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ABSTRACT

The thesis contains a theoretical review of information about intracranial aneurysms,
their diagnosis and therapy. It also summarizes the methods of object detection by both
classical and machine learning methods and includes a brief description of some methods
of intracranial aneurysm detection. In the practical part, several proposed approaches for
segmentation and detection of these aneurysms using U-net neural network are evaluated
and compared.

KEYWORDS
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ABSTRAKT

Prace obsahuje teoreticky prehled informaci o intrakranialnich aneurysmatech, jejich di-
agnostice a terapii. Dale shrnuje metody detekce objekti jak klasickymi metodami, tak
metodami strojového uceni a také obsahuje strucny popis nékterych metod detekce in-
trakranialnich aneurysmat. V praktické ¢asti je vyhodnoceno a porovnano nékolik navrh-
nutych postupl segmentace a detekce téchto aneurysmat pomoci neuronové sité U-net.

KLICOVA SLOVA
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ROZSIRENY ABSTRAKT

Uvod

Detekce intrakranidlnich aneurysmat (IA) je velmi dulezitd, protoze tento problém
postihuje 5-10 % populace. V mnoha pripadech je pfitomnost aneurysmatu zjisténa
a7 pii subarachnoidélnim krviceni (SAH) jako nésledek ruptury tohoto IA. Umrtnost
na SAH zpusobenou prasklym aneurysmatem se pohybuje mezi 23 % a 51 % a
pomeérné velké procento lidi ztstava s trvalymi nasledky. Proto je nutné zamérit
se na detekci IA i pred jejich prasknutim, coz je velmi slozity a narocny tukol. K
diagnostice se pouziva mnoho metod, ale i tak je nalezeni aneurysmatu na téchto
snimcich obtizné a lékati musi byt velmi zkusSeni. Proto je dilezité zamérit se na
vytvoreni metody pro detekci aneurysmat, kterda by lékartm praci zjednodusila a
urychlila.

Prvni casti této magisterské prace je literarni reserse, ktera se zabyva prob-
lematikou intrakranidlnich aneurysmat, popisem anatomie a fyziologie cévniho sys-
tému mozku. Zabyva se také diagnostikou a lé¢bou intrakranialnich aneurysmat.
Zminuje se také o vysetrovacich metodach a o metodach detekce objekta. Ty jsou
rozdéleny na tradiéni metody a metody strojového uceni. U metod strojového uceni
je zminéna také segmentace pomoci U-netu, kterd je dale vyuzivana v praktické
casti.

Prakticka cast této magisterské prace se zabyva detekei intrakranialnich aneurys-
mat a subarachnoidalniho krvaceni. K detekci je vyuzita neuronova sit U-net, kterd
snimek segmentuje. V takto segmentovaném snimku je pak nelezen stied segment,
jako pozice aneurysmat a SAH. Protoze je samotna detekce velmi zavisla na kvalité
segmentace, je navrzeno nékolik segmentac¢nich pristupii. Jednd se o segmentaci
pomoci celych snimku (fezu), segmentaci obrazu po Castech a také 3D segmentaci.
Protoze pri segmentaci vznika velké mnozstvi faleSné pozitivnich segmentii, byly
navrzeny metody na jejich eliminaci, s cilem zlepsit detekci. Detekce se provadi
vypoctem centroidu vytvorenych segmentii z obrazovych (geometrickych) momenti

ziskanych z jejich kontur.

Popis reseni

V této préaci byly pouzivany NIfTT data z time-of-flight magnetické rezonance. Data
byla poskytnuta od autori projektu ADAM (Aneurysm Detection and Segmen-
tation). Soubor dat obsahuje tdaje o 113 piipadech. Jednd se o 23 unikétnich
pacienti s aneurysmaty a SAH, 35 zékladnich a 35 naslednych vysetfeni s aneurys-

matem a SAH a také 20 zdravych pacient. Soucasti dat byly také anotace v podobé



binarni masky. VSechny snimky byly jiz predzpracovany pomoci korekce pro tipravu
zkresleného pole. Pro dalsi zpracovani a snizeni vypocetni naroc¢nosti byla pouzita
stejna velikost voxelu pro vSechny snimky s délkou hrany 1 mm. Data byla rovnéz
normalizovana na rozsah od 0 do 1 s vyuzitim maxima a minima v obraze.

V réamci pripravy dat bylo dale vSech 113 vySetfeni ndhodné rozdéleno na 84
trénovacich a 29 validac¢nich. Déle pro snazsi praci s daty byl vzdy vytvoren seznam
cest k danému vySetfeni a index vybraného fezu. Pro trénovani sité bylo vybrano
jen nékolik Tezu tak, aby do sité nevstupovalo prilis mnoho fezi bez aneurysmat.

VsSechny navrzené pristupy jsou zalozené na segmentaci pomoci U-netu. Prvni
pristup segmentuje cely Tez najednou, ale kviili velkému poméru mezi poctem pixel
pozadi a pixelll aneurysmat je potfeba vyuzit loss funkci, kterd kompenzuje pozi-
tivni odpovéd. V tomto pripadé byla pouzita primérna hodnota Binarni vzajemné
entropie a Dice funkce. Pro optimalizaci byl pouzit algoritmus Adam. Sif byla uc¢ena
160 epoch s pocateénim ucicim krokem le™, ktery byl po prvnich 40-ti epochich
snizen o 0.1.

Druhy pfistup je podobny tomu prvnimu. Vyuziva stejny U-net, ale je doplnén
naslednym krokem eliminace falesné pozitivnich segmenti. Pro tuto eliminaci byly
vyuzity dvé metody. Prvni metoda je zaloZena na eliminaci pomoci malé konvoluc¢ni
neuronové sité, kterd klasifikuje, zda se jedna o falesny segment, nebo aneurysma.
Paklize jde o falesny segment, tak je vyplnén cernymi pixely. Druhd metoda je
zalozena na opakované segmentaci jednoho snimku pod rtznymi thly (dhly v rozmezi
—2° az +2°). Touto metodou dochézi k eliminaci prevazné malych segmentii.

Treti pristup opét tesi velky pocet pixeltt pozadi. Hlavni myslenkou tohoto piis-
tupu je rozdéleni fezu do nékolika ¢asti, segmentace téchto ¢asti a zpétné poskladani
fezu. Tento pristup nemohl byt pouzit pro uceni sité, jelikoz by do ni vstupovalo
prilis mnoho prazdnych snimki. Proto byla pouzita funkce na vytvoreni nahodnych
vyTezi v okoli aneurysmat. Takto do sité vstupovali pfevazné snimky s aneurysmaty
a nékolik snimkt bez nich. Pro tento U-net byla vyuzita stejna optimalizace a loss
funkce, jako u prvniho pristupu. Pouze zde byla snizena vaha pozitivni odpovédi.
Sit byla u¢ena 165 epoch s po¢ateénim uéicim krokem le~*, ktery byl po prvnich
60-ti epochach snizen o 0.1.

Posledni pristup se vénuje segmentaci a detekci aneurysmat v 3D prostoru. Kvuli
tomu byla upravena architektura sité nahrazenim 2D konvolu¢nich a poolingovych
vrstev za 3D vrstvy. Opét je zde pouzita stejnd optimalizace a kombinace loss
funkci. Tento U-net segmentuje 3D kostky o velikosti 40 x 40 x 32, tedy musi dojit k
rozdéleni ptivodnich dat na tyto kostky a k naslednému poskladani zpét do ptivodni
podoby. Uéeni probihalo 125 epoch s po¢ateénim uéicim krokem le~*, ktery byl po

prvnich 45-ti epochéach snizen o 0.1.



Vyhodnoceni

K vyhodnoceni vysledki bylo vybrano nékolik statistickych metrik. Pro segmen-
tacni problém byly vybrany Dice koeficient, Precision, Recall a Pozitivni predik-
tivni hodnota (PPV). K vyhodnoceni presnosti detekce bylo vyuzito Senzitivity a
Manhattanské vzdalenosti centroidu realnych aneurysmat a ziskanych segmentti. V
praci bylo navrzeno nékolik segmentacnich pristupt, jelikoz kvalita detekce se odviji
prave od kvality segmentace.

Jako nejlepsi segmentacni pristup se jevi, na zakladé vysledki, segmentace celych
fezll s eliminaci pomoci priniku segmentovanych snimkt. Dice koeficient tohoto
pristupu dosédhl hodnoty 0.90, pozitivni prediktivni hodnota pak hodnoty 0.84, coz
znamena, ze se zde nevyskytuje prilis velké mnozstvi falesné pozitivnich segmentu.
7 pohledu detekce ale tato metoda neni az tak tspésna, jelikoz Senzitivita dosahuje
pouze hodnoty 0.60, tedy pomérné velké mnozstvi aneurysmat nebylo detekovano.

Naopak pristup vyuzivajici segmentace fezi po ¢astech s eliminaci FP segmentii
nedosahuje ptilis dobrych hodnot Dice koeficientu, ale Senzitivita zde saha az na
hodnotu 0.76. Je zde tedy detekovano vice aneurysmat, avsak podle PPV se zde
vyskytuje také hodné falesné pozitivnich segmentti, a proto je velmi tézké rozhod-
nout, ktery z téchto pristupt ma kvalitnéjsi detekci. Pokud by doslo k lepsi eliminaci
falesné pozitivnich segmenti v pristupu segmentace rezi po ¢astech, pak by vysledné
detekce prekonala pristup s vyuzitim celych snimki.

