
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ U Č E N Í TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS
AND MULTIMEDIA

FAKULTA INFORMAČNÍCH T E C H N O L O G I Í

ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

ANALYSIS AND NOTIFICATION OF NEW RESULTCLOUD
SUBMISSIONS
ANALÝZA A OZNÁMENÍ O NOVÝCH RESULTCLOUD VÝSLEDCÍCH

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR BOHDAN IAKYMETS
AUTOR PRÁCE

SUPERVISOR Mgr. Be. HANA PLUHÁČKOVÁ
VEDOUCÍ PRÁCE

BRNO 2016

Abstract
Software tests results have mostly the same values, therefore they do not contain any
important or interesting information. Developers must spend a lot of t ime for looking for
something interesting i n tests results, thus developer require tool for analysis results and
in case finding interesting information notify user about i t . Th i s too l can save a lot of
t ime. Assignment of this bachelor work is design and implement mechanism for analyzing
and notifing user about interesting changes i n test results. Par t of the work is to learn
Resu l tC loud and based on acquired knowledge to extend Resu l tCloud .

Abstrakt
Větš inou výs ledky t e s t ů aplikace jsou s te jné a proto nenesou ž á d n o u už i t ečnou informaci.
Vývojář i musej í n e u s t á l e p r o b í r a t velké m n o ž s t v í zby tečných informací , aby našl i něco za­
j í m a v é h o . Tedy vývo já ř p o t ř e b u j e n á s t r o j pro a n a l ý z u tes tovac ích výs ledků a v p ř í p a d ě
nalezení za j ímavé informace to o z n á m í uživate l i . Tento n á s t r o j u še t ř í spoustu času . Z a d á n í
t é t o baka l á ř ské p r á c e je navrhnout a implementovat, mechanismus pro a n a l ý z u a ozná­
men í uživatel i o za j ímavých z m ě n á c h v výsledcích sady t e s t ů . Mechanismy musej í bý t
snadno rozš i ř i te lné a d o b ř e in teg rova te lné v Resu l tC loud . Součás t í t é t o p r á c e je prostu­
dování Resu l tC loud a na zák ladě z í skaných zna los t í rozš í ření Resu l tC loud o a n a l y z á t o r a
oznamovatele. N á s t r o j je i m p l e m e n t o v á n p o m o c í Angu la r JS a P H P .

Keywords
Resul tCloud , testing, analysis, notification, notifier, test suite, analyzer

Klíčová slova
Resul tCloud , t es tování , ana lýza , o z n á m e n i , notifikace, t es tovac í sada, a n a l y z á t o r

Reference
I A K Y M E T S , Bohdan . Analysis and Notification of New ResultCloud Submissions. Brno ,
2016. Bachelor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology.
Supervisor P l u h ä c k o v ä Hana .

Analysis and Notification of New ResultCloud Sub­
missions

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of M g r . Be. Han a Pluhackova and consultant Ing. Pe t r Mi i l l e r . A l l the
relevant information sources, which were used during preparation of this thesis, are properly
cited and included i n the list of references.

Bohdan Iakymets
M a y 18, 2016

Acknowledgements
Thank my supervisor M g r . Be. H ana Pluhackova and consultant Ing. Pe t r M i i l l e r for
helping me wi th my bachelor's thesis, also I want to give thanks to my friends for supports
me i n a difficult moments.

© Bohdan Iakymets, 2016.
This thesis was created as a school work at the Brno University of Technology, Faculty
of Information Technology. The thesis is protected by copyright law and its use without
author's explicit consent is illegal, except for cases defined by law.

Contents

1 Introduction 3

2 Introduction in Resu l tCloud 4
2.1 Testing 4

2.1.1 SystemTap 5
2.2 W h a t is Resu l tC loud 6

2.2.1 Internal structure 7
2.2.2 Components 8
2.2.3 Ut i l i t ies 8
2.2.4 Resu l tC loud presentation 9
2.2.5 D a t a store organization 10

2.3 W h a t is Submission 11

3 Analyzer Mechanism Design 12
3.1 Prob lem 12

3.1.1 K i n d s of Analys is 12
3.2 Architecture 13
3.3 Analyzer Controller 13
3.4 Analyzer entity 13
3.5 AnalyzerContro l ler structure 14
3.6 Analyzers 14

3.6.1 Analyzer design 14
3.6.2 Analyzer vizual isat ion 14

4 Analyzer Mechanism Implementation 16
4.1 Structure 16
4.2 En t i ty 16
4.3 Ana lyz ing 16

4.3.1 AnalyzeContro l ler 16
4.3.2 ChangesChecker 17
4.3.3 UntestedAnalyzer 18

4.4 Vizua l i za t ion 18

5 Notification design 20
5.1 Prob lem 20

5.1.1 Notifier types 20
5.2 Archi tecture 21
5.3 Notif icat ion Controller 21

1

5.4 Notif icat ion settings ^ 1

5.5 Notifier 2 1

5.5.1 Notifiers architecture 21

6 Implementation of notification mechanism 22
6.1 Structure 2 2

6.2 Settings 2 2

6.3 Notif icat ion 2 3

6.3.1 Notif icat ionControl ler 2 3

6.3.2 Notifier 2 3

6.3.3 N o t i f y l 2 4

6.3.4 Twit ter 2 4

6.3.5 R S S 2 4

7 Evaluation 2 6

7.1 Analyzers 2 6

7.2 Notifications 2 6

8 Conclusion 27

Bibl iography 2 ^

A C D Content 2 9

2

Chapter 1

Introduction

The main goal of the project is to design and develop a mechanism for analyzing and noti­
fying users about interesting changes in new uploaded submissions. Submission is a repre­
sentation of results of tests series i n Resu l tC loud . Resu l tC loud is a system for management
of long-term testing results. The mechanism must support a few types of notifications (for
example notifications by email or by twitter) and has possibil i ty to add more. The analysis
mechanism must also have interface for presentation results. A n interested people would
be able to get notifications about interesting results of the analysis.

Ana lyz ing of submissions is very important because a lot of results are useless, in most
cases they are the same data, so it doesn't give any important information. A n a l y z i n g
helps to save developer's time, it finds useful information and notifies developers or other
users about that and thus anyone at any t ime can easily find needed information, or to see
statistics of project.

