modification
queries. No doubt, because we allowed redundancy of the data, we preferred the faster
selection. In this version, we do not supporting XQuery Update Facility 1.0, XUpdate
or any other mean of updating data except direct change by an SQL command. The
complexity of an update operation will raise with respect the to size of the document and
the impact of the modification on it. XUpdate Facitily will be added in a future version.

38

5.1 Testing framework

We have decided that query time was the most important characteristic of our system. We
have selected and identified XPa th queries, which evaluates most of the NeXD functionality.
These queries were executed on the testing system described in appendix A . Queries we
tested are summarized in table 5.1, 1,000 documents from [16] were used as the test input.

Table 5.1: Test queries used to evaluate NeXD performance
Name XPath query

Q l /weather

Q2 /weather/head/locale

Q3 /weather/dayf/day[1]/part/wind

Q4 /weather/dayf/day[1]/part/wind/*

Q5 //wind

Q6 //cc/wind/*

Q7 //part/wind

Q8 //part/wind/*

5.2 Comparing performance of N e X D with other databases

We compared the query performance on NeXD and eXist 1.4, rev 10440. eXist database
was installed in the standard way, using the installer distributed within the jar file. For
both databases, we used a command line based user interface (CLI) (see appendix D for
NeXD CLI) . As NeXD is not able to run in a daemon mode, accepting and processing
requests, we expected a bit worse results then NeXD is able to achieve in reality.

This has proven true during insertion of the documents into a special collection called
perf. While eXist used about 13 seconds to store 1,000 documents, NeXD took up to
14 minutes. The difference can be explained by comparing operations needed to store the
documents:

• eXist is running in the daemon mode. For each X M L file in the directory, eXist simply
inserts the document to the collection and create basic indices.

• NeXD, on the other hand, does not allow the insertion of multiple files in a batch. This
can be easily overcome by a script, but the execution chain then performs following
operations:

1. NeXD is initialized, metadata is loaded:

2. the document X S D schema is generated and compared to existing schema with
the same root element loaded from database (if such schema already exists in
database, otherwise schema is stored):

3. the document is shredded to the database and stored; and

4. NeXD is terminated.

If we provide NeXD with a daemon accepting requests, we can omit phases 1 and 4
for each of the documents. This will make the storage a bit faster. However, we still
expect a lower performance compared to the eXist one.

39

5.2.1 Running X P a t h queries

There are many possibilities how to measure query performance. The possibilities can be
combined in a matrix, such as columns are represented by 1) Measure the time required to
deliver the first result; 2) measure the time to retrieve first n results; and 3) measure the
time to retrieve all results , whereas rows can be divided into a) retrieval of D O M instances;
and b) retrieval of serialized D O M instances .

As it was already said before, NeXD uses a D O M tree to represent the intermediate
results. Therefore, we test the performance of a query retrieval in the serialized content
form, because the other decision would give an advantage to NeXD. The other decision was
to retrieve all results at once. The results themselves were not printed to standard output,
but redirected to /dev/null device, to minimize the impact of the terminal. We measured
the time using a standard Linux utility time, using the combination of the time spent in
both userspace and kernel. Both NeXD and eXist are using an advantage of the multi-core
system, because the user time was offer higher than the real execution time. For queries
retrieving more results, the advantage was diminished because of an overhead caused by
result serialization. The results are summarized in table 5.2.

Table 5.2: The time required to retrieve results
Name NeXD time eXist time Total number of results

Q l 5,142 ms 6,123 ms 1,000
Q2 2,713 ms 5,603 ms 1,000
Q3 5,670 ms 7,116 ms 2,000
Q4 5,616 ms 16,062 ms 8,000
Q5 10,166 ms 20,338 ms 11,000
Q6 2,952 ms 11,564 ms 4,000
Q7 9,539 ms 18,625 ms 10,000
Q8 9,250 ms 40,298 ms 40,000

You can see that NeXD performs better in all tested queries. The biggest performance
gap we experienced in the queries, which contain a wildcard step at the end (Q4, Q6 and
Q8). NeXD must query the database to reconstruct the whole element (Q3), or to retrieve
all children (Q4), which represent the very similar operation over the relational database.
Thee D O M operations required to construct an X D M instance actually made query Q3
slower than QA, which is the opposite of eXist.