Pristup vyuzivajici 3D segmentaci nebyl prilis ispésny a to hlavné kvili vytvareni
velkého poctu FP segmenti pri segmentaci. Velkym problémem byla chybna seg-
mentace v oblastech cév a nékterych struktur, které svymi vlastnostmi mohly pripomi-
nat aneurysma, ¢i subarachnoidalni krvaceni. Kvtli vysokému poctu falesné pozi-
tivnich segment sice dosahl tento pristup nizkych hodnot Manhattanské vzdalenosti,

avsak zaroven tento problém snizuje tspésnost detekce.
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Introduction

Detection of intracranial aneurysms (IA) is very important, since it affects 5-10 %
of the population [2]. In a lot of cases, the presence of aneurysm is only discovered
during subarachnoid haemorrhage (SAH) as a consequence of a rupture of this IA.
The mortality of SAH caused by ruptured aneurysm is between 23 % and 51 %
and moreover a fairly large percentage of people will remain disabled [28]. There-
fore, it is necessary to focus on the detection of IA before they rupture, which is
very complex and challenging. Many methods are used for diagnosis, such as dig-
ital subtraction angiography (DSA), computed tomography angiography (CTA) or
magnetic resonance angiography (MRA). But even so, finding an aneurysm in these
images is difficult and the doctors must be very experienced. Therefore, it is impor-
tant to focus on creating an aneurysm detection algorithm, such as machine learning
algorithm, that would support and facilitate the work of doctors.

The first part of the master’s thesis describes the theory. It deals with the prob-
lem of intracranial aneurysms, description of anatomy and physiology of the vascular
system of the brain and the diagnosis and treatment of intracranial aneurysms. It
mentions CT angiography, digital subtraction angiography and most of all magnetic
resonance imaging and its use in the diagnosis of IAs. Methods of object detec-
tion are discussed as well. These are divided into traditional and machine learning
methods. In machine learning methods, a U-net segmentation is mentioned, which
is further exploited in the practical part.

The practical part of this master’s thesis deals with the detection of intracranial
aneurysms and subarachnoid haemorrhage using U-net prior segmentation. Since
the success rate of detection is highly dependent on the segmentation accuracy,
several segmentation methods were proposed. These are segmentation using whole
images, segmentation using patches of images and 3D segmentation. Since a large
number of false positive segments were generated during segmentation, methods for
eliminating these segments were proposed to improve the detection success rate. The
detection is performed by calculating the centroids of the obtained segments from
the image (geometrical) moments obtained from the contours of these segments.

Based on the results described in the last part of the thesis, the approach using
full images followed by elimination of FP segments, and approach using patches of
image with elimination seem to be the best. The elimination is done by intersecting
several identical images segmented at slightly different angles. It is really hard
to determine which one of these approaches was best. First approach mentioned,
had very good PPV value of 0.84, but Sensitivity was not as good as in the other
approach, whereas the approach using patches of images had worse PPV value, so

there was significantly more false positive segments even after the elimination.
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1 Intracranial aneurysms

Intracranial aneurysms (IA) are types of lesions that arise from the widening of
arteries at the site of their branching in a human brain, resulting in a bulge as
shown in figure[I.Ib] Some of the aneurysms then lead to rupture and subarachnoid
haemorrhage (SAH) with serious consequences. The cause of their formation is
still uncleare.[1] If we compare the incidence of SAH with the overall incidence
of aneurysms, it is clear that the majority of aneurysms do not rupture, making
their detection very challenging. Among the factors that predict whether or not an

aneurysm will rupture are the size and location of the aneurysm.[2]

1.1 Anatomy of the vascular system of the brain

Although the weight of the human brain is only a fraction of the weight of a human,
it is supplied with up to 15 % of the blood from the resting blood circulation. The
brain is supplied by two carotid arteries and two vertebral arteries. [3]

The carotid arteries are then divided into the internal carotid arteries, entering
the circle of Willis, which is shown in image [1.1al and the external carotid arteries,
which supply the front of the brain. The vertebral arteries supply the posterior parts
of the brain, the spinal cord, cerebellum and brainstem and their connection creates
the basilar artery, which is part of the Circle of Willis, also known as the arterial
loop. This, often symmetrical, arterial loop is connecting the left and right cerebral
hemispheres and the anterior and posterior cerebral circulation.[4] An important
finding is that more than half of the cases of intracranial aneurysms are located

directly within the circle of Willis and its major branches.[3] [§]

1.2 Physiology of the vascular system of the brain

The human brain has a limited capacity to store the nutrients necessary for its
proper function. At the same time, its metabolism is very fast and therefore it is
essential that it is constantly supplied with nutrients and oxygen, for which precise
regulation of cerebral blood flow is critical. For example, a significant reduction in

blood flow results in damage, subsequent unconsciousness and even death. [4]

1.2.1 The importance of partial pressures in the brain

An important aspect of cerebral perfusion is the partial pressure of oxygen (P,0Os)
and especially the partial pressure of carbon dioxide in arterial blood (P,COs).[6]

The brain is very sensitive to these partial pressures compared, for example, with

14



peripheral blood vessels, and changes in these are crucial. With hypercapnia (in-
crease in P,C'Oy), blood flow through the brain increases and conversely, hypocapnia
(decrease in P,C'Oy) decreases this flow. This affects the amount of C'O, in tissue .
If there is no oxygen in the body, ventilation is increased and therefore hypocapnia
occurs, thus changes in the partial pressures of oxygen and carbon dioxide in arterial
blood affect both cerebral blood flow and ventilation.[5]

1.2.2 Brain metabolism

The brain is a highly complex interconnected network that enables communication
between brain units. Certain parts of this network contain significantly more con-
nections than others. These parts are called hubs, which have increased metabolism
in both the resting and active stages of the brain. Brain metabolism refers to the
consumption of glucose by the brain for energy production, primarily by oxidative
phosphorylation and by aerobic glycolysis. It can be stated that metabolism varies

proportionally with cerebral blood flow.[7]

1.3 Pathology of intracranial aneurysms

Aneurysms can occur in a variety of sizes. They are generally divided into small
aneurysms, which are less than 15 mm, large aneurysms are in the range of 15-
25 mm, giant aneurysms fall in the range of 25-50 mm, and super giant aneurysms,
which are larger than 50 mm, occur as well. Since a large majority of aneurysms
encountered in practice fall into the category of small aneurysms, these are further
divided into small aneurysms up to 5 mm and medium aneurysms which are 5-15 mm
in size.[10]

One of the main causes of intracranial aneurysms is the disruption of the internal
elastic lamina, which is either completely absent or present only in small fragments,
called Reuterwallt tears.

Various types of cells, such as T lymphocytes, B lymphocytes or macrophages,
which can cause inflammation, are often found in the wall of aneurysms. There are
a number of factors that contribute to aneurysm rupture. These are, for example,
smoking, excessive alcohol consumption, age, family history, etc. The morbidity
and mortality is significant in case of ruptured aneurysms, but patients treated with
unrupted aneurysms often die within a year after the treatment. [S]

Due to the lack of knowledge of the causes of aneurysm formation, progression
and rupture, there is still no non-invasive, safe treatment for aneurysms to this
date.[9)]

15



Schematic of the circle of Willis showing anatomical relations
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Fig. 1.1: Image (a) shows the circle of Willis [3]. Figure (b) shows a small aneurysm
of the right internal carotid artery [11].

1.4 Diagnosis and treatment of IA

The imaging methods used to examine patients with cerebral aneurysms continue to
improve. This gives doctors a better basis for treatment and patient care. However,
the examining physician must have extensive knowledge in this area, such as the
risks of aneurysm rupture, identification of risk groups and, of course, must be
experienced in the imaging technique being used.[I0] A large proportion of patients
die as a result of haemorrhage, so a rapid detection and evaluation of aneurysms is
important. [11]

The digital subtraction angiography (DSA) is a very common and available imag-
ing method, but it is time consuming and invasive. A minimally invasive diagnostic
method, which nowadays often replaces the DSA is computed tomography angiog-
raphy (CTA).[11] Another method used is magnetic resonance angiography (MRA).
This is usually used to diagnose patients in whom an aneurysm is already suspected
or in patients who have a family history of aneurysms. The most widely used MRI
method for aneurysm detection is time-of-flight (TOF) MRI, which provides very
good spatial resolution. However, TOF-MRI has disadvantages, such as susceptibil-
ity to patient motion.[10] This method is more discussed in chapter .

16



1.4.1 Modalities used for the diagnosis of IA
Digital subtraction angiography

Nowadays, digital subtraction angiography (DSA) remains the gold standard in the
diagnosis of intracranial aneurysms. Although it is an invasive method, its high
resolution and the possibility of creating a three-dimensional image outweigh this
disadvantage. However, two-dimensional DSA is commonly used.[16]

DSA is generally used to produce an image that contains only blood vessels in
perfect conditions. This is achieved by first taking a conventional X-ray image of the
patient. Subsequently, a contrast agent is injected into the patient through a vein to
make the blood vessels visible. The contrast agent is administered using ultrasound
and the patient is often under local anaesthetic during the procedure. In addition,
the conventional X-ray image is subtracted from the contrast image to remove any
surrounding tissue, bone or foreign objects that may occure in the patient’s body.

