
T 
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INFORMATION SYSTEMS 
ÚSTAV INFORMAČNÍCH SYSTÉMŮ 

IMPACT OF THE APPLICATION OF THE CONTENT-
SECURITY-POLICY HEADERON FIREFOXWEBEXTEN-
SIONS 
TESTOVÁNÍ VLIVU APLIKACE HLAVIČKY CONTENT-SECURITY-POLICY NA KÓD VLOŽENÝ ROZŠÍŘENÍMI 

PROHLÍŽEČE FIREFOX 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR BOHDAN INHLIZIIAN 
AUTOR PRÁCE 

SUPERVISOR Ing. LIBOR POLČÁK, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2020 



Brno University of Technology 
Faculty of Information Technology 

Department of Information Systems (DIFS) Academic year 2019/2020 

B a c h e l o r ' s T h e s i s S p e c i f i c a t i o n ||||||||||||||||||||||||| 
22483 

Student: Inhliziian Bohdan 
Programme: Information Technology 
Title: Impact of the Application of the Content-Security-Policy Header on Firefox 

Webextensions 
Category: Software analysis and testing 
Assignment: 

1. Study the Content-Security-Policy (CSP) HTTP header, its benefits, and syntax. Describe 
how the presence of the CSP header influences the JavaScript code injected by 
webextensions (analyze Firefox bug 1267027, Privacy Badger issue 1793, and JavaScript 
Restrictor issue 25). 

2. Learn how to write Selenium test cases. 
3. Design a framework for automatic testing of webextensions downloaded from 

Addons.Mozilla.org (AMO). The framework will detect errors caused by Firefox bug 
1267027, for example, using the report-uri CSP directive. 

4. Implement the framework and publicly release the implementation. 
5. Test as much of AMO webextensions as possible and provide statistics about the extensions 

impacted by Firefox bug 1267027. 
6. Evaluate the work and propose future improvements. 

Recommended literature: 
• BASTL Vojtěch. Automatizace webového prohlížeče. Brno, 2019. Master's Thesis. Brno 

University of Technology, Faculty of Information Technology. 
• WEST Mike, BARTH Adam, VEDITZ, Dan. Content Security Policy Level 2, W3C 

Recommendation, 2016. 
• MAGLIONE Kris. Page CSP Should Not Apply To Content Inserted By Content Scripts. Bug 

1267027, Bugzilla Mozilla.org, available online at 
https://bugzilla.mozilla.org/show_bug.cgi?id=1267027. 

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ 
Supervisor: Polčák Libor, Ing., Ph.D. 
Head of Department: Kolář Dušan, doc. Dr. Ing. 
Beginning of work: November 1, 2019 
Submission deadline: May 28, 2020 
Approval date: May 5, 2020 

Bachelor's Thesis Specification/22483/2019/xinhli00 Page 1/1 

http://Addons.Mozilla.org
http://Mozilla.org
https://bugzilla.mozilla.org/show_bug.cgi?id=1267027
https://www.fit.vut.cz/study/theses/


Abstract 
A four-year-old bug in official Firefox's Bugzilla reported that the Content-Security-Policy 
response header affects the behavior of browser extensions. The goal of this thesis is to test 
and analyze all of Firefox's extensions in the official extensions store to learn how many of 
them are affected by the bug. The work has four phases: download all extensions from the 
store, create usable web GUI, implement the testing application, execute tests, and evaluate 
the results. We show that the application of CSP header on a web site may influence about 
10% of Firefox web extensions and 29% of extensions recommended by Firefox. The total 
number of users of all influenced recommended extensions is 11 650 730. Hopefully, this 
research highlights the problem and pushes Firefox developers to fix the bug. 

Abstrakt 
Čtyři roky starý bug v oficiální Bugzille prohlížeče Firefox hlásí, že hlavička Content-
Security-Policy ovlivňuje chování rozšíření prohlížeče. Cílem této práce je otestovat a an
alyzovat všechna rozšíření Firefoxu z oficiálního úložiště rozšíření a zjistit, kolik z nich 
je ovlivněno bugem. Práce má čtyři fáze: stáhnout všechna rozšíření z úložiště, vytvořit 
použitelné webové GUI, implementovat testovací aplikaci, provést testy a vyhodnotit výsledky. 
V rámci práce jsme zjistili, že aplikace hlavičky CSP na webu může ovlivnit přibližně 8% 
rozšíření Firefoxu a 21% rozšíření doporučených Firefoxem. Celkový počet uživatelů všech 
ovlivněných doporučených rozšíření je 11 650 730. Tento výzkum upozorňuje na problém a 
nutit tvůrce prohlížeče, aby jej vyřešili a ukazuje jeho rozměr. 

Keywords 
Browser extension testing, Firefox extensions, bug in Firefox, CSP header, extensions CSP 
error, CSP reports, Selenium extensions testing. 

Klíčová slova 
Testování rozšíření prohlížeče, rozšíření Firefoxu, chyba ve Firefoxu, CSP hlavička, chyba 
CSP ve rozšířeních, chyby CSP, testování rozšíření pomoci Selenium 

Reference 
INHLIZIIAN, Bohdan. Impact of the Application of the Content-Security-Policy Header 
on Firefox Webextensions. Brno, 2020. Bachelor's thesis. Brno University of Technology, 
Faculty of Information Technology. Supervisor Ing. Libor Polcak, Ph.D. 



Rozšířený abstrakt 
Prohlížeč Mozilla Firefox obsahuje chybu, která byla nahlášena před čtyřmi lety. Tato 
chyba ovlivňuje chování rozšíření prohlížeče. Hlavička CSP zapnuta na webu muze zakázat 
vkládání skriptů pomocí rozšíření. Pokud content script rozšíření vytvoří element skriptu 
a poté ho vloží do D O M webové stránky, CSP tuto akci zakáže a způsobí CSP report. 

Bakalářská práce si klade za cíl otestovat a analyzovat všechna rozšíření Firefoxu v ofi
ciálním úložišti rozšíření Addons.mozilla.org (AMO) a zjistit kolik z nich je chybou ovlivněno. 

Tato práce má širokou cílovou skupinu. Nejprve to jsou vývojáři Firefoxu. Chyba 
v prohlížeči byla nahlášena před čtyřmi lety a během těchto let to způsobovalo bug reporty 
o problému v oficiálních bugtrackerech různých webových rozšíření. Všechny tyto reporty 
vedly dlouhé diskuse o tom, co se děje a jak tento bug obejít. Lidí, kteří tyto reporty 
vytvořili neví zda se jedna o chybu rozšíření nebo prohlížeče. Řešení nebo obcházení chyby 
vyžaduje čas a peníze. 

Tento výzkum je dále užitečný pro vývojáře webových stránek, kteří chtějí zapnout 
jejich ochranu pomoci CSP. CSP reporty, způsobené injekcemi skriptů rozšíření způsobují 
zbytečný šum do webového logů. Tato práce prokázala, že některá rozšíření spouští více 
než 10 CSP reportů pro každé načtení webové stránky každého návštěvníka. V kontextu 
webových stránek s miliony návštěvníky, jako je YouTube, je to významné. Každý report 
navíc vyžaduje šetření správce, což také vyžaduje čas a peníze. 

Tato práce se zabývá studiem útoků typu Cross-Site Scripting, jejich hlavními principy 
a metodami ochrany proti ní. Teoretická část studuje základní metody vývoje rozšíření 
prohlížeče a reprodukuje popsanou chybu implementací jednoduchého rozšíření, které se 
snaží vložit skript do testovací webové stránky která je zabezpečena pomoci CSP. 

Protože práce musí zajistit testování všech rozšíření z A M O , byl studován automatický 
testovací nástroj Selenium. 

Pro dosažení konečného cílu byl implementován automaticky testovací framework. Pro
tože výzkum má širokou cílovou skupinu, nástroj vyžaduje snadné a srozumitelné uživatelské 
rozhraní. Framework má dvě hlavní části: webovou aplikaci (GUI) a backendovou aplikaci. 
Tyto části spolu komunikují prostřednictvím A P I . 

GUI má snadné rozhraní, které lze použít k výběru sady rozšíření a spuštění testů pro 
ně. Má také funkci reprezentovat výsledky testování pomocí grafů. Tato část frameworku 
navíc obsahuje skripty, které mají za cíl stáhnout všechny rozšíření z A M O a nahrát je 
do Amazon Web Services S3 úložiště. 

Účelem backend aplikace je obdržet sadu poslaných z GUI rozšíření, stáhnout jejich 
zdrojové kódy z úložiště, provést testy a vrátit výsledky zpět do GUI. 

Tato práce má implementace několika scénářů testování. Všechna rozšíření mají soubor 
s názvem manifest.json obsahující všechna jejich metadata. Nejdůležitějším parametrem 
v metadatech pro tuto práci je content scripts klič, který obsahuje všechny content 
skripty rozšíření. Content skripty mohou provádět vkládání zdrojů do webové stránky. 
Prvním scénářem je provést statickou analýzu content skriptů uvedených v manifest.json, 
aby se našli některé příznaky vkládání kódu, například některé metody, které vkládají 
skripty do D O M webové stránky. Druhý testovací scénář provádí Selenium testy na všech 
rozšířeních z A M O , aby bylo možné detekovat tyto rozšíření které dělají injekce skriptů do 
webových stránek. 

Pomocí frameworku byly provedeny testy na všechna rozšíření z A M O a vyhodnoceny 
výsledky. Výsledky ukazují, že kolem 10% všech rozšíření má příznaky injekce skriptu. Fire
fox má navíc doporučený program rozšíření. Statická analýza ukázala, že 29% doporučených 
rozšíření má tyto příznaky Simulační testy, které instalují rozšíření do instance prohlížeče 

http://Addons.mozilla.org


a testují jejich chování na webových stránkách zabezpečených pomocí CSP, ukázaly, že 1% 
všech rozšíření vkládá skripty před načtením webové stránky, bez jakékoliv uživatelských 
akcí, například, stisknutí tlačítek nebo vyplnění formuláře. U doporučených rozšíření se 
tato hodnota zvyšuje na 11%. 

Během práce bylo zjištěno, že chyba Firefoxu může majitelům webových stránek po
moct "fingerprintovat" uživatele. Každé rozšíření, které provádí injekce skriptu na webové 
stránky zabezpečené pomocí CSP, zanechá svůj otisk. Protože všechny reporty přicházejí 
do webových logů, mohou je vývojáři webových stránek analyzovat a zjistit, jaká rozšíření 
používají jejich návštěvníci. Tato práce studovala tento problém podrobněji a provedla 
několik manuálních experimentů s populárními rozšířeními. Výsledkem je, že tato rozšíření 
lze rozpoznat z CSP reportů, které byli nimi spouštěné. 

Byl i navrhnute některá budoucí vylepšení k analýze problému "fingerprintovani". Kromě 
toho, pracé navrhuje zlepšení stávajícího frameworku, zejména zvýšení jeho výkonu, použitel
nosti a přesnosti testování. 



Impact of the Appl ica t ion of the Content-Security-
Pol icy Header on Firefox Webextensions 

Declaration 
I hereby declare that this Bachelor's thesis was prepared as an original work by the author 
under the supervision of Mr. Ing. Libor Polcak. 

Bohdan Inhliziian 
May 28, 2020 

Acknowledgements 
I would like to thank my supervisor Mr. Ing. Libor Polcak for weekly consultations and 
discussions. 



Contents 

1 Introduction 2 

2 Theory 4 
2.1 Browser Security Defenses 4 

2.1.1 Same-Origin Policy 4 
2.1.2 XSS Attacks 5 
2.1.3 Content Security Policy 6 

2.2 Page CSP Influences Firefox Webextensions 8 
2.3 The Target Audience of This Work 10 
2.4 Extension's Manifest.json File 11 
2.5 Containerization 12 
2.6 Selenium 13 

3 Design of Extension Tester Framework 15 
3.1 Testing Scenarios Design 15 
3.2 Design of The Main Parts of The Framework 16 

4 Implementation of Extension Analyzer Framework 19 
4.1 Data Collecting 19 
4.2 Docker Containerization and Architecture of Services 21 
4.3 Web Application 22 
4.4 Backend Testing Application 25 
4.5 Implementation of Testing Scenarios 25 

5 Testing and Evaluation 29 
5.1 Results of the Provided Tests and Analysis 29 

6 Future Improvements of the Research 34 
6.1 Fingerprinting Problem 34 

6.2 Other Improvements 35 

7 Conclusion 37 

Bibliography 39 

A List of Script Injection Signs 40 

B Content of Media 41 
B . l Source Code 41 

1 



Chapter 1 

Introduction 

Nowadays, every modern web browser supports extensions. A n extension is a small embed
ded software (plugin) that brings new features to a browser. Extensions can do different 
actions, e.g., modify web pages, block advertisements, automatize some manual work on a 
web site. Many extensions put some resources inside a web page. It can be images, CSS 
stylesheets, and also a JavaScript code. For example, that hides H T M L elements, clicks on 
the buttons, or does some dynamic interaction with a web page. 

