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Abstract  

 

Title: Algorithmic trading 

 

This bachelor’s work examines how algorithmic trading has impacted financial 

markets. It looks at the benefits, like increased efficiency and removing emotions from 

trading decisions, as well as the drawbacks, such as higher systemic risk and market 

volatility. The main focus is on analyzing the behavioral patterns embedded in 

algorithms and how they relate to market behavior. It also highlights the needs of 

market participants that algorithmic trading meets and suggests improvements for 

trading systems. The results provide practical insights into the effectiveness of 

algorithmic trading strategies and give recommendations for enhancing these systems. 

Overall, this work emphasizes the importance of technology and its capabilities in 

modern financial markets. 

 

Abstrakt  

 

Název: Algoritmické obchodování 

 

Tato bakalářská práce zkoumá, jak algoritmické obchodování ovlivnilo finanční trhy. 

Zabývá se výhodami, jako je vyšší efektivita a odstranění emocí z obchodních 

rozhodnutí, i nevýhodami, jako je vyšší systémové riziko a volatilita trhu. Zaměřuje se 

především na analýzu vzorců chování obsažených v algoritmech a na to, jak souvisejí s 

chováním trhu. Poukazuje také na potřeby účastníků trhu, které algoritmické 

obchodování splňuje, a navrhuje zlepšení obchodních systémů. Výsledky poskytují 

praktické poznatky o účinnosti algoritmických obchodních strategií a dávají 

doporučení pro zdokonalení těchto systémů. Celkově tato práce zdůrazňuje význam 

technologií a jejich možností na moderních finančních trzích. 

 

 

Key words: Algorithmic Trading, Financial Markets, Trading Efficiency, Risk 

Management, Market Volatility, Behavioral Analysis, Automation, Bias, Market Trend, 

Trading Strategies, Machine Learning, Data Analysis, Market Integrity, Technological 
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1 Introduction 
 

In the dynamic world of finance, the integration of trading strategies with machine 

learning is changing the way market operations work. Comparable to the 

transformative impact of computers on society in the past half of the previous century, 

the intersection of trading and machine learning represents a significant evolution in 

how financial markets function nowadays. 

Starting within algorithmic trading framework, ranging from basic trading 

algorithms to powerful machine learning models, each component plays a crucial role. 

One of main ideas behind integrating machine learning in trading, is to create advanced 

computational techniques that improve decision-making in financial markets. 

Algorithmic trading involves usage of algorithms, which are essentially sets of 

rules or instructions, to execute trading orders with speed and efficiency.  

By incorporating machine learning, traders aim to develop algorithms that can 

learn from historical data, recognize patterns, and adapt to changing market 

conditions. 

However, manual integration is tough and time-consuming. It requires deep 

knowledge in finance and algorithms, making it impractical for large-scale trading. The 

challenges vary from frequent changes in trading strategies, market conditions, new 

financial instruments, and short-term trading models.  

This complexity makes precise manual identification with positive financial 

outcome difficult. Creating automated solutions for this task is also tough and 

expensive. The dynamic nature of algorithmic trading components such as algorithms, 

learning models, data processing and the constant evolution of trading strategies add 

to the complexity. Consequently, many components end up mislabeled or without 

identification, impacting the smooth operation of algorithmic trading systems.Despite 

many advantages, algorithmic trading is not without its drawbacks. One significant 

challenge is the over-reliance on historical data.  Furthermore, there is a need for 

various evaluation metrics used to assess the performance of trading algorithms. 

Metrics such as the Sharpe ratio, maximum drawdown, and return on 

investment will be examined closely to understand how they contribute to a 

comprehensive evaluation of trading performance. 



   

 

9 
 

The objective of this thesis is to explore the intricacies of algorithmic trading, its 

advantages over traditional trading methods, and the challenges it faces. The 

appllication will be proposed and assess how well algorithmic strategies perform in  

trading differenr market’s assets. By dissecting the influence of algorithmic trading, 

this study aims to illuminate its implications for market liquidity, efficiency, and 

stability in the current financial landscape. The structure of chapters is as follows:  

1. Intersection of Machine Learning and Trading: Explores the convergence of AI’s 

predictive capabilities with financial strategies, setting the stage for the 

development of AT. 

2. Algorithmic Trading: This section will explore the principles and advantages of 

algorithmic trading, including how it differs from traditional trading methods and 

the benefits it offers in terms of efficiency and profitability. 

3. Market Mechanics and Dynamics in Algorithmic Trading: We will discuss the 

criteria for selecting effective trading strategies, understanding the basics of the 

market, analyzing the roles of buyers and sellers, identifying market trends, and 

explaining the importance of pips in trading. 

4. Case Studies and Examples: Here, we will present various real-world examples 

and case studies of algorithmic trading to demonstrate its impact on high-frequency 

trading and market dynamics. 

5. Evaluation Metrics: In this chapter, we will delve into the metrics used to evaluate 

algorithmic trading strategies, such as profit and loss, Sharpe ratio, maximum 

drawdown, and others. 

6. Challenges in Algorithmic Trading: This part will discuss the challenges and 

biases inherent in algorithmic trading, such as overfitting, data snooping, and 

behavioral biases. 

7. Summary: A summary will summarize the main points discussed in the previous 

sections, providing a brief overview before moving on to the models and results. 

8. Model development and Results: In this section of the thesis, we will present the 

quantitative models that were developed and the results obtained from testing the 

algorithmic trading strategies. 

9. Trading strategies: We will explore specific algorithmic trading strategies, 

providing details about their theoretical foundations and practical applications. 

10. Implementation: We will discuss the practical implementation of the selected 

trading strategies, including the choice of programming languages and libraries, 
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connecting to APIs, gathering data, visualizing techniques, and explaining the step-

by-step process of strategy implementation.  

11. Evaluation: We will evaluate the effectiveness of the implemented strategies using 

a rigorous methodology, determining their success and identifying areas for 

potential improvement. 
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2    State of Art 
2.1 Intersection of Machine Learning and Trading 
 

Machine learning, as a subfield of artificial intelligence, found its part in algorithmic 

trading systems in recent years. It involves the use of statistical techniques to enable 

computers to learn from historical data and make predictions or decisions without 

being explicitly programmed for every scenario, so they can "think" on their own. In 

the context of trading, machine learning algorithms can be trained to identify patterns 

and trends in financial market data, which can then be used to make informed trading 

decisions.  

To understand the roots of machine learning and trading, we need to examine 

the evolution of trading practices. In the early days, human traders relied on their 

intuition, technical analysis, and fundamental analysis to make trading decisions. 

These methods were time-consuming and subjective, creating an opportunity for 

automation. 

With the advent of computers in the mid-20th century, trading practices began 

to change. The development of electronic trading platforms and high-speed 

communications allowed for faster and more efficient trading (6). However, it was not 

until the late 20th century that machine learning and algorithmic trading started to 

gain traction. 

Machine learning refers to the development of algorithms that can learn and 

improve from experience without being explicitly programmed. Its application in 

trading began in the 1980s, with the emergence of statistical modeling techniques. 

These models aimed to identify patterns and predict price movements based on 

historical data. Although they were limited by the computing power of that time, they 

laid the foundation for future advancements. 

The integration of algorithmic trading techniques with machine learning gained 

further momentum in the late 1990s and early 2000s. This period saw the rise of 

quantitative hedge funds, which heavily relied on mathematical models and automated 

trading strategies. These funds utilized machine learning algorithms to identify 

profitable trading opportunities and execute trades in real-time. 

Advancements in data gathering and storage technologies allowed for the 

accumulation of vast amounts of financial data, and it became fuel for machine learning 

algorithms, which could extract valuable insights and patterns from these datasets. 
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Nowadays, there are countless areas where machine learning is used, one of 

them is predictive modeling, where models utilize historical data, such as price 

movements or market indicators, to forecast future trends and identify potential 

trading opportunities (4). 

In addition to predictive modeling, machine learning techniques are also 

employed in risk management, where algorithms can be designed to continuously 

monitor the market and assess potential risks. By utilizing machine learning 

algorithms, these systems can identify unusual or unexpected behavior in real-time, 

helping traders mitigate potential losses and minimize risks.   

To summarize, from the early days of trading based on intuition to the current 

era of trading driven by complex algorithms, where algorithms trade large volumes of 

securities in fractions of a second, it has become the norm. It is clear that machine 

learning and algorithmic trading have reshaped market dynamics. This historical 

context shows us the significance of these advancements, and points to potential risks 

and challenges they pose. 

 

2.2    Algorithmic Trading 

2.2.1    Principles 

Algorithmic trading, also known as algo-trading, is a method of executing trades using 

mathematical models and automated systems. This has rapidly gained popularity in 

recent years due to its potential to enhance efficiency, liquidity, and profitability in 

trading activities. 

One of the key figures in the history of algorithmic trading is David Shaw, an 

American computer scientist and hedge fund manager. Shaw founded D.E. Shaw & Co. 

in 1988, which became one of the pioneers in applying quantitative mathematical 

models to trading. His firm developed sophisticated algorithms that sought to identify 

and exploit anomalies in financial markets. Shaw's success with algorithmic trading 

strategies helped pave the way for the widespread adoption of this practice (10). 

