
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

LINEAR LOGISTIC REGRESSION DEMO
DEMONSTRAČNÍ APLIKACE LINEÁRNÍ LOGISTICKÉ REGRESE

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

ADAM BAK

Ing. KAREL BENEŠ

BRNO 2018

Zadání bakalářské práce/20291/2017/xbakad00

Vysoké učení technické v Brně - F a k u l t a informačních technologi í

Ústav počítačové g ra f i ky a multimédií Akademický rok 2 0 1 7 / 2 0 1 8

Zadání bakalářské práce
Řešitel: B a k A d a m

Obo r : Informační t e chno l og i e

Téma: Demons t r a čn í a p l i k a c e l i neárn í l og i s t i cké r e g r e s e

L i n e a r L o g i s t i c R e g r e s s i o n D e m o

Ka t ego r i e : Zpracování řeči a přirozeného j a z y k a

P o kyny :

1. S e z n a m t e se s lineární l og i s t i ckou regresí j a k o m o d e l e m pro pravděpodobnostní
k las i f i kac i

2. Navrhněte demonstrační ap l i kac i , která bude z ob r a z o va t různé a s p e k t y trénování
logistické reg rese

3. I m p l e m e n t u j t e navrženou ap l i kac i
4. Vytvořte plakát shrnující výsledky práce

L i t e ra tu ra :
• C. M. B i shop : Pat te rn Recogn i t i on and Mach i ne Lea rn ing

Pro udělení zápočtu za první s e m e s t r j e požadováno:

• Body 1, 2 a rozpracování bodu 3.

Podrobné závazné pokyny pro vypracování bakalářské práce na l ezne te na ad r e s e
h t t p : / /www. f i t . vu tb r . c z / i n f o / s z z /

Technická zpráva bakalářské práce musí obsahovat formulaci cíle, charakteristiku současného stavu,
teoretická a odborná východiska řešených problémů a specifikaci etap (20 až 30% celkového rozsahu
technické zprávy).

Student odevzdá v jednom výtisku technickou zprávu a v elektronické podobě zdrojový text technické
zprávy, úplnou programovou dokumentaci a zdrojové texty programů. Informace v elektronické podobě budou
uloženy na standardním nepřepisovatelném paměťovém médiu (CD-R, DVD-R, apod.), které bude vloženo do
písemné zprávy tak, aby nemohlo dojít k jeho ztrátě při běžné manipulaci.

Vedoucí: Beneš K a r e l , I n g . , U P G M FIT V U T

D a t u m zadání: 1. l i s topadu 2 0 1 7

D a t u m odevzdání: 16. května 2018
VYSOKÉ UČENÍ TECHNICKÉ V BRNE

Fakulta informačních technologii
Ústav počítačové grafiky a multimédií

612 66$rnu, Božetěchova 2

doc . Dr. I ng . Jan Černocký
vedoucí ústavu

http://www.fit.vutbr.cz/info/szz/

Abstract
This bachelor's thesis deals with the machine learning model logistic regression. The aim
is to closely inspect and analyze the workings of this model for classification in order
to be able to provide a learning tool in the form of demonstrative application. A l l of
the mathematical formulae, logistic sigmoid, cross entropy error function and gradient are
derived and explained in detail. This thesis also provides some insight into the form of the
cross entropy error function in the case of linear logistic regression.

Abstrakt
Táto bakalárska práca sa zaoberá lineárnou logistickou regresiou, modelom pre strojové
učenie. Cieľom tejto práce je podrobne preskúmať a zanalyzovať ako tento klasifikačný
model funguje, aby bolo možné vyvinúť učebnú pomôcku vo forme demonštračnej apliká
cie. Všetky matematické rovnice, logistická sigmoida, chybová funkcia vzájomnej entropie,
metóda najväčšieho spádu sú odvodené a podrobne vysvetlené. Táto práca tiež prináša
náhľad do tvaru grafu chybovej funkcie vzájomnej entropie v prípade lineárnej logistickej
regresie.

Keywords
machine learning, logistic regression, classification, generalized linear models, probabilistic
generative models, logistic sigmoid, cross entropy error function, gradient descent

Kľúčové slová
strojové učenie, logistická regresia, klasifikácia, generalizované lineárne modely, pravde-
podobnostno generatívne modely, logistická sigmoida, chybová funkcia vzájomnej entropie,
metóda najväčšieho spádu

Reference
BÄK, Adam. Linear Logistic Regression Demo. Brno, 2018. Bachelor's thesis. Brno
University of Technology, Faculty of Information Technology. Supervisor Ing. Karel Beneš

Rozšírený abstrakt
Táto bakalárska práca je zameraná na model lineárnej logistickej regresie, ktorý sa v

strojovom učení používa na klasifikáciu. Zámerom tejto práce je podrobne preskúmať a
zdokumentovať fungovanie tohto modelu. S pomocou získaných poznatkov potom navrhnúť
a implementovat demonštračnú aplikáciu, ktorá môže byť použitá ako náučná pomôcka pre
prehĺbenie vedomostí z problematiky klasifikácie a modelov strojového učenia.

V úvodnej časti práce, v kapitole 1 je zdôvodnená motivácia výberu témy práce stro
jového učenia a klasifikácie, popisuje tiež predmet a ciele tejto práce.

V nasledujúcej kapitole 2 je rozpracovaný úvod do problematiky klasifikácie. Sú tu
popísané druhy klasifikačných problémov spolu s konkrétnymi príkladmi pre jednotlivé
klasifikačné problémy. Ďalej sa v nej spomína roľa pravdepodobnosti a neurčitosti v klasi
fikácii. Sú tu zmienené marginálne, združené a podmienené pravdepodobnosti spolu so spô
sobom ako ich vypočítať. Hovorí sa tu o vzťahoch medzi týmito pravdepodobnosťami, a je
tu v krátkosti spomenutá Bayesova veta. Tieto pravdepodobnosti sa v neskorších kapitolách
používajú pri prispôsobovaní modelu. V tejto kapitole sa spomína aj spôsob rozhodovania
pri klasifikácii, rôzne možnosti nad ktorými sa musí človek zamyslieť pri riešení takýchto
problémov. Je tu aj porovnanie prístupu troch rôznych typov modelov strojového učenia.
Sú to modely s diskriminačnou funkciou, pravdepodobnostno generatívne modely a pravde-
podobnostno diskriminatívne modely. Po nich nasledujú lineárne modely pre klasifikáciu
a ich rozhodovacie hranice. Ďalej je tu vysvetlená lineárna regresia a roľa, ktorú hraje v
lineárnych modeloch pre klasifikáciu. Na záver kapitoly sú uvedené aktivačně funkcie a ako
s ich pomocou je možné previesť kvantitatívnu premennú na kvalitatívnu.

