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Abstract 
The goal of this thesis is to extend the Performance Version System - Perun by implementing 
a new Tracer engine leveraging P IN instrumentation framework. This extension implements 
basic Tracer functionality and, in addition to that, a recording of function arguments' val­
ues as well as basic block run-times. The additional data, along with the visualizations 
introduced in this thesis, provide the necessary context that simplifies the detection of per­
formance degradation. Besides the P I N framework, the new Tracer engine implements an 
analysis of debug information in D W A R F format (using the python pyelftools library) to 
gather details about function arguments before the data collection process. The resulting 
engine was tested on multiple implementations of sorting algorithms and successfully de­
tected the most time consuming functions along with the information about the effect of 
its parameter value on the functions complexity. Testing the P IN engine on a larger-scale 
project revealed that, in comparsion to other Tracer engine implementations, the engine 
performs better or comparably, and produces the correct output. 

Abstrakt 
Cieľom tejto práce je rozšíriť výkonnostný verzovací system-Perun implementáciou nového 
Tracer engine využívajúceho inštrumentačný nástroj P I N . Toto rozšírenie implementuje zák­
ladné funkcie Tracer modulu a zároveň zber argumentov funkcií spolu so zberom dĺžky behu 
základných blokov programu. Tieto nové údaje spolu s vizualizáciami vytvorenými v tejto 
práci poskytujú potrebný kontext, ktorý zjednodušuje odhalenie zhoršenia výkonu. Okrem 
nástroja P IN využíva Tracer engine python knižnicu pyelftools na analýzu ladiacich infor­
mácií vo formáte D W A R F pre zistenie podrobností o argumentoch funkcií pred procesom 
zberu údajov. Výsledný engine bol testovaný na viacerých implementáciách triediacich al­
goritmov a úspešne detekoval časovo najnáročnejšie funkcie spolu s informáciami o zvýšenej 
zložitosti súvisiacej s jej argumentom. Testovanie na projekte väčšieho rozsahu odhalilo, že 
v porovnaní s ostatnými implementáciami Tracer engine, tento nový engine pracuje lepšie 
alebo porovnateľne a produkuje správne výstupy. 
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Rozšírený abstrakt 
Hlavným cieľom tejto práce je rozšírenie stávajúcej implementácie a funkcionality výkon­
nostného verzovacieho systému — Perun. Konkrétne sa zaoberá jedným zo zberačov výkon­
nostných dát, ktorý sa nazýva Tracer. TVacer má za úlohu meranie dĺžky behu jednotlivých 
funkcií zvoleného C / C + + programu pričom umožňuje realizáciu viacerých oddelených im­
plementácií svojej funkcionality, takzvaných enginov. Implementácia nového enginu pomo­
cou inštrumentačného nástroja P IN je hlavnou časťou tejto práce, avšak, okrem základ­
nej funkcionality, toto rozšírenie nástroja Perun pridáva možnosť detailnejšieho zberu dát. 
Podporuje zber obmedzenej množiny argumentov funkcií a taktiež dĺžku behu jednotlivých 
základných blokov kódu zvoleného programu. TVacer okrem zberu dát vykonáva spracovanie 
zozbieraných dát do jednotného formátu — výkonnostného profilu, ktorý je ďalej používaný 
na dodatočnú analýzu alebo vizuálne spracovanie nazbieraných dát vrámci nástroja Perun. 
Táto práca sa takisto venuje implementácii vizualizácie nových typov nazbieraných dát, 
ktoré interpretujú výkonnostný profil užívateľovi za cieľom jednoduchšej manuálnej analýzi 
vzniknutého výkonnostného profilu. 

Na implementáciu nového Tracer enginu bol použitý inštrumentačný nástroj P IN, ktorý 
podporuje dynamickú binárnu analýzu a zároveň nie je do značnej miery závislý od jadra 
operačného systému Linux čo umožňuje jeho spustenie bez administrátorských privilégií. 
Predošlé implementácie Tracer enginov využívajú technológie eBPF a SystemTap, ktoré 
tieto práva vyžadujú. Využitie nástroja P IN vyžaduje vytvorenie tzv. pintool, ktorý defin­
uje priebeh inštrumentácie. Pintool je možné vytvoriť v jazyku C alebo C + + pomocou 
A P I poskytnutej nástrojom P I N . V rámci Tracer enginu sa využívajú rôzne pintooly, čo 
viedlo k integrácii dynamickej generácie pintoolu pomocou Jinja2 šablón, vďaka ktorým si 
užívateľ dokáže zvoliť vhodnú konfiguráciu inštrumentácie a v konečnom dôsledku výstupné 
dáta zozbierané týmto enginom. Zber hodnôt argumentov jednotlivých funkcií vyžaduje, 
aby engine pri generácii pintoolu poznal názvy funkcií a pozície spolu s typmi parametrov 
týchto funkcií, ktorých argumenty je nutné zozbierať. V prípade, že si užívateľ zvolí zber 
argumentov funkcií, engine vykoná analýzu ladiacich infromácií prítomných v poskytnu­
tom binárnom súbore. Ladiace informácie vo formáte D W A R F engine analyzuje pomo­
cou python knižnice pyelftools a generuje tabulku funkcií, ktorých argumenty majú pod­
porovaný typ vhodný pre analýzu. Tieto informácie sú ďalej využité vo vizualizácii vzťahu 
hodnoty argumentu a dĺžky doby behu funkcie v jednej z implementovaných vizualizá­
cii. Nové vizualizácie vytvorené vrámci tejto práce využívajú python knižnice ako Pandas, 
Bokeh alebo spojenie Seaborn s Matplotlib. 

Experimentálne ohodnotenie vytvoreného Tracer enginu bolo vykonané na viacerých trie­
diacich algoritmoch za účelom preukázania správnosti zozbieraných výsledkov ale aj ich 
prínosu pri analýze výkonu programov. Experiment zahŕňal správnu a zároveň nesprávnu 
implementáciu algoritmu, čo Tracer engine správne rozlíšil a vďaka dodatočným informá­
ciám o argumentoch funkcií dokázal odhaliť značné odchýlenie od predpokladanej zložitosti 
algoritmu. Naviac označil správnu funkciu ako najviac časovo náročnú pričom poukázal 
na časovo najnáročnejšie základné bloky danej funkcie. Experimenálne bol nový Tracer 
engine porovnaný s predošlími implementáciami využívajúcimi eBPF a SystemTap. Tento 
experiment bol vykonaný na projekte väčieho rozsahu, kompresovacom programe CCSDS 
a ukázal, že engine založený na technológii P IN je rýchlejší alebo porovnateľný s výkonom 
ostatných enginov a taktiež označil časovo najnáročnejšie funkcie rovnako ako ostane enginy. 
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Chapter 1 

Introduction 

Software testing is an essential part of a development process that provides vital information 
about reliability and quality of the final product. Since testing plays such a crucial role 
in today's software development, there are tools and techniques incorporating it into the 
development cycle such as continuous integration (CI). CI makes the testing easier and 
reduces the time it takes to validate and subsequently release new software updates. Even 
though the software testing techniques are commonly used among developers, the main 
emphasis is on the software functionality and its performance is often overlooked until 
the users start noticing problems - which might often be too late. 

Performance testing techniques are commonly used by the developers to detect and fix 
performance issues in software. However, performance testing often poses a bigger challenge 
than functionality testing, since some performance issues can only be exposed under very 
specific conditions. Moreover, such conditions may be extremely difficult, or even borderline 
impossible, to meet. Despite the difficulties, performance testing can improve the quality 
and user experience of software, e.g., by eliminating all sources of potential slowdowns. The 
introduction of automation to the performance testing is crucial, because complex programs 
can produce enormous amounts of data that, when managed without automation, might 
result in errors. Although the importance of performance testing is undeniable, the variety 
and quality of available tools is not sufficient. Thus, the lack of monitoring and integration 
tools focused on performance and its evolution during the development could be a reason 
for such low interest in performance testing. 

The VeriFIT research group developed an open source light weight Performance Version 
System - Perun [9, 10], which strives to provide the necessary tooling to make the perfor­
mance testing easier and therefore more utilized by the developers around the world. Perun 
archives it by integrating Version Control Systems (VCS) and performance regression test­
ing. By creating and storing profiles for each version of a given program, Perun ensures that 
a developer has better feedback regarding the project performance with every change they 
make. Performance profiles of the given program are gathered by the Collectors, among 
which the Tracer collector has a major role in measuring the run-times of functions. In its 
current state, users are able to chose between two different backends (called engines) of the 
Tracer collector based on eBPF [12] and SystemTap [17] frameworks. 

This thesis focuses on extending the Perun Tracer collector with a new engine based on 
the P IN framework while reducing the time spent on the collection of necessary data for 
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the performance analysis. The P I N framework, compared to the eBPF and SystemTap 
frameworks currently used in Perun's Tracer collector, offers better options namely in the 
dynamic binary instrumentation approach, which considerably increases Tracer's potential. 
Moreover, this extension will allow Tracer to gather additional information regarding func­
tion parameters and other code primitives (such as basic block metrics). Such information 
will be used to evaluate code performance in a more granular fashion, thus leading to more 
accurate analysis results. Furthermore, this thesis also focuses on visualization of the col­
lected data, as proper visualization greatly reduces the time needed to evaluate the analysis 
results by the Perun users. 

Structure of the thesis. Chapter 2 introduces the Performance Version System - Perun 
and its architecture while focusing mainly on the Tracer collector. Chapter 3 describes 
the P IN framework, creation of pintools and compares P IN to the frameworks currently 
used in the Perun Tracer, highlighting the reasons for this Tracer extension. Chapter 4 
covers the requirements of this work and Chapter 5 presents the design and implementation 
of the Tracer extension and the visualization of collected data. The experimental evaluation 
of the P IN engine, including the new visual representations of the collected data, is located 
in chapter 6. 

3 



Chapter 2 

Perun 

This chapter introduces Performance Version System - Perun and argues why Perun is 
a suitable tool for performance testing. One of the key parts of this chapter is a de­
scription of Perun's architecture which sheds light on the internals of Perun, and provides 
the necessary knowledge to properly understand its workflow. The next section covering 
Tracer collector is essential for this thesis since it describes the common engines interface, 
which needs to be utilized to extend Tracer with a new engine based on the P IN framework, 
and the data collection process including its strategies as well. The most recent Perun doc­
umentation [10] along with the relevant work [27, 26] is utilized in this chapter to provide 
necessary knowledge for the goals of this thesis. 

2.1 Overview 

The open-source lightweight Performance Version System - Perun (Performance Under con­
trol) was created by the VeriFIT research group to achieve full automation of performance 
management. Although still under active development, it already has a lot to offer. 