5.3 Summary

NeXD provides quite promising results comparing its performance to eXist. The results can
be additionally improved by a cache, a daemon database mode and the other improvements
mentioned in the thesis. Still, eXist is a project which provides more than just an X M L
database, it allows an user to add its own plugins, it has both a web-based and a Java-based
GUI and it is capable to store other file types than X M L documents as well. NeXD misses
these advanced features, but concentrates on a raw performance.

40

Chapter 6

Conclusion

6.1 Summary

We have shown that data-centric X M L documents which conform to X S D schema can be
stored in relational database using the modified Hybrid algorithm with very satisfiable
result. Because we allowed redundancy, we are able to pull out original document even
with processing instructions, comments and other elements which are not stored in relation
tables.

This work provides a solid theory to implement a XML-aware data store based on a
R D B M S . We have shown how XPath queries can be processed in an efficient way. The
query evaluation system is based on a LL(*) parser, which fetch data in incremental steps
to avoid exhaustive and thus very expensive join operations. However, the XPa th language
has shown to be much more complex than expected and because code inherited from former
project was not production ready and didn't implement even whole X A P I , we have reverted
the functionality nearly to older version in means of supported XPa th language.

The main contribution therefore lies in XPath parser, which supports expressions which
are not implemented yet in retrieval system, however due to object inheritance can be
created easily. Because main issues blocking SQL statement execution were identified and
described, we do not expect any problems with further implementation. The parser itself
actually contains parts related to XQuery and XQuery extensions, so in the next step
NeXD can be shifted to XQuery 1.0 conformant implementation of the X M L database.
Additionally, we provide a skeleton of X Q J implementation, which we expect to become a
new Java X M L querying standard, so literally NeXD didn't miss the boat. After all, the
current X A P I implementation is a proxy to X Q J implementation, so X Q J is working in
standalone mode.

The decision to migrate to different query A P I , after project was started and its formal
specification was created, was very costly. However, it will provide the starting point for
all other NeXD developers and it will lead to performance speed up as well. Moreover, it
will make NeXD a competitive project.

We can't omit the publication of the project to the open source community, meaning a
lot of time spent which was closely related to the master's thesis, but not a direct part of
it. The presentation of NeXD to other developers on X M L Prague 2010, the possibility to
consult strong and weak points and actually making some people convinced we might be
the solution they are waiting for were no doubt astonishing results. The idea of publishing
the work outside of the academic sphere was present since the very beginning and it was
the main reason why I have decided to write the master's thesis in English.

41

6.2 Promoting N e X D as an open source project

NeXD, from its beginning was considered as an open source project. We liked to share the
idea of having a fast native X M L database based on proven technologies and moreover to
share the implementation itself with the community. NeXD ascends from older master's
thesis developed by Radim Hernych [45]. However, his code was bound to the NetBeans
IDE [24], making impossible to build NeXD predecessor externally. This might not be
seen as a big limitation, however, we wanted to grant the freedom of choice for all incoming
developers, as nothing is more frustrating for an enthusiastic volunteer than getting familiar
with completely new IDE.

It was clear from the beginning that inherited code will be polished and published in a
repository. After discussion with the supervisor, it was decided that we want Git as version
control system. Therefore, we have chosen the host gitorious.org from the list of public Git
repositories available at [4]. Git provided us a local versioned development environment
and synchronization with master repository located at gitorious.org/nexd.

Despite the fact that the code was published in beginning of March, NeXD is currently
developed as a single-man project, due to the limitation posed by master's thesis. Once
the thesis is finished, the project will continue its evolution by next natural step, that is
including a way how to report bugs, issues and feature requests. Additionally a user forum
and mailing list are the common way how to ask questions. The NeXD will inform about
passing milestones on Twitter, using #nexddb nick.

Once the choice of the tool was decided (we sticked with Maven 2.x), the project itself
was made public. Because wanted to present NeXD to the community, there were definitely
better possibilities than just silently creating a project on SourceForge.net. Thus, during
March, NeXD was presented at XML Prague 2010 [28], a conference on X M L .

