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Abstrakt 
Dolování sekvenčních vzorů je důleži tá oblast získávání znalost í z da tabáz í . Stále 
více průmyslových a obchodních aplikací uchovává data mající povahu sekvencí, kdy 
je dáno pořad í jednot l ivých t ransakcí . Toho může být využi to např ík lad při analýze 
po sobě jdoucích n á k u p ů zákazníků. 
Tato práce se zabývá využ i t ím hierarchického uspořádán í položek při dolování sekven
čních vzorů. V rámci práce jsou řešeny dvě základní oblasti - dolování víceúrovňových 
sekvenčních vzorů s kř ížením a bez křížení úrovní hierarchií . Dolovací úlohy pro obě 
oblasti jsou v práci formalizovány a nás ledně navrženy algoritmy h G S P a M L S P pro 
jejich řešení. Exper imen tá lně bylo ověřeno, že předevš ím algoritmus M L S P dosahuje 
výborných výkonnostn ích vlas tnost í a stability. V ý z n a m nově získaných vzorů je 
ukázán na dolování reálných produkčních dat. 

Abstract 
Min ing sequential patterns is a very important area of the data mining. Many indus
tr ia l and business applications save sequential data where the ordering of transactions 
is defined. It can be used for example for analysis of consecutive shopping transac
tions. 
This thesis deals wi th the using of concept hierarchies of items for mining sequen
t ia l patterns. This thesis focuses on two basic approaches - mining level-crossing 
sequential patterns and mining multi-level sequential patterns. The approaches for 
the both data mining tasks are formalized and there are proposed data mining algo
rithms h G S P and M L S P to solve these tasks. Experiments verified that mainly the 
M L S P has good performance and stability. The usability of newly obtained patterns 
is shown on the real-world data mining task. 
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Chapter 1 

Introduction 

Nowadays, the total amount of stored data in different kinds of databases is growing. 
Many different applications save data about each transaction. For example, data 
about merchant transactions are saved for bil l ing purposes. If the data are collected 
from a high number of customers, new dependencies about the customers' behavior 
can be formed. Another example is that data about insurance events can be stored. 
If the reporting period is long enough, the data can be used for the risk analysis of 
new contracts. Retrieving of such new knowledge from data is called Data Mining 
(or Knowledge Discovery) introduced in early 9 0 t h of 2 0 t h century. 

A n established definition is that Data Mining is an extraction or "mining" of 
hidden knowledge from large amounts of data [10]. Data Min ing is a complex pro
cess where the application of the data mining algorithm is only one step of the 
process. The process is composed of following steps: data pre-processing (data clean
ing, integration, transformation and reduction), data mining, pattern evaluation and 
knowledge presentation. 

Various types of databases require different data mining tasks and provide differ
ent kinds of patterns. Examples of main data mining tasks and types of data to be 
mined are following: 

• Classes Characterization and Discrimination - data are associated wi th classes 
and characterized and/or compared. 

• Min ing Frequent Patterns, Associations, and Correlations - frequent patterns 
are such patterns that occur frequently in data (in other words, data which 
occur in the dataset in a number which is higher than the given threshold 
value). 

• Classification and Prediction - data are labeled into classes. The algorithms of 
classification try to find a model which describes each class and can be applied 
on new (unlabeled) data. The prediction has a continuous target attribute. 

• Cluster Analysis - clustering algorithms try to find a model which can divide 
data into a specific number of groups. Clustering can be used for an ini t ial 
labeling of data. 
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• Outlier Analysis - algorithms for outlier analysis reveal data records which 
have different values than the majority. Such problem is typically used for 
fraud detection. 

This thesis deals with mining sequential patterns. Min ing sequential patterns is a 
special case of mining frequent patterns wi th a defined order of transactions. It is 
used for many applications such as the analysis of customer patterns, web log data 
purchase, security applications, etc. The goal is to find sequential patterns that occur 
in the database frequently. Market basket analysis is a typical application example 
where the sequential patterns like {PC-minitower ink-printer) can be discovered. The 
pattern says that many people buy a minitower P C and then, later, they also buy an 
ink printer. 

Items in the database can be assorted and categorized into one or more tax
onomies. A n example of taxonomies of items is shown on Figure 1.1. Taxonomies 
can be used to find patterns which items are on the different levels of hierarchy. We 
demonstrate it on the example of customer purchase analysis. Following the sequen
t ia l pattern example above, the pattern {PC printer) can be found by replacing all 
items by items on a higher hierarchy level. Unfortunately, the amount of such pat
terns can grow enormously, but many of the patterns can be considered as useless. 
For instance, the pattern {PC printer) does not bring any new information if the 
number of its occurrence in the database is the same as a number of {PC-minitower 
ink-printer). 

Example 1. For better illustration of the practical impact of the issue being solved, 
the thesis uses a simple real world example from a P C shop. There is an illustration 
of several categories representing products of the shop on Figure 1.1. 

Figure 1.1: Example of the products structure in the shop. 

When items are categorized in taxonomies, the sequential patterns can be divided 
into the following two categories: 

• multi-level (known also as intra-level) 

• and lev el-cms sing (known also as inter-level) [9]. 

A l l items of multi-level sequential patterns are at the same level of hierarchy, whereas 
levels of items of level-crossing can be different. In Chapter 3 it is shown that very 
few algorithms deal wi th the problem of mining multi-level sequential patterns. The 
thesis deals wi th the both categories of sequential patterns and examines how to mine 
them effectively. 
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1.1 Goals of the Thesis 
The P h . D . thesis deals wi th the mining sequential patterns where taxonomies are 
defined over items in a sequence database. The hypothesis of the thesis is following: 

"The existence of taxonomies makes it possible to find a new type of sequential 
patterns and a new method for mining it effectively can be developed." 

The goal of the thesis is to verify the hypothesis. The goal is decomposed into 
the following three sub-goals. 

1. To design and formally define the problem of mining sequential patterns wi th 
items in taxonomies. 

2. To design and formally define a new method(s) or algorithm(s) which can solve 
the defined data mining problem effectively. 

3. To experimentally evaluate properties of the developed method(s) or algo
r i thm^) and to compare it (them) wi th the existing methods. 

1.2 Thesis Contribution 
The main contributions of the thesis are as follows. 

• The both multi-level and level-crossing categories of mining sequential patterns 
with items in taxonomies are discussed. There is proposed a new type of mult i
level sequential patterns task which reduces redundant (useless) patterns using 
new constraints. 

• New methods for mining of level-crossing and especially multi-level sequen
t ia l patterns are introduced. There are proposed new optimization techniques 
which significantly increase the speed of the multi-level mining algorithm. The 
properties of algorithms are experimentally verified. 

1.3 Structure of the Thesis 
Pattern Min ing is introduced in Chapter 2. The first part is focused on frequent 
pattern mining. Then the sequential pattern mining is defined and a problem is 
extended by the existence of taxonomies. The state of the art, especially existing 
algorithms for frequent or sequential pattern mining, is described in Chapter 3. The 
core of the thesis is described in Chapter 4. The first part deals wi th level-crossing 
sequential patterns and the second part is focused on the research of multi-level 
patterns. Here, a new data mining task is defined and algorithms to solve them are 
proposed. The experiments and their results are described in Chapter 5. First , the 
performance is compared on synthetic data, then, the practical results are shown. 
Finally, the results are summarized and possible following research is suggested in 
Chapter 6. 
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Chapter 2 

Pattern Mining 

Min ing of frequent patterns is the most common of the data analysis and data mining 
tasks [10]. Basic concepts of mining frequent patterns and association rules are 
introduced first. Then, mining sequential patterns and mining wi th defined concept 
hierarchy are described. In addition, the chapter gives basic formal background to 
the pattern mining. 

2.1 Mining Frequent Patterns 
Min ing frequent patterns was firstly studied by Agrawal et al. (1993) in the paper 
[2]. The main objective was to find such sets of items (shortly itemsets) which occur 
in transactions of input database more frequently than a given threshold. It is widely 
used to discovery of associations and correlations among input items. It produces 
simply understandable model of data and, therefore, the task is usually used for 
ini t ial data analysis of an unknown dataset. 

The task became very popular for industry and business, especially for decision 
making applications and marketing applications. The typical example of usage of 
the association rules mining is a market basked analysis. The goal is to find items 
which are usually purchased together. The example can be a typical computer shop 
which sells items such as computers, notebooks, monitors, printers, keyboards etc. 
The frequent pattern mining task can reveal that computers are usually purchased 
together wi th monitors and keyboards, but notebooks are purchased just alone. The 
task association rules analysis brings the results in the form of implication. It means 
that if a customer buys a computer, he probably buy also a keyboard. 

2.1.1 Problem Definition 
Here, the problem is described formally. 

Definition 1. (Itemset) Let I = {ii,i2, • • •, ik} be a nonempty finite set of items. 
Then an itemset T is a non-empty set of items J , such that TCI. 

Definition 2. (Frequent Itemset) Let J be a set of items, T> be set of transactions, 
such that each transaction T is T C J , and A C I be an itemset. The transaction T 
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contains an itemset A iff A C T . A reiative support of the itemset A is a percentage 
of transactions in X> that contain A. Given the minimal support threshold value 
minsup, the itemset A is called frequent itemset if its support is more than or equal 
to minsup. 