Injecting resources such as scripts inside of a browsing web page may be potentially 
dangerous. Script injection may perform some unexpected actions like stealing user's data, 
showing spam adds, or others. These vulnerabilities, called Cross-site scripting (XSS), are 
often used by hackers. A l l modern browsers support mechanism called Content Security 
Policy (CSP) to protect their users against such attacks. The CSP protection can be set 
on a web server by web site owners. 

So, two mechanisms (resource injecting by extensions and protection against injections) 
are opposite to each other. The first one uses resource injecting into a web page, but 
the second one fights against those actions. The CSP should not influence actions perform
ing by an extension to save its behavior. Every extension can be installed only by a user, 
and every extension asks about permissions that a user has to give before the installation. 
The user has to agree with the permissions and confirm the installation. 

A n extension is not an attacker in the CSP model, and the CSP header should not in
fluence extensions functionality. But it is not how the Mozilla Firefox web browser behaves. 
The browser supports both mechanisms, but it causes the conflict described in the previous 
paragraph. The CSP header blocks the extension's scripts injection into a web page. 

This research tests all extensions from the Addons.mozilla.org (AMO) and tests how 
CSP headers influence their behavior. 

The results are useful for different categories of users. First of all, the work is valuable 
for people that develop the Mozilla Firefox web browser. The report for the bug was opened 
four years ago, and it is still open. Some extensions such as "Privacy Badger" or "uBlock 
Origin" have bug reports opened by developers who think it is an extension's issue, but it 
is not. These reports have long discussions and workarounds on how to solve or bypass the 
bug. 

Secondly, web site developers can use this work to see how enabled CSP header can 
make noise to security alert logs and be prepared to it. 

Further, if extension developers have found the solution to the problem, they can use 
this work to compare their extensions with concurrent ones and use the comparison in 
marketing purposes. 

2 

http://Addons.mozilla.org


Finally, the bug in Firefox may cause some data protection problems like fingerprinting 
of users. The research may be useful for people who care about privacy and data protection. 
After study the thesis, they might decide not to use the Firefox web browser or turn CSP 
protection off. Section 2.3 of Chapter 2 describes more information about fingerprinting 
and defines the target audience of this work. 

This work requires some information to study the main principles of extensions devel
opment and study mechanisms for web site security. Further, this thesis needs to study 
and reproduce the bug in more detail. Chapter 2 summarize all of the mentioned things 
and gives theoretical information about web GUI development and Selenium testing. 

Chapter 3 describes the design of the final application. It defines all needed pieces of the 
application and how they need to be related to each other. Besides, it defines what exactly 
all pieces should do to get to the final goal. 

Chapter 4 contains all information about the implementation of the application, and 
Chapter 5 evaluates the result of the implemented tests on all extensions in the A M O . It 
shows how many extensions are influenced by the bug. 

At last, Chapter 6 studies the problem of how web site owners can fingerprint visitors 
using the bug in Firefox. Further, it describes some future improvements of this work to 
increase the application performance and testing accuracy. 

3 



Chapter 2 

Theory 

This research includes work with different tools related to developing and testing browser 
extensions. Further, it concerns the security of web pages and problems occurring in the 
Mozilla Firefox browser. 

Since different user categories can use this work, for example, extension developers, 
Firefox developers, or ordinary users, it is essential that the final application needs to be 
easy to use and easy to deploy. It is necessary to know how to implement a web application 
GUI, databases, and communication between services with minimum user interaction. 

The research requires some theoretical and practical knowledge to get to the final goal. 
This chapter takes care of the first category and describes things needed to learn to under
stand the main problems of this work and investigate them. 

The subsection 2.1 explains what are XSS attacks, and methods that browsers use to 
protect web pages against them. Then, the subsection 2.2 describes the core of this research, 
the bug that needs to be studied and analyzed to understand how many Firefox's extensions 
are prone to it. 

This chapter also concerns theoretical knowledge about the tools used in this work, such 
as Docker Containerization technology and Selenium. 

2.1 Browser Security Defenses 

The problem of this work is related to the security of web pages, and the main things needed 
to know are: what are XSS attacks, how hackers can use web site vulnerabilities to inject 
malicious resources, and which modern methods help to restrict or eliminate them? 

2.1.1 Same-Origin Policy 

The Same-Origin Policy (SOP) is a browser security restriction that controls scripts 
from one web page to access data of other web pages. By this policy, JavaScript code 
can read only the properties of windows and documents that have the same origin as the 
document that contains the script [3]. 

Web pages are in the same origin when they have the same protocol, host, and port. 
Based on that, different web sites (with different URI), have different origins. For example, 
site.com and site.org are under different ones. Moreover, a document loaded via the H T T P 
protocol has a different origin to a document loaded via the H T T P S protocol, even if they 
come from the same web server [3]. At last, if one host has two different ports, for example, 

4 

http://site.com
http://site.org


80 and 81, containing some resources, loading of the resources between services on that 
ports is prohibited by SOP because of different origins. 

A web browser applies SOP only for scripts from different origins, but not for images, 
videos, or audio [4]. It is because browsers have a cross-origin concept to let developers use 
specific resources from different origins. There are three mechanisms to realize this: Cross-
origin writes lets using of links to another origins, form submissions, redirections, Cross-
origin reads allowing the reading of dimensions of an embedded image, actions of an 
embedded script, and Cross-origin embedding letting embedding such resources like 
<img>, CSS stylesheets, <video> or <audio>, and others1. JavaScript, embedded to a web 
page by the <script> tag and src attribute, works as well. 

For some reason, web sites may need to somehow bypass SOP. For example, giant 
billboard web sites containing many advertisements for job search, houses rents, discussing 
forums might have multiple subdomains for each service. It may need to communicate 
between those subdomains by JavaScript, for example, in the browser's windows. But these 
actions are restricted by SOP. A web site can change its origin by changing of a subdomain 
to its superdomain2. 

Further, a server response header may influence and weaken the SOP policy from 
the server-side. It can be provided by activating Cross-Origin Resource Sharing (CORS) 
that brings the possibility to define whitelisted domains permitted to read data from the 
site and bypass the SOP. CORS can be set over Access-Control-Allow-Origin H T T P header 
by writing domains separated by space. 

The Same-Origin Policy is a necessary mechanism that prevents stealing sensitive data 
or injecting malicious content into a web page. But the weakness of the SOP, especially 
resources that are allowed by SOP to write data into a page (<img>, <video>, <iframe>, 
stylesheets), might do actions causing XSS security problems. The next section describes 
that problems. Moreover, the enabled CORS may let attackers access and read data from 
a site. The Content Security Policy solves the mentioned problems. Section 2.1.3 
explains the CSP in more detail. 

2.1.2 X S S Attacks 

XSS attacks {Cross-site scripting) are a type of injection or computer security vulnerability 
that allows attackers to inject malicious H T M L or JavaScript code into a web site. XSS 
may occur when an application stores untrusted data into its storage without proper val
idation and escaping (data sanitizing). By this attack, a malefactor can access browser's 
cookies, session tokens, steal sensitive user data like authorization credentials, provide site 
defacement, or distribute malware. 

For example, consider that a web page has a form to leave a comment below the article. 
This form has a field author, and it does not have any "sanitizing" of input data. A l l 
comments are public to all users, and anyone can see it in a web browser. If an attacker 
comes to a web page and wants to provide an attack, he may write malicious JavaScript 
code into that field. Code snippet 2.1 shows an example script that may be injected by 
an attacker. The website stores this script into its database and injects it into the D O M 
every time an ordinary user comes to the page. It causes an alert message to him. 

x

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy 
2

https://developer, mozilla. org/en-US/docs/Web/Security/Same-origin_policy#Changing_origin 

5 

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer


<script>alert("I am an attacker");</script> 

Code snippet 2.1: The snippet shows an example script that might be stored into the web 
site's database by an attacker. This code causes an alert message in the browser whenever 
a user comes to the web page. 

It is a general and not dangerous example, but instead of this, it can be any script that 
can do anything. For example, it may steal a user's cookies or capture keystrokes on the 
login page and then send login credentials to the hacker. 

XSS may occur in the following types: 

• DOM-based XSS - Those types of attacks do actions entirely on the client-side, 
without the server [5]. 

• Stored XSS (persistent) - It is the most dangerous type of XSS attack. It may occur 
when a system stores malicious code on a web server. The injected code is executing 
when a user requests an origin web page where the code exists. 

• Reflected XSS (non-persistent) - The most popular XSS attack. A n attacker embeds 
a malicious code into a web page by injecting it typically in the U R L of the web page. 
It may occur when web-client sends malicious data to the server, especially in H T T P 
parameters or H T M L forms. Reflected XSS attacks can be carried out by sending 
spam emails to users that click on prepared by hacker link with the script in the H T T P 
parameters. 

Cross-site scripting is one of the typical computer security problems. XSS attacks take 
7th place in the top 10 application security risks [7]. 

2.1.3 Content Security Policy 

H T T P Content-Security-Policy (CSP) 3 response header is an additional layer of security 
for web pages. It helps to detect, prevent, and report XSS and other code injection attacks. 

Through CSP header, a web server can prohibit scripts execution from untrusted sources 
by specifying the domains and ports from which those scripts can come and execute. Ap
plied CSP can restrict resources such as media files, fonts, web workers, images, videos, 
Java applets, and others. 

CSP prohibits resource injection into a web page, but it goes against many of extensions 
behavior. There are extensions created to modify content of web pages, e.g., add buttons, 
remove advertisement banners, hide sensitive content. This extension's behavior should 
not be restricted. Policy enforced on a resource should not interfere with the operation 
of user-agent features like addons, extensions, or bookmarklets. These kinds of features 
generally advance the user's priority over page authors [10]. 

CSP mechanism is still developing. Nowadays, it has two versions: v2 (Recommended) 
and v3 (Working draft). A l l modern browsers almost fully support the second version of 
the mechanism. Only Firefox supports it partially. The third version is partially supported 
in Chrome, Firefox and Edge 6. 

3

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy 
4

https: //www.w3.org/TR/CSP2/ 
5

https: //www.w3.org/TR/CSP3/ 
6

https://content-security-policy.com/ 

G 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
http://www.w3.org/TR/CSP2/
http://www.w3.org/TR/CSP3/
https://content-security-policy.com/


The CSP header's value contains a list of directives that describes the policy applying 
for resources and sources those resources are coming from. Some of the essential directives 
are listed below: 

• image-src - specifies the policy for images that are loading on a web site. 

• script-src - specifies the policy for JavaScript code. It also can prevent the executing 
of inline scripts. 

• style-src - specifies the policy for CSS styles loading on a web site. 

• default-src - fallback directive for other *-src directives. 

• report-uri - instructs the user agent to report attempts to violate the Content Se
curity Policy. 

One of the significant features of CSP is reporting. A l l CSP errors triggered on a web 
page may be reported to web site report logs. It helps to fast react to the malicious actions 
provided on the web site. CSP header has a directive called report-uri. It contains a 
U R L of reporting servers to which all CSP reports come via H T T P P O S T in JSON format. 
Code snippet 2.2 shows an example of CSP report sent with help of report-uri directive. 

{ 
'csp-report": { 

"document-uri": "https://example.com/page/with/csp", 

"referrer": "https://www.test.com/", 

"violated-directive": "default-src self", 

"original-policy": "default-src self; report-uri https://report.com/stor^-report", 

"blocked-uri": "http://maliciousscript.com" 

Code snippet 2.2: Example of CSP report in JSON format sent with help of report-uri 
directive. 