Resu l tC loud is a bachelor's work of F i l i p Matys and my bachelor's thesis is to extend
Resu l tC loud . Thus i n the first part of the work I must learn inner architecture of Re­
su l tCloud . How it works. Th is help me to use better a l l the opportunities in design and
programming that mechanism.

Next chapters describe (Introduction in Resu l tCloud 2) Resu l tC loud system how
it works and why it useful for developers, what is submission in Resu l tC loud , (Analyzer
Mechanism Design 3) analyzer mechanism proposal and (Analyzer Mechanism Imple­
mentation 4) implementation, (Notification design 5) notifications, why it is important ,
proposal and (Notification mechanism implementation 6) implementat ion notification
mechanism and (Conclusion 8) conclusion about a l l done work.

3

Chapter 2

Introduction in ResultCloud

This chapter w i l l describe what is software tests, how Resu l tC loud works, why it is useful
and a l l important moments for this bachelor's work, like what is submissions and how
import of new series of tests results work.

2.1 Test ing

Software is computer system that consists of computer instuctions or encoded information,
and like every human made thing, software must be tested. Humans often makes mistakes,
and computer tests exists to reveal them. There are several testing process: automatic
and manual . M a n u a l testing is a process of manual ly testing software, where tester play
role of an end user and t ry to use a l l fetures of the software to check i f it works properly.
Automat ic testing or test automation is a process of program testing, exists special software
that run tests configured by the tester and compare outcomes wi th predicted outcomes [3].
Test automation exists for automate testing of some necessary but repetitive tasks, or to
make addi t ional testing that would be difficult to do manually.

There lot of tools and softwares used for automatic testing:
xUni t is a collective name of frameworks that used for unit testing. Un i t testing provide

tests of specific section of code, commonly at function level in procedural programming and
class level i n an object-oriented environment.

D e j a G n u is a open source framework for testing other programs. It has one script
called runtest that find configuration files i n directory and then run some tests according
to configuration files [2].

SystemTap is a tool and scripting language (stab) that used for testing L i n u x kernel-
based operating systems, it allows to write and reuse simple scripts to deeply testing the
activities of L i n u x system [1].

CPAchecker is a framework and tool for formal software verification, and program
analysis, of C programs. Formal verification is the act of proving or disproving the cor­
rectness of intended algorithms. CPAchecker is based on the idea of configurable program
analysis.

M a n y softwares has long developing process, this softwares demand an extensive test
suites. Test suite is a file of test cases, it must test software or part of software. Test case is
a test scenario w i t h input, output data, expected results, preconditions and postconditions,
that has unique identification. The a im of the test case is determine that software or one
of the software's feature is working correct. Results of test suits must be stored, because

4

in context of development is important to analyse tests results, for find out how results
changing during development.

Resu l tC loud is extendable system, for every testing results format it has own plugin.
Current ly i n Resu l tC loud the most developed is plugin for SystemTap. Thus in this thesis
would be example of SystemTap testing results.

2.1.1 S y s t e m T a p

SystemTap's test suite is executed by tests framework DejaGnu. Here is cuted example of
two SystemTap test suites, this example w i l l be used i n next chapters for describe Result­
C l o u d work, analysis and notifications better: figure 2.1, figure 2.2.

Test Run By root on Wed Feb 12 04:52:10 2014
Native configuration i s x86_64-unknown-linux-gmi

=== systemtap tests ===

Schedule of variations:
unix

Running target unix
Using /usr/share/dejagmi/baseboards/unix.exp as board description f i l e for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface f i l e for target.
Using ./config/unix.exp as tool-and-target-specific interface f i l e .

Host: Linux intel-canoepass-10.lab.bos.redhat.com 3.10.0-86.el7.x86_64
#1 SMP Mon Feb 10 17:52:45 EST 2014 x86_64 x86_64 x86_64 GNU/Linux
Snapshot: version 2.4/0.158, rpm 2.4-9.el7
GCC: 4.8.2 [gcc (GCC) 4.8.2 20140120 (Red Hat 4.8.2-13)]
Distro: Red Hat Enterprise Linux Server release 7.0 Beta (Maipo)
SElinux: Permissive

Running ./systemtap/notest.exp ...
testcase ./systemtap/notest.exp completed i n 0 seconds
Running ./systemtap.apps/j ava.exp ...
PASS: singleparam compile
testcase ./systemtap.apps/Java.exp completed i n 84 seconds
Running ./systemtap.apps/mysql.exp ...
UNTESTED: mysql sdt app

Figure 2.1: Test suite A

Examples 2.1 and 2.2 shows that every test suite has t imestamp, Test Run By root on
Thu Feb 13 06:01:10 2014 and other addi t ional information like compiler, d is t r ibut ion
and etc. Test case running starts on the str ing that begin wi th „Runn ing" , like here:
Running . /systemtap/notest. exp . . . and finish on the string that end wi th „ tes tcase" ,
like here testcase ./systemtap/notest. exp completed i n 0 seconds. A l so each test

5

http://intel-canoepass-10.lab.bos.redhat.com

Test Run By root on Thu Feb 13 06:01:10 2014
Native configuration i s x86_64-unknown-linux-gnu

=== systemtap tests ===

Schedule of variations:
unix

Running target unix
Using /usr/share/dejagnu/baseboards/unix.exp as board description f i l e for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface f i l e for target.
Using ./config/unix.exp as tool-and-target-specific interface f i l e .

Host: Linux pes-guest-88.lab.eng.brq.redhat.com 3.10.0-86.el7.x86_64
#1 SMP Mon Feb 10 17:52:45 EST 2014 x86_64 x86_64 x86_64 GNU/Linux
Snapshot: version 2.4/0.158, rpm 2.4-ll.el7
GCC: 4.8.2 [gcc (GCC) 4.8.2 20140120 (Red Hat 4.8.2-13)]
Distro: Red Hat Enterprise Linux Server release 7.0 Beta (Maipo)
SElinux: Permissive

Running ./systemtap/notest.exp ...
testcase ./systemtap/notest.exp completed i n 0 seconds
Running ./systemtap.apps/j ava.exp ...
PASS: singleparam compile
testcase ./systemtap.apps/Java.exp completed i n 91 seconds
Running ./systemtap.apps/mysql.exp ...
PASS: mysql sdt app

Figure 2.2: Test suite B

case i n this examples belongs to some category. For example test case Running
./systemtap/notest. exp . . . belongs to category systemtap, test case Running
./systemtap.apps/Java.exp . . . belongs to category systemtap.apps. Result key is
near result value, for example: PASS: mysql sdt app has value PASS and key mysql sdt
app.

