BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENI TECHNICKE V BRNE

NN

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA

FAKULTA INFORMACNICH TECHNOLOGII
f"l USTAV POCITACOVE GRAFIKY A MULTIMEDII

ANALYSIS AND NOTIFICATION OF NEW RESULTCLOUD
SUBMISSIONS

ANALYZA A OZNAMENI O NOVYCH RESULTCLOUD VYSLEDCICH

BACHELOR’S THESIS
BAKALARSKA PRACE

AUTHOR BOHDAN IAKYMETS
AUTOR PRACE

SUPERVISOR Mgr. Bc. HANA PLUHACKOVA
VEDOUCI PRACE

BRNO 2016

Abstract

Software tests results have mostly the same values, therefore they do not contain any
important or interesting information. Developers must spend a lot of time for looking for
something interesting in tests results, thus developer require tool for analysis results and
in case finding interesting information notify user about it. This tool can save a lot of
time. Assignment of this bachelor work is design and implement mechanism for analyzing
and notifing user about interesting changes in test results. Part of the work is to learn
ResultCloud and based on acquired knowledge to extend ResultCloud.

Abstrakt

Vétsinou vysledky testi aplikace jsou stejné a proto nenesou zadnou uzite¢nou informaci.
Vyvojari museji neustdle probirat velké mnozstvi zbyte¢nych informaci, aby nasli néco za-
jimavého. Tedy vyvojar potiebuje nastroj pro analyzu testovacich vysledku a v pripadé
nalezeni zajimavé informace to ozndmi uzivateli. Tento nastroj usetii spoustu ¢asu. Zadani
této bakalarské prace je navrhnout a implementovat, mechanismus pro analyzu a ozna-
meni uzivateli o zajimavych zménach v vysledcich sady testi. Mechanismy museji byt
snadno rozsititelné a dobre integrovatelné v ResultCloud. Soucasti této préace je prostu-
dovani ResultCloud a na zékladé ziskanych znalosti rozsiteni ResultCloud o analyzator a
oznamovatele. Nastroj je implementovan pomoci AngularJS a PHP.

Keywords

ResultCloud, testing, analysis, notification, notifier, test suite, analyzer

Klicova slova

ResultCloud, testovani, analyza, oznameni, notifikace, testovaci sada, analyzator

Reference

TAKYMETS, Bohdan. Analysis and Notification of New ResultCloud Submissions. Brno,
2016. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Pluhackova Hana.

Analysis and Notification of New ResultCloud Sub-
missions

Declaration

Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Mgr. Bc. Hana Pluhackova and consultant Ing. Petr Miiller. All the
relevant information sources, which were used during preparation of this thesis, are properly
cited and included in the list of references.

Bohdan Takymets
May 18, 2016

Acknowledgements

Thank my supervisor Mgr. Bc. Hana Pluhackova and consultant Ing. Petr Miiller for
helping me with my bachelor’s thesis, also I want to give thanks to my friends for supports
me in a difficult moments.

(© Bohdan Iakymets, 2016.

This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author’s explicit consent is illegal, except for cases defined by law.

Contents

Introduction

Introduction in ResultCloud

2.1 Testing L
2.1.1 SystemTap oL
2.2 What is ResultCloud
2.2.1 Imternal structure
2.2.2 Components
2.2.3 Utilities oo e
2.2.4 ResultCloud presentation
2.2.5 Data store organization oL
2.3 What is Submission L

Analyzer Mechanism Design

3.1 Problem
3.1.1 Kindsof Analysis
3.2 Architecture
3.3 AnalyzerController
3.4 Analyzer entity L
3.5 AnalyzerController structure,
3.6 Analyzers
3.6.1 Analyzer designo
3.6.2 Analyzer vizualisation L.

Analyzer Mechanism Implementation

4.1 Structure
4.2 Entity . . . e
4.3 Analyzing
4.3.1 AnalyzeController
4.3.2 ChangesChecker o
4.3.3 UntestedAnalyzer
4.4 Vizualization e

Notification design

5.1 Problem e e e e e

5.1.1 Notifier types L
5.2 Architecture
5.3 Notification Controller

w

—_
= O © 00 00 O Uk

—

12
12
13
13
13
14
14
14
14

16
16
16
16
16
17
18
18

5.4 Notification settings
5.5 Notifier
5.5.1 Notifiers architecture

6 Implementation of notification mechanism

6.1 Structure e e e e e e e
6.2 Settings e
6.3 Notification e e
6.3.1 NotificationController
6.3.2 Notifler e
6.3.3 Notifyl e
6.3.4 Twitter e e e
6.3.5 RSS . . s
7 Evaluation
7.1 Analyzers
7.2 Notifications e e e e

8 Conclusion
Bibliography

A CD Content

22
22
22
23
23
23
24
24
24

26
26
26

27

28

29

Chapter 1

Introduction

The main goal of the project is to design and develop a mechanism for analyzing and noti-
fying users about interesting changes in new uploaded submissions. Submission is a repre-
sentation of results of tests series in ResultCloud. ResultCloud is a system for management
of long-term testing results. The mechanism must support a few types of notifications (for
example notifications by email or by twitter) and has possibility to add more. The analysis
mechanism must also have interface for presentation results. An interested people would
be able to get notifications about interesting results of the analysis.

Analyzing of submissions is very important because a lot of results are useless, in most
cases they are the same data, so it doesn’t give any important information. Analyzing
helps to save developer’s time, it finds useful information and notifies developers or other
users about that and thus anyone at any time can easily find needed information, or to see
statistics of project.

ResultCloud is a bachelor’s work of Filip Matys and my bachelor’s thesis is to extend
ResultCloud. Thus in the first part of the work I must learn inner architecture of Re-
sultCloud. How it works. This help me to use better all the opportunities in design and
programming that mechanism.