 

Proceeding to the modern era of trading, we can see how quickly algo-trading became 

a standard in the industry. 
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Figure 1: Proportion of algorithmic trading usage in different markets for the year 

2010.   

Source: Algorithmic Trading and Market Dynamics, 2010 

 

The highest trading volume was in futures such as EuroFX, followed by stock index 

futures such as the E-mini S&P 500. Interest rate markets including Eurodollar and 10 

Year Treasury note futures are close behind with commodities such as crude oil 

displaying the least amount of algorithmic trading activity (6).  

Throughout the years, algo-trading has increased market liquidity, however, not 

without its drawbacks. One of the main concerns associated with this practice is the 

potential concerns regarding market fairness and integrity. Some argue that big 

industry players, armed with advanced technology and faster access to market 

information, gain an unfair advantage over other market participants. This advantage, 

they claim (6), can lead to market manipulation and disrupt the natural functioning of 

financial markets. 

In the United States, the Securities and Exchange Commission (SEC) has 

implemented rules and regulations to ensure fair and orderly markets. These 

regulations aim to promote transparency, reduce market manipulation, and reduce the 

risks associated with algorithmic trading (7). 

In terms of future developments, algo-trading is expected to continue evolving 

and expanding its reach, alongside the advancements in artificial intelligence and 

machine learning. 

 

2.1.2    Advantages  

To explore the advantages of algo-trading, we need to have a deeper understanding of 

how it works and how it differs from traditional.  
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Essentially, it is the process of using computer programs to execute trades based 

on a set of pre-defined rules. These rules are often developed with the help of complex 

mathematical models and algorithms that consider various parameters, such as market 

conditions, price movements, and trading volumes.  

This approach differs from traditional trading mainly in use of an algorithm to 

execute buy or sell orders, based on pre-defined rules. On the other hand, humans 

make trading decisions based on their judgment and analysis. 

Considering that, here are main advantages of algo-trading (2): 

• Speed and efficiency. Algo-trading systems can analyze and process market data in 

real-time, enabling traders to execute trades at lightning-fast speeds. This eliminates 

the need for manual intervention, reducing the risk of human errors such as emotions 

being involved or simple panic, and delays in trade execution. 

• Continuous 24/7 operation, allowing for round-the-clock trading in multiple markets 

worldwide. This global reach gives algorithmic traders a significant advantage over 

manual traders who may be limited by time zones or any other physical constraints. 

• Precision, while executing complex trading strategies, algo-trading systems can handle 

large volumes of data, process it efficiently, and execute trades across multiple markets 

simultaneously. This capability enables traders to diversify their portfolios, hedge 

risks, and take advantage of arbitrage opportunities. 

• Reduced Transaction Costs, which often results in lower transaction expenses due to 

the absence of manual intervention and the ability to execute trades at optimal prices. 

This efficiency can significantly impact the overall profitability of trading strategies, 

especially for high-frequency trading where the volume of transactions is high. 

• Backtesting Capability is one of the significant benefits of algo-trading - to backtest 

trading strategies using historical data. This process allows traders to evaluate the 

effectiveness of a strategy by simulating its performance under various market 

conditions, thereby reducing the risk of potential losses in live trading. 

• Minimized Market Impact: Large orders, when executed manually, can significantly 

affect the market price, leading to less favorable execution prices. Algo-trading can 

break down these large orders into smaller ones, spreading them over time or across 

multiple markets, thereby minimizing market impact. 

• Improved Risk Management: Algorithmic trading systems can integrate 

sophisticated risk management rules and algorithms to monitor and control exposure 

to various market risks. This includes setting stop-loss orders, trailing stops, and other 
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conditional triggers that automatically execute or halt trades under certain market 

conditions. 

• Scalability, which allows easily scale up to handle increasing amounts of data and more 

complex trading strategies. This scalability is crucial in today's rapidly evolving 

financial markets, allowing traders to expand their operations without a corresponding 

increase in operational complexity or costs. 

• Unlike human traders, algorithms don’t get tired, don’t lose focus, or deviate from the 

planned strategy. This consistency ensures that the trading plan is executed 

Consistency in Trading precisely as intended, without the variations that human 

emotions or fatigue can introduce. 

The advantages that algorithms gave to trading industry did not come without 

drawbacks and potential risks, which will be discussed later in this work. 

 

2.3    Market Mechanics and Dynamics in Algorithmic Trading 
 

3.1.1 Market Essentials  

In its essence trading is the practice of buying and selling different assets to make a 

profit.  

One of the most common methods for representing price movements in trading 

is through candlestick charts. A candlestick provides four key pieces of information for 

a given time period (16). 
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Figure 2: Candlestick body 

Source: Understanding Basic Candlestick Charts 

 

The main body of the candlestick shows the range between the opening and closing 

prices. A candlestick where the close is higher than the open is typically filled in or 

colored differently than a candlestick where the close is lower than the open. 

The "wicks" or "shadows" that extend out of the body represent the high and 

low prices during the period. The upper shadow shows the highest price achieved, 

while the lower shadow shows the lowest price. Candlestick patterns can provide 

insights into market sentiment and potential price movements. 

The colors of the candlestick body also carry meaning. A white or green body 

typically signifies that the closing price was higher than the opening price.  

This indicates buying pressure and might be seen as a signal of upward 

continuation if it appears within an uptrend or potentially a reversal if it occurs after a 

downtrend. 

 

3.1.2 Buyers and Sellers  

The market is essentially constant competition between buyers and sellers.  

Buyers, or "bulls", push prices up in anticipation of a currency strengthening, 

while sellers, or "bears", push prices down as they forecast a weakening. The price at 

any given moment reflects the latest agreement between buyers and sellers on what a 

currency pair is worth (17). 

Volume is a crucial indicator of the strength behind price movements. A price 

move with relatively high volume is seen as more significant and likely to continue than 

a price move with low volume. Traders use various tools and indicators to identify 

potential buying or selling opportunities based on the actions of buyers and sellers. 

 

3.1.3 Market Trends 

Market trends in forex are broadly classified into three types (17):  

 Bullish 

 Bearish 

 Sideway 
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A bullish market trend is characterized by rising prices and is typically driven by 

optimism and strong demand for a currency. Trading strategies in a bullish market 

expect prices to continue climbing and may look to enter "long" positions to profit from 

rising prices (17). 

Conversely, a bearish market trend features falling prices and is generally 

driven by pessimism and strong supply exceeding demand. In a bearish market, traders 

expect prices to keep falling and may look to enter "short" positions to profit from the 

decline. 

 

 

 

Figure 3: Gold (XAUUSD) chart against US dollar, 2024 

Source: XAUUSD, tradingview.com, 2024 

 

In finance, a bullish trend is recognized by higher highs and higher lows on a 

price chart, showing prices are rising over time. The Gold (XAUUSD) chart is a good 

example of this trend, with each peak and trough surpassing the previous ones, 

indicating strong investor confidence and demand for the asset.  

The consistent upward movement in 2024 reflects positive market sentiment, 

leading to more investment as traders expect growth to continue. This momentum can 

attract more participants and push the trend further, as long as economic conditions 

and market fundamentals stay positive. 

 

https://www.tradingview.com/symbols/XAUUSD/
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Figure 4: Gold (XAUUSD) chart against US dollar, 2024 

Source: XAUUSD, tradingview.com, for year 2020 – 2021 

 

Figure above shows (Fig. 4) a downtrend or bearish market for Gold as it was in bearish 

market, that can be seen in price falling continuation. 

These trends will be crucial for picking a trading strategy and evolving our 

model, as it provides us with more reliable indicators to make informed decisions on 

entry and exit points. Technical analysis, including the study of chart patterns and 

indicators, is a key tool for identifying and confirming trends. However, it's also 

important to consider fundamental factors such as economic indicators and political 

events, especially news, that have a large impact on whether the market is going up or 

down (18). 

 

3.1.4 Pips 

A pip is the smallest increment by which an exchange rate can change in the forex 

market. It represents one-hundredth of 1% and is typically displayed in the fourth 

decimal place. For most currency pairs, a pip is equivalent to 1/10,000th of the price. 

For instance, in the USD/CAD pair, the smallest movement is $0.0001, which is equal 

to one pip. (15). 

It's important to note that pips should not be confused with basis points (bps), 

which are used in interest rate markets and represent 1/100th of 1%. The value of a 

pip depends on various factors, including the currency pair, exchange rate, and trade 

value. 

https://www.tradingview.com/symbols/XAUUSD/
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When your forex account is denominated in U.S. dollars and the USD is the 

second currency in the pair (quote currency), such as in the EUR/USD pair, the pip 

value remains fixed at .0001. To calculate the value of one pip in this scenario, you 

multiply the trade value (or lot size) by 0.0001. For example, if you have a trade value 

of 10,000 euros in the EUR/USD pair, the pip value would be $1. Therefore, if you 

bought 10,000 euros against the dollar at 1.0801 and sold at 1.0811, you would make 

a profit of 10 pips or $10. 

On the other hand, if the USD is the first currency in the pair (base currency), 

such as in the USD/CAD pair, the pip value also takes into account the exchange rate. 