2.2 W h a t is Resul t C l o u d

A s I wrote in introduction, Resu l tC loud is a system for management of long-term testing
results. This means that Resu l tC loud collects testing results of some project, bu i ld diagrams
based on that results, compare i t , so developer can comfortably look at results or easily
find the difference between them. Currently, there do not exist new, m o d e m instruments
for the presentation of tested results in readable form, because a l l instruments that we
have now is too old, and does not extendable, as wri t ten by F i l i p Matys i n his bachelor's
work: "Tools which solve that problem, are too old and fall behind a l l modern applications.
One of the biggest problem of that tools is no opportuni ty to expand and wi th growing

G

http://pes-guest-88.lab.eng.brq.redhat.com

market of different mobile devices wi th internet connection not able to present data in
responsive form." []. Resu l tC loud has more advantages, for example in Resu l tC loud parsing
and management doing by plugins. P l u g i n is a plug-in module, that can be connected to
Resu l tC loud i n any time. E a c h plugin is wri t ten for one type of testing results. For
example plugin "De jaGnu summary v l . O " can parse and show only SystemTap results.
Thus Resu l tC loud is extendable system.

Resu l tC loud is useful for developing applications because it provides tools for present,
compare and work w i t h long-term testing results. For developers it is quite hard to look
up for some information i n a data bunch. B u t w i th Resu l tC loud developer only need to
import results of tests series into Resu l tC loud , Resu l tC loud stores it and then presents it
in a comfortable, readable form. For example: kernel of operation system need a lot of
tests that collect into series of tests and for developer every t ime look for some interesting
results take a lot of t ime, but Resu l tC loud store results in submissions, and then presents
it like diagrams and lists of results, also provides some extendet tools for search interesting
results, compares two or more submissions, thus developer can easily find or look at the
results.

2.2.1 Interna l s t ruc ture

Resu l tC loud is a complex system. Result­
C l o u d consists of two parts; frontend and
backend. Frontend is a part on the client
side, buil t w i th using of Angu la r JS . A n g u -
larJS is a JavaScript M V C (Model -View-
Controller) framework which provides tools
for bu i ld and work wi th web pages. In offi­
c ial documentation write next: „It lets you
use H T M L as your template language and
lets you extend H T M L ' s syntax to express
your application's components clearly and
succinctly. Angular ' s data b inding and de­
pendency injection eliminate much of the
code you would otherwise have to write.
A n d it a l l happens wi th in the browser, mak­
ing it an ideal partner w i t h any server
technology" []. Angu la r asynchronous con­
nect w i th backend part.

Frontend (AngularJS) Figure 2.3: Resu l tC loud architecture

Angu la r JS uses controllers for control whole
page. Control ler in Angula r is defined by a
JavaScript constructor function that used to increase Angu la r scope. Every controller has
his own template, Angula r automatical ly builds pages wi th template, according to data
getting from controller's variable scope. Control ler has variable scope that contains data
for bu i ld page. Angu la r JS also has directives. Directives extend functionality of static
H T M L elements. A custom directive replaces the element for which it is actived by his own
template. Thus it is easy to bu i ld complicated web pages that consists of more than one
elements, and include external elements from other projects.

API importing Page importing

Importing

Plugin

Parsing

T
DB Vizualization DB Vizualization

7

In Resu l tCloud , pages like login page, dashboard, project, p lugin overview page and
etc. use controller, but directives is used for bu i ld content. Elements like submissions list,
submission overview list and etc. using directives, it helps bu i ld more complicated pages, for
example submission overview page use several directives, one for bui ld ing list w i th results,
one for bui ld ing diagrams.

Backend

Backend is also divideed on the smaller part. Controllers are on the top of hierarchy. This
hierarchy can be seen i n image 2.3. Angu la r connect directly wi th controllers. Controllers
are P H P classes. Controllers has only one mission, to get request and parsed data and give
it to Services. Services are very important part, they get data and use different database
entities, other services, plugins for returning result to the controller, which returns it to
client.

There is exists a DatabaseDriver that connected to database, and use data access
object (D A O) . D A O contains a l l basic methods for work wi th database. Every entity must
have D A O , which inherit basic D A O , and then system w i l l work w i t h entity through entity's
D A O . Results of S E L E C T query converting to T S E (Test-Suite-Entity) object. T S E object
helps to work easier w i th entities.

2.2.2 C o m p o n e n t s

A l l Resu l tC loud capabilities are components like submission overview, project overview
and etc., it means that they have their own settings and should be installed manually.
Each component has his own configuration file i n which defined component's ID , which
plugins component support and other. Component system make possible to easily extend
Resu l tC loud . B u t components can not save data or change it , components only prepare
and vizualize data. Every component has his own frontend and backend part. Backend
part is a file CBuilder w i th CBuilder class, method Get prepare data and return them.
Frontend is a directive that get prepared data and vizualize them.

2.2.3 Ut i l i t i e s

Resu l tC loud has utili t ies, the most important utili t ies that was used i n this bachelor's work,
are described here:

L I N Q - idea of this u t i l i ty was gotten from C # and rewrit ten to P H P . LINQ is a
class for simplest working wi th arrays, it has a lot of methods for getting array elements,
filtering array elements and doing other operations wi th arrays that can not do default P H P
functions. In applicat ion LINQ wrap standard array, thus make complicated operations more
readable.

ValidationResult - this tool was created for data validation, it wrap validate ob­
ject and enable to validate i t . M a n y methods i n Resu l tC loud using ValidationResult.
ValidationResult has at tr ibute Data which contain validate data, attr ibute IsValid which
contain validat ion state and attr ibute Errors which contain array of strings that describe
occurred errors.

8

2.2.4 R e s u l t C l o u d presentat ion

In previous parts were described how Resu l tC loud work, which tools and frameworks are
used. B u t s t i l l no information about how Resu l tC loud present information. A s example is
used SystemTap output A 2.1.