V nasledujúcej kapitole 3 sa rozoberá lineárna logistická regresia ako klasifikačný model.
Je tu odvodené a popísané fungovanie tohto modelu spolu s dôvodmi prečo je ho vhodné
používať. Rozoberá sa tu spôsob modelovania posteriórnych pravdepodobností a ich vzťah
so vzorcom pre nepriazeň. Aktivačná funkcia logistická sigmoida, ktorá mapuje celú osu y
z lineárnej kombinácie parametrov na interval (0,1). Kritériá použité pri trénovaní modelu,
čiže chybová funkcia vzájomnej entropie. A nakoniec samostatné trénovanie modelu pomo
cou metódy najväčšieho spádu. Všetky vzorce sú dôkladne sformulované a ich odvodenie je
popísané do detailu. Na konci tejto kapitoly by malo byť jasné fungovanie modelu lineárnej
logistickej regresie a spôsobu akým ju možno použiť na klasifikáciu prostredníctvom pos
teriórnych pravdepodobností, ktoré modeluje.

V kapitole 4 je spísaný návrh a implementácia demonštračnej aplikácie pre lineárnu lo-
gistickú regresiu. Sú tu uvedené jednotlivé dôležité prvky tohto modelu, ktoré je potrebné
sprístupniť užívateľovi. Užívateľ potrebuje byť schopný vytvárať trénovacie súbory dát,
ktoré si bude môcť uložiť a načítať. Na týchto súboroch dát potom bude trénovať klasi
fikačný model. Je potrebné zobraziť detailné informácie o procese trénovania. To znamená,
že po každom kroku algorimu sa obnovia informácie o parametroch modelu, chybovej funkcii
a posteriórnych pravdepodobnostiach pre jednotlivé body z trénovacieho súboru. Ďalej bolo
nutné na grafe ukázať vzťah medzi hodnotou lineárnej kombinácie parametrov a hodnotou
funkcie logistickej sigmoidy. Ako poslednú vec bolo treba znázorniť priebeh chybovej funkcie
vzájomnej entropie. Je to funkcia troch parametrov, čiže je nutné zobraziť 4-rozmerné dáta.
To bolo realizované pomocou 3-rozmerného bodového grafu s farbou pre hodnotu chybovej
funkcie v danom bode.

V predposlednej kapitole 5 sú zdokumentované poznatky, ktoré som zistil o priebehu
chybovej funkcie vzájomnej entropie. Je to konvexná funkcia, ktorá pre veľmi vhodné
riešenia klasifikačného problému má hodnotu blízku nule. Je zaujímavé, ako je tá to funkcia
často symetricky rozčlenená do regiónov v priestore. Je to z dôvodu, že pre ľubovoľnú

hodnotu chybovej funkcie je možné nájsť nekonečne veľa rovníc priamok, ktoré budú na
seba lineárne závisle. Rovnako pre ľubovoľne dobré riešenie klasifikačného problému existuje
takisto zlé riešenie, ktoré ma posteriórne pravdepodobnosti obrátené.

Na záver práce je v kapitole 6 stručne zhrnutý obsah práce, postup pri jej vypracovaní
a dosiahnuté výsledky. Sú tu taktiež navrhnuté spôsoby, ako v práci naďalej pokračovať a
rôzne možnosti pre rozšírenia.

5

Linear Logistic Regression Demo

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Ing. Karel Benes. A l l the relevant information sources, which were used
during preparation of this thesis, are properly cited and included in the list of references.

Adam Bak
May 16, 2018

Acknowledgements
I would like the thank Ing. Karel Benes for his supervision and indispensable help in writing
this thesis. Further, I would like to thank my family for their unending support without
whom this would not have been possible.

Contents

1 Introduction 2

2 Classification 4
2.1 Types of Classification Problems 4
2.2 Probability Theory in Classification 6
2.3 Decision Theory and Optimal Decision-Making 8
2.4 Linear Models for Classification 11

3 Logistic Regression as a Classification Model 13
3.1 Activation Function in Logistic Regression 13
3.2 Cross Entropy Error Function 15
3.3 Training the Model 16

4 Design and Implementation of the Demo Application 17
4.1 Designing the UI for the Demo Application 17

4.2 Implementing the Demo Application 18

5 Findings about the Plot of the Cross Entropy Error Function 21

6 Conclusion 24

Bibliography 25

A Contents of the CD 27

1

Chapter 1

Introduction

Machine learning is a field of computer science that has been around for decades. It has
been gaining a lot of traction in the past couple of years, mainly due to the immense amount
of data generated that requires processing. In 2013 the amount of data on the Internet was
around 4.4 zettabytes. This amount is expected to grow exponentially and is estimated to
reach 44 zettabytes in 2020 [15].

Machine learning is an inter-disciplinary field which brings together computer science
and statistics. Wi th use of machine learning the immense amount of data that is available
to humankind can be processed more efficiently It finds application in text classification,
object recognition, speech recognition, behavioral prediction, etc. Machine learning perme
ates our society so completely that every person most likely uses some aspects of it daily
without even knowing.

This emergent popularity of machine learning has generated a lot of interest, even in
people who are not too familiar with this field. A lot of the study materials available fall
into one of the two categories. They either oversimplify the subject to be understandable
by the average layperson, or assume a preexisting knowledge of the matter at hand. This
represents a barrier to entry, which creates a need for focused literature that covers chosen
topics in their entirety while being very clear, concise and understandable at the same
time. So much so, that a person could use these texts as the entry point for a deeper
understanding of the problems of classification and the machine learning models.

The aims of this thesis are to inspect and analyze the workings of classification in general
and logistic regression model in particular, to be able to provide a concise explanation of all
the mathematics and algorithms behind the model. The goal is to create a complementary
learning tool to go along with the documentation of classification and logistic regression.
This demonstrative application provides a hands-on experience to anyone looking to more
closely understand this particular machine learning model. The demo application is be able
to display the most important parts of the logistic regression model as well as show the
user how different parameters and setting of the model impact the training process and the
outcome of the classification.

The linear logistic regression model for classification was chosen due to its explainability.
It is not too difficult to understand the relationship between the input and the output in
this model. Logistic regression is one of the more popular algorithms used for classification.
The main advantage it offers is the fact that it models the conditional probabilities. This
is in practice a lot more useful than strictly classifying data. Logistic regression models
these conditional probabilities directly, avoiding the computational complexity of models
that infer conditional probabilities from prior class probabilities.

2

The following Chapter 2 discusses the classification in general. It serves as a form of
introduction into given problematic. This Chapter mentions what constitutes the classifi
cation problem, shortly explains the probability theory and the different probabilities that
are talked about in this thesis. It delves into the problems of optimal decision making and
decision theory. And lastly, it deals with the subset of classification models called linear
models.

In Chapter 3 the working of logistic regression are explained in depth. This Chapter
contains the derivations of all the mathematical formulas used in this machine learning
models. The process of training the model, as well as the relationship between the inputs
and the outputs are shown in this Chapter.