Next chapters describe (Introduction in ResultCloud 2) ResultCloud system how
it works and why it useful for developers, what is submission in ResultCloud, (Analyzer
Mechanism Design 3) analyzer mechanism proposal and (Analyzer Mechanism Imple-
mentation 4) implementation, (Notification design 5) notifications, why it is important,
proposal and (Notification mechanism implementation 6) implementation notification
mechanism and (Conclusion 8) conclusion about all done work.

Chapter 2

Introduction in ResultCloud

This chapter will describe what is software tests, how ResultCloud works, why it is useful
and all important moments for this bachelor’s work, like what is submissions and how
import of new series of tests results work.

2.1 Testing

Software is computer system that consists of computer instuctions or encoded information,
and like every human made thing, software must be tested. Humans often makes mistakes,
and computer tests exists to reveal them. There are several testing process: automatic
and manual. Manual testing is a process of manually testing software, where tester play
role of an end user and try to use all fetures of the software to check if it works properly.
Automatic testing or test automation is a process of program testing, exists special software
that run tests configured by the tester and compare outcomes with predicted outcomes [3].
Test automation exists for automate testing of some necessary but repetitive tasks, or to
make additional testing that would be difficult to do manually.

There are a lot of tools and softwares used for automatic testing:

xUnit is a collective name of frameworks that used for unit testing. Unit testing provide
tests of specific section of code, commonly at function level in procedural programming and
class level in an object-oriented environment.

DejaGnu is a open source framework for testing other programs. It has one script
called runtest that find configuration files in directory and then run some tests according
to configuration files [2].

SystemTap is a tool and scripting language (stab) that used for testing Linux kernel-
based operating systems, it allows to write and reuse simple scripts to deeply testing the
activities of Linux system [].

CPAchecker is a framework and tool for formal software verification, and program
analysis, of C programs. Formal verification is the act of proving or disproving the cor-
rectness of intended algorithms. CPAchecker is based on the idea of configurable program
analysis.

Many softwares has long developing process, this softwares demand an extensive test
suites. Test suite is a file of test cases, it must test software or part of software. Test case is
a test scenario with input, output data, expected results, preconditions and postconditions,
that has unique identification. The aim of the test case is determine that software or one
of the software’s feature is working correct. Results of test suits must be stored, because

in context of development is important to analyse tests results, for find out how results
changing during development.

ResultCloud is extendable system, for every testing results format it has own plugin.
Currently in ResultCloud the most developed is plugin for SystemTap. Thus in this thesis
would be example of SystemTap testing results.

2.1.1 SystemTap

SystemTap’s test suite is executed by tests framework DejaGnu. Here is cuted example of
two SystemTap test suites, this example will be used in next chapters for describe Result-
Cloud work, analysis and notifications better: figure 2.1, figure 2.2.

Test Run By root on Wed Feb 12 04:52:10 2014
Native configuration is x86_64-unknown-linux—-gnu

=== systemtap tests ===

Schedule of variations:
unix

Running target unix

Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.
Using ./config/unix.exp as tool-and-target-specific interface file.

Host: Linux intel-canoepass-10.lab.bos.redhat.com 3.10.0-86.el7.x86_64
#1 SMP Mon Feb 10 17:52:45 EST 2014 x86_64 x86_64 x86_64 GNU/Linux
Snapshot: version 2.4/0.158, rpm 2.4-9.el7

GCC: 4.8.2 [gcc (GCC) 4.8.2 20140120 (Red Hat 4.8.2-13)]

Distro: Red Hat Enterprise Linux Server release 7.0 Beta (Maipo)
SElinux: Permissive

Running ./systemtap/notest.exp ...

testcase ./systemtap/notest.exp completed in 0 seconds
Running ./systemtap.apps/java.exp ...

PASS: singleparam compile

testcase ./systemtap.apps/java.exp completed in 84 seconds
Running ./systemtap.apps/mysql.exp ...

UNTESTED: mysql sdt app

Figure 2.1: Test suite A

Examples 2.1 and 2.2 shows that every test suite has timestamp, Test Run By root on
Thu Feb 13 06:01:10 2014 and other additional information like compiler, distribution
and etc. Test case running starts on the string that begin with ,,Running“, like here:
Running ./systemtap/notest.exp ... and finish on the string that end with ,testcase”,
like here testcase ./systemtap/notest.exp completed in O seconds. Also each test

Test Run By root on Thu Feb 13 06:01:10 2014
Native configuration is x86_64-unknown-linux-gnu

=== gsystemtap tests ===

Schedule of variations:
unix

Running target unix

Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.
Using ./config/unix.exp as tool-and-target-specific interface file.

Host: Linux pes-guest-88.lab.eng.brq.redhat.com 3.10.0-86.el7.x86_64
#1 SMP Mon Feb 10 17:52:45 EST 2014 x86_64 x86_64 x86_64 GNU/Linux
Snapshot: version 2.4/0.158, rpm 2.4-11.el7

GCC: 4.8.2 [gcc (GCC) 4.8.2 20140120 (Red Hat 4.8.2-13)]

Distro: Red Hat Enterprise Linux Server release 7.0 Beta (Maipo)
SElinux: Permissive

Running ./systemtap/notest.exp ...

testcase ./systemtap/notest.exp completed in O seconds
Running ./systemtap.apps/java.exp ...

PASS: singleparam compile

testcase ./systemtap.apps/java.exp completed in 91 seconds
Running ./systemtap.apps/mysql.exp ...

PASS: mysql sdt app

Figure 2.2: Test suite B

case in this examples belongs to some category. For example test case Running
./systemtap/notest.exp ... belongs to category systemtap, test case Running
./systemtap.apps/java.exp ... belongs to category systemtap.apps. Result key is
near result value, for example: PASS: mysql sdt app has value PASS and key mysql sdt

app.