The resulting image then shows only the blood vessels. [19]

Computed tomography angiography

Computed tomography angiography (CTA) has been used for more than 30 years
and its use for the diagnosis of intracranial diseases continues to grow. According
to studies, the sensitivity of this method reaches up to 97 % and the specificity even
up to 100 %.[16]

CTA differs from a normal CT scan in that a contrast agent is injected into
the patient to make the blood vessels visible. Subsequently, single projections are
taken, usually at angles of 0-180° with an increment of 1°.[I5] Once all projections
have been taken, an image can be created, usually using a filtered back projection
method. [18]

Magnetic resonance angiography

The main advantage of MRA over the aforementioned DSA and CTA is that the
patient is not exposed to radiation during the examination. [I5] The MRA technique
displays the blood vessels and surrounding tissues with different signal intensities.
There are several types of MRA examinations, these are phase contrast MRA, black-
blood MRA, time-of-flight MRA in which it is important that the blood moves faster
than the surrounding structures, and the contrast-enhanced MRA technique, where

a contrast agent is used. [12] MRA examination is discussed in more detail in the
chapter [2|
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1.4.2 Treatment and therapy of IA

The main goal of A treatment is to prevent them from rupturing. Surgical clipping
has been used for several years and endovascular embolization is a very frequently
used method, but complications such as aneurysm perforation or cerebral ischemia
occur. The treatment of unruptured IAs remains controversial as it depends on
the condition of the aneurysm. According to the source used, "Unruptured cerebral
aneurysms in any location should be considered first for endovascular treatment".

In ruptured IAs, the most common symptom is acute headache resulting from
SAH. Endovascular treatment was initially applied only to difficult cases of IAs,
where access to the anuerysm was the main problem. Today, thanks to better tech-
niques and approaches, endovascular treatment has become an alternative to surgical
treatment. However, there are still some limitations, mainly the size, location of the
aneurysm. Thus, there are still cases where surgical intervention is preferred. Nowa-
days it is exactly the opposite of what it used to be, i.e. in the majority of cases
endovascular treatment is used and only in very complex cases surgical treatment is
preferred. [13]
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2 Magnetic resonance imaging

2.1 General principle of MRI

The magnetic resonance (MR) image is formed by the signal from the nuclei of
hydrogen atoms. In the case of hydrogen, we are particularly interested in its proton,
which has a specific spin, meaning that the proton rotates on its axis. Such a

spinning proton has a angular momentum m and a magnetic moment B.[12]

2.1.1 Physical principle of MR

In magnetic resonance, we expose the hydrogen nucleus to an external magnetic field
By and thus achieve alignment of the spins of all hydrogen nuclei with the By field.
In addition to directional alignment, they are subject to precession, which is rotation
off their axis. The frequency of the precession is given by the so-called Larmor fre-
quency, which is directly proportional to the strength of the external magnetic field
By.[14] Now, the protons are rotating parallel to the z-azis and longitudinal magne-
tization M, occurs. Subsequently, an impuls (RF implus), with a frequency in the
range of tens to hundreds of Hz, is sent from the transmitting coils which causes the
rotating protons to deflect away from the z-azis until all the longitudinal magneti-
zation is rotated into the zy-plane. At this point, the transverse magnetization M,
is present, which induces a Larmor frequency voltage on the receiving coils. This
signal is then further processed. This signal decays rapidly due to spin-lattice and
spin-spin interaction. These two interactions then cause T1 and T2 relaxation.|I4]
I15)

T1 relaxation

The nuclei gradually return to the original position of longitudinal magnetization
M., which is called longitudinal relaxation as shown in figure 2.1} The nuclei gradu-
ally dissipate energy into their surroundings (spin-lattice relaxation) and the time it

takes to return to its original position, denoted T1, depends on the intensity By.[14]

T2 relaxation

This is a transverse relaxation, which is caused by the spins exchanging excess energy
between themselves (spin-spin relaxation) and thus not rotating in phase, but losing
this coherence. The parameter T2 is the time constant over which dephasing occurs

and is not affected by the intensity of By.[14] The T2 relaxation may be seen in
figure 2.2
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Fig. 2.1: Image (a) shows the increase of longitudinal magnetization M, back to its
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original value. [I2] Figure (b) shows that the time constant T1 represents the time
for the magnetization M, to return to 63 % of its original value. The T1 constants

for two different tissues are shown.[14]
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Fig. 2.2: Image (a) shows how the vectors rotate about the z-azis while being in
phase with each other.[12] Figure (b) defines that the time constant T2 corresponds

to the reduction of the transverse magnetization to 37 % of its original value.[14]

T2* relaxation

The T2* constant tends to be shorter than T2 and is called the decay of free induc-
tion, and the T2* effects are due to the effects of additional field inhomogeneities.

This can be avoided by using the spin-echo (SE) sequence.[12]

2.1.2 Image creation

As explained earlier, the measured MR signal is produced by the action of an RF
pulse on hydrogen protons. However, in order not to excite all the protons at once,
we first need to ensure that the external magnetic field is not homogeneous. This
is solved by using gradient coils to influence the external magnetic field, so that the
field strength varies linearly with position. Thus, each slice has its unique Larmor

frequency and thus the RF pulse excites only the protons in a particular slice.
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The thickness of the slice is determined by the steepness of the gradient.[15] The
most complex task is spatial encoding, which is based on the principle of applying
additional gradients that change the magnetic field strength along the y and z axes
(the z-azis is parallel to the patient axis). Spatial coding is divided into phase
and frequency coding. In phase encoding, the gradient in the y-azis is altered,
causing protons higher in the MR port to increase their precession rate (gain phase)
relative to protons lower down. When this gradient is turned off, they return to their
original precession rate, but no longer remain in phase.[14] For frequency encoding,
the gradient along the z-azis is changed. So the precession rate of the protons is
changed again, but now along the z-azis, and thus the entire frequency spectrum
is obtained when the MR signal is detected.[I5] So by frequency and phase coding
each voxel is identified. To obtain the resulting signal from two dimensions (z-azis

and y-azxis), 2D-Fourier transform needs to be used.[12]

Signal contrast of the image

Three parameters mainly affect the appearance of the image. These are the relax-
ation times T1 and T2 and then the proton density of the tissue. There are two
types of images, T1-weighted and T2-weighted.[12]

In the T1-weighted image, the repetition time (TR) indicates the time between
two RF pulses in one slice. When the TR is short, then tissues with a short T1
time will give a large signal after the next RF pulse, which will be reflected as a
higher intensity in the final image. Tissues with a long T1 time will give a weaker
signal (they will be dark in the image). Depending on the length of the TR, we then
distinguish between strongly or weakly weighted T1 images.

T2-weighted image is affected by echo time (TE). TE is the time between the
application of the RF pulse and the detection of the MR signal. If a suitable TE
is used, then tissues with a long T2 time produce a strong signal and are therefore
bright in the image, and conversely, tissues with a short T2 time are dark in the
image. Again, a distinction is made between strong and weak T2 weighted images,
which depends on the length of the TE.

If a short TR and a long TE are used, the signal intensity depends on the proton
density of the hydrogen nuclei.[14]

Pulse Sequences

These sequences affect proton excitation, phase encoding, MR signal formation and
acquisition, and image formation in general.

The basic sequence is the Spin Echo (SE) sequence. The SE sequence uses a 90°
RF pulse for proton excitation. Subsequently, after TE/2 has elapsed, refocusing
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occurs using a 180° pulse, resulting in a strong MR signal. Another sequence used is
the inversion recovery (IR). In this sequence, a 180° pulse is applied at the beginning.
Then it continues as in SE. Usually, a T1-weighted image is acquired using the IR
sequence. Another sequence is the short time inversion recovery (STIR) sequence,
which is used for fat-suppression. Fluid-attenuated inversion recovery (FLAIR) is
used for brain imaging. The gradient echo (GRE) sequence uses a gradient coils
instead of RF pulses to produce echo. Because of this, the TR is shortened and thus
the image acquisition process is much shorter than in other sequences. The GRE se-

quence is less susceptible to patient motion and is used in TOF-MR angiography.[12]

2.2 Time of flight Magnetic resonance

The main goal of time-of-flight (TOF) MRI is to highlight blood vessels in the
scanned image. TOF magnetic resonance imaging shows the spins of water molecules
that are contained in the flowing blood. A blood vessel is imaged brightly if there
is a constant supply of additional spins in the imaging plane due to the flowing
blood.[I4] Very short gradient echo (GRE) sequences are used to excite the water
molecules. The spins that are not moving in the imaging plane are highly saturated
and therefore the surrounding tissues are depicted darkly in the image. The problem
is often slow flowing blood. If the spins remain in a given imaging plane for more
than one excitation interval, they become saturated and therefore dark in the image,
just as the surrounding tissue is dark. These problems of slow flow can be caused
by aneurysms, for example. The problem also exists if the vessel repeatedly returns
to the imaging plane. It is not easy to distinguish arteries from veins, as the signal
is not dependent on the direction from which the blood comes. This problem can
be solved by using presaturation halves before the actual data acquisition.[I2] The
image that is obtained by TOF-MRI is then gradient-echo T1-weighted.[17]
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3 Methods for object detection

3.1 Overview of traditional methods

The detectors used for object detection in the early days were generally based on
shapes, edges and components present in the image. Thus, they used to measure
some sort of similarity between components, shapes and contours of objects. Ini-
tially, these detectors were quite promising, but encountered detection problems

with more complex objects.