I lead a very fruitful discussion with Adam Retter, one of the main eXist developers. As
eXist is one of our main competitors (surely we can speak about competition even among
open source projects), he was really anxious about our performance and suggested us to run
tests against eXist 1.4 branch. Additionally, Adam explained me the why they modified
X A P I and where are the pitfalls of the implementation. NeXD was presented there as
a poster during the poster session and had a quick presentation over the full audience.
Moreover, the description of NeXD is a part of the conference proceedings from Institute
for Theoretical Computer Science, Charles University in Prague [51].

Another successful story is the presentation of NeXD at Student E E I C T 2010, a confer­
ence held by by the Faculty of Electrical Engineering and Communication and the Faculty
of Information Technology of the Brno University of Technology. The NeXD poster was
presented there, jury was introduced to NeXD, its current status and roadmap & develop­
ment. The project won the first place in its category (information systems), which was no
doubt a big success.

42

http://gitorious.org
http://gitorious.org/nexd
http://SourceForge.net

Bibliography

[1] A XQuery benchmark service, http://www.xqbench.org, available in May, 2010.

[2] A N T L R parser generator, http://www.antlr.org/, available in December, 2009.

[3] Apache Hadoop HBase. http://hadoop.apache.org/hbase/, available in December,
2009.

[4] Comparison of free software hosting facilities, http:
//en.wikipedia.org/wiki/Comparison_of_free_software_hosting_facilities,

available in May, 2010.

[5] DocBook.org. http://www.docbook.org, available in May, 2010.

[6] Document Object Model Traversal.
http: //www. w3. org/TR/D0M-Level-2-Traversal-Range/traversal, available in
December, 2009.

[7] Document Type Declaration. http://www.w3.Org/TR/REC-xml/#dt-doctype,
available in May, 2010.

[8] Eclipse.org home, http://www.eclipse.org/, available in May, 2010.

[9] E M M A : a free Java code coverage tool, http://emma.sourceforge.net, available in
May, 2010.

[10] eXist: Open Source Native X M L database, http://www.exist-db.org/, available in
December, 2009.

[11] Extensible Markup Language. http://www.w3.org/XML/, available in December,
2009.

[12] Git - Fast version control system, http://git-scm.com/, available in May, 2010.

[13] Java Architecture for X M L Binding (J A X B) .
http://j ava.sun.com/developer/technicalArticles/WebServices/j axb/,

available in May, 2010.

[14] jStyleParser. http://cssbox.sourceforge.net/jstyleparser, available in May,
2010.

[15] Maven: Welcome to Apache Maven. http://maven.apache.org/, available in May,
2010.

43

http://www.xqbench.org
http://www.antlr.org/
http://hadoop.apache.org/hbase/
http://DocBook.org
http://www.docbook.org
http://www.w3.Org/TR/REC-xml/%23dt-doctype
http://Eclipse.org
http://www.eclipse.org/
http://emma.sourceforge.net
http://www.exist-db.org/
http://www.w3.org/XML/
http://git-scm.com/
http://j
http://cssbox.sourceforge.net/jstyleparser
http://maven.apache.org/

[16] National and Local Weather Forecast, Hurricane, Radar and Report.
http://www.weather.com/, available in December, 2009.

[17] PostgreSQL: The world's most advanced open source database.
http://www.postgres.org/, available in December, 2009.

[18] R E L A X N G . http://www.relaxng.org/, available in December, 2009.

[19] Schematron. http://www.schematron.org, available in May, 2010.

[20] TestNG. http://www.testng.org/, available in May, 2010.

[21] The Java Community Process(SM) Program - JSRs: Java Specification Requests -
detail JSR# 225. http://jcp.org/en/jsr/detail?id=225, available in May, 2010.

[22] The Java Community Process(SM) Program - JSRs: Java Specification Requests -
detail JSR# 5. http://jcp.org/en/jsr/detail?id=5, available in May, 2010.

[23] Trang. http://www.thaiopensource.com/relaxng/trang.html, available in May,
2010.

[24] Welcome to NetBeans. http://www.netbeans.org, available in May, 2010.