Chapter 4 documents the design and implementation of the demonstrative application.
The software and libraries that were used in the process of creating the application are
mentioned there.

Chapter 5 documents the findings about the form of the cross entropy error function
and its plot. Namely the symmetry of the functions plot and the regions of what would be
good solutions for the model where the posterior probabilities are inverted.

The last Chapter 6 contains a summary of the work that was put into this thesis, the
outcomes and some prospects for the future of this work that might warrant further looking
into.

3

Chapter 2

Classification

The following chapter covers the basic theory behind classification. It focuses mainly on
the underlying principles involved in the process, such as uncertainty and forming optimal
decisions.

Classification is a problem of trying to correctly assign an object, or an event, to one
of N discrete classes Cn. A set of preselected features used to decide the outcome of
classification is called an input vector x. It is a set of measured values used to calculate
the value of the response variable y. The response variable y can be subsequently used to
decide on the class assignment of the object represented by x. The outcome of classification
is a label t, which represents one of the classes. Label is a categorical variable from a finite
set oft € {C1,C2,...,Cn}.

The value of the response variable y is determined by an adaptive model. The param
eters of this model are altered throughout the training process to achieve a more optimal
outcome of classification. It is repeatedly adjusted based on a training set of data. The
training set consists of a number of pairs t i) , where Xi is Z?-dimensional vector of discrete
or continuous values and U is its corresponding label.

To give an example of a classification problem, consider trying to distinguish between
two types of fruit, apples and oranges. The input vector could consist of three features:
weight, color and smoothness. If provided with a set of data about 1000 apples and oranges,
it would be possible to train a model that would distinguish between them. This model
might learn to associate heavier, orange colored, bumpy objects with oranges and lighter,
red or green, smooth objects with apples.

2.1 Types of Classification Problems

Classification problems can be differentiated based on two factors, number of classes N and
the number of labels L the algorithm can output.

Binary classification is the case when N = 2 and L = 1. In this case classifier outputs
a single label corresponding to one of the two classes. It is often assumed that the values
for C i , C 2 are 0 and 1 respectively. A n example of a binary classification problem is the
apple-orange classification described above.

Whenever N>2,we are talking about multi-class classification. The number of outputs
for any given data is still L = 1. This is the same problem as before, however now it would
include additional types of fruit like grapefruit, mango etc. A way of solving this type of
problem is training multiple models. There are two approaches to this.

4

First is the one-vs-all approach, where a classifier is constructed for each of the classes.
These classifiers are then fitted against the rest of the classes. The output label is then
decided based on which of the models is the most confident. The second is the one-vs-one
approach, where a classifier is constructed for each pair of classes. There are therefore
multiple classifiers for each class. The outcome is decided by summing the confidence of
these classifiers for each of the classes.

Lastly, when the number of output labels can be L > 1, we are talking about multi-label
classification. In these cases a single input vector can belong to multiple classes. Trying
to decide what types of fruit are displayed in a picture, if multiple different kinds appear
simultaneously, is an example of multi-label classification.

The binary classification is the most convenient for demonstrating how classification
works, therefore it is the primary focus in this thesis. It is also possible to adapt binary
classification to solve multi-class and problems by using multiple binary classifiers.

4« «̂
(a) y G {Yes, No} (b) y G {Apple, Orange, (c) y C {Apple, Orange.

Pear, Lemon} Pear, Lemon}

Figure 2.1: Binary, multi-class and multi-label classification problems, where the following
questions are asked, (a) Does the image contain fruit? (b) Which fruit is in the image? (c)
Which types of fruit are in the image?

The Figure 2.1 illustrates the difference between these three types of classification prob
lems. In each example the same picture is used and the only thing changing are the questions
and the set of possible answers.

The case (a) is a binary classification problem. The outcome is a simple yes or no
depending on whether the picture contains a fruit.

In the case of (6) the image contains two types of fruit in the picture. However, the
output can be only one of the two fruits that are in the picture, as it is a multi-class
classification. The oranges are more numerous and take up more space in the picture,
therefore the output is orange.

Lastly, in (c), the outcome is both apples and oranges. It is a multi-label classification
problem and it is possible to choose more than one answer, if multiple types of fruit are
represented in the image.

5

2.2 Probabili ty Theory in Classification

Whether it be through the act of measuring the features of observed object, or the fact that
the training datasets are not infinite, there is always a uncertainty that arises in machine
learning and classification in particular. A l l of the observed data are most likely natural
occurring events, which are bound to have outliers.

The probability theory is a core concept in machine learning. It is used to quantify
this uncertainty and error. There are two notable views of what probability is, frequentist
interpretation and Bayesian interpretation [9].

The frequentist interpretation views probabilities of events as the frequency of their
occurrence given large enough sample scale. It posits that the probability is equal to
the limit of observed relative frequency of occurrence, as the number of trials approaches
infinity.

The Bayesian interpretation is, that probabilities provide a quantification of uncer
tainty [1]. If we take a coin toss as an example, Bayesian interpretation would view the
probability of 0.5 as the next time a coin is tossed, there is a 50% chance it will land tails
side up. This is fundamentally different from the previous approach where we would expect
that given N trials the frequency of the coin landing tail side up would approach N/2.

With Bayesian interpretation of probability, it is possible to consider uncertain events
that will not occur repeatedly. Wi th polar ice caps melting quite rapidly, it is possible that
they will disappear entirely. This is an event that has never been observed before. However,
with enough information about the rates at which ice melts, it would be possible to predict
probability of their disappearance by year 2020, 2030 etc.

In machine learning, the goal is often to find the likelihood of something, such as the
likelihood of an object belonging to a certain class. The probability theory expresses the
likelihood of something, given our assumptions. It can be used when training the model
and making optimal decisions.

2.2.1 Joint, Marginal and Conditional Probabilities

There are different types of probabilities that are commonly talked about in probability
theory. To explain these probabilities, take two variables X and Y. Variable X can have
values Xi, where i G { 0 , 1 , N } and variable Y can have values yj, where j G { 0 , 1 , M } .
Three of these probabilities that are important for this thesis are:

1. Joint probability of X = x% and Y = yj, is the probability that X has value Xi and
Y has value yj. It can be written as p(X = Xi,Y = yj). It is the probability of both
events Xi and yj happening together. Joint probability has the symmetry property,
meaning that p(X = Xi,Y = yj) = p(Y = yj,X = x i) . There is a way to calculate
it using the product rule, as a product of posterior probability p(Y = yj\X = x i) and
marginal probability p{X = Xi).

p(x) = lim — (2.1)

p(X = Xi,Y = yj) = p(Y = yj\X = Xi)p(X = xi) (2.2)

(i

2. Marginal probability of p(X = Xi), is the probability that X has the value Xi regardless
of the value of Y. It can be obtained by summing all of the joint probabilities where
Xi is one of the pair.