3.1.1 Wavelet-based approaches

Since 2000, the use of the wavelet transform, which transforms pixels into a set of
wavelet coefficients, has become widespread. The Haar wavelet, which is computa-
tionally very efficient, has been used most often. One of these early methods is the
Viola Jones Detector, which is based on creating features using the wavelet trans-
form with the Haar wavelet just mentioned. Subsequently, only a few useful features
are selected using the Adaboost algorithm. The detection itself is then provided by
cascade detection, which is able to discard candidates that do not contain the object.
However, if the image passes the entire cascade, the object is present and detected.

The Viola Jones detector is used for example for face detection.[20]

3.1.2 Histogram of Oriented Gradients Features

Another conventional method is the Histogram of Oriented Gradients (HOG), which
works on the principle of a distribution of local gradients of intensity or edge direc-
tions. Key points in the image are selected and around them the image is divided
into several parts, which can be called cells. In each pixel of these cells, a local
histogram of gradient directions or edge orientations is created. Subsequently, we
combine all these histograms to create a representation of the image. To improve
this feature, an overlapping HOG is used, where cells in the image can overlap and
are then merged. A classifier such as Support vector machine (SVM) is often linked
to the HOG.[21]

3.1.3 Methods using deformable model

A very good conventional detector is the Deformable part-baset Model (DPM) detec-
tor. This method does not just look at the image as a whole, but also the sub-parts
of the object that are in the image play a role. The DPM detector consists of a root
filter and part filters. The root filter crops the whole object and the sub filters cover
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only parts of the object. There is a fully supervised variant, where the root filter
is initialized directly in the object, but since annotations are not always available,
a weakly supervised DPM is often used, where this filter initialization is done, for
example, by a latent SVM.[22]

3.2 Overview of machine learning methods

Machine learning methods have a number of advantages over classical detection
methods. For example, that detection capabilities grow exponentially due to deeper
architecture, multiple tasks can be optimized simultaneously, and many others.[23]

Object detection methods can be divided into three categories.

3.2.1 Two-step methods

This category can be divided into two parts. In the first part, we obtain suggestions
of regions in the image where objects might be present. In the second part, the de-
tection part, we obtain the class probabilities of the selected regions and their exact
locations. These detectors achieve very good results, but are often not very fast.
The first two-step method that combines region search and subsequent detection is
R-CNN, which is described in detail in [24]. The main problem with this method, is
its speed, due to imperfections in learning and generating the features.[24] Another
method is the Spatial Pyramid Pooling Network (SPPNet), which contains a Spatial
Pyramid Pooling layer that avoids repeated convolution of features, thus speeding
up detection. Problems of R-CNN have been solved by designing Fast R-CNN al-
gorithm, which is able to train object classification and bounding box regression
simultaneously, while generating features from the image, as a whole. It also uses a
Rol layer for extracting a feature vector layer, where this Rol layer is special case
of SPP layer. And then this feature vector is used in the Fully connected layer for
object detection.[23] Even so, the speed was not sufficient and therefore the so-called
Faster R-CNN was proposed. This method uses a region proposal network (RPN).
The RPN shares convolutional layers with the detection network and is able to pre-
dict the region and the confidence score of an object at the same time, which greatly
speeds up detection and it uses only the last layer of the network for detection it-
self. Methods such as Mask R-CNN and Feature Pyramids Network (FPN) are
based on Faster R-CNN.[24] One other two-step method is R-FCN, which combines
the Region of Interest (Rol) layer and a shared fully convolutional subnet that is
independent of the Rol subnet.[23]
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3.2.2 One-step methods

The second category is One-step methods, which are usually faster, because they
design the region and detect the object at the same time, not separately as in Two-
step methods.[24] One of the most well-known one-step methods is YOLO, or You
Look Only Once, which has been modified over time to be more effective, as well.
The first version of YOLO always divided the image into many regions (Usually Sx.S,
where S is the size), instead of using anchors (anchors are pre-defined bounding boxes
with different scales that are distributed over the feature map) and then predicted
the presence of an object and its class in that region. The classical Mean Square
Error (MSE) is used as the Loss function here and YOLO uses fully connected layers
for the object detection.[23] The improved version, YOLOv2, solves the problem for
the detection of partially overlapped objects. Unsupervised learning directly from
the available data is used for bounding box prediction. YOLOv3 then uses binary
cross-entropy as a Loss function (YOLOv2 uses Softmax Loss function) to detect
multiple objects in a single bounding box and uses a pyramid of features. Another
method that falls into this category is the SSD detector, which does not use only
one layer to detect the object. SSD uses different sizes of anchor bounding boxes in
different depth layers of the network, making it capable of detecting very different
objects. Unlike YOLO, SSD uses fully convolutional layers to detect objects. The
big drawback with SSD is that it cannot detect small objects well. [24]

3.2.3 Segmentation method

U-net is a convolutional network based method that is not directly used for object
detection, but for image segmentation. However, objects can be detected in the
segmented image afterwards. U-net plays an important role in the field of medical
image analysis. It consists of descending part, bottle-neck and ascending part. In
this method the feature vector is created as in the classical convolutional network,
but then image is gradually assebled and presented as output of this method.[25]

U-net wil be more discussed in section [3.4].

3.3 Methods for IA detection

To present the state-of-the-art methods for TA detection in TOF-MR angiography
data, three articles were selected for subsequent discussion.

The first of these articles [28] is entitled "Deep Learning for MR Angiog-
raphy: Automated Detection of Cerebral Aneurysms". The dataset was

taken at several institutions to avoid overlapping patients. The data were divided
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into training, internal test, and external test datasets. The images used for training
the algorithm were extended by rotating the original images by 90°, shifting them to
the right by 10 %, zooming them by 30 %, and flipping them vertically and horizon-
tally. The untrained ResNet-18 architecture was used for the algorithm. Training
of the network was supervised, i.e., the network was given aneurysm cutouts and
their annotations. Five-fold cross-validation was used. The hyperparameters were
as follows: 100 epochs, Nadam optimizer (learning rate = 0.002, beta; = 0.9, betay
= 0.999, epsilon = 1 x 1078, schedule decay = 0.004). The output of the network
is the probability of aneurysm presence for each cutout. The success rate of the
algorithm was as follows: it detected 91 % of the IAs in the internal and 93 % in the
external test datasets. Compared with the original radiologists’ reports, it improved
detection by 4.8 % in the internal test data and 13 % in the external test data.[2§]

The second article [29] is entitled "Performance of a Deep-Learning Neu-
ral Network to Detect Intracranial Aneurysms from3D TOF-MRA Com-
pared to Human Readers”. As in the first article, images from several institu-
tions were used. Minimal image modifications were performed. The data were
resampled to a voxel with an edge size of 0.5 mm and each image was normalized so
that the mean intensity was equal to 0 and the standard deviation was 1. Here, the
DeepMedic CNN architecture was used to segment the structures in the 3D image
data. The parameters of a given model were adjusted based on ground truth and
model predictions. Five-fold cross-validation was used here as well, for all datasets,
i.e. training, validation and test. According to the results presented in this paper,
the algorithm performed very well in detecting IAs > 7 mm in diameter, but did
not perform as well as human readers for smaller [As. The conclusion of this paper
is that CNN is able to detect IAs from TOF-MRA images comparably well to human
readers and has great potential to improve IA detection rates.[29)

The third article [30] is entitled "A Two-step Surface-based 3D Deep
Learning Pipeline for Segmentation of Intracranial Aneurysms". In this
study, surface models of the major cerebral arteries were obtained from TOF-MR
angiography images using special software. Furthermore, it was necessary to divide
the 3D image into smaller fragments in order to perform subsequent segmentation.
The size of the fragments was chosen based on the experience of experts. Point-
Net++ was used to classify the selected fragments, which distinguished whether
the fragment was with or without an TA. A soft-max cross entropy loss function
was used for training because the number of fragments with IAs was significantly
smaller. Fragments classified as those with IA were subsequently entered into the
SO-Net segmentation network. The resulting segmentation images were then con-
verted to volume. For validation five-fold cross-validation was applied, where the

Dice coefficient was used as the evaluation criterion for the segmentation and sensi-
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tivity was used to evaluate the classification network. The mean DSC using five-fold
cross validation was 71.79 % and for classification the mean sensitivity was 80.22 %.
Thus, the results are quite good, no less a major drawback of this method, as the

authors state, is that it requires the support of experts.|[30]

3.4 Used methods

As mentioned in the previous section, the U-net consists of 3 parts. Encoding
(contracting), bottle-neck and decoding (expanding) parts. This composition is

what makes it called a U-net, since it is U-shaped as shown in figure [3.1]

3.4.1 2D U-net

Encoding part

Contracting part is no different from a classical convolutional network in which a
feature vector is created. This part consists of two convolutions, with a certain
kernel size that the user can set based on the size of the segmented objects. This is
followed by a network activation function, usually ReLLU, and then a max pooling
layer with a certain stride to make the image smaller. In each of these steps we

double the number of channels.