[25] X M L Database A P I Draft.
http://xmldb-org.sourceforge.net/xapi/xapi-draft.html, available in May,
2010.

[26] X M L Path Language (XPath) 1.0. http://www.w3.org/TR/xpath/, available in
May, 2010.

[27] X M L Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/, available in
December, 2009.

[28] X M L Prague 2010. http://www.xmlprague.cz/2010/index.html, available in May,
2010.

[29] X M L schema. http://en.wikipedia.org/wiki/XML_schema, available in May, 2010.

[30] XQuery 1.0: A n X M L Query Language. http://www.w3.org/TR/xquery/, available
in December, 2009.

[31] XQuery 1.0 and XPath 2.0 data model (X D M) .
http://www.w3.org/TR/xpath-datamodel/, available in December, 2009.

[32] XQuery Update Facility 1.0. http://www.w3.org/TR/xquery-update-10/, available
in December, 2009.

[33] X R X . http://en.wikibooks.org/wiki/XRX, available in December, 2009.

[34] X M L Schema Part 0. http://www.w3.org/TR/xmlschema-0/, available in March,
2008, 2004.

[35] Sihem Amer-Yahia, Fang Du, and Juliana Freire. A comprehensive solution to the
XML-to-relational mapping problem. In In WIDM'04: Proceedings of the 6th Annual
ACM International Workshop on Web Information and Data Management, pages
31-38, New York, N Y , USA, 2004.

44

http://www.weather.com/
http://www.postgres.org/
http://www.relaxng.org/
http://www.schematron.org
http://www.testng.org/
http://jcp.org/en/jsr/detail?id=225
http://jcp.org/en/jsr/detail?id=5
http://www.thaiopensource.com/relaxng/trang.html
http://www.netbeans.org
http://xmldb-org.sourceforge.net/xapi/xapi-draft.html
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath20/
http://www.xmlprague.cz/2010/index.html
http://en.wikipedia.org/wiki/XML_schema
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xquery-update-10/
http://en.wikibooks.org/wiki/XRX
http://www.w3.org/TR/xmlschema-0/

[36] Sihem Amer-Yahia Att . Storage techniques and mapping Schemas for X M L , 2003.

[37] A . Balmin and Y . Papakonstantinou. Storing and Querying X M L Data Using
Denormalized Relational Database. The VLDB Journal, 14(l):30-49, 2005.

[38] Phi l Bohannon, Juliana Freire, Prasan Roy, , and Jerome Simeon. From X M L schema
to relations: A cost-based approach to X M L storage. In In ICDE, pages 64-75, 2002.

[39] Philip Bohannon, Juliana Freire, Jayant R. Haritsa, Prasan Roy, Jerome Simeon, and
Maya Ramanath. Legodb: Customizing relational storage for X M L documents. In In
VLDB, pages 1091-1094, 2002.

[40] Ronald Bourret. X M L and Databases.
http://www.rpbourret.com/xml/XMLAndDatabases.htm, available in January, 2010,
2005.

[41] Timo Böhme and Erhard Rahm. Supporting efficient streaming and insertion of
X M L data in R D B M S , 2004.

[42] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A . Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E . Gruber. Bigtable: A
distributed storage system for structured data. In IN PROCEEDINGS OF THE
ITH CONFERENCE ON USENIX SYMPOSIUM ON OPERATING SYSTEMS
DESIGN AND IMPLEMENTATION - VOLUME 7, pages 205-218, 2006.

[43] Petr Chmelař, Radim Hernych, and Daniel Kubíček. Interactive visualization of
data-oriented xml documents. In Advances in Computer and Information Sciences
and Engineering, Computer Science, pages 390-393. Springer Verlag, 2008.

[44] Peter M . Fisher. XQBench - A XQuery Benchmarking Service. In XML Prague 2010
- Conference Proceedings, ITI Series, pages 341-355. M A T F Y Z P R E S S , 2010.

[45] Radim Hernych. Transformace a persistence X M L dat v relační databázi. Master's
thesis, F IT B U T in Brno, 2009.