Definition 3. (Association Rule, Support of Association Rule, Confidence 
of Association Rule) Let J be a set of items, T> be set of transactions and let A 
and B be itemsets such that A,BC.I and A D B — 0. Then an association rule is 
the implication A =>• 5 . The support of the association rule A =>• £? is a percentage 
of transactions of X> that contain A U B . The confidence of the rule A =>- is a 
percentage of transactions in X> containing A which contain also 5 . This means 

support (A =>• B) = P(AUB), (2.1) 

cor i / i c fence^ =• B) = P { B \ A ) = ™PPort{AUB) _ 
support(A) 

Definition 4. (Mining Frequent Patterns) Given a database T> and a minimal 
support threshold minsup, the task of finding of the complete set of frequent itemsets 
is called the mining frequent patterns. 

2.1.2 Mining Maximal and Closed Frequent Itemsets 
The huge number of result itemsets can be reduced using the maximal and closed 
restrictions of frequent itemsets [7, 15]. 

Definition 5. (Maximal Frequent Itemset) Let F be a set of frequent itemsets. 
A frequent itemset x G F is called maximal frequent itemset if it is not a proper 
subset of any other frequent itemset x' G F. 

Definition 6. (Frequent Closed Itemset) Let F be a set of frequent itemsets. A 
frequent itemset x G F is called closed frequent itemset if it is not a proper subset of 
any other frequent itemset x' G F such that support(x) = support(x'). 

Definition 7. (Mining Maximal /Closed Frequent Patterns) Given a database 
T> and a minimal support threshold minsup, the task of finding of the complete set 
of maximal (closed) itemsets is called the frequent maximal (closed) patterns mining. 

2.2 Mining Sequential Patterns 
Sequential pattern mining was introduced by Agrawal and Srikant in 1995 [ ]. The 
sequence is defined as an ordered list of transactions (itemsets) of one customer. 
The example of usage of the sequential pattern mining can be also demonstrated 
on market basket analysis. It can be expected that customers return for further 
purchases. Therefore, the sequential patterns over purchased items can be found. 
The example of such sequence can be, that a customer buys the computer with a 
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monitor in the one purchase and, later, the customer returns and buys a printer. If 
a sequence occurs in database more than a given threshold, it is called the sequential 
pattern. 

2.2.1 Problem Definition 
In this section the problem of mining sequential patterns is formalized. Firstly, the 
basic terms such as item, itemset, sequence and sequence database should be defined. 

Definition 8. (Sequence) A sequence is an ordered list of itemsets. A sequence 
s is denoted by {sis2ss... sn), where Sj for 1 < j < n is an itemset. The itemset 
Sj is also called an element of the sequence. The length of a sequence is defined as 
the number of instances of items in the sequence. A sequence of length / is called 
an I-sequence. The sequence a = (aia2 • • • an) is a subsequence of the sequence 
f3 — (&1&2 • • • bm) where n < m if there exist integers 1 < ji < j2 < • • • < jn < m such 
that a i C bjx, a 2 Q bj2,..., an C bjn. We say that the sequence a is contained in the 
sequence (3. We denote it a C 13 and (3 is a supersequence of a . 

Definition 9. (Sequence database) A sequence database P is a set of tuples 
(SID, s), where SID is a sequence identifier and s is a sequence. 

Definition 10. (Sequence Support) Given sequence database T>, the support of 
a sequence s\ in T> is defined as the number of sequences in T> containing a sub
sequence s\. Formally stated, the support of a sequence s\ in V is support (si) = 
\{(SID,s)\((SID,s) eD)A{SlQs)}\. 

Definition 11. (Sequential Pattern, Min ing Sequential Patterns) Given se
quence database V and minimal support threshold minsupp, a frequent sequence is 
such a sequence s whose support(s) > minsup. A frequent sequence is called a se
quential pattern. For a given sequence database D and a minimal support minsupp, 
the goal of mining sequential patterns is to find al l frequent sequences in V. 

Example 2. (Item, Element, Sequence, Sequence Database, Sequential 
Pattern) For better understandability, the examples in the thesis are based on 
the sequence database in Table 2.1. The set of items for the example is the set 
I = { o n , Q12, Oi, &ii bi, b2, Ci, di, e i , /1 , / 2 , gi, #2, hi, h2}- The table represents a se
quence database wi th sequences in the sequence column. Let 's focus on the first 
row containing the sequence s = {(cidi)(ai2biCi)(aib2fi)(auCidifi)). The sequence 
length is twelve, therefore the sequence is called 12-sequence. The sequence consists 
of four elements (itemsets): (cidi), (a^biCi), ( a i 6 2 / i ) and (a^Cidifi). Note that 
if element contains only one item, than the parentheses around the itemset can be 
omitted, e.g. element ei on the second row. Items denoted by the same letter, which 
differ only in indexes, belong to one taxonomy. This notation wi l l be described later 
in Example 3 on page 9. 

For the following examples we assume the minimal support threshold minsupp—-2, 
unless otherwise stated. The support of i tem b2 is 3, denoted as (b2) : 3, because the 
item is included in three sequences wi th SID 1, 2 and 3. Therefore, the 1-sequence 
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(62) is frequent and is called sequential pattern. In contrast, the support of 1-sequence 
(<7i) is 1 and it is not frequent. Further, the 2-sequences(di0i) : 2 , ( d i / i ) : 2 and 
((^2/2)) : 2 are sequential patterns of length 2 wi th the support 2, e.g. the first se
quence (dibi) : 2 is the subsequence of sequences 1 and 4 of the sequence database. 
In the sequence database there is no any sequential pattern longer than two. 

Table 2.1: A sequence database V containing items on different taxonomy levels. 
SID Sequence 

1 ((ci d i ) ( a i 2 61 c i ) (a i b2 fi)(an cx dx fx)) 
2 ( ( a i 2 h f2) ei) 
3 ( (02 &2 / 2 ) ) 

4 (an (rfi 5-1 foi)(&i / i ) ( a 2 #2 M ) 

2.2.2 Mining Maximal and Closed Sequential Patterns 
In some special cases, some restrictions over the sequence length and support need to 
be defined. In general, there are two restrictions similar to those introduced in Def. 5 
and Def. 6 - maximal sequential patterns and closed sequential patterns. In the case 
of maximal sequential patterns we are interested in sequences whose supersequences 
are not frequent (simply, algorithms find the longest sequences). This problem was 
deeply studied by Wang et al. [28]. In the case of closed sequential patterns proposed 
by Agrawal in [1], the change of support of the supersequences is important and it also 
bring us some information. In this case, we omit only subsequences whose support is 
the same as theirs supersequences. 

Definition 12. (Closed Sequential Pattern) Given sequence database T> and a fre
quent sequence s. If there is no proper supersequences of s wi th the same support, 
i.e. $s' such that s C s' and support(s) = support(s'), the sequence s is called closed 
sequential pattern. 

Definition 13. (Maximal Sequential Pattern) Given sequence database T>, a frequent 
sequence s and minimal support threshold minsupp. If there is no proper frequent 
supersequence of s, i.e. $s' such that s \Z s' and support(s') > minsupp, the 
sequence s is called maximal sequential pattern. 

2.3 Concept Hierarchy and Taxonomies 
Concept hierarchy allows describing relations between concepts (values of attributes) 
in database. The usage of concept hierarchy for data mining is summarized in [10] 
and [6]. In general, the concept hierarchies define relations between lower (more 
specific) and higher (more general) concepts. Formally, the concept hierarchy is a 
partially (or totalky) ordered set of concepts. A special case of concept hierarchy is 
a hierarchy of items referred as taxonomy. 
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Definition 14. (Concept Hierarchy) A Concept Hierarchy CH is a partially or
dered set ( C H , ^ ) , or respectively a totally ordered set ( C H , -<), where C H is a 
finite set of concepts, and z< and -< are partial and total order over C H , respectively. 

Definition 15. (Taxonomy) The taxonomy structure of an itemset V (abbr. tax
onomy) and edges E is a rooted tree r = (V, E) wi th a root r G V. In the context 
of the tree, we refer to V as a set of nodes representing items. For each node v in 
the tree, let UP(v) be a simple unique path from v to r. If UP(v) has exactly k 
edges then the level of v is k for > 0. The level of the root is 0. The height of a 
taxonomy is the greatest level in the tree. The parent of v ^ r , formally parent(v), 
is the neighbor of i> on UP(v), and for each node i> G V, v ^ r there exists a set of 
its ancestors defined as: 

The parent of r and the ancestors of r are not defined. If v is the parent of u then u 
is a c/iiW of i>. A leaf is a node having no child [14]. 

In every taxonomy there exists a is-a relation which is defined as follows: 

Let i = { i i , . . . ,Im} be a parti t ion of a nonempty finite set of items I. Then a 
set of taxonomy structures of items J is a nonempty set of taxonomy structures 
T = { T I , . . . , r m } corresponding to t such that Tj = ( i j , i?i) where Ii E i for 1 < z < m . 
It means that each item i 6 / appears in exactly one taxonomy structure Tj G T . It 
should be noted that we do not require that items need to be only leaf nodes. Items 
ancestors{i) w i l l be referred to as generalized items of i. 