If a specific line or a specific file can be identified as the cause of the violation (for 
example, script execution that violates the script-src directive), the user agent may add 
the following keys and values to the violation [11]: 

• source-file - The U R L of the resource where the violation occurred, 

• line-number - The line number in source-file on which the violation occurred. 

• column-number - The column number in source-file on which the violation oc
curred. 

The keys above are optional for a browser only in CSP 2 mechanism. The CSP 3 makes 
them required'. 

The source-file is a U R L of the resource where the violation occurred. If a violation 
has occurred on Chrome's or Firefox's extension, the U R L has the following structure: 

7

https: //www.w3.org/TR/CSP3/#f ramework-violation 

7 

https://example.com/page/with/csp
https://www.test.com/
https://report.com/stor%5e-report
http://maliciousscript.com
http://www.w3.org/TR/CSP3/%23f


<browserName>-extension://<extensionUID>/<pathToResource> 

Property <browserName> can be "chrome" for Chrome or "moz" for Firefox. 
The next property <extensionUID> is 288 bit unique identifier of installed extension. 

Each installed or reinstalled extension has its UID. The uniqueness of <extensionUID> is 
needed to avoid user fingerprinting. 

A l l resources of an extension such as scripts, images have their path in the directory 
structure of the extension. It is located in the <pathToResource> parameter of the U R L . 

Browsers use these unique resource URLs for accessing them in the filesystem. For 
example, browsers use this U R L structure also for displaying the logo of an extension. 
Further, after the installation of "Privacy Badger" extensions into Firefox, the browser 
opens the extension's home page. This homepage is located on the client's local machine. 
Since the extension has its unique identifier, the browser uses it and gets the following U R L 
to the page: 

moz-extension://45cbd003-0307-7f44-ab34-lcfd4df2e5a8/skin/firstRun.html 

The mentioned U R L structure can be used for user fingerprinting. Web sites can detect 
the presence of a particular extension in visitor's web browser thanks to web accessible 
resources . By accessing particular URLs, they can know if an extension is installed or 
not [6]. Sjosten et al. studied this problem. As a result of the study, around 28% (12154 
out of 43429) of all Chrome's extensions and around 7% (1003 out of 14896) of Firefox's 
extensions have accessible resources and are detectable by the users fingerprinting method 
studied by Sjosten [9]. 

A l l modern browsers support the report-uri directive. But it is deprecated in CSP 2. 
CSP 3 replaces it with a directive called report-to. As CSP 3 is partially implemented 
in modern browsers, only Chrome and Edge now support the report-to mechanism. The 
difference between report-uri and report-to is that the second one allows set multiple 
groups with multiple endpoints. It means that CSP reports can have different groups. 
For example, CSP group that reports CSP errors or network group that reports network 
errors9. It also brings priorities of endpoints to distribute the load of servers. After detect
ing violating behavior, CSP can also trigger SecurityPolicy ViolationEvent event over the 
report-to directive. A n event handler may do anything a developer needs. It can send 
JSON to a given A P I or flush cookies and immediately log out the user. 

Since Firefox supports only CSP 2 mechanism, this work uses only a report-uri direc
tive for extensions analysis and testing. 

Further, browser extensions use CSP, and all of them have it set by default. More 
information about using the CSP in browser extension development describes section 2.4. 

2.2 Page C S P Influences Firefox Webextensions 

Content Security Policy, described in the previous section, is a secure and flexible config
urable layer of additional security for web pages. This section describes what is going wrong 
with the popular web browser because of CSP and how it restricts extensions developers 

8

https: //developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/ 

web_accessible_resources 
9

https://www.yld.io/blog/security-trivia-series-understanding-csps-reporting/ 

8 

http://mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/
https://www.yld.io/blog/security-trivia-series-understanding-csps-reporting/


from using some needed functionality. Important to mention that this concerns only CSP 
header specified on a server-side of a web page, but not extension's CSP. 

How Server Specified C S P Header Influences Extension's Behavior in 
Mozi l la Firefox Browser 

As was specified in the previous section, CSP header returned by a web server in the H T T P 
protocol secures users against malicious executing of JavaScript by an attacker. The CSP 
header must contain a list of the allowed sources for all scripts loading on a web page. 

Based on the CSP's official documentation, it can be applied only for resources and 
scripts on a web site's side, and should not concern scripts executing in browser's exten
sions. It affects scripts injected by an extension into the web page's D O M by, for example, 
document. createElement (' script') JavaScript construction. The scripts have to be ex
ecuted immediately after the injection 1 0, regardless of the CSP policy specified by a web 
server. 

Even though the behavior described above is the right one, based on the CSP official 
documentation, Mozilla Firefox does it in another way. If an extension uses an execution 
of its content scripts into a web site that uses CSP header to deny all incoming scripts, 
the header rejects it. It triggers an error. And it is a browser's bug, which this work 
explores. The bug affects all Firefox's extensions that interact with web pages and use the 
execution of inline scripts into the D O M . 

It causes problems and makes extension development more complicated. It also makes 
troubles with browser compatibility, and developers need to do overhead work to bypass 
the bug in Firefox. 

The CSP header has the report-uri directive. Consider a web server with this option 
set on its web pages, and the server records all CSP errors to the server's alert log. Then, 
every user who has installed an extension that injects scripts into a web page triggers 
a false-positive CSP report or more reports. These reports may make noise to alert logs 
and spam reporting servers. 

This bug was reported several times in official Firefox's Bugzilla and on official ex
tension's issue trackers. Section 2.3 lists some examples of bug reports which give more 
information about the bug. 

Bug Reproduction 

This subsection describes the practical reproduction of this bug in Mozilla Firefox. It also 
explores how Google Chrome behaves in the same situation. 

A part of the research is to create a simple web application and Firefox extension to show 
how CSP on the web page influences the extension. 

The testing web site is expanded on an N G I N X server combined with P H P - F P M and 
wrapped into a Docker container. It has one page with some text content on a white 
background. The H T T P response from the webserver returns the CSP header after a user 
requests the page. Setting up the header can be done by configuring the default.conf 

10

https://developer, chrome, com/extensions/contentSecurityPolicy#interactions 

9 

https://developer


file. The server has the CSP configuration to prohibit all scripts, including inline scripts, 
by declaring an add_header property. Code snippet 2.3 shows how the configuration looks. 

add_header "Content-Security-Policy" "script-src 'none'"; 

Code snippet 2.3: This snippet shows the server setting that configures the N G I N X web 
server to send the Content Security Policy H T T P response header. The CSP is set to deny 
all script injections. 

The main goal of the developed extension is to change the white background on the test
ing web page to green by clicking on a button inside of the popup window in the extension. 

The extension creates a <script> node through the createElement () method of the 
document object. Through setting up the innerHTML property, extension sets the JavaScript 
code into the node and then appends the node into the <body> element of the testing web 
page. 

As a result, Google Chrome behaves in the right way. If a user clicks on the button in 
the extension, white background changes the color, and the browser's console not prints 
any CSP errors. The reverse situation is in Mozilla Firefox. Something blocks changing of 
the background and console prints following error triggered in file content. j s on line 4: 

Content Security Policy: The page's setting blocked the loading of 

a resource at inline ("script=src") 

Based on the test described above, Google Chrome and Mozilla Firefox behave in dif
ferent ways with the same browser extension installed. As said in the previous section, the 
right way is Chrome's one. And Firefox extensions need additional workarounds to bypass 
the bug. 

2.3 The Target Audience of This Work 

As was said in the introduction part, this research may be useful for different categories of 
users. 

The main category is Firefox developers. The bug described above was reported in 
Firefox's Bugzilla several times, but the main one is report number 12670275 opened four 
years ago. It has long discussion about the problem and consolidates all information from 
other reports. But except issues in the Bugzilla, there are reports for this problem in official 
extension's GitHub repositories. These reports have long discussions and workarounds on 
how to solve or bypass the bug. For example, issue number 1793 1 1 on the GitHub repository 
of the "Privacy Badger" (PB) extension has a conversation about it. P B is a popular anti-
tracking extension that helps to block invisible tracking, for example, trackers on links in 
social networks. 

Moreover, the problem has triggered additional work on services not related to Firefox. 
The PB's issue has a comment by a developer of the "Report U R I " 1 2 service, which is a 
monitoring system of CSP and other security features. He has reported: "Right now on 
https://report-uri.com we're constantly adapting our core filter set to remove reports like 
these so our customers see less noise, but overall it would be better to neutralise this at 
the source."1 3. Consequently, the bug caused much overhead work for extensions developers 

n

https: //github.com/EFForg/privacybadger/issues/1793 
1 2

https: //report-uri.com/ 
1 3

https: //github.com/EFForg/privacybadger/issues/ 1793#issuecomment-401279014 

10 

https://report-uri.com


and other services that are not directly related to the browser. It takes time and money to 
bypass or adapt to this. 

Web site developers may also find a piece of useful information in this research. The 
CSP header sends a CSP report to the site's statistics by using the report-uri directive 
if web page gets unexpected resource injecting. These false-positive reports caused by the 
Firefox bug may require excess administration or investigations, which also takes money 
and time. 

Further, the work might be useful for extensions developers. They can use the testing 
application implemented in this research to compare extensions to identify and highlight 
differences in behavior between concurrent ones. It might be used for marketing purposes 
if one of the extensions found the solution to the problem and bypassed the bug. 

Ordinary Firefox users can use this work to test an extension they want to install. The 
problem is that users may install an extension and not figure out that the bug influences it 
because most web sites do not have the CSP header set. The GUI developed in this work 
can help them to find needed extension and check if it has problems in the Firefox. 

This research may be significant for Firefox users who care about privacy and data 
protection. Web site owners may use the bug in the browser for fingerprinting of site 
visitors. Section 6.1 gives more information about the study of this problem and description 
of some conducted experiments. 

2.4 Extension's Manifest.json File 

A l l extensions in Mozilla Firefox contain a file with metadata for the extension. This 
file is called Manifest .json1'1. It is a JSON file holding information about extension's 
version, author, description, browser action, default locale, content scripts, and many more 
properties. This section describes most related to this work ones. 

Content Scripts 

The most important key in a Manifest .json, related to this work, is the content scripts 
key containing all of the extension's content scripts. Content scripts are files that run in 
the context of a web page to read information from the page or somehow changing it. They 
are using the Document Object Model (DOM) to do that [8]. 

The restriction of content scripts is that they can not access all of the WebExtension 
A P I because their purpose is to run in the context of a web page. They can send messages 
to extension's background scripts via messaging APIs to let them communicate with the 
rest of the extension. Since content scripts can communicate with the rest of the scripts in 
the extension, they may indirectly access full WebExtension A P I 1 5 . 

The key content scripts is a type of array, and each item in the array is an object. 
Each object has required key matches containing a list of U R L patterns. Besides, there 
are two not required keys on the same level as matches: ess and js. They are a type of 
array containing a list of extension's CSS styles or JavaScript content scripts. When a user 
with installed extension comes on a web site, the extension can inject a content script only 
if the U R L of the web site matches with at least one U R L pattern from the matches array. 
Moreover, it can inject only scripts or CSS styles located in ess or js arrays on the same 
level of matches containing the matched U R L pattern. 

14

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest. json 
15

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts 

11 

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Content_scripts


Further, the object content scripts might contain the key run at. It has a type of 
string and can be one of the following: document_start, document_end, or document__idle. 
Those options correspond with the list of document .readyState {loading, interactive, and 
complete, respectively). The option run at specifies when an extension injects scripts 
from the array js. 

Content Security Policy 

The CSP policy also exists on the extension's side to eliminate potential cross-site scripting 
issues. It does not connect to the CSP on the server-side described in the previous section. 

A l l extensions have the CSP policy set by default. Code snippet 2.4 shows it. 

"content_security_policy": "script-src ' s e l f ; object-src 'self';" 

Code snippet 2.4: The default CSP header for all Firefox extensions. 

This policy eliminates evaluating of strings as JavaScripts, for example, the function 
eval(). Moreover, all inline scripts in tags <script> are not executed as well as event 
handlers like onclick, onchange, onmouseover, and others. At last, the default policy 
prohibits loading resources like <script> and <object> from sources that are not local to 
the extension. Developers need to specify the extension's own content security policy 
option in the manifest, json file to allow using all of the mentioned things. 