[46] Jaroslav Rychta and Irena Mlýnková. Přednášky k předmětu PGR036, Technologie
X M L , 2009.

[47] Mary Ann Malloy and Irena Mlýnková. Closing the Gap between X M L and
Relational Database Technologies: State-of-the-Practice, State-of-the-Art and Future
Directions.

[48] Graeme Mathieson. PostgreSQL schema name restriction.
http://woss.name/blog/2005/8/1/postgresql-schema-name-restriction.html,

available in May, 2010.

[49] Irena Mlýnková and Jaroslav Pokorný. X M L in the world of (object-)relational
database systems. In 13th International Conference on Information Systems
Development Advances in Theory, Practice, and Education, pages 63-76, 2005.

[50] Karel Piwko. Nativní X M L databáze. Bachelor's Thesis. F IT B U T in Brno, 2008.

45

http://www.rpbourret.com/xml/XMLAndDatabases.htm
http://woss.name/blog/2005/8/1/postgresql-schema-name-restriction.html

[51] Karel Piwko, Petr Chmelař, Radim Hernych, and Daniel Kubíček. N A X D . In XML
Prague 2010 - Conference Proceedings, ITI Series, pages 307-316. M A T F Y Z P R E S S ,
2010.

[52] Juan M . Perez, Torben Bach Pedersen, Rafael Berlanga, and Maria J . Aramburu. IR
and O L A P in X M L document warehouses. In Advances in Information Retrieval,
volume 3408, pages 536-539, Springer Berlin / Heidelberg, 2005.

[53] Jayavel Shanmugasundaram, Eugene Shekita, Jerry Kiernan, Rajasekar
Krishnamurthy, Efstratios Viglas, Jeffrey Naughton, and Igor Tatarinov. A general
technique for querying X M L documents using a relational database system. ACM
SIGMOD Record, 30(3):20-26, 2001.

[54] Michael Stonebraker, Samuel Madden, Daniel J . Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it's time for a complete
rewrite). In VLDB '07: Proceedings of the 33rd international conference on Very
large data bases, pages 1150-1160. V L D B Endowment, 2007.

[55] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi . Scalable transactions for web
applications in the cloud. In Proceedings of the Euro-Par Conference, Delft, The
Netherlands, August 2009.
http://www.globule.org/publi/STWAC_europar2009.html.

46

http://www.globule.org/publi/STWAC_europar2009.html

List of used abbreviations

A C I D Atomicity, Consistency, Isolation, Durability
A J A X Asynchronous JavaScript and X M L
A N T L R Another Toolkit for Language Recognition
A P I Application Programming Interface
AST Abstract Syntax Tree
AT Advanced Technology
A T A A T Attachment
B L O B Binary Large Object
C D A T A Character Data
CLI Command Line Interface
C L O B Character Large Object
D A G Direct Acyclic Graph
D D M L Document Definition Markup Language
D L N Dynamic Level Numbering
D O M Document Object Model
DSD Document Structure Definition
DSDL Document Schema Definition Languages
D T D Document Type Definition
E B N F Extended Backus-Naur Form
E E Enterprise Edition
E E I C T Electrical Engineering, Information and Communication Technologies
E R Entity-Relationship
F L W O R For, Let, Where, Order by, Return
G N U GNU's Not Unix
GUI Graphical User Interface
H T M L Hypertext Markup Language
H T M L 5 H T M L version 5
H T T P Hypertext Transfer Protocol
IDE Integrated Development Environment
J A X B Java Architecture for X M L Binding
J A X P Java A P I for X M L Processing
J D B C Java Database Connectivity
JSR Java Specification Request
J2SE Java 2 Standard Edition
LL(*) Left to right, Leftmost derivation with an arbitrary lookahead
L U K S Linux Unified Key Setup
L V M Logical Volume Manager
O D B C Open Database Connectivity

