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Introduction 

Saproxylic beetles 

According to Speight (1989), saproxylic invertebrates are defined as organisms „that are 

dependent, during some part of their life cycle, upon the dead or dying wood of moribund or 

dead trees (standing or fallen), or upon wood-inhabiting fungi, or upon the presence of other 

saproxylics“. Their role in the forest ecosystems is irreplaceable. The saproxylic fauna is mainly 

responsible for the natural decomposition of woody material (Cavalli and Mason, 2003). Most 

of the species feed on decaying trees, snags (standing dead trees) and logs (fallen trees) 

preparing them for colonization by other organisms. Also, they often serve as vector of other 

symbiotic organisms (mostly different species of fungi) that further humify wood (Gilbertson, 

1984). Finally, saproxylic organisms are part of the complex food web systems and multiple 

types of animal-plant and animal-animal interactions (Quinto et al., 2012).  

In Europe, however, saproxylic invertebrates (and especially beetles) are considered to 

be a highly threatened taxonomic group (Nieto and Alexander, 2010). According to IUCN Red 

List (Nieto and Alexander, 2010), nearly 11% (46 species) of evaluated saproxylic beetles are 

threatened, and almost 14% of species have declining populations. At the level of individual 

countries, most of the data comes from the Fennoscandia where saproxylic community is 

traditionally given high attention. For example, in Sweden 471 beetle species associated with 

forest habitats are included in the Swedish Red List (Gärdenfors, 2005). In Finland, almost 10% 

(333 species) of all assessed beetle species are considered as threatened (Rassi et al., 2010). As 

in Sweden, forest habitats are the most important; 42% (140 species) of the threatened beetles 

live primarily in forests. The situation in southern parts of Europe could be even more serious 

since the bulk of saproxylic diversity (species richness and the number of endemic species) 

occurs in these regions (Nieto and Alexander, 2010). 

The decline of the saproxylic beetles is mostly connected with the changes in landscape 

caused by the human activities. One of the most serious problems is the removal and reduction 

in quality of dead and decaying wood within the forest (Davies et al., 2008; Müller et al., 2015). 

For example, 31% of all threatened beetle species in Finland are influenced by the decreasing 

amount of decaying wood (Rassi et al., 2010). A large number of saproxylic beetles are also 

dependent on ancient and veteran trees (Seibold et al., 2015). Therefore, a reduction of old-

growth forests and the decreasing number of old large trees can also significantly influence the 
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survival of many populations. Finally, it has been suggested that many saproxylic beetles prefer 

sun-exposed wood compared to shaded (Vodka et al., 2009). Overgrowing of the originally 

open habitats can thus constitute another threat for such organisms. 

Saproxylic beetles are a diverse group with high ecological and economical importance 

(Grove, 2002). Although the major pest species, often causing damages to environment, forest 

and natural resources, have been the subject of various studies, less attention has been paid to 

the threatened species, some of them serving as important models in ecology, conservation 

biology, and/or as the umbrella species (Ranius, 2002; Buse et al., 2007). Large, conspicuous 

beetles are among the most attractive representatives of such guild. Even though the hermit 

beetle (Osmoderma eremita s.l.) (Scopoli, 1763) represents probably the most frequently 

studied species, its ecology and life history is very different from other endangered saproxylic 

beetles, especially the large cerambycids (Chiari et al., 2012; Chiari et al., 2013). Thus, focusing 

on them is highly desirable and it may bring new insight into the different life strategies.  

Rosalia alpina as a model species 

Rosalia longicorn, Rosalia alpina (Linnaeus, 1758), belongs to the family Cerambycidae, tribe 

Rosaliini (Danilevsky, 2015). In Europe, there is only one species of this genus, although it has 

been suggested that the highly isolated population from southern Turkey (Hatay Province) 

might be considered as a subspecies Rosalia alpina syriaca (Pic, 1894) (for more details see 

the Chapter VII). Several other species within genus Rosalia have been described, but all of 

them inhabit Easten Palaearctic and Oriental regions, mainly China and SE Asia (Löble and 

Smetana, 2010).  

R. alpina currently inhabits a large part of Europe (Fig. 1) reaching as east as Caucasus 

and Ural Mountains (Sama, 2002). Its southern border is formed by northern Greece, Sicily and 

northern Spain. There are no indications that it occupies coasts of North Africa. In the northern 

parts of Europe, the beetle has experienced significant declines in the last decades. It has 

completely disappeared from Sweden (Lindhe et al., 2010) and Denmark (Horion, 1974), and 

from a large parts of Germany (Bense, 2002), Poland (Starzyk, 2004a) and the Czech Republic 

(Sláma, 1998).  
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Figure 1 The distribution map of Rosalia longicorn (Rosalia alpina). 