2.2 What is ResultCloud

As T wrote in introduction, ResultCloud is a system for management of long-term testing
results. This means that ResultCloud collects testing results of some project, build diagrams
based on that results, compare it, so developer can comfortably look at results or easily
find the difference between them. Currently, there do not exist new, modern instruments
for the presentation of tested results in readable form, because all instruments that we
have now is too old, and does not extendable, as written by Filip Matys in his bachelor’s
work: “Tools which solve that problem, are too old and fall behind all modern applications.
One of the biggest problem of that tools is no opportunity to expand and with growing

market of different mobile devices with internet connection not able to present data in
responsive form.” [1]. ResultCloud has more advantages, for example in ResultCloud parsing
and management doing by plugins. Plugin is a plug-in module, that can be connected to
ResultCloud in any time. Each plugin is written for one type of testing results. For
example plugin “DejaGnu summary v1.0” can parse and show only SystemTap results.
Thus ResultCloud is extendable system.

ResultCloud is useful for developing applications because it provides tools for present,
compare and work with long-term testing results. For developers it is quite hard to look
up for some information in a data bunch. But with ResultCloud developer only need to
import results of tests series into ResultCloud, ResultCloud stores it and then presents it
in a comfortable, readable form. For example: kernel of operation system need a lot of
tests that collect into series of tests and for developer every time look for some interesting
results take a lot of time, but ResultCloud store results in submissions, and then presents
it like diagrams and lists of results, also provides some extendet tools for search interesting
results, compares two or more submissions, thus developer can easily find or look at the
results.

2.2.1 Internal structure

ResultCloud is a complex system. Result-
Cloud consists of two parts; frontend and
backend. Frontend is a part on the client

side, built with using of AngularJS. Angu-

larJS is a JavaScript MVC (Model-View- Page importing
Controller) framework which provides tools e

for build and work with web pages. In offi- s

Importing

cial documentation write next: It lets you
use HTML as your template language and
lets you extend HTML’s syntax to express
your application’s components clearly and
succinctly. Angular’s data binding and de-
pendency injection eliminate much of the Parsing
code you would otherwise have to write.
And it all happens within the browser, mak-
ing it an ideal partner with any server
technology“[5]. Angular asynchronous con-
nect with backend part.

* Vizualization

Frontend (AngularJS) Figure 2.3: ResultCloud architecture

AngularJS uses controllers for control whole

page. Controller in Angular is defined by a

JavaScript constructor function that used to increase Angular scope. Every controller has
his own template, Angular automatically builds pages with template, according to data
getting from controller’s variable scope. Controller has variable scope that contains data
for build page. AngularJS also has directives. Directives extend functionality of static
HTML elements. A custom directive replaces the element for which it is actived by his own
template. Thus it is easy to build complicated web pages that consists of more than one
elements, and include external elements from other projects.

In ResultCloud, pages like login page, dashboard, project, plugin overview page and
etc. use controller, but directives is used for build content. Elements like submissions list,
submission overview list and etc. using directives, it helps build more complicated pages, for
example submission overview page use several directives, one for building list with results,
one for building diagrams.

Backend

Backend is also divideed on the smaller part. Controllers are on the top of hierarchy. This
hierarchy can be seen in image 2.3. Angular connect directly with controllers. Controllers
are PHP classes. Controllers has only one mission, to get request and parsed data and give
it to Services. Services are very important part, they get data and use different database
entities, other services, plugins for returning result to the controller, which returns it to
client.

There is exists a DatabaseDriver that connected to database, and use data access
object (DAO). DAO contains all basic methods for work with database. Every entity must
have DAQO, which inherit basic DAO, and then system will work with entity through entity’s
DAO. Results of SELECT query converting to TSE (Test-Suite-Entity) object. TSE object
helps to work easier with entities.

2.2.2 Components

All ResultCloud capabilities are components like submission overview, project overview
and etc., it means that they have their own settings and should be installed manually.
Each component has his own configuration file in which defined component’s ID, which
plugins component support and other. Component system make possible to easily extend
ResultCloud. But components can not save data or change it, components only prepare
and vizualize data. Every component has his own frontend and backend part. Backend
part is a file CBuilder with CBuilder class, method Get prepare data and return them.
Frontend is a directive that get prepared data and vizualize them.

2.2.3 Utilities

ResultCloud has utilities, the most important utilities that was used in this bachelor’s work,
are described here:

LINQ - idea of this utility was gotten from C# and rewritten to PHP. LINQ is a
class for simplest working with arrays, it has a lot of methods for getting array elements,
filtering array elements and doing other operations with arrays that can not do default PHP
functions. In application LINQ wrap standard array, thus make complicated operations more
readable.

ValidationResult — this tool was created for data validation, it wrap validate ob-
ject and enable to validate it. Many methods in ResultCloud using ValidationResult.
ValidationResult has attribute Data which contain validate data, attribute IsValid which
contain validation state and attribute Errors which contain array of strings that describe
occurred errors.

2.2.4 ResultCloud presentation

In previous parts were described how ResultCloud work, which tools and frameworks are
used. But still no information about how ResultCloud present information. As example is
used SystemTap output A 2.1.

sl) result BE oo

Plugins Recent imports

DejaGnu summary v1.0 1
SystemTap test results parser

May 16, 2016 3:37:47 AM
Imperted by admin inte project TestProject2

May 16, 2016 3:37:18 AM 2

Imported by admin inte project TestProject2

Projects in into project TestProject

3 46 PM

in into project TestProject

01608 201605

coriv.local/#/oroiect/1/submission/22

Figure 2.4: ResultCloud main page and plugin page

Image 2.4 show ResultCloud main page. Red numbers in the image is for easiest de-
scribing single features on the page.

1. There is presents installed plugins, as can be seen only one plugin is installed.

2. This is list of the recently imported submissions. According to date can be concluded
that there are two submissions from example 2.1 and 2.2.

3. This part is from plugin overview page. This is the list of projects which are in plugin.
Every project has diagram of activity under, this diagram shows count of imported
submissions in project for each month, something similar has github.