47

P C D A T A Parsed Character Data
PL /pgSQL Procedural Language/PostgreSQL Structured Query Language
P O M Project Object Model
QName Qualified Name
R D B M S Relation Database Management System
R D F Resource Description Framework
R E L A G N G Regular Language for X M L Next Generation
R E S T Representational State Transfer
R N C R E L A X N G Compact
R N G R E L A X N G
R P M Rotations per Minute
S G M L Standard Generalized Markup Language
SOX Schema for Object-Oriented X M L
SQL Structured Query Language
T R E X Tree Regular Expressions for X M L
UCS Universal Character Set
URI Uniform Resource Identifier
UTF-8 8-bit UCS/Unicode Transformation Format
W3C World Wide Web Consortium
X A P I X M L : D B A P I
X D M XQuery 1.0 and XPath 2.0 Document Model
X H T M L Extensible H T M L
X H T M L 5 X H T M L version 5
X M L Extensible Markup Language
X M L : D B X M L Database
X Q J XQuery for Java
X R X XForms/REST/XQuery
X S D X M L Schema Document
X S L Extensible Stylesheet Language
X S L T X S L Transformations
4NF Fourth normal form

18

List of appendices

Following appendices are enclosed as a part of this work:

A Configuration used for testing

B X M L schemas for Cassini document presented as source 2.1

C XPath 2.0 and XQuery 1.0 grammar snippets

D NeXD command line interface

E Relational database schema of NeXD

19

Appendix A

Configuration used for testing

A . l Hardware

. Intel(R) Core(TM)2 Duo T9600 @ 2.80GHz

. 4GB of PC2-8500 1066MHz DDR3

. Serial-ATA/150 160GB disk, 7200 R P M

A . 2 Software

• eXist revision version 10440

. Java(TM) 1.6.0_17

. PostgreSQL 8.4.4.

. G N U Linux, distribution Fedora 12, kernel 2.6.32.11-99.fcl2.x86_64

• ext4 file system, present in L V M and encrypted by L U K S

50

Appendix B

X M L Schemas for the Cassini
document

NeXD generated schema presented as source B . l for Cassini document.

Source code B . l : X S D schema for Cassini document

<?xml version="l.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<xs:element name="nasa-data">

<xs:complexType>

<xs:sequence>

<xs:element ref="probe"/>

<xs:element ref="measure"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="probe">

<xs:complexType>

<xs:sequence>

<xs:element ref="name"/>

<xs:element ref="launch-date"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="name" type="xs:NCName"/>

<xs:element name="launch-date">

<xs:complexType>

<xs:sequence>

<xs:element ref="day"/>

<xs:element ref="month"/>

<xs:element ref="year"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="day" type="xs:integer"/>

<xs:element name="month" type="xs:NCName"/>

<xs:element name="year" type="xs:integer"/>

<xs:element name="measure">

51

http://www.w3.org/2001/XMLSchema

<xs:complexType>

<xs:sequence>

<xs:element ref="distance"/>

<xs:element ref="destination"/>

<xs:element ref="data"/>

</xs:sequence>

<xs:attribute name="id" use="required" type="xs:NMTOKEN"/>

</xs:complexType>

</xs:element>

<xs:element name="distance">

<xs:complexType>

<xs:sequence>

<xs:element ref="value"/>

<xs:element ref="unit"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="value" type="xs:integer"/>

<xs:element name="unit" type="xs:NCName"/>

<xs:element name="destination" type="xs:NCName"/>

<xs:element name="data">

<xs:complexType>

<xs:sequence>

<xs:element ref="water"/>

<xs:element ref="albedo"/>

<xs:element ref="temperature"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="water" type="xs:decimal"/>

<xs:element name="albedo" type="xs:decimal"/>

<xs:element name="temperature" type="xs:decimal"/>

</xs:schema>

Ignoring the fact that X D M provides datatypes for defining dates in a better mapping,
R E L A X N G schema for Cassini document is shown as source B.2.

