
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

BACHELOR'S THESIS

Brno, 2020 Pavla Ryšavá

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

WEB-BASED APPLICATION FOR CRYPTOGRAPHIC
PROTOCOLS VISUALIZATION
WEBOVÁ APLIKACE PRO VIZUALIZACI KRYPTOGRAFICKÝCH PROTOKOLŮ

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Pavla Ryšavá

SUPERVISOR
VEDOUCÍ PRÁCE

M.Sc. Sara Ricci, Ph.D.

BRNO 2020

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Bachelor's Thesis
Bachelor's study program Information Security

Department of Telecommunications
Student: Pavla Ryšavá ID: 203713
Year of
study: 3 Academic year: 2019/20

TITLE OF THESIS:

Web-based application for cryptographic protocols visualization

INSTRUCTION:

At first, the student will study the foundation of cryptology, focusing on monoalphabetic and polyalphabetic cipher
(considering also one-time pad scheme). Then, the student will study the different attack techniques that can be
applied to these schemes and how information on the plain text can help in the attack.
Then, the student will implement an interface (e.g., web page) where given a plain text, different kind of
aforementioned encryption schemes are provided and different attacks to the computed cipher text are
interactively applied.

RECOMMENDED LITERATURE:

[1] SINKOV, Abraham; FEIL, Todd. Elementary cryptanalysis. Maa, 2009.

[2] KATZ, Jonathan, et al. Handbook of applied cryptography. CRC press, 1996.

Date of project
specification: 3.2.2020 Deadline for submission: 8.6.2020

Supervisor: M.Sc. Sara Ricci, Ph.D.

 doc. Ing. Jan Hajný, Ph.D.
Chair of study program board

WARNING:
The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

ABSTRACT
The thesis deals with the creation of an interactive web application for substitution
ciphers and their interactive cryptanalysis. Six ciphers are implemented in the work.
Representatives of monoalphabetic ciphers are Caesar’s cipher, Atbash, and Keyword
cipher and representatives of polyalphabetic ciphers are Vigenère cipher, Kryptos and
Vernam cipher. Frequency analysis, index of coincidence and n-gram statistics as a
fitness function are used for interactive cryptanalysis. The result is achieved by using
HTML5, CSS and ReactJS scripting language which is a JavaScript library with the
ability of variable type-check.

KEYWORDS
Cryptography, substitution cipher, monoalphabetic cipher, polyalphabetic cipher, Caesar
cipher, Atbash, Keyword cipher, Vigenère cipher, Kryptos, Vernam cipher, cryptanalysis,
frequency analysis, Kasiski’s method, index of coincidence, n-gram statistics, HTMLv5,
Javascript, ReactJS, web-based application

ABSTRAKT
Práce se zabývá vytvořením interaktivní webové aplikace pro substituční šifry a jejich
interaktivní kryptoanalýzu. V práci je implementováno šest šifer a zástupci monoalfabe-
tických šifer jsou Caesarova šifra, Atbaš a substituce s klíčovým slovem. Dále zástupci
polyalfabetických šifer jsou Vigenèrova šifra, Kryptos a Vernamova šifra. Pro interak-
tivní analýzu je použita frekvenční analýza, index koincidence a n-gramová statistika
jako fitness funkce. Výsledek byl dosažen za pomoci HTML5, CSS a skriptovacího ja-
zyka ReactJS což je JavaScriptová knihovna s možností typové kontroly proměnných.

KLÍČOVÁ SLOVA
Kryptografie, substituční šifra, monoalfabetická šifra, polyalfabetická šifra, Caesarova
šifra, Atbaš, Substitutce s klíčovým slovem, Vigenèrova šifra, Kryptos, Vernamova šifra,
kryptoanalýza, frekvenční analýza, Kasiskiho metoda, index koincidence, n-gramová sta-
tistika, HTMLv5, Javascript, ReactJS, webová aplikace

RYŠAVÁ, Pavla. Web-based application for cryptographic protocols visualization. Brno,
2020, 66 p. Bachelor’s Thesis. Brno University of Technology, Fakulta elektrotechniky
a komunikačních technologií, Ústav telekomunikací. Advised by M.Sc. Sara Ricci, Ph.D.

Typeset by the thesis package, version 3.05; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT

Zadáním této bakalářské práce je implementace webové aplikace zaměřené na
tvorbu substitučních šifer a jejich analýzu v interaktivní formě.