R. alpina is typically considered as a montane or sub-montane species associated with 

European beech (Fagus sylvatica) (Heyrovský, 1955; Sláma, 1998). In Western (Picard, 1929) 

and Southeastern (Serafim and Maincan, 2008) Europe, however, the beetle is known to display 

a broader host range and occupies more habitats including sea-shore and floodplain forests 

(Simandl, 2002). Recently, these lowland populations have also been repeatedly reported in 

Central Europe, mostly from the floodplains of the Danube and its tributaries in Slovakia, 

Austria, Hungary and Czech Republic (Jendek and Jendek, 2006; Cizek et al., 2009; Hovorka, 

2011). While montane beech-associated populations (except those from the Alps and 

Carpathians) have almost disappeared from Central Europe, the lowland populations have 

started to spread and exploit other broadleaved tree species like maples, ashes and elms (Jendek 

and Jendek, 2006; Cizek et al., 2009; for detailed information see the Chapter VI). Furthermore, 

occasionally the development of the beetle has also been recorded in other broadleaved trees, 

including hornbeam and walnut (Merkl et al., 1996). Although the beech is generally preferred 

whenever present, beetles still have the ability to exploit a wide range of distantly related 

species of trees. Why such strange behavior exist, and which evolutionary mechanisms can 

maintain it is the subject of the Chapter VII. 

Despite this, R. alpina remains an endangered and strictly protected species in most of 

Europe. It is listed in the IUCN Red List of Threatened Species (IUCN, 2016) and the EU 

Habitats Directive as a priority species of community interest (Council of the European 

Communities, 1992). Because of the beetle‘s general publicity, its role as an umbrella and 
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flagship species providing protection for other beech-forest associated species has also been 

emphasized (Lachat et al., 2013). 

While in lowlands the habitat requirements of R. alpina are still rather uncertain, in 

higher altitudes the beetle occupies mostly old and sun exposed trees in semi-open woodlands 

(Russo et al., 2011). Dead wood which is still mostly hard and dry is preferred in form of 

standing or fallen trunks, and large branches. Crevices and cracks on the surface probably 

facilitate female’s oviposition. The development takes usually three years (Heyrovský, 1955) 

after that adults exit the wood through typical elliptic holes (Dominik and Starzyk, 1989).  

The main threat for this species is the loss of suitable habitats, resulting in the 

fragmentation of populations with all the adverse consequences. Two contrary practices are 

usually involved. Intensive logging and massive dead-wood removal strongly affects the 

amount of breeding substrate available to R. alpina. On the other hand, a no management 

approach could lead to a closed canopy forest, which is also not suitable. Therefore, 

management at multiple scales is needed, including regular forest thinning (coppicing, 

pollarding) and dead wood retaining (Russo et al., 2011).  

Cerambyx cerdo as a model species 

The Great Capricorn beetle, Cerambyx cerdo (Linnaeus, 1758), is a western Palearctic species 

distributed in most of Europe including the whole Mediterranean region and the Caucasus 

Mountains (Sláma, 1998; Sama, 2002). Although still relatively common in South France, 

Spain and Italy, the species is rapidly declining across northern parts of Europe (e.g. Sláma, 

1998; Ehnström and Axelsson, 2002; Starzyk, 2004b; Jurc et al., 2008; Ellwanger, 2009). It has 

disappeared from large parts of Sweden, where the last population currently survives (Lindhe 

et al., 2010), Germany (Buse et al., 2007) and Poland (Starzyk, 2004b). In Great Britain, fossil 

evidences suggest that this species occurred until 3690 +/-100 BP and all the recent records 

have been described as importations (Alexander, 2002). In the southern parts of Europe, the 

species can be confused with other closely related species with the similar morphology, as for 

example Cerambyx welensii (Küster, 1846) or Cerambyx miles (Bonelli, 1812). 

Cerambyx cerdo is one of the largest longhorn beetles living in Europe. Similar to 

Rosalia alpina, it is protected under the EU Habitats Directive (Council of the European 

Communities, 1992) and classified as globally vulnerable according to the IUCN Red List of 

Threatened Species (IUCN, 2016). Although the species prefers to develop in the wood of large 

and sun exposed oaks (Buse et al., 2007), it is at least occasionally able to accomplish its 
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development in oaks of a much smaller diameter (Albert et al., 2012), or even in a different tree 

species (Sláma, 1998). The vitality of trunk and canopy (the amount of dead or damaged 

branches) seems to be an important factor influencing the presence of this saproxylic beetle 

(Buse et al., 2007). Since larvae develop in the wood of weakened, but still living, trees, the 

adults prefer to attack older and injured trees. Also, the beetle requires open sides and sun-

exposed trees; thus it is most commonly found in old open forests, orchards and landscape 

parks. 

The reason that this species has declined in the last century is mainly due to changes in 

forest management practices resulting in fewer suitable oaks. Potential host trees have become 

too shaded by surrounding trees and shrubs with an unsuitable age structure. Thus, proper 

management should focus on creating a sufficient number of suitable trees that are the proper 

age, and on connecting such localities with the one already inhabited by this species.  

C. cerdo is considered as an ecosystem engineer, probably due to its ability to change 

the characteristics of its host tree and thus provide more favorable conditions for other 

saproxylic insects (Buse et al., 2008a). Oaks colonized by this beetle had a higher number of 

other beetle fauna than uncolonized trees, and offered a habitat for numerous endangered beetle 

species (Buse et al., 2008b). For this reason, it has been suggested that reintroductions of C. 

cerdo where it has already disappeared from might be favorable for local fauna biodiversity 

(Buse et al., 2008a). Nevertheless, since the beetle is essentially a parasite of oaks, the possible 

negative effect of the reintroduction on the habitat should be considered (for more details see 

the Chapter IV).  