Example 3. (Taxonomy of Items, Taxonomy Level, Parent, Ancestor, Gen
eralized Item.) The tree structures on Figure 2.1 are called Taxonomies of Items 
which are used in the running example. The root symbols are alone letters from a to 
h which are called root items. Then, al l descendants are denoted by down-indexes. 
B y the definition, the level of i tem is the number of edges from item to root item, 
for example the level of ai2 is 2. Note, that the count of down-index digits denotes 
the level of the item and the digit value denotes ordering of the i tem on the current 
taxonomy level. 

Now, we focus on relations between items in the taxonomies. The a\ is a parent 
of both a n arid 012, denoted as parent(au) = oi- Each i tem has almost one parent 
item. In contrast, the ancestors are a set for each i tem laying on the path to root, 
for example a n has two ancestors a i and a, denoted as ancestor (an) = {a i , a}. The 
generalized items of i tem a n are both a i or a. 

2.3.1 Mining Multi-Level and Level-Crossing 
The necessity of mining association rules on different concept levels has been firstly 
mentioned by Agrawal et. al. in [ ]. It is important to deal wi th multiple level pattern 

ancestors(v) = {x\x G UP(v),x ^ v}. (2.3) 

is — a : V x V := {(a, b)\b G ancestors (a)}. (2.4) 
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Figure 2.1: Visualizat ion of taxonomies over items from the Example . 

mining because association rules over leaf items may not satisfy minimal support but 
association rules over more general items in the taxonomy may satisfy it. 

Therefore, the task of mining association rules is extended to the form of the 
generalized association rules [22] by the Def. 16. 

Definition 16. (Generalized Association Rule) Let D be a set of transactions, 
T be a set of taxonomies and I the set of al l items, where each transaction T is a set 
of items such that T C I. A transaction T supports an item x G / if x G T or x is 
an ancestor of some item in T . A transaction T supports a set X C I if T supports 
every item in X. Then, a generalized association rule is an implication A =>• B, where 
i , B C / , J n F = 0 and no item in Y is an ancestor of any i tem in X. The support 
of the generalized association rule A =>- B is a percentage of transactions in T> which 
contain AU B according to the support defined in this definition. The confidence of 
the generalized association rule A =>- B is percentage of transactions in T> supporting 
A that also support B. 

Definition 17. (Mining Generalized Association Rules) Let V be a set of 
transactions and T be a set of taxonomies. The task of mining generalized association 
rules is to discover all rules that have support and confidence greater (or equal) than 
the user specified minimal support and minimal confidence values. 
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Chapter 3 

State of the Art 

The algorithms for mining sequential patterns have to deal wi th an ordering of trans
actions of customers. This section contains an overview of approaches to the sequen
t ia l patterns mining. The algorithms based on candidate generation are described 
first and, then, the efficiency improvements based on pattern-growth approach are 
introduced. 

3.1 GSP Algorithm 
The algorithms A p r i o r i A l l and AprioriSome described in the previous section enable 
mining of non-constrained sequential patterns and maximal sequential patterns us
ing post-processing procedure. Srikant introduced a new mining algorithm called 
Generalized Sequential Patterns (GSP) in [21]. The G S P allows different types of 
constraints of sequential patterns such as taxonomies, sliding windows and time con
straints. Sliding windows and gap time constraints are not considered for the rest 
of the thesis. The algorithm works iteratively. It makes a pass over the sequence 
database in al l iterations: 

1. Initially, the support of items is counted in the first database pass. 1-sequences 
are created from items wi th higher support value than a minimal support 
minsup. Such 1-sequences are inserted into a partial result set L\ contain
ing al l frequent 1-sequences. 

2. Then the following steps are processed iteratively unti l none /c-sequential pat
tern is generated: 

(a) The Candidate Generation step generates Ck candidate sequences. 

(b) The Counting Candidates step filters the frequent sequences into the Lu 
sets. 

3. The result set of sequential patterns is | J f c Lk. 

The Candidate Generation runs in Join and Prune steps. 
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1. In the Join step, a set of candidate sequences Ck is generated from sequential 
patterns in L^-i- A pair of sequences s i , « 2 G £fc-i can be joined if subse
quences, generated by omitt ing of the first i tem of Si and the last i tem of s2, 
are equal. Then, the candidate /c-sequence is formed by adding the last i tem of 
the s2 at the end of the sequence Si as: 

(a) the last new element containing one item x if x was in a separate element 
in s 2; 

(b) as a next i tem of the last element in s\ otherwise. 

(c) When joining x G L\ wi th y G L\, both sequences < (y)(x) > and < 

(yx) > are generated as candidate sequences. 

2. The Prune step removes candidates whose any (k — l)-subsequence is not fre
quent. 

In the Counting Candidates step, the database is passed and the support of each 
candidate sequence is counted. Candidates with a support greater than minsupp 
are added into the set of sequential patterns. The contains test, checking if a 
sequence s of the sequence databasecontains a candidate sequence sc, is used for 
support evaluation. 

3.2 PrefixSpan Algorithm 
The PrefixSpan proposed by Pet et al. [17],[16] is a representative of the pattern-
growth algorithms. The algorithm does not use the time-consuming generating of 
candidate sequences. The algorithm is based on the projected databases [11]. The 
PrefixSpan algorithm works as follows. In the first scan, the algorithm finds al l 1-
sequential patterns in the sequence database (the prefix is empty). Then, projected 
database construction and PrefixSpan procedure is applied for each 1-sequential pat
terns. Constructed projected databases are searched for a set of local frequent items 
again. Output sequential patterns are constructed by joining a prefix wi th al l local 
frequent items. Finally, sequential patterns represents new prefixes and the PrefixS
pan is run recursively. 

3.3 Mining Multi-Level Sequential Patterns 
The first method to deal with taxonomies over sequential patterns was described 
in [18]. The method is called Uniform sequential approach [18] . It allows using 
a common sequential patterns mining algorithm for mining multi-dimensional and 
multi-level sequential patterns. This intuitive approach is based on the extending of 
sequence database V. Each sequence s G V is replaced by a new sequence s' called 
extended sequence where each item of s is replaced by al l its ancestors wi thin an 
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element. Then, the presented AprioriSome and G S P algorithms wi l l produce level-
crossing sequential patterns. Han et al. used in [ ] such extended sequences for mining 
multi-level sequential patterns by means of the PrefixSpan algorithm. 

The topic of mining multi-level sequential patterns was deeply studied by Plante-
vit et al. [20] and [19]. They proposed several methods for mining different kinds of 
multidimensional and multi-level sequential patterns. The multidimensional database 
contains items from n distinct dimensions Di. Then items for data mining tasks are 
n-tuples % = (di,... ,dn), where di G dom(Di) U {*} and star symbol * denotes all 
items of domain Di, called multidimensional items. They proposed an algorithm 
called H Y P E (HierarchY Pattern Extension). They described an idea of generaliza
tion and specialization of sequential patterns [ ]. The algorithm runs in two phases. 
In the first phase, the algorithm creates the most specific (items in leaf nodes of 
taxonomies) n—multidimensional items % = (d\,... ,dn) denotes any item. The con
struction gradually replaces star symbols by specific items of domains by joining pairs 
of compatible hierarchical items - two items over n—dimensions are compatible, if 
items share n — 2 items. In the second phase, the sequential patterns are iteratively 
mined using an Apr io r i theorem. 
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Chapter 4 

Level-Crossing and Multi-level 
Sequential Pattern Mining 

Basic concepts of mining sequential patterns were described in previous Chapters 
2 and 3. There were introduced the field of mining level-crossing and multi-level 
sequential patterns. It was indicated that the usage of taxonomies of items can help 
to find new results and new knowledge.The analysis of the state-of-the-art exposed 
that such mining task is important and challenging, however, there does not exist 
any satisfying solution. 

In this chapter, my research over level-crossing and multi-level sequential pat
tern mining is described. The main idea of my research is that the generalization 
of sequence items can be performed when the subsequence support does not reach 
the minimal support value. I have studied both sub-problems - level-crossing and, 
also, multi-level sequential patterns. The naive solution for mining the level-crossing 
sequential patterns uncovered the main issues of the task which are the huge search 
space and the large result set. Therefore, there are proposed the constrains for 
mining multi-level sequential patterns which simplifiy the complexity of the mining 
process. The chapter summarizes facts published in research papers [24], [25] and 
[26]. A l l those research papers were presented as results of T A C R research project 
TA01010858: "Improving Security of the Internet by Using System for Analyzing of 
Malicious Code Spreading" . 

For the rest of the thesis two basic tasks wi l l be distinguished: 

• Level-crossing sequential patterns - items of sequential patterns can be gene
ralized to any level of taxonomy. 

• Mult i- level sequential patterns - items of sequential patterns have to have the 
same level of taxonomy. 

Example 4. The difference between the complexity of level-crossing and multi-level 
sequential patterns mining is shown on Figure 4.1. The multi-level mining approach 
creates only the most bottom and top sequences: (ai (62 / 2 ) ) and (a (b f)) because 
levels of items of those sequential patterns must be the same. However, there are 
more 5 level-crossing sequential patterns between the pair of multi-level sequential 
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patterns of length three. W i t h the length of the sequential patterns, the number of 
level-crossing patterns increases dramatically. 

Figure 4.1: Difference between level-crossing and multi-level generalization of se
quence (ai (62/2))-

A new support measure called a generalized support is introduced. The generalized 
support gensupp is based on Def. 10 but the sequence subset relation is replaced by 
the generalized subset relation Cg for the generalized support. Then, the generalized 
support must test if the subsequence contains an item or any of its descendants. 