Perun works as a wrapper around a V C S and adds support for automated performance 
testing on top of it. Management of the performance profiles for each version of a project, 
postprocessing of a created profile and its effective interpretation are other significant fea­
tures of Perun's tool suite. The automation of a project's performance analysis allows for 
easy regression testing and the fact that every minor version of the project has its perfor­
mance profiles stored as a part of development history makes it possible to detect problems 
associated with performance very early on during the project development, without the 
need of manual involvement of a user. 

Perun is meant to be used by a single developer (or a small team) as a complete solution 
for storing, automating and interpreting the performance of a project, as well as by bigger 
teams working on more complex projects. Figure 2.1 illustrates the intended use-case of 
Perun where each developer keeps his own instance of both versioning and performance 
systems, and can share the code changes, as well as the performance data, with other 
developers. 

Perun offers a number of advantages over manual management of performance, data such 
as storing the profiles in a database or directly in a V C S . Since it stores created perfor-
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Server 

Developer 1 Developer 2 

Figure 2.1: A n illustration of a project development with Perun deployed in parallel to 
a V C S (in this case Git) [9]. 

mance profiles parallel to the V C S and assigns them to a specific version of a project, 
Perun provides context to the collected data and project's performance history. This allows 
users to not only identify the origin of a performance issue, but also the optimization of 
the collection process based on the source code differences from previous versions. More­
over, users will not forget to run a profiling whenever there is a new version of a project, 
thanks to Perun's automation using the so-called hooks in the supported version control 
systems. Hooks trigger sequences of Perun commands when a V C S action is detected, e.g., 
whenever there is a new commit. These Perun command sequences are called jobs and 
their specification is inspired by Continuous Integration systems. As Figure 2.2 illustrates, 
Perun provides a report regarding the discovered performance changes, where each of these 
changes contains information about its location, severity and confidence. The severity and 
confidence are supposed to inform a user about the reliability of the detected change alert. 

Another Perun's advantage is the genericity of its tools. Currently, the tool suite of Pe­
run contains generic (as well as some specific) visualization, postprocessing and collection 
modules that form the basic building blocks necessary for specification of jobs and inter­
pretation of collected data. Furthermore, the suite can be extended rather easily with only 
a few requirements that new modules must comply to. Other than that, Perun provides 
an easy-to-use interface inspired by the git version control system, offering new users that 
are, however, experienced with git, not so steep learning curve. Currently, Perun interacts 
with users mainly through the Command Line Interface (CLI) that fully supports all of its 
features. A prototype of a Graphical User Interface (GUI) is currently in development. 

2.2 Architecture 

Perun consists of components that manage the performance profile creation, postprocessing, 
interpretation, analysis and, as a consequence, provide the users with the necessary tools 
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Figure 2.2: This figure describes a workflow of Perun [9]. For each new project version, 
a number of tasks (known as jobs) is collecting performance data, processing it and searching 
for performance degradation or optimization compared to previous project version. 

for robust performance analysis. Figure 2.3 shows that Perun's architecture can be divided 
into four main logically separate units - data, logic, view and check. 

Git 

SVN 

PERUN 

LOGIC 

PQSTPROCESS 

Regression A. Kernel Reg. 

Regressogram 

Moving Avg. 

COLLECT 

Time Trace 

Memory 

Complexity 

DATA 

Detect Changes 

VIEW 

QU Heap Map 

CLI Scatter Plot 

Flame Graph 

CHECK 

Linear Reg 

Polynomial Reg. 

Best Model O. 

Integral Method 

Local Stats 

Figure 2.3: The architecture of Perun, as divided into separate units (data, logic, view and 
check) and the V C S module (containing interface for Git, S V N , etc.). The data unit is 
interacting with every other unit and managing profiles, which are created and processed 
by the logic unit. The view unit is responsible for interpretation of the collected data and 
the check unit searches for performance degradation based on the profiles. Taken from [27]. 

Data. This unit provides an interface for the performance profiles management, which 
is utilized by every other unit. Because of that, the Data unit represents the core of the 
architecture. Among the key interface operations is the finalization of a profile form and 
handling of queries regarding the collected data. Profiles are unified under a format based 
on J S O N which allows a great flexibility for the communication between the Units, and 
easy extensibility. 
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Logic. The profiles are created and processed in the logic unit, where the profiling data 
is gathered and parsed by the Collectors, and possibly processed by the Postprocessors 
for further interpretation. This unit also handles many tasks related to the automation, 
CLI and repository configuration including the V C S hooks. Users can select from multiple 
collectors based on the information they seek. Perun contains the following collectors: 

• Trace collector measures the time consumption of functions and custom code blocks. 
Design of the Tracer architecture allows the user to choose from a range of so-called 
engines, which utilize different instrumentation frameworks for the collection of per­
formance data. More in-depth description of the Tracer collector can be found in 
section 2.3. 

• Memory collector is focused on gathering information about memory allocations in 
C or C++ programs. The recorded data contain overall heap memory usage with 
many related attributes, such as memory allocation types or their target addresses. 
The data collection is facilitated using the libunwind

1

 library and custom libmalloc 

libraries. 

• Time collector is implemented as a simple wrapper around the time utility and collects 
the overall duration of arbitrary commands. 

• Bounds collector performs automated static analysis of worst-case resource bounds 
of C programs. This collector leverages the Loopus

2

 tool for computing bounds of 
loops or Facebook Infer plugin Cost for asymptotic complexity analysis of functions. 
While Loopus is limited to integer programs only, it computes symbolic bounds for 
each function and loop, highlighting the main source of the complexity. The Bounds 
collector then reports the complexity of analyzed functions using the big-0 notation. 

Postprocessors are used for transformation of the data, which helps with identification 
of potential relations among them. The notable postprocessors currently implemented in 
Perun are: 

• Normalizer postprocessor is used for scaling of the collected data to the interval (0,1). 
This postprocessor is meant to enable profile comparison when the profiles were not 
created with the same workload or parameters. 

• Regression analysis offers various computational methods and models for finding fit­
ting models for trends in the captured profiling resources. The regression analysis 
requires dataset with independent and dependent variables to find a fitting model for 
dependent variable based on the independent one. The postprocessor currently aims 
to find a well suited model (linear, quadratic, logarithmic, etc.) for the amount of 
elapsed time depending on the size of the data structure the function operates on. 

• Regressogram method, or binning approach, is a simple non-parametric estimator. 
This method tries to fit models through data by dividing the interval into N parts, 
where each part is represented by a value equal to the result of the selected statistical 
aggregation function within the values in the concrete part. The regressogram is 

^ e e h t t p s : //www.nongnu.org/libunwind/. 
2See h t t p s : / / f o r s y t e . a t / s o f tware / loopus / . 
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hence a step function (i.e. constant function by parts). The thesis [29] describes this 
method, its implementation and also other statistical methods in more detail. 

View. This partly independent unit is responsible for input/output interaction with a user. 
This unit provides a number of visualization techniques that provide better interpretation 
of the collected data. Some of the currently supported visualization methods are: 

• Bars Plot is capable of visualizing multiple types of resources as bars while providing 
the user with a moderate customization possibilities thanks to the Bokeh 3 library, 
which is used to generate interactive H T M L files. 

• Flow Plot also utilizes the Bokeh library for visualization of the collected data as 
a flow. This method supports a high number of profile types. 

• Heap Map can be used to visualize the data collected by the Memory collector. The 
visualization contains memory address map with representation of memory usage, 
such as the allocated objects or frequency of the address usage. 

Check. Consists of detection methods that report possible changes in performance of 
a project. Check expects a pair of performance profiles where one represents the new 
version of the project, and the other represents the stable version. These profiles are then 
compared, which provides relevant information about the state of the new version of the 
project. Based on the particular resource types present in the profiles, this unit uses various 
methods, among other the Average Amount Threshold method or the Integral and Local 
Statistics methods which were introduced in [29]. 

2.3 Tracer Collector 

One of the collectors present in Perun is the Tracer collector. This collector is an important 
part of the Perun tool suite since it gathers information about run-times of selected functions 
and custom code blocks executed during the profiling of a program, while keeping track 
of the call hierarchy as well. Tracer architecture allows multiple implementations of its 
backend (so-called engines). Engines leverage different instrumentation frameworks for the 
purpose of collecting performance data. 

The usage of Tracer can be described in the following manner. A user can select Tracer 
as the collector through the Perun interface, along with the specification of the collection 
parameters. Among the parameters are code locations that are going to be measured. These 
locations are selected either manually by the user, or automatically by Tracer — for which 
the user can select one of the strategies provided by the Tracer. The collection process itself 
is divided into four stages: before, collect, after and teardown. 

1. In the Before stage Tracer initializes the selected engine and uses it to instrument 4 the 
code with handlers for every function or custom code block according to the specified 
collection strategy. 

3See h t t p s : / / b o k e h . o r g / for more information. 
ins t rumentat ion is a technique for inserting extra code into an application to observe its behavior. 
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Figure 2.4: Schematic overview of Tracer architecture introduced in version 0.19 in the [27], 
which unifies interface for multiple engines. 

2. The Collect stage facilitates the collection of performance data by launching the 
executable file of the program and tracing it until the process terminates, or a timeout 
is reached. 

3. The After stage encapsulates the transformation of the collected raw data output into 
Perun resource records, which are then stored in a profile. 

4. At the end of the collection process, the cleanup of all the used resources (such as 
temporary files or instrumentation framework processes that are still running) takes 
place in the Teardown stage. 

Tracer, as well as any other collector, needs to meet certain requirements to be reliable. 
Low overhead is a major requirement, because it extends the time period needed for the 
data collection. Minimization of influence on the collected data, namely the run-time of 
the system under test (SUT) is necessary. Collectors should also minimize the number of 
dependencies and not require an manual modifications of source code by the user. However, 
fully satisfying all of the requirements is not possible, therefore finding a balance between 
speed, accuracy and memory requirements of the collector is crucial. 

Each of the Tracer engines must implement the Common Engines Interface [27] (see Fig­
ure 2.4) that abstracts the communication with concrete engines. This interface allows for 
easier extension of the Tracer with another engine that leverages a new framework for per­
formance data collection. This approach enables implementation of multiple engines where 
each of them introduces new advantages over the other and allows a user to decide which 
engine suits his needs the best. Common Engines Interface is designed as the following set 
of functions (where —>• represents return type): 

• check_dependencies: checks that all of the engine requirements are satisfied and all 
of the dependencies are available. 
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• available_usdt —> diet: extracts available User-space Statically Defined Tracepoint 
(USDT) probes, which were defined by the developers of SUT in a framework-specific 
manner. 