Conservation priorities 

It has been generally suggested that, to prevent long-term loss and degradation of biodiversity, 

conservation activities needs to be prioritized (Brooks et al., 2006; Wilson et al., 2009). Such 

actions can help to effectively allocate usually limited amount of funds and resources. Setting 

conservation priorities usually includes the assessment of extinction risk of threatened taxa, as 

well as other ecological, phylogenetic, historical, economical, or cultural preferences for some 

taxa over others (e.g. Sarkar et al., 2006). The application of genetic methods is another 

important aspect that should be considered in any conservation decision (Marris, 2007; 

McMahon et al., 2014).  

Different genetic approaches have been used in conservation biology for resolving wide 

ranges of questions related to the beetle’s protection, e.g. estimating effective population size 
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(Kajtoch et al., 2014), detecting population bottlenecks (Gaublomme et al., 2013; Kajtoch et 

al., 2014), determining genetic diversity and population structure for recognition of 

conservation units (Kajtoch, 2011; Kajtoch et al., 2013; Ahrens et al., 2013; Cox et al., 2013; 

Sole and Scholtz 2013), detecting hybridization (Solano et al., 2016), resolving taxonomic 

uncertainties (Audisio et al., 2009; Solano et al., 2013), or assessing dispersal abilities and the 

gene-flow (Matern et al., 2009; Oleksa et al., 2013; Oleksa et al., 2015). An understanding of 

such patterns in populations of threatened species is vital for effective conservation strategies, 

and it may help to determine management actions according to the current needs (Avise et al., 

1987; Moritz, 1994). 

Rosalia alpina and Cerambyx cerdo are both considered as the two model species of 

saproxylic invertebrates for various ecological questions (Buse et al., 2007; Drag et al., 2011; 

Bosso et al., 2013), and at the same time they both serve as umbrella species in biodiversity 

conservation (Buse et al., 2008b; Lachat et al., 2013). Despite their significant importance, any 

population genetic studies are surprisingly missing.  

Molecular markers 

Although current whole-genomic approaches constantly play a more important role in the study 

of genetic variation and can provide a great amount of new information for a reasonable price 

(McCormack et al., 2013), many questions in conservation genetics can still be satisfactorily 

answered using the conventional genetic markers as a mitochondrial DNA, microsatellites, or 

by the combination of these two approaches (McMahon et al., 2014).  

Different mitochondrial gene sequences (mtDNA) have traditionally been used for 

studying genetic variations of insect populations, to reconstruct the phylogeny of recently 

diverged species, and to provide relevant information about the phylogeography of the study 

species. Because of its undeniable advantages (simple extraction from animal tissue, relatively 

high rate of polymorphism, universal primers across different taxa, and assumed no 

recombination), mtDNA has quickly become the marker of choice for many studies. 

Despite its undeniable usefulness, employment of mtDNA is not always without 

complication. Questions about its suitability and reliability for resolving different evolutionary 

processes have been asked (e.g. Zhang and Hewitt, 1996). Firstly, it is important to expect the 

strict maternal inheritance of this marker in most cases. Consequently, it has been proposed that 

mtDNA does not reflect the history of the species as a whole but rather only of the female 

portion. Probably the major drawback of the marker is, however, the potential presence of the 
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mitochondrial copies in the nuclear genome (NUMTs or mitochondrial pseudogenes). Such 

occurrence can bias the inference of the phylogenetic relationships at the interspecific level 

(Ruiz et al., 2013), as well as being able to lead to the overestimation of the intraspecific genetic 

diversity and misinterpretation of the phylogeography (Haran et al., 2015). Another problem of 

the mtDNA arises with the maternally inherited endosymbionts (Hurst and Jiggins, 2005). 

These parasitic microorganisms promote the production and survival only of infected daughters 

(due to cytoplasmic incompatibility) thus altering the mtDNA diversity in the population. Two 

well-known examples of such microorganisms are Wolbachia and Cardinium (e.g. Gotoh et al., 

2007; Arthofer et al., 2009). Finally, it has been suggested that mtDNA evolution is not 

completely neutral. Direct selection (positive or negative) can be responsible for discrepancies 

in the amount of genetic variation within a population compared to the mtDNA variation 

consistent with the neutral theory and can lead to an inappropriate estimation of the effective 

population sizes (Meiklejohn et al., 2007).  

To avoid or at least reduce the potential error, the combination of mtDNA with other 

nuclear marker has been highly recommended (e.g. Hurst and Jiggins, 2005; Magri et al., 2006). 

Microsatellites, also known as simple sequence repeats (SSRs), are tandemly repeating 

units of DNA one to six nucleotides in length that are widely distributed throughout the nuclear 

genomes of both eukaryotes and prokaryotes (Bhargava and Fuentes, 2010). Due to their high 

level of allele polymorphism (even in organisms displaying otherwise little genetic variation), 

relatively easy and straightforward identification, and easy scorability, microsatellites have 

become one of the most frequently used molecular markers in conservation and population 

genetics (Guichoux et al., 2011). They have been successfully used in a variety of population 

genetic studies, including insect ones (Behura, 2006).  