V první kapitole 1 se práce zaměřuje na vysvětlení principu substitučních šifer,
kde je základním principem utajení zprávy za pomoci určení substitučního pravidla
jako je například definice tabulky, podle které jsou písmena nebo skupina písmen
z otevřené zprávy následně nahrazována. Tyto šifry se následně dělí podle způ-
sobu šifrování. Nejzákladnějším dělením je dělení podle toho, kolik šifra používá
substitučních abeced na monoalfabetické a polyalfabetické.

Monoalfabetické substituční šifry používají skrze celý proces šifrování pouze
jednu substituční abecedu a jsou tak jedny z nejjednodušších ale zároveň nejméně
bezpečných principů zabezpečení informací. Jsou totiž jednoduše prolomitelné už
jen při použití frekvenční analýzy šifrového textu, protože i zde budou viditelné
unikátní vzorce výskytu písmen v jednotlivých jazycích.

Mezi notoricky známé zástupce patří např. Caesarova šifra, kterou měl používat
sám Julius Caesar ve své privátní korespondenci [46]. Principem této šifry je imag-
inární posun abecedy o definovaný počet znaků dopředu nebo dozadu. Například
při použití klíče = 3 je písmeno A v celé zprávě nahrazeno písmenem D, písmeno
B je nahrazeno písmenem E atd.

Další rozebírané monoalfabetické šifry v rámci této práce jsou Atbaš používající
jako šifrovou abecedu obrácenou abecedu otevřeného textu a substituce s klíčovým
slovem což je metoda, kdy je použitá abeceda modifikována heslem, které je vloženo
na začátek celé abecedy – tím jsou některé (ne-li všechny) znaky přesunuty.

Polyalfabetické substituční šifry používají v procesu šifrování více šifrových
abeced, které jsou na základě předem definovaného pravidla obměňovány a tím
dochází k větší pravděpodobnosti, že jeden element z otevřené zprávy bude za-
šifrován více možnými způsoby a tudíž je potřeba více metod k následné analýze a
prolomení šifrového textu.

Mezi jedny ze známějších polyalfabetických šifer patří Vigenèrova a Vernamova
šifra. Princip Vigenèrovy šifry je střídání abeced z definované substituční tabulky,
která obsahuje všechny možné posuny abecedy po jedné pozici a ve které se pohybuje
za pomoci prvních písmen v řadě a sloupci (viz příloha A, kde je vyobrazen celá tab-
ulka pro mezinárodní abecedu). Která abeceda bude použita je definováno heslem,
kdy jednotlivá písmena z hesla definují substituční abecedu pro jednotlivé symboly
ze zprávy, která je šifrována. Ve zprávě se postupuje po jednotlivých písmenech,
stejně tak v hesle, a tudíž je každé písmeno ze zprávy šifrováno jinou abecedou.

Princip Vernamovy šifry je stejný jako u Vigenèrovy, akorát není použito heslo,
ale řetězec náhodně generovaných čísel, které definují posun v abecedě a když jsou

dodržena všechna pravidla (jako např. že vygenerovaný klíč se nesmí už nikdy
použít) tak je Vernamova šifra neprolomitelná.

Další polyalfabetické substituční šifry, která je v této práci dopodrobna roze-
brána je Kryptos (z řeckého slova skrytý). Kryptos není tak úplně šifra jako spíše
kryptogram vytvořený z kombinace více šifer a je vyobrazený na soše na nádvoří
hlavního štábu Central Intelligence Agency (CIA) ve Virginském Langley. Kryp-
togam se skládá ze čtyř částí a do dnešního dne jsou prolomeny pouze první tři. V
aplikaci je implementován způsob šifrování použitých u prvních dvou kryptogramů,
a to je Vigenèrova šifra s použitím tabulky, kde použitá abeceda je modifikována
klíčovým slovem.

V poslední podkapitole o substitučních šifrách je zmíněna i Enigma, což je stroj
používaný za druhé světové války Německem k šifrování tajných zpráv. Principem
Enigmy je totiž taky substituce definována technickým provedením stroje.

V následující kapitole 2jsou představeny vybrané metody pro analýzu šifrového
textu. Jde především o frekvenční analýzu, index koincidence a n-gramovou statis-
tiku jako fitness funkce pro sestavení použitého hesla. Je zde zmíněná i Kasiskiho
metoda.

Frekvenční analýza je zvláště účinná na monoalfabetické substituční šifry, jak
bylo již zmíněno, protože každý jazyk má unikátní frekvence písmen abecedy a tedy
na základě frekvenční analýzy šifrového textu je možné určit, které písmeno bylo
nahrazeno kterým.