• assemble_collect_program: assembles the collection program with respect to the 
specification of profiled probes. 

• engine_collect: runs the collection process. 

• transform —> generator: transforms the raw performance data collected by the 
selected engine to the unified Perun resources. 

• cleanup: frees the set of resources that have to be cleaned up in order to avoid serious 
issues, such as corruption of collected performance data. 

The previously mentioned collection strategies enhance the automation of Tracer. Every 
strategy defines what functions should be profiled, without the need to specify them manu­
ally. One of the major strategies is the Userspace strategy that filters out function symbols 
that have not been defined by the user, such as various helper functions created by the 
compilers (_init, _f ini,. . . ) . The collection strategies also include the All strategy, which 
instruments all of the functions within the executable file with no filtering whatsoever, or 
the Custom strategy that allows a user to specify the function symbols without utilizing any 
automatic extraction. The [27] contains information about the collection strategies while 
also specifying their advantages and disadvantages. 
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Chapter 3 

P I N Framework 

Dynamic analysis of programs usually (but not exclusively) requires robust software instru­
mentation tools for tasks such as profiling, performance evaluation, and bug detection. One 
of such instrumentation tools is the P I N framework, which can be utilized for program pro­
filing. This Chapter introduces P IN and pintools (Section 3.2), goes over its inner workings 
and addresses PIN's efficiency and transparency. Section 3.4 briefly introduces eBPF and 
SystemTap frameworks and, compares them to P I N . Furthermore, the differences between 
the two modes of instrumentation supported by P IN are discussed in Section 3.3. Other 
than the introduction of PIN, this Chapter tries to establish the arguments for choosing 
PIN for the implementation of Tracer's engine. This Chapter uses the information from 
previous works related to Perun [27, 19]. 

3.1 Overview 

PIN [20] is an instrumentation system for program analysis, developed by Intel, which 
supports the Linux, MacOS and Windows operating systems and IA-32, x86-64 and MIC 
instruction set architectures. The goal of P IN is to provide an instrumentation platform 
for building a wide variety of dynamic program analysis tools with the emphasis on ease-
of-use, portability, transparency, efficiency, and robustness. P IN performs Dynamic binary 
instrumentation of applications at run-time on the compiled binary files. Thus, it requires 
no recompilation of the source code and can instrument programs that dynamically generate 
code. 

Instrumentation of an application using P I N is done with pintools written in C / C + + , us­
ing PIN's rich application programming interface (API), which allows a pintool to insert 
calls to handlers at arbitrary locations in the executable file. The A P I allows access to 
architecture-specific information and abstracts away the underlying instruction set idiosyn­
crasies, making it possible to write portable instrumentation tools. The Section 3.2 covers 
the pintools further. 

P IN provides efficient instrumentation by using a just in time (JIT) compiler to insert and 
optimize code. To further optimize the jitted code, P I N implements code caching, register 
reallocation, inlining, instruction scheduling and other techniques. This fully automated 
approach distinguishes P IN from most other instrumentation tools, such as Valgrind [25] 
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or DynamoRIO [5], which require the user's assistance to boost performance. P IN sup­
ports process attaching similar to a debugger — it first attaches to a process, instruments 
it, collects profiles and eventually detaches. This approach significantly improves the per­
formance since the overhead caused by P I N is present only when attached to a process. 
The support for attaching and detaching to a process is necessary for the instrumentation 
of large, long-running applications. 

PIN guarantees the instrumentation transparency by preserving the original application 
behavior which means that the application observes the same addresses and same values as it 
would in an uninstrumented execution. A n example of this behavior could be an application 
unintentionally accessing data beyond the top of the stack, so P I N will not modify the 
application stack. The instrumentation transparency makes the collected information more 
relevant, and is also necessary for correctness of the measured data. 

PIN, in its essence, is a just in time compiler, which however, expects a regular native 
executable instead of a bytecode as its input. Since P IN works on a layer above the oper­
ating system (see Figure 3.1), it can only capture user-space code. When an instrumented 
program is running, there are three binary programs present: the application, P I N and 
the pintool. P IN is the engine that jits and instruments the application while the pintool 
contains the analysis and instrumentation routines. Pintool is also linked with a library 
that allows communication with P I N and they share the same address space, however, they 
do not share any libraries. 

A d d r e s s s p a c e 

Pin 
Pintool 

c 
o 
o 
Q. 
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Instrumentation APIs 

Virtual Machine (VM) 

JIT Compiler 

Emulation Unit 

Code 

Cache 

31 
Operating System 

Hardware 

Figure 3.1: The software architecture of the P I N instrumentation framework showing that 
PIN works on the layer above operating system while reading the selected application and 
instrumenting its code according to pintool specification. The image was taken from [7]. 
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The execution of a program while using P I N to instrument its code works as follows. P IN 
intercepts the execution of the first instruction of the executable, generates and compiles 
new code for the next trace — a straight-line sequence of instructions which terminates at 
an unconditional control transfer (branch, call or return statements) or when a predefined 
number of conditional control transfers or individual instructions have been fetched in the 
trace [20] — starting at this instruction and then passes control to the generated sequence. 
This newly generated code sequence is almost identical to the original, but P I N ensures that 
it regains control when a branch exits the sequence. After regaining control, P in generates 
more code for the branch target and continues execution. Every time JIT compiler fetches 
some code, pintool has the opportunity to instrument the code before its translation. This 
means that only executed instructions can be instrumented. The instrumented code is kept 
in memory for its reuse, which also makes P I N more efficient. 

3.2 Pintools 

The tools specifying the instrumentation details for PIN, called pintools, enable the tool 
writer to analyze user-space applications. A pintool is a compiled binary file. For Linux, it 
is a shared library with a . so extension and for Windows systems, it is a dynamic library 
with a .dll extension, and dynamic library with a .dylib extension for macOS. Pintools 
can be thought of as plugins that can modify the code generation process inside PIN. P IN 
allows tool writers to analyze an application at the instruction level without the need of 
detailed knowledge of the underlying instruction set thanks to the A P I , which makes the 
tool writing easier. The A P I is designed to be architecture independent whenever possible 
and allows context information, such as register contents, to be passed to the injected code 
as parameters. This rich A P I provided by P IN enables instrumentation at these different 
abstraction levels [21]: 

• Image level allows the pintool to process an entire image. Thus iterating through the 
whole program sections, routines in a section or individual instructions in a routine 
is possible instrumenting the program. 

• Routine level allows the pintool to process a routine at a time with the possibility of 
iteration over instructions inside the routine. 

• Trace level allows the pintool to process one trace at a time by starting from the 
current instruction and ending with an unconditional branch (e.g. call or return 
statements). 

• Instruction level allows the pintool to process an instruction at a time. 

Since pintool shares the same address space as P I N and the instrumented executable, that 
pintool has access to all of the executable's data, even the file descriptors and other process 
information. Pintools in general have two major components that need to be defined in 
a pintool: 

• Instrumentation routines define the precise location where instrumentation is to be 
inserted (e.g. before or after an instruction). 
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• Analysis routines define what needs to be done when the instrumentation is activated 
(e.g. increment a counter). 

3.3 J IT and Probe Modes 

Until now, this chapter presented the JIT mode. In the JIT mode the code that is actually 
executed is the code generated on-the-fly by P I N and the original code is used only as 
a reference but never executed. This mode uses JIT compiler to generate instrumented 
code according to the specification created by user in the pintool. However, P I N can also 
operate in the so-called Probe mode. 

The Probe mode is a method of inserting probes at the start of specified routines. The 
application and the replacement routine are run natively in this mode, which improves 
performance at the cost of putting more responsibility on the pintool writer. A probe is 
a jump instruction (also called trampoline) that is placed at the start of specified routine and 
redirects the flow of control to the replacement function, which can also call the replaced 
routine. The Probe mode enables only instrumentation on a routine level, i.e. probes can 
be placed only at the routine boundaries. 

0x400113d4: jmp 0x41481064 
0x4 00113d5: [function Foo] 
0x400113d7: 
0x400113d8: 
0x400113d9: push %ebx 

0x41481064: ... / / T o o l code [Tool/Wrapper] 

0x414827fe : c a l l 0x50000004 / / C a l l o r i g func 

0x50000004: push %ebp [Copy of Foo entry] 

0x50000005: mov %esp,%ebp 
0x50000007: push %edi 
0x50000008 :| push %esi  
0x50000009: jmp 0x400113d9 

Figure 3.2: A sample probe code for function Foo, taken from [8]. This example illus­
trates instrumentation in P I N Probe mode where the probe itself is placed just before the 
Foo function (at address 0x400113d4). The function is copied to addresses 0x50000004-
0x50000008. The probe unconditionally jumps to the instrumented version of the function 
(defined in a pintool) which also calls the original function. 

When comparing these two modes, the JIT mode is far more flexible and common approach 
and even though it might be slower than Probe mode, it introduces transparency and ease-
of-use. The Probe mode has, on the other hand, lower overhead approach that is more 
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efficient, but also less flexible. The Probe mode also does not provide transparency since 
the original instructions in memory are overwritten by trampolines. 

3.4 Using P I N in Perun's Tracer Engine 

Perun (see Chapter 2) has multiple implementations of Tracer engines (discussed in Sec­
tion 2.3) utilizing different frameworks. This thesis focuses on implementation of a new 
engine using the P IN instrumentation framework to extend the Tracer with faster dynamic 
binary instrumentation thanks to the low overhead of P IN framework. To better under­
stand why is this new engine implementation utilizing P IN a beneficial addition to the 
Tracer, this section briefly introduces the other instrumentation frameworks currently used 
in Tracer engines and compares them to P IN instrumentation framework. 