Image 2.5 present diagram of submission from example 2.1. Number 1 is a pie diagram,
there is only one type of diagram. Number 2 is a table with the same information as presents
in diagram, but in numerical equivalent. Data in the images show number of occurences of
each result’s type in submission. There are 102 tests with PASS result, tests with FAIL has
12 occurences and so on.

Image 2.6 show list of results from example 2.1.

1. This is category. Categories consists of test cases.
2. This is test case, it can contain zero or more results.

3. This is testing results, every result’s type has his own color, for example PASS has
green color.

Overview chart

Result overview

@ Pass

@ FAIL

@ UNTESTED
@ ERROR

@ KFAIL

R

1

Data overview
PASS 2 102

FAIL
UNTESTED

ERROR

Figure 2.5: Submission’s diagram

— 1

./systemtap/notest.exp 2

No results

systemtap.apps

./systemtap.apps/java.exp

singleparam compile
singleparam (0)
return compile
return (0)
multiparams compile
muitiparams (0}

.Jsystemtap.apps/mysql.exp 2

mysql sdtapp UNTESTED

Figure 2.6: Results list

2.2.5 Data store organization

In the last few years ResultCloud increased, and now it has a much more entities than it
has before, thus in figure 2.7 are represent only entities that will be used in this thesis.

How can be seen in image 2.7, the smallest part of each test is Result, that contain
single result value and key.

TestCase is a collection of Results, according to Filip Matys thesis, TestCase can
contain one or more Results, but in practice it can contain even zero Results, and figure
2.1 shows that test case ./systemtap/notest.exp contain zero count of results.

Catogery allow grouped TestCases. If file with testing results has no categories, Re-
sultCloud create ,Default* category that will contain all TestCases, for current submission.

Submission is an entity that represent submissions.

Project constits of submissions, user, created date and name. Submissions of the same
software or program part are grouped in Projects.

Plugin are on the top of that hierarchy. Entity Plugin represent ResultCloud’s plugin.

10

TemplateSettingstem
Compaonent TemplateSettings Id
Id Id Identifier
Description Name Label
1 * 1 1
Folder 1 Type Required
Filename UF Type
Identifier View Value
ViewType

1
! User

Submission Project id
* 1
d 1 id Password
DateTime Name ! Username
ImportDateTime DateCreated Role
Category Plugin
* 1
Result TestCase d d
1
id A : id * — Name Name
RKey Name Author
RValue Roat

About

Identifier

Figure 2.7: ResultCloud Entities

In this bachelor’s thesis I will analyse Submissions, their Results, and other stuff that
may be interesting for people.

2.3 What is Submission

As I wrote earlier, the submission is a results of single test suite. The smallest part of every
submission is Result. This part contains result of a single test from series of tests. All other
parts like Categories, TestCases are only organization unit.

There are two ways to import a new Submission: first is through the web page, second
is using an API. For import in first way need to sign in like a user in ResultCloud and go to
import page, fill all fields and press import button, then Angular send request with file to
ImportController. To import in second way need sign in through ResultCloud API and
send file with other parameters by POST request to import class.

Every plugin has a class Parser, for parsing files and putting them into Database (DB).
When client send file to ImportController or to import class, it call ImportService,
which find demanded plugin in DB, then include plugin’s class Parser and call method
ParseImport. Parser returns to ImportService SubmissionTSE object, which contains all
parsed data as TSE objects. ImportService than save it to DB and return successful result
to Controller or APT class.

11

Chapter 3

Analyzer Mechanism Design

What is the biggest problem of large test suites? Why analysis is important for tests results?
All this question would be answered in this chapter and would be proposed solution.

3.1 Problem

Big, complicated, long developed software has large test suite, because it has a lot of
behaviours, and all behaviours must be tested. Large test suite is a reason of results big
heap. Commonly the most of testing results are the same information. For example, if
compare testing results from example 2.1 with results from example 2.2, 87% of results are
the same, and all test suites that is used in this bachelor’s work does not the biggest one.
Thus this is a problem for developer or tester of big system, to find some interesting and
useful information. ResultCloud already has features to facilitate developer’s or tester’s
work and save time.

To solve this problem need to propose and implement analysis mechanism. Main aim
of this mechanism is to check all new submissions and find interesting results. But also
mechanism must be extendable, there must be easy way to add new analysis.

3.1.1 Kinds of Analysis

Analysis must be based on something, must analyze some specific thing, thus need to
propose analysis, that will return useful result:

e Find strange changes like if result has a long time the same value and than it change,
it would be interesting because a lot of test cases has long time same result, so most of
time it is just useless information, but changes is interesting and useful for developer.

o Check a changes in tests, like if some test which is contained in all previous submis-
stons dissapear, it would be interesting and useful because changes in test cases by
itself.

o Check if some test had a long sequence of some bad value like FAIL or ERROR and
then take a PASS, but after take FAIL or ERROR again, it would be interesing
because using this information can help developer to find why test always failing.

o Check changes from UNTESTED to some result, it would be interesting because
unused test case started to be in use.

12

o Check if presented a new tests, it would be interesing because new tests can bring new
useful information.

e Check GOOD, BAD, STRANGE changes in tests, it would be interesting because all
changes can bring new useful information about program work.

o Check if count of bad results is get maximum, it would be interesting because it notify
developer about that changes caused a lot of bad results.

3.2 Architecture

All analyzers must somehow unite into one working system. There must be a mechanism
for that. Mechanism must not be complicated and easy for extend. Thus it must easy to
control all analyzers and work with their results.

There are two types of architecture: module and built-in. Module type means that
mechanism would be divided into modules, like “Divide and Conquer”, one of the main
advantages is easy extending. Second type is built-in, which means that mechanism would
be built-in into whole ResultCloud system, one of the main advantages of this type is
working speed.

I choose first method, because difference in speed beetwen them would be to small, but
easy extending advantage is that what mechanism demand. So let start from the main
part, kernel of whole mechanism, AnalyzerController.