Index koincidence je používán zvláště k odhalení o jaký typ substituční šifry
se jedná a jakým jazykem byla původní zpráva napsaná a je tudíž jakýmsi rozšířením
frekvenční analýzy. Tento index může být použit i na výpočet pravděpodobné délky
hesla.

Kasiskiho metoda je spíše takovým předchůdcem indexu koincidence. Byla
hlavně používána k odhalování délky hesla na základě výpočtu společného dělitele
počtu prvků mezi opakujícími se skupinami písmen.

Jako poslední zmíněná metoda analýzy je n-gramová statistika jako fitness
funkce, která je v aplikaci implementována pro analýzu šifrového textu, který byl
identifikován jako výstup Vigenèrovy metody šifrování. V podstatě se jedná o
frekvenční analýzu definovaného n-gramu kdy je sčítána logaritmická pravděpodob-
nost jeho výskytu.

Ve třetí kapitole 3 jsou představeny technologie a programovací jazyky použité
k implementaci webové aplikace. Jsou to: Hypertext Markup Language version
5 (HTML5), Cascading Style Sheets (CSS) a je představen i React JS což je pro-
gramovací jazyk typu TypeScript což je nadmnožina jazyku JavaScript, která umožňuje
typovou kontrolu kódu.

Následující kapitola č. 4 popisuje implementaci vytvořené webové aplikace za

použití zmíněných technologií. Aplikace byla vyvinuta v prostředí Visual Studio
Code verze 1.45.1 v operačním systému Windows 8.1 a s použitím prázdného pro-
jektu staženého z GitHub pod licencí MIT (odkaz na projekt je pod citací [48]).

Jádrem aplikace je soubor index.tsx situovaný ve složce src kde je celá aplikace
renderována a následně zobrazena do základního webového rozhraní definovaného v
HTML5 souboru s názvem intex.html který je ve složce public. Základní ovládací
prvky jako je vstupní a výstupní pole aplikace jsou definované v souboru basicLay-
out.tsx ve kterém je definováno i přepínání aplikačních módů šifrování a analýzy za
pomoci dvou plovoucích tlačítek situovaných v pravém dolním rohu aplikace.

Jednotlivé módy mají své vlastní třídy. Základní třída pro šifrový mód je soubor
CipherTab.tsx ve složce ciphers a základní třída pro analyzační mód je soubor
Analyzer.tsx ve složce analyzer.

V šifrovém módu je na stránce zobrazen kontejner se záložkami, pod kterými
se skrývají jednotlivé šifry. I ty mají své vlastní třídy pro lepší orientaci v kódu, kde
mají definované i své ovládací prvky, nastavení a rozklikávací položku “ABOUT”,
kde se nachází zjednodušený popis dané šifry. Všechny tyto prvky jsou následně zo-
brazené v záložkovém kontejneru. Jednotlivé záložky šifer jsou i barevně rozlišené na
zelené které označují monoalfabetické zástupce a modré označující polyalfabetické
zástupce. Tato práce implementuje webovou aplikaci se zaměřením na substituční
šifry a odpovídající útoky. Aplikace byla vytvořena především jako učební pomůcka
pro pochopení způsobu šifrování pomocí substitučních šifer, protože substituce je je-
den ze základních kamenů používaných v pokročilejších systémech jako je např. AES
a pro pochopení nejzákladnějších technik analýzy šifrových textů jako je frekvenční
analýza a index koincidence.

Práce byla implementována jako webová aplikace z důvodu jednoduchého přís-
tupu pro každého, kdo by se zajímal o substituční šifry – není potřeba nic instalovat
nebo stahovat. Stačí aktuální webový prohlížeč jako např. Google Chrome, Firefox
nebo třeba Opera mimo Internet Explorer na kterém nejsou nativně podporované
dva JavaScript objekty a to objekt Map a objekt Set.

DECLARATION

I declare that I have written the Bachelor’s Thesis titled “Web-based application for
cryptographic protocols visualization” independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author I furthermore declare that, with respect to the creation of this Bachelor’s
Thesis, I have not infringed any copyright or violated anyone’s personal and/or ownership
rights. In this context, I am fully aware of the consequences of breaking Regulation S 11
of the Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of
any breach of rights related to intellectual property or introduced within amendments to
relevant Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009
Coll., Section 2, Head VI, Part 4.

Brno .
author’s signature

ACKNOWLEDGEMENT

I would like to thank to my supervisor Mrs. M.Sc. Sara Ricci, Ph.D. for professional
guidance, consultation, patience and suggestions for my bachelor work. I would like to
also thank my family and friends especially to my sister, Tadeáš and Lukáš for undying
support and consultations.