SystemTap [11, 17] provides an infrastructure for gathering information about the run­
ning Linux system (as well as the process running on the system) and enables its detailed 
analysis. This allows developers and administrators to identify causes of performance is­
sues or bugs. SystemTap is a tracing and profiling framework, which supports all of the 
current state-of-the-art dynamic instrumentation and probing mechanisms: kernel trace-
points, USDT, kprobes, uprobes, performance counters and, to a certain degree, in-kernel 
programming. This makes SystemTap one of the most powerful general-purpose profiling 
frameworks available for probing of the kernel-space events, as well as the user-space events. 
The instrumentation is performed by leveraging custom kernel modules to inject probes and 
their handlers (a code that is executed when a probe is activated). These kernel modules 
are automatically created from the script provided by the user, which specifies events and 
defines handlers for them. The script is then translated to the C language to create a kernel 
module that is subsequently loaded by the system. 

eBPF [12, 6] stands for extended Berkely Packet Filter— mechanism that makes the Linux 
kernel dynamically programmable. As Brendan Gregg said in his book BPF Performance 
Tools [12]: "eBPF does to Linux what JavaScript does to HTML". Originally designed to 
capture and filter network packets, eBPF is an highly enhanced version of the original B P F 
used to filter network packets. The eBPF features extended instruction set and optimiza­
tions for modern hardware which opened the possibility to write more complex programs. 
In its essence, eBPF (also reffered to as simply B P F ) is a highly advanced virtual machine 
(VM) inside the kernel that runs instructions from its own instruction set in an isolated 
environment. As stated in [6], "In a sense, you can think of BPF like how you think about 
the Java Virtual Machine" — it is a specialized program capable of running machine code, 
compiled from high-level programming language, inside Kernel. The eBPF engine consists 
of an interpreter and a JIT compiler that translate the executed eBPF instructions into 
a native system instructions. The user defined program for eBPF can be supplied at a run­
time, and is verified by the eBPF verifier which ensures that the provided program will not 
compromise the user's system by crashing the kernel. The communication between kernel 
and user-space is done through eBPF maps [23]. This design greatly improves the means 
of dynamic in-kernel programming and allows the user to run custom mini programs in the 
kernel. 

Although both of these frameworks do their job well, there are differences and therefore, 
each of the frameworks has its own set of advantages and limitations. The SystemTap 
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framework, for example, provides a multitude of options when probing kernel-space events 
for a wide range of kernels. However, some kernel versions do not support user-space 
probing. SystemTap also needs kernel debuginfo even though the generic kernel comes with 
CONFIG_DEBUG_INFO and C0NFIG_KPR0BES disabled, which means that some distributions 
require recompilation of the kernel before running SystemTap. Since both of the frameworks 
closely cooperate with kernel, they require elevated privileges. This is not required by P IN, 
because this framework operates in the user-space. Similarly to SystemTap, the eBPF 
framework requires a fairly recent version of kernel to unlock its full potential. The eBPF 
framework was developed as part of the Linux kernel and hence is strongly dependent on 
it, which makes eBPF programs less portable. When it comes to security, eBPF excels, 
however, the security is forced by limitations on the programs created by the user. While 
PIN does not rely on the Linux kernel as much as the other frameworks, it relies much more 
on the processor architecture. P I N also supports multiple operating systems, which favors 
its portability. Overall summary of the P IN framework compared to other Tracer engine 
implementations can be found in Table 3.1. 

Table 3.1: A comparison of eBPF, SystemTap (both frameworks already used in Tracer 
engines) and the P I N framework proposed for a new engine implementation. This table 
highlights the advantages of P IN over the current implementations, and even though P IN 
does not support the kernel-space instrumentation, the new engine leveraging P IN frame­
work will be a valuable addition to Perun's Tracer. 

SystemTap eBPG PIN 
Kernel-space instrumentation w / X 
Users-space instrumentation / / 
Defines own handlers / / / 
Fully dynamic tracing X / / 
Does not require root privileges X X / 
Does not require kernel debuginfo X X / 
Does not rely on recent kernel version X X / 
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Chapter 4 

Analysis of Requirements 

This chapter provides an overview of the planned functionality of the resulting Perun exten­
sion. The list of functional and non-functional requirements, along with a brief description 
of the resulting functionality, ensures that the reader is acquainted with not only the capa­
bilities and constraints of Perun's new Tracer engine, but also with the aim of this thesis. 

4.1 The Resulting Functionality 

This work aims to improve the Perun performance version system by introducing a new 
useful and reliable extension for one of the existing collectors - Tracer. The new extension 
should leverage P IN framework to not only implement existing Tracer capabilities (e.g. 
function run-times collection) for the programs written in C / C + + , but also extend the 
scope of collected data by gathering basic function parameters and run-times of every 
executed basic block. 

The resulting Tracer engine should support a collection of data in two modes: JIT and 
Probe mode. The JIT mode will be the default mode of the engine and should allow the 
collection of function run-times as well as certain function parameters and basic block run­
times. The Probe mode is also to be fully supported, however, its restrictions do not allow 
collection of basic block run-times. 

The decision of which mode will be used and which additional data to collect will be made by 
the user of the engine before its execution. Based on the selected settings, the engine will be 
able to assemble a pintool — definition of how the data is going to be collected and stored. 
However, the arguments collection process requires an analysis of the debug information in 
D W A R F format [24, 28] to determine the types of arguments and their indices. This work 
focuses on collecting a basic set of argument types, namely integers, characters and strings 
(char*) while also supporting real numbers (float and double), although not fully. This 
set of supported argument types will be extended in future work. 

Since the Perun's task in general is to detect performance issues and suggest possible 
opportunities for optimization, this work will introduce two new visualizations that strive 
to help with these goals. One of the visualizations should focus on capturing the dependence 
of function run-times on its arguments values, which helps developers analyze the source 
of function complexity. The other visualization should display the most time consuming 
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functions and the basic blocks in these functions with the amount of time consumed by 
them. 

4.2 Functional Requirements 

The intended functionality of this thesis and the core requirements for the Tracer engine 
utilizing P IN instrumentation ctre cts follows: 

1. F R P E (Perun extension): The resulting project is integrated into Perun and 
extends its functionality as one of its Collectors. 

2. F R T E (Tracer engine implementation): Implemented in Tracer collector as 
one of its engines, providing full functionality of a collector. 

3. F R PIN (PIN framework): Leverages P IN framework for the collection of the 
required performance-related data. 

4. F R PI (Pintool implementation): Implements multiple pintools that describe 
how a program should be instrumented. 

5. F R P M (Pintool Makefile): Creates general Makefile for compilation of imple­
mented pintools. 

6. F R _ J M (Support for JIT mode): Fully supports PIN's JIT mode for data 
collection from running applications. 

7. F R P M (Support for Probe mode): Supports Probe mode for data collection 
from running applications with respect to its limitations. 

8. F R F R T (Function run times): Is able to collect information about the duration 
of function execution and other necessary data for its identification. 

9. F R FAI (Function argument information): Is able to obtain values from func­
tion arguments and extract valuable information form them. 

10. F R SRF (Support for recursive functions): Fully supports collection of re­
quired data in recursive functions. 

11. F R B R T (Basic block run-times): Is able to collect lengths of basic block exe­
cution times and other data for its identification. 

12. F R S M A (Support for multi-threaded/process applications): Provides sup­
port for any multi-threaded/process application and is able to distinguish collected 
data in each thread/process. 

13. F R P G (Profile generation): Converts the collected data to a generic format 
(i.e. Perun profile) and extends it to encompass the function arguments and basic 
block run-times. 

14. F R VIZ (Visualization of collected data): Provides a user with the ability to 
visualize the collected data for further manual analysis. 
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4.3 Non-functional Requirements 

While the functionality is a key part of this thesis, the following non-functional requirements 
play a big role in the overall quality of the final Tracer engine: 

1. N F R S C A (Scalability): The new Tracer engine design takes into account that 
programs using Perun could be of any scale and supports them with reasonable speed. 

2. N F R M A I N (Maintainability): Well documented and readable implementation 
with possibility of easy modifications by independent developers. This is one of the 
key factors for a long lifespan of a project. 

3. N F R R E L (Reliability): The reliability of a program must be one of the main 
priorities of every project. Final implementation is well tested and passes the tests 
utilized by the Perun Pul l Request toolchain. 

4. N F R M O (Minimal overhead): The collection of data regarding time is sensitive 
to any introduced overhead and therefore the implementation focuses on reduction of 
overhead, not only at collection part of Perun's process. 

5. N F R M D (Minimum number of dependencies): The implementation intro­
duces a minimal number of mandatory dependencies. Although ge of already 
created and reliable libraries is to be expected, the new Tracer engine will use only 
necessary and maintained dependencies. 

6. N F R Q U X (Quality of user experience): The whole process of data collection 
is automated and provides an easy interface for selecting the desired settings with 
options for manual analysis of collected data. 
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Chapter 5 

Design and Implementation 

This chapter contains a comprehensive description of implementation with emphasis on 
design decisions. Firstly, this chapter presents details of extending the Perun with the 
implementation of a new Tracer engine using P IN framework (Section 5.1). Furthermore, 
this chapter covers implementation details of additional Tracer extensions (Section 5.2) and 
lastly, Section 5.3 describes the implementation of visualizations of collected data. 

5.1 Tracer P I N Engine 

To create a basic Tracer engine, which collects data about function run-times, one needs to 
implement the generic engine interface, which consists of six independent methods. Each of 
these methods represents a different stage of the data collection process, a phase where dif­
ferent actions need to take place. The introduction to Tracer's engine interface in Section 2.3 
briefly describes each method, and the following Section 5.1.1 describes the implementation 
details regarding the interface. 

A substantial part of the engine's collection process is the creation of the collection pro­
gram, a pintool in this case. The collection program specifies how the collection of data 
should be executed, and this is the core of the whole collection process. A closer specifica­
tion of pintools can be found in Section 3.2, and implementation details regarding pintool 
creation and design, along with the challenges related to its compilation, are described in 
Section 5.1.2. 

The data collected by P IN need to be processed right after the collection into the Perun 
profile, which unifies the format of data and enables its analysis afterward. On top of 
that, this part of the process also facilitates the conversion of collected time data from 
time stamps into actual run-times of every execution of functions or basic blocks. The 
implementation of this phase of the process is covered in Section 5.1.3. 

5.1.1 Tracer Engine Interface 

Every new Tracer engine has to implement the abstract class CollectEngine and divide its 
collection process into phases represented by the abstract methods of this class. In order 
to use the engine from the command-line interface, it needs to be registered among the 
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supported engines in the definition of the CollectEngine class, and added as an option 
using the Click1 library that is utilized to implement Perun's command-line interface. 

When a user invokes the Perun collection process using a Tracer engine, the engine first 
creates the required temporary files and checks that the dependencies necessary for the 
successful execution of the collection process are satisfied. In this case, the files created 
are the pintool source file (pintool. cpp), its Makefile (Makefile) and a data file where 
the P IN output will be saved (this file has a unique name with each creation). The only 
hard dependencies of the collector are pin and g++ ( G N U C++ compiler) which need to be 
installed in the user's P A T H (hence executable from the command-line). The installation 
of P IN might not be as straightforward, since the P I N framework officially provides only 
a development kit, which does not include an installation script. 