In this case, you divide the size of a pip by the exchange rate and then multiply it by the 

trade value (or lot size). For example, if the pip size is .0001 and the USD/CAD exchange 

rate is 1.2829, and you have a standard lot size of 100,000, the pip value would be 

$7.79. So, if you bought 100,000 USD against the Canadian dollar at 1.2829 and sold at 

1.2830, you would make a profit of 1 pip or $7.79 (15). 

 

3.1.5 Trading Strategies 

There are numerous amounts of trading strategies for increasing price 

prediction probability, but for the sake of this work let’s dive deeper into these 3: 

Moving Average Crossover, Inside Bar Momentum, Candle Patterns. 

Each of them relies on different trading concepts and utilizes indicators to make 

predictions of price. 

 Moving Average Crossover is one of the most straightforward and widely used 

technical analysis tools, that will be implemented and tested later on. It involves using 

two moving averages: one representing a shorter time frame and the other a longer 

time frame. A moving average smooths out price data to create a single flowing line, 

which makes it easier to identify the direction of the trend (21).  
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Figure 5: 20&100 days MA   

Source: How to use MA to buy stock, 2024 

 

It can bee seen (Fig. 5) how the price of 20-day MA follows price action responsively in 

comparison to 100-day MA for a longer time period. 

In a Moving Average Crossover system, a "buy" signal is typically generated 

when a short-term MA crosses above a long-term MA, indicating the beginning of an 

uptrend. Conversely, a "sell" signal is suggested when a short-term MA crosses below 

a long-term MA, signaling the start of a downtrend. Traders often use the 50-period MA 

and the 200-period MA on their charts, looking for the strong bullish and bearish 

signals (21).  

 Inside Bar Momentum Strategy is a powerful price action technique that reflects 

consolidation and can be a precursor to a significant breakout or breakdown. An inside 

bar pattern is a two-bar pattern where the inside bar is smaller and within the high to 

low range of the prior bar. The setup indicates a moment of ‘pause’ in the market, after 

which traders expect a breakout in the direction of the prevailing trend (22). 
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Figure 6: Inside Bar Patterns 

Source: Trading inside bar strategy, 2024 

 

Inside bars can be utilized in markets with a clear trend, aligning trades with the 

ongoing direction, commonly known as a 'breakout play' or an inside bar breakout 

pattern in price action trading. Alternatively, they can be applied against the trend from 

significant chart points, where they are typically labeled as inside bar reversal patterns.
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Figure 6: Using inside bar strategy in clear uptrend market  

Source: Trading inside bar strategy, 2024 

 

In this case (Fig. 6), the market was trending higher, so the inside bars would be 

referred to as ‘inside bar buy signals. Often in strong trends like the one in the example 

above, we will see multiple inside bar patterns forming, providing us with multiple 

high-probability entries into the trend (22). 

Different types of trading approaches, an inside bar against the recent trend / 

momentum and from a key chart level. In this case, we were trading an inside bar 

reversal signal from a key level of resistance. The inside bar sell signal in the example 

below actually had two bars within the same mother bar, this is perfectly fine and 

sometimes occures on the charts.   

 Candlestick patterns are fundamental to technical analysis, offering preliminary 

signals for potential shifts in market direction or the persistence of current trends. Key 

patterns like the 'Doji', 'Hammer', 'Shooting Star', and 'Engulfing' are among the various 

candlestick configurations closely monitored by traders. Each of these patterns, 

formed by one or more candlesticks, can indicate either bullish or bearish sentiments. 

 

           

 

Figure 7-8: Different candle pattern examples 

Source: Trading inside bar strategy, 2024 

 

The bearish evening star on the right (Fig. 8) is a pattern that serves as a topping signal. 

It can be recognized when the last candle in the pattern opens below the small real 

body of the previous day. The small real body can be either black or white. 

Furthermore, the last candle closes significantly within the real body of the candle from 

two days prior. 
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This pattern indicates a slowdown in buyer activity and a subsequent shift in control 

towards the sellers. It suggests the possibility of further selling pressure. On the other 

hand, the morning star represents the bullish counterpart to the evening star (16). 

A bullish engulfing pattern on the left (Fig. 8) is a two-candlestick formation that 

signals a potential reversal in trend. It consists of a smaller candle followed by a larger 

candle that 'engulfs' the body of the first. These patterns suggest a shift in momentum 

and are often used to identify entry and exit points in the market. 

In trading we do not use candlestick patterns in isolation. Instead, they are often 

combined with other technical analysis tools to validate trade signals. For example, a 

bullish engulfing pattern found at a key support level with high volume can be 

considered a strong buy signal (16). 

 

 

2.4    Case Studies and Examples 
 

The intersection of machine learning and trading has garnered significant attention 

and interest from financial institutions and investors alike. Several case studies and 

examples highlight the potential of this integration and its impact on algorithmic 

trading. 

 

2.3.1    High-Frequency Trading 

One notable case study is the use of machine learning algorithms in high-frequency 

trading (HFT) (4). HFT involves the execution of trades within microseconds, taking 

advantage of small price discrepancies and market inefficiencies.  

One part of the study (4) shows how machine learning performs in high-

frequency trading at different trading speeds, that are represented by λ in milliseconds. 

Keep in mind that to simulate market conditions, uninformed traders are 

considered noise traders that trade without learning like zero-intelligence agents.  

They choose their buy/sell order and order type randomly. Since firstly 

introduced by Gode and Sunder in 1993, zero-intelligence agents who trade randomly 

without learning and information have been used to examine their impact on trading 

mechanism and market environment. 
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For the benchmark HFT scenario HF there are 10 informed HF traders, 90 

informed LF traders, and 900 uninformed LF traders.  

 

 

  

Figure 9: Average order profit & MAE 

Source: Machine learning and speed in high-frequency trading, 2022 

 

The left graph (Fig. 9) shows how average profit correlates with trading speed. 

We can see that slightly longer trading speed results in more average profit, till it peaks 

at 12 milliseconds, where effectivity starts to decrease because of data amount that 

algorithm receives and tries to comprehend.  

The right graph (Fig. 9) shows what trading speed has the lowest mean absolute 

error, which results in better predictive power of a model. 

This research offers a comprehensive framework to analyze these dynamics. By 

integrating a Genetic Algorithm (GA) with a classifier system, it allows traders to learn 

and adapt based on a variety of market data, including historical prices, fundamental 

values, and order book dynamics. 

The model demonstrates how all traders, high-frequency and low-frequency, 

engage with the market and each other through the limit order book, evolving their 

strategies via machine learning. This study sheds light on the future of market 

microstructure in an era where machine learning is popularized in trading.  

A key finding is the balance between the information advantage and 

competition among informed HF traders, elucidating the observed hump-shaped 

relationship between trading speeds, liquidity consumption, and the profitability of HF 

trades, alongside price efficiency (4). 
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Interestingly, the study finds that market liquidity tends to decrease with the 

increased speed of HFT, leading to higher price volatility and wider spreads. However, 

the strategic trading behaviors, empowered by machine learning, offset the 

diminishing returns of speed-based advantages. This insight is particularly crucial for 

market regulation concerning HFT, suggesting that there's a profit-driven incentive for 

informed HF traders to avoid excessively rapid trading, thereby enhancing price 

efficiency (4). 

In summary, the research (4) significantly contributes to the HFT literature by 

highlighting the role of machine learning in trading, particularly in the context of the 

evolving financial technology landscape. It underscores the growing prevalence of 

algorithmic trading among both informed and uninformed market participants. 

 

2.3.1    Market Impact 

Algorithmic trading has a significant positive impact on market conditions, primarily 

enhancing liquidity and, in many cases, reducing short-term volatility. Studies have 

consistently shown that AT is beneficial, particularly for large-cap, high-priced, and 

low-volatility stocks (5). 

For instance, high-frequency trading algorithms (HFTs), a subset of AT, are 

known to provide liquidity by submitting limit orders, thereby playing a role similar to 

traditional market-makers. This liquidity provision is especially crucial during times of 

market stress or when liquidity is naturally scarce. 

The impact of AT on market volatility is more nuanced. While some detractors 

argue that AT can exacerbate short-term volatility, numerous studies have found that 

AT, including HFTs, can actually reduce volatility. For example, during periods of 

market turbulence, HFTs have been observed to lower volatility in certain stock 

categories, such as small-cap stocks (4). 

Moreover, AT has been shown to narrow bid-ask spreads, which is a direct 

indicator of improved market liquidity. This narrowing is particularly evident in stocks 

that are more attractive to algorithmic traders, such as those with large market 

capitalizations and lower volatility (6). 

In summary, there is a general consensus among academics that HFTs reduce 

the cost of liquidity provision to the benefit of all market participants. However, the 

relationship between HFT activity and liquidity differs depending on certain stock-
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specific characteristics. For example, the relationship is stronger for large-cap and 

high-priced stocks with low volatility (5). 

 

2.3.2    Applications 

There are numerous examples of algorithmic applications usage by individuals, but the 

biggest showcase of what incorporation of algorithms in trading can achieve is seen in 

big industry players, that have been in the field for a while and have a sufficient amount 

of resources to invest in developing their own, sophisticated, large-scale models that 

manage substantial portion of their portfolio. 