3.3 AnalyzerController

AnalyzerController would get all existed
analyzers and use them. Mechanism also
would provide entity for saving analysis
data. Analyzer can not work with DB, be-
cause in practice it is normal to divide work Project
between separated modules, thus analyzer

Analyzer

Submission

only analyze input data and visualize it. Analyzer

Centralized method is good for that case Result

because user don’t need to load demanded

analyzers and work with DB, all this oper- Figure 3.1: Analyzer entity

ations do AnalyzerController.

3.4 Analyzer entity

In the picture presents entity Analyzer 3.1, which contain four attributes. Attribute Sub-
mission has ID of the submission, that analyzer results belongs to. Project is alternative
attribute to Submission, it has ID of the project. Analyzer contains machine analyzer 1D.
And Result contains analyzer results, this is a text attribute, every analyzer has his own
output results format.

13

Analyze 1

ResultCloud —— Analyze Controller Analyze 2

Analyze 3

Figure 3.2: Analyzer structure

3.5 AnalyzerController structure

As can be seen in the image 3.2, AnalyzerController is center part of whole analyzer’s
mechanism. AnalyzerController finds all available analyzers, when application starts,
this is good for optimization. AnalyzerController is realize easy analyzer control. One
method must run all analyzers that supports current submission’s plugin, and returns result
which AnalyzerController write to DB. Also AnalyzerController must consists methods
for vizualizating data.

3.6 Analyzers

This section will describe design of Analyzers by itself and how it connected with analyzer
controller.

3.6.1 Analyzer design

Analyzer must has a static constant attribute with unique machine ID (under it ID, analyzer
would be identified in Analyze entity), method for getting and processing data (name of the
method must be the same for all Analyzer classes) and two methods for vizulizating data
(Visualize, VisualizeSingle), for correct connecting with analyzer controller. Vizualizating
methods will get data from AnalyzerController which get it from DB and return it in
JSON format.

Method for process data gets in parameters: array of submissions, new submission and
plugin name. It must returns ValidationResult object, with string in Data attribute, or
array of strings if it has a few results, or it can returns empty result, with null in Data
attribute.

Also analyzer has an attribute called is interesting which contains status of previous
analysis, and if analysis results is interesting it return true, in another case false, it need to
notifying only about interesting submissions.

3.6.2 Analyzer vizualisation

Every submission has his own analysis results, those results would be presented in personal
page. Image 3.3 show that every analyzer has some space on that page. Because different

14

Analyzer nhame Analyzer name 2

Analyzer name 3

Figure 3.3: Template

analyzers use different methods for vizualization, there is need to specificate different possi-
bilites to vizualize information. As mentioned in chapter 2 ResultCloud uses AngularJS for
vizualize data and templates, so every analyzer must have his own template and AngularJS
directive. Image shows layout of analysis results.

15

Chapter 4

Analyzer Mechanism
Implementation

This chapter will describe mechanism’s implementation. Mechanism is implemented in
PHP and JavaScript, because that languages was used for implementation ResultCloud.
Mechanism would be implemented according to proposals in previous chapter.

4.1 Structure

Because analyzers are not plugins or any other components in ResultCloud, analyzers will
be extentions. Whole system has own directory analyzing. Which contain one directory
for analyzers - analyzers, and one for templates - templates. Root directory also contain
AnalyzeController.

Analyzing starts only after new submission would be inserted into DB, in ImportService
class.

4.2 Entity

Analyzer entity was converted into ResultCloud acceptable format. As a result, three classes
were created: AnalyzerDao, AnalyzerTSE, AnalyzerService and edited table installation
class. AnalyzerDao class for work with Analyzer table. AnalyzerTSE class is for easily
work with AnalyzerDao returned data. AnalyzerService class is for different and more
complicated operations with data.

4.3 Analyzing

4.3.1 AnalyzeController

AnalyzeController is a kernel of whole analyze mechanism. AnalyzeController is im-
plemented like static class (but PHP does not support static classes, thus all methods are
static), because creates more than one class object unnecessarily. Image 4.1 describe good
how whole mechanism is implemented. AnalyzerController connect with analyzers, and
through AnalyzeService writes data to DB and get it from DB.

16

% Arelyeer

Return analyzing result
Analyzer Controller I ——

a \

Analyzer 2

-

Analyzer 3

Putdata in DB
Return data from DB,

Y

Write data into DB

Analyzer Service DB and related

Return data from DB

Figure 4.1: Analyzer implementation

When AnalyzeController be included, it executes InitAnalyzers method, that scan
analyzers folder, puts all available analyzers together and save it to $AnalyzerList attribute.
Method GetAnalyzersList will return LINQ object with $AnalyzerList.

analyze method gets all analyzers from $AnalyzerList, and call it analyzer method.
Then returned value, or values it write to DB, and check if results are interesting by
getting boolean value from analyzer method isInteresting, if results are interesting it add
analyzer ID to $interesting analyzers array. Analyzers ID which has interesting value
can get by method GetInterestingAnalyzers. Method analyze get parameters: currently
uploaded submission - $submission, LINQ object with older submissions - $submissionList
and plugin name - $plugin. Returning ValidationResult object with the analysis status.

4.3.2 ChangesChecker

ChangesChecker is a simple analyzer created like example of analyzer structure. Analyzer
gets new submission and the last one, compare them, if they have differences, analyze results
become interesting. There are three categories of changes: GOOD, BAD, STRANGE.
Output result format is JSON. It supports only ,systemtap” plugin.

Fach analyzer must has method analyze, which analyzing input submissions according
to plugin name. Parameters are the same as has method analyze in AnalyzeController.
Output results are in format JSON, it uses JSON because of it simplicity. Attribute
$is_interesting is boolean type, and became true only if analysis results are interesting,
otherwise it is false. As mentioned in previous part, analyzer has method isInteresting,
which return value of $is interesting attribute.