Bottle-neck part

The bottle-neck part is used to compress the input data. The output of this part
then contains only the useful information that is used in generating the segmented

image. [27]

Decoding part

In this method, skip connections are used to crop and map the features in the
expanding part. It is important to crop these features, so the dimensions fit and
other operations can be performed.[25] The last part of the U-net is the expanding
part, where upsampling and subsequent convolution is performed with a 2 x 2 kernel
to reduce the number of channels. Next, a classical convolution is performed with
a kernel of the same size as in the encoding part, followed by a ReLLU activation
function until the output image has the same size as the input image. In the last
layer of the U-net, a 1 x 1 convolution is performed to ensure that the features are
mapped to the desired number of classes.[26] With this last convolution Softmax

activation function is usually used.
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Fig. 3.1: Architecture of the U-net segmentation method taken from [25]. Blue
boxes represent feature maps. White boxes are feature maps from skip connections.

Each arrow represent an operation as shown in the legend.

3.4.2 3D U-net

Three-dimensional version of U-net is not very different from the 2D version, espe-
cially in terms of the U-shaped architecture. There are still the encoding, decoding
and bottle-neck part, but the internal components are moved to the third dimen-
sion. More precisely, Max-pooling layer and all convolution layers are applied in the
third dimension. More structural information is provided for the network due to
the third dimension of the data, which could affect the results of segmentation and

subsequent detection [31].
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4 Design and implementation

Based on the characteristics of the used data several pipelines that are based on
segmentation using U-net, were proposed. These pipelines are described in Figure
4.1l These four designs have a common first part of data preparation, which is
described in Section [£.2] Segmentation approaches vary a bit and therefore are

separately described in Sections below.

Full image approach

Blob detecti d Si tati ith 2D Detecti f
List of paths — Slice selection —» o cetection an | SeBmentation | etectiong o [  Statistical evaluation
creating a cutout U-net aneurysms
L J L J L J
T T T
Data preparation Segmentation and detection Evaluation

Full image approach with elimination of FP segments

Segmentation with 2D Elimination of falsely Detectiong of

List of paths — Slice selection —>
U-net segmented aneurysms aneurysms

—® Statistical evaluation

T T T
Data preparation Segmentation and detection Evaluation

Approach that uses patches of image
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List of paths > Slice selection — —®  Statistical evaluation
U-net aneurysms
L . J L . ;L , )
Data preparation Segmentation and detection Evaluation
3D image approach
5 tati ith 3D Detecti f
List of paths —» Slice selection > egmentation wi — etectiong o —®  Statistical evaluation
U-net aneurysms
L J L J )
¥ ¥ T
Data preparation Segmentation and detection Evaluation

Fig. 4.1: This figure shows proposed pipelines used in this Master’s thesis. From top
to bottom, these are pipeline of classical U-net segmentation and following detection
of aneurysms. Pipeline used for segmentation of image in patches. Pipeline of a
classical full image segmentation with additional elimination of FP segments. Block

diagram of a 3D segmentation and detection of aneurysms.

4.1 Dataset

The data used in this thesis were provided by the authors Aneurysm Detection
and Segmentation (ADAM) challenge. The dataset contains data of 113 cases.
There are 23 unique patients with aneurysms and SAH, 35 baseline and 35 follow-
up cases with aneurysms and SAH. Then there are also 20 patients who do not have
any aneurysms or SAH. The data contain TOF-MRI image and manually created

references (masks) of the images and locations of aneurysms in text files. All images

29



were already preprocessed using correction to adjust the bias field. In this thesis,
SAHs are detected as well, because they are part of the provided data.

() (d)

Fig. 4.2: This figure shows examples of images and their references. Images (a) and
(b) show slices of the TOF-MRI images. Pictures (c) and (d) are their groundtruth

masks.

4.2 Data preparation

For further processing and to reduce computational complexity, same voxel size for

all images with a 1 mm edge length, was used. Data were also normalized to a
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range from 0 to 1 with use of maximum and minimum value of the image. After the
normalization the data were saved.

In addition all 113 cases were divided into training and validation datasets. This
was done randomly so that there are 84 cases for training and 29 cases for validation.

For easier work with data in the algorithm a list of paths to specific slices was
created. The list always contained the path to the patient folder and then the slices
that were used for training the network.

To avoid choosing a lot of slices without aneurysms, only a certain number of
slices around the center of aneurysm (this information was available in the data) were
selected for the training. If the patient did not have any aneurysm, random slices
were selected. A function was then used to select the given slices in the dataloader.
As these were NIfTI files, the SimpleITK library was used to browse through the
individual slices in the NIfTT file.

4.3 Proposed approaches of segmentation

The network architecture for all approaches was taken from [25] and therefore cor-
responds to the Figure [3.1] The key part of the network are two consecutive con-
volutions with kernel size 3 x 3 and stride equal to 1 are used for the convolutions.
Batch normalization is used to improve training of the network and ReLLU activation
function is used here. Dimensional reduction is achieved by max-pooling layer with
kernel size 2 x 2 and stride equal to 2. Data augmentation was used in the training
process. Specifically, rotating the images by —35° to 35° and flipping the images
along the X-axis and Y-axis.

At the end of this U-net, there is final 1 x 1 convolution, that creates a feature
map. To binarise the segmented images and evaluate the network, this feature map
is converted to a probability map using a sigmoidal function. This is followed by
thresholding to get binary image.

This architecture is used in all approaches except the 3D U-net, where all 2D lay-
ers (such as convolutional layer, max-pooling layer, batch normalization and up-

convolutional layer in the decoding part of the U-net) are replaced with 3D layers.

4.3.1 Full image segmentation

The first approach is based on classical segmentation with use of U-net. Data were
prepared as mentioned in Section and via dataloader were fed to U-net. Even
though a voxel size was initially normalized for the data, the size of the slices varied
and therefore had to be resized to size of 200 x 200 pixels.
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Adam optimizer (with 5=(0.9, 0.999)) and the average of binary cross entropy
with sigmoidal function and Dice coefficient were used for the training process.
Weight of the positive responses were set to 150 due to the large ration between the
number of black and white pixels. Learning rate was initially set to le=* and then

decreased by 0.1 after 40" epoch. Network was trained for 160 epochs.

4.3.2 Full image segmentation with elimination of false positive
segments

This approach is very similar to the|4.3.1, where the same network was used, but with
one additional part, which eliminates false positive segments. The main idea was
to train another convolutional network (CNN) to perform classification of segments
achieved by U-net to improve results of IA detection.

Architecture of this CNN was inspired by MNIST-CNN mentioned in [32] and is
shown in Figure [.3] It consists of three convolutional layers each followed by ReLU
activation function and max-pooling layer. At the end there is 1 x 1 convolutional
layer with Softmax.

The principle of this approach is to take the segmented image from U-net and
create small patches (with size of 30x30 pixels) around each segment. These patches
were created from both, segmented and original TOF-MRI image. There is a third
image, that was created by thresholding the TOF-MRI patches and these were fed
to the MNIST-CNN with three input channels. As result, segments classified as

background were flood-filled with black pixels and therefore eliminated.
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Fig. 4.3: Architecture of modified MNIST-CNN. It consists of three convolutional
layers that are followed by ReLLU activation function and max-pooling layer. At the

end there is final 1 x 1 convolutional layer with softmax.

Another approach to eliminate false segments is based on segmentation of one
image several times, each time with slightly changed angle. Then do an intersec-
tion of all these images to eliminate some of the segments. Comparison of these
approaches are discussed in Section [5.1.2]
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(c) (d)

Fig. 4.4: This figure shows random patches used for learning the U-net. Images
(a) and (b) show patches of the TOF-MRI images. Pictures (c) and (d) are their

patched references.

4.3.3 Segmentation using patches

This approach was introduced to reduce the large ratio between the number of
background pixels and aneurysm pixels. In article [33] authors used patches of
images to train CNN for segmentation of brain tumors. Their complex segmentation
algorithm achieved Dice coefficient 0.90.

The main idea is to divide image into number of patches, perform segmentation
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and reassemble the image back into its original form. It would be inappropriate
to train the network this way, because there would be a lot of patches containing
only the background. Random patches around aneurysms and just a few patches
containing only background were used to train the U-net. Size of the patches was
set to 50 pixels.

To create these random patches, function with a blob detector (using difference
of Gaussian) [36] and contours was used. After finding the aneurysm in the mask a
random cropping around it was performed in both, groundtruth mask and original
TOF-MRI image. Slices in form of these patches were then fed to the network. In
Figure .4], there are examples of used random patches.

Same optimizer and combination of loss functions as in were used here.
Weight of the positive response was set to 40. Learning rate was initially set to le=*

and then decreased by 0.1 after 60" epoch. Network was trained for 165 epochs.