2.5 Containerization 

A big part of this work implements communication between processes and A P I calls. Be
cause of that, the practical part of work intensively uses containerization technology pro
vided by Docker 1 6 . 

Docker is an open-source containerization technology that allows automation of ap
plication deployment. Containerization is a form of operating system virtualization that 
enables the kernel of an operating system to support isolated instances of user space called 
container. Containers may look like OS inside of another OS. They allow deploying ap
plications in a package with all needed dependencies and resources. From an application's 
point of view, a container is a real operating system, and all resources from the OS can be 
used (CPU, folders, networks, and others). 

Unlike virtualization technology, containers use the host's kernel of operating systems. 
Based on that, all containers have to have the same OS kernel like on the host's machine. 
It can be an advantage because containers need to use fewer resources for running, unlike 
virtual machines, and also have shortened time for deployment. 

By writing simple Dockerfile with instructions to execute, Docker can easily install 
most of the operating systems inside of a container. Besides, the same Dockerfile can have 
a configuration to install all needed dependencies, and the system can run any of shell 
commands as well. 

This work uses more than one docker container because the application needs at least 
one docker container for webserver with web application and one with application to run 
Selenium scripts. There is a tool called Compose 1 7 for defining multiple Docker contain-

1 6

https: //www.docker.com/why-docker  
1 7

https: //docs.docker.com/compose/ 

12 

http://www.docker.com/why-docker


ers at the same time. It has the main configuration file called docker-composer.yaml 
defining all services needed to run. Compose builds and runs the services with one single 
command docker-compose up. The docker-composer.yaml file does not need to de
fine all instructions to build single containers. It can refer to a Dockerfile which has all 
the needed commands. 

Besides running multiple containers, Compose can keep a cache of built containers and 
use the cache when run rebuild command. Thanks to this, Compose rebuilds only containers 
with provided changes in the configuration. The rest of the data it takes from the cache. 
It also brings variables and extending of Compose files. 

For example, consider a web application that has a web server (Nginx, Apache, Windows 
server, or others), cache system for its A P I (Redis, Memcached), and database as persistent 
data storage (MySql, Postgres, or others). Compose can manage all of these services. It 
builds each service based on one configuration file docker-compose.yaml. The Figure 2.1 
visualizes the structure of that example application. 

Compose 

Web server 
Port: 80 

Figure 2.1: Docker Compose architecture of simple example application having a Web 
server, database, and cache system. A l l services defined in one docker-composer.yaml 
file. 

2.6 Selenium 

The main point of this work is to test as many as possible Firefox extensions that might 
be influenced by the bug described in the previous chapter. Since Mozilla Firefox currently 
has over 18 000 extensions available in the A M O 1 8 , the problem is to automate that testing. 
This work is using Selenium Web Browser Automation Project. 

Selenium is a tool which provides automation of web browser actions and emulates user-
browser interaction. It uses the WebDriver interface to execute an action. The interface 
communicates with browser automation A P I . Selenium packs standard browser functions 
and hides their details into a "black box" to allow programmers to write code in a high 
level without performing complicated workflows. 

1 8

https: //addons.mozilla.org/en-US/firef ox/sear ch/?type=ext ens ion 

13 

http://mozilla.org/en-US/firef


Selenium creates and sends a single H T T P request for each Selenium command . Web 
driver uses H T T P server to get requests from a user and determines flow needed to execute 
commands in a browser. 

The H T T P server listens for requests such as G E T , POST, and D E L E T E [1]. G E T 
requests are useful to get information from a browser. For example, getting text from 
<input> field. On the other hand, it needs P O S T requests to manipulate with something 
on the page. The automation of clicking on a button on a web page is a common example. 

Usually, Selenium tests contain several commands needed to perform to test a single use-
case on the page. Selenium uses sessions to perform stable and persistent communication. 
Executing of first Selenium command in script generates new session ID related to a single 
instance of a browser. Then, all commands in the same automation script sending the same 
session ID in their H T T P requests. 

Selenium has the functionality to install an extension into a WebDriver instance by 
calling the method install_addon(path/to/addon.xpi). This method has the parameter 
path containing the path to the archived source code of an extension. Section 4.4 gives 
more information about automatic extension installation. 

'https: //seleniumjava.com/2015/09/13/how-does-selenium-webdriver-work/ 

14 

http://java.com/2015/09/13/how-does-selenium-webdriver-


Chapter 3 

Design of Extension Tester 
Framework 

The goal of this work is to study and analyze all of the extensions in the Firefox browser. 
Since A M O contains over 18000 extensions, the research requires an automatic testing 
tool. This tool has to be a flexible framework that does everything from data collection to 
statistic presentation. It has to be able to download all extensions from the A M O , save it 
in a database, provide tests, analyze results, and show the final statistics. 

This chapter takes care of the design of the framework used in this work. It also de
scribes the needed architecture of microservices and the relation between small parts of the 
application. Further, it describes the database design and relations between all tables in 
the database. 

3.1 Testing Scenarios Design 

Mozilla Firefox has many extensions that do different things and work in different ways. 
Some do interaction with D O M before onload event, but some do it after particular action 
or user interaction. Moreover, some extensions work only for specific web pages and web 
sites. 

There are different testing scenarios created to test all of the extensions in the A M O . 
This section describes the purpose and design of every scenario. 

Manifest.json Analysis 

Every extension needs to have a manif est. json file containing all necessary information 
and metadata for the extension. As describes section 2.4, the file contains information 
about extension's content scripts if the extension has any. The analysis may be used to 
retrieve content scripts and provide a detailed investigation to detect which extensions use 
script injection into the D O M of web pages. 

Code analysis searches signs of script injecting into the D O M of a web page. The 
developed application has to get a path of a script, open it, and find signs. It could be, for 
example, the construction document. createElement (' script ') . A list of all strings that 
the framework tries to find in a content script is located in Appendix A . 

The analysis helps to recognize those extensions, that may have potential risks to be 
influenced by the CSP. It may be useful for extensions developers, so they might decide not 
to use specific construction or bypass it somehow. 

15 



on start test 

The described manif est. json analysis may find signs of script injection, but it can not 
prove the injection. This work needs to have the possibility to provide real tests and get 
real CSP reports. 

This testing scenario is named on start test. It handles a set of extensions that 
inject scripts into a web page before the onload event occurs. In other words, before a web 
page finishes loading. Those extensions usually are from the category of hiding advertising 
banners ("AdBlocker Ultimate") or blocking invisible tracking ("Privacy Badger"). 

A n example can be "AdBlocker Ultimate". This extension removes advertisement ban
ners from the visited web page. If the CSP header denies an injection of the extension's con
tent scripts, Firefox triggers two CSP errors right after the browser gets the response from 
the server. "AdBlocker Ultimate" of version 2.411 triggers errors in the file preload, js on 
line 169. From the annotation of the function, which does this execution: "Execute scripts 
in a page context and cleanup itself when execution completes," it becomes clear that the 
extension tries to execute content script into the D O M by creating <script> H T M L node. 
In this case, Firefox triggers a false-positive error, which sends a CSP report. 

The on start test works only on the prepared testing web page that has CSP header 
set to deny script injecting. Selenium tests should navigate browser instance to this web 
page. Then, the web page generates CSP reports which are stored in the database. 

The proposed test handles only general extensions working on all web sites on the Inter
net. Based on the description of content scripts key in manifest .json, it contains the 
array matches holding a list of URLs on which content scripts should work. It means that 
there are extensions that work only on specific web sites, such as "YouTube AdBlocker" that 
works only on YouTube. The application needs to make an extension think that browser 
navigates to a specific web site, but in reality, it still accesses the testing web page. Todo 
so, the test needs to change the DNS configuration. For example, the application executes 
YouTube testing by running on-start-test-youtube as well as on-start-test-twitter for 
Twitter. 

3.2 Design of The M a i n Parts of The Framework 

Since the framework needs to do different things (collecting data, user interaction, data 
analysis, presentation), the development of the whole application as one service brings a 
problem with maintaining. This work uses a decomposition technique that facilitates the 
development and deployment of the whole application. 

The application structure has two significant components that communicate with each 
other over the R E S T A P I : front-end (GUI) and back-end. The first one does everything 
connected with user interaction and graphical interface. Users of the framework could have 
technical knowledge (extensions developers, Firefox developers) as well as ordinary users 
without technical knowledge, who only want to see the statistic of influences extensions and 
decide to install it or not. Because of that, it is essential to make the GUI as friendly as pos
sible to the second category of users. On the other hand, the backend does all data analysis 
and provides testing processes with Selenium. The described decomposition brings the pos
sibility to divide user interaction with a web application on front-end and handling Firefox 
error logic on back-end onto separate and independent smaller applications. It brings a 

x

https://addons.mozilla.org/en-US/firefox/addon/adblocker-ultimate/versions/ 

16 

https://addons.mozilla.org/en-US/firefox/addon/adblocker-ultimate/versions/


possibility to develop each part independently. Frontend and backend are also divided into 
several smaller ones, which are described in the next sections. 

Front-End (GUI) 

The first component is a web interface. The idea for the web GUI is to give a user the pos
sibility to run testing scenarios for a selected set of extensions. Besides, web application 
shows up users statistics after testing. 

The application needs to download the most important extension's information and 
source code before a user can select it in the GUI and run tests. Since the A M O contains over 
18000 extensions, an automatic process is needed to download all of them. The framework 
has some instruments to it. Scripts go through the A M O and download extensions one by 
one. The source code of an extension is packed into an archive and stored in data storage. 

Local machine is not a good idea to store extensions files. The framework is located 
inside of a Docker container with the idea to deploy it on any machine. Pulling of about 
10GB data every time Docker builds the application is an incorrect way because of possible 
poor internet connection or memory limit for Docker on the local machine. 

The script stores all compressed extensions on Amazon Simple Storage Service (Amazon 
S3) in the bucket called firefox-addons-tester. 

The web interface has to be easy and comfortable for users. The GUI should have 
a selectable list of downloaded extensions and a simple control panel to do actions for 
the extension. Users should be able to select a specific extension, or set of extensions, run 
tests, and see the structured result. Since there are a large number of extensions, the web 
application has to have pagination for all of them. 

Database Design 

The application does many tests and stores results in the database. This subsection de
scribes the database structure and relation between its entities. Entity Relationship Dia
gram, which represents the structure of the database, is shown on the Figure 3.1. 

The addons table is the central table in the database. It contains information about 
all extensions from the A M O . A l l rows in the table have properties such as the name of an 
extension, count of users using the extension, path to the extension's logo to render in the 
GUI. The f iref ox_recommend property has boolean value and contains information about 
Firefox's recommendation for the extension. If the value is true, Firefox recommends it. 

The addons table has One to Many relation with a table called csp reports contain
ing all CSP reports triggered for specific extension after Selenium tests. The field test_type 
contains string value representing a type of test (on_start_test, on_start_test_youtube 
and others). 

Further, the table addons has Many to Many relation with the table sites containing 
a list of sites that are used in statistics for representing on which sites a specific extension 
has potential CSP report because of the Firefox bug. The pivot table called addon site 
helps to realize the relation. It also contains additional information about the relation 
between an extension and a site. The column content_scripts_count has information 
about count of content scripts, declared in extension's manifest, json for a specific web 
site. The next column, called content_scripts_count_with_signs, contains the count 
of content scripts that have signs of script injection in the code. It may mean that the 
analyzed script injects a script directly into the web page of a specific web site. A l l signs 

17 



addon tests 

addonjd 
type_name 
failedjest 

addon site 

addonjd 
sitejd 
content_scripts_count 
content_scripts_count_with_signs 
scriptsjnfo 

o.. 

addons 

addonjd 
name 
link 
file_name 
img_name 
users_count 
firefox_recommend 

sites 

sitejd 
site_name 
matching_url 

— O l 
O.n 

CSD reports 

csp_reportJd 
addonjd 
testjype 
document_uri 
original_policy 
sourcejile 

Figure 3.1: Entity Relationship Diagram representing the structure of the database con
taining information about all extensions, CSP reports, and web sites on which tests should 
be executed. 

are listed in Appendix A . The implementation part of the work gives more information 
about the analysis. 