ANALYZER ID is constant attribute, that contains unique analyzer ID, that ID is used
in Analyzer table, like analyzer identifier. JS CONTROLLER is also constant attribute
which contains name of JavaScript file with AngularJS directive, it is used for vizualization
analyzing results.

ChangesChecker get last imported submission and new imported submission, than by
using foreach construction get each category from last imported submission (let call it

17

categoryl) and try to find category with the same name in new imported submission (let
call it category?2), if the same category not exists it get next category, othewise it doing
the same with test cases, it get each test case from categoryl and try to find test case with
the same name in category?2, if test cases with the same names was found, it compare their
results, if results with the same key has different value and differnce is GOOD (FAIL —
PASS), BAD (PASS — FAIL), STRANGE (FAIL — ERROR), it increment variable that
responsible for one of the differnce types and in the end return ValidationResult object
with result in JSON format. Example of result in JSON format:

{
"Good": 8,
"Bad": 3,
"Strange": 0
X

4.3.3 UntestedAnalyzer

UntestedAnalyzer is a sample analyzer, it looks for changes in submission’s results, from
UNTESTED to any other value. It has ANALYZER__ID - ,Untested Analyzer* and

JS _CONTROLLER - ,untested_ analyzer.js“. It support only ,systemtap“ plugin. Output
result’s format is JSON. It works in the same way like ChangesChecker, it get last imported
submission and compare it with new imported submission, if results with the same key have
different value and last imported has value UNTESTED, analyzer save path to result and
new value to object. Here is an example of that object in JSON format:

{
"Categories": {
"systemtap.apps": {
".\systemtap.apps\mysql.exp": {
"mysql sdt app": "PASS"
}

4.4 Vizualization

As was mentioned in chapter 2 ResultCloud use AngularJS for vizualization data. An-
gularJS is JavaScript MVC (Model-View-Controller) framework, every page has own con-
troller, thus analyzer page must has it too. AnalyzeController. js is a file that contains
controller for analysis result page. analyze.html is a page template. Some of the page, that
contain several sort of data, builded with the simplest part Components, each component
has individual settings, and individual Angular directory. Each component has backend,
frontend folder and configuration file config.zml with all settings and supported plugins.
Backend folder consists CBuilder class, which return prepared data for representation.
Analyzer page would use only one component analyzeOverview.It wouldn’t have any
settings, and will support all plugins. Angular directory firstly get array of analyzing
results for current submission, than for each analyzer find own Angular directory, which

18

wle) result Login

Dashboard > DejaGnusummary > TestProject2 > Analyze Overview

Analyzer: ChangesChecker Analyzer: UntestedAnalyzer

Next results not UNTESTED anymore:
Bad

systemtap.apps
Good

-/systemtap.apps/mysql.exp
strange
mysql sdt app

Figure 4.2: Implemented template

put analyzer data to template and represent it. There some interesting part of code, how
implemented inserting analyzers directive into analyzeOverview component template:

$scope.buildAnalyzerView = function (key) {
\\ Check if key not empty
if (!'$(key).length) {
\\ Make new scope clone from rootScope
var data2 = $rootScope.$new();
\\ Include into cloned scope analyzer data
data2.data = $scope.datalkey];
\\ Compile analyzer directive tag with cloned scope
var el = $compile(’<’ + key + ’/>’)(datal);
\\ Put result into page
$("#"+key) .append(el);

Image4.2 present how it actually look. This page was created for submission from
example 2.2. Those two cards represent results of two analyzers, in the head of each cards
can be seen name of analyzer. In the content of cards represent results of analyzing example
2.1 and example 2.2. This results show that there are 8 good changes, and one test is not
UNTESTED anymore.

CBuilder class for analyzeOverview get stdClass object with attribute Submission
- submission ID. And call AnalyzeController method VisualizeBySubmission. Visualize-
BySubmission get submission ID, for each analyzer get last inserted result, and give it to
analyzer’s method VisualizeSingle, which parse results and return it like array. Then Visu-
alizeBySubmission puts vizualization data together into associative array the key analyzer
ID and value analyze results, and return it.

19

Chapter 5

Notification design

Why it is important to notificate user? Who will use this extention and how it has an
impact? This chapter will describe notification problems and ways to solve them.

Notification mechanism must be flexible, and easy to extend. This chapter contains pro-
posals for implement notification mechanism. Here will consider mechanism’s architectures,
how implement notifiers better and notifications settings.

5.1 Problem

Notification is not only important in ResultCloud, but also in other applications and sys-
tems, such as Github or Google Calendar. Notifications helps users always be informed
about events. Github notificate about what happend in user’s repository or in repository
to which the user is subscribed. Google Calendar notificate about events that will happen
soon. ResultCloud will notificate about all interesting information that was found during
analysis.

Different categories of people prefer different notification’s channel, for example: teenagers
prefer notifications through Facebook or Snapchat, but developers or testers prefer Slack,
Email, or even RSS. Thus it is important to choose users category. ResultCloud is system
for managment testing results and mostly it use developers or testers, therefore prefered
channels are Email, RSS, Slack and other.

5.1.1 Notifier types

Within the confines of this bachelour’s work, must be implemented these types of notifiers:
e Email - notifications will be sent by email, this is private notifier
e Twitter - notifications will be sent into prepared twitter account, public notifier
e RSS - notifications will be present in RSS file, public notifier

Next notifiers can be used for extending application:

e Facebook - notifications will be present in some group in Facebook, this is public
notifier

e Telegram - notifications will be sent by the bot in telegram to all subscribed users,
public notifier

20

5.2 Architecture

Like in case with Analyze Controller, notifications methods would be divide to the separated
classes and Notification Controller will control them. But as opposite to analyzers there are
several types of notifiers. First type is public notifiers, it means that notifications would
be sended into some shared or public resources, like Twitter for example. Private is means
that it notifies each user separetly. According to this private notifiers must has settings,
where user can set if he want to get notifications or not, and other options.