Right after the necessary checks, there is a phase in which the engine is supposed to gather 
information about the available USDT probes, however, the P IN framework does not sup­
port the USDT probes. Therefore, the implementation of this method (available_usdt) 
returns an empty python dictionary every time it is executed, which effectively skips the 
phase entirely. 

One of the key steps before the data collection itself begins is the creation of the pintool that 
will be used in the process. This is facilitated in the engine's assemble_collect_program 
method where the engine assembles a new pintool based on the specified requirements by 
the user. The generation of the core parts of the pintool is done using Jinja22 templates 
that allow a high level of flexibility. This is possible thanks to the design of pintools, which 
can be split into major semantic parts and easily assembled, in this case, by Jinja2. Since 
pintools are written in C / C + + , the engine needs to generate the appropriate source code 
and then compile it using the g++ compiler that the engine requires for this purpose. The 
PIN framework's kit includes a Makefile written for general compilation of any pintool 
inside the kit's directory, however, when integrating it with Tracer's engine, some minor 
changes regarding the Makefile invocation had to be done so that the compilation would be 
possible from the Perun's temporary folder. The creation of pintools and Makefile, along 
with implementation details regarding this phase, are covered in more detail in Section 5.1.2. 

After the pintool is assembled, the collection process is ready to start. The pin command 
is executed in the method collect with the created pintool and binary along with the ar­
guments for its execution specified by the user through the Perun's command-line interface. 
In this phase, P IN instruments and executes the provided binary (either in JIT or Probe 
mode, which handles the execution in a different manner) and populates the temporary 
data file with collected data. 

Parsing of the gathered data is done immediately after its collection in the transform 
method. The purpose of this phase is not only to convert the collected data into a unified 
format, but also to validate and pair the records created by PIN, since there are two 
parts from which the record consists — the entry point record and the exit point record 
for each function or basic block execution. These two records contain the information 
that unambiguously identifies the program location and the time stamp when the entry 
occurred. These two records need to be combined into one which holds the data that 
identifies them and also the duration between the two points. However, sometimes the P IN 

1See h t t p s : / / c l i c k . p a l l e t s p r o j e c t s . c o m / e n / l a t e s t / . 
2See h t t p s : / / j i n j a . p a l l e t s p r o j e c t s . c o m / e n / l a t e s t / . 
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output contains only an entry point to a certain function, which signals a failed record 
and needs to be filtered out. The Section 5.1.3 dives further into the details of parsing the 
collected data. 

At the end of the whole process, the engine executes the cleanup method, which removes 
temporary files and concludes the whole Tracer execution process. 

5.1.2 Pintool and Makefile 

When designing a pintool, one needs to define a method of program instrumentation, what 
data should be collected, and the format in which the data will be produced. The method 
defines not only the mode of instrumentation, but also its granularity. This work requires 
the implementation of multiple pintools in order to provide only the specified data and to 
use a specific mode. Since the collection of data and its transformation requires a substantial 
amount of time, collecting all of the possible types of data every time would be unnecessary, 
and especially time consuming. Therefore, the Tracer engine creates a new pintool with 
each execution, which provides the needed flexibility of the pintool. 

The generation of a pintool is handled by Jinja2 templates that allow easy modification of 
pintool contents using python. Thanks to the general design of pintools, their structure can 
be split into three major parts, each representing one template: 

• Analysis: defines the analysis functions where the timestamps are recorded and the 
output format is defined. 

• Instrumentation: filters unnecessary instrumentation points based on the instru­
mentation granularity and assigns the analysis functions to these points, while also 
providing the necessary data to these functions which is then included in the collection 
output. 

• Main: represents the main function of the pintool, where the necessary callback 
registrations are done, and the SUT is executed in one of the available modes (JIT or 
Probe). 

Analysis template defines two types of analysis functions that are very similar. Analysis 
functions produce records before and after the execution of any function. These records 
contain information about the instrumented function (its name and identification number), 
but also the timestamp and the information where this record was created (either before 
or after the instrumented function) so that the output provides the necessary information 
to determine which records need to be combined for the calculation of the run-time of 
a function. Although, this might be enough to satisfy F R SRF (Support for recursive 
functions) the information will not be enough to satisfy the F R S M A (Support multi­
threaded/process applications), and therefore neither the F R F R T (Function run­
times). In order to satisfy these requirements, the analysis functions need to output the 
thread and process identifiers, and also access the output file safely using the Mutex locking 
A P I 3 provided by the P IN framework. The definition of this output format can be found 
in the Listing 5.1. 

3See the section about multi-threaded applications from: h t t p s : / / s o f t w a r e . i n t e l . c o m / s i t e s / 
landingpage/pintool /docs/98484/Pin/html/ index.html#MT. 
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1 Granularity;Location;TID;PID;TimeStamp;RoutineID;RoutineName 

Listing 5.1: Format of a single line in a P I N output with information separated by 
a semicolon. The format contains Granularity to differentiate basic blocks and routines, 
Location defining wheter the record is located before or after the routine, a thread iden­
tifier (TID), a process identifier (PID), a TimeStamp containing the time when the record 
was taken, and the Routine ID along with the RoutineName that identify the function the 
record coresponds to. 

The timestamp creation is handled by the 0S_Time function provided by P inCRT [18] and 
produces timestamps in microseconds. The selection of a suitable method to get the time 
stamp was already researched in the [19], where the 0S_Time function was selected as the 
most suitable because its output does not require any further conversions or processing, 
and at the same time provides equal or slightly better performance than the other available 
methods. Performance is a very important part of analysis functions since they are executed 
before and after every instrumented function execution. P IN can inline these functions at 
the place of their execution and effectively eliminate the need to call these functions entirely. 
However, the functions need to be simple and have no complex control flow structures. 
Even though the timestamps in microseconds using this function are applicable, the future 
work should focus on providing timestamps in nanoseconds while also respecting inlining 
restrictions to ensure that the output is more accurate. 

Instrumentation template defines a function that is called every time a new routine is 
found and decides if it should be instrumented, and in what way. The decision of which 
routines should be instrumented is based mainly on the function IMG_IsMainExecutable 
provided by the P IN framework. This function filters routines that are not part of the 
executable provided by the user. Another routines that are filtered are dynamically and 
artificially 1 created routines. When using the probed mode, the routines are also filtered 
by RTN_IsSaf eForProbedlnsertion which ensures that the P I N can insert an analysis 
function call before or after the function. After deciding if the function needs to be instru­
mented, the insertion of the analysis function call takes palace. This is done by using the 
RTN_InsertCall (or RTN_InsertCallProbed when using the probed mode) function and 
passing information about the instrumented routine (its unmangled name and identifier) 
and the analysis function to it. This means that the RTN_InsertCall function is called 
twice, since the insertion must happen before and after the instrumented routine. 

Main template defines the main function for the pintool. This part of the pintool de­
fines the granularity of the instrumentation right after the necessary initialization. To 
instrument routines, P IN provides RTN_AddInstrumentFunction which allows the regis­
tration of an instrumentation function (defined in the instrumentation template). The 
engine could use either image granularity or routine granularity for the instrumentation of 
routines. The image granularity is more efficient because the instrumentation function is 
called only once for every image and the routines contained in the image are instrumented 
right away. Thus, when instrumenting on the image-level, there is less context switching 
between P I N and the SUT. However, when combining routine instrumentation with the 

4 A n artificial routine is an routine introduced by P I N for internal management and does not represent 
an actual routine in the application. See h t t p s : / / s o f t w a r e . i n t e l . c o m / s i t e s / l a n d i n g p a g e / p i n t o o l / d o c s / 
98547/Pin/html/group RTN.html. 
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extensions described in Section 5.2, P IN failed to collect any data whatsoever, therefore the 
engine uses routine instrumentation granularity for the time being. At the end of the main 
function, the instrumentation mode is specified: either PIN_StartProgram in JIT mode or 
PIN_StartProgramProbed in Probe mode. This aims to satisfy the F R J M (Support 
for JIT mode) and F R P M (Support for Probe mode). 

Every template mentioned before is included in a single template, which represents the 
whole pintool. This template contains the necessary include statements, global variables, 
the definition of pintools argument (through which the name of the output file is speci­
fied) and the Fini function, which is executed before the end of the program. This way, 
the F R PI (Pintool implementation) is satisfied since the Jinja2 templates provide 
a way of creating multiple different pintools that can be easily extended with additional 
functionality. 

After the creation of a pintool source code, the Makefile for its compilation is generated 
similarly using a Jinja2 template. The Makefile defines the path to PIN's root (path to the 
PIN kit) where the default rules for pintool compilation are located, and defines the default 
rule which creates a folder for pintool shared object, and then recursively calls the default 
rule for its compilation. This creates the pintool.so which is then used in the invocation 
of the pin command as a tool that specifies the instrumentation process. This Makefile 
structure relies on files directly from P IN kit, which allows use of different kit versions just 
by exporting the PIN_R00T variable containing absolute path to the kit before using the 
engine. However, this approach will probably change in the future work. 

5.1.3 Transforming P I N Output Into the Perun Profile 

When the data collection is finished, the output (see Listing 5.2 for an example) must 
be parsed and the gathered information transformed into a Perun profile. This process 
requires conversion of the P IN output format (see Listing 5.1), specified in the pintool, 
to the internal representation of this data and storing it in the memory until the proper 
pair record is found. After that, the two records merge into a single record that contains 
additional information such as the function's run-time. This new record contains all the 
information that needs to be stored in the Perun profile, therefore after merging all the 
records, a complete Perun profile can be created. 

For the purpose of storing a record obtained from PIN, the class RawDataEntry was created. 
It serves not only as a simple data structure, but also defines methods that help with 
matching records and calculating the time delta of two records. The record format from 
PIN output is designed to be as easy to parse as possible. The majority of the information 
is stored as integers, except the name of the routine, which is outputted as a string. 