However, SSRs also has some issues. The initial cost associated with microsatellites is 

usually high because of a lengthy and costly development phase (Wei et al., 2014). Another 

important problem associated with population genetic inferences using microsatellites is their 

mechanism of mutation (Bhargava and Fuentes, 2010). There are several different theoretical 

mutation models, but all of them have certain assumptions whose violation can lead to incorrect 

conclusions. Furthermore, often cited drawbacks of SSRs is the homoplasy (Estoup et al., 2002) 

and the possible occurrence of null alleles (Dakin and Avise, 2004). Homoplasy occurs when 

two individuals with different ancestries at a locus mutate to the same allele and become 

identical only in state, but not by descent. Such occurrences are even higher if microsatellites 

are genotyped by their length due to possible insertions or deletions within the flanking region. 

Null alleles usually arise during the PCR, when one of the alleles fails to be amplified and the 
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heterozygous individuals can be scored as homozygous. Both situations can complicate the 

correct interpretation of microsatellite allele frequencies leading to biased results. Nevertheless, 

if proper consideration and evaluation of the above mentioned limitations is involved, reliable 

inferences in population genetic studies can be expected. Microsatellites thus still serve as a 

relevant genetic marker useful in many situations. 

The combination of mtDNA and microsatellites was commonly used in many recent 

phylogeographical studies dealing with vertebrates (e.g. �í�anová et al., 2013; Dufresnes et al., 

2013; Gassert et al., 2013; Sztencel-Jablonka et al., 2015) as well as invertebrates 

(Kodandaramaia et al., 2012; Theissinger et al., 2013; Moreira et al., 2015). In beetles, such 

studies are mostly restricted to important pest species (Carter et al., 2010; Sánchez-Sánchez et 

al., 2012; Krascsenitsová et al., 2013), for the rest of the group such an approach is still very 

rare (but see Kajtoch, 2011; Kajtoch et al., 2014). The employment of both markers can be, 

however, very beneficial not only because of the potential error of one of the used markers, but 

also because it brings a deeper insight into the genetic structure of the studied species. On the 

other hand, the direct comparison of the results based on these two markers may not be always 

appropriate, and discordances between mitochondrial and nuclear DNA have been found 

(reviewed in Toews and Brelsford, 2012).  

Given the above, the combination of the mtDNA and microsatellites has been decided 

as the most suitable to study the genetic structure of saproxylic beetle populations. A partial 

fragment (766 – 814 bp) of the mitochondrial gene for the cytochrome c oxidase subunit I (COI) 

has been amplified using the universal primers (C1-J-2183 and TL2-N-3014). This gene was 

proven to be sufficiently polymorphic and easy to amplify, even for insect populations, and thus 

it has become a standard genetic marker in many phylogeographical studies, as well as being 

used as a ‘barcode’ gene (Hebert et al., 2003). Unlike the mtDNA, microsatellites do not 

generally provide the possibility of the universal primers. Although loci can be relatively easily 

transferred between closely related species (cross-amplification), for most species being 

examined for the first time they need to be identified de novo. The employment of the next 

generation sequencing technologies has helped me to overcome some problems with SSR’s 

development previously described for butterflies (Zhang, 2004) or saproxylic beetles (Arthofer 

et al., 2007; Sallé et al., 2007). Finally, a set of polymorphic microsatellite loci was available 

for two endangered longhorn beetles, Rosalia alpina (Chapter I) and Cerambyx cerdo (Chapter 

II), as well as for one endangered scarab beetle, Osmoderma barnabita (Chapter V).  
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Phylogeography 

In the past 2.4 million years the biota on the Earth has been highly influenced by a series of 

climatic oscillations, called glacial and interglacial cycles. As the result, distribution range of 

many species in Europe has greatly changed (Hewitt, 2000). During the glacial periods, some 

populations, especially in northern parts of Europe, went extinct, while other had to retreat into 

southern refugia where they could survive. During interglacial periods, the warmer weather 

again created new habitats suitable for recolonization from the south (Hewitt, 1996). This must 

have occurred repeatedly. In Europe, the south-western orientation of the main mountain chains 

(Alps, Carpathians, and Pyrenees) had an important role in the species distribution, since they 

could have served as a significant barrier in the contraction and subsequent expansion of 

populations (Schmitt, 2009). Based on the fossil, pollen and later also DNA analyses it has been 

identified three major refugia in Europe (Taberlet et al., 1998; Hewitt, 1999; Hewitt, 2001). 

Populations inhabiting Iberian, Italian and Balkan Peninsulas were during the cold stage 

probably mostly isolated from each other with no migration or gene-flow between them 

resulting in development up to three distinct lineages that could have been involved in 

subsequent postglacial recolonization of the more northern regions in Europe (Schmitt, 2007).  

With more detailed phylogeographical studies in the last years, it has become clear that 

the southern refugia did not constitute homogeneous regions during the ice ages, but for some 

taxa they represented structured mosaics of heterogeneous areas. This ‘refugia within refugia’ 

concept (Gómez and Lunt, 2007) assumes that individual southern regions comprise a multiple 

separate glacial refugia. Such a scenario has been described for all three main peninsulas, i.e. 

Iberian (Abellán and Svenning, 2014), Italian (Stefani et al., 2012) and Balkan (Pabijan et al., 

2015). 

The situation is even more complex if we consider that not all of the refugia were located 

in the southern Europe. Some species recolonized Europe or at least part of it from the east; 

typically boreo-temperate forest species (e.g. Formica pratensis Goropashnaya et al., 2004; 

Myopus schisticolor Fedorov et al., 2008) or species with the highest genetic diversity in 

Caucasus Mountains (e.g. Lacerta agilis; Kalyabina et al., 2001). Recently, it has also been 

suggested that for some thermophilic species the North Africa (Maghreb) could have served as 

an important differentiation center as well as another colonization source for Europe 

(Husemann et al., 2014).  