Definition 18. (Generalized Support) Given elements e\,e2 C J , the generalized 
subset relation Cg is defined as 

ei C 3 e 2 Vz G e\ : i G e 2 V 

3j G 62 '• % G ancestor's(j). (4.1) 

A sequence ct = (0102 • • • an) is a generalized subsequence of a sequence /3 = 
(6162 • • • bm) if there exist integers 1 < ji < J2 < • • • < jn < rn such that a\ Cg 

bj11a2 Qg bj2,...,an Cg bjn. We denote a Cg (3. Formally, the definition of the 
generalized support of a sequence S\ is 

gen.supp(Sl) = \{(SID, s)\((SID, s) G D) A (s, C S s)}\. (4.2) 

The rest of the thesis wi l l use shortened term support instead of generalized sup
port. 

Definition 19. (Generalization Procedure) The generalization procedure (shortly 
generalization) is a procedure whose input is the node n of the taxonomy r and the 
output is the subset Na of ancestors of node n: 

NaCrAnerANaC ancestor s(n). (4.3) 

4.1 Mining Level-Crossing Sequential Patterns 
Sequential patterns are such subsequences which occur frequently in a sequence 
database. Level-crossing sequential patterns allow items to be on different levels of 
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taxonomies. O n the other hand, the search space significantly grows for level-crossing 
sequential patterns. 

This section is based on facts published in [24] and [25]. First , the problem of 
mining level-crossing sequential patterns is formalized. Especially, the relations as 
parents and ancestors are defined for level-crossing sequences. Then, the algorithm 
for mining level-crossing sequential patterns is proposed. 

4.1.1 Problem Definition 
Definition 20. (Element Parents) Given an element e = ... ,in}, an ele
ment parents of the element e is a set of the elements which are the same as e except 
one of the items which is generalized. Formally, 

parentsei(e) = {e \ {ik} U {parent{ik)}\ik £ e 

Aparent(ik) £ e A 1 < k < n}. (4.4) 

Note that items inside elements can be linearly ordered without lost of generality. 
Now, the sequence parents and sequence ancestors can be defined using the ele

ment parent definition. 

Definition 21. (Sequence Parents) Given a sequence s = ( e ^ . . . e n ) , where ek 

are elements. The sequence parents of s is the set of sequences that are the same as 
the sequence s except one of their elements which is replaced by one of its element 
parents. Formally, 

parentsseq(s) = { ( / i / 2 . . . fn)\fk £ parentsei(ek) 

A l < k < n (4.5) 

AV/ + k, 1 < / < n : e, = / , } . 

Definition 22. (Root Sequence) Given taxonomy r , a root sequence is a sequence 
consisting of elements with items corresponding to root nodes only. The set of se
quence parents of a root sequence is an empty set. 

Definition 23. (Sequence Ancestors) Given the sequence s, the sequence ances
tors of the sequence s is defined as follows: 

ancestor sseq(s) = Mi, for such % that Mi+i = Miy where (4.6) 

M0 = parents seq(s) 

M j + i = Mi U {parentsseq(x) \ x £ Mj} 

for % > 0. 

Example of sequence parents and sequence ancestors of sequence are in Example 5. 

16 



Example 5. For a given sequence ( a i 2 an) : 1, a set of parent sequences is the 
set of two sequences { (a^a i ) : 1, (oi an) : 1}- The set of ancestors of the sequence 
(«12 an) : 1 is the set of sequences { ( a i 2 ai) : 1, ( a i a n ) : 1, ( a i a i ) : l , ( a i a ) : 2,(aai) : 
1, (a a) : 2}. The sequence (a a) : 2 is the root sequence and it has no parent and 
ancestor sequences. 

4.1.2 The hGSP Algorithm 
In this section, the algorithm hGSP (hierarchical-GSP) for mining level crossing 
sequential patterns is introduced. The algorithm is based on G S P [21] described in 
Section 3.1. In contrast to the method based on "extended-sequences'", the h G S P 
algorithm reduces the number of redundant patterns. If a sequence s is frequent and 
Si G ancestorsseq(s), then si must be also frequent. Therefore, the sequence si is 
redundant because it does not contain any new information. Due to the observation 
our algorithm does not generate al l possible generalizations of frequent sequences. It 
performs generalization only when the sequence would be pruned. The h G S P is based 
on the idea of concreteness of each sequence. The concreteness measure is evaluated 
using information theory explained in the following subsection. 

Concept of h G S P Algori thm 

The main idea of the h G S P algorithm is that if a sequence s has support gensupp(s), 
there can exist a generalized sequence sg G parentsseq(s) such that gensupp(sg) > 
gensupp(s). This can be applied repeatedly. Note that V s s G parentsseq(s) : 
gensupp(s) < gensupp(sg). 

Generally, more specific sequence s is more important result than its generalized 
form sg because the generalized sg is more expectable in the result set. It corresponds 
to the concept of Shannon information content [12]. 

For a sequence s, the dependence between information content h(s) and general
ized support gensupp(s) causes that if the generalization from s to sg is performed 
and gensupp(sg) > gensupp(s), then h(sg) < h(s). Some information is lost during 
generalization. Therefore, the generalization should be performed only if the candi
date sequence is not frequent (i.e. gensupp(s) < minsupp) or the G S P algorithm 
cannot perform join of two candidate sequences wi th joinable sequence ancestors. 

Definition 24. (Concreteness) A sequence s\ is more concrete than a sequence s 2 

if (a(s 2) < h(si)) A (ancestor sseq(s\) U si) fl (ancestor sseq(s2) U s 2 ) ^ 0. 

It means that to be more concrete Simust have higher information content then 
s 2 and both sequences must have at least one common ancestor or one sequence is 
ancestor of the other. 

Algorithm details 

The h G S P algorithm uses modified join step and pruning step of the G S P algorithm. 
The rest of the algorithm remains the same. The h G S P algorithm implementation 
assumes that items in elements are in lexicographic order. 
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The join step is modified for generating candidates of length k > 3. Let s\ and 
S2 be a pair of frequent sequences of length k — 1. The join can be performed if 
subsequences of Si after omitt ing the first i tem and s 2 after omitt ing the last one 
have a common sequence ancestor. Then the joined sequence of length k is composed 
from the first i tem of s\, the most concrete sequence ancestor of common part and 
the last i tem of s 2 . The last i tem is added as in G S P . 

Support of candidates is counted similarly to original G S P . The only difference 
is that we use gensupp(s) defined in Def. 18 instead of support. Therefore, only 
the procedure for checking, if a candidate is a subsequence of sequences in a given 
sequence database, is modified. 

The modification of the pruning step is shown in Algor i thm 4.2. The algorithm 
uses a method for finding the approximation of the most concrete generalization set 
of sequences which is described in Algor i thm 4.1. The h G S P algorithm is based on 
the greedy optimization technique [5]. The method FindGeneralization(s) returns 
the set Gs of most concrete generalizations of the sequence s wi th higher information 
value. Then the hGSP algorithm checks, if each sequence in Gs is frequent. If 
so, it is added into set of sequential patterns, otherwise the candidate sequence is 
generalized again. Therefore, the algorithm finds only sequences corresponding to 
the local optimum of concreteness measure. Finding of a global optimum would 
be extremely computationally complex. It is not necessary to evaluate information 
content using logarithm functions but it is sufficient to compare ratios of supports of 
sequences and theirs generalized forms. 

Given sequence s and its generalized form s 1 ; the information contents of these 
sequences are h(s) — — log 2 sen-sn>v{s) a n ( j _ _ i Q g 2 gen.supp{si) ^ rp^g information 

lost during generalization of s to S\ is Ah = h(s) — h(si). It follows that 

( gensupp{si) \ . . 

^ U ^ * . (4.7) 
gen.supp(s) J y gen_supp(s) J v > 

The generalization of s wi th the smallest information loss is found because then 
the sequences wi l l be the most concrete. Therefore, the algorithm minimizes ratio 
gensupp(si) 
gensupp(s) 

Generalized sequences which contain ancestor item of another item in the same 
element are redundant and they are discarded. 

4.2 Mining Hierarchically-Closed Multi-Level 
Sequential Patterns 

This section presents the core result of my research work. It deals wi th the for
mal definition of the newly formulated task of mining hierarchically-closed sequential 
patterns, and then it describes a new algorithm for mining such sequential patterns. 

The level-crossing kind of sequential patterns introduced in previous section is 
the natural taxonomical (hierarchical) extension of the sequential patterns. However, 
the mining process of such patterns is very difficult and computationally expensive. 
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Algorithm 4.1 Method F I N D G E N E R A L I Z A T I O N Q 

procedure FindGeneralization(s) 
Gs = {} 
min supp „ratio = +oc 
for all ps e parents seq(s) do 

ratio = gensupp(ps) / gensupp(s) 
if (gensupp(ps) ^ gensupp(s) A ratio < minsupp-ratio then 

Gs = {/>,} 
minsuppjratio = ratio 

else if (ratio = min supp-ratio then 
Gs = Gs U { p j 

end if 
end for 
return Gs 

end procedure 

Therefore, the simplification of the problem was introduced in the research paper 
[26]. The improvement is based on the multi-level sequential patterns concept. The 
main idea is to find only patterns containing items of the same level. It reduces the 
number of searched paths during the mining process. 