When parsing the P I N output, the engine reads the output file line by line, each line 
representing a record. These records are stored as RawDataEntry and if the record contains 
information about a routine entry point, it is put into a backlog represented by a python 
list. This backlog is then searched for a matching entry point whenever a new exit point 
record is found. Adding a new record to the backlog must be done from the beginning 
of the list instead of just appending them at the end since the search for the index of 
pair record starts at its beginning, and the pair matched needs to be the last execution 
of the routine. This helps to satisfy the F R SRF (Support for recursive functions) 
because accounting for the order of executed routines, the recursive routine call record could 
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0;0;0;107664;1651054391330820;15;Quicksort 

0;0;0;107664;1651054391330895;3;operator new[] 

0;0;0;107664;1651054391334661;18;Partition 

0;0;0;107664;1651054391334836;17;Swap 

0;1;0;107664;1651054391334843;17;Swap 

0;1;0;107664;1651054391335763;18;Partition 

0;0;0;107664;1651054391336328;18;Partition 

0;0;0;107664;1651054391336330;17;Swap 

0;1;0;107664;1651054391336333;17;Swap 

0;0;0;107664;1651054391336336;17;Swap 

0;1;0;107664;1651054391336338;17;Swap 

0;1;0;107664;1651054391336341;18;Partition 

0;0;0;107664;1651054391336453;7;operator delete [] 

0;1;0;107664;1651054391338574;15;Quicksort 

Listing 5.2: A n example of an output featuring Quicksort function execution. The records 
are reduced and indented for better readability. 

be mismatched since the P IN output does not contain any special identifiers for routine 
calls, which would unambiguously distinguish each call and eliminate the need of keeping 
the backlog sorted. After finding a pair of records, both are merged into a single record 
that contains the run-time of the routine (the time delta of the time stamps from the two 
records) along with the shared information by both original records. This new record is 
represented by the FunctionCallRecord class which serves as a simple data structure and 
has a method that converts the data to a python dictionary, suitable for storing in the 
Perun profile as a resource. 

Since the common engine interface function transform, which takes care of the data trans­
formation, needs to be a python generator, the merged records are immediately yielded as 
resources by this function. A resource represents one merged record and its format needs 
to be a python dictionary with specific keys — the fields containing information about the 
record. Since the fields were designed for the purpose of storing the information about 
function run-times, there is no need to register new ones when implementing basic Tracer 
functionality. This satisfies the F R P G (Profile generation) requirement for the basic 
functionality of the tracer. 

5.2 Extending the P I N Engine 

With the basic Tracer functionality implemented, the extensions featuring the new capa­
bilities can be built. The new functionality strives to leverage the P IN framework features 
to great extent and provide useful information in return. The collection of function argu­
ments provides the user with crucial information which connects function run-times to its 
argument values and allows for further analysis of the run-time dependence on the value 
of specific argument. Gathering information about the function arguments is one of the 
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new additions to the Tracer's P IN engine. However, for this purpose the engine has to 
utilize the D W A R F debug information contained in the binary, which is required for the 
arguments collection. In order to collect function argument values, the types and positions 
of the arguments need to be known before the pintool creation, because the pintool requires 
definition of separate analysis functions for each routine that needs the argument collection. 
The arguments collection can be enabled in both JIT mode and Probe mode, and can also 
be combined with another new feature: the collection of basic block run-times. The basic 
block run-times can be, however, collected only in JIT mode due to a restriction of the 
Probe mode. The Probe mode does not allow greater granularity of the instrumentation 
than routine level. Despite the restrictions, the basic block run-times can help the user 
pinpoint the source of slowdown in their programs better. In the following Section 5.2.1, 
the functional requirement F R FAI (Function argument information) is addressed 
in more detail, and Section 5.2.2 breaks down the F R B R T (Basic block run-times) 
requirement. 

5.2.1 Arguments Collection 

Although P I N provides a way of accessing the values of instrumented function's arguments, 
the pintool writer needs to know the position and the type of the argument before creating 
a pintool. This means that the pintool needs to be designed specifically for every instru­
mented program whenever the argument collection is involved, taking into consideration 
the functions with arguments that need to be collected. In order to gather the necessary 
information about function arguments, the engine uses the D W A R F debug information 
stored in the binary and forms an internal representation in form of a python dictionary. 
The dictionary is then used to aid in the process of pintool creation and indirectly improves 
the visual representation of the collected data. 

Obtaining the information about function arguments could be done in a few different ways. 
Static analysis of source code is one of them, however, the tools designed for this purpose 
tend to be limiting when it comes to the analysis of C++ source code. One of the tools 
considered for this purpose was C a s t X M L [14], which is a tool that creates an X M L tree 
from a C-family source code. Pairing this tool with pygccxml [16] would provide necessary 
information about the declared functions. Although this approach would work, it would 
introduce a new dependency in form of a program that is still in development after succeed­
ing the G C C X M L [15]. It would also need to be installed by the user and then executed 
by the engine as a separate process. Hence, instead of approaching this problem through 
static analysis, P IN engine extracts the necessary data from the D W A R F debug information 
using the pyelftools [2, 3] library. Analysis of a binary file could be done using G N U binary 
utilities such as nm or readelf, however, using these utilities requires their execution which 
produces output that contains unnecessary information and needs to be parsed into an 
internal representation. Thus, using pyelftools to extract only the needed information from 
the structured D W A R F format and converting it straight to the internal representation is 
a simpler approach. The binary provided by the user needs to be compiled with the debug 
information included, however, using newer versions of the gcc compiler includes D W A R F 
version 5, which is not fully supported by the pyelftools yet. For this reason, the engine 
requires the binary to be compiled with gcc 7.5 which by default uses the D W A R F version 
4. A compact comparison of the tools considered for collection of function arguments data 
is shown in Table 5.1 
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pyelftools nm readelf CastXML 

Produces information about functions 
Produces information about function arguments 
Produces unmangled function names / / / 
Analysis of debug information / / / 
Does not require additional dependencies / / / 
Does not require additional postporcessing / 
Is not executed as a separate process / 

Table 5.1: A comparison of the considered tools for collection of information about function 
arguments with the ideal requirements for the collection process shown in the first column. 

When extracting the necessary information from the D W A R F format using pyelftools, ev­
ery debug information entry (DIE) must be read one by one to find the relevant entries. 
In this case, relevant DIE is distinguished by the tag DW_TAG_subprogram which contains 
the name of the function as one of its attributes (DW_AT_name) and has children DIEs that 
hold information about the argument parameters that can be distinguished by the tag 
DW_TAG_f ormal_parameter. The parameter name and type can be extracted from the pa­
rameter DIE. The name extraction is the same as the name extraction from a subprogram 
DIE but when it comes to the parameter type extraction, there is a set of predefined DIEs 
that define each part of the type, and together form its complete definition starts with the 
first type DIE that's referred to by a parameter DIE in its DW_AT_type attribute. Since this 
work focuses on basic types only, extracting them requires a recursive function that reads 
the chain of DIEs and forms the type definition (e.g. unsigned long long int). The 
supported types are integers int (including the extended versions with long or unsigned), 
character char, string char*, and boolean bool. The engine also supports collection of 
double and float, however, the values collected by P I N can be wrong, for example when­
ever a float or double argument comes after a pointer argument, such as char*. In these 
cases, the collected value does not match the expected value. 

The extraction of information about function arguments from the binary is part of the 
engine's assemble_collect_program method which analyzes the binary using pyelftools 
whenever the user specifies that the collection of arguments should be included. The infor­
mation provided by the pyelftools is then passed in form of a python dictionary to Jinja2 
templates to be utilized in the process of pintool creation. The templates contain additional 
parts that were not present in the basic Tracer functionality. 

The analysis template creates an additional analysis function for every routine that requires 
the arguments collection. These analysis functions also specify the set of arguments they 
collect (with the types provided by pyelftools) from the routine they belong to. This 
specially designed analysis function will be called before every execution of the instrumented 
routine it corresponds to, and its output format is extended by the values of the arguments 
of the instrumented function as shown in Listing 5.3. 

The instrumentation template contains new logic that determines if the current routine has 
its own analysis function defined based on the name of the routine. For this purpose, the 
pintool template contains a global array of function names that have their own analysis 
functions. If the current routine's name is in the array, RTN_InsertCall contains the 
IARG_FUNCARG_ENTRYPOINT_REFERENCE along with the argument's index for each argument 
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1 Granularity;Location;TID;PID;TimeStamp;RoutineID;RoutineName;argl;...;argN 

Listing 5.3: The format of a single line in a P IN output when arguments collection is 
enabled. The format builds on top of the format defined in Listing 5.1 and adds the 
collected arguments to the end of the format. 

o o o 162446; 1651059266874581;19;Quicksort;10 
o o o 162446; 1651059266874651 3; operator new[] 
o o o 162446; 1651059266878176 22;Partition;0;9 

0;0;0 162446;1651059266878379;21;Swap 
0;1;0 162446;1651059266878385;21;Swap 

0 1 o 162446; 1651059266879318 22;Partition 
o o o 162446; 1651059266879618 22;Partition;5;9 

o 1 o 162446; 1651059266879645 22;Partition 

o o o 162446; 1651059266879851 22;Partition;2;3 

o 1 o 162446; 1651059266879863 22;Partition 
o o o 162446; 1651059266880047 8;operator delete[] 

o 1 o 162446; 1651059266882235;19;Quicksort 

Listing 5.4: A n example of an output featuring Quicksort function execution including the 
collected arguments of the functions executed in the process. The records are reducted and 
indented for better readability. 

that should be collected, which signals P I N to pass the argument at the specified index as 
a reference. On the other hand, when the current routine's name is not specified in the 
array, the instrumentation uses the standard analysis function without arguments. 

The main downside of this approach is the definition of analysis function for every routine 
that requires argument collection. These functions could be transformed into a single 
function using variadic arguments', however, this approach introduces unnecessary control 
flow logic to the analysis function which prevents applying the inlining mechanism provided 
by P IN for simple analysis functions. Even though using variadic arguments results in 
a compact and a more readable pintool, the additional overhead caused by non-inlined 
analysis functions is a bigger concern for this work. 

Since the format of the P IN output (see Listing 5.4) is extended whenever the arguments 
collection is involved, the parsing of output needs to support this extension. Along with 
the format support, the argument values that are not numerical need to be converted into 
information that represents them better from the performance impact standpoint. For the 
basic arguments supported by the engine, the string char* is stored as the length of the 
string instead of the string itself, and the character char is stored as its Unicode value. 

5Allows a function to accept any number of extra arguments. See ht tps: / /en.cppreference.eom/w/cpp/ 
1anguage/variadic_arguments. 
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1 Granularity;Location;TID;PID;TimeStamp;RoutineID;RoutineName;BasicBlockID 

Listing 5.5: The format of a line representing a basic block record in a P IN output. The 
format builds on top of the format defined in Listing 5.1 and adds a basic block identifier 
to the end of the format. 

To store the additional new information in a Perun profile, new keys for the resource 
dictionaries need to be defined in the Profile class. The keys can be collectible or persistent 
which defines their final form in Perun profile. The values of collectible keys are squashed 
into a single list for each resource that represents all of the executions in one place. The 
persistent values, on the other hand, are same for every execution and, therefore do not 
have to be stored multiple times. The keys defined for the arguments include a variable part 
in form of an index which on its own makes it impossible to define every possible key in an 
array. Thus, the keys are matched using a regex when translating the provided resources 
into a profile format. 