M

p(X = Xi) = Y,P(X = xu Y = ij) (2.3)
j=0

This is often referred to as the sum rule. It is called the marginal probability, because
it is obtained by marginalizing, or summing out, the other variables (in this case
m i] -

3. Conditional probability of p(X = Xi\Y = i/j), is the probability that the X takes
value Xi given that Y = yj. Bayes theorem defines a relationship between conditional
probabilities as follows

(2.4,

This is derived from the symmetry of joint probability and the product rule.

Although in the above definitions the most rigorous notation is used, it is also rather
lengthy. From now on instead of p(X = x{) we use the notation p(X) to denote a distri
bution over the random variable X , or p(xi) to denote the distribution evaluated for the
particular value Xi [1]. Wi th this in mind, the joint probability can be written as p(X, Y),
marginal probability as p(X) and conditional probability as p{X\Y).

t = 0 t = 1 t = 0 t = 1

x = 3 1 0 x = 3 1 0

x = 4 I I x = 4 1 2
3 3

(a) Joint probability p(x,t) (b) Posterior probability p(t|x)

Table 2.1: The difference between probabilities modeled in generative and discriminative
models. Shown on dataset {(3, 0), (3, 0), (4, 0), (4,1), (4,1)} consisting of 5 ordered pairs
(x,t).

To better understand the difference between joint and posterior probabilities, take a look
at the table 2.1. On this small sample size, the posterior probability of p(t = 0\x = 3) = 1.
That is because, in all cases when x = 3, the t = 0 as well.

However, the joint probability of p(t = 0, x = 3) is only equal to | , as x and t only take
these values twice, out of five data points provided in this dataset.

7

2.3 Decision Theory and Optimal Decision-Making

The problem of classification is trying to decide on correct class label to attach to a set
of measured features. Decision theory, when combined with probability theory, allows for
optimal decision making in situations involving uncertainty such as those encountered in
pattern recognition []. Classification problems can, for the most part, be broken down into
two parts - inference and decision.

To make optimal decision it is first necessary to obtain information about current
problem by training a model. Take for example input vector x and a set of labels t £
{to,ti, ...,tn}. A way to approach this problem could be trying to learn the joint proba
bility of p(x,t), based on the available training data, and then make predictions about the
value of t for given x. The first part of this problem is called inference, it is often far the
more difficult of the two. Once that is done, making the optimal decision for given case is
usually very easy.

To illustrate what the decision making process can entail, look at the following problem.
This is an example that is often given in these circumstances, as it shows the different impact
a misclassification can have. Consider a problem, where the goal is to diagnose a patient
that has potentially contracted a deadly disease. The outcome of the classification will be
t £ {0,1}, representing classes Co and C\ respectively. If t = 0 it will mean that this patient
does not have the disease and t = 1 will mean that he has the disease. The goal is to predict
this value of t based on the results of a number of conducted tests and correctly assess the
patients state. The results of these tests will be the input vector x. The machine learning
algorithm that is used will output the conditional probability of p(Co\x) and p(Ci\x), where
p(C0\x) = 1 - p(Ci\x).

The outcome of the classification is decided based on the higher of the two values.
Something to consider in this situation is what would happen if model is uncertain about
the class membership. What if the probability that x belongs to class Co is 90% . This
would still leave a 1 in 10 chance that the patient has the deadly disease. In cases like this
it would be best to decide what is an acceptable margin of error. Then depending on the
result, perhaps more closely inspect the situation at hand. For example run more tests or
have a human expert handle the situation. This is also known as the reject option.

- 6 - 4 - 2 0 2 4 6

Figure 2.2: The reject option, in the highlighted region the decisions made by the algorithm
should be inspected again due to unacceptably high possibility of error.

8

Another aspect of this problem is that of false positives. How do we deal with the
marginal cases, when the result was misclassified despite our best efforts. This is a valid
question because of the different impact our decision has depending on what happened.
There are four possible outcomes in our problem t = 1 and the person is sick, t = 1 and
the person is healthy, t = 0 and the person is healthy and t = 0 and the person is sick. The
two cases when our model is in error are t = 1 and the person is healthy and t = 0 and the
person is sick. Although the former is a misclassification, its impact is relatively minor as
the person does not in fact have the disease. The latter, however, is a grave error on the
part of our model and this might result in death of the patient. It would be possible to
solve this issue during the training of the model, by penalizing it more heavily whenever
such an error occurs.

t = 0 t = 1
Healthy 0 1
Sick 1000 0

Table 2.2: Penalty incurred in the learning process.

The penalty incurred could look something like the example provided in Table 2.2. This
way the model eventually learns to err on the side of caution in cases, where in the past it
has misclassified sick patients as healthy.

2.3.1 Forming Decision

There are three distinct ways to approach solving classification problems.

1. First of them is to use what is called a discriminant function f(x). This function
maps every input vector x in the input space to one of N classes Cn. This approach
combines the inference and decision into one. Solving the problem by finding a linear
combination of features for which the misclassification is minimal.

2. Second approach is the one used in probabilistic generative models. Here the aim is
to solve the inference problem of determining the class-conditional densities p(x\Cn)
for each class Cn individually [1]. Also separately infer the prior class probabilities
p(Cn). Then use Bayes' theorem in the form

= (2 .5)
p(x)

As stated in Subsection 2.2.1, we can find p(x) by first calculating the joint probability
p(Cn,x) = p(x\Cn)p(Cn) and next marginalizing to get marginal probability

N

p(x) = Y/P(Cn,x). (2.6)
n=0

However, it is also possible to leave out p(x), as it only acts as a sort of normalizer.
It ensures that the resulting posterior probability is from a range of 0 < p{Cn\x) < 1.

Wi th that we have found the posterior probability p(Cn\x), which can be used to
assign new input vector x into one of the classes Cn.

9

Equally valid approach is to model the joint probability p(Cn,x) directly and again
by marginalizing obtain marginal probability p(x). Thus finding the posterior prob
ability.

3. The last approach is that of probabilistic discriminative models. These models try to
model the posterior probability of p(Cn\x) directly and again using this probability
to determine assignment to classes Cn for given input vectors x.

Using discriminant functions is the simplest and most straightforward of the three op
tions. However, combining both of the inference and decision making into one we lose the
ability to determine posterior probabilities p(Cn\x), which are useful for things other than
class assignment. For example we would lose the ability to apply the reject option from
Section 2.3.

The most complex of these approaches is the technique used in generative models. It
may require more training data and computational time in order to accurately model the
class-conditional likelihoods p{x\Cn). A n advantage these models have is that they have
access to the marginal probabilities p(x) for the input data. These can be used to determine
when an input vector is an outlier for which the model can make less accurate predictions.

However, sometimes determining the class-conditional probabilities and joint probabil
ities might prove unnecessarily difficult when all we want is to classify data. For which, all
we need are the posterior probabilities p{Cn\x) modeled directly by discriminative models.