The difference is explained on the following example which uses the taxonomies of 
a shop from Example 1 on page 3. The possible result of mining level-crossing sequen
t ia l patterns can contain e.g. sequences like {PC-minitower inkjprinter), 
(PC-minitower printer) or (PC printer) because there is no constraint for the com
bination of the level of items. The multi-level sequential patterns, by contrast, must 
not contain the sequential pattern as {PC-minitower printer) because the levels of 
items PC-minitower and printer are different. 

The hierarchically-closed sequential patterns follow the idea of the h G S P algo
r i thm which reveals only the most concrete patterns using the information con
tent measure. It was observed, that the result becomes more clear and revealing 
if the closed patterns are used [28], [1]. In our example, the analyst could be over
loaded by redundant patterns if the result contains al l {(PC-minitower LCD-monitor) 
ink-printer), {PC-minitower ink-printer), {LCD-monitor ink-printer), 
((PC-minitower LCD-monitor)), etc. Moreover, no information is lost if the non-
closed patterns are omitted and the longest sequential patterns wi th the equal sup
port are found. O n the other hand, the mining of the close patterns are more com
plicated, because result patterns must be retroactively pruned. In our work, the 
"close" problem is applied to the process of generalization. It leads to the similar 
type of redundant patterns like in mining closed sequential patterns - only the most 
specific patterns wi th the no support change are revealing. Ancestors of the frequent 
hierarchically-closed multi-level sequential patterns are always also frequent. How
ever, the change of the support during the generalization is important. Therefore, we 
focus on the mining the hierarchically-closed instead of the hierarchically-maximal 
sequential patterns. 
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Algorithm 4.2 Pseudocode of h G S P Pruning Step 
procedure H G S P ( C k , minsupp) 

Lk = {} 
for all sc G Ck do 

C'k = M 
sequence-added = false 
while sequence.added = false A \C'k\ > 0 do 

Gs = {} 
for all s G C'k do 

if gensupp(s) > minsupp then 
Lk = Lk U {s} 
sequence-added = true 

else 
Gs = GSU F I N D G E N E R A L I Z A T I O N ( S ) 

end if 
end for 
C>=GS 

end while 
end for 
return Lk 

end procedure 

4.2.1 Problem Definition 
This section deals wi th the formal basics of the mining hierarchically-closed mult i
level sequential patterns. It follows the definitions Def. 1 (Itemset), Def. 8 (Se
quence), Def. 9 (Sequence Database), Def. 14 (Concept Hierarchy), Def. 15 (Taxon
omy of Items) and Def. 18 (Generalized Support). 

First , the multi-level ( M L ) extensions of element, sequence, parent and ancestors 
must be defined. The definitions of ML-element and the ML-sequence are derived 
from definitions of element and sequence. The Definition 25 extends the element and 
the sequence definitions using items from nodes of taxonomies where the level of all 
items must be the same. The rest of the definition remains unchanged. 

Definition 25. (ML-element, ML-sequence) Let / G N be a level of items in 
a taxonomy T G r . Then an ML-sequence is an ordered list of itemsets SML = 
(•S1S2S3. . . sn) such that the levels of all items of the itemsets are equal to /. The 
itemset of the ML-sequence is called an ML-element. The length, subsequence and 
super sequence of an ML-sequence is defined analogously to the ones in Definition 8. 

Example 6. Next examples wi l l be based on running example Example 2 on page 
7. Assume three sequential patterns (a\ (6/1)) : 2 , (ai (bf)) : 2 and (a (bf)) : 2. 
The first sequence (ai (6/1)) is not a ML-sequence because the level of items differs 
in the element (6/1) - the level of b is 0 and the level of / l i s 1. The second sequence 
(° i (bf)) is not a ML-sequence too because the level of items differs between elements. 
Finally, only the thi rd sequence (a (bf)) is a ML-sequence because it satisfies Def. 
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25. Therefore, only the thi rd sequence may be included in the result of the mining 
multi-level sequential patterns. Note that the sequence (a (bf)) is the root sequence 
because al l its items are the root items. 

Here, it is possible to define taxonomie relations between ML-sequences. The ML-
element parent can be simply obtained by replacing all items of a ML-element by their 
parent items. Then for the ML-sequence parent, al l its ML-elements are replaced by 
their ML-element parents. Note that the parent of a level-crossing sequence is a 
set of sequences but a ML-sequence has only one ML-sequence parent. The ML-
sequence ancestors are the union of ML-sequence parents recursively up to the root 
of a ML-sequence. These statements are formalized in the following definitions. 

Definition 26. (ML-element parent) Given an ML-element e = %2,..., in}, 
an ML-element parent of the ML-element e is an element whose items are obtained 
by replacing al l items of their parents. This is defined as 

parentei(e) = {parent(ik)|1 < k < n A ik G e}. (4.8) 

Definition 27. (ML-sequence parent, ML-sequence ancestors) Given an M L -
sequence s = (eie 2 . . . e„) , where ek is a ML-element on a position k, the ML-sequence 
parent of s is an ML-sequence such that al l ML-elements of s are replaced by their 
ML-element parents. Formally, 

parentseq(s) = ( / i / 2 . . . / „ ) , fk = parentd[ek), 1 < k < n. (4.9) 

Definition 28. (ML-sequence ancestors) For a given set of taxonomies r , a root 
ML-sequence is an ML-sequence consisting of ML-elements wi th items corresponding 
to root nodes of taxonomies. The ML-sequence parent of a root ML-sequence is 
not defined. Based on the definition of the ML-sequence parent, the ML-sequence 
ancestors of an ML-sequence s, ancestorsseq(s) is defined recursively as follows: 

ancestor'sseq(s) = Mi, for such i that Mi+i = Mi, where (4-10) 

M0 = {parentseq(s)} 

Mi+l = Mi U {parentseq(x) \ x G Mj} for i > 0. 

Example 7. For a given ML-sequence ( a ^ o n ) : 1, the ML-sequence parent is (a\ai) : 
1. The set of ML-sequence ancestors of (a\2 on) : 1 is the set of two ML-sequences 
{(ai a\) : 1, (a a) : 2}. The ML-sequence (a a) : 2 is the root sequence and it has no 
ML-sequence parent and ML-sequence ancestors. Note that if the input sequence is 
an ML-sequence, then the result parent sequence and ancestor sequences are M L -
sequences too because of the principle of their construction. 

The multi-level approach reduces the search space of the data mining task. More
over, we try to reduce the number of redundant (unimportant) patterns. Recall the 
term closed in closed sequential pattern mining. The closed means that if a sequence 
s and a supersequence of s have the same support, then the result set wi l l contain 
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only a supersequence of s. In this case, any omitted subsequence can be derived from 
the result set. 

In the case of mining multi-level sequential patterns, the closeness property can 
be applied for taxonomic relations. If a ML-sequence s and the ML-sequence ancestor 
of s have the same support, then the result set w i l l contain only the ML-sequence 
s. A new data mining task is called mining hierarchically-closed multi-level 
sequential patterns. It has the following two fundamental properties: 

• Only ML-sequences are revealed. It ensures fulfillment of equal-level of al l items 
in the sequential patterns. The generalization (level changes) are allowed during 
the mining process, however, al l newly constructed sequences are ML-sequences. 

• Sequences are filtered for the hierarchically-closed condition. If some M L -
sequences are in the ancestor relation and have the same value of the generalized 
support, then only the most-bottom sequences in the meaning of taxonomies 
are revealed. The generalized support must be used because the generalized 
ML-sequences are supported by their more specific variants. 

Let's summarize al l three basic constraints for the task of mining hierarchically-closed 
multi-level sequential patterns: 

• Constraint 1 (CI): A sequential pattern s must have sufficient support. 

• Constraint 2 (C2): A sequential pattern s must be an ML-sequence. 

• Constraint 3 (C3): A sequential pattern s must be hierarchically-closed. 

The mining problem is formalized in the Definition 29. 

Definition 29. (Mining hierarchically-closed multi-level sequential patterns) 
The set of hierarchically-closed ML-sequences is such a set of ML-sequences which 
does not contain any ML-sequence s and its ML-sequence ancestor wi th equal gener
alized supports. Then, the problem of mining hierarchically-closed multi-level 
sequential patterns (hereinafter ML-sequential patterns) for a given input sequence 
database D and minimal generalized support threshold minsupp is to find a set LML 
of al l ML-sequences in T> such that: 

LML = {SML E s\(SID,s) G V A gensupp(sML) > minsupp (4.11) 

A flsx C S s[gensupp(sx) > minsupp 

Agensupp(sx) = gensupp(sML) 
AsML G ancestor seq(sx)}}. 

4.2.2 The MLSP Algorithm 
Han et al. in their book [ ] characterized the sequential pattern mining by follow
ing words: "Sequential pattern mining is computationally challenging because such 
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mining may generate and/or test combinatorial explosive number of intermediate sub
sequences. " The task of mining hierarchically-closed multi-level sequential patterns 
is even more difficult because of the traversing taxonomies and the result pruning. A s 
the research result, the algorithm M L S P (Multi-Level Sequential Patterns algorithm) 
was proposed in [ ] for the effective data mining of multi-level sequential patterns. 