5.2.2 Basic Block Run-times 

One of the features provided by the P IN framework, and utilized in this work, is the 
instrumentation of basic blocks. The engine needs to create a suitable pintool for this 
purpose and be able to combine this feature with the function run-times collection and the 
arguments collection in the JIT mode, since the Probe mode does not support this feature. 
The pintool outputs additional information about the instrumented basic block, therefore 
the parsing of the output needs to be adjusted to this new format addition, and similarly 
the Perun profile also needs to contain this information. When the collection of basic blocks 
is involved, the size of the collected data naturally increases along with the time it takes to 
process this data. 

This extension of functionality requires some additions to the created templates in the 
pintool creation process, while keeping in mind that the basic block collection parts of the 
pintool can not be generated if the Probe mode was selected. The Analysis template defines 
two new analysis functions dedicated to basic block data collection. The P IN output format 
(See Listing 5.5) for the basic blocks collection adds a way of deterministic identification 
of the basic blocks. The P IN framework A P I does not provide any form of internal iden­
tification for the basic blocks, so the address of the first instruction of a basic block was 
chosen as the identifier. This is possible thanks to the transparency of the P IN framework. 
Another part of the output added for the purpose of basic block run-times collection, is 
a granularity flag that differentiates a routine record from a basic block record. 

The Instrumentation template defines a new function Trace which is called every time a new 
trace is found, and the Main template registers it as a callback whenever the collection of 
basic blocks is enabled using the TRACE_AddInstrumentFunction function. This granu­
larity of instrumentation is utilized because the trace can be broken down into individual 
basic blocks that can be instrumented, as opposed to the routine granularity where each 
routine can be broken down into instructions it contains. The individual traces refer to the 
routine they are associated with, which helps to filter the traces and also contributes to the 
information outputted about the basic block. The filtering of traces based on routine and 
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1 0 o o 169925; 1651059918274929;22;Partition 
2 1 o o 169925; 1651059918274932;22;Partition;4197398 
3 1 1 o 169925; 1651059918274934;22;Partition;4197398 
4 0 o o 169925; 1651059918274937;21;Swap 
5 1;0;0 169925;1651059918274940;21;Swap;4197353 
6 o 1 o 169925; 1651059918274942;21;Swap 
7 
Q 

i ; i ; 0 169925;1651059918274945;21;Swap;4197353 
O 

9 1 0 o 169925; 1651059918274988;22;Partition;4197622 
10 1 1 o 169925; 1651059918274991;22;Partition;4197622 
11 o o o 169925; 1651059918274993;21;Swap 
12 1;0;0 169925;1651059918274996;21;Swap;4197353 
13 o 1 o 169925; 1651059918274999;21;Swap 
14 i ; i ; 0 169925;1651059918275001;21;Swap;4197353 
15 1 o o 169925; 1651059918275004;22;Partition;4197677 
16 0 1 o 169925; 1651059918275007;22;Partition 
17 1 1 o 169925; 1651059918275009;22;Partition;4197677 

Listing 5.6: A n example of a P IN output for a Partition function when basic block collection 
is enabled. The records are reducted and indented for better readability. 

image associated to it is similar to the Routine function intended for the function run-times 
collection. The BBL_InsertCall P IN A P I function could be used to instrument the basic 
blocks inside the trace, however, this approach proved to be unreliable since many basic 
blocks would not contain the exit point time stamp. This is due to the fact that in order 
to to use the IP0INT_AFTER with basic blocks, their last instructions needs to be a fall 
through instruction 6. To ensure that the output data contains both entry and exit point 
time stamps of each basic block, the decision has been made to instrument only its first 
and last instruction, and for both insert the instrumentation code with IP0INT_BEF0RE to 
avoid the P IN restriction. This is a reliable way of instrumenting every basic block, how­
ever, for the cost of loosing the execution time of the last instruction of a basic block. The 
problem of this approach will be addressed in the future work, by respectively assigning 
the additional time spent in a function to its basic blocks. 

Transformation of the collected data (see example in Listing 5.6) into the Perun profile 
adapts to the new P I N output by creating an abstract class Record that represents a merged 
record, and having two separate implementations of this class which represent a function 
record (FunctionCallRecord) and a basic block record (BasicBlockRecord). When pars­
ing the P IN output, records are distinguished by the granularity flag and stored in separate 
backlogs. This addition of a new backlog separates the two different record types based 
on their granularity, and ensures that the match is found sooner. The implementation of 
records matching is not much different from the version in Section 5.1.3, apart from the 
addition of separate backlogs and introduction of two different formats for the P IN output 
record based on its granularity. 

6 A fall through instruction is an instruction that does not change the control flow of the program and 
executes the next instruction immediately after it. See h t t p s : / / s o f t w a r e . i n t e l . c o m / s i t e s / l a n d i n g p a g e / 
pintool/docs/98484/Pin/html/group__INS__INSPECTI0N.html#ga7602edbl7e52e209492bab2c65fcl612. 
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5.3 Visualizations 

One of the essential parts of this work is the visualization of the data collected by the P IN 
engine. The manual analysis of the collected data is much easier when the data properties 
are highlighted with a specialized visualization that emphasizes them. This work focuses 
on visualization of the data collected by the new features introduced in the Tracer engine 
based on the P IN framework. Thus, two new visualizations are created in this work where 
one shows the dependence of function's run-time on values of its arguments. The second 
visualization contains a graph that illustrates the time spent exclusively in a function and 
on top of that, the time spent in the most time expensive basic blocks of this function. The 
other graphs created by this visualization is very similar, but shows the number of function 
executions instead of time. 

Both of the visualization implementations process a Perun profile and output a visual 
representation of it. Before the visual representation is created, the Perun profile needs to 
be converted into a Pandas [22] DataFrame that contains relevant data for the visualization 
process. The visualization process is then realized either by utilizing the Seaborn [30] 
library in combination with the Matplotlib [13] library, or utilizing the Bokeh [4] library. 
The user can also influence the outcome of the visualization process as well as the data 
transformation by using Click command line options provided for given visualization. 

The function arguments visualization highlights the importance of their collection by show­
casing the dependence of function run-time on them. This way, it aims to help the user 
identify the possible cause of slowdowns in a function. Using the Seaborn and Matplotlib 
libraries, the visualization utilizes the scatter plot (see Figure 5.1a), allowing the user to 
choose a function that has any arguments collected in the selected Perun profile, and to 
choose whether the arguments should be shown in a single graph as in Figure 5.1c, or 
individually as in Figure 5.1b. In either case, the graphs provide information about the 
arguments including their type and name. 

The second visualization leverages the collected basic blocks data and essentially shows the 
impact of particular basic blocks on the run-time of a function. The visualization is designed 
to point out the most time demanding functions and provide a way of identifying the basic 
blocks that might be the cause of a slowdown. The filtering and extensive restructuring 
of the converted DataFrame has to take place to prepare the data for the visualization in 
a suitable format. The visualization process utilizes the Bokeh library, however, it respects 
the Perun restriction which limits the Bokeh version 0.12.6, instead of the most recent 
version. The graph created using this library is inspired by one of the examples in the 
gallery featured on the Bokeh website' that illustrates enhanced version of a sunburst graph. 
This graph (see Figure 5.2a) is created from individual annular wedges which represent 
either functions (parts of the background circle) or basic blocks (column-like shapes in the 
foreground of the circle). To control what is displayed in the graph, as presented in the 
Figure 5.2b, the user can filter by the most time consuming or the most called functions, 
and also limit the number of the most time consuming or the most called basic blocks. This 
visualization doesn't directly inform the user about the location of the basic block in their 
code. The future work will include this information, which requires deeper analysis of the 
PIN output, while taking into account that the basic blocks are discovered dynamically. 

7See h t t p : / /docs .bokeh.org/en/0 .12.6/docs /gal lery .h tml . 
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Figure 5.1: A n example of the arguments vizualization showing the dependence of function 
run-time on its argument values. 
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(a) Al l of the functions with some of the most expensive basic blocks. 

(b) Top 6 functions filtered by their total exclusive time, including their top 4 basic blocks. 

Figure 5.2: A n example of the visualization of collected data regarding functions and their 
individual basic blocks, featuring graphs with the run-time on the left and graphs with 
the number of executions on the right. The large version of these images can be found in 
Appendix B. 

33 



Chapter 6 

Experimental Evaluation 

This chapter contains practical evaluation of the resulting Tracer engine, while verifying 
its functionality and outlining its beneficial impact. The description of the first experiment 
conducted on the new engine is provided in Section 6.1, demonstrating the benefits of 
collecting additional data alongside function run-times. For the purpose of this experiment, 
a program that implements multiple sorting algorithms was chosen to show the dependence 
of its performance on collected function arguments. The output of this experiment contains 
visual representation of the collected data created with visualization methods introduced 
in Section 5.3. 

The second experiment described in Section 6.2 compares the new Tracer P IN engine to its 
other realizations which leverage the SystemTap and eBPF instrumentation frameworks. 
This experiment was conducted on a larger-scale project — CCSDS [1] compression program 
that is suitable for this purpose thanks to its wide range of functions. The output of this 
experiment is a comparison of the measured metrics of the execution of each engine, the 
size of the profiles created and the functions flagged as the most time consuming by each 
engine. 

Machine specification. The experiments were conducted on a reference machine with 
the following specification: 

6.1 Case Study #1: Impact of Increased Granularity 

Evaluation of the new Tracer engine functionality, introduced in this thesis, strives to prove 
the benefits of obtaining additional information regarding the SUT to put the collected 
data into better context, and ultimately improve its analysis. This experiment also verifies 
the functionality of the data collection process utilizing both the arguments and basic block 
collection. The program used for this purpose implements multiple sorting algorithms (e.g. 
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Heap sort or Quick sort), along with an improper implementation of a Quick sort to show 
how beneficial the arguments and basic blocks collection is for identification of an improper 
implementation. 

Methodology. The experiments conducted for this evaluation of the new engine utilize 
its collection of arguments and basic blocks at the same time. The collection was executed 
five times, where first two executions act as a warm up phase — to ensure the stability 
of the experiments, and therefore are excluded from the selection of the resulting data. 
The resulting data were selected from the remaining three executions based on median of 
the total execution time. The program used in this experiment executes different sorting 
algorithms in sequence 300 times while creating a reverse sorted array with random length 
from 20 to 200 elements for each of the sorting algorithms. 
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Figure 6.1: A visual comparison of having the values of function arguments available in 
addition to function run-times, and having just the run-times alone. 
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Figure 6.2: A visual comparison of two implementations of Quick sort and an auxiliary 
partitioning function used in the implementations. The graphs show increased complexity 
in the improper implementation of Quick sort (QuickSortBad). 