Here are few examples (6):  

 Renaissance Technologies, led by Jim Simons, showcases the influence of 

algorithmic trading in modern finance. In Greg Zuckerman's book, 'The Man Who 

Solved the Market,' Simons, a renowned mathematician and codebreaker, propelled 

his firm to the top of the financial world by following a key principle: removing 

emotions from investing and relying on data. This principle is deeply ingrained in 

the firm's DNA, as their algorithms tirelessly analyze vast datasets to uncover 

predictive patterns. It is this systematic and unemotional approach that has 

established Renaissance Technologies as one of the market's most secretive and 

profitable entities, consistently achieving success while others are influenced by 

human biases (23). 

 Two Sigma Investments showcases the fusion of machine learning with 

algorithmic trading, creating adaptive trading strategies. Their technology-driven 

approach enables the firm to stay ahead in the rapidly evolving market 

environment, consistently seeking outperforming investment opportunities 

Each of these companies illustrates a practical application of algorithmic 

trading, demonstrating its value in achieving efficiency, speed, and precision that 

significantly surpass human capabilities (19).  

Moreover, the success of these industry leaders in algorithmic trading is not just 

a testament to their technological prowess, but also a reflection of a broader shift in the 

financial markets towards data-driven decision making. As these firms continue to 

refine their algorithms and computational models, they are setting new standards for 

efficiency and effectiveness in the financial sector. 
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2.5    Evaluation Metrics  
 

To compare different algorithms and strategies, we need to highlight key points that 

indicate success of our model or its failure. It can be done by measuring different 

metrics that describe effectiveness, stability, risk, adaptability and other factors that 

impact decision making of a model. In this chapter I will look over the most used 

metrics, which often give traders and analytics a general overview of how capable their 

strategy and model are in real time. 

 

2.4.1    Profit and Loss 

The first and the most straightforward measure of financial performance, showing the 

net profit or loss over a specific period, and evaluating the immediate monetary success 

or failure of trading strategy. In order to have a basic understanding of how successful 

our model is, we need to know gross profit and losses at a specific time period and 

afterwards calculate overall net profit and losses (12). 

Gross income can be calculated by subtracting the Cost of Goods Sold (COGS) 

from the Total Revenue. COGS is the cost of unsuccessful trades in our example, while 

total revenue is a revenue from all successful trades. 

Gross profit = Total Revenue − Cost of Goods Sold (COGS) 

Now, we can calculate "Net profit", which is basically gross profit after all kinds 

of transactional, slippage and operational expenses. 

Profit and Loss is a simple measure which shows efficiency of a strategy and 

does not require deep understanding of statistics or graph analysis. 

 

2.4.2    Sharpe Ratio 

Sharp Ratio measures the risk-adjusted return, offering insights into the profitability 

of a strategy relative to its risk. It represents the additional amount of return that a 

trader receives per unit of increase in risk (13). 

In its simplest form: 

Sharpe Ratio = Rp – Rf / σp 

Rp = return of portfolio 

Rf = risk-free rate 

σp = standard deviation of the portfolio’s excess return 
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The ratio is calculated by subtracting the risk-free rate of from the strategy's 

return and dividing by the standard deviation of the strategy's returns. A higher Sharpe 

Ratio indicates a more favorable risk-to-reward balance. 

A Sharpe ratio of 1.3 for example, indicates that the return of the algorithmic 

trading strategy, after adjusting for its risk, is 1.3 times greater than the risk-free rate. 

Generally, a Sharpe ratio of 1 or higher is considered acceptable to good by investors, 

a ratio of 2 is very good, and a ratio of 3 or higher is considered excellent. 

 

2.4.3    Maximum Drawdown 

The drawdown by itself is the measure of the decline from a historical peak in some 

variable, in our case, it's the largest drop in portfolio value from peak to a trough before 

a new peak. Drawdown is crucial for assessing the volatility and risk inherent in a 

trading strategy, as it provides insights into the financial and emotional impact of high-

risk investments (14). 

The drawdown is defined as: 

D(τ)=maxt∈(0,τ) [X(t)−X(τ)] 

Where T is a drawdown at a time, t ≥ 0 is a sequence of random variables (peaks and 

lows for example), with X (0) = 0, which means that if X is negative, it is considered to 

be 0. This ensures that the drawdown is never less than 0, reflecting that a drawdown 

represents a decrease in value and cannot be negative. 

The maximum drawdown is the maximum drawdown over the history of the 

variable. Let's take crypto for example, maximum drawdown can be defined as the 

lowest market value of any coin since it was listed. 

It's defined as: 

MDD(T)=maxτ∈(0,T) D(τ) 

In algo-trading, it's used to align investment choices with risk tolerance levels, 

ensuring that strategies are suitable for their financial goals and psychological comfort, 

the last one plays significant role in traditional trading, we will get into this topic later 

in my work. A lower MDD is preferable, indicating less risk and potential loss in value 

(14). 

Here is an example:  

The highest peak of the portfolio value was $150,000, after reaching this peak, 

the strategy experienced a period of losses during a market downturn. 
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The lowest trough following the highest peak was $100,000 before the strategy began 

to recover. 

Therefore, the drawdown from the peak to the trough was $150,000 - $100,000 

= $50,000. 

The MDD in this case is 33.33%, which means the strategy had a period where it lost 

one-third of its value before it started to recover. 

 

2.6    Challenges Faced in Algorithmic Trading 
 

Despite the numerous advantages of algorithmic trading, there are also several 

challenges that traders need to navigate in order to maximize the effectiveness of their 

algorithms and achieve consistent profitability. The main challenge is to deal with the 

complexity and dynamic nature of financial markets.  

Algorithms, no matter how sophisticated, may struggle to adapt to rapid and 

unforeseen market changes. This section will delve into some of the key challenges 

encountered in algorithmic trading. 

 

2.5.1   Overfitting Bias 

In trading, overfitting occures when strategies are excessively tailored to historical 

data, leading to a decline in their predictive capability in real-world applications. This 

issue manifests in two primary ways (8): 

 Over-Optimization on Historical Data: Strategies that are too finely adjusted to past 

data usually have impressive performance in backtests but often fail when applied to 

live markets. The root of this problem lies in the model's inability to generalize from 

past conditions to future, unseen market scenarios. Essentially, these models capture 

the noise rather than the underlying signal in historical data, mistaking random 

fluctuations for meaningful patterns. 

 Hindsight Bias through Parameter Tweaking: Another form of overfitting occurs 

when traders incessantly modify the parameters of their models in search of improved 

backtest results. This process can inadvertently introduce hindsight bias, as it relies on 

knowledge of the full dataset to make adjustments that may not be justifiable in a real-

time trading context. 
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Both forms of overfitting compromise the robustness and reliability of trading 

strategies. A strategy's ability to perform well in backtesting does not guarantee its 

effectiveness in live markets, primarily because these overfitted models fail to account 

for the unpredictable and dynamic nature of financial markets. 

 

 

 

Figure 10: Types of overfittings 

Source: Overfitting and Methods of Addressing it, 2021 

 

The left-hand graph (Fig. 10) displays a model that is overly simplistic, failing to 

capture the complexity of the data. This results in underfitting, where the model's 

prediction error is high due to its inability to account for all the data points. 

On the other hand, the right-hand graph (Fig. 10) illustrates overfitting. Here, 

the model is excessively complex, fitting not just the underlying pattern but also the 

noise within the training data. This typically leads to poor predictive performance on 

new data due to the model's oversensitivity to the specific details of the training set. 

The central graph (Fig. 10) represents a well-fitted model. It strikes a balance 

by accurately capturing the general trend of the data without being distorted by noise. 

This balance suggests the model is likely to perform well on new data, having 

minimized both bias and variance. 

To lower the risk of overfitting, we can use different strategies, here are couple of them 

(8): 

 Data Partitioning is the simplest thing you can do other than keeping your model 

simple. Separating your data into distinct sets for training, validation, and testing, also 

known as in/out sample data. The training set is used to build the model, the validation 

set is used to tune parameters, and the testing set, which the model has never seen 

before, is used to evaluate performance. 
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 Out-of-sample testing involves reserving a portion of historical data, not used during 

the model development and parameter optimization, to test the model's predictive 

ability. After the model is built using the in-sample data, it's then applied to the out-of-

sample data to simulate how the model would have performed in real-time. The 

model's performance metrics on the out-of-sample data, such as the Sharpe ratio and 

maximum drawdown, should not significantly differ from the in-sample performance. 

If the model underperforms on out-of-sample data, it might indicate overfitting, and 

may require refinement. 

 Walk-Forward Analysis, which starts by optimizing the model's parameters on in-

sample data, then testing the strategy on the out-of-sample data without re-optimizing 

the parameters. This process is then "walked forward" through the data: after the first 

out-of-sample test, a new in-sample test begins, immediately followed by another out-

of-sample test. This cycle continues, ensuring that the strategy is consistently tested 

over different market conditions.  

 Cross-Validation is similar to walk-forward analysis (Fig. 11), it involves dividing the 

data into parts and conducting multiple rounds of analysis, using different parts as 

training and validation sets in each round. 