2.3.2 Minimizing the Rate of Misclassification

When trying to optimize how well the model is doing in classifying new data, it is first
necessary to be able to measure its performance. This is done by trying to optimize an
objective function, which is integral to machine learning. This is a general term used for a
function that is being optimized, it might also be called utility function. It is the function,
which is being either maximized or minimized, to achieve best results and optimal decision
making when assigning labels.

Formally speaking, there are two approaches to improving the performance of a model.
It is possible to either maximize the likelihood of classifying correctly or minimize the rate
of misclassification. Both of these approaches give equivalent results, but in the case of most
algorithms it is customary to minimize misclassification. A function that measures the cost
associated with an action or decision is called a cost function. In the case of classification
problems it measures the expected loss, or rate of misclassification, for given model on the
training data. It can be thought of as the overall performance of a model given available
data.

There is not a clear why most of the machine learning models try to minimize a cost
function instead of maximizing likelihood. One of the possible explanations is that, in
numerical analysis, the vast majority of scientific papers focus on convex optimization
problems and minority on concave optimization. And since cost functions are convex for
simple linear models, the machine learning field has followed suit.

That does not mean that all of the algorithms follow this convention. For example
maximum likelihood estimate (MLE) and maximum a posteriori estimation (MAP) both
maximize their objective function.

10

2.4 Linear Models for Classification

To minimize misclassification rate mentioned in 2.3.2, it is first necessary to be able to
categorize the inputs. Linear models for classification use a decision boundary to decide on
the outcome of classification. For linear models, the decision boundary is a linear function
of the input vector x [1].

These models models use a linear combination of inputs, that is then transformed using
a non-linear function. This linear combination is used in linear regression, which outputs a
continuous variable. For the purposes of classification, it is necessary to take this variable
and get a discrete output. In the case of linear models, it is done using the non-linear
activation function.

2.4.1 Decision Boundary

In order to place an input vector x into one of the classes Cn, there needs to be a distinct
boundary in the feature vector space that x belongs to. This is called decision boundary, it
is the divide that separates regions in vector space belonging to individual classes. In terms
of binary classification decision boundary is the dividing line that separates plane into two
regions one for each class Co, C\. Decision boundaries in the case of linear classification
models are defined by hyperplanes within the Z?-dimensional input space.

-5

(a) Hyperplane in 2D feature space. (b) Hyperplane in 3D feature space.

Figure 2.3: Examples of decision boundaries for 2D and 3D feature space.

Hyperplane is a subspace of the Z?-dimensional, therefore it is always a (D — 1)-
dimensional space. In the case of binary classification of 2D data, it would be a single
line within the 2-dimensional plane.

2.4.2 Linear Regression and Linear Combination of Inputs

Linear model for regression, often referred to simply as linear regression, is commonly used
in machine learning and statistics. This is not a model for classification, but the principle of
linear combination of inputs is used in classification models. Linear regression establishes
a relationship between input variables and the response variable y. As the name suggests,
in its base form it models linear relationships between the variables.

Take for example an input vector x consisting of iV input variables.

11

x = (x1,x2,x3, ...,xn) (2.7)

Each of these input variables is associated with a weight variable that is be altered
throughout the learning process. These weights basically dictate how much of an impact
does given input variable xn have on the value of response variable y.

w = (w1,w2,w3,...,wn) (2.8)

A simple way of calculating response variable is by linear combinations of these two
vectors, with the addition of bias variable, that allows to take fixed offsets into account.

y(x, w) = Wo + WlXl + W2X2 + ... + wnxn (2.9)

This, as stated previously, models a linear relationship. Linear regression can be made
to model non-linear relationships by replacing x with some non-linear function of the inputs,
4>{x) [9]. This is also known as the basis function expansion, in a simple form it could be a
polynomial of the input variables 4>(x) = [xi,X22, . . . ,£„"] . Giving the following

N

y(x, w) = w0 + ^2 wn4>{x) = wT4>x + WQ. (2-10)
n = l

What is often done to simplify the notation, as well as for the sake of convenience when
doing calculations, is to expand the vector of variables adding 1 to it, x = (1, x \ , x n) and
adding WQ to the vector of weights w = (u>o, w\, ...,wn). Leaving us with

y(x,w) = wT4>x- (2-11)

Changing the basis function doesn't change the fact that this is still linear regression,
the model remains linear in its parameters w.

The output of this model is a continuous value of y based on the input vector x.

2.4.3 Activation Function

Also called link function in statistics, is a function /(•) acting on the linear combination of
inputs. This is generalization of the linear regression model and it is for this reason that
these models are called generalized linear models.

Using a non-linear activation function with linear models doesn't make these models
non-linear. The decision boundaries correspond to f(wTx) = constant, so that wTx =
constant and hence the decision boundaries are linear functions of x, even if the function
/(•) is non-linear [1].

A n example of a simple activation function can be a step function, that outputs 1 if the
response variable is greater than zero and outputs 0 otherwise.

f 1 wTx > 0 ,
y(s) = i n z " (2 - 1 2)

0 else

12

Chapter 3

Logistic Regression as a
Classification Model

Logistic regression is a machine learning model used to solve problems of classification. The
name suggests, that it might belong to the category of models used for regression. It is
called that, because it is used to estimate the probability of class membership. However,
in classification, it is coupled with a decision rule that outputs a categorical variable based
on the estimated probability.

Logistic regression models the posterior probability of p{Cn\x) directly. Therefore it
is a probabilistic discriminative model, these were mentioned in Subsection 2.3.1. The
advantage these models have over probabilistic generative models is skipping the interme
diate step of modeling class conditional densities p(x\Cn). Leaving aside computational
issues and matters such as handling missing data, the prevailing consensus seems to be
that discriminative classifiers are almost always to be preferred to generative ones [11].

Another thing to note is that in logistic regression, the number of adjustable parameters
N is linearly dependent on the number of features. This makes it advantageous to use in
classification problems with large number of features.

3.1 Activation Function in Logistic Regression

The approach to solving the problem of classification in logistic regression is to cast the
problem in the form of generalized linear regression model. Logistic regression assumes that
the log-odds can be expressed as a linear function of the input vector x. Odds are defined
as the probability of an event occurring over the probability of the event not occurring.
Log-odds are simply the natural logarithm of the odds ratio.

The activation function used in logistic regression is derived from this relationship in the
following way. Firstly, take the natural exponential function on both sides of the equation.

->T ->
y = w x

log
1 -p(Cn\x) = y

1 - p(Cn\x)

13

Then adding 1 on both sides and changing the subject from ey to 1 — p{Cn\x).

P(Cn\x) + 1 = ey + 1

1 -p{Cn\x)

1 -p(Cn\x) 6 + 1 (•

1 — p(Cn\x) =
t>\ n\ 1 ey + l

Subsequently subtracting 1 and multiplying by —1 on both sides.