4.3.4 3D segmentation

The main idea of this approach is to give the network some additional information
of the structure by adding the third dimension. Architecture of the network is
quite similar to the classical 2D U-net. The changes consist of replacing 2D layers
(convolutional, max-pooling and up-convolutional layers) with 3D layers and feeding
the network with 3D images.

Due to the large disproportion of black and white pixels, it is necessary to use
small cubes instead of the whole 3D data available. Similar function, that was used
in for creating random patches, was used for training. The final size of the
3D images that were fed to the U-net was 40 x 40 x 32.

Adam was used as an optimizer again and binary cross entropy with sigmoidal
function combined with Dice coefficient were used as well. Weight of the positive
response was set to 120. Learning rate was initially set to le=*. It was decreased
after 45" epoch by 0.1. This 3D U-net was trained for 125 epochs.

4.4 Detection of intracranial aneurysms

After obtaining the segmentation images it was necessary to detect the aneurysms.
Since these are binary images it is possible to obtain contours of the segments. Based
on these contours, it is possible to retrieve image moments from which centroids of

that segments can be calculated according to these formulas:

My,

Cz — a5
MOO

(4.1)
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where C, and C,, are coordinates (z,y) of computed centroid and M denotes the
Moment.

This detecting method can be than evaluated with Manhattan distance (centroid
location), which is described in Section below.

4.5 Statistical evaluation

Finally, a statistical evaluation is performed. Precision, Recall and Dice coefficient
(DSC) are used for evaluation of the segmentation. These metrics are computed

according to the formulas:

TP
Precision = ————— 4.
recision = 5 p (4.3)
TP
= 4.4
Recall TP PN (4.4)
2TP

DSC

= 4.5
TP+ FP+ FN’ (4.5)

where TP is number of true positive pixels, FP is number of false positive pixels
and FN is number of false negative pixels. The results are discussed in detail in
Section [
Positive predictive value is also used for evaluation of the segmentation by this
formula:
TP

PPV = —— 4.
v TP+ FP’ (4.6)

where TP is number of true positive segments and FP is number of false positive
segments in the segmented image. In case, that there is not an aneurysm in the
image and there are not any segments created, the PPV value is equal to 1.

For the detection problem, Manhattan distance between centroids of aneurysms
in groundtruth masks and aneurysms in segmented images was chosen as of the

metrics. This metric is calculated according to the formula:
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Man.distance = |xo — x1| + |y2 — y1), (4.7)

where 1, yo are coordinates of centroid of the real aneurysm, z1, x5 are coordi-
nates of centroid of the segmented aneurysm. For evaluation of 3D U-net, there is
a third coordinate z; and z,. The shortest distance values were always selected for
the images. It was assumed that the segment with the lowest value was the most
accurate estimate.

Sensitivity was used for evaluation of the detection, as well. It presents the prob-

ability of correctly detected aneurysm and is computed according to this formula:

TP

SenSZtZUZty = m,

(4.8)

where TP is number of correctly detected aneurysms, and FN is number of unde-

tected aneurysms.
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5 Results and discussion

5.1 Results of individual approaches

In the following Sections, the results of each approach will be discussed and evalu-
ated separately, where first results are obtained on all available validation data (in-
cluding small and large TAs and SAHs), furthermore the results generated on small
aneurysms (size<1mm) only and lastly the results achieved on larger aneurysms and
subarachnoid haemorrhages (size>1mm). In the last case, there are also some small
aneurysms, as they are present in the same slices.

All Tables presented in section have the same structure. They are divided
into three columns, where the first column presents results on all available validation
data, the second shows results on small aneurysms and the third one shows results
achieved on larger aneurysms and SAHs. Values in brackets are standard deviations.

All figures in section [5.1 contain either green or red crosses (dots). Green crosses
are centroids of aneurysms in groundtruth masks, red ones represent centroids of

segments in segmented images.

5.1.1 Full image segmentation

The results achieved by approach using full image segmentation are presented in
Table As may be seen, the best performance was achieved in case of large
aneurysms and SAHs. The Dice coefficient is in this case very high (Dice = 0.9),
which is confirmed by segmentation showed in the first row of Figure 5.1 Positive
predictive value is 0.71, thus there are some false positive segments mainly in location
of blood vessels (see second row of Figure [5.1]). Detection is also most accurate in
case of large IAs and SAHs according to the Sensitivity of 0.85, as well as Manhattan
distance that is the shortest in this case.

The algorithm achieved good results on all validation data as well. Dice coeffi-
cient is only 0.01 smaller than in case of large IAs and SAHs, so the segmentation
is on similar level and is shown in the first row of Figure 5.2l The Sensitivity in
all validation data is influenced by bad detection of small IAs and therefore reaches
values of 0.64. Since the detection was not very accurate, the Manhattan distance
has a higher value than in the case of large aneurysms and SAHs (see second row of
Figure .

In case of the small aneurysms the algorithm achieved the worst results. Dice
coefficient equal to 0.09 is not very satisfying result. The reason of this is that there
are cases, where patient has only one very small aneurysm. Therefore there is only a

few true positive pixels to be segmented, so even a few small false positive segments
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Tab. 5.1: Results of the full image segmentation and detection approach.

Metrics All data Small TAs Large IAs and SAH
Dice 0.89 (0.04) 0.09 (0.04) 0.90 (0.01)
Precision 0.90 (0.05) 0.05 (0.02) 0.96 (0.01)

Recall 0.89 (0.05) 0.29 (0.08) 0.85 (0.01)

PPV 0.68 (0.46) 0.68 (0.46) 0.71 (0.42)
Sensitivity 0.64 (0.46) 0.40 (0.48) 0.85 (0.32)

M. distance [px] | 26.82 (45.04) 49.73 (54.62) 13.20 (30.53)

can make a huge change in Dice coefficient. This is shown in Figure [5.3] On the
other hand, segmentation of small [As is comparable in PPV metric with the other
two cases, thus there is similar number of false positive segments. Detection is also
quite bad based on Sensitivity and Manhattan distance. This may be due to the
presence of a large number of blood vessels, which tend to be segmented instead of

the aneurysms.

5.1.2 Full image segmentation with elimination of false positive

segments

As mentioned in Section [4.3.2] this approach uses the same U-net, that was discussed
in Section[5.1.1] Thus, it has the same problems mainly in the case of small aneurysm
detection. The difference of this approach is the effort to eliminate false positive
segments, which was done by two methods.

The first method deals with elimination using an additional CNN described in
the first part of Section [.3.2] Results are presented in Table [5.2] and they do not
differ very much from the results in Section after rounding to two decimal
places. Segmentation is still very good in terms of Dice coefficient. Since both, 17
FP and unfortunately 3 TP segments were eliminated, the value of PPV in case
of all data is only 0.01 better. In case of small and large IAs the elimination is
similar (eliminated were both, TP and FP segments) and therefore elimination of
false positive segments is not very accurate with use of CNN. That is caused mainly,
because it is difficult to train this kind of CNN to be very precise in classification of
created segments. Even though the elimination is only small, Manhattan distance
was improved a bit. Since the elimination of TP segments, the Sensitivity changed
slightly, but after rounding to two decimal places the difference cannot be seen. The
resulting detection is shown in second row of Figures and [5.5]

The second method is fairly simple, but efficient. One image was segmented
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Data with large 1As and SAHs

Annaotation TOF-MRI Segmentation

Annotation TOF-MRI Segmentation

Fig. 5.1: This figure shows achieved detection using data with large aneurysms.

A good segmentation and detection of large area is shown in the first row and a
detection of a subarachnoid haemorrhage with a few false positive segments due to

blood vessels is showns in the second row.

Tab. 5.2: Results of the full image segmentation and detection approach with elim-

ination of false positive segments with use of CNN.

Metrics All data Small TAs Large IAs and SAH
Dice 0.89 (0.04) 0.09 (0.04) 0.90 (0.01)

Precision 0.90 (0.05) 0.06 (0.02) 0.97 (0.01)

Recall 0.89 (0.05) 0.29 (0.08) 0.84 (0.02)

PPV 0.69 (0.46) 0.68 (0.46) 0.70 (0.43)
Sensitivity 0.64 (0.48) 0.40 (0.52) 0.85 (0.33)

M. distance [px] | 25.26 (40.75) 44.23 (47.22) 13.18 (29.80)

several times with slightly different angle and subsequently an intersection of these
images was made. Results are presented in Table[5.3] In case of a segmentation, the
metrics differ only a little bit. In the case of all data, the elimination was successful

as 641 false positive segments and only 8 true positive segments were eliminated
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Data with small and large 1As

Annotation TOF-MRI Segmentation
Annotation TOF-MRI Segmentation

Fig. 5.2: This figure shows achieved detection using all data. The first row shows the
main issue is segmentation of little parts of blood vessels and the second row shows

a successful segmentation and detection of a small subarachnoid haemorrhage.

and therefore a value of PPV was increased. As the results show the elimination
was similarly successful in both other cases (small IAs and large IAs). Due to the
principle of this method, mostly small segments were eliminated, which is shown in
the third row of both Figures[5.4)and [5.5] This, unfortunately, caused deterioration
of Manhattan distance in case of small IAs and Sensitivity in case of all data, as
there were more TP segments eliminated.