 

 

Figure 11: Cross-validation cycle 

Source: Overfitting and Methods of Addressing it, 2021 
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By minimizing overfitting bias, we are more likely to create algorithmic trading 

strategy that will deliver consistent, reliable performance in live markets, ensuring that 

profitability and risk management are sustained over time. 

 

2.5.2    Data Snooping Bias 

"Data snooping bias is caused by having too many free parameters that are fitted 

ethereal patterns in the past to make historical performance look good" (3). 

Another challenge in algorithmic trading is the risk of data snooping, it refers to 

the practice of mining historical market data to discover patterns or relationships that 

may not necessarily have any predictive value. 

Before we dive into the problem roots, let’s have a look at one example of data 

snooping bias in algo-trading, it is the infamous "Dow 36,000" prediction made in the 

late 1990s  (9). 

In those days, the internet was emerging as a new and exciting technology. This 

led to the rapid growth of internet-based companies, commonly referred to as dot-

coms. Investors, who saw the potential of the internet, poured massive amounts of 

capital into these startups, many of which had yet to make a profit. 

Around 2000, it appeared that many of these companies were not as financially 

successful as their stock prices suggested. This realization, combined with other 

economic factors, led to a loss of investor confidence. The bubble burst led to a sharp 

decline in the stock prices of technology companies. This crash caused many startups 

to go out of business and resulted in significant financial losses for investors. 

Getting back to "Dow 36,000", researchers used historical stock market data to 

develop a model that projected the Dow Jones Industrial Average reaching 36,000 

points. However, this prediction failed, as it did not account for changing market 

conditions and unforeseen events such as the dot-com bubble burst and subsequent 

market crash  (9). 

The most basic safeguard against data-snooping bias is a sufficient amount of 

backtest data relative to the number of free parameters you want to optimize. For 

example, let’s assume that the number of data points needed for optimizing your 

parameters is equal to 246 times the number of free parameters your model has. If we 

have a daily trading model with three parameters. Then you should have at least three 

years’ worth of backtest data with daily prices  (3). 
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Another approach is again, testing the model on out-of-sample data. This step 

shows the model's true predictive power and generalizability. This approach was also 

mentioned in Chan's work, "The ultimate out-of-sample testing is familiar to many 

traders, and it is called paper trading. Running the model on actual unseen data is the 

most reliable way to test it" (Chan, 2008). 

 

2.5.3    Market Dynamics and Shifts 

Shifts and changing market conditions are common things for human traders, but not 

for algo-trading models to some degree, that's why they should be explicitly 

programmed for unstable and constantly changing market.  

One of the main causes of market dynamics in algo-trading is technological 

advancements. As technology evolves rapidly, new algorithms are developed and 

implemented to exploit market inefficiencies. This leads to increased competition 

among traders and a constant need to adapt strategies. Additionally, changes in 

regulations or market structures can also create shifts in algo-trading dynamics. 

To address these challenges, traders must update their algorithms and risk 

management systems. Regular monitoring of trading activities is essential to identify 

potential issues or anomalies promptly. Collaboration between regulators and industry 

players is crucial for establishing guidelines that ensure fair practices while allowing 

innovation. 

Examples of market dynamics in algo-trading can be seen during major 

economic events such as interest rate announcements or geopolitical crises. These 

events trigger sudden shifts in market sentiment, leading to increased volatility and 

liquidity fluctuations.  

In conclusion, understanding the causes behind market dynamics in algo-

trading is vital for developing effective solutions. 

 

2.5.4    Behavioral Biases 

“Regardless of how disciplined, people often make financial decisions that are colored 

by behavioral biases that cause them to act on emotion or make mistakes processing 

information.” (18) 
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Behavioral biases in algo-trading refer to the irrational decision-making 

patterns exhibited by traders when using algorithmic trading systems. These biases 

can lead to significant financial losses and market instability.  

One major cause of behavioral biases in algo-trading is overconfidence. Traders 

often believe that their algorithms are infallible, leading them to take excessive risks 

without considering potential downsides. This can result in catastrophic losses when 

market conditions change unexpectedly. 

Another cause is herd mentality, where traders blindly follow the actions of 

others without conducting proper analysis. This behavior amplifies market volatility 

and can lead to price bubbles or crashes. 

To address these biases, we can implement risk management measures such as 

setting stop-loss orders or diversifying portfolios. Additionally, regular monitoring and 

evaluation of algorithm performance can help identify any potential biases or flaws 

(18). 

Several examples highlight the impact of behavioral biases in algo-trading. The flash 

crash of 2010 (Fig. 12) within minutes due to a combination of high-frequency trading 

algorithms and panic selling triggered by erroneous trades. This incident 

demonstrated how unchecked algorithmic trading can exacerbate market volatility. 
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Figure 12: S&P 500 stock crash graph of 2010 

Source: Liberty Street Economics, 2012 

 

In conclusion, behavioral biases in algo-trading pose significant risks to financial 

markets. By understanding their causes, which are most likely connected to human 

nature and psychology, we can implement appropriate risk management measures, 

and learn from the past. These steps will help to mitigate these biases and ensure a 

more stable and fair-trading environment for all participants. 

 

2.5.5    Loss Aversion Bias 

“Loss aversion is rooted in a deep-seated instinctual impulse to avoid pain.” (1) 

Loss aversion bias significantly affects decision-making in algorithmic trading. 

This bias stems from the psychological phenomenon where the discomfort or pain 

associated with losses outweighs the satisfaction or pleasure derived from an 

equivalent number of gains. In the context of algo-trading, this bias can be seen in 

several ways, potentially undermining the effectiveness of trading strategies. 

In algo-trading, loss aversion may result in algorithms that exit positions too 

early to avoid potential losses, missing out on substantial gains. These systems often 

employ tight stop-loss orders, which, while vital for risk management, may be set too 

close to the purchase price, leading to premature exits, especially in volatile markets.  

This cautious approach can also manifest itself in a missed profitable 

opportunity, as the fear of trend reversals may prompt early exits from rising markets, 

yielding lower overall returns. 

There are some ways we can counteract loss aversion bias in algo-trading. First 

of all, adjusting algorithm parameters helps, ensuring they strike a balance between 

risk and reward. This includes setting stop-loss orders and taking calculated risks 

based on comprehensive market analysis (1).  

For manual traders intervening in algorithmic systems, psychological training 

to understand and manage this bias can lead to more rational decision-making.  

Moreover, extensive back testing across various market scenarios can help 

identify if an algorithm is excessively conservative, providing valuable information into 

potential performance during different market trends. 
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2.6    Summary of Case Studies and Examples  
 

In conclusion, the future of algorithmic trading holds great potential and promises 

significant advancements in the intersection of machine learning and trading. The 

studies and examples discussed in this essay have shown the effectiveness of using 

algorithms and predictive models to make informed trading decisions.  

However, it is important to consider the evaluation metrics of model 

performance and be cautious of algorithmic trading biases, such as overfitting and data 

snooping. The intersection of machine learning and trading has revolutionized the 

financial industry by enabling market participants to analyze large amounts of data and 

make more accurate predictions.  

Machine learning algorithms provide the ability to identify patterns and trends 

that human traders may miss, thus enhancing decision making and improving trading 

strategies. The use of neural networks, deep learning, and other advanced algorithms 

have proven to be highly effective in predicting market movements and identifying 

profitable trading opportunities.  

Various studies and examples have demonstrated the success of algorithmic 

trading strategies. For instance, research by Ronen et al. (2019) explored the use of 

support vector machine (SVM) and random forest models to predict stock price 

movements. Their findings revealed that these models outperformed traditional 

statistical methods, showcasing the potential of machine learning in trading.  
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3. Model development and Results 
 

In this section, we will focus on implementing the Moving Average Crossover strategy, 

which is a key component of algorithmic trading models. We will start by establishing 

a strong API connection to receive real-time market data, which is crucial for executing 

the strategy effectively. Then, we will gather historical price data to build the 

foundation of our model. 

Once we have the data, we will visualize it to identify market trends and 

generate actionable signals using the Moving Average Crossover strategy. The main 

part of our investigation involves backtesting. We will simulate the strategy using 

historical data to predict its performance and evaluate its hypothetical success in past 

market conditions. 

Finally, we will evaluate the results by carefully analyzing the outcomes of the 

backtesting. This thorough evaluation aims to provide a detailed understanding of the 

role and effectiveness of the Moving Average Crossover strategy in today's financial 

trading landscape. 

 

3.1     Implementation 
3.1.1 Programming Language and Libraries 

For the development of our model, we have chosen Python. This language is well-

equipped for data-centric applications, with a robust set of libraries facilitating the 

processing and analysis of large datasets (11).  

The libraries we will leverage include: 

 

 Pandas for data manipulation and analysis in Python. 

 Requests to interact with external services and fetch data over HTTP 

seamlessly. 

 OANDA API to automate trading strategy by harnessing financial market data 

(20). 

 Plotly to graphically represent financial data in an interactive and intuitive 

manner.  
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3.1.2 Connecting to API 

As a trading platform we will use OANDA broker, it has a great and reliable open-source 

API (20). 