The last needed table called addon tests. It contains information about the provided 
tests. The table is connected to the specific extension and has a type of provided test and 
the column f ailed_test. This column stores boolean information and says if the test was 
successful or not. It is like a cache that improves performance by not repeating already 
provided tests. 

Testing Backend 

The second part of the application is named backend. It is an application without 
a graphical interface. The role of the backend is to get requests from the web application 
(frontend), provide Selenium tests or extension's code analysis, and return the result to 
the GUI . 

Testing backend performs all testing scenarios introduced in Section 3.1. Firstly, the 
manifest . j son analysis. The backend has to download needed extensions from stor
age, unpack them, do some preparation with the files and then provide the analysis of 
the manifest . j son. Furthermore, it has to find signs of content script injection in exten
sion's content scripts. 

Moreover, the backend takes care of the execution of Selenium tests. After the backend 
gets a request for testing from the GUI, it has to download an extension and then run 
a Selenium test, which installs the extensions into the browser instance and provides needed 
testing actions. The DNS faking mechanism, described in section 3.1, also should be realized 
in the backend. 

18 



Chapter 4 

Implementation of Extension 
Analyzer Framework 

This chapter explains the implementation part of this work. It concerns architecture things 
with Docker containerization, explains the way how exactly single services communicate 
with each other via A P I , and also, most importantly, how exactly the application manages 
the testing process in the code. 

4.1 Data Collecting 

Almost every work related to testing, comparing, and data analysis requires some training 
or testing dataset. Since this work does not have any relation to machine learning, it does 
not need to generate or collect as various as possible data set for neural network training. 
But it requires a fixed set of downloaded extensions from the A M O . A l l extensions have 
to be present before the test started. Real-time downloading, when a test already started, 
is not the correct way because many changes can be submitted to the A M O by extension 
developers, and many extensions releases can appear during the test. It usually mixes 
A M O ' s items, and if an extension is on the 100th page, it can be, for example, on the 
102nd page in an hour. It can cause not correct results for every test execution. 

This work contains the creating of an automatic extension downloader. The parser is 
written in P H P language and uses a Simple H T M L D O M Parser library 1 for web page 
scraping. It can extract H T M L 2 from a web page and gives an interface to access single 
tags or elements in H T M L by using CSS selectors3. It also can manipulate H T M L in various 
ways, such as changing the content or moving D O M elements. 

The web application in this work is created on the P H P framework Laravel. The section 
4.3 describes the GUI implementation and using Laravel frameworks in more detail. Laravel 
has a tool named A r t i s a n to write its command scripts. It is a command-line interface 

1

Simple HTML DOM Parser library https://simplehtmldom.sourceforge.io/  
2

Hypertext Markup Language (HTML) - https://html.spec.whatwg.org/multipage/  
3

https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors 

19 

https://simplehtmldom.sourceforge.io/
https://html.spec.whatwg.org/multipage/
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Selectors


that helps writing C L I commands. It supports arguments, help section, description of the 
command, and other functions. Code snippet 4.1 lists two commands for the A M O parsing. 

php artisan downloader addons-info 

php artisan downloader addons-files 

Code snippet 4.1: C L I commands that could be run for parsing the addons.mozilla.org. 
The first command extracts the primary information about an extension (name, image, 
and other). The second command only downloads the archived extension's source code. 

The first command is going through all pages on the A M O and extracts information 
about every extension (name, link, users count). It can use parameters like —start-page 

and —final-page that define a specific range of pages needed to parse. The script also 
supports parameter —download-f i l e , which triggers the downloading of source files (com
pressed to .XPI format) for each extension. 

The second command is only responsible for downloading source files for an extension, 
which is already scrapped and stored in the database. It is going through the addons 
database table, and based on the link of the extension, downloads the file. 

There is a pagination block that paginates all extensions on the A M O by 25 extensions 
per page. This <div> block is placed on the bottom of a page. The script parses this pagi
nation block and extracts the last page number. Then it goes page by page and extracts the 
most important information for every extension: name of the extension, link to extension's 
main page on the A M O , icon, count of users using it. 

Firefox has a set of extensions that are recommended by the browser. As writes the offi
cial Firefox web site, all extensions selected to participate in the Recommended Extensions 
program 4 are subject to ongoing re-evaluations to ensure they are functionally extremely 
well, safe, secure, and provide a delightful experience'. Every recommended extension has 
a mark "Recommended". 

The script tries to find the mark on an extension's <div> block and extracts this infor
mation for every single one (1 - recommended, 0 - no information). 

Firefox supports few ways how to install an extension from source files on a local machine. 
The first way to install an extension from files is to install a temporary extension6 by 

loading source code or .zip archive. The extension installed in this way is ready to use until 
the browser works and not restarted, or a user keeps it. This way is not suitable because 
finding the source files for every extension on the A M O is complicated for the amount of 
18 000 extensions. It can be located on GitHub, on an extension's web site, and other 
resources. 

The second way solves the problem described above. Firefox supports the installation 
of extensions from a .xpi file'. This file is a compressed installation archive which Mozilla 
uses in various applications such as Firefox, SeaMonkey or Thunderbird. Firefox uses 
a component named XPInsta l l 8 to install extensions archived into .xpi archive. Selenium 
supports it to do it automatically. 

A n essential part of scrapping from the A M O is to download the extension's source 
code. The scrapper needs a link to an extension to download it. This link can be easily 

4

https://support.mozilla.org/en-US/kb/recommended-extensions-program  
5

https: //blog.mozilla.org/f iref ox/fir efox-recommended-extens ions/ 
6

https: //blog.mozilla.org/addons/2015/ 12/23/loading-temporary-add-ons/ 
7

https: 111ileinfo.com/extension/xpi 
8

https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XPInstall/Reference 

20 

http://addons.mozilla.org
https://support.mozilla.org/en-US/kb/recommended-extensions-program
http://ileinfo.com/extension/xpi
https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XPInstall/Reference


Only with Firefox—Get Firefox Now + Add to Firefox 

Figure 4.1: Left (green button) - The button that appears on the extension's page in the 
addons.mozilla.org when a user uses a browser other than Firefox. Right (blue button) -
The button that appears on the extension's page in the addons.mozilla.org when a user 
uses Firefox browser. 

copied manually from the "Add to Firefox" button, but it is not that easy for the automatic 
process. Firefox renders two buttons: for Firefox users and non-Firefox users. The Figure 
4.1 shows how the buttons look. The green button does not have a link to the .xpi file. 
Otherwise, the blue one has. The problem is that the green button is the default, and the 
Simple H T M L D O M library cannot define the current browser type when parsing the page. 

The script needs to somehow "trick" the Firefox webserver to get the correct button. If 
the server shows the button depends on the browser type, it needs to know that request 
was sent from Firefox. Code snippet 4.2 contains the header that should be sent by parser's 
C U R L request to force Mozilla's web site to show proper button on extension's page. 

User-Agent: Mozilla/5.0 (Macintosh; Intel...) Gecko/20100101 Firefox/75.0 

Code snippet 4.2: A n H T T P header that should be sent to the web server of ad
dons, mozilla.org to force him showing "Add to Firefox" button when using extensions 
parser. 

The scraper generates the name of a file from the name of extension with replacing all 
unsupported characters. Then, it concatenates string with a hashed link of the addon. It is 
needed in case if some extensions have the same name. The script uploads file into Simple 
Storage Service (Amazon S3) into a bucket. The last step is to store the extension's data 
into the database. 

4.2 Docker Containerization and Architecture of Services 

This work uses containerization technology with Docker to make deployment more comfort
able and more flexible. It gives the possibility to separate logic parts of the application into 
isolated user spaces (containers). The application uses a tool named Docker Compose to 
define and run multiple containers that communicate with each other. Theoretical informa
tion about Docker and Compose and how containerization works is written in section 2.5. 

The entry point is to define services is the docker-compose.yml file located in the root 
folder of the project. It is a configuration file that Compose uses to configure and describe 
how single services work, which resources they use, and how they relate to each other. 

The web application uses P H P language in cooperation with the N G I N X 9 web server. 
For handling dynamic requests on N G I N X , the server communicates with P H P - F P M 1 0 . Fur
ther, the application uses a separate container with a tool for compiling CSS and JavaScript. 
The section 4.3 gives more information about the implementation of the web GUI. 

9

https: //www.nginx.com/ 
1 0

https: //www.php.net/manual/en/install.f pm.php 

21 

http://addons.mozilla.org
http://addons.mozilla.org
http://mozilla.org
http://www.nginx.com/
http://www.php.net/manual/en/install.f


Python application, which runs Selenium and test scenarios, is moved to a separate 
container called backend. Implementation of it is described in the section 4.4. 

As a result, the whole program, including all smaller parts, is located in one reposi
tory. This repository managed by one docker-compose.yml file and products six docker 
containers communicating between each other under one shared network bridge: 

• nginx - Web server 

• app - P H P - F P M 

• db - MySQL database 

• redis - Caching software 

• backend - Python application for running testing scenarios 

• ess-watcher - JS /CSS Compiler 

Figure 4.2 visualizes all of the docker containers, and the structure of Docker Compose 
used in this work. The instances inside of the "Docker engine" block are single containers 
listed above, and arrows between them show their relation. For better maintenance of the 
building, some of the services have definitions in separate Dockerfiles, which the Figure 
below represents. 

t e s t e r - b a c k e n d / d o c k e r7 
b a c k e n d / D o c k e r f i l e 

Dockerfile Defines1 Python Backend 

t e s t e r - g u i / d o c k e r / 
n g i n x / D o c k e r f i l e 

Dockerfile Defines : 

t e s t e r - g u i / d o c k e r / 
a p p / D o c k e r f i l e 

Dockerfile Defines 

Web Server 

PHP-FPM 

Database 

JS/CSS Compiler 

Docker engine 

Defines 

Defines 

docker-compose.yml 

t e s t e r - g u i / d o c k e r / 
c s s - w a t c h e r / D o c k e r f i l e 

Dockerfile 

Figure 4.2: Blocks inside of the "Docker engine" represent application components (con
tainers). Arrows show the relation and data flow between them. The Figure also shows 
which configuration file defines a component. 

The next two sections of this chapter handle writing Dockerfiles, building scenarios, and 
relations between microservices. 

4.3 Web Applicat ion 

As was said before, the web application divides into four Docker containers. The main 
two of them are N G I N X and P H P - F P M . N G I N X is a web server that processes incoming 
H T T P requests. 

22 



Since this work concerns testing and processing large amounts of data, the application 
has to be able to handle a large number of incoming H T T P requests. A complication can 
be that number of extensions in the A M O is more massive every day. 

The web server in this work handles two types of incoming H T T P requests. The first 
type is H T T P requests, which N G I N X obtains to render web page resources like icons for 
every extension, CSS styles, and JavaScript scripts. Those requests are requests for static 
data. Another type of request is requests for dynamic data handling. It can be a request 
for storing a CSP report when it comes to CSP policy errors in Firefox. The Web server 
handles each report and stores it in the database. It requires specific dynamic handling by 
PHP. 

Even when a client sends a dynamic request to a server running PHP, it is not the first 
point that contacts with the request. The first point is an H T T P web server. The server has 
to decide which way to use P H P to handle the request. Whenever the request was received, 
the web server creates a new process with P H P executed. N G I N X can use P H P - F P M via 
the FastCGI protocol for that case. It means that N G I N X does not need to know where 
P H P is on the server. In that case, P H P is encapsulated to another container with another 
environment, and the server uses it only for running scripts to handle the incoming dynamic 
requests. 

Wi th using of P H P - F P M , N G I N X can handle static H T T P requests (CSS, JavaScript, 
images) by itself. It raises the speed performance of a web server. P H P - F P M processes 
only dynamic requests. 

The Figure 4.3 visualizes how P H P - F P M works in combination with N G I N X . 

1. HTTP request 

, 4. HTTP response 

Client 

Docker 

nginx container 

NGINX 

2. FastCGI (Execute PHP scripts) 

3. FastCGI (response) 

app container 

PHP-FPM 

app-network 

Figure 4.3: The relation between N G I N X web server and P H P - F P M encapsulated into 
separate Docker containers. 