Furthermore, Willis et al. (2000) indicated that for some temperate species in Europe, 

the higher latitudes could have served as an important cold-stage refugium during cold episodes. 
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This concept of cryptic refugia (Cruzan and Templeton, 2000) helped to explain some previous 

inconsistencies in paleontological and biogeographical studies (Clark et al., 1998; Stewart and 

Lister, 2001). Species that could not accommodate changes in climate (e.g. because of the 

limited dispersal ability) had a higher probability of extinction (Thomas et al., 2004). With the 

presence of cryptic refugia in northerly latitude, however, the species could have still survived 

and recolonized Europe faster than previously expected. Therefore, the dispersal capabilities of 

many organisms might have been overestimated (Provan and Bennett, 2008). Currently, there 

are many examples of temperate-climate organisms probably surviving the last glacial 

maximum outside the traditional refugia (reviewed in Schmitt and Varga, 2012).  

Based on pollen, plant macrofossils, genetic records and distribution model evidences, 

it has been suggested that the concept of cryptic refugia can be also applied on numerous tree 

species (Willis et al., 2000; Willis and van Andel, 2004; Svenning et al., 2008). In Central and 

Eastern Europe, there is evidence that such areas could have served as a refugia for many boreal 

and/or montane species of conifers (Picea, Larix, Pinus, Juniperus, Populus) and some 

broadleaved trees (Betula, Salix, Populus, Alnus) (Svenning et al., 2008, Tzedakis et al., 2013). 

The temperate tree species (e.g. Fagus, Quercus, Ulmus, Tilia, Fraxinus) were probably 

confined to more southern areas (Tzedakis et al., 2013), although not necessarily to one of the 

three traditional peninsulas. For example, the area of south-eastern Alps and north-western 

Dinaric Alps has been suggested as the microrefugium for Fagus sylvatica playing an important 

role in the colonization of Central and Western Europe (Magri et al., 2006; Brus, 2010). The 

same region was also proposed as one of the possible refugium for Fraxinus excelsior (Heuertz 

et al., 2004).  

Since all saproxylic beetles are closely connected at least in part of their life with their 

host tree species, it has been suggested that host’s evolution history can also be an important 

factor influencing the genetic structure of the beetles (Avtzis et al., 2012). Although many 

studies have focused on such relationships, it still remains unclear how important the role is and 

to what extend the beetles are influenced.  

Given the high ecological and economical importance, bark beetles probably represent 

the most frequently studied taxa within the saproxylic beetles. Thus, many studies have tried to 

discuss the phylogeographic patterns of bark beetles and compare it with their main hosts 

(Avtzis et al., 2012). Despite this, the results are still rather ambiguous. For some species (e.g. 

Pityogenes chalcographus) it has been suggested that the glacial refugia and the recolonization 

history correspond with its host (Avtzis et al., 2008; Bertheau et al., 2013), for other species 

(e.g. Ips typographus) the phylogeographic pattern just partly reflect the postglacial history of 
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the beetle’s main host (Tollefsrud et al., 2008; Tollefsrud et al., 2009; Mayer et al., 2015). 

Although the relationship is not yet fully described, the close adaptation to a specific host can 

influence the beetles’ life history and should be considered and discussed in all phylogeographic 

studies of saproxylic beetles (for more details see the Chapter VII). 

Aims of the thesis 

The general aim of my theses is to introduce the molecular methods into the conservation of 

the threatened saproxylic beetles. My work includes testing of suitable DNA preservation 

liquids, a development of the new genetic markers (microsatellites), and their application on 

the specific ecological and conservation problems. My results provide new insight into the 

genetic diversity and population structure of several species of endangered saproxylic beetles 

in Europe. I believe that my findings will contribute to better understanding of their ecology 

and the evolution history as well as they will be of great importance for designing more efficient 

conservation strategies. The specific ecological and conservation questions include: 

a) to discover the reintroduction history of the Czech population of Cerambyx cerdo in 

Hluboka nad Vltavou 

b) to assess the population genetic structure of Rosalia alpina species and to test the 

hypothesis of differentiation between lowland and upland populations 

c) to reveal the phylogeography patterns of Rosalia alpina implementing the samples from 

the entire range of its distribution 

d) to compare the phylogeography of Rosalia alpina with its main host tree (Fagus 

sylvatica) to test the hypothesis about the ecological specialization of the beetle 
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Chapter I 

The following passage (pages 14–18) is a published paper (DOI 10.1007/s12686-013-9929-1) 

and it was removed from the online version of the thesis.

Characterization of nine polymorphic microsatellite loci for 
a threatened saproxylic beetle Rosalia alpina (Coleoptera: 

Cerambycidae). 

Drag L., Zima J. Jr., Cizek L. 

Conservation Genetics Resources 

Abstract  

Nine polymorphic microsatellite loci were developed and characterized for the Rosalia 
longicorn, an endangered icon of European saproxylic biodiversity. The detected number of 
alleles per locus ranged from 2 to 4, and the observed and expected heterozygosities varied 
from 0.044 to 0.622, and from 0.086 to 0.613, respectively. All loci were in Hardy–Weinberg 
equilibrium as well, as no evidence of linkage disequilibrium was found. Despite the low level 
of polymorphism, all loci described in this study will provide a useful tool in future genetic 
studies of the Rosalia alpina species. 