-p(Cn\x) = - 1

p{Cn\x) = 1 - (3.4)

p(Cn\x]
ey + i

And lastly, dividing the numerator and denominator of the fraction by ey to get the
form of logistic sigmoid cr{y). Logistic sigmoid plots the entire y-axis of the linear function
to an interval of [0,1]. This type of function is sometimes also called a 'squashing function'
because it maps the whole real axis into a finite intervalfl].

p(Cn\x) ev+l

ey (3.5)

p(Cn\x) = o(y)
1 + e~y

Figure 3.1: Activation function of logistic regression - logistic sigmoid.

Logistic sigmoid has the symmetric property cr(—a) = 1 — a (a), as can be seen in 3.1.
Because of this symmetry the probability of p(C\\x) = 1 — P(CQ\X).

14

3.2 Cross Entropy Error Function

In logistic regression the cross entropy error function is used to assert performance of the
model. This function is the negative logarithm of the likelihood function. The reasons
behind minimizing error, as opposed to maximizing likelihood are outlined in Subsection
2.3.2. To get the likelihood function it is first necessary to take the derivative of the logistic
sigmoid function.

a(a)
l + ea

= ea(l + ea)-1

a'(a) = e a (l + e 0) " 1 + e a (- l) (l + e a) " V

_ e a (l + e a) _ e2a

~ (i + e «) 2 " (l + e °) 2 (3-6)

(1 + eaY
ea 1

1 + ea 1 + ea

= a (a) (l - a (a))

As can be seen in 3.6, the derivative of this function can be expressed in terms of
logistic sigmoid itself. The likelihood function expresses how probable the observed dataset
is for different settings of the parameter vector w [1]. The likelihood function is therefore
the product of the predicted probabilities of the N individual observations in the observed
dataset. In the case of binary classification, for a dataset xn,tn, where tn € 0,1 with
n = 1 , N , the likelihood function can then be written as follows [1].

N

p(t\w) = l\y1

n"(l-yn)l-t" (3.7)
n=l

Here tn is the correct class assignment and yn is the value of response variable from
logistic sigmoid for given data point n. In other words, yn is the posterior probability
p(Ci\x) = a(wTx). Note that the model will always model only one of the probabilities
p(Co\x) and p(C\\x). To get the cross entropy function, it is necessary to take the negative
logarithm of this likelihood function.

N

E(w) = - Y,{tn log(y„) + (1 - tn) log(l - yn)} (3.8)
n=l

The cross entropy function is convenient to use as an error function for two reasons.
Firstly, the value of this function is always non-negative E{w) > 0. This is because

both of the logarithms inside the sum output a negative number,as the value of yn can only
be from the range of 0 to 1, and there is a negative sign before the sum.

Secondly, the function tends towards zero, making this a convex optimization problem.
The reason for this is that in cases where to model is performing well the value of cross
entropy is close to 0. Consider the case, when the correct label tn = 0 and the response
variable is yn ~ 0. The first factor in the sum is 0 because of the class label tn = 0 and the
second factor is log(l — yn) ~ log(l) ~ 0. Same thing applies when the second factor is 0
and yn « 1.

15

3.3 Training the Mode l

The cross entropy error function is used when training the model to achieve optimal perfor
mance. The goal is to find the minimum of the error function. The analytical solution to
this problem is impossible, therefore it is necessary to use numeric methods. The negative
gradient —VE(w) is used to find the direction of the steepest descent. To get the gradient
of the cross entropy function 3.8, take its partial derivative with respect to the weights.

d „ , _ 1 - t„, s d n
Vr, dw f - f yn 1 - yn dw

. tn, 1 tn. * , _ ^ 9

n=l
N

^ (— - - ")yn(l - (i„) — (r .(•„
^ Vn -t Vn n=l

N

Vn 1 - Vn OW

(3.9)

— ^ ^ n (l 2/n) (1 tn)yn%n
n=l

N

n=l

Where tn is the correct class label, yn is the value of logistic sigmoid a(wTx) for current
weights w and input vector x. It was necessary to apply chain rule twice and use the
derivative of logistic sigmoid from 3.6 to get this partial derivative. The gradient is then
used when adjusting the vector of weights w to take a step of size rj in the direction of
steepest descent.

N

VE(w) = ^2(yn-tn)xn

n=i (3.1U)

This technique is called gradient descent. It is an iterative algorithm, where the weights
are adjusted repeatedly until the error function converges, or its value falls below a certain
threshold. However, for a linearly separable dataset there is a multitude of equally valid
solutions, because any of the hyperplanes separating both classes entirely will give rise to
the same posterior probabilities [1]. The one that the algorithm converges on is entirely
dependent on the initial parameters w and the step size r\. The algorithm does not choose
one equally good solution over the other.

16

Chapter 4

Design and Implementation of the
Demo Application

This chapter documents the design and the implementation of the demo application. The
aim of this application is to provide a complementary learning tool to the literature docu
menting this machine learning model. This application should be able to convey intricacies
of classification in general and logistic regression in particular to the end user. The demo
application along with the documentation should help visualize and conceptualize the work
ings of the algorithm, even to the users that may not be familiar with classification and
machine learning.

Theoretical knowledge from the previous chapters is used to ascertain which important
parts of the learning process need to be displayed and controlled by the user. Namely, the
training dataset, decision boundary and model training, cross entropy error function plot
and the gradient descent. The way these parts are implemented is talked about in the
following sections.

4.1 Designing the U I for the Demo Applicat ion

The goal in designing the demonstrative application is to provide an interactive environ
ment, where te end user can get familiar with the algorithms and explore the impact certain
options have on the outcome of the classification. The relevant parts were separated into
three groups.

Firstly, it is important to allow the user to view and input and edit data in order to
generate a training dataset. This also creates the necessity for saving and loading of data
so that the user may return to the previously created training datasets, or perhaps view a
preset one. This data is generated and displayed on a separate chart along with the decision
boundary of the model. It is necessary to allow the user to interact with the model and set
its parameters to see the impact it has on the decision boundary. Similarly, it is important
to allow the user to modify variables involved in the training process and allow him to step
through the algorithm one step at a time.

The next needed functionality was displaying the cross entropy error function plot from
Equation 3.8. This needed to be done in an understandable manner, as it is a function
of 3 parameters. It was necessary to allow the user to interact with the plot, rotate it
and change its scope. In addition to this, the path the gradient descent algorithm takes

17

should be displayed on the same chart to show how the weights were altered throughout
the learning process.

And finally, the last aspect of the logistic regression that I decided to show was how
each data point is classified by the logistic sigmoid. Displaying the posterior probability
p{C\\x) for each individual data point along with all the relevant variables and their values.

In the first iteration of the application I tried to display all of the relevant information
on a single large dashboard. However, this proved to be far too unwieldy. The charts, tables
and the user toolkit were far too cluttered. It was difficult to distinguish some things on
smaller monitors and resolutions.