The algorithm M L S P is based on the candidate generation principle (adapted 
from the G S P , see Section 3.1) combined wi th the on-demand generalization. The 
algorithm works in phases. 

The first phase 

The algorithm passes through the sequence database and the values of the generalized 
support are counted for al l items. Unlike G S P , the M L S P continues the first phase 
by generalization procedure. Candidate 1-sequences are created from all items in the 
sequence database V. Candidate sequences are processed as follows: 

1. The set of candidate 1-sequences is expanded by their al l ML-sequence ances
tors. 

2. The value of the generalized support is counted for al l candidate 1-sequences. 

3. A l l hierarchically-closed 1-sequences wi th the sufficient support are added into 
the set of sequential patterns. 

Sequential patterns of length 1 are outputted by the algorithm and passed to the 
second phase. 

The next phases 

The next phases of the algorithm run repeatedly unt i l any new sequential pattern is 
generated. There are two steps during each phase: 

1. candidate generation step, 

2. counting candidates step. 

Candidate Generation Step 

The candidate generation step is based on the join and prune principles. In the join 
procedure, al l pairs of /c-length ML-sequential patterns are taken. They are tested if 
they are joinable to the ( /c+l)- length candidate ML-sequences. Similarly to G S P , a k-
length ML-sequential pattern si can be joined wi th a /c-length ML-sequential pattern 
s 2 if the subsequence created by removing the first i tem of si and the subsequence 
created by removing the last i tem of s2 are equal. Moreover in M L S P , the M L -
sequences are also joinable if it is possible to perform such generalization of both 
subsequences of sequences s iand s2, in which a common ML-sequence ancestor can 
be found. The M L S P algorithm tries to find the common ML-sequence ancestor of 
the candidate ML-subsequences in a bottom-up way. If a common ML-subsequence 
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ancestor exists, then the generalized ML-sequences are joined into the new candidate 
ML-sequence, otherwise, no candidate is generated. Levels of ML-sequences s iand 
s 2 can be different, but the levels of items of the generated ML-sequence are the 
same. Finally, the prune principle is applied. The pruning is based on the Apr io r i 
theorem of the possible frequent sequences. For the multi-level sequential patterns, 
the Apr ior i theorem must be modified as follows (further referred as to M L S P 
Apr ior i Rule): All ML-subsequences and their ancestors of a frequent ML-sequence 
are frequent too. 

The procedure for candidate generation is shown in Algor i thm 4.3. Finally, the 
whole procedure is explained in the running Example 8, 

Algorithm 4.3 Method G E N E R A T E C A N D I D A T E M L S E Q U E N C E S ( ) 

procedure G E N E R A T E C A N D I D A T E M L S E Q U E N C E S ( L f c _ i , k) 

ck = % 
for all S i , S 2 G L^-i do 

if ML-subsequences M L S P join condition is fulfilled for s\ and S2 then 
Join sequences s\ and S2 to a new ML-sequence s' 
if the M L S P Apr io r i Rule is fulfilled for s' then 

A d d s' into Ck-
end if 

end if 
end for 
return Ck 

end procedure 

Example 8. Assume the join of the following two 2-length multi-level sequential 
patterns: (ba) : 2 and ( a i / i ) : 2. These two ML-sequences are firstly tested if the 
join is possible. Because the ML-subsequences ( a ) and ( a i ) has a common ancestor 
(a) they are joinable. The second ML-sequence is generalized to (af) and then M L -
sequences are joined into a new ML-sequence (baf). Finally, the ML-sequence is 
tested for M L S P Apr io r i Rule. The ML-subsequence (bf) and it 's any ancestor is 
not frequent, therefore, the ML-sequence {baf) is also not frequent and the M L -
sequence is not added to the set of candidate sequences. In another case, assume 
the join of ML-sequential patterns ((ab)) : 3 and {(bf)) : 4. The join condition is 
fulfilled and a new ML-sequence {(abf)) is created. The Apr io r i test verifies that all 
ML-subsequences {(ab)), {(bf)) and finally {(af)) are frequent . The ML-sequence 
((abf)) is added to the set of candidate sequences. 

Counting Candidates Step 

When all candidate ML-sequences are generated, the frequent sequential patterns are 
filtered by the support value. The counting step consists of two substeps: test and 
generalization procedure and pruning of not hierarchically-closed sequential patterns. 
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The idea of the test and generalization substep is to read the sequence database 
and count the generalized support of al l candidate ML-sequences sc G Ck- For each 
sc, one of the following results is possible: 

1. The generalized support value satisfies the minimal support threshold and the 
ML-sequence is marked as frequent one, denoted as s{. 

2. The generalized support value does not satisfy the minimal support threshold 
and then the generalization procedure is performed. The generalization of the 
ML-sequence tries to find a ML-sequence ancestor wi th the greatest sequence 
level which satisfies the minimal support threshold. The on-demand bottom-
up generalization procedure G E T F I R S T F R E Q U E N T A N C E S T O R ( ) is shown in A l 
gorithm 4.4. Upper-level ML-sequence is tested recursively unti l the ancestor 
is found or the generalization procedure reach the root. 

Algorithm 4.4 Method G E T F I R S T F R E Q U E N T A N C E S T O R ( ) 

l : procedure G E T F I R S T F R E Q U E N T A N C E S T O R ( S , minsupp) 
2: repeat 
3: if gensupp(s) > minsupp then 
4: return s 
5: end if 
6: s <— parentseq(s) 
7: until s is root sequence 
8: return null 
9: end procedure 

Example 9. The length 2 ML-sequence (aiai) is generated in the running example 
from the 1-sequence (ai) : 3 by the Candidate Generation step. A l l subsequences are 
frequent, therefore, the sequence may be frequent. However, after Counting Candi
dates, the generalized support of the sequence is 1 which does not satisfy the minimal 
support threshold value. Therefore, the generalization is performed by the M L S P al
gorithm and the ML-sequence parent (a a) is formed. The Counting Candidates step 
evaluates the generalized support to 2. The ML-sequence ancestor (ML-sequence 
parent) {a a) : 2 of ML-sequence (aiai) : 1 is frequent and it is a ML-sequential 
pattern. Moreover, the hierarchically-close condition is satisfied and the sequence is 
hierarchically-closed multi-level sequential pattern by our definition. 

The M L S P Algori thm Summarization 

The algorithm M L S P has two inputs: a sequence database T> wi th a taxonomy (or 
taxonomies) defined for its items and a minimal support threshold value. 

The algorithm output is the set of hierarchically-closed multi-level sequential pat
terns. The algorithm M L S P runs in the phases. The sequence database T> is passed 
once in each phase. The first phase generates 1-length hierarchically-closed mult i
level sequential patterns. Next phases generate (k + l)-length hierarchically-closed 
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multi-level sequential patterns from the /c-length sequential patterns. Because there 
can exist candidate ML-sequences that are not hierarchically-closed, it is necessary to 
verify that there is no child of the candidate ML-sequence with the same generalized 
support. The procedure for the effective check of this constraint is described in Sec
tion 4.2.5. The algorithm runs unt i l any hierarchically-closed multi-level sequential 
patterns are generated. The algorithm generates the complete set of hierarchically-
closed multi-level sequential patterns. The complete M L S P algorithm is formalized 
in Algor i thm 4.5. 

Algorithm 4.5 The pseudocode of the M L S P algorithm 
1: procedure MLSP(X>, minsupp) 
2: k <— 1 > First phase. 
3: I -(—Insert al l items and al l their ancestors % in T> and count their support 

gensuppii) 
4: C\ -(—Add all 1-ML-sequences for al l items % from / 
5: U <-{} 
6: for all sc G C1 do 
7: if gensupp(sc) > minsupp and sc is hierarchically-closed then 
8: L i <- L i U {sc} 
9: end if 
10: end for 
11: while Lfc ^ 0 do > Next iterative phases. 
12: k <-k + l 
13: Ck < - G E N E R A T E C A N D I D A T E M L S E Q U E N C E S ( L

f e
_ i , k) 

14: Count support gensupp(s) in V for al l candidate ML-sequences and their 
ML-sequence ancestors s G U S c e c f e a n c e s t o r ^ ( s c ) U {sc} 

15: LTMP <—{} 

16: for all sc G Ck do 
17: L T M P ^ - L T M P U G E T F I R S T F R E Q U E N T A N C E S T O R ( S C , minsupp) 
18: end for 
19: LK ^{} 

20: for all s G LTMP do 

21: if s is hierarchically-closed then 
22: LK 4- LK U {s} 
23: end if 
24: end for 
25: end while 
26: return |Ji=i Li 
27: end procedure 
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4.2.3 Optimization 1: Is-generalized-subsequence Check in 
Linear Time-Complexity 

The algorithm often performs "is-generalized-subsequence" test (e.g. for the gener
alized support counting). It uses the generalized subset relation C.g. The test can be 
optimized to the linear time-complexity if a suitable complete ordering exists over 
items. The simple lexicographical ordering cannot be used for M L S P because the 
simple lexicographical ordering cannot be used because of the generalization which 
changes the order. Therefore, M L S P uses two step ordering. 

1. It sorts taxonomies lexicographically by their roots. It provides for a grouping 
of items within elements by taxonomy. 