5.3 Notification Controller

Notification controller would has method for easy control notifications, which get all de-
manded fields, as title, body, bodyShort (for resources that accept only short messages),
adreses (list of all adreses that must recieve notification) and according to them send no-
tifications. Also NotificationController must provides methods for getting private and
public Notifiers. When it included, it scans space for available Notifiers.

5.4 Notification settings

There must be a mechanism for adding settings to Notifier easy, and settings must be
present at user’s settings without editing any template for it. But user can edit only private
settings, because public notifier settings are shared with other users, ResultCloud does not
support user’s hierarchy, thus nobody can edit public notifier settings.

ResultCloud provides good tools for work with settings, like entities TemplateSettings
and TemplateSettingsItem. TemplateSettings is for saving setting’s template informa-
tion into DB, such as setting type, setting name and etc. TemplateSettingsItem is for
save settings value.

5.5 Notifier

Notifier is a base part of notification mechanism, without at least one notifier it is useless.
Notifier provides notification by itself, each notifier has own notification method, for
example, by email, or Facebook.

5.5.1 Notifiers architecture

Every Notifier must have unique identifier(ID) for correct processing, by that ID Notifica-
tionController would identify notifiers, and it would have reference to notifier by this ID
in settings template. Notifier must have one method for notification, and one method
with settings. Each notifier has the same settings, thus that method can be picked out
into some basic class, which would be inherited by notifiers classes. Notifier must have
attribute that identifies it is like private or public notifier.

As a notify method in NotificationController, notify method in Notifier get the
same parameters, except address, address is not associative array, but it is a simple array
with addresses supported in that notifier.

21

Chapter 6

Implementation of notification
mechanism

This chapter contains description of notification mechanism implementation. As can be seen
in image, NotificationController is a kernel, all notifiers are extended from BaseNotifier
class.

6.1 Structure

Like analyzers, notification mechanism is not a plugin or any other ResultCloud kernel part,
thus it also be in extentions folder, in own notification folder. NotificationController
is also located in root directory. All notifiers are located in notifiers folder.

Notification starts only if analyzer return interesting result.

6.2 Settings

Basically all notifers have same setting, this settings would enable or disable notifier’s
notifications. But as mentioned in previous chapter, only private notifiers can use settings.
Notification mechanism does not work with settings, because list of addresses and notifiers
must be assamble by those who send, notification mechanism only takes this list and send
notification.

ResultCloud has tools for settings, not only in server side, but also in client side it has
automatic form generation for settings. Here is example of default getSettings method in
BaseNotifier class, to understand how set up settings better:

public function getSettings()
{
$settings = array();
$settingsItem = array();

\\ Setting label

$settingsItem[’label’] = "Get notifications by this way";
\\ Setting ID for TemplateSettings entity
$settingsItem[’identifier’] = "get-notify";

\\ Default value

22

$settingsItem[’default’] = "1";

\\ Field type

$settingsItem[’type’] = TemplateSettingsItemType: : CHECKBOX;
\\ Is setting required

$settingsItem[’required’] = ’true’;

$settings[] = $settingsItem;

return §$settings;

6.3 Notification

Put notification data

Motifier 1 ¥.._ Extend
Notificaion Controller I Mofifier 2 «c-—————————:—:- Base Notifier
Notifier 3 o

Figure 6.1: Implementation of notification mechanism

6.3.1 NotificationController

Like in case with AnalyzerController, NotificationController is static too, all methods
are static, because there is no reason to create more than one class instance in application.
Notification mechanism scheme6.1 showing how NotificationController connecting with
other mechanism elements.

When NotificationController is included, it starts method preLoad, this method
scans notifiers folder, include and assamble array with all available notifiers. There is exist
a method for notifing notify(title, body, bodyShort, to), where title - is title of notification
message, body - the longest body text, bodyShort - short body of the message but no longer
than 140 letters, to - is an array of all adresses with the key of notifier ID. Method notify
calls notifier’s function notify only for notifiers which have their IDs in to parameter’s key.

NotificationController also has different sorts of get’s methods: getNotifylds (re-
turns IDs of all notifiers), getPrivateNotifiers (returns array with IDs only for private no-
tifiers) and getNotifierByld (returns notifier object by notifier ID).

6.3.2 Notifier

Every notifier must inherit BaseNotifier class with default settings, and if it is need to

define own method getSettings that in the begining call parent method. Also notifier must

have unique ID in constant NOTIFY ID. NOTIFIER PUBLIC is constant, which con-

tains boolean value, if notifier is public it contain true, otherwise false. The most important

method is notify, it has same parameters such as method notify in NotificationController,
except last address parameter, notifier would not get associative array, but gets a simple

array with addresses.

23

Need to learn notifications from popular for developers applications or systems for better
understanding what users wants to see in notification body. The most popular service is
Github. Here is example of Github notification:

Is there some script to autogenerate API description or does it have to be
modified manually?

Please, when you have time, provide description on what has to be done
after API update. Thank you

Reply to this email directly or view it on GitHub.

That notifications have only body with content of issue’s comment and footer with link
to that comment, nothing else. Thus notification must have only descrabing and link to
the page where user can find more information.

6.3.3 Notifyl

Notifyl is a private notifier that send notifications by email. It gets array with email
addresses and sends emails via default PHP mail function. Here is notifier parameters:

const NOTIFY_ID = "notifyl";
const NOTIFIER_PUBLIC = false;

Here is example of notification message:

Submission with id 2 has interesting results according to [ChangesChecker,
UntestedAnalyzer] analyzers, for more information go there
http://corly.local/#/project/1/analyze/2

6.3.4 Twitter

Twitter is a public notifier that sends new twittes with some interesting information to
twitter account. Now it connected to my account cyberbond95 . If analyzer would have
interesting results it sends new twitt to my account, and everyone can see it.

Twitter work with Twitter API by using TwitterAPIExchange library, which was sug-
gested in Twitter API documentation [6]. It has MIT license. Page of TwitterAPIExchange
with examples https://github.com/J7mbo/twitter-api-php.