In order to access historical data, our model should have access to OANDA API 

to send and receive API calls. Connection is established by utilizing several 

personalized keys, such as: 

 

 

 

API_KEY = "XXXXXXXXXXXXXXXXXXXXXX - XXXXXXXXXXXXXXXXXXXXXXXX" 

ACCOUNT_ID = "XXX-XXX-XXXXXXX-XXX" 

OANDA_URL = 'https://api-fxpractice.oanda.com/v3'    

SECURE_HEADER = { 

    'Authorization': f'Bearer {API_KEY}', 

    'Content-Type': 'application/json'  

} 

 

Code snippet 1:  Connecting to OANDA api. 

Source: Sample Project. 

 

API_KEY serves as a confidential token for authentication, acting as a unique identifier. 

It is included in the request header to verify the requester's identity and ensure they 

have the necessary permissions to access the API's functionalities.  

This key plays a crucial role in the security mechanism, preventing 

unauthorized access (20).  

ACCOUNT_ID is a distinct identifier for a user's account on the OANDA platform. It is 

utilized to specify which account is making the request, allowing the OANDA API to 

apply the request to the correct account. For instance, it is used when retrieving 

account-specific data or executing trades. OANDA_URL represents the base URL for the 

OANDA API (20).  

All requests to the OANDA API begin with this base URL and then append 

endpoint-specific paths. It points to the fxPractice environment, indicating its usage for 

practice or demo purposes rather than live trading.  
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SECURE_HEADER is a Python dictionary that contains HTTP headers to be included in 

the API request. The headers it contains are as follows: - 'Authorization': This header 

carries the API key for authentication, formatted as a bearer token.  

The Python f-string syntax, f'Bearer {API_KEY}', formats the string to include the 

value of API_KEY in the designated position. “Content-Type" specifies the media type 

of the resource, which in this case is “application/json”. It indicates that the request 

body is formatted as a JSON object, which is a common format for exchanging data with 

APIs.  

These parameters collectively configure the HTTP request used by your 

application to communicate with the OANDA API. They ensure that the requests are 

properly authenticated, and that the API can understand and process the request body 

accurately. 

By using these keys, connection can be established through OANDA’s API 

endpoints, that are described in its API documentation (20). 

 

session = requests.Session() 

url = f"{defs.OANDA_URL}/accounts/{defs.ACCOUNT_ID}/instruments" 

response = session.get(url, params=None, headers=defs.SECURE_HEADER) 

 

Code snippet 2: Accessing OANDA API. 

Source: Sample Project. 

 

After running the code snippet above, we should get HTTP response of 200, according 

to API documentation, this means that connection was established successfully. (20). 

3.1.3 Data Gathering  

To implement our strategies, we need to obtain the next sets of data:  

 Instrument or currency pair, represents the market data subject of interest. It is 

identified by a unique label, such as 'EUR_USD' for the Euro to US Dollar exchange rate. 

Selecting the appropriate instrument is crucial as it forms the basis for market analysis 

and subsequent strategy development (20). 

 Price specifies the particular price data needed for analysis. Options typically include 

bid, ask, or mid prices, each indicating different aspects of market valuation.  
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 The bid price is the highest price a buyer is willing to pay, the ask price is the lowest 

price a seller is willing to accept, and the mid-price is the average of the bid and ask. 

 Granularity refers to the time interval of each data point in the series, ranging from 

seconds to weeks. The chosen granularity reflects the temporal resolution of the data 

and is closely aligned with the strategic approach of the analysis—shorter intervals for 

high-frequency strategies, longer for trend-based analyses. 

 Count of Candles Returned determines the number of historical data points, or 

'candles', to be retrieved. The specific count corresponds to the depth of historical 

market behavior analysis required. A higher count allows for a more comprehensive 

backtest of the market's performance over time. 

 Date From parameter specifies the start date for historical data collection. It limits the 

dataset to include only the market information following this date, enabling targeted 

analysis of market behavior within a defined timeframe. 

 Date To parameter marks the end date for data retrieval. The resulting dataset 

includes market data up to this specified date. When used alongside the 'date from' 

parameter, it helps encapsulate the data within a precise historical segment for 

analysis. 

For handling our trading data, we will utilize DataFrames, a feature of the 

pandas library. DataFrames arrange data in a clear, table-like format, making it easy to 

work with. 

They will enable us to quickly sort through our collected data — such as 

instrument types, price points, and time intervals — and prepare it for analysis. 

Creating a dictionary and obtaining tradable instruments utilizing pandas library: 

 

instrument_data = [] 

for item in instruments: 

    new_ob = dict( 

        name = item['name'], 

        type = item['type'], 

        displayName = item['displayName'], 

        pipLocation = item['pipLocation'], 

        marginRate = item['marginRate'] 

    ) 

    instrument_data.append(new_ob) 



   

 

41 
 

instrument_df = pd.DataFrame.from_dict(instrument_data) 

instrument_df.to_pickle("instruments.pkl") 

 

instrument_df 

 

Code snippet 3: Obtaining tradable instruments. 

Source: Sample Project. 

 

Running the code above will give us all currently tradable pairs, with specified 

parameters as a stylized data frame, and save it to pickle for future manipulations: 

 

 

 

Figure 13: Tradable pairs with basic information 

Source: Sample Project. 

 

After that, we can select specific tradable pair and fetch candle data, also with the help 

of pandas. For this API request we need to specify tradable pair and candle granularity  

(20): 

 

def fetch_candles(self, pair_name, count=None, granularity="H1", date_from=None, 

date_to=None): 

 

        url = f"{defs.OANDA_URL}/instruments/{pair_name}/candles" 
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        params = dict( 

            granularity = granularity, 

            price = "MBA" 

        ) 

         

        if date_from is not None and date_to is not None: 

            params['to'] = int(date_to.timestamp()) 

            params['from'] = int(date_from.timestamp()) 

        elif count is not None: 

            params['count'] = count 

        else: 

            params['count'] = 300 

         

        response = self.session.get(url, params=params, headers=defs.SECURE_HEADER) 

 

        if response.status_code != 200: 

            return response.status_code, None 

         

        return response.status_code, response.json() 

 

 

Code snippet 4:  Obtaining candle data for “EUR_USD” pair 

Source: Sample project. 

 

According to our parameters which are “EUR_USD” for the pair and “H1” for 

granularity, we get candle data in data frame: 

 

 

 

Figure 14:  Candlestick data for “EUR_USD” 

Source: Sample Project. 
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The columns represent various market prices and volumes: 

 volume: The total number of units traded within the hour. 

 mid_*: The midpoint prices for the open (mid_o), high (mid_h), low (mid_l), 

and close (mid_c) of the currency pair, offering a consolidated view of market 

movement. 

 bid_*: The bid prices for the open (bid_o), high (bid_h), low (bid_l), and close 

(bid_c), which represent the highest prices buyers are willing to pay. 

 ask_*: The ask prices for the open (ask_o), high (ask_h), low (ask_l), and close 

(ask_c), reflecting the lowest prices sellers are willing to accept. 

 

 

 

3.1.6 Data Visualization 

Plotly, a dynamic and interactive graphing library for Python, will be utilized to 

represent our data visually. The extensive range of features offered by Plotly makes it 

an invaluable tool for generating intricate visualizations effortlessly. Its widespread 

adoption in various sectors underscores its adaptability, allowing for the creation of 

anything from basic scatter plots to intricate 3D models. 

 

 

 

Figure 15: Stylizing obtained candle chart with plotly in python. 

Source: Sample Project.  

 

3.1.7 Strategy Implementation 

Within the framework of this project, we shall execute the Moving Average Crossover 

strategy. As commonly understood, this strategy involves two moving averages: a 

shorter one and a longer one.  
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The essence of this approach lies in the points where these two moving averages 

intersect, as they indicate potential turning points in the market. To be more precise, a 

buy signal is generated when the short-term moving average surpasses the long-term 

moving average, indicating the start of an upward trend.  

Conversely, a sell signal is triggered when the short-term moving average falls 

below the long-term moving average, indicating the beginning of a downward trend. 

We will add different moving averages to our candle charts, and test each paired 

with each as a short and long combination throughout the period from 01.01.23 till 

14.04.24. After that, performance will be evaluated to select the pair that shows the 

best results. 

Adding moving averages to our candle chart: 

 

pair = "EUR_USD" 

granularity = "H1" 

ma_list = [4, 8, 16, 32, 64, 128, 256] 

 

i_pair = instrument.Instrument.get_instrument_by_name("EUR_USD") 

df = pd.read_pickle(utils.get_his_data_filename(pair, granularity)) 

non_cols = ['time', 'volume'] 

mod_cols = [x for x in df.columns if x not in non_cols] 

 

df[mod_cols] = df[mod_cols].apply(pd.to_numeric) 

df_ma = df[['time', 'mid_o', 'mid_h', 'mid_l', 'mid_c']].copy() 

 

for ma in ma_list:   

    df_ma[f'MA_{ma}'] = df_ma.mid_c.rolling(window=ma).mean() 

df_ma.dropna(inplace=True) 

df_ma.reset_index(drop=True, inplace=True) 

 

df_ma.head() 

 

Code snippet 5: Adding and calculating moving average points for each candle. 