The web site has over 18 000 addons stored in the database, and it is not an excellent 
way to show them all on one page, because of performance issues. A pagination feature 
can handle it. It is configured value how many addons to be shown on each page. This 
decision may cause an issue when a user selects addon by clicking on the checkbox and lose 
it after switching between pages. The application uses the browser's session storage 1 1 to 
solve this problem. It saves information about already checked extension, and JavaScript 

n

https: //developer.mozilla.org/en-US/docs/Web/API/Window/sessionSt or age 

23 

http://mozilla.org/en-US/docs/Web/API/Window/sessionSt


fires an event after the extension is checked or unchecked. Then it adds or removes the 
item from the session storage. 

The web application uses a MySQL database to store all the needed data. It is served in 
a separate docker container with name „db". The section 3.2 explains the database design 
and the relation between single tables more detailed. 

The figure 4.4 shows the main page of the web application. 

Select a l l I Deselect a l l T I F i l t e r T I Test se lected I F u l l t e s t T I Generate report Search addon 

u B l o c k O r i g i n 
M i l Users: 5797996 0 Test addon i G o to web i 

N o S c r i p t S e c u r i t y Sui... 
users: 1825396 

Test addon I Go to web page 

Recommended by Firefox 

L a s t P a s s P a s s w o r d Man... 
J se r s : 1072713 

Test addon I Go to web page 

* irefnx 

V i d e o D o w n l o a d H e l p e r 
Users: 3043102 * 
Tes t addon J |go t o web page 

Ghostery - Privacy Ad 

G h o s t e r y - P r i v a c y A d -
Users: 1583263 

Test addon I Go to web page 

HTTPS E v e r y w h e r e 
Users: 927489 

Test addon I Go to web page 

pyn F a c e b o o k C o n t a i n e r 
Users: 2016911 

Test addon I Go to web | 

P r i v a c y B a d g e r 
Users: 1250141 

Test addon I Go to web page 

Recommended by Firefox 

A d B l o c k e r U l t i m a t e 
Users: 910359 

Test addon I Go to web page 

ommended by Firefnx 

I B t l E n h a n c e r f o r YouTube™ 
Users: 842419 

Test addon I Go to web page 

To G o o g l e T r a n s l a t e 
Users: 657427 

Test addon I Go to web page 
m E a s y Y o u t u b e V i d e o Do... 

Users: 646725 

Test addon I Go to web page 

Figure 4.4: The Screenshot shows the main page of the web application, which holds all 
selectable extensions. At the top of the page is located the control panel of the application. 
The control panel gives access to provide different actions with extensions such as filtering, 
running testing scenarios, or generating reports based on the tests. 

Laravel M i x 

The GUI uses SASS language to code CSS styles. SASS is a CSS preprocessor that helps to 
write complex and robust CSS stylesheets. It gives the possibility to use variables, selectors 
nesting, and other features. In the end, the SASS file compiles to a standard CSS file to 
use it in the application. 

The web application uses a tool called Laravel M i x 1 2 to compile SASS files and 
JavaScript. The tool is part of the Laravel P H P framework, and it is a layer on top of 
Webpack. It gives a simple A P I for defining Webpack building flow and asset pipeline to 
compile javascript and SASS. 

A part of this work is to create a simple Laravel Mix application. It is moved to 
a separate Docker container called ess-watcher. The application requires the installation of 
NodeJS and N P M . By running the command npm run watch after installation in Dockerfile, 
Webpack watches for defined SASS and JavaScript files and recompile them whenever they 
are changed and saved. 

1 2

https: //laravel-mix.com/docs/4.0/basic-example 

24 



4.4 Backend Testing Application 

The backend service executes and runs testing scenarios that a user triggers through the 
web application. It is a separate application moved to a separate docker container called 
backend. 

The backend is written in Python using the Flask 1 3 web application framework, a pop
ular Python framework for creating services based on A P I or for web site development. 

The advantage of Flask is that it is a lightweight web framework that allows the creation 
of APIs for H T T P communication without any additional installations or maintenance. The 
goal of the backend is to get the request for a testing scenario, run a Selenium test, and 
return a response. 

There is a Dockerfile created to build the container, which hosts the application. It uses 
an ubunturbionic Docker image from Docker Hub to install the operating system first. 
After that, Dockerfile defines some applications to install, like Python, PIP, curl, wget, and 
others. 

Selenium uses the geckodriver and Firefox of the latest version to run testing scenarios. 
The driver and browsers are downloaded by using of wget application in the Dockerfile. 

The application uses the requirements.txt file to define all dependencies needed by 
application in a single .txt file, which was created and copied to docker container and im
mediately parsed by P I P 1 while the build is going through all commands in the Dockerfile. 
This process installs Flask and Selenium into the container. 

The last step is to set some environment variables and run the server in the container. 

4.5 Implementation of Testing Scenarios 

This section describes the implementation of all of the testing scenarios, which are proposed 
in Section 3.1. Each scenario has different implementation and different relation between 
web application and backend, which runs Selenium tests. 

The application stores every incoming report into the database in the table csp reports, 
and it has a relation with the addon from the addons table. Information about the type 
of scenario for each extension is saved in the column test type. 

on start test 

This type of test tries to handle and collect extensions that trigger the CSP report before 
the onload event occurs. 

A l l that is needed to provide this test is to run Selenium tests with pre-installed exten
sion and store triggered CSP report if it appears. Otherwise, if no error is triggered, the 
extension does not have a related CSP report in the csp reports table, and the extension 
is considered as correctly working. 

A user has to do one of the following to start this test: 

• select an extension by marking checkbox —> navigate to control panel on the top of 
the web GUI —> click on the button "Test selected" —> choose the test name in the 
dropdown menu 

1 3

https: //pallet sprojects.eom/p/flask/  
1 4

https: //pypi.org/project/pip/ 

25 

http://sprojects.eom/p/flask/


• navigate to needed extension —> click on the button "Test extension" —> click on the 
on_start_test in the dropdown list. 

The following explanation considers using the first way from the item list above. 
The first point of the implementation is to send a request for testing from the web 

application to the backend by using JavaScript with A J A X (Asynchronous JavaScript and 
X M L ) 1 5 . When a user clicks onto the on start test button, JavaScript gets selected 
extensions from session storage. Then it iterates through all of them. For each item, 
JavaScripts creates A J A X request to the backend. The requests for testing carry some 
needed parameters such as the name of extension's file, extension's identifier, extension's 
name. These parameters are needed to execute tests on the backend side. 

A CSP report, generated by the browser, does not support using custom parameters 
and does not have any information to tie up the report with the running test. That means 
that there is no way to figure out from the report what extension is in the testing process 
when it triggers an error. 

A l l requests for testing on start test comes to the /test/on-start-test endpoint 
on the backend. After request comes, backend extracts extension's information, especially 
file name, and then call function on_start_test_run(). First of all, the function downloads 
the extension's file from the AWS S3 bucket and stores it on a local machine. On the next 
step, it creates a Selenium WebDriver instance that runs a browser on the background 
and then calls the Selenium function install_addon() to install the extension from the 
downloaded file into the browser. After that, by calling the function get(), Selenium 
navigates the browser to a prepared web page, which has CSP policy set to decline injecting 
of content scripts into D O M . This may trigger a on start test CSP report. After the 
page is loaded, Selenium closes the browser. The backend server returns a positive response 
to the web application. 

The prepared web page for testing is located on the N G I N X server and has its endpoint 
and controller that renders it. The backend sends two parameters to render the testing 
web page: test_type and addon_id. Those parameters are handled and validated by the 
controller, which then generates an H T T P CSP header before the rendering of the page. 
The controller places the parameters into the U R L of the report-uri directive to tie up 
the running test with the report. 

A l l CSP reports from the testing web page described above come back to the web 
application, which has prepared the /api/store-csp-reports/{test_type]-/{addon_idJ-
A P I endpoint to accept them. A l l incoming reports are handled by the application and 
saved into the database. 

If everything is good, the application moves to the processing of the next extension. 
The full process is visualized on sequence diagram on the Figure 4.5. 

D N S Faking 

As was said in Section 3.1, there are extensions that work only on specific web sites. This 
work aims at testing the on start test on popular webs on the Internet. So, an extension 
for a specific web site needs to determine that the browser navigates to the web site where 
the extension works. But in reality, it still goes to the prepared testing web page. The test 
script has to change the DNS configuration to do this. 

The testing web page is located on the web server in the nginx container. When 
Selenium navigates the browser instance, for example, to www.youtube.com, the H T T P 

1 5

https: //api. jquery.com/jquery.ajax/ 

26 

http://www.youtube.com
http://jquery.com/jquery.ajax/


Laravel web |\^ 
application 

Testing 
backend. 

Flask application 

:WebApplication 

Select addons 

on_start_test click 

:Backend 

Call backend endpoing 
with addon's info 

Get test page 

< 
Success response 

Generate CSP report 

MySQL | \ 
database. 

(csp_reports) table 

: Database 

Run Selenium 

Store CSP report 

•o 

Figure 4.5: Sequence diagram of the on start test testing scenario. It visualizes data 
and request from between different actors of the application (User, GUI , backend, database). 

request goes to the N G I N X . DNS is mapping into the /etc/hosts file on the backend. 
After running Docker containers, a shell script gets NGINX's IP address and writes the 
mapping into the /etc/hosts file. Code snippet 4.3 demonstrates an example of domain 
mapping. 

<nginx IP address> www.youtube.com 
<nginx IP address> twitter.com 
<nginx IP address> www.amazon.com 

Code snippet 4.3: A n example of mapping domain names on the right to IP addresses on 
the left defined in OS's /etc/hosts file. 

When Selenium goes to www.youtube.com, the /etc/hosts configuration redirects it 
to <nginx IP address>, but an extension still performs actions accordingly to YouTube. 
For example, injects custom scripts. 

Analysis of Manifest .j son File 

The processing of the manifest, j son file is another type of extension analysis. The 
file contains information about the extension's content scripts. More information about 
manifest. json is described in the section 2.4. 

A user of the web application can run the analysis for every extension from the list. 
Since all content scripts in a manifest, json file have to be related to a specific web site 
patterns (key matches), a user has to choose a web site for which he wants to provide 

27 

http://www.youtube.com
http://www.amazon.com
http://www.youtube.com


the analysis. The database table sites holds all web site URLs . Before a user starts the 
analysis, he has to choose web sites from the list on which the analysis provides. 

The application takes all extensions and checked web sites from the session storage. 
Then, for each extension, it sends an H T T P request to AjaxController that converts data 
to a proper format and sends a request to the backend. On the backend's side, there is an 
/test/content-scripts-analysis A P I endpoint responsible for accepting such requests. 
After that, the backend downloads extension's file from the S3 bucket and unzips it. Then, 
it opens the Manifest. json file and reads the content via the json.loadO function. 

After analyses for all extensions were provided, there were many errors logged to the 
application's error log. These errors occur because of not supported by JSON specific 
symbols in Manifest .j son. In the majority, it is " / " symbols at the start of the line. But 
commentaries with using slashes are not allowed in JSON format [2]. The application 
preprocesses the file before the opening to solve the problem. If the file still causes errors, 
the application skips the analysis of the addon. 

One of the parameters coming to the backend is sites matching. It contains a set of 
web sites for matching with the array matches in a manifest. json. The backend iterates 
through all sites in a loop, and for each one searches content scripts item with at least 
one matching U R L . The matching provides by using the fnmatch 1 6 Python library. It 
provides support for Unix shell-style wildcards. 

The next step is to provide a code analysis for each content script separately. Then, the 
application iterates through all scripts from the js array and opens every file. It reads each 
line in the file and tries to find any signs of script injecting into a D O M . For example, it 
reads a line of code as a string and searches a . createElement (' script') substring. 

The backend returns all extracted information like count of content scripts, script in
jection signs back to the web application in JSON format. The web application converts 
it to the proper format and writes into the database in the table addon site. So, the 
table contains rows with a paired web site and extension, and additional information about 
content scripts. 

'https: //docs.python.org/3/library/fnmatch.html 

28 



Chapter 5 

Testing and Evaluation 

This work aims to test all extensions from the A M O to detect how the CSP header influences 
the extension's behavior. The CSP header needs to deny the injecting of content scripts 
into the page. 

This chapter explains the result of the provided tests. At the end of the chapter, there 
is a section that suggests and explains possible future improvements of the research, such 
as new test types, new GUI futures, performance raising. 