�
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Chapter II 

The following passage (pages 20–24) is a published paper (DOI 10.1007/s12686-013-9930-8) 

and it was removed from the online version of the thesis.

Development and characterization of ten polymorphic 
microsatellite loci for the Great Capricorn beetle (Cerambyx 

cerdo) (Coleoptera: Cerambycidae). 

Drag L., Kosnar J., Cizek L. 

Conservation Genetics Resources 

Abstract  

Ten polymorphic microsatellite loci, developed using next-generation sequencing technology, 
are described for the Great Capricorn beetle, Cerambyx cerdo; an endangered and 
internationally protected European longicorn. Based on 30 individuals from South-East Czech 
Republic, the number of alleles per locus ranged from 4 to 8, and the observed and expected 
heterozygosity was 0.36–0.79 (mean = 0.57) and 0.5–0.77 (mean = 0.63), respectively. In one 
locus tests indicated a deviation from the Hardy–Weinberg equilibrium, as well as the presence 
of null alleles. Future studies using markers described here may provide additional information 
for the efficient protection of this threatened species. 

�
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Chapter III 

The following passage (pages 26–32) is a published paper (DOI 10.14411/eje.2014.024) and 

it was removed from the online version of the thesis.

A goodbye letter to alcohol: An alternative method for field 
preservation of arthropod specimens and DNA suitable for 

mass collecting methods. 

Pokluda P., �ížek L., St�íbrná E., Drag L., Lukeš J., Novotný V. 

European Journal of Entomology 

Abstract  

Despite its limitations, ethanol remains the most commonly used liquid for the preservation of 
arthropod specimens and their DNA in the field. Arthropod ecology and taxonomy have 
witnessed a substantial increase in the use of various trapping and molecular methods in the 
past two decades. However, the methods of collecting and the preservation liquids most widely 
used in arthropod traps do not properly preserve DNA. Trap-collected specimens are typically 
of limited utility for molecular studies due to the poor preservation of DNA. A stable and cheap 
substance that can be used to trap arthropods in and preserve their DNA is therefore needed. 
Here we test whether (i) 2% SDS, 100mM EDTA, (ii) 1% SDS, 50mM EDTA and (iii) 0.66% 
SDS, 33mM EDTA can preserve DNA of small and medium-sized beetles for one, four and 
eight weeks. Preservation of DNA was tested using PCR amplification of parts of the 
mitochondrial cytochrome c oxidase I (Cox1) and nuclear 28S rRN A genes. All the solutions 
tested preserved DNA for at least up to eight weeks and we recommend 2% SDS and 100mM 
EDTA as a cheap, stable and easily transportable alternative to ethanol for preserving specimens 
and their DNA collected in the field. This solution is also suitable for using as the collection 
and preservation liquid in arthropod traps. 

�
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Chapter IV 

The following passage (pages 34–44) is a published paper (DOI 10.1007/s10592-014-0656-2) 

and it was removed from the online version of the thesis.

Successful reintroduction of an endangered veteran tree 
specialist: Conservation and genetics of the Great Capricorn 

beetle (Cerambyx cerdo). 

Drag L. & Cizek L. 

Conservation Genetics 

Abstract  

Habitat fragmentation is one of the main threats to biodiversity. Reintroductions or 
translocations may mitigate its effects by allowing species with limited dispersal ability to 
exploit otherwise inaccessible habitat patches. Despite the fact that reintroductions are among 
the most effective conservation measures, they are rarely used for invertebrates. In this study 
we investigate the potential of reintroductions as a conservation measure for beetles, and present 
the first genetic results for an endangered veteran tree specialist. After translocation of 10 adults 
in 1987, a population of the Great Capricorn beetle reappeared in Hluboká nad Vltavou (Czech 
Republic) in 1990s. Using population genetic analyses of 79 individuals based on nine 
microsatellite loci and 82 individuals based on the mitochondrial COI gene we assessed the 
origin of this population, and compared its genetic variation, population structure and 
demography to the alleged source population (southern Moravia) and to the closest 
autochthonous population (T�ebo�sko). Although the reintroduced and the closest 
autochthonous populations are geographically close (24 km), their mutual genetic distance was 
much higher than that between each of them and the geographically distant ([150 km) potential 
source population in southern Moravia. The genetic diversity of the reintroduced population 
was the lowest from the three studied populations and represented a subset of the alleged source 
population suggesting its establishment due to a translocation from southern Moravia. Despite 
the lower genetic variation at the reintroduced site, our results suggest that reintroductions could 
serve as a highly effective measure in biodiversity conservation and in some cases it may be 
the only chance to prevent extirpation of many endangered populations.�

33



Chapter V 

The following passage (pages 46–54) is a published paper (DOI 10.1007/s12686-015-0493-8) 

and it was removed from the online version of the thesis.

Microsatellite records for volume 7, issue 4. Erratum to: 
Conservation Genetics Resources 7: 917–944. 

(first four pages of the original paper + erratum + supplementary material) 

Basiita R.K., Bruggemann J.H., Cai N., Cáliz-Campal C., Chen C., 
Chen J., Cizek L.,... Drag L., et al.  