• I . resultcloud

Plugins

DejaGnu summary vl.O I
SystemTap 1es1 results parser

;rii5-iii 101511 JMS-IZ JDIS-DI awa

Created AprlW.W16 by «d

orlv,lQcal/#/oraiect/1JsjbmJssiorW22

Recent imports

May 16r 2016 3:37:47 AW

Irnportecl by admin into project TeslProjec~t2

May 16r 2016 3:37:18 AM

Irnportecl by adinin into project Tes1Projeo12

1:28 PM
in into project TeslPrcjert

':46 PM

in into project TeslProjed

Figure 2.4: Resu l tC loud main page and plugin page

Image 2.4 show Resu l tC loud ma in page. R e d numbers i n the image is for easiest de­
scribing single features on the page.

1. There is presents installed plugins, as can be seen only one plugin is installed.

2. Th is is list of the recently impor ted submissions. Accord ing to date can be concluded
that there are two submissions from example 2.1 and 2.2.

3. This part is from plugin overview page. This is the list of projects which are i n plugin.
Every project has diagram of act ivi ty under, this diagram shows count of imported
submissions i n project for each month, something similar has github.

Image 2.5 present diagram of submission from example 2.1. Number 1 is a pie diagram,
there is only one type of diagram. Number 2 is a table w i th the same information as presents
in diagram, but i n numerical equivalent. D a t a in the images show number of occurences of
each result's type i n submission. There are 102 tests w i t h PASS result, tests w i th FAIL has
12 occurences and so on.

Image 2.6 show list of results from example 2.1.

1. This is category. Categories consists of test cases.

2. Th i s is test case, it can contain zero or more results.

3. Th i s is testing results, every result's type has his own color, for example PASS has
green color.

9

Overv iew c h a r t

Figure 2.6: Results list

2.2.5 D a t a store organ iza t ion

In the last few years Resu l tC loud increased, and now it has a much more entities than it
has before, thus i n figure 2.7 are represent only entities that w i l l be used i n this thesis.

How can be seen in image 2.7, the smallest part of each test is Result, that contain
single result value and key.

TestCase is a collection of Results, according to F i l i p Matys thesis, TestCase can
contain one or more Results, but i n practice it can contain even zero Results, and figure
2.1 shows that test case ./systemtap/notest. exp contain zero count of results.

Catogery allow grouped Test Cases. If file w i th testing results has no categories, Re­
su l tCloud create „Defaul t" category that w i l l contain a l l TestCases, for current submission.

Submission is an entity that represent submissions.
Project constits of submissions, user, created date and name. Submissions of the same

software or program part are grouped i n Projects.
Plugin are on the top of that hierarchy. En t i t y Plugin represent Resul tCloud 's plugin.

10

Component

;l
Description

Folder

Filename

Identifier

ViewType

Te m p I ate Se tti ng s I te m

Template Settings Id

Id Id entitle r

Name

Type
1 1

Label Name

Type
Required

UF Type

View Value

Date Time

ImportDateTime

Project

Name

DateCreated

:l
Password

Usern ame

Role

RKey

Rvalue

Category Plugin

- II

Name

Author

Root

About

Identifier

Figure 2.7: Resu l tC loud Enti t ies

In this bachelor's thesis I w i l l analyse Submissions, their Results, and other stuff that
may be interesting for people.

2.3 W h a t is Submiss ion

A s I wrote earlier, the submission is a results of single test suite. The smallest part of every
submission is Result . Th is part contains result of a single test from series of tests. A l l other
parts like Categories, TestCases are only organization unit .

There are two ways to import a new Submission: first is through the web page, second
is using an A P I . For import i n first way need to sign in like a user in Resu l tC loud and go to
import page, f i l l a l l fields and press import but ton, then Angu la r send request w i th file to
ImportController. To import i n second way need sign in through Resu l tC loud A P I and
send file w i th other parameters by P O S T request to import class.

Every plugin has a class Parser, for parsing files and put t ing them into Database (D B) .
W h e n client send file to ImportController or to import class, it cal l ImportService,
which find demanded plugin i n D B , then include plugin's class Parser and cal l method
Parselmport. Parser returns to ImportService SubmissionTSE object, which contains a l l
parsed data as T S E objects. ImportService than save it to D B and return successful result
to Control ler or A P I class.

11

Chapter 3

Analyzer Mechanism Design

W h a t is the biggest problem of large test suites? W h y analysis is important for tests results?
A l l this question would be answered i n this chapter and would be proposed solution.

3.1 P r o b l e m

B i g , complicated, long developed software has large test suite, because it has a lot of
behaviours, and a l l behaviours must be tested. Large test suite is a reason of results big
heap. Common ly the most of testing results are the same information. For example, i f
compare testing results from example 2.1 wi th results from example 2.2, 87% of results are
the same, and a l l test suites that is used i n this bachelor's work does not the biggest one.
Thus this is a problem for developer or tester of big system, to find some interesting and
useful information. Resu l tC loud already has features to facilitate developer's or tester's
work and save time.

To solve this problem need to propose and implement analysis mechanism. M a i n a im
of this mechanism is to check a l l new submissions and find interesting results. B u t also
mechanism must be extendable, there must be easy way to add new analysis.

3.1.1 K i n d s of A n a l y s i s

Analysis must be based on something, must analyze some specific thing, thus need to
propose analysis, that w i l l re turn useful result:

• Find strange changes like if result has a long time the same value and than it change,
it would be interesting because a lot of test cases has long t ime same result, so most of
t ime it is just useless information, but changes is interesting and useful for developer.

• Check a changes in tests, like if some test which is contained in all previous submis­
sions dissapear, it would be interesting and useful because changes in test cases by
itself.

• Check if some test had a long sequence of some bad value like FAIL or ERROR and
then take a PASS, but after take FAIL or ERROR again, it would be interesing
because using this information can help developer to find why test always failing.

• Check changes from UNTESTED to some result, it would be interesting because
unused test case started to be i n use.

12

• Check if presented a new tests, it would be interesing because new tests can br ing new
useful information.

• Check GOOD, BAD, STRANGE changes in tests, it would be interesting because a l l
changes can br ing new useful information about program work.

• Check if count of bad results is get maximum, it would be interesting because it notify
developer about that changes caused a lot of bad results.

3.2 A r c h i t e c t u r e

A l l analyzers must somehow unite into one working system. There must be a mechanism
for that. Mechanism must not be complicated and easy for extend. Thus it must easy to
control a l l analyzers and work wi th their results.