2. Items within the taxonomy must be sorted unambiguously. The bottom-up 
order is suitable, because such ordering can be used for join step comparison 
and searching of the minimal necessary generalization. Suitable order type is a 
post-order walk [4]. 

3. It guarantees that it is possible to check for an ideal mapping to ancestors in 
linear time complexity. 

The procedure I S G E N E R A L I Z E D S U B S E Q U E N C E ( ) tests if a sequence ssub is the gen
eralized subset of a sequence ssuper: ssub Cg s s u p e r . The maximal time complexity of 
the procedure i s m + n where m is a number of elements in sequence ssub and n is the 
number of elements in sequence s s u p e r . The same is for each tested element in sub-
procedure C O N T A I N S G E N E R A L I Z E D E L E M E N T ( ) . Finally, I S A N C E S T O R ( ) runs wi th 
constant time-complexity using a hash table or wi th linear time complexity using 
tree traversal. Therefore, the whole procedure keeps linear time-complexity w.r.t. to 
lengths of sequences ssub and s s u p e r . 

4.2.4 Optimization 2: Hash Table Pre-Check for Is-gene
ralized-subsequence Check 

The majority of "is-generalized-subsequence" tests return false. Such major false 
case can be optimized by the pre-check. The ssub Cg s s u p e r is true if al l items of sub
sequence ssub are contained in the set of items and their ancestors of supersequence 
Ssuper- If it is false, then the test results in false too. Then, a set of al l items and 
their ancestors is constructed for each sequence. Finally, the procedure I S G E N E R -

A L I Z E D S U B S E Q U E N C E Q can be completed by the fast pre-check for false result. The 
procedure is denoted in Algor i thm 4.6. The procedure assumes that there exists a 
simple function G e t A l l I t e m s O which returns the set of al l items in al l elements of 
the sequence. 

Such set is organized (stored) as a hash table in a main memory because its search 
time complexity is equal to 1 (details about generic hash table algorithms and their 
properties are in [4]). M a x i m a l number of searches in the hash table is equal to 
the length of the sequence ssub • F ina l time-complexity of the whole pre-check is 
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maximally linear too but it speeds-up the check for the most cases (see experiments 
in the next chapter). 

Algorithm 4.6 Pre-check procedure pseudocode for method I S G E N E R A L I Z E D S U B -

S E Q U E N C E Q 

1: for all % G GetAUItems(ssub) do 
2: if i<£ GetAUItems(ssuper) A i <£ \ J x & G e t A l l I t e m s { S s u p e r ) ancestor(x)} then 
3: return false 
4: end if 
5: end for 

4.2.5 Optimization 3: Is-redundant Fast Check 
Sequential patterns created by the join and generalization algorithm steps may not 
be hierarchically-closed. Then, the post-processing (filtering) is necessary. A naive 
approach compares each pair of sequential patterns, if one ML-sequence is an M L -
sequence ancestor of the other and prunes them, if so. Nevertheless, it is possible to 
utilize the Counting Candidates Step procedure to mark sequential patterns which 
are redundant. 

• First , we associate a new helper indexed list of counters called a redundant base 
to al l candidate ML-sequences before the counting step. During the counting 
step of a candidate ML-sequence sc , the algorithm increments by one the re
dundant base counter on index s{ to al l ancestors: S = ancestorsseq(s{.) when 
the generalization sub-procedure finds the most specific frequent sequential pat
tern s[ G ancestorseq(sc) U {sc}. The redundant base of a ML-sequence x G S 
on index s[ is denoted as TZBx[s{.}. 

• Finally, the prune condition can be formulated as follows: 

— If there exists any redundant base counter wi th value equal to the 
value of the generalized support of the ML-sequence s[, then the M L -
sequence si is redundant and is pruned, 

— else, s[ is hierarchically-closed multi-level sequential pattern. 
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Chapter 5 

Experimental Evaluation 

The issue of mining sequential patterns is generally computationally expensive. If 
we imagine that the sequence length is the horizontal dimension, then the mining 
multi-level sequential patterns adds a new vertical dimension over the patterns. The 
complexity of the problem growths because the algorithm must deal with relations 
between different multi-level sequences. 

This chapter deals wi th a comparison of different multi-level approaches and algo
rithms to solve them. The first section of experiments is focused on time comparison 
of mining different algorithms on synthetic datasets. The following algorithms are 
compared in experiments G S P , PrefixSpan, h G S P and M L S P . The advantage of syn
thetic datasets is the possibility to define specific probabilistic properties. The second 
section is focused on mining in real-world data. Min ing in the real world dataset is an 
important evaluation because it shows if the algorithms can be used and if revealed 
results are useful. Commonly used real world testing dataset Adventure Works [13] 
by Microsoft is absolutely inappropriate because it does not contain a long-period 
order history. Therefore, the five year order history of on-line e-shop V O P I [ ] is 
used for the real world evaluation. 

5.1 Evaluation on Synthetic Datasets 
The synthetic dataset allows changing only a specific property of the dataset without 
changing others if necessary. The complete set of parameters of sequence databases 
wi th defined taxonomies are shown in Table 5.1. The general methodology of ex
periments are following. A l l parameters of generated datasets are fixed except one. 
Then, the effect of the changes of such dataset or algorithm parameter is evaluated. 
There was no generator for multi-level sequential patterns. This section describes a 
generator of multi-level or level-crossing sequence datasets developed by the author 
of this thesis published in [27]. . 

Experiments were performed on a P C with C P U i5 3.3GHz, 8 G B R A M , OS 
M S Windows 10. Because there is no algorithm for mining multi-level sequential 
patterns, results of our algorithms are compared wi th G S P and PrefixSpan. Authors 
of the G S P recommended using G S P over an extended database for mining sequential 
patterns wi th taxonomies. Algori thms G S P and PrefixSpan use post-processing to get 
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Table 5.1: Parameters of our hierarchical sequence generator. 
Parameter ML-Seq.Pat t . 

Dataset Size V 
Avg. number of elements of sequences \c\ 
Avg. size of elements T 
Avg. size of frequent elements I\ 
Number of items N 
Avg. length of (frequent) sequential patterns \s\ 
Number of sequential patterns Ns 

Avg. support of sequential patterns Supps 
Number of taxonomies (roots) R 
Avg. taxonomy height Rh 
Probability of children (general items) P1 

rch Probability of children (items of freq. sequences) pS 
rch 

complete set of hierarchically-closed multi-level sequential patterns. A l l algorithms 
were implemented in C # on . N E T platform using the M S S Q L Server database. 

5.1.1 Experiment 1: Dataset Size — Scalability 
The first experiment is focused on scalability of the algorithms. The methodology 
of the experiment is to measure the dependency of execution time on a dataset size. 
For example, the values of fixed parameters denoted as C4T1.2S3I1 .2N15%|D|Rlk 
are explained in Table 5.2. The suffix 'k' of a number means that the value is x 1000. 

Table 5.2: Dataset Parameters for Experiment 1 
Dataset \c\ |T | \s\ \I\ \N\ \R\ pi pS 

rchi rch 
Supps 

C4T1.2S3I1.2N150kRlk 4 1.2 3 1.2 15% \V\ lk 0.9 0.045 

The variable is the dataset size. The dataset size is set to different number of 
sequences \V\ e {100 000, 250 000,500 000, 750 000,1 000 000} where each sequence is 
of the average length 4 - it results in about from 400 000 up to 4 000 000 items in 
the synthetic datasets. The number of items \N\ cannot be set statically but it must 
be related to \D\ because the small number of items increases their support in the 
dataset if the dataset naturally grows. Number of frequent sequences Ns = 5 wi th 
average support is Supps = 0.045 (4.5%). 

The execution time in seconds was measured for the evaluation. Lower execution 
time represents better scalability. Results are shown on Figure 5.1. The slowest is ba
sic G S P algorithm. Moreover, for the \D\ — 1 000 000 the run does not finish. Results 
of G S P can be better using the hash optimization for fast is-generalized-subsequence 
pre-check. Similarly the time complexity of our algorithm h G S P is computationally 
hard and is comparable to optimized G S P using the hash is-subsequence check. 
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Algorithms PrefixSpan and M L S P have better results. PrefixSpan is approxi
mately 7x faster than M L S P without optimizations. However, the M L S P algorithm 
can be improved using the optimized Is-generalized-sub sequence Check. The opti
mized M L S P (with hash is-generalized-subsequence check, denoted by "hash" suffix) 
is the fastest of all the algorithms. It is in average 4x faster than the second Pre
fixSpan. 

5.1.2 Experiment 2: Changes of Minimal Support Threshold 
The Experiment 1 showed that the Is-generalized-subsequence check brings important 
speed-up of the algorithms G S P and M L S P . Therefore, next Experiments uses only 
optimized variants for both G S P and M L S P . A l l further experiments were limited 
by maximal execution time up to 3 600 seconds (1 hour) which should be sufficient 
according to average execution times of Experiment 1. 

In practice, the optimal minimal support threshold is not known on the beginning 
of the analysis. The optimal minimal support is usually determined experimentally 
when the data mining starts wi th the high minimal support threshold value and it is 
gradually decreased unti l sequential patterns are found. The decreasing of the min
imal support increases the number of generated candidate sequences and sequential 
patterns while the dataset remains the same. 