The dependence between an argument value and a run-time of a function is an information 
obtained thanks to the collection of argument values shown in Figure 6.1 which presents 
the impact of the arguments collection in this experiment. The additional information puts 
significant amount of context to the collected data and shows the source of complexity of 
a function. When comparing the collected data of the improper Quick sort implementa­
tion to its correct implementation in Figure 6.2, the increased complexity of the improper 
implementation is easily visible. 

Furthermore, the data collected regarding the basic blocks allows for analysis of time spent 
exclusively in each function, because the basic block run-times provide more detail about 
functions execution. This information proves to be beneficial when comparing the run-times 
of functions in Figure 6.3 where the BadPartition (a part of the improper implementation 
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of a Quick sort) stands out as the most time consuming function. When compared to its 
correct implementation (Partition function), the data shows significant differences. 

Figure 6.3: A visual interpretation of the collected basic block data, showing that the ex­
clusive time spent in BadPartition function is significantly higher than any other function, 
indicating the source of the performance issue. The large version of these images can be 
found in Appendix B. 

6.2 Case Study #2: Impact of Tracer Engines 

The main goal of this experiment is to compare the performance of the newly implemented 
Tracer engine that leverages the P IN framework to the existing implementations that lever­
age eBPF and SystemTap instrumentation frameworks. The JIT mode was chosen to 
represent the PIN-based engine since the Probe mode currently does not reliably support 
the basic functionality this experiment strives to compare. Moreover, this experiment veri­
fies the basic functionality of the resulting Tracer engine. The CCSDS compression program 
was chosen for this experiment as a larger-scale program so that the comparison of engines 
provides results comparable to real-world scenarios. 

Methodology. The experiment conducted on the CCSDS compression program shares the 
methodology foundation with the first experiment. For every engine realization, the CCSDS 
program is executed five times (including the warm-up phase consisting of two executions) 
for three input images with different sizes. The Perun produces a set of metrics for the 
comparison, and a performance profile for each execution (excluding warm-up phase execu­
tions). This output is then analyzed, and based on the median of time spent in the engine, 
the representing execution is chosen and its metrics are used to compare the engines. 

When comparing the time metrics obtained in the experiment, the smallest input image, 
presented in Table 6.1, shows that the P IN engine introduces significant instrumentation 
performance improvement for smaller inputs, while providing the same results as other en­
gine implementations. However, further experimenting with larger CCSDS inputs shows that 
the new engine's instrumentation performs on par (See Table 6.2) or worse (See Table 6.3) 
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with the increased input complexity. This experiment also shows big differences between 
Engine time and Instrumentation time for the engine based on the P IN framework when 
compared to other engines. Both eBPF and SystemTap engines, however, feature optimiza­
tions of the output processing (such as parallel processing), whereas P IN engine does not 
feature optimizations yet, which is a part of the future work for this engine. 

The Profile size shows differences among the engines, although the profile is in a unified 
format, the information stored in this format may vary from engine to engine. For exam­
ple, SystemTap engine stores call-order for each function and also exclusive time spent in 
a function which, compared to eBPF-based engine and the new PIN-based engine, increases 
the profile size size significantly. The size might also be influenced by functions detected 
and instrumented by each engine. If one of the engine instruments a function that is called 
substantial number of times, and the other engines fail to instrument this function, the 
size of the resulting performance profile might increase for such engine. Every engine in 
this experiment instrumented nearly the same amount of functions while flagging the same 
function as the most time consuming, even though there are some differences among the 
top three most time consuming functions. 

\ engine 
metrics \ P I N e B P F SystemTap 

Total time 12.03s 13.58s 13.38s 

Engine time 9.10s 10.75s 10.57s 

Instrumentation time 1.59s 9.20s 4.55s 

Profile size 3.4MB 1.4MB 4.4MB 

Instrumented functions 68 64 72 

bpe_encode bpe_encode bpe_encode 
Top 3 func. names bpe_push_block bpe_encode_segment bpe_push_block 

bpe_encode_segment_bit_plane_coding bpe_push_block bpe_encode_segment 

56.00% 60.28% 70.69% 
Top 3 func. times 55.46% 58.77% 70.51% 

39.71% 39.30% 70.45% 

Table 6.1: A comparison of the Tracer engines using the CCSDS compression program with 
an image size of 112x112 pixels. The Total time represents the time of the whole process 
from the start to the end of Perun execution. The Engine time represents a portion of 
the Total time taken by the given engine, and the Instrumentation time corresponds to the 
instrumentation part of the engine's execution. 

Although, the implementation of PIN's Probe mode is described in the Chapter 5, its 
testing after the implementation and during this experiment uncovered inconsistency with 
instrumentation after a routine. It requires creation of a PR0T01 object based on the 
instrumented routine which wasn't entirely clear before the implementation and had to be 
tested. However, even with proper information for creation of this prototype, P IN allows the 
float and double data types only as return types for the prototype, and doesn't support 
them as arguments. This makes Probe mode viable only for certain functions that meet 
the specified requirements and therefore hard to use for general instrumentation of routines 
in Tracer engine. 

1 Prototype of a routine, see h t t p s : / / s o f t w a r e . i n t e l . c o m / s i t e s / l a n d i n g p a g e / p i n t o o l / d o c s / 9 8 4 8 4 / 
P i n / h t m l / g r oup__PR0T0 .html. 
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\ engine 
metrics \ P I N e B P F SystemTap 

Total time 42.50s 21.12s 27.93s 

Collector time 37.77s 17.22s 21.39s 

Instrumentation time 5.89s 10.38s 7.03s 

Profile size 17MB 6 .4MB 24MB 

Instrumented functions 68 66 72 

bpe_encode bpe_encode bpe_encode 

Top 3 func. names bpe_push_block uint32_abs bpe_push_block 

bpe_encode_segment_bit_plane_coding bpe_push_block bpe_encode_segment 

66.83% 62.60% 73.28% 

Top 3 func. times 66.55% 19.90% 73.09% 

48.86% 19.46% 73.04% 

Table 6.2: A comparison of the Tracer engines using the CCSDS compression program with 
an image size of 256x256 pixels. The Total time, Engine time and the Instrumentation time 
have the same meaning as described in Table 6.1. 

\ engine 
metrics \ P I N e B P F SystemTap 

Total time 158.19s 45.65s 77.58s 

Collector time 146.79s 38.34s 59.52s 

Instrumentation time 21.05s 14.70s 15.51s 

Profile size 66MB 23MB 93MB 

Instrumented functions 68 69 72 

bpe_encode bpe_encode bpe_encode 
Top 3 func. names bpe_push_block uint32_abs bpe_push_block 

bpe_encode_segment_bit_plane_coding bpe_encode_segment bpe_encode_segment 

69.48% 63.65% 73.96% 
Top 3 func. times 69.26% 20.52% 73.77% 

50.49% 15.66% 73.72% 

Table 6.3: A comparison of the Tracer engines using the CCSDS compression program with 
an image size of 512x512 pixels. The Total time, Engine time and the Instrumentation time 
have the same meaning as described in Table 6.1. 
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Chapter 7 

Conclusion 

This thesis presents an extension of the Performance Version System-Perun in form of 
a new Tracer collector engine based on the P I N instrumentation framework. This newly 
implemented engine features basic functionality of the existing Tracer engines, and further­
more extends the granularity of the collected data by implementing function arguments 
collection and basic block run-times collection. The new information gathered by the PIN-
based engine can be manually analyzed by the user thanks to the two new visualization 
techniques (based on the scatter plot and modified version of sunburst graph) introduced 
in this work. A l l of the functional requirements set prior to implementing the new engine 
were met, however, the utilization of the PIN's Probe mode has some significant restrictions 
which render it unstable. 

The evaluation of the new engine features an experiment conducted on numerous sorting 
algorithms to show the positive impact of collecting values of function arguments and its 
interpretation with new visualizations. This experiment proved that the function arguments 
can help analyze the source of complexity of a function, and that the basic block run­
times can help with locating the source of slowdown even further, while also estimating the 
exclusive time spent in each function. Second experiment, conducted on a larger-scale image 
compression program CCSDS, compares the basic functionality of the new Tracer engine 
to the other engines based on eBPF and SystemTap instrumentation frameworks. The 
PIN framework introduces significant performance improvement of instrumentation when 
smaller input sizes are used, and comparable performance with larger inputs. Moreover, 
each engine flagged the same functions as the most time consuming. 

Future work. One of the main future goals will be the optimization of the P IN output 
transformation to the Perun profile, which is now a major source of performance issues in 
the new engine. The performance and memory usage could be further optimized by better 
routine instrumentation filtering, which would reduce the number of unwanted instrumented 
routines to minimum. Basic blocks collection could be improved by providing the user with 
an easy way of connecting a basic block to the source code, as well as by approximating 
the last instruction run-time, which could not be consistently instrumented due to the P IN 
restrictions. The future work will also extend the set of collectible argument types beyond 
the currently supported set of basic types. 
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Appendix A 

Contents of the included storage 
media 

/ 
perun/ Perun implementation along with the P IN Tracer engine 

_pin-3.22 P IN kit 
example-programs/ Programs for functionality testing 
vm-f iles/ Files for setup of virtual machine with perun pre-installed 
README.md Useful information about the storage medium content 
thesis-source/ WT^K. source code of this thesis 
xmocarOO-thesis .pdf/ . . . Digital version of this thesis 
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Appendix B 

Basic Block Visualization 
Examples 

Basic block time 

Figure B . l : A n example of the visualization of collected data regarding functions and their 
individual basic blocks featuring all of the functions of the tested program and some of the 
most time expensive basic blocks time consumed. 

45 



Basic block executions 

Figure B.2: A n example of the visualization of collected data regarding functions and their 
individual basic blocks featuring all of the functions of the tested program and some of the 
most time expensive basic blocks and their executions. Paired with B . l 

46 



Basic block time 

Basic Blocks 

Figure B.3: A n example of the visualization of collected data regarding functions and 
their individual basic blocks featuring top 6 most time consuming functions sorted by time 
including their top 4 basic blocks. 
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Basic block executions 

Basic Blocks 

Figure B.4: A n example of the visualization of collected data regarding functions and their 
individual basic blocks featuring top 6 most executed functions sorted by time including 
their top 4 basic blocks. Paired with B.3 
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Basic block time 
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Figure B.5: A visual interpretation of the collected basic block data, showing that the ex­
clusive time spent in BadPartition function is significantly higher than any other function 
indicating the source of the performance issue. 
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