Conservation Genetics Resources 

Abstract 

Fourteen microsatellite loci are described for the eastern European hermit beetles, Osmoderma 

barnabita, a vulnerable and internationally protected species associated with mature hollow 
trees. Based on 45 individuals from Poland, 13 of 14 loci were polymorphic. The number of 
alleles per polymorphic locus ranged from 2 to 13, and the observed and expected 
heterozygosity was 0 – 0.889 (mean = 0.231) and 0.033 – 0.868 (mean = 0.253), respectively. 
Three loci showed deviation from Hardy–Weinberg equilibrium. The probability of null alleles 
was negligible for all but one locus. Seven loci cross-amplified in the closely related 
Osmoderma eremita. The markers reported here can be valuable tool for detecting genetic 
structure and gene flow in O. barnabita.

* ) Explanation of the complicated title: After being submitted in Conservation Genetics 
Recourses as the “Primer note”, the MS was accepted in the form of  “Microsatellite records” 
publishing all primer sequences from different authors together with the editor as the only 
author. Later, erratum to this issue was released giving the correct list of all contributed authors 
in alphabetical order. The original Primer note can be downloaded in the form of Supplementary 
material 2. 
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Chapter VI 

The following passage (pages 56–72) is a published paper (DOI 10.1111/bij.12624) and it 

was removed from the online version of the thesis.

Genetic differentiation of populations of the threatened 
saproxylic beetle Rosalia longicorn, Rosalia alpina 

(Coleoptera, Cerambycidae) in Central and Southeast Europe. 

Drag L., Hauck D., Berces S., Michalcewicz J., Jelaska Šeri� L., 
Aurenhammer S., Cizek L. 

Biological Journal of the Linnean Society 

Abstract 

Knowledge of patterns of genetic diversity in populations of threatened species is vital for their 
effective conservation. Rosalia longicorn (Rosalia alpina) is an endangered and strictly 
protected beetle. Despite a marked decline in part of its range, the beetle has recently expanded 
to the lowlands of Central Europe. To facilitate a better understanding of the species’ biology, 
recent expansion and more effective conservation measures, we investigated patterns of genetic 
structure among 32 populations across Central and South-east Europe. Eight microsatellite loci 
and a partial mitochondrial gene (cytochrome c oxidase subunit I) were used as markers. Both 
markers showed a significant decline in genetic diversity with latitude, suggesting a glacial 
refugium in northwestern Greece. The cluster analysis of the nuclear marker indicated the 
existence of two genetically distinct lineages meeting near the border between the Western and 
Eastern Carpathians. By contrast, one widespread mtDNA haplotype was dominant in most 
populations, leading to the assumption that a rapid expansion of a single lineage occurred across 
the study area. The genetic differentiation among populations from the northwestern part of the 
study area was, however, surprisingly low. They lacked any substructure and isolation-
bydistance on a scale of up to 600 km. This result suggests a strong dispersal capacity of the 
species, as well as a lack of migration barriers throughout the study area. That the lowland 
populations are closely related to those from the nearby mountains indicates repeated 
colonization of the lowlands. Our results further suggest that R. alpina mostly lives in large, 
open populations. Large-scale conservation measures need to be applied to allow for its 
continued existence.�
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Chapter VII 

The following passage (pages 74–102) is a manuscript in preparation and it was removed 

from the online version of the thesis.  

Phylogeography of the endangered saproxylic beetle Rosalia 
longicorn, Rosalia alpina (Coleoptera, Cerambycidae) 

corresponds with its main host, the European beech (Fagus 

sylvatica, Fagaceae) 

Drag L., Hauck D., Rican O., Cizek L. 

Abstract 

Highly host-specific organisms, such as phytophages, are often forced to react to the 
environmental changes within the frame set by their hosts. Thus, the population genetic 
structure of the specialists should at least partly mirror that of their host. Rosalia alpina is an 
endangered xylophagous beetle that is mainly associated with the European beech (Fagus 

sylvatica), although it is also able to exploit a wide range of other distantly related hosts. To 
investigate such surprising association we studied the phylogeographical pattern of R. alpina

over the entire range of species distribution using both mitochondrial and nuclear markers. 
Furthermore, we compared these results with the known patterns of genetic structure and 
demographic history of its frequent host species. We found five distinct clades in R. alpina

populations; three of them were endemic to Italy, one to Turkey and the remaining clade 
probably originated in SW Balkan Peninsula and colonized the rest of the species range from 
Iberian Peninsula to the Caucasus and the Ural Mountains. The phylogeographic pattern of R. 

alpina was most congruent with that of the beetle’s main host, the European beech, and both 
species thus probably share the common history. Furthermore, we probably witness broadening 
of the host range of the beetle. This may happen periodically during interglacials, since the 
populations not exploiting beech are likely to go extinct during the next glacial periods. Such 
mechanism offers the answer to the question of why the beetle exhibits surprisingly close and 
constraining association with only one of the numerous hosts.  
�
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Summary and conclusions 

Genetic diversity is one of the three essential levels of biodiversity which has a direct relevance 

to conservation efforts. In the last decade, various genetic approaches have become more 

accessible and been applied to address wide range of ecological questions. Genetic diversity, 

however, was surprisingly rarely considered in studies focused on threatened saproxylic insects. 