The setup of this experiment is following. The dataset parameters are 
C4T1.2S3I1.2N15kRlk, \V\ = 100 000. A l l algorithms were run wi th several values 
of minimal support threshold minsupp G {0.025,0.035,0.045,0.055,0.065}. Results 
of this experiment are similar to Experiment 1. 

Figure 5.2 shows that the execution times of PrefixSpan and M L S P algorithms 
are similar for high values of the minimal support. Whi le the M L S P keeps the stable 
execution times, the performance of the PrefixSpan get worse wi th the decreasing 
value of the minimal support value parameter. The G S P and h G S P algorithms are 
much slower in al l cases. 

5.1.3 Experiment 3: Length of Sequential Patterns 
Next parameter which can affect the performance of the algorithm is the average 
length of sequential patterns because the length of sequential patterns leads to a 
higher number of frequent subsequences and candidate sequences during the mining 
process. The Experiment 3 is focused on the gradually increasing length of the 
sequential patterns from \S\ G {3 ,5 ,7 ,9} . Number of elements of sequences in the 
database V was determined to value \C\ = 10. Note that the longer sequences result 
into higher number of items in the database. Therefore the Experiment 3 is divided 
into two parts. 

First part analyses the dependence of the execution time on the length of sequences 
in V because the average sequence length must be at least the average length of 
sequential patterns. The experiment uses average number of elements of sequences 
\C\ G {4, 6, 8,10}. The fixed dataset parameters are T1.2I1.2N15kRlk, \V\ = 100 000 
and \N$\ = 3 . The results are shown in Table 5.3. The fastest algorithm on such 
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Scalability - Execution Time (log scale) 

5 3 3 

Dataset size (x) 

- G S P ( h a s h ) 

• P r e f i x Span 

hGSP 

- M L 5 P (hash) 

- M L 5 P 

GSP 

Figure 5.1: Comparison of execution time w.r.t. dataset size *1000 (in logarithmic 
scale). 

Changes of Min. Support - Execution Time 

3 ,35 

Minimum Support Thresh Did (x) 

Figure 5.2: Comparison of execution time w.r.t. the minimal support threshold 
value.. 
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Table 5.3: The dependency of the execution time on the average length \C\ of se
quences in the database. 

\c\ 
G S P 

(hash) 
Prefix 
Span 

h G S P 
M L S P 
(hash) 

4 229 11 137 5 
6 633 79 2660 52 
8 3253 136 N / A 333 
10 967 34 N / A 367 

Table 5.4: The dependency of the execution time on the average length of sequential 
patterns \S\. 

\s\ 
G S P 

(hash) 
Prefix 
Span 

h G S P 
M L S P 
(hash) 

3 967 34 N / A 367 
5 N / A 1229 N / A 301 
7 N / A N / A N / A 487 
9 N / A N / A N / A 254 

databases is the PrefixSpan. The M L S P is slower mainly for longer sequences. The 
reason is that the combinations of candidate sequences which grows massively (there 
are 116 candidate sequences for \C\ = 4 and 17250 candidate sequences for \C\ = 10). 
Nevertheless the M L S P is up to 10x faster than the G S P algorithm. The h G S P does 
not finish for longer sequences because of the large search space. 

The second part analyses the dependence of execution time on the length of 
sequential patterns. Experiment results are shown in Table 5.4. The experiment 
shows the strongest point of the algorithm M L S P . The longer sequential patterns lead 
to large number of candidate sequences and projected databases of the algorithms 
based on extended databases. In contrast, the performance of the M L S P is not 
affected by the length of sequential patterns but only by the number of final sequential 
patterns. Therefore, the M L S P is the only algorithm which is able to finish on all 
test cases. The other algorithms PrefixSpan and G S P do not finish for the cases 
\S\ G {7,9} the time limit of one hour. 

5.1.4 Experiment 4: Number of Sequential Patterns 
This experiment analyses the dependence of the execution time on the number of 
sequential patterns. The experiment setup is following: fixed dataset parameters are 
C4T1.2S3I1 .2N15kRlk, \V\ = 100 000, \NS\ = 3 and variable is \NS\ G {3 ,5 ,7 ,9 ,30}. 
The results of experiment are shown in Table 5.5. The best results of the experiment 
were achieved by the PrefixSpan algorithm. The M L S P algorithm gives also satisfac
tory results. G S P and h G S P algorithms achieved by the order of magnitude worse 
results. 

Finally, the experiment also tests the behavior of the algorithms when number 
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Table 5.5: The dependency of the execution time on the total count of sequential 
patterns \Ng\. 

\NS\ 
G S P Prefix 

h G S P 
M L S P 

\NS\ (hash) Span 
h G S P 

(hash) 

3 201 9 94 5 
5 8 1 82 3 
7 17 1 219 5 
9 217 11 893 16 

30 57 1 889 16 

Table 5.6: The dependency of the execution time on the number of taxonomy levels 
\Rh\ 

\Rh\ 
G S P 

(hash) 
Prefix 
Span 

h G S P 
M L S P 
(hash) 

2 4.1 0.5 35.6 2.7 
6 4.7 0.7 34.4 2.2 

of sequential patterns is higher |JVs| = 30. In that case the results were similar to 
previous cases. Therefore, we can say, that the number of sequential patterns does 
not negatively affect the execution time of the algorithms, especially examined M L S P 
and h G S P algorithms. 

5.1.5 Experiment 5: Taxonomy Height 
The last experiment on the synthetic dataset analyses the dependency of the execution 
time on the average taxonomy height (the total number of levels of all taxonomies). 
The fixed parameters of the experiment are C4T1.2S3I1 .2N15kRlk , \V\ = 100 000, 
|A^s| = 3. The variable parameter is \Rh\ G {2,6}. The first case of the average 
height 2 shows algorithms behavior on low item categorizations. O n the other hand, 
the second case deals wi th the taxonomies of average height 6. The results are shown 
in the Table 5.6. It is shown that the height of taxonomies do not affect the execution 
time and the complexity of the run of the algorithms. The results are the same for 
the both test cases. 

5.1.6 Experiments Summary 
Experiments on synthetic datasets compared algorithms G S P , PrefixSpan, h G S P 
and M L S P . Best results are given by the algorithms M L S P and PrefixSpan. The 
other algorithms are over a magnitude worse. The performance of the PrefixSpan is 
significantly slower for mining long sequential patterns. Only the algorithm M L S P 
finishes al l the experiments and it proved very good results for mining hierarchically-
closed multi-level sequential patterns. 
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5.2 Evaluation on Real-World Datasets 
The previous experiments verify the behavior of algorithm M L S P however it does 
not deal with usability on a real world dataset. The real world data are much more 
suitable to test the usability. The dataset of orders history of the e-shop V O P I is 
used for the experiment. First , the dataset is described from general and statistical 
points of view. Second, the sequential patterns obtained by the M L S P algorithm are 
discussed. Note, that some kind of data were anonymized or marked as N / P (not 
presentable). 

It was shown that the M L S P produces new sequential patterns on the real-world 
datasets. The execution time of the M L S P on the real world dataset was in minutes 
depending on parameters settings. Therefore ,we can say that the algorithm is fully 
usable for real world data mining problems. 
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Chapter 6 

Conclusions 

Min ing sequential patterns, especially mining multi-level sequential patterns, is a 
challenging task. The main goal of the thesis was to confirm the hypothesis that 
taxonomies lead to find out new patterns and a new method to mine them effectively 
can be formulated. 

In my research, I focused on two main approaches of dealing wi th items in tax
onomies. The first approach is to find out patterns called level-crossing sequential 
patterns. A new algorithm called h G S P was proposed but the level-crossing ap
proach came out as extremely time-consuming. The second approach adds some 
special constraints which simplify the task while keeping important patterns in the 
result. It leads to the definition of a new type of data mining task called min
ing hierarchically-closed multi-level sequential patterns. Min ing hierarchically-closed 
multi-level sequential patterns produces results without redundant patterns useful for 
the analyst. These research results confirm the first part of the thesis hypothesis. 

The thesis introduces a new algorithm called M L S P designed for mining hierar
chically-closed multi-level sequential patterns. Bo th the h G S P and M L S P algorithms 
prefer the generalization of a sequence to dropping it. The performance of the al
gorithms was evaluated in several experiments. The experiments were focused on 
comparison of the performance in dependence on the dataset size (scalability), se
quential patterns length and size and the taxonomies sizes. The best results are 
provided by M L S P and PrefixSpan algorithms. The other algorithms were more 
than over a magnitude slower. It was shown that the average length of sequential 
patterns has a significant effect on the execution time. The PrefixSpan did not finish 
for sequences containing 7 and more elements. Only the M L S P algorithm finished in 
all runs. The usability of the M L S P algorithm was shown on real dataset where the 
algorithm has found some new useful knowledge. This confirms the second part of 
the hypothesis related to a new data mining method. 

A s a result, both parts of the hypothesis were confirmed. Therefore, the thesis 
hypothesis was completely confirmed and the goal of the thesis was fulfilled. 

It was shown that mining hierarchically-closed multi-level sequential patterns is 
suitable for tasks of the analysis of customer behavior. But there are some other 
domains where this type of mining task can be useful, for example security analysis 
of Domain Name System because domains are also organized in taxonomies. 
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The future work can be focused on the research of other constrains while mining 
level-crossing or multi-level sequential patterns. In the field of mining methods, 
research may continue exploring other optimizations. 
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