Comparison of these two elimination methods are shown in Figures and [5.5]
In the first row, there are images of approach from Section [5.1.1] the second row
shows images of method using CNN and in the third row are images of the second
elimination method presented. As discussed above, the second elimination method
provides better results of PPV due to the elimination of small false positive segments.
For example in last row of Figure the PPV value was increased to value 1, as all

the false positive segments were eliminated.
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Data with small 1As

Annotation TOF-MRI

Segmentation

Annotation TOF-MRI Segmentation

Fig. 5.3: This figure shows achieved detection using data with small aneurysms.

There are two very small false positive segments in the first row and a segmentation

and detection of a small aneurysm with a few FP segments in the second row.

Tab. 5.3: Results of the full image segmentation and detection approach with elim-

ination of FP segments with use of intersection of images.

Metrics All data Small TAs Large IAs and SAH
Dice 0.90 (0.04) 0.10 (0.04) 0.89 (0.00)

Precision 0.93 (0.05) 0.07 (0.03) 0.97 (0.00)

Recall 0.86 (0.05) 0.22 (0.06) 0.83 (0.01)

PPV 0.84 (0.36) 0.84 (0.37) 0.82 (0.36)
Sensitivity 0.60 (0.47) 0.40 (0.52) 0.85 (0.27)

M. distance [px] | 26.88 (46.58) 54.21 (67.37) 12.85 (30.04)

5.1.3 Image segmentation using patches

This approach was used because of the large disproportion of background pixels
and aneurysm pixels. The main idea is to take the TOF-MRI image and divide
it to smaller patches, segment these patches and reassemble the image back to the

original state. This could not been done for training of the network and therefore
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Comparison of segmentation with and without elimination

Annotation TOF-MRI Segmentation

Annotation TOF-MRI Segmentation

Annotation TOF-MRI Segmentation

Fig. 5.4: This figure shows comparison of achieved detection without elimination
(first row), with elimination with use of CNN (second row) and with use of the
second method of elimination (last row). This is an example of data with large
aneurysms and SAHs.

random patches were used as described in Section [4.3.3]

Results of evaluation on the random patches were only a bit worse, then in the
full image approaches. For example, Dice coefficient was equal to 0.81 in case of all
data, PPV was 0.86 and Manhattan distance had also good results (M. distance =
8.58). But in order to make the results comparable, they needed to be evaluated
on images that had been disassembled, segmented and reassembled. These results
are presented in Table [5.4] According to the results, the segmentation is not very

accurate, as the Dice coefficient is only 0.56 for all validation data. However, in
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Comparison of segmentation with and without elimination

Annotation TOF-MRI Segmentation

Annotation TOF-MRI

Segmentation

Annotation TOF-MRI Segmentation

Fig. 5.5: This figure shows achieved detection using data with small TAs. It shows
the difference of detection without any elimination of FP segments (first row), elim-
ination with use of CNN (second row) and elimination using intersection of images

(last row).

case of large IAs and SAH, the coefficient is much higher. One of the main issues
of the segmentation problem is that large [As and SAHs are divided and therefore
inaccurately segmented when reassembled. This problem is shown in Figure [5.6]
Positive predictive value shows that there are a lot of false positive segments,
which is shown in the first row of Figure 5.6 In case of small aneurysms, PPV is
comparable with the other two cases, but the Dice coefficient and Precision are very
low due to a high number of false positive segments. Even though the segmentation

is not very accurate, some of centroids are still very precisely addressed according to
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Examples of reassembled images

Annotation TOF-MRI Segmentation

Annotation TOF-MRI Segmentation

Fig. 5.6: This figure shows achieved detection using patched image approach. It

shows case of segmentation and detection of a large amount of FP segments in the
first row and an example of good detection of badly segmented aneurysms in the

second row.

the Manhattan distance (see the second row of Figure[5.6]). Sensitivity also confirms

that detection is not bad in all three cases.

Tab. 5.4: Results of the patched image segmentation and detection approach.

Metrics All data Small TAs Large IAs and SAH
Dice 0.56 (0.07) 0.03 (0.01) 0.74 (0.05)
Precision 0.47 (0.06) 0.02 (0.00) 0.71 (0.06)
Recall 0.70 (0.08) 0.77 (0.14) 0.78 (0.05)
PPV 0.36 (0.47) 0.35 (0.47) 0.32 (0.41)
Sensitivity 0.77 (0.47) 0.58 (0.60) 0.91 (0.25)
M. distance [px] | 14.78 (27.52) 33.94 (46.22) 6.56 (16.83)

As mentioned, the main problem in this approach was a large number of false
positive segments. Therefore a method for elimination with use of intersection of

images segmented under different angles was used. Results of this approach are
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presented in Table [5.5] Segmentation has improved a bit according to Dice coef-
ficient, however Recall has decreased due to a small cropping of the segments by
intersection. Manhattan distance has increased a lot in case of all data, thus some
of the segments, that were originally very close to the position of real aneurysms
were eliminated. Images of this approach are shown in the first row of Figure [5.7]
where a small difference can be seen in comparison with images in the second row.
Another problem of the patched image approach were segments created far away
from the region of interest (blood vessels), shown in second row of Figure as
well. Sensitivity has dropped a bit in all three cases due to elimination of some TP

segments.

Comparison of segmentation with and without elimination
Annotation TOF-MRI Segmentation

Annotation TOF-MRI Segmentation

Fig. 5.7: This figure shows the difference between detection with elimination (first

row) and detection without elimination of FP segments (second row).

5.1.4 3D image segmentation

All of the approaches already proposed in this thesis are implemented in 2D space,
whereas this approach is in 3D space. It was proposed mainly because of the format
of the available data, which is NIfTI, that is used to store images of brain obtained
by MRI. Each case had several slices forming the whole 3D data. For the training of

the 3D U-net it was important to work only with smaller amount of data, as there
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Tab. 5.5: Results of the patched image segmentation and detection approach with

elimination of the FP segments.

Metrics All data Small TAs Large IAs and SAH
Dice 0.60 (0.07) 0.04 (0.01) 0.76 (0.05)
Precision 0.54 (0.07) 0.02 (0.01) 0.76 (0.06)

Recall 0.67 (0.08) 0.70 (0.13) 0.76 (0.05)

PPV 0.41 (0.49) 0.47 (0.49) 0.44 (0.44)
Sensitivity 0.76 (0.43) 0.54 (0.52) 0.90 (0.26)

M. distance [px] | 43.22 (30.76)  29.90 (43.04) 7.15 (19.49)

was again a large number of background pixels. Therefore the net was trained only

on smaller cubes of size 40 x 40 x 32. More information about training is mentioned

in Section [4.3.4]

Annotation Segmented image

Fig. 5.8: This figure shows 40 x 40 x 32 box segmentation of extensive subarachnoid

haemorrhage using 3D U-net.

This 3D U-net was evaluated on both the small boxes and the reassembled data.
In the first case, the U-net achieved on all available validation data a Dice coefficient
equal to 0.69, Manhattan distance equal to 14.11, PPV equal to 0.63 and Sensitivity
equal to 0.70. Based on these metrics the segmentation and detection does not
perform very poorly, but it tends to create false positive segments, as well. Quite

successful segmentation shown in Figure|5.8] where on the left, there is an annotation
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and on the right is the segmented image.

Tab. 5.6: Results of the 3D segmentation and detection approach.

Metrics All data Small TAs Large IAs and SAH
Dice 0.21 (0.05) 0.00 (0.00) 0.49 (0.02)
Precision 0.13 (0.03) 0.00 (0.00) 0.36 (0.02)
Recall 0.55 (0.15) 0.09 (0.05) 0.76 (0.04)
PPV 0.05 (0.01) 0.01 (0.02) 0.07 (0.04)
Sensitivity 0.34 (0.63) 0.21 (0.43) 0.93 (0.25)
M. distance [px] | 14.82 (12.01)  24.20 (20.85)  4.61 (2.63)

Results of reassembled data are presented in Table [5.6l The segmentation and
therefore the subsequent detection is not very good in either case. The same problem
occurs here as in the approach in Section [5.1.3] where subsequent merging of data
into the original size leads to inaccurate segments. Furthermore, there are a lot of
false positive segments according to the PPV values, in all three cases (all data, only
small TAs, large TAs and SAHs). This large number of FP segments is also shown in
Figure 5.9, This may be due to the fact that when segmenting a small cube, U-net
tries to find segments that would not appear at all when segmenting the data as a
whole. Sensitivity does not reach good values either, except in case of large IAs,
where the Sensitivity is 0.93. However the positive predictive value, in this case, is

only 0.07 and thus the detection is not successful, either.

5.2 Comparison of all used approaches

All approaches that were evaluated above in Section will be compared with each
other as well as with those of other authors, in this section. Results that will be
compared are shown in Graphs [5.10 [5.13] According to the Graph PPV can
be said to follow Dice coefficient, therefore the bigger the Dice coeff., the bigger
PPV and vice versa. This means that if false positive segments are removed, Dice
coefficient should grow and therefore detection should be more precise.