There are two types of architecture: module and bui l t - in . Modu le type means that
mechanism would be divided into modules, like "Div ide and Conquer", one of the main
advantages is easy extending. Second type is bui l t - in , which means that mechanism would
be bui l t - in into whole Resu l tC loud system, one of the ma in advantages of this type is
working speed.

I choose first method, because difference i n speed beetwen them would be to small , but
easy extending advantage is that what mechanism demand. So let start from the main
part, kernel of whole mechanism, AnalyzerController.

3.3 A n a l y z e r C o n t r o l l e r

AnalyzerController would get a l l existed
analyzers and use them. Mechanism also
would provide entity for saving analysis
data. Ana lyzer can not work wi th D B , be­
cause in practice it is normal to divide work
between separated modules, thus analyzer
only analyze input data and visualize it.
Central ized method is good for that case
because user don't need to load demanded
analyzers and work w i t h D B , a l l this oper- Figure 3.1: Ana lyzer entity
ations do AnalyzerController.

3.4 A n a l y z e r ent i ty

In the picture presents entity Analyzer 3.1, which contain four attributes. A t t r ibu te Sub­
mission has ID of the submission, that analyzer results belongs to. Project is alternative
attr ibute to Submission, it has I D of the project. Analyzer contains machine analyzer ID .
A n d Result contains analyzer results, this is a text attribute, every analyzer has his own
output results format.

Analyzer

Submission

Project

Analyzer

Result

13

Analyze 1

ResultCloud Analyze Controller Analyze 2

Analyze 3

Figure 3.2: Ana lyzer structure

3.5 A n a l y z e r C o n t r o l l e r s tructure

A s can be seen i n the image 3.2, AnalyzerController is center part of whole analyzer's
mechanism. AnalyzerController finds a l l available analyzers, when applicat ion starts,
this is good for opt imizat ion. AnalyzerController is realize easy analyzer control. One
method must run a l l analyzers that supports current submission's plugin, and returns result
which AnalyzerController write to D B . A l so AnalyzerController must consists methods
for vizual izat ing data.

3.6 A n a l y z e r s

This section w i l l describe design of Analyzers by itself and how it connected wi th analyzer
controller.

3.6.1 A n a l y z e r design

Analyzer must has a static constant at tr ibute wi th unique machine ID (under it ID , analyzer
would be identified i n Ana lyze entity), method for getting and processing data (name of the
method must be the same for a l l Ana lyzer classes) and two methods for v izul iza t ing data
(Visualize, VisualizeSingle) , for correct connecting w i t h analyzer controller. Vizua l i za t ing
methods w i l l get data from AnalyzerController which get it from D B and return it in
J S O N format.

M e t h o d for process data gets in parameters: array of submissions, new submission and
plugin name. It must returns ValidationResult object, w i th string in D a t a attribute, or
array of strings if it has a few results, or it can returns empty result, w i t h nul l i n D a t a
attribute.

Also analyzer has an attr ibute called is_interesting which contains status of previous
analysis, and if analysis results is interesting it return true, i n another case false, it need to
notifying only about interesting submissions.

3.6.2 A n a l y z e r v izua l i sa t ion

Every submission has his own analysis results, those results would be presented i n personal
page. Image 3.3 show that every analyzer has some space on that page. Because different

14

Analyzer name Analyzer name 2

Analyzer name 3

Figure 3.3: Template

analyzers use different methods for vizual izat ion, there is need to specificate different possi-
bilites to vizualize information. A s mentioned in chapter 2 Resu l tC loud uses Angu la r JS for
vizualize data and templates, so every analyzer must have his own template and Angu la r JS
directive. Image shows layout of analysis results.

15

Chapter 4

Analyzer Mechanism
Implementation

This chapter w i l l describe mechanism's implementat ion. Mechanism is implemented in
P H P and JavaScript, because that languages was used for implementat ion Resu l tC loud .
Mechanism would be implemented according to proposals i n previous chapter.

4.1 Structure

Because analyzers are not plugins or any other components i n Resu l tC loud , analyzers w i l l
be extentions. Whole system has own directory analyzing. W h i c h contain one directory
for analyzers - analyzers, and one for templates - templates. Root directory also contain
AnalyzeController.

Ana lyz ing starts only after new submission would be inserted into D B , i n ImportService
class.

4.2 E n t i t y

Analyzer entity was converted into Resu l tC loud acceptable format. A s a result, three classes
were created: AnalyzerDao, AnalyzerTSE, AnalyzerService and edited table instal lat ion
class. AnalyzerDao class for work wi th Analyzer table. AnalyzerTSE class is for easily
work wi th AnalyzerDao returned data. AnalyzerService class is for different and more
complicated operations wi th data.

4.3 A n a l y z i n g

4.3.1 A n a l y z e C o n t r o l l e r

AnalyzeController is a kernel of whole analyze mechanism. AnalyzeController is im­
plemented like static class (but P H P does not support static classes, thus a l l methods are
static), because creates more than one class object unnecessarily. Image 4.1 describe good
how whole mechanism is implemented. AnalyzerController connect w i t h analyzers, and
through AnalyzeService writes data to D B and get it from D B .

16

Figure 4.1: Ana lyzer implementat ion

W h e n AnalyzeController be included, it executes InitAnalyzers method, that scan
analyzers folder, puts a l l available analyzers together and save it to $AnalyzerList attribute.
M e t h o d GetAnalyzersList w i l l return LINQ object w i th $AnalyzerList.

analyze method gets a l l analyzers from $AnalyzerList, and cal l it analyzer method.
Then returned value, or values it write to D B , and check if results are interesting by
getting boolean value from analyzer method islnteresting, if results are interesting it add
analyzer ID to $interesting_analyzers array. Analyzers ID which has interesting value
can get by method GetlnterestingAnalyzers. M e t h o d analyze get parameters: currently
uploaded submission - $submission, LINQ object w i th older submissions - SsubmissionList
and plugin name - $plugin. Re turn ing ValidationResult object w i th the analysis status.

4.3.2 C h a n g e s C h e c k e r

ChangesChecker is a simple analyzer created like example of analyzer structure. Analyzer
gets new submission and the last one, compare them, i f they have differences, analyze results
become interesting. There are three categories of changes: G O O D , B A D , S T R A N G E .
Output result format is J S O N . It supports only „ s y s t e m t a p " plugin.