Source code B.2: R N G X M L schema for the Cassini document

<element name="nasa-data" xmlns="http://relaxng.org/ns/structure/1.0"

datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

<element name="probe">

<element name="name">

<text/>

</element>

<element name="launch-date">

<element name="day">

<data type="positiveInteger"/>

</element>

<element name="month">

<data type="string"/>

</element>

<element name="year">

<data type="gYear"/>

</element>

52

http://relaxng.org/ns/structure/1.0
http://www.w3.org/2001/XMLSchema-datatypes

</element>

</element>

<oneOrMore>

<element name="measure">

<attribute name="id">

<data type="ID"/>

</attribute>

<element name="distance">

<element name="value">

<data type="positiveInteger"/>

</element>

<element name="unit">

<choice>

<value type="string">km</value>

<value type="string">AU</value>

</choice>

</element>

</element>

<element name="destination">

<text/>

</element>

<element name="data">

<interleave>

<optional>

<element name="water">

<data type="float"/>

</element>

</optional>

<optional>

<element name="albedo">

<data type="float"/>

</element>

</optional>

<optional>

<element name="temperature">

<data type="float"/>

</element>

</optional>

</interleave>

</element>

</element>

</oneOrMore>

</element>

It is obvious that the X M L syntax is extremely verbose. It can be shortened significantly
when written in R N C (R E L A X N G Compact syntax), as shown in source B.3.

Source code B.3: R N C schema for the Cassini document

element nasa-data {

element probe {

element name { text },

element launch-date {

element day { xsd:positiveInteger },

element month { xsd:string },

53

element year { xsd:gYear },

},
element measure {

attribute id { xsd:ID },

element distance {

element value { xsd:positiveInteger },

element unit { string "km" I string "AU" }

},
element destination { text },

element data {

element water { xsd:float }?

& element albedo { xsd:float }?

& element temperature { xsd:float}?

}

}+

}

54

Appendix C

XPath 2.0 and XQuery 1.0
grammar snippets

This appendix presents parts of XPath and XQuery grammars important for our imple­
mentation.

C . l X P a t h 2.0 grammar snippets

The path expression in XPa th 2.0 can be represented by E B N F as source C . l , with further
details omitted.

Source code C . l : E B N F for path expression

PathExpr : := ("/" RelativePathExpr?)

1 ("//" RelativePathExpr)

I RelativePathExpr

RelativePathExpr : := StepExpr (("/" | "//") StepExpr)*

StepExpr : := FilterExpr | AxisStep

AxisStep : := (ReverseStep | ForwardStep) PredicateList

ForwardStep : := (ForwardAxis NodeTest) I AbbrevForwardStep

ReverseStep : := (ReverseAxis NodeTest) I AbbrevReverseStep

PredicateList : := Predicate*

C.2 XQuery 1.0 grammar snippets

The F L O W R expression can be represented by E B N F as source C.2, with further details
omitted.

Source code C.2: E B N F for F L O W R expression

FLWORExpr ::= (ForClause | LetClause)+

WhereClause? OrderByClause? "return" ExprSingle

55

ForClause

LetClause ::=

TypeDeclaration

PositionalVar ::

WhereClause

OrderByClause ::

OrderSpecList : :

OrderSpec : :

OrderModifier ::

"for" "$" VarName TypeDeclaration? PositionalVar? "in"

ExprSingle

("," "$" VarName TypeDeclaration? PositionalVar? "in" ExprSingle)*

"let" "$" VarName TypeDeclaration? ":="

ExprSingle

("," "$" VarName TypeDeclaration? ":=" ExprSingle)*

"as" SequenceType

"at" "$" VarName

"where" ExprSingle

(("order" "by") | ("stable" "order" "by"))

OrderSpecList

OrderSpec ("," OrderSpec)*

ExprSingle OrderModifier

("ascending" I "descending")?

("empty" ("greatest" | "least"))?

("collation" URILiteral)?

56

Appendix D

NeXD command line interface

NeXD provides a binary represented by a single jar file created during Maven package
phase. To generate the binary, without executing tests, simply run Maven with arguments
package -DskipTests. The binary is generated in the target directory. The usage is
present in source D.I .

Source code D . l : NeXD CLI

usage: Java -jar <jar-with-dist> uri [-D <property=value>] -d

<database-name> [-h] [-i <insert-document> | -n <new-collection> I

-q <query> I -r <remove-collection>] [-p <password>] -U

<username>

-D <property=value>

-d,—database-name <database-name>

-h,—help

-insert-document <insert-document>

-n,-

"P»-

-q»-

use value for given property

Database name to connect to.