That is why two elimination methods were proposed. First that uses small
convolutional network, which decides which segment is removed. This method does
not really make a big difference, because the shape of false positive and true positive
segments does not differ much. Thus the network has learned to recognize some
segments, but clearly not enough to make a big leap in improvement. However,
with the second method, the difference is already visible in both full image and

patched image approaches. These methods are compared in Figure that shows
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Annotation Segmented image

Fig. 5.9: This figure shows segmentation of SAH and one small aneurysm using 3D
U-net.

better results achieved by the second elimination method by eliminating most of

the FP segments. In this figure, red circles represent false positive segments, green
circles represent true positive segments.

GRAPH OF DICE, PPV AND SENSITIVITY FOR ALL
APPROACHES

m Dice W PPV Senstivity

0,89

=
[e4]
g [=]

= "
= S -
=
= f
:
L
=
=
-
PATCHED IMAGES - PATCHED IMAGES  FULL IMAGES - FULL IMAGES - FULL IMAGES ID IMAGES
INTERSECTION INTERSECTION CNN

Fig. 5.10: Graph that compares values of Dice coeflicient, Positive predictive value
and Sensitivity of all approaches.

Another problem was a large amount of background pixels therefore the patched
approach was suggested. As mentioned in authors of [33] achieved Dice coef-
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Anotation Full image Full image + CNN Full image + Inter.

Fig. 5.11: This figure shows the difference, between methods proposed for elimina-

tion of false positive segments in segmented images.

ficient 0.90 using patches of images. However, in these TOF-MRI data the U-net
had several problems with segmentation. There are falsely segmented blood vessels
and structures far away from region of interest and therefore the PPV value is low,
which is shown in the Graph [5.10] as well. So it seems that it is more appropriate
to use full image approach with a loss function that can weight a positive response.

A 3D segmentation approach was proposed, as well. This approach had also
issues with the ratio of the number of background pixels to the number of aneurysm
pixels. Thus the method segments patches of 40 x 40 x 32 and then the 3D image
is reassembled from these patches. The main issue is the number of false positive
segments again (see Figure , therefore the results are very poor, which is shown
in the Graph as well. This problem could be solved by one of the elimination

methods, which is a very challenging task in 3D space.

Anotation

TOF-MRI image Patched image + CNN Patched image + Inter.

Fig. 5.12: This figure shows result of patched image approach and this approach

with elimination of false positive segments.

The detection was highly dependent on the segmentation accuracy. Meaning that
if there was a lot of false positive segments, the detection can be considered not very
successful, even though the Manhattan distance might be low in some approaches.
Boxplots of Manhattan distances of all approaches are shown in Graph For
example Manhattan distance is not very high in 3D segmentation approach, never-

theless according to the PPV value, which is very low, there are a lot of segments
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that are not the real aneurysms. Sensitivity is important metric, too. It determines
how many of the real aneurysms were really detected. So to evaluate the detection
success rate, it is important to take all three of these metrics into account.

Thus, if we consider all of these metrics, it is very hard to determine the best
approach. According to Sensitivity only, the best results are achieved by the seg-
mentation using patches of images with elimination of FP segments. However, full
image approach with elimination of FP segments using intersection of a few seg-
mented images under a different angle has the best results in PPV value. That
means, there is not as many correctly detected aneurysms as in the other method,
but there is also much less false positive segments. So in the sense of detection, it
is possible to say that the patched image method with elimination is better, how-
ever additional elimination method would have to be used, which would be able to
remove a large number of those FP segments and thus increase the PPV.

The 3D segmentation approach has problem with false positive segments, as well.
Even though, Manhattan distance is not as high as in the Full image approach,
according to PPV value (less than 0.5 in all cases), there are a lot of segments that
should not be present.

The calculation of the centroid was dependent on contour detection, and there-
fore influenced the results. The contours were not always obtained perfectly and so
the centroid position was not always calculated correctly. In some cases, the cen-
troid was not calculated at all. An example of such problem is shown in the second
row of Figure In the lower part of the images, there are segments that are not
detected. On the contrary, in the upper part, there is a detected segment, that is
not present in the image at all. Unfortunately, even after changing the method of
obtaining the contours, the problem was not solved.

Compared to other authors who were dealing with aneurysm detection, the re-
sults of this thesis are slightly worse. The results are shown in the Table [5.7, where
the best result achieved in this thesis are presented under the line in the last two
rows of the table. The authors of the paper who are in the table in the first row
([29]) used a 3D segmentation neural network with DeepMedic architecture for de-
tection. They do not report exactly how they performed the subsequent detection,
but they achieved very good results, namely 0.9 Sensitivity. The authors mentioned
in the second line also achieved a very high Sensitivity value. Their machine learn-
ing model is based on the untrained ResNet-18. To train their model, they had a
significantly larger dataset, which they describe in more detail in their paper.

While the authors of the [34] paper mentioned in the third line achieved a Sen-
sitivity of 0.7, the number of FP segments is only 0.26 per case, which is very good
result. Their approach is based on a CNN classifier that works just with a volume

of interest (VOI) and classifies whether a voxel belongs to an aneurysm or not. In
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Fig. 5.13: Boxplots of Manhattan distances of all approaches. Boxes define the

first and third quartiles, vertical lines show the variability of the data from these
quartiles. Crosses represent the mean value, horizontal lines in the boxes represent

median and dots are outlying values.

Tab. 5.7: Overview of results of other authors, dealing with aneurysm detection.

Authors Sensitivity
A. Faron, T. Sichtermann and others [29] 0.90

D. Ueda, A. Yamamoto and others [2§] 0.91-0.93

T. Nakao, S. Hanaoka and others [34] 0.70

K. M. Timmins, I. C. van der Schaaf and others [35] 0.02 - 0.70
Approach using patches of image with CNN elimination 0.77
Approach using 3D segmentation 0.34

the last row of Table there is a paper, that summarises results of participants
of ADAM challenge 2020. There are many approaches that used 3D U-net for seg-
mentation. Furthermore there is one very interesting approach based on three 2D
U-nets, that segment images in three different axis. The resulting image is created
as a combination of segmented images from these three axes.

In summary, when compared to the methods of other authors, there is certainly
room for many improvements and further experiments that could lead to better
results. The first thing to do would be to improve the accuracy of segmentation.

For example, by using a different network architecture or a combination of multiple
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approaches, as other authors who participated in the ADAM challenge did. Fur-
thermore, certainly the elimination of FP segments, which was a large problem in
this thesis. This could be solved by other architectures, but also perhaps the use
of other loss functions in training the U-net. Yet another possibility could be, for
example, the detection of aneurysms only in the vicinity of blood vessels. Thus, it
would be necessary to first obtain the areas of only these vessels and then search for

aneurysms.
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Conclusion

This thesis deals with the problem of detection of intracranial aneurysms from TOF-
MRI angiographic images. The aim was to get acquainted with the problem, to
create a literature research and then to apply the methods from the theory part in
practical aneurysm detection. The theory part of this thesis discusses intracranial
aneurysms, their diagnosis and treatment. Furthermore, classical methods of in-
tracranial aneurysm detection and machine learning based methods are presented,
as well.

Among the mentioned machine learning methods, U-net neural network was
chosen to solve the segmentation problem whose output is a probabilistic map.
This map was subsequently thresholded to produce a binary image where segments
representing potential anuerysms were detected. The detection was performed by
calculating the centroid of these segments with use of their contours. Two issues in
particular were addressed in the segmentation task. A large disproportion between
the number of background pixels and aneurysm pixels and furthermore the problem
of generating a large number of false positive segments. For these reasons, several
segmentation approaches and modifications have been proposed in this thesis.

At the end of the practical part is an evaluation of the different approaches.
Several statistical metrics were used for the evaluation. Precision, Recall and Dice
coefficient were selected for the segmentation task. Subsequent detection was evalu-
ated based on positive predictive value (PPV), Manhattan distance and Sensitivity.
The best results of detection is difficult to determine. The approach using patches of
images with subsequent elimination of FP segments achieved good results. In this
case, the elimination was performed by intersecting images that were repeatedly
segmented at slightly different angles. The approach achieves a Dice coefficient of
0.6 and PPV of 0.41, however it achieved the best Sensitivity of 0.76. On the other
hand, Full image segmentation with the same elimination of FP segments achieved
worse Sensitivity of 0.60, but the PPV is equal to 0.84. In case of 3D segmentation
approach, there is a problem with number of FP segments and the Sensitivity is not
very good either, even though Manhattan distance is very low.

When comparing the results with other authors, there is some room for im-
provement. For example, it would be possible to try other network architectures or

combination of several approaches.
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Symbols and abbreviations

IA

SAH

CcT

CTA

DSA

MRI

MRA

TOF

Intracranial aneurysm
Subarachnoid haemorrhage
Computer tomography

Computer tomography angiography
Digital subtraction angiography
Magnetic resonance imaging
Magnetic resonance angiography

Time of flight

TP, FP, TN True positive, false positive, true negative

PPV

TR

TE

SE

IR

STIR

FLAIR

GRE

HOG

DPM

SVM

VOI

Positive predictive value
Repetition time

Echo time

Spin echo

Inversion recovery

Short time inversion recovery
Fluid-attenuated inversion recovery
Gradient echo

Histogram of Oriented Gradients
Deformable part-baset Model
Support vector machine

Volume of interest
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