6.3.5 RSS

RSS is a public notifier that create or update rss.zml file in root folder. rss.zml presents
one news for each project, if RSS get news for already existing in rss.xml project, it updates
news, otherwise it just create new one. Current actual version of RSS is 2.0, according to
specification [7] second version is simplier than first.

RSS works with RSS by using SimpleXML that is default in most PHP versions. Here
RSS example:

24

https://twitter.com/cyberbond95
https://github.com/J7mbo/twitter-api-php

<7xml version="1.0"7>

<rss version="2.0">

<channel>

<title>ResultCloud News</title>
<link>http://result-cloud.org/</link>

<description>ResultCloud analysing results</description>
<language>en-us</language>
<docs>http://result-cloud.org/rss.xml</docs>

<item>

<title>Project TestProject has new interesting submission</title>
<description>Submission with id 22 has interesting results according
to [ChangesChecker] analyzers, for more information go there
http://corly.local/#/project/1/analyze/22</description>
<link>http://corly.local/#/project/1/analyze/22</1link></item>
</channel>

</rss>

25

Chapter 7

Evaluation

This chapter will describe what was did during bachelor’s work, how it can be extended,
how was solved some problems.

7.1 Analyzers

During making bachelor’s work was implemented analysis mechanism: AnalyzerController
and two analyzers. All stuffs that was described in this chapter was implemented and func-
tioning. Also mechanism are extendable, thus there is no problem to add new analyzers or
new methods to it. Analysis results can be displayed in any format (list, diagram and etc.).

There are a lot features that can be implemented in the future. To AnalyzerController
can be added settings for specificate projects and analyzers that will be analyzing in setted
up projects. Also to analyzer mechanism can be added configuration file in XML format,
such as in components. Proposals about analyzers can be found in subsection 3.1.1.

7.2 Notifications

Notification mechanism support adding new notifiers (if notifier was implemented like it was
described in this chapter) and extending settings. NotificationController and three type
of notifiers was implemented. One of notifiers is private email notifier. Other two notifiers
are public. Proposals about notifiers can be found in subsection 5.1.1. Also new settings can
be added to notification mechanism, for example, user can choose from which analyzers he
wants get notifications. Add configuration file to notification mechanism. Make individual
tab in user’s settings for notifications. Make for each project own notifications settings,
that also be individual for user.

During testing was found two problems: email sending on my computer get a lot of
time, Twitter do not allow to send two twits with the same content. First problem is
a local and related with software on my computer. Second problem is actual only when
debuging, because in production content always will be different, in production current ID
value for table never be discard, thus url in twit always be unique.

26

Chapter 8

Conclusion

In this bachelor work was proposed mechanism of analyzing tests results and notifing users
about it, this mechanism must be easy to extend. There must be available more than one
notifier for wider using.

Mechanism was built under ResultCloud system by using PHP and JavaScript (An-
gularJS framework). It consists of two parts: Analyzers and Notifications. Implemented
kernel (AnalyzerController) and two analyzers in analyzer part. Implemented kernel as
well (NotificationController) and three notifiers in notification part. And other parts
was implemented for integrate mechanism into ResultCloud, like services for work with DB,
different Angular directives for vizualization data.

Mechanism can be extending by adding new analyzers and notifiers. Also can be ex-
tending notification mechanism by adding new settings, for example: user can choose about
which analyzers he wants get notification. Extend analyzer mechanism, add to each ana-
lyzer configuration file, and make it switchable like components in ResultCloud.

27

Bibliography

SnapshotTesting - Systemtap Wiki. [online], 2007. URL:
https://sourceware.org/systemtap/wiki/SnapshotTesting.

Rob Savoye; Ben Elliston. Dejagnu documentation. [online], 2014. URL:
https://www.gnu.org/software/dejagnu.

Dorota Kolawa, Adam; Huizinga. Automated Defect Prevention: Best Practices in
Software Management. Wiley-IEEE Computer Society Press., 2007.

Filip Matys. Webovyj ndstroj pro spravu vysledki dlouhodobého testovdini. Master’s
thesis, FIT VUT v Brné, 2014. [Online; cit. 16.5.2016].

AngularJS team. AngularJS Official Documentation. [online], 2016. URL:
https://docs.angularjs.org/guide/introduction.

Twitter. Twitter API documentation. [online], 2016. URL:
https://dev.twitter.com/overview/documentation.

Dave Winer. RSS 2.0 Specification. [online], 2003. URL:
http://cyber.law.harvard.edu/rss/rss.html.

28

https://sourceware.org/systemtap/wiki/SnapshotTesting
https://www.gnu.org/software/dejagnu
https://docs.angularjs.org/guide/introduction
https://dev.twitter.com/overview/documentation
http://cyber.law.harvard.edu/rss/rss.html

Appendix A

CD Content

Source codes

Tests data

Source code of documentation

Documentation in PDF

29

	Introduction
	Introduction in ResultCloud
	Testing
	SystemTap

	What is ResultCloud
	Internal structure
	Components
	Utilities
	ResultCloud presentation
	Data store organization

	What is Submission

	Analyzer Mechanism Design
	Problem
	Kinds of Analysis

	Architecture
	AnalyzerController
	Analyzer entity
	AnalyzerController structure
	Analyzers
	Analyzer design
	Analyzer vizualisation

	Analyzer Mechanism Implementation
	Structure
	Entity
	Analyzing
	AnalyzeController
	ChangesChecker
	UntestedAnalyzer

	Vizualization

	Notification design
	Problem
	Notifier types

	Architecture
	Notification Controller
	Notification settings
	Notifier
	Notifiers architecture

	Implementation of notification mechanism
	Structure
	Settings
	Notification
	NotificationController
	Notifier
	Notify1
	Twitter
	RSS

	Evaluation
	Analyzers
	Notifications

	Conclusion
	Bibliography
	CD Content