 (Some functions are not included for better code readability) 

Source: Sample project. 
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The original data is modified through the code by adding new columns that depict the 

average closing price across different time intervals.  

Each interval in the list is subjected to a calculation of an average, which 

effectively shows the impact of short-term price fluctuations and aids in the 

identification of longer-term trends within the data.  

These supplementary columns are consistently labeled, such as 'MA_8' for an 

eight-period average, thereby providing clear indication of their respective 

representations. 

We can analyze price movements over time by using plotly and see how each 

MA follows uptrend or downtrend: 

 

 

 

Figure 16: Example of different moving averages. 

Source: Sample Project. 

 

In order to make a trading decision, we must identify a crossover event and determine 

whether our model should place a sell or buy order.  

 

def is_trade(row): 

    if row.DIFF >= 0 and row.DIFF_PREV < 0: 

        return 1 

    if row.DIFF <= 0 and row.DIFF_PREV > 0: 

        return -1 

    return 0  
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Code snippet 6: Evaluating crossover event.  

(Some functions are not included for better code readability) 

Source: Sample Project. 

 

The function above compares difference between short and long crossover position 

and returns “1” in case of shorter MA crosses above longer MA, signalizing the uptrend 

movement. On contrary, if shorter MA crosses under, function returns “-1”, and it could 

be considered as a downtrend signal. If a cross doesn't occur, we return “0” that is 

simply the sign of no trade. 

Creating a function to evaluate pair for potential trade at a time, the inputs for 

this process include the currency pair (i_pair), two integers representing the short and 

long moving average periods (mashort and malong), and the price data (price_data): 

 

def evaluate_pair(i_pair, mashort, malong, price_data): 

 

    price_data = price_data[['time', 'mid_c', get_ma_col(mashort), get_ma_col(malong)]].copy() 

    price_data['DIFF'] = price_data[get_ma_col(mashort)] - price_data[get_ma_col(malong)] 

    price_data['DIFF_PREV'] = price_data.DIFF.shift(1) 

    price_data['IS_TRADE'] = price_data.apply(is_trade, axis=1) 

 

    df_trades = price_data[price_data.IS_TRADE!=0].copy() 

    df_trades["DELTA"] = (df_trades.mid_c.diff() / i_pair.pipLocation).shift(-1) 

    df_trades["GAIN"] = df_trades["DELTA"] * df_trades["IS_TRADE"]   

 

    df_trades["PAIR"] = i_pair.name 

    df_trades["MASHORT"] = mashort 

    df_trades["MALONG"] = malong 

 

    del df_trades[get_ma_col(mashort)] 

    del df_trades[get_ma_col(malong)] 

 

    df_trades["time"] = [parse(x) for x in df_trades.time]  

    df_trades["DURATION"] = df_trades.time.diff().shift(-1) 

    df_trades["DURATION"] = [x.total_seconds() / 3600 for x in df_trades.DURATION] 

    df_trades.dropna(inplace=True) 
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    return ma_result.MAResult( 

        df_trades=df_trades, 

        pairname=i_pair.name, 

        params={'mashort' : mashort, 'malong' : malong}   ) 

 

Code snippet 7: Evaluating specific pair for crossover event & collecting trade data 

Source: Sample Project.  

 

Here is how the function above works: 

The data is filtered by selecting only the necessary columns that are related to 

time, closing price, and the two specified moving averages.  

The differences between the short and long moving averages (DIFF) are 

calculated, as well as the difference from the previous period (DIFF_PREV).  

The “is_trade” function is applied to identify buy and sell signals based on the 

moving average crossover strategy.  

For rows with trade signals, the profit or loss (DELTA) in pip movements and 

the actual gain or loss (GAIN) are calculated, taking into account the direction of the 

trade.  

The original moving average columns are removed to declutter the dataset.  

The time strings are converted to datetime objects and the duration between 

trades is calculated.  

The final output is an instance of MAResult that contains the trade analysis 

results and the parameters used in the evaluation. 

Multiple currencies like the British Pound (GBP), Euro (EUR), US Dollar (USD), 

Canadian Dollar (CAD), Japanese Yen (JPY), New Zealand Dollar (NZD), and Swiss Franc 

(CHF) are tested to ensure that we have enough sample and validation data to minimize 

data snooping bias.  

To mitigate overfitting bias, we will use different Moving Averages (MAs) with 

periods of 4, 8, 16, 32, 64, 96, 128, and 256. This range allows us to capture different 

levels of data responsiveness, from the reactive 4-period MA to the broader 256-period 

MA. We will pair each currency with each MA duration to create a detailed matrix of 

instrument-MA combinations. This analysis aims to find the most reliable and 

profitable pairing for our backtesting simulations.  
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Our goal is to extract key insights and determine the best strategy 

configurations that will result in overall profitability. 

 

Implementing our backtesting function:  

 

def test(): 

 

    currencies = "GBP,EUR,USD,CAD,JPY,NZD,CHF" 

    granularity = "H1" 

    ma_short = [4, 8, 16, 24, 32, 64] 

    ma_long = [8, 16, 32, 64, 96, 128, 256] 

    test_pairs = get_test_pairs(currencies)     

 

    results = [] 

    for pairname in test_pairs: 

        print("running..", pairname) 

        i_pair = instrument.Instrument.get_instruments_dict() [pairname] 

 

        price_data = get_price_data(pairname, granularity) 

        price_data = process_data(ma_short, ma_long, price_data) 

 

        for _malong in ma_long: 

            for _mashort in ma_short: 

                if _mashort >= _malong: 

                    continue 

                results.append(evaluate_pair(i_pair, _mashort, _malong, price_data)) 

 

    final_df = process_results(results) 

    all_trades_df = store_trades(results) 

 

    create_excel(final_df, all_trades_df) 

 

Code snippet 8: Moving Average Crossover strategy implementation.  

Source: Sample Project. 

 



   

 

49 
 

Variable Initialization: a string containing the major currency codes (GBP, EUR, USD, 

CAD, JPY, NZD, CHF) that will be tested by the function. “granularity” - the time frame 

for the data, indicated as 'H1' for hourly data.  

The ma_short and ma_long are lists of periods for short and long moving 

averages. These periods are used to calculate two sets of moving averages for each 

currency pair. Typically, the 'short' moving average responds faster to price changes 

compared to the 'long' moving average. 

Pair Generation: "get_test_pairs" function generates all possible combinations 

of the specified currencies to form currency pairs for testing. 

Data Acquisition and Processing: loops through each currency pair obtained from 

"test_pairs", the function retrieves price data using "get_price_data", which fetches 

historical data based on the specified granularity.  

Processes this data in "process_data" by calculating the moving averages specified in 

"ma_short" and "ma_long". 

Strategy Evaluation: Nested loops for MA settings iterate over every 

combination of short and long moving averages. However, it only continues if the short 

MA period is less than the long MA period to ensure proper crossover analysis. The 

"evaluate_pair" function is called for each valid MA combination. It assesses the 

effectiveness of the trading strategy by identifying crossover points where the short 

MA crosses above or below the long MA, indicating potential buy or sell signals which 

was mentioned in previous code snippet. 

Results Compilation: "process_results" aggregates the results of all evaluated 

pairs and MA settings into a final DataFrame that summarizes the performance of each 

strategy. The "store_trades" function saves all trades that occurred during the 

simulations for further analysis. 

After running tests, we can see structured results of first 11 MA combinations: 
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Figure 17: Backtesting results of “GBP_USD”. 

Source: Sample Project. 

 

From the figure, the maximum drawdown is observed in the fifth GBP/USD entry, 

indicating a significant loss of 346.7 pips at its lowest point. 

In conclusion, the Moving Average Crossover strategy was tested extensively 

with the latest yearly data on different currency pairs. The next step is to evaluate the 

results to confirm the strategy's strength and reliability. 

By examining performance and comparing expected outcomes with actual 

results, we can improve the strategy for possible use in real trading situations. 

 

3.2     Evaluation 
Evaluating our trading strategies is important to their effectiveness. It gives us 

numerical data to analyze and decide if a strategy is viable for real market use.  

By evaluating carefully, we can find ways to improve, avoid overfitting, and gain 

insight into how a strategy performs in different market situations. This evaluation is 

crucial for creating a strong trading model that can be sustainable. 

Let's start by examining the overall profits and the total trades made during the 

backtesting phase for the initial 10 moving average pairs starting from well-performed:  
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Figure 18: Backtesting results 

Source: Sample Project. 

 

The best performing moving average for all tradable pairs is "MA_16_32" with 67% of 

profitable trades. While the worst MA combination not shown in the figure is 

"MA_32_96" with total of 1612 trades, loss of -27954 pips and only 14%. 

We can notice that number of trades and ma_short/ma_long ration are 

correlated with total gain in our scenario. When studying different combinations of 

moving averages, it seems that extreme values, whether they are very small or very 

large, are not as effective. This could be because these values don't often cross over 

each other. For example, larger moving averages may not give many trading signals, 

which could lead to less-than-ideal entry points and fewer trades. On the other hand, 

very small moving averages may give too many signals, increasing the chances of false 

positives. Therefore, it is beneficial to find a balance in selecting moving average 

periods to improve the timing and frequency of trades. 