5.1 Results of the Provided Tests and Analysis 

This section shows and describes the result of the tests. 
First of all, it is important to run the manifest. json analysis to mark extensions that 

may be influenced by the bug. The analysis processes the code of extension's content scripts 
and tries to find signs of script injection into a web page. Besides, it checks on which web 
sites there is the most significant number of influenced extensions. 

Then, the top web sites from the list are subject to additional testing that discovers how 
many extensions trigger real CSP errors on a specific web site. 

This section evaluates the results and represents them on graphs. 

Manifest .json Analysis 

This analysis is important to detect extensions that might have potential problems with 
Firefox's bug. Section 3.1 explains its purpose and design, and section 4.5 describes its 
implementation. 

The manifest .json analysis was executed for all extensions from the addons database 
table and for all sites stored in the sites table. Figure 5.1 shows its result on a graph 
representing how many extensions have signs of script injection into the D O M of a web 
page. The graph shows a list of popular web sites listed on the Y-axis. Each tested web 
site has its value written in the middle of the related bar. This value means the lower 
bound of the count of extensions that would trigger false CSP reports if the CSP header 
was enabled on the web site. Almost all web sites were taken from the list of top 100 most 
visited websites by search traffic (as of 2020)1. 

It is important to mention that values from Figure 5.1, representing a count of extensions, 
are related only for the exact U R L (protocol, port, domain) on the left side. For example, 

x

https: //ahr efs.com/blog/most-visited-websites/ 

29 

http://efs.com/blog/most-


https://www.youtube.com/ -j 
https://www.facebook.com/  

https://twitter.com/  
https://www.amazon.com/  
https://www.google.com/ 

https: / /github.com / 
https://vk.com/ 

https: //www. reddit.com/  
https://www.linkedin.com/  

https://www.ebay.com/  
https://www.netflix.com/  

https://www.twitch.tv/ •] 
https://www.pinterest.com/  
https://www.walmart.com/  
https://www.booking.com/  

https://www.wikipedia.org/  
https://www.bbc.com/  

https://www.mozilla.org/  
https://www.imdb.com/  
https://www.espn.com/  

https://www.airbnb.com/  
https://stackoverflow.com/ 

1,542 
1,454 

1,425 
1,420 
1,412 
1,410 
1,407 
1,403 
1,402 
1,400 
1,400 
1,400 
1,392 
1,388 
1,387 
1,387 
1,386 
1,386 
1,385 
1,384 
1,384 
1,384 

100 200 300 400 500 600 700 800 900 
Extensions count 

1,000 1,100 1,200 1,300 1,400 1,500 1,600 

Figure 5.1: The lower bound of count of extensions that have content scripts injection signs 
in their source code. Each value on the middle of each bar represents the count for the 
U R L , written on the left side, on which the manifest.json analysis for all extensions was 
executed. 

the statistic does not contain extensions that work only on a specific YouTube channel that 
has a specific U R L or only on the .cz domain. Therefore, any other URLs require separate 
analysis and may have a different result. 

Some extensions are created for general purposes and do their job for all web pages on 
the Internet. For example, U R L https://espn.com/ from the graph on Figure 5.1 is a web 
site of popular cable sports channel E S P N . There are some extensions on the A M O that 
are created to work only on ESPN's web site, but no one of them triggers CSP error on 
the testing web page. Therefore, the value 1384 from the graph represents the only count 
of general extensions working on all web sites. 

Each value on the graph consists of two parts: count of general extensions and count of 
specific extensions working only on the particular U R L on the left side of the graph. Figure 
5.2 shows a graph that represents the same statistics as on Figure 5.1, but only contains 
count of specific extensions. Based on the statistic, most of the extensions are developed 
specifically for YouTube. They can be different advertisements blockers, YouTube themes, 
or site transformation extensions. Facebook and Twitter take the second and third places, 
respectively. Since these three sites have more influenced extensions than all of the other 
tested ones, they need more deeply testing, separately. 

In summary, 1384 extensions inject scripts to all web pages, and 490 extensions inject 
scripts to specific web pages. Hence, 1870 extensions (about 10% of all extensions) in the 
A M O are influenced by the bug. 

As was said in section 4.1, Firefox has a set of recommended by the browser extensions. 
Figure 5.3 shows the same statistic as in Figure 5.1, but only for recommended extensions. 

Based on the provided analysis for recommended extensions, 21 extensions are general, 
5 are only for YouTube, and 3 for Google. Hence, together it is 29 extensions. Since the 

30 

https://www.youtube.com/
https://www.facebook.com/
https://twitter.com/
https://www.amazon.com/
https://www.google.com/
https://vk.com/
http://reddit.com/
https://www.linkedin.com/
https://www.ebay.com/
https://www.netflix.com/
https://www.twitch.tv/
https://www.pinterest.com/
https://www.walmart.com/
https://www.booking.com/
https://www.wikipedia.org/
https://www.bbc.com/
https://www.mozilla.org/
https://www.imdb.com/
https://www.espn.com/
https://www.airbnb.com/
https://stackoverflow.com/
https://espn.com/


https://www.youtube.com/ 
https: / / www. facebook.com / 

https://twitter.com/  
https://www.amazon.com/  

https://www.google.com/ 
https: / /github.com / 

https://vk.com/ 
https: //www. reddit.com/  

https://www.linkedin.com/  
https://www.ebay.com/  

https://www.netflix.com/  
https://www.twitch.tv/  

https://www.pinterest.com/  
https://www.walmart.com/ 
https: / / www. booking.com / 

https: //www. wikipedia.org/  
https://www.bbc.com/  

https://www.mozilla.org/  
https://www.imdb.com/  
https://www.espn.com/  

https://www.airbnb.com/  
https://stackoverflow.com/ 

tf> «& 
Extensions count 

Figure 5.2: The lower bound of count of extensions that have content scripts injection signs 
in their source code. Each value on the middle of each bar represents the count for the 
U R L , written on the left side, on which the manifest.json analysis for all extensions was 
executed. A l l general extensions that work on all web sites on the Internet are filtered out. 

A M O has 100 recommended extensions, 29% of them have script injection signs and are 
potentially influenced by the bug. A l l of them are on the first four pages of the A M O . 

on start test 

This test carries out real experiments on installed extensions and tries to find a set of 
extensions that inject scripts and trigger CSP error before the onload event. 

The manifest.json analysis has shown that 1380 general extensions in the A M O have 
signs of content script injection into a web page. These extensions are for general purposes 
and perform actions for all web sites on the Internet. 

But there are extensions intended only for particular sites. They inject code only if 
the user's browsing web site U R L matches with the extension's preconfigured U R L pattern 
where the extensions should do its work. The analysis has shown that 158 extensions have 
signs of scripts injecting into You Tube, 70 into Facebook, 41 into Twitter. As was previously 
said, those extensions require more in-depth analysis. 

This test explores extensions for general purposes as well as extensions for specific web 
sites. Based on the manifest.json analysis, there are 3 websites with more influenced 
extensions than other web sites from the list in the previous section: YouTube, Facebook, 
and Twitter. The test explores extensions only for these 3 categories and for a general one. 

The test does not include extensions that inject a script only after some action on the 
page. It tests those that do it before the onload event. For example, it does not detect an 
extension that changes the background color of a page after a user clicks on a button. 

Figure 5.4 shows the result of the test. After the test, it becomes clear that the result 
follows the order of web sites shown in Figure 5.2. Most extensions on the A M O trigger 
CSP errors on YouTube. There are 199 extensions that will cause CSP reports if YouTube 

31 

https://www.youtube.com/
http://facebook.com
https://twitter.com/
https://www.amazon.com/
https://www.google.com/
https://vk.com/
http://reddit.com/
https://www.linkedin.com/
https://www.ebay.com/
https://www.netflix.com/
https://www.twitch.tv/
https://www.pinterest.com/
https://www.walmart.com/
http://booking.com
http://wikipedia.org/
https://www.bbc.com/
https://www.mozilla.org/
https://www.imdb.com/
https://www.espn.com/
https://www.airbnb.com/
https://stackoverflow.com/


https://www.youtube.com/  
https://www.google.com/  

https://twitter.com/ 
https: / / www. facebook.com / 

https://www.linkedin.com/  
https://www.ebay.com/  

https://www.netflix.com/  
https://www.imdb.com/  
https://www.espn.com/  
https://www.bbc.com/  

https://www.pinterest.com/  
https://www.walmart.com/ 
https: / / www. booking.com / 

https://www.airbnb.com/  
https://www.amazon.com/  

https://www.mozilla.org/  
https://vk.com/ 

https: //www. reddit.com/  
https://www.wikipedia.org/ 

https:/ / www. twitch. tv / 
https://stackoverflow.com/  

https://github.com/ 
12 14 16 
Extensions count 

Figure 5.3: The lower bound of count of recommended by Mozilla Firefox extensions that 
have content scripts injection signs in their source code. Each value on the middle of each 
bar represents the count for the U R L , written on the left side, on which the manifest.json 
analysis for all extensions was executed. 

will decide to protect its web site against content script injecting by enabling the CSP. 
Facebook and Twitter have 194 and 184 extensions, respectively. 

Summarizing all unique extensions created for specific web sites and all general exten
sions, there are 213 (1%) of them that trigger CSP errors passively (not doing any actions 
on a web site) on all web sites that have CSP protection enabled. 

Moreover, every extension may trigger more than one CSP report. For example, the 
extension "LastPass Password Manager" triggers one report, but the extension "Emoji by 
TunisieSMS®" causes 18 reports after the browser navigates to the testing page. It means 
that every user that has "Emoji by TunisieSMS®" installed triggers 18 false-positive CSP 
reports, which make excess noise to the reporting log of a web site that has CSP protection 
enabled. On average, each influenced extension in the A M O causes two reports. 

Figure 5.5 shows the same statistic but only for extensions recommended by Firefox. 
The report shows that the website order is the same as for all extensions, but the count 
of on-start-test-twitter is the same as on-start-test and equals 8. It means that all 
8 extensions are general. Therefore, A M O does not store recommended extensions that 
do code injection at the start of page loading only for Twitter. The result represented on 
Figure 5.5 shows that 11 (11%) of recommended extensions passively trigger CSP errors 
after testing general ones and extensions created for You Tube, Facebook and Twitter. 

32 

https://www.youtube.com/
https://www.google.com/
https://twitter.com/
http://facebook.com
https://www.linkedin.com/
https://www.ebay.com/
https://www.netflix.com/
https://www.imdb.com/
https://www.espn.com/
https://www.bbc.com/
https://www.pinterest.com/
https://www.walmart.com/
http://booking.com
https://www.airbnb.com/
https://www.amazon.com/
https://www.mozilla.org/
https://vk.com/
http://reddit.com/
https://www.wikipedia.org/
https://stackoverflow.com/
https://github.com/


Only recommended by F i r e f o x l _ 

Count of addons causing CSP errors when a user enters the web page containing the CSP header 

on-start-test 
Non-Commercial Version 

on -sta rt-test-twitter on-start-test-facebook on-start-test-youtube 
CanvasJS.com 

Figure 5.4: Count of Firefox extensions that trigger CSP errors after a browser navigates 
to a web page with enabled CSP protection. Tested for YouTube, Facebook, Twitter, and 
also general extensions that work on all web sites on the Internet. 

Only recommended by F i r e f o x Q 

Count of addons causing CSP errors when a user enters the web page containing the CSP header 

Figure 5.5: Count of recommended by Mozilla Firefox extensions that trigger CSP errors 
after a browser navigates to a web page with enabled CSP protection. Tested for YouTube, 
Facebook, Twitter, and also general extensions that work on all web sites on the Internet. 

33 

http://CanvasJS.com


Chapter 6 

Future Improvements of the 
Research 

This chapter describes future improvements of this work suggested in Section 6.2. Some of 
them are improvements of the existing application, but some are additional testings that are 
needed to find influenced by the bug extensions that did not occur in existed tests. Besides, 
Section 6.1 describes how the bug in Firefox may be used to fingerprint site visitors and 
how this work may study it in the future. 

6.1 Fingerprinting Problem 

This research may be significant for Firefox users who care about privacy and data protec
tion. Besides excess false-positive CSP reports, broken functionality of extensions, the bug 
in Firefox brings a problem with fingerprinting of web site visitors. If a web site has a CSP 
protection enabled to deny scripts injecting by extensions, triggered CSP reports may help 
web site developers to know which extensions site's visitors have installed. 