T

Weight 2

T

Weight 1

•
Weight 0

Current
W2

Current Current
WO

Previous

W2

Previous

W1

Previous

WO

Figure 4.1: Initial mockup of the UI and subsequent implementation of that design.

The solution to this problem was to separate the application into three tabs 4.1, each
containing a subset of all the necessary parts. This way the user can move them around
and choose the way he wants to view them.

4.2 Implementing the Demo Applicat ion

The programming language of my choice was JavaFX [13]. The reasons behind using this
language were mainly the portability and the appealing user interface design options. It
allows for generation of separate F X M L files which contain the UI elements and are separate
from the logic of the application. There is also a very helpful open source tool for viewing
and editing these files []. The application can be further styled by use of CSS files, which
allow for creation of truly good looking interface.

The demo application is mainly focused on smaller datasets, which can be used to
illustrate aspects of the model. Therefore the performance of the application should not
come into question, as the amount of data processed will be relatively small.

4.2.1 Draggable and Detachable Tabs

The main part of the UI is a TabPane consisting of three tabs, each containing different
relevant information about the machine learning model. These tabs are implemented using
the open source FXTabs library [2], which I modified in order to to better suit the needs
of this application.

This library allows for creation of new windows by dragging the tabs outside the scope
of the TabPane by creating a new Stage. A separate Scene is created for the tabs, F X M L

18

file is loaded and set as the content for each of these tabs. This means that all of the
information and the state of the UI persist through the movement and creation of the new
windows. This functionality is similar to how the Internet browsers function and allows the
user to customize their viewing experience.

The changes made to this library are changing the style of the windows that it created,
allowing the use of components from the JFoenix library [] and additional functionalities
in movements of the tabs. The tabs can be navigated through using the arrow keys and
the newly created tabs are returned to the main TabPane if they are closed.

4.2.2 Displaying the DataSet and the Model

The first tab in the TabPane is the chart that displays the dataset, decision boundary and
the posteriori. This display is done on a modified LineChart from the JavaFX chart library.
The CSS styling of the data points disables connection of these separate points creating a
part ScatterPlot part LineChart.

Additional logic is added for drawing of straight lines to be able to display decision
boundaries and posterior probabilities. The lines are drawn by finding their intersection
points with the chart, if the line is beyond the scope of the chart none are found and the
line is not drawn. Several lines are drawn at certain thresholds of the posterior probability.
Nine in total displaying the range of p{C\\x) from 0 to 1 in 0.125 increments creating a
total of 9 lines. The way the linear functions for these posteriori are found is first taking
the decision boundary, line for which p{C\\x) = 0.5, which is known from training the
model. Then getting the slope k of a perpendicular line to the decision boundary by taking
the negative reciprocal of the decision boundary slope. Subsequently, solving the logistic
sigmoid in reverse for each value of p{C\\x) to get the slope intersect form of their function.

4.2.3 Training of the Model

The classifier is implemented using the mathematical formulae from Chapter 3. The UI
allows the user to set the weights wO, wl,w2 for the classifier. It also allows for setting of
the learning rate and the number of iterations the algorithm should calculate. The user can
step through one step at a time. The history of steps taken is displayed in a TreeTableView
alongside the chart along with the respective cost function values for given parameters. The
user can choose to return to a previous state of the classifier by choosing a row from this
TreeTableView.

4.2.4 Plotting of the Cost Function

The plotting of the cost function proved to be a more difficult problem than was previously
anticipated. The cross entropy error function that needs to be plotted is a function of 3
parameters /(u>o, u>i, tt>2). The problem is that to visualize this AD data there needs to be a
cost function value associated with every point in the 3D vector space of parameters. This
is because each vector represents a decision line on the chart from 4.2.2.

There are multiple techniques available to display this sort of data. Most prominent of
them are scalar field, scatter plot matrix, slice contour plot and a 3D scatter plot with 4D
data. I settled upon the 3D scatter plot with the value of cost function being represented
by color. This approach proved to be a lot more clear and understandable than scalar
fields or scatter plot matrices. At the same time it provided information about the entire

19

interval of the cost function that is being displayed, unlike the contour plot which displays
3 perpendicular planes that the user moves around.

It was necessary to threshold the values of the posterior probabilities output by the
logistic sigmoid. Because of the floating point precision in some cases due to rounding the
algorithm was calculating the logarithm of 0 or approximately 0, which is — oo. This made
the color scaling on the cost function plot incredibly unbalanced. After some deliberation
and testing I settled on values 1.10 - 1 5 and 1 — 1.10 - 1 5 , after which there was no perceptible
change in the plot.

This scatter plot was implemented using the JZY3D library for scientific plotting [7].
The controls implemented allow the user to choose which interval of the cost function plot
he wishes to see. The library covers all of the rotations and translations of the plot to allow
the user to view it from all angles. This library also allows for continuous rotation of the
scatter plot by double-clicking on the plot. This comes in very useful when visualizing 3D
data.

4.2.5 Plotting the Logistic Sigmoid

The last tab displays the plot of the logistic sigmoid. The function is plotted using the
JavaFX charts and the data points on the chart are displayed in the same fashion as in the
Subsection 4.2.2. It is here to show the user how the each data point is classified by the
model. This allow the user to view all of the misclassified data points and the posterior
probability p{C\\x) they are associated with.

Below the plot of the logistic sigmoid function are two tables created using the JFoenix
library. In tables are all of the data points, they are separated by class. Each table contains
the label of a data point, its coordinates, value of the linear combination of parameters and
value of the logistic sigmoid function for that data point. Undesirable data points can be
removed from the dataset by bringing up context menu and choosing Delete option.

20

Chapter 5

Findings about the Plot of the
Cross Entropy Error Function

During the development of the application I came to the realization that the plot of the cross
entropy error function is not what would be usually expected. There is little documentation
available about the visualization of this function. In Section 3.2 is the proof of convexity
of the cross entropy function. If you consider how a convex function looks in 2D and 3D
vector space you can begin to make assumptions about the plot of the cost function of
linear logistic regression.

Figure 5.1: Plots of simple convex functions in 2D and 3D vector space.

Considering how a simple convex functions of 1 and 2 parameters look 5.1, the assump
tions I made were that the cost function would take the form of a concentric spheres, or
spheroids. These spheroids would be centered around the minimum of the cross entropy
function and the gradient descent algorithm would slowly converge towards this center.

What was not taken into consideration when making these assumptions is that there
are infinitely many equally valid solutions for a given classification problem. You can have
multiple weights in a(wo, w\, W2) that represent the same linear equation W2y+w\x+WQ = 0
due the linear dependence of their equations. This creates a region in the 3D vector space
where the value of the cross entropy function is the same.

21

(a) Horizontal slice of the function with wO
from interval (5,5)

(c) Rest of the functions plot

Figure 5.2: Plots of the cross entropy error function of the linear logistic regression model
for a linearly separable dataset.