Let’s pick a tradable pair and analyze models' performance step by step.  

As an example, CAD_CHF with 16 and 32 moving averages: 
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Figure 19: “CAD_CHF_MA_16_32” gains through time  

Source: Sample Project. 

 

The chart (Fig. 19) shows a steady increase in performance when using the 16_32 

moving average settings for the CAD_CHF currency pair. Since March 2023, there has 

been a clear upward trend in profits, showing that the model was successful in taking 

advantage of favorable market movements.  

Although the growth is not constant, there are periods of market fluctuations; 

overall, the trend is positive, indicating that the chosen moving average settings have 

been effective in capturing profitable trades and ended up with 778 pip profit and 

total of 213 trades. This highlights the model's ability to generate consistent growth 

during the testing period. 

In contrast, the CAD_CHF currency pair shows a downward trend throughout 

2023 when using the 64_128 moving average settings. The graph reveals a continuous 

loss in value starting from March, with some stabilization between May and September 

before further declines occur. 

Although there are occasional upward ticks indicating brief periods of gains, 

they are not enough to offset the overall negative trend. Based on the visual data, this 

trading strategy has moments of profitability but is not consistently effective for this 

currency pair and timeframe. Resulting in –794 pip loss with only 54 trades. 
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Figure 20: “CAD_CHF_MA_64_128” gains through time  

Source: Sample Project. 

 

This graph (Fig. 20) shows how a trading strategy using the 64_128 moving average 

settings on the CAD_CHF currency pair performed in 2023. The graph indicates a 

downward trend starting in March, showing a continuous decrease in value.  

From May to September, the trend stabilizes somewhat before declining further. 

Occasionally, there are small increases, indicating brief periods of gains. However, 

these increases are not enough to offset the overall negative trend. These MA values 

were not consistently effective for this currency pair and timeframe. Therefore, further 

evaluation and improvement are necessary. 

 

 

 

 

Figure 21: “EUR_USD_MA_8_32” gains through time  

Source: Sample Project. 
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The displayed graph (Fig. 21) showcases the gains accrued from employing an 8_32 

moving average strategy on the EUR_USD currency pair. Initially, the model 

encountered losses, however, from March onwards, it demonstrates a steady recovery, 

characterized by an uptrend. By May, gains begin to outpace losses, with a consistent 

rise through to November. 

The pattern of higher highs and higher lows indicates a strong bullish trend. We 

can suggest that the 8_32 moving average parameters are effective for this pair, 

capturing profitable moments in market movements while providing resilience against 

volatility throughout the year, that can be seen in absence of major drawdowns. 

Backtesting showed 215 trades, with a total gain of 1065 pips.  

Finally, we will examine the 4_8 moving average, with both parameters set to the 

shortest timeframe combination: 

 

 

 

 

 

Figure 22: “EUR_USD_MA_4_8” gains through time  

Source: Sample Project. 

 

The chart (Fig. 22) shows how a strategy using 4_8 period moving averages performed 

on the EUR_USD currency pair. This strategy is more volatile and less consistent 

compared to longer period moving averages. There are many instances where the 

profit and loss threshold are crossed, indicating frequent changes in trade signals.  

However, the strategy doesn't have a clear trend, as the gains are not 

consistently higher than the losses or otherwise. It stays around the breakeven point, 
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going up and down within a narrow range. This suggests that further optimization or 

the use of additional indicators is needed to improve the decision-making process for 

entering and exiting trades on a shorter timeframe. As a result, we got 885 trades and 

a –22.9 pip profit-loss. 
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4   Results 
 

Algorithmic trading backtesting is very quick, often completing in seconds, even with a 

lot of data. For instance, analyzing 5000 candles or more, which is a big part of 

historical price data, is done rapidly. 

After testing different currency pairs and adjusting strategy parameters, 

analyzing Moving Average (MA) combinations shows a detailed connection between 

the specific periods used and trade profitability. The data clearly demonstrates how 

various MA settings impact trade success, providing valuable insights into fine-tuning 

algorithmic strategies. 
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Figure 23: Profitable trades % with different MA pairs.  

Source: Sample Project. 

 

For example, the MA_16_32 combination (Fig. 23) stands out as highly effective, with 

a 67% success rate with 14 profitable pairs. This indicates that this particular MA setup 

is skilled at identifying real market trends versus random fluctuations, offering strong 

signals for traders to enter and exit positions. 

On the other hand, broader MA combinations like MA_64_128 and MA_64_96, 

with only a 10% success rate only with 2 profitable pairs each, suggest a strategy that 

might be too slow to adapt to rapid market changes. This delay could lead to taking bad 

trades or missed opportunities and an inability to capitalize on short-term market 

movements.  

A moderate gap between short and long MAs, such as the MA_16_32 mentioned 

earlier, seems to be ideal for aligning trade timing with market conditions, increasing 

the chances of profitable trades. Well-balanced MA pairings, especially those with 

success rates above 40%, offer a practical and potentially more profitable approach for 

algo-trading strategies utilizing MA crossover. 

However, even the least effective combinations of Moving Averages (MA) can 

make money with certain currency pairs. This shows that each trading instrument is 

unique; what may not work well in one situation could work in another. Traders need 

to understand that every instrument reacts differently to market forces and trading 

strategies, so a one-size-fits-all approach won't work. It's important to customize 

strategies based on the specific characteristics and behaviors of each asset to maximize 

trading performance. 

The success of Moving Average (MA) strategies is not uniform across different 

currency pairs. In a fast-moving market like GBP/JPY, the "MA_64_128" combination 

may not respond quickly enough, leading to suboptimal performance. However, in 

more stable markets like EUR/USD, where trends change slowly, a delayed signal from 

the same MA combination may not be a missed opportunity but can prevent false 

entries and result in unexpected gains.  

The "MA_32_96" combination, with a wide gap between its short and long 

periods, may miss quick market reversals. However, for currency pairs with longer 
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periods of trend stability or less market noise, this combination can filter out irrelevant 

fluctuations and generate profitable trades.  

These examples highlight the importance of considering the unique 

characteristics of each traded instrument in algorithmic trading strategies. 
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5   Conclusion 
 

Algorithmic trading has embedded itself into the core of modern finance (2). Its 

impact can be seen in the smooth trade execution, fast transaction speeds, and 

thorough market analysis it provides (5). By combining math, data analytics, and 

computational power, it has changed how trades are done and set a new standard in 

the financial industry focused on efficiency, speed, and accuracy. This shift from 

traditional trading floors to computational finance environments highlights the 

importance of algorithmic trading. It greatly influences market behavior and global 

financial trends  (6).  The evolution of trading algorithms illustrates the critical balance 

between complexity and utility. While sophisticated models are capable of intricate 

analysis, there's growing recognition that simplicity often prevails. Overly complex 

algorithms can suffer from overfitting, where models are too finely tuned to historical 

data and thus fail in real-world trading, hindering their decision-making efficacy.  

Simplicity, therefore, emerges not just as a design preference but as a strategic 

imperative for creating resilient and adaptable trading strategies  (8). 

The results additionally strengthen the concept that even basic models, like 

those relying on moving average crossovers, can generate profits when combined with 

careful risk management. Achieving success in trading is not solely dependent on the 

intricacy of models, but rather on their deliberate implementation and the strategic 

reduction of risks. The effectiveness of uncomplicated models serves as evidence to the 

principle that in the domain of algorithmic trading, simplicity can often be more 

advantageous  (3). 

When it comes to strategies, they have diverse implications on market 

dynamics. It possesses the capability to augment market liquidity and narrow bid-ask 

spreads, thereby promoting seamless and more effective price discovery mechanisms. 

The impacts of algorithmic trading are not uniform and can vary depending on 

market circumstances, algorithmic design, and the specific strategies implemented. 

Our results additionally strengthen the concept that even basic models, like 

those relying on moving average crossovers, can generate profits when combined with 

careful risk management.  
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Achieving success in trading is not solely dependent on the complexity of 

models, but rather on their deliberate implementation and the strategic reduction of 

risks.  

The effectiveness of uncomplicated models serves as evidence to the principle 

that in the domain of algorithmic trading, simplicity can often be more advantageous. 

The results of backtesting also showed us the importance of tradable 

instruments. 

Different types of assets have varying levels of volatility, which can make 

trading more complex. Highly liquid markets need strategies that can handle complex 

dynamics and correlations, while volatile markets require strong risk management and 

quick-reacting algorithms.  

Markets affected by diverse economic and sector-specific factors need 

algorithms that can process a wide range of data to take advantage of opportunities. T

 rading strategies must align with the specific characteristics and volatility of the 

assets being traded to be effective (6). 

As we move forward into the future, the importance of computers and 

algorithms in is becoming more apparent in the finance and global markets.

 Algorithmic trading is a prime example of this shift, as it improves market 

efficiency and responsiveness through fast and accurate operations. 

 Algorithmic strategies will likely dominate the future of financial markets, as 

they can handle in amounts and speed that humans cannot match.  

While this may not sound like something out of science fiction, it is clear that 

machine learning will play a crucial role in shaping investments and economic 

interactions on a global level. 
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8    Assignment of work 
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