As mentioned in Section 2.1.3, each CSP report generated by the report-to CSP directive 
provides the server the following: 

• source-file containing the identifier of the web extension (EUID) and the path of the 
script in the extension's file hierarchy, 

• line-number and column-number: identifying the position of code violating the 
CSP in the extension's source code. 

Consequently, the bug in Firefox brings new possibilities to users fingerprinting. The 
UID allows cross-site tracking by designing CSP policy in a way that extensions are inserting 
script to web pages causing CSP violations. Extension's UID is unique for each extension 
installation, i.e., every installed extension instance has different EUID. Moreover, the UID 
changes when the extension is reinstalled. It means that a user with at least 2 web extensions 
causing CSP reports provides a long-term unique identifier because the tracker can learn 
that UID of an updated extension changed, and other extensions do not change their UID. 
As users usually do not update multiple extensions at the same time, the identifier is long-
term. 

A column-number key is a type of non-negative integer number containing information 
about the column's index in a code that violates the page CSP. It is the position in the code 

34 



where JavaScript calls a function that causes the violation. For example, most of the exten
sions inject scripts into the D O M of a web page using an element.appendChild(script) 
JavaScript construction. A column-number of this violation points to the "." symbol. 

Table 6.1 contains source-file, line-number and column-number values extracted 
from CSP reports triggered by some popular Firefox web extensions. 

source-file line-number column-number 
Privacy Badger ... /js/contentscripts/utils.js 35 9 
LastPass Password Manager ... /onload wff.js 71 798728 
AdGuard AdBlocker ... /lib/content-script/preload.js 136 15 

Table 6.1: Values of some CSP report keys by which extensions on the left side of the table 
may be identified. Each extension leave a unique imprint in CSP report by these three 
keys. 

The source code of these extensions was manually studied to find violation constructions 
on the exact line and column of code. The constructions are listed below: 

• Privacy Badger - parent. insertBef ore (script, parent. f irstChild);, 

• LastPass Password Manager - n.appendChild(t), 

• AdBlocker Ultimate - parent. appendChild(scriptTag); 

Some extensions use a unique naming structure. So, they are directly identifiable by the 
path of the script. But many extensions copy or follow some already existing conventions of 
file structure or file naming. Therefore, multiple extensions share the same script name and 
path. Many web extensions minify the JavaScript code into one line without whitespaces. 
As a result, key line-number has a value of "1" on all CSP reports caused by extensions 
with minified JavaScript code. There is a small chance that column-number values are the 
same for the extensions with minified code. Hence, the violating script's path, line-number, 
and column-number, in combination, is in practice unique for each extension. A tracker 
that fingerprint web site visitors can learn the values by monitoring A M O and triggering 
the violation. The database needs to be updated because the triple can change with a 
new version of an extension. One of the future improvements of this research is to create 
that tracker tool and try to identify extensions based on CSP reports in the csp reports 
database table. 

Fingerprinting over CSP reports does not need to use JavaScript like the fingerprinting 
based on web accessible resources described in Section 2.1.3. Hence, security extensions 
like "NoScript" do not protect the user from being fingerprinted. 

6.2 Other Improvements 

This section suggests a few new features that can be added to this work to improve the 
user experience or raise the accuracy of tests. 

Copy of a Testing Web Site 

This work uses DNS faking to provide simulate tests on web sites like You Tube, Facebook, 
or Twitter. Using this method, an extension behaves like the browser has navigated to one 

35 



of the mentioned websites, so it performs scrip injecting. But in reality, the DNS redirects 
the browser to the testing web page. It handles those extensions that inject content scripts 
without looking to the content of web site. 

But some extensions inject resources depending on the content of the page. They may 
need not only a specific web page for code injection but also a specific content on the page. 
The content on the faked testing web page, currently used in the test, is different from the 
original web page. Because of that, an extension might not try an injection. For example, 
an extension injects a content script only if a web page contains a <video> element. 

This improvement suggests to fake the content of YouTube, Facebook, or Twitter, or 
whatever site on which a user wants to provide a test. It can be done by saving the H T M L 
code of a real web site and paste it into the testing web page. It may help to discover more 
extensions influenced by the bug. 

Monkey Testing 

The "on-start-test" test found 199 extensions that trigger CSP reports on YouTube. But 
the static manifest. j son analysis has detected 1538 extensions. Even if an extension has 
code injection signs, it does not mean that it injects a content script on the start of the 
page loading. It may perform an injection after some action that a user does on a web 
page. For example, after the user clicks on some button. 

A monkey test can partially solve the problem. This test can perform chaotic actions 
on a web site and wait for the right one that triggers a content script injection. Since 
extensions work on a specific web site, the testing web page should have the right content. 
So, this improvement requires the implementation of the previous one (Copy of a testing 
web site). 

Improvements of Static Analysis and Application Performance 

There are some possible technical improvements to the existed functionality. A big deal 
while the implementation was to provide parallel testing. It is normal to send from the 
frontend to the backend of 2-4 asynchronous requests to install and test an extension. But 
sending more requests causes errors or a very long time to finish the testing. The application 
needs to deal with it by implementing a cache system and getting more resources on a Docker 
Machine ( R A M , C P U ) . 

Moreover, it is possible to increase the success rate of manifest .j son analysis. Now, 
the analyzer simply tries to find a substring in the script's code. But the code can be 
minified so that all values can be set to variables with one-letter naming. For example, the 
compressor may link the "document" object to a variable named "d". It is possible to use 
some existing interpreters and use semantic analysis of the code to discover that links. 

36 



Chapter 7 

Conclusion 

This bachelor thesis has a goal to test all extensions from the addons.mozilla.org (AMO) and 
show to extension and web site developers possible problems with the Firefox web browser. 
Firefox developers have to pay attention to this problem. Since this bug is reported four 
years ago in official Bugzilla, it caused many related bug reports in extensions issue trackers. 
These reports have long discussions about what is going on, and reports creators think it 
is a bug in the extension. But it is not. 

First of all, this work requires to study the main principles of browser extension devel
opment. As the research is related to the CSP protection, information about it is studied 
to understand how the CSP works and which attacks it denies. Since this work can be 
used by ordinary users who want to check an extension they want to install, the application 
needs to have a simple and understandable user interface that requires additional study of 
GUI development and communication between services via A P I . 

The design of the application requires to know how to build an application structure 
and how to design communication between microservices. Further, the work needs to 
design the testing process. Two main processes were designed. The first process is to do 
manifest. j son analysis for all extensions in the A M O . It has to show top popular web sites 
on which most of the extensions trigger CSP errors. The second process is to execute real 
tests on previously-detected websites by using the Selenium tool. The work has designed 
a test type named "on-start-test" and derivative test for a specific web site such as on-start-
test-youtube or on-start-test-twitter. These tests should detect those extensions that 
trigger CSP errors before the onload event occurs. 

The implementation part of the work starts with the collection of needed data. It is re
quired to create a Mozilla Firefox parser that goes through all pages on the A M O , extracts 
information about each extension, and then stores it into the database. It also downloads 
the compressed source code of an extension and uploads it into the AWS S3 bucket. The 
designed decomposition by microservices was practically realized by using the Docker Com
pose tool. As a result, the application has two main components that produce five Docker 
containers. Further, the implementation follows the designed approach of testing processes. 
Using web GUI , it is possible to run manifest .j son analysis and "on-start-test" test for 
a selected set of extensions. 

At last and most important, testing and evaluating processes were managed. Firstly, 
the manifest .j son analysis was executed on over 18000 extensions. It showed that 1380 
extensions have signs of content script execution. These extensions are from the "general" 
category, which means that they work on all websites on the Internet. Summarizing general 
extensions and extensions working on specific web sites, the analysis has detected 1870 ones 

37 

http://addons.mozilla.org


that have code injection signs in their source code, which is about 10% of all extensions in 
the A M O . As was investigated, the success of the analysis is 94%. 

Further, the analysis showed that You Tube, Facebook, and Twitter are the most popular 
web sites where most of the extensions trigger CSP errors, more popular than all other 19 
tested web sites. These three web sites were tested deeply by the "on-start-test" test. It 
showed that 199 extensions trigger CSP errors on YouTube, 194 on Facebook, and 184 on 
Twitter. 

38 



Bibliography 

[1] B A S T L , V . Automatizace webového prohlížeče [online]. 2019 [cit. 2020-02-10]. Available 
at: https : //www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?f ile_id=197316. 

[2] C R O C K F O R D , D. The application/json Media Type for JavaScript Object Notation 
(JSON) [online]. 2006 [cit. 2020-04-27]. Available at: 
https: //www. ie t f .org/r f c / r f c4627.txt. 

[3] F L A N A G A N , D. JavaScript: The Definitive Guide, 6th Edition. O'Reilly Media, 2011. 
ISBN 978-0-596-80552-4. 

[4] K E M P , J. Security on the Web [online]. 2011 [cit. 2020-02-05]. Available at: 
https://www.w3.org/2001/tag/2011/02/security-web.html. 

[5] K L E I N , A . DOM Based Cross Site Scripting or XSS of the Third Kind [online]. 2005 
[cit. 2020-02-02]. Available at: 
http: / / www.webappsec.org/proj ects/articles/071105.shtml. 

[6] L A P E R D P J X , P., B I E L O V A , N . , B A U D R Y , B . and A V O I N E , G. Browser Fingerprinting: 
A Survey [online]. 2020 [cit. 2020-05-27]. Available at: 
https://dl.acm.org/doi/pdf/10.1145/3386040. 

[7] O W A S P . The Ten Most Critical Web Application Security Risks [online]. 2017 [cit. 
2020-02-02]. Available at: 
https: //owasp.org/www-pdf-archive/0WASP_Top_10-2017_ (en) .pdf .pdf #pagel4. 

[8] R O B I E , J. and R E S E A R C H , T. What is the Document Object Model? [online]. 2011 
[cit. 2020-03-25]. Available at: https://www.w3.org/TR/WD-D0M/introduction.html. 

[9] S J O S T E N , A . , A C K E R , S. V . and S A B E L F E L D , A . Discovering Browser Extensions via 
Web Accessible Resources [online]. 2017 [cit. 2020-05-27]. Available at: 
https://dl.acm.org/doi/pdf/10.1145/3029806.3029820. 

[10] W E S T , M . Content Security Policy Level 3 [online]. 2018 [cit. 2020-01-20]. Available 
at: https://www.w3.org/TR/CSP3/. 

[11] W E S T , M . , B A R T H , A . and V E D I T Z , D. Content Security Policy Level 2 [online]. 
2016 [cit. 2020-01-20]. Available at: https://www.w3.org/TR/CSP2/. 

39 

http://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?f
http://ietf.org/rf
https://www.w3.org/2001/tag/2011/02/security-web.html
http://www.webappsec.org/proj
https://dl.acm.org/doi/pdf/10.1145/3386040
https://www.w3.org/TR/WD-D0M/introduction.html
https://dl.acm.org/doi/pdf/10.1145/3029806.3029820
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP2/


Appendix A 

List of Script Injection Signs 

This appendix contain a list of script injection signs that the static manifest. j son analysis 
tries to find in the extension's source code. 

• injectScript( 

• insertScript( 

• appendScript( 

• insertBefore(script 

• insertBefore(scrpt 

• insertBefore( script 

• insertBefore( scrpt 

• appendChild(script 

• appendChild(scrpt 

• appendChild( script 

• appendChild( scrpt 

• .createElement('script') 

• .createElement("script") 

• .createElement(script) 

• .createElement(scrpt) 

• .createElement( 'script' ) 

• .createElement( "script" ) 

• .createElement( script ) 

• .createElement( scrpt ) 

40 



Appendix B 

Content of Media 

B . l Source Code 

• tester-backend/ - Python Backend of the application, 

• tester-gui/ - Laravel web application (GUI), 

• test-extension/ - Simple testing extension to reproduce the Firefox's bug, 

• docker-compose .yml - Configuration file to build all Docker containers, 

• run_clear_app. sh - Script to build and run the application without data in the 
database, 

• run_f inal_app. sh - Script to build and run the application with all data after tests, 

• mysqldump. sql - Dump of the database. Used in run_f inal_app. sh script. 

41 