Each analyzer must has method analyze, which analyzing input submissions according
to plugin name. Parameters are the same as has method analyze in AnalyzeController.
Output results are i n format J S O N , it uses J S O N because of it simplicity. At t r ibu te
$is_interesting is boolean type, and became true only i f analysis results are interesting,
otherwise it is false. A s mentioned i n previous part, analyzer has method islnteresting,
which return value of $is_interesting attribute.

ANALYZER ID is constant attribute, that contains unique analyzer ID , that ID is used
i n Analyzer table, like analyzer identifier. JS_CONTROLLER is also constant attribute
which contains name of JavaScript file w i t h Angu la r JS directive, it is used for vizual izat ion
analyzing results.

ChangesChecker get last imported submission and new imported submission, than by
using foreach construction get each category from last imported submission (let ca l l it

17

category 1) and t ry to find category wi th the same name in new imported submission (let
cal l it category2), if the same category not exists it get next category, othewise it doing
the same wi th test cases, it get each test case from categoryl and t ry to find test case wi th
the same name i n category2, if test cases wi th the same names was found, it compare their
results, if results w i th the same key has different value and differnce is G O O D (F A I L —>
P A S S) , B A D (P A S S -)• F A I L) , S T R A N G E (F A I L -> E R R O R) , it increment variable that
responsible for one of the differnce types and in the end return ValidationResult object
w i th result i n J S O N format. Example of result in J S O N format:

{
"Good": 8,
"Bad": 3,
"Strange": 0

}

4.3.3 U n t e s t e d A n a l y z e r

UntestedAnalyzer is a sample analyzer, it looks for changes i n submission's results, from
U N T E S T E D to any other value. It has ANALYZER_ID - „ U n t e s t e d A n a l y z e r " and
JS_CONTROLLER - „ u n t e s t e d _ a n a l y z e r . j s " . It support only „ s y s t e m t a p " plugin. Output
result's format is J S O N . It works i n the same way like ChangesChecker, it get last imported
submission and compare it w i th new imported submission, if results w i th the same key have
different value and last impor ted has value U N T E S T E D , analyzer save path to result and
new value to object. Here is an example of that object i n J S O N format:

{
"Categories": {

"systemtap.apps": {
".\systemtap.apps\mysql.exp": {

"mysql sdt app": "PASS"
>

}

}
}

4.4 V i z u a l i z a t i o n

A s was mentioned i n chapter 2 Resu l tC loud use Angu la r JS for v izual iza t ion data. A n -
gularJS is JavaScript M V C (Model-View-Control ler) framework, every page has own con­
troller, thus analyzer page must has it too. AnalyzeController. j s is a file that contains
controller for analysis result page, analyze.html is a page template. Some of the page, that
contain several sort of data, bui lded wi th the simplest part Components, each component
has ind iv idua l settings, and ind iv idua l Angu la r directory. E a c h component has backend,
front end folder and configuration file config.xml w i t h a l l settings and supported plugins.
Backend folder consists CBuilder class, which return prepared data for representation.

Analyzer page would use only one component analyzeOverview.lt wouldn' t have any
settings, and w i l l support a l l plugins. Angu la r directory firstly get array of analyzing
results for current submission, than for each analyzer find own Angu la r directory, which

18

file:///systemtap.apps/mysql.exp
http://analyzeOverview.lt

1

Figure 4.2: Implemented template

put analyzer data to template and represent i t . There some interesting part of code, how
implemented inserting analyzers directive into analyzeOverview component template:

$scope.buildAnalyzerView = function (key) {
\\ Check i f key not empty

i f (!$(key).length) {
\\ Make new scope clone from rootScope

var data2 = $rootScope.$new();
\\ Include into cloned scope analyzer data
data2.data = $scope.data[key];
\\ Compile analyzer directive tag with cloned scope
var e l = $compile(,< ; l + key + '/>') (data2);
\\ Put result into page
$("#"+key).append(el);

}
}

Image4.2 present how it actually look. This page was created for submission from
example 2.2. Those two cards represent results of two analyzers, in the head of each cards
can be seen name of analyzer. In the content of cards represent results of analyzing example
2.1 and example 2.2. Th is results show that there are 8 good changes, and one test is not
UNTESTED anymore.

CBuilder class for analyzeOverview get stdClass object w i th at tr ibute Submission
- submission I D . A n d cal l AnalyzeController method VisualizeBySubmission. Visualize-
BySubmission get submission I D , for each analyzer get last inserted result, and give it to
analyzer's method VisualizeSingle, which parse results and return it like array. Then Visu­
alizeBySubmission puts vizual izat ion data together into associative array the key analyzer
ID and value analyze results, and return i t .

19

Chapter 5

Notification design

W h y it is important to notificate user? W h o w i l l use this extention and how it has an
impact? This chapter w i l l describe notification problems and ways to solve them.

Notif icat ion mechanism must be flexible, and easy to extend. This chapter contains pro­
posals for implement notification mechanism. Here w i l l consider mechanism's architectures,
how implement notifiers better and notifications settings.

5.1 P r o b l e m

Notif icat ion is not only important in Resu l tC loud , but also in other applications and sys­
tems, such as Github or Google Calendar. Notifications helps users always be informed
about events. Github notificate about what happend i n user's repository or in repository
to which the user is subscribed. Google Calendar notificate about events that w i l l happen
soon. Resu l tC loud w i l l notificate about a l l interesting information that was found during
analysis.

Different categories of people prefer different notification's channel, for example: teenagers
prefer notifications through Facebook or Snapchat, but developers or testers prefer Slack,
E m a i l , or even R S S . Thus it is important to choose users category. Resu l tC loud is system
for managment testing results and mostly it use developers or testers, therefore prefered
channels are E m a i l , R S S , Slack and other.

5.1.1 Not i f i er types

W i t h i n the confines of this bachelour's work, must be implemented these types of notifiers:

• E m a i l - notifications w i l l be sent by email , this is private notifier

• Twit ter - notifications w i l l be sent into prepared twitter account, public notifier

• R S S - notifications w i l l be present i n R S S file, public notifier

Next notifiers can be used for extending application:

• Facebook - notifications w i l l be present i n some group i n Facebook, this is public
notifier

• Telegram - notifications w i l l be sent by the bot i n telegram to a l l subscribed users,
public notifier

20

5.2 A r c h i t e c t u r e

Like i n case wi th Ana lyze Controller , notifications methods would be divide to the separated
classes and Notif icat ion Control ler w i l l control them. B u t as opposite to analyzers there are
several types of notifiers. Fi rs t type is public notifiers, it means that notifications would
be sended into some shared or public resources, like Twitter for example. Pr ivate is means
that it notifies each user separetly. Accord ing to this private notifiers must has settings,
where user can set i f he want to get notifications or not, and other options.