Hence, in this thesis I focused on the investigation of some rather technical questions related to 

the DNA preservation and microsatellites development, as well as on crucial questions of 

ecology, evolutionary history and conservation of several threatened saproxylic beetle species. 

Numerous genetic approaches are currently available to answer different ecological 

questions. Some of the methods are relatively easy to handle and can be applied to a wide range 

of relevant questions. Nevertheless, if more detailed information about the population structure 

is required, more effort needs to be made. Microsatellites are of particular interest to ecologists 

because they are one of the few molecular markers that allow researchers insight into fine-scale 

ecological questions. Although the process of isolating new microsatellite markers has become 

faster and less expensive, it may still represent an obstacle, especially when working with non-

model organisms. The Chapters I, II, and V consists of three technical notes describing the de 

novo development of microsatellites for three endangered saproxylic beetles (Rosalia alpina, 

Cerambyx cerdo and Osmoderma barnabita). All newly described microsatellite loci thus 

represent a valuable tool for future population and conservation genetic studies of these 

threatened species.  

The collection and preservation of insect samples in the field which are suitable for 

genetic analyses might be a problem, particularly when using mass collecting methods. Since 

widely used ethanol suffers with several limitations, in the Chapter III we tested the mixture 

of SDS (chelator sodium dodecyl sulfate) and EDTA (ethylenediaminetetraacetic acid) in 

different concentrations to examine the effectiveness of such solutions in preserving insect 

DNA. Our results suggest that the mixture is suitable as a cheap, stable and easily transportable 

alternative to ethanol, although its use should be limited to small or medium-sized insects.  
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Cerambyx cerdo is considered an ecosystem engineer due to its ability to provide more 

favorable conditions for other saproxylic insects. Therefore, its reintroduction at localities 

where the species no longer exists, might be favorable for local fauna biodiversity. The Chapter 

IV of my thesis is devoted to the origin of the one reintroduced population of this species in 

Czech Republic. It also presents the first genetic evidence supporting the success of an 

endangered saproxylic beetle reintroduction, as well as the first genetic study of this species 

across the three populations. The most important part of this chapter is where I consider the 

findings that as long as suitable conditions are present, just a few individuals are enough to 

found a viable population, thus minimising the potentially negative effect of removing 

individuals from the source population. On the other hand, the genetic consequences are 

detectable (substantial loss of the mitochondrial and the partial loss of the nuclear diversity), 

and it remains unclear if it can negatively influence the long-term survival of the reintroduced 

population. 

Chapters VI and VII were dedicated to Rosalia alpina. Here, I present the first study 

of the genetic variability and structure covering the whole range of the species distribution. Due 

to this the unique sample collection and the combination of the nuclear (microsatellites) and 

mitochondrial (cytochrom c oxidase subunit I) markers, new information about the beetle’s 

biology and history could be inferred.  

 Surprisingly, the genetic differentiation of populations from the large part of the species 

distribution range (up to 620 km) was very low. Such high admixture might be a result of the 

strong dispersal capacity of the species and/or the lack of migration barriers. Also, it seems 

possible that the effective sizes of R. alpina’s populations are in general rather large maintaining 

the low genetic differentiation due to the low effect of the genetic drift. This would indicate that 

the beetle might be unable to exist in small, isolated populations, possibly as a result of some 

intrinsic reasons related to the species’ biology or behavior. Such hypothesis may then explain 

why a mobile species with the ability to exploit a broad range of habitats has disappeared from 

substantial part of its range in Europe.  

Also, no genetic differences between lowland and upland populations of this species 

were recorded. As a consequence, we assume that the recently inhabited lowland areas in 

Central Europe were probably colonized from the nearby upland populations, rather than that 

the beetle would spread from other lowland populations thus forming a distinct lowland lineage.  

Range-wide phylogeography of R. alpina also revealed some interesting patterns. While 

the Hatay population (south Turkey) and the populations inhabiting Sicily and the Apennine 
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Peninsula represented just three endemic populations that did not contributed to the rest of 

Europe, a large part of Europe including the western Asia was colonized from the single 

refugium located in the mountains of SW Balkan peninsula. Such a pattern would suggest that 

neither the Pyrenees nor the Caucasus Mountains served as a glacial refugia for this species, 

and that both were colonized from the same source. Also, the populations inhabiting SW Balkan 

peninsula have clearly the highest genetic diversity (documented by both markers), thus 

representing the most valuable parts of the species distribution range. 

Such an unusual pattern of genetic structure was also observed for R. alpina’s main host, 

Europen beech (Fagus sylvatica) (Magri et al., 2006). Unlike other potential hosts of R. alpina

(Tilia spp., Fraxinus spp., Ulmus spp., and Acer spp.), F. sylvatica’s populations survived the 

last glaciation in Italy, but did not cross the Alps. Furthermore, SW Balkan served as an 

important refugium displaying the highest genetic diversity, and the large part of Europe was 

dominated by the single haplotype. The phylogeographies of R. alpina and the beech thus seem 

to be tightly matched, and both species probably shared a common history. This is rather 

surprising since the beetle is able to sustain its populations on a phylogenetically wide range of 

trees. It is thus possible that although the beetle appears to be polyphagous, it is historically 

connected with only a single host. Its broadening of host range thus might be a recent event 

which periodically happens during interglacial periods, meaning that the populations currently 

not exploiting beech are likely to go extinct during next glaciation.  
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