The two figures in 5.2 are taken from the demonstrative application. These cost func
tions were calculated for a simple linearly separable dataset (a) from 5.3. In the figures the
valid or good solutions for which the cost function is low are depicted in deep blue, likewise
incredibly bad solutions are depicted in deep red. A l l the other hues of color represent
values somewhere in between.

(a) Simple linearly separable dataset (b) Dataset separable by a polynomial

Figure 5.3: Examples of plots of cross entropy error functions are provided for these two
datasets.

This cross entropy function has a very symmetrical shape. This is because for every
good solution that separates both classes almost entirely and classifies them mostly cor
rectly, there exists the same decision boundary with inverted posterior probabilities that
misclassifies all of these data points. Mostly all of the linearly separable datasets have a
cost function that looks like two conical shapes opposed one another, with one region of
the function with low cost function values and one with equally high cost function values.

Another interesting cost function is of a dataset that could be potentially separable by
a polynomial logistic regression. The linear logistic regression cannot reasonably separate
these two classes in the dataset (6) from 5.3. Resulting into a number of solutions that are

22

mediocre. This creates a sort of cross section of regions with similar values of the cross
entropy function centered around the point (0,0,0). This center of relatively low error
given the circumstances contains models, which predict probability of p(C\\x) « 0.5 for
most of the data points. This pattern in particular is much easier to observe in person
when using the demo application by using the automatic rotation functionality that the
scatter plot provides. The deep red regions with large cost function values can be seen in
higher contrast.

M 0 ^4000 |-; 2000 p.000 2.0001 IJ 4.000|

]_

•TT\

-•4.000

i

(a) Horizontal slice of the function with wO
from the interval (-5,5)

(c) Central section of the plot

Figure 5.4: Plots of the cross entropy error function of the linear logistic regression model
for a dataset that is not linearly separable.

These two datasets are the only ones I mention here. For those that are interested in
additional datasets and their corresponding cross entropy functions, there are some stored
on the C D provided in the appendix A that can be viewed in the demonstrative application.

23

Chapter 6

Conclusion

The goal of this thesis was to study the inner workings of the machine learning model linear
logistic regression. Subsequently, use the obtained information to create a demonstrative
application that would showcase aspects of this model. As well as, document the way this
model functions and all the mathematics involved in a clear and understandable manner.

The first step was the study of pattern recognition and classification in general, in
order to gain an understanding of given problematic. Next, it was necessary to understand
the categories of generalized linear models and probabilistic discriminative models and
how they differ from other models used for classification. Followed by the derivation and
documentation of the relevant mathematical formulae necessary for logistic regression.

Wi th this understanding of the model, a demonstrative application was designed and
implemented in a way that illustrates how the the dataset and functions used relate to each
other. This application allows the user to manipulate parameters of the machine learning
model and inspect the effects these changes have on the outcome of the classification.

Going forward, if I were to expand on this work I would start from the ground up
and use the already developed demo as a part of a larger application. In my personal
opinion, in order to gain a complete understanding of this model, it is necessary to start
at the beginning. The best thing to do would be to create an application which would
consist of several smaller demos each covering their subject in depth. This application
would start with the linear regression model. From there, move on to a simple model that
uses a discriminant function, like the perceptron. Then cover the linear logistic regression
and finish with the polynomial and multinomial logistic regression. This way it would be
possible to show how these models build on top of one another, the relationship between
these models and why it all works this way.

Another addition that could be made is an application that would generate datasets
which could be used in the demonstrative application. There would be a choice from a
number of distributions to generate different types of data. This application could also
analyze the data that were created in the demonstrative application which user found had
interesting effects on the machine learning model.

The findings about the plot of the cross entropy error function are also worth analyzing
further. The interesting forms that the function takes depending on the training dataset
are not what was expected. This could warrant a further study of this model and its error
function.

24

Bibliography

[1] Bishop, C M . : Pattern recongition and machine learning, springer. 2007. ISBN
978-0387-31073-2.

[2] FXTabs: Draggable and detachable tabs in JavaFX 2.
h t tps : / /berryl20.blogspot .cz /2014/01/draggable-and-detachable- tabs- in-
javafx.html.

[3] Gantz, J.; Reinsel, D.: The digital universe in 2020: Big data, bigger digital shadows,
and biggest growth in the far east. IDC iView: IDC Analyze the future, vol. 2007, no.
2012. 2012: pp. 1-16.

[4] Icons8: Icons Repository . h t tps : / / icons8 .com/ .

[5] Jaynes, E . T.: Probability theory: the logic of science. Cambridge university press.
2003.

[6] JFoenix: JavaFx Material Design Library . ht tp://www . j foenix.com/.

[7] Jzy3d: Scientific 3-D plotting software. Software and documentation .
h t tp : //www. jzy3d.org/index, php.

[8] Mitchell, T. M . : Machine Learning. McGraw Hi l l . 1997.

[9] Murphy, K . P.: Machine learning: a probabilistic perspective. M I T press. 2012.

[10] Ng, A . : CS229 Lecture notes. CS229 Lecture notes. 2000.

[11] Ng, A . Y . ; Jordan, M . I.: On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In Advances in neural information processing
systems. 2002.

[12] Nielsen, M . A . : Neural networks and deep learning. Determination Press. 2015.

[13] Oracle: Java Platform, Standard Edition (Java SE) 8.
h t tps : / /docs , oracle , com/ javase/8/ javase-c l ient technologies .h tm.

[14] Scene Builder: A Visual Layout Tool for JavaFX Applications,
h t tp : / /gluonhq.com/products/scene-builder/ .

[15] Turner, V . ; Gantz, J . F.; Reinsel, D.; et al.: The digital universe of opportunities:
Rich data and the increasing value of the internet of things. IDC Analyze the Future.
2014: page 5.

25

http://blogspot.cz/2014/01/draggable-and-detachable-tabs-in-
https://icons8.com/
http://www.jfoenix.com/
http://jzy3d.org/

[16] Weaver, J.; Gao, W.; Chin, S.; et al.: Pro JavaFX 8: A Definitive Guide to Building
Desktop, Mobile, and Embedded Java Clients. Apress. 2014.

[171 Zumel, N . : The Simpler Derivation of Logistic Regression. 2011.
Retrieved from: h t tps : //web.archive.org/web/20170427082928/http: //wuw.uin-
vec tor .com/b log /2011/09 / the -s impler -der iva t ion-of - log is t i c - regress ion /

2(5

http://vector.com/blog/2011/09/the-simpler-derivation-of-logistic-regression/

Append i x A

Contents of the C D

• DTgX source code for this document

• P D F of this document

• Î TeX source code for the poster

• P D F of the poster

• Source code of the application

• Generated documentation for the application source code

• Executable file of the application

• Pre-generated data sets

27