5.3 N o t i f i c a t i o n Contro l le r

Notif icat ion controller would has method for easy control notifications, which get a l l de­
manded fields, as title, body, bodyShort (for resources that accept only short messages),
adreses (list of a l l adreses that must recieve notification) and according to them send no­
tifications. A l so Notif icationController must provides methods for getting private and
public Notifiers. W h e n it included, it scans space for available Notifiers.

5.4 N o t i f i c a t i o n settings

There must be a mechanism for adding settings to Notif i e r easy, and settings must be
present at user's settings without edit ing any template for i t . B u t user can edit only private
settings, because public notifier settings are shared wi th other users, Resu l tC loud does not
support user's hierarchy, thus nobody can edit public notifier settings.

Resu l tC loud provides good tools for work wi th settings, like entities TemplateSettings
and TemplateSettingsItem. TemplateSettings is for saving setting's template informa­
t ion into D B , such as setting type, setting name and etc. TemplateSettingsItem is for
save settings value.

5.5 Not i f i e r

N o t i f i e r is a base part of notification mechanism, without at least one notifier it is useless.
N o t i f i e r provides notification by itself, each notifier has own notification method, for
example, by email , or Facebook.

5.5.1 Not i f iers archi tec ture

Every N o t i f i e r must have unique identifier(ID) for correct processing, by that ID Notif i c a ­
tionController would identify notifiers, and it would have reference to notifier by this I D
i n settings template. N o t i f i e r must have one method for notification, and one method
wi th settings. E a c h notifier has the same settings, thus that method can be picked out
into some basic class, which would be inherited by notifiers classes. N o t i f i e r must have
attr ibute that identifies it is like private or public notifier.

A s a notify method i n Notif icationController, notify method in N o t i f i e r get the
same parameters, except address, address is not associative array, but it is a simple array
wi th addresses supported i n that notifier.

21

Chapter 6

Implementation of notification
mechanism

This chapter contains description of notification mechanism implementation. A s can be seen
in image, Notif icationController is a kernel, a l l notifiers are extended from BaseNotif i e r
class.

6.1 Structure

Like analyzers, notification mechanism is not a plugin or any other Resu l tC loud kernel part,
thus it also be i n extentions folder, in own notification folder. Notif icationController
is also located in root directory. A l l notifiers are located in notifiers folder.

Notif icat ion starts only if analyzer return interesting result.

6.2 Settings

Basical ly a l l notifers have same setting, this settings would enable or disable notifier's
notifications. B u t as mentioned i n previous chapter, only private notifiers can use settings.
Notif icat ion mechanism does not work wi th settings, because list of addresses and notifiers
must be assamble by those who send, notification mechanism only takes this list and send
notification.

Resu l tC loud has tools for settings, not only i n server side, but also i n client side it has
automatic form generation for settings. Here is example of default getSettings method in
BaseNotif i e r class, to understand how set up settings better:

public function getSettings()
{

$settings = arrayO ;
$settingsltem = arrayO ;

\\ Setting label
$settingsltem['label'] = "Get no t i f i c a t i o n s by this way";
\\ Setting ID for TemplateSettings entity
$settingsltem ['identifier'] = "get-notify";
\\ Default value

22

$settingsltem['default'] = "1";
\\ F i e l d type
$settingsltem['type'] = TemplateSettingsItemType::CHECKBOX;
\\ Is setting required
$settingsltem['required'] = 'true';
$settings[] = $settingsltem;

return §$settings;
}

6.3 N o t i f i c a t i o n

Put notification data

Notificaion Controller

Notifierl T .

Notifier 2 Base Notifier

Notifier 3

Figure 6.1: Implementation of notification mechanism

6.3.1 N o t i f i c a t i o n C o n t r o l l e r

Like i n case w i t h AnalyzerController, NotificationController is static too, a l l methods
are static, because there is no reason to create more than one class instance i n applicat ion.
Notif icat ion mechanism schemeG.l showing how NotificationController connecting wi th
other mechanism elements.

W h e n NotificationController is included, it starts method preLoad, this method
scans notifiers folder, include and assamble array w i t h a l l available notifiers. There is exist
a method for notifing notify (title, body, bodyShort, to), where t i t l e - is t i t le of notification
message, body - the longest body text, bodyShort - short body of the message but no longer
than 140 letters, to - is an array of a l l adresses wi th the key of notifier I D . M e t h o d notify
calls notifier's function notify only for notifiers which have their IDs in to parameter's key.

NotificationController also has different sorts of get's methods: getNotifylds (re­
turns IDs of a l l notifiers), getPrivateNotifiers (returns array wi th IDs only for private no­
tifiers) and getNotifierByld (returns notifier object by notifier ID) .

6.3.2 Not i f i er

Every notifier must inherit BaseNotif i e r class w i th default settings, and i f it is need to
define own method getSettings that i n the begining cal l parent method. A l so notifier must
have unique I D i n constant NOTIFYID. NOTIFIER_PUBLIC is constant, which con­
tains boolean value, if notifier is public it contain true, otherwise false. The most important
method is notify, it has same parameters such as method notify in NotificationController,
except last address parameter, notifier would not get associative array, but gets a simple
array wi th addresses.

23

Need to learn notifications from popular for developers applications or systems for better
understanding what users wants to see i n notification body. The most popular service is
Github. Here is example of Github notification:

Is there some script to autogenerate API description or does i t have to be
modified manually?

Please, when you have time, provide description on what has to be done
after API update. Thank you

Reply to this email d i r e c t l y or view i t on GitHub.

That notifications have only body w i t h content of issue's comment and footer w i th l ink
to that comment, nothing else. Thus notification must have only descrabing and l ink to
the page where user can find more information.

6.3.3 N o t i f y l

Notifyl is a private notifier that send notifications by email . It gets array wi th email
addresses and sends emails v i a default P H P mail function. Here is notifier parameters:

const N0TIFY_ID = " n o t i f y l " ;
const NOTIFIER_PUBLIC = false;

Here is example of notification message:

Submission with i d 2 has interesting results according to [ChangesChecker,
UntestedAnalyzer] analyzers, for more information go there
http://corly.local/#/project/1/analyze/2

6.3.4 T w i t t e r

Twitter is a public notifier that sends new twittes w i th some interesting information to
twitter account. N o w it connected to my account cyberbond95 . If analyzer would have
interesting results it sends new twit t to my account, and everyone can see it.