Show usage of application

Inserts a f i l e into the

database

Creates a new collection in

the database

Password used to connect to

the database

XPath query to be performed

on database

remove-collection <remove-collection> Deletes a collection from

the database

User name used to connect to

the database.

-new-collection <new-collection>

-password <password>

-query <query>

-U,—username <username>

57

Appendix E

Relational database schema of
NeXD

NeXD requires that the database contains the schema defined as E . l . Please note that the
collection root is required, since all other collections are its ancestors. This way we allow
to select whole database content.

Source code E . l : NeXD database schema

— PostgreSQL

— Owner property will be replaced during Maven resources:resources phase

—DROP SCHEMA public CASCADE;

—CREATE SCHEMA public;

DROP TABLE xcollection CASCADE;

DROP TABLE xschema CASCADE;

DROP TABLE xtable CASCADE;

DROP TABLE xdocument CASCADE;

DROP TABLE xtext CASCADE;

CREATE TABLE xcollection (

id SERIAL,

name VARCHAR(30),

parent_collection INTEGER REFERENCES xcollection

ON UPDATE CASCADE ON DELETE CASCADE,

PRIMARY KEY(id),

UNIQUE(name)

);

CREATE TABLE xschema (

id INT NOT NULL,

name VARCHAR(IOO),

collection INTEGER REFERENCES xcollection

ON UPDATE CASCADE ON DELETE CASCADE,

uri TEXT[],

xsd TEXT,

PRIMARY KEY(id),

58

UNIQUE (collection, name)

);

CREATE SEQUENCE xschema_id_seq OWNED BY xschema.id;

CREATE TABLE xtable (

id SERIAL,

collection INTEGER NOT NULL REFERENCES xcollection

ON UPDATE CASCADE ON DELETE CASCADE,

schema INTEGER REFERENCES xsenema

ON UPDATE CASCADE ON DELETE CASCADE,

parent_table INTEGER REFERENCES xtable

ON UPDATE CASCADE ON DELETE CASCADE,

inlined BOOLEAN,

element_name VARCHAR(50),

table_name VARCHAR(50),

elements TEXT[],

attributes TEXT[],

PRIMARY KEY(id),

UNIQUE (schema, table_name)

CREATE TABLE xdocument (

id INTEGER NOT NULL,

collection INTEGER NOT NULL REFERENCES xcollection

ON UPDATE CASCADE ON DELETE CASCADE,

schema INTEGER REFERENCES xschema

ON UPDATE CASCADE ON DELETE CASCADE,

name VARCHAR(30),

content TEXT,

PRIMARY KEY (id),

UNIQUE (name, collection)

CREATE TABLE xtext (

id SERIAL,

xtable INTEGER NOT NULL REFERENCES xtable

ON UPDATE CASCADE ON DELETE CASCADE,

position INTEGER NOT NULL,

context TEXT,

PRIMARY KEY (id),

UNIQUE (position, xtable)

CREATE SEQUENCE xdocument_id_seq OWNED BY xdocument.id;

ALTER TABLE xdocument OWNER TO ${nexd.userName>;

ALTER TABLE xtable OWNER TO ${nexd.userName};

ALTER TABLE xcollection OWNER TO ${nexd.userName};

ALTER TABLE xschema OWNER TO ${nexd.userName};

ALTER TABLE xtext OWNER TO ${nexd.userName};

— insert default collection

59

INSERT INTO xcollection VALUES(DEFAULT, 'root
1

, NULL);

Additionally, NeXD uses trigger E.2 to ensure the schema generated by the Hybrid
method is pruned once the XSchema table row is deleted.

Source code E.2: Deletion trigger in NeXD

— PostgreSQL

— drops complete schema when a record is deleted from xschema table

CREATE OR REPLACE FUNCTION drop_schema () RETURNS trigger AS $$

BEGIN

EXECUTE 'DROP SCHEMA "' || OLD.name II '_' II OLD.id II "' CASCADE';

RETURN OLD;

END;

$$ LANGUAGE plpgsql /

CREATE TRIGGER drop_schema_trigger BEFORE DELETE ON xschema

FOR EACH ROW EXECUTE PROCEDURE drop_schema() /

60