Twitter work wi th Twit ter A P I by using TwitterAPIExchange l ibrary, which was sug­
gested i n Twit ter A P I documentation [G]. It has M I T license. Page of TwitterAPIExchange
wi th examples https://github.com/J7mbo/twitter-api-php.

6.3.5 R S S

RSS is a public notifier that create or update rss.xml file i n root folder, rss.xml presents
one news for each project, i f RSS get news for already existing in rss.xml project, it updates
news, otherwise it just create new one. Current actual version of R S S is 2.0, according to
specification [7] second version is simplier than first.

RSS works wi th R S S by using SimpleXML that is default i n most P H P versions. Here
R S S example:

24

http://corly.local/%23/project/1/analyze/2
https://github.com/J7mbo/twitter-api-php

<?xml version="l.0"?>
<rss version="2.0">
<channel>
<title>ResultCloud News</title>
<link>http://result-cloud.org/</link>
<description>ResultCloud analysing results</description>
<language>en-us</language>
<docs>http://result-cloud.org/rss.xml</docs>
<item>
<title>Project TestProject has new interesting submission</title>
<description>Submission with i d 22 has interesting results according
to [ChangesChecker] analyzers, for more information go there
http://corly.local/#/project/l/analyze/22</description>
<link>http://corly.local/#/project/l/analyze/22</linkx/item>
</channel>
</rss>

25

http://result-cloud.org/%3c/link
http://result-cloud.org/rss.xml%3c/docs
http://corly.local/%23/project/l/analyze/22%3c/description
http://corly.local/%23/project/l/analyze/22%3c/linkx/item

Chapter 7

Evaluation

This chapter w i l l describe what was d id during bachelor's work, how it can be extended,
how was solved some problems.

7.1 A n a l y z e r s

Dur ing making bachelor's work was implemented analysis mechanism: AnalyzerController
and two analyzers. A l l stuffs that was described in this chapter was implemented and func­
t ioning. Also mechanism are extendable, thus there is no problem to add new analyzers or
new methods to i t . Analys is results can be displayed in any format (list, diagram and etc.).

There are a lot features that can be implemented i n the future. To AnalyzerController
can be added settings for specificate projects and analyzers that w i l l be analyzing i n setted
up projects. A l so to analyzer mechanism can be added configuration file i n X M L format,
such as i n components. Proposals about analyzers can be found i n subsection 3.1.1.

7.2 Not i f i cat ions

Notif icat ion mechanism support adding new notifiers (if notifier was implemented like it was
described in this chapter) and extending settings. Notif icationController and three type
of notifiers was implemented. One of notifiers is private email notifier. Other two notifiers
are public . Proposals about notifiers can be found i n subsection 5.1.1. A l so new settings can
be added to notification mechanism, for example, user can choose from which analyzers he
wants get notifications. A d d configuration file to notification mechanism. Make ind iv idua l
tab i n user's settings for notifications. Make for each project own notifications settings,
that also be ind iv idua l for user.

Dur ing testing was found two problems: email sending on my computer get a lot of
time, Twit ter do not allow to send two twits w i t h the same content. F i r s t problem is
a local and related wi th software on my computer. Second problem is actual only when
debuging, because i n product ion content always w i l l be different, i n product ion current I D
value for table never be discard, thus u r l i n twit always be unique.

26

Chapter 8

Conclusion

In this bachelor work was proposed mechanism of analyzing tests results and notifing users
about it , this mechanism must be easy to extend. There must be available more than one
notifier for wider using.

Mechanism was buil t under Resu l tC loud system by using P H P and JavaScript (A n ­
gular JS framework). It consists of two parts: Analyzers and Notifications. Implemented
kernel (AnalyzerController) and two analyzers i n analyzer part. Implemented kernel as
well (Notif icationController) and three notifiers in notification part. A n d other parts
was implemented for integrate mechanism into Resu l tC loud , like services for work wi th D B ,
different Angu la r directives for vizual izat ion data.

Mechanism can be extending by adding new analyzers and notifiers. A l so can be ex­
tending notification mechanism by adding new settings, for example: user can choose about
which analyzers he wants get notification. E x t e n d analyzer mechanism, add to each ana­
lyzer configuration file, and make it switchable like components i n Resu l tC loud .

27

Bibliography

[1] SnapshotTesting - Systemtap Wiki. [online], 2007. U R L :
h t t p s : / / s o u r c e w a r e . o r g / s y s t e m t a p / w i k i / S n a p s h o t T e s t i n g .

[2] R o b Savoye; Ben El l i s ton . Dejagnu documentation, [online], 2014. U R L :
h t t p s : / / w w w . g n u . o r g / s o f t w a r e / d e j agnu.

[3] Doro ta Kolawa , A d a m ; Huiz inga . Automated Defect Prevention: Best Practices in
Software Management. W i l e y - I E E E Computer Society Press., 2007.

[4] F i l i p Matys . Webový nástroj pro správu výsledků dlouhodobého testování Master 's
thesis, F I T V U T v B r n ě , 2014. [Online; cit . 16.5.2016].

[5] Angu la r JS team. AngularJS Official Documentation, [online], 2016. U R L :
h t t p s : / / d o c s . a n g u l a r j s . o r g / g u i d e / i n t r o d u c t i o n .

[6] Twit ter . Twitter API documentation, [online], 2016. U R L :
h t t p s : / / d e v . t w i t t e r . c o m / o v e r v i e w / d o c u m e n t a t i o n .

[7] Dave Wine r . RSS 2.0 Specification, [online], 2003. U R L :
h t t p : / / c y b e r . l a w . h a r v a r d . e d u / r s s / r s s . h t m l .

28

https://sourceware.org/systemtap/wiki/SnapshotTesting
https://www.gnu.org/software/dej
https://docs.angularjs.org/guide/introduction
https://dev.twitter.com/overview/documentation
http://cyber.law.harvard.edu/rss/rss.html

Appendix A

C D Content

• Source codes

• Tests data

• Source code of documentation

• Documentat ion in P D F