Contents

Introduction 14

1 Substitution cipher 16
1.1 Monoalphabetic ciphers . 16

1.1.1 Atbash . 17
1.1.2 Caesar cipher . 18
1.1.3 Keyword cipher . 19

1.2 Polyalphabetic ciphers . 20
1.2.1 Vigenère cipher . 20
1.2.2 Vernam cipher . 22
1.2.3 Kryptos sculpture . 23
1.2.4 Enigma . 25

2 Cryptoanalysis of substitution ciphers 26
2.1 Frequency analysis . 26
2.2 Index of coincidence . 28
2.3 Kasiski’s method . 29
2.4 N-gram fitness measure . 29

3 Web interface 32
3.1 HTML5 (Hypertext Markup Language version 5) 32
3.2 CSS (Cascading Style Sheets) . 33
3.3 JavaScript and TypeScript . 34

4 Application implementation 36
4.1 Installation and start up . 37
4.2 Application development . 38
4.3 Application visualisation . 43

4.3.1 Section of the substitution ciphers 44
4.3.2 Section of the cryptoanalysis 48

Conclusion 53

List of abbreviations 62

A Tabula recta (Vigenère tableau) 63

B Application directory tree 64

C Application controls 65

List of Figures
1.1 Atbash cipher example . 17
1.2 Caesar cipher encryption example . 18
1.3 Derivation of alphabet with password 19
1.4 Encryption example by Keyword cipher 20
1.5 Alberti cipher disk . 20
1.6 Vigenère cipher running key encryption example 21
1.7 Vigenère cipher autokey encryption example 21
1.8 Different readings from tabula recta 22
1.9 Vernam cipher encryption example 22
1.10 Kryptos sculpture . 24
1.11 Kryptos encryption example . 24
1.12 Photo of Enigma machine . 25
4.1 Successful application compilation . 38
4.2 Simple application diagram . 41
4.3 Division of the application . 44
4.4 Detailed Atbash settings . 45
4.5 Detailed Caesar settings . 45
4.6 Detailed Keyword settings . 46
4.7 Detailed Vigenère settings . 46
4.8 Detailed Kryptos settings . 47
4.9 Detailed Vernam settings . 47
4.10 Detailed view of frequency table . 48
4.11 Detailed substitution menu . 49
4.12 Detailed overview table . 50
4.13 Detailed Is this Vigenère cipher? . 51
C.1 Analysis mode controls . 65
C.2 Cipher mode controls . 66

List of Tables
1.1 Numerated alphabet order . 18
1.2 Ceasar cipher alphabet shift . 19
1.3 Keyword substitution table . 19
2.1 Frequency result comparison based on source size 27
2.2 English letter frequency . 27
2.3 Language index of coincidences . 28
2.4 N-fitness text preparation . 30
A.1 Tabula recta . 63

Listings
3.1 Example of CSS document . 33
3.2 Example of HTML file with link to CSS document 34
3.3 Example of JSX syntax in ReactJS 35
4.1 Example of JSX syntax in ReactJS 39
4.2 Fragment of CSS document from the implemented application 40

Introduction
Privacy and secrecy of personal information always played an important role in the
history and nowadays, in the “Age of the Internet”, it gains even higher importance,
because for earning these information, one does not need to make such effort. All
that is needed is connection to the Internet.

That is why diverse ciphers were invented. To understand the complex ciphers
as DES, AES or RSA it is important to understand the simplest ones, because they
include functions based on the idea of these primary ciphers, e.g. usage of secret
keys, substitution etc. That is also why substitution ciphers can be considered as
the ancestors of stream ciphers (i.e. ciphers using XOR function for encryption, e.g.
A5/1 used for mobile phone communication) or block ciphers (i.e. ciphers operating
above a group of characters with fix length, e.g. above mentioned DES or AES).

First and most known way how to encrypt plaintext is with the substitution
method. In fact, the monoalphabetic ciphers came to be for this purpose. However,
this method was not very secure. Even in the antiquity people were able to decipher
the content. Because of this, inventors began to add complexity into their ciphers,
e.g. usage of secret keys to somehow shift the used alphabet. This process caused
the creation of polyalphabetic ciphers.

The thesis focuses on the implementation of several substitutions ciphers and
show how they can be attacked. This is done by the creation of a web application
where the user can interactively choose which cipher to use and how the attack
should be carried out. Goal of this bachelor work is to implement three monoal-
phabetic, and three polyalphabetic substitution ciphers and interactive attacks on
chosen ciphers using HTML5 and JavaScript. Chosen monoalphabetic ciphers are
Atbash, Caesar cipher and Keyword cipher. I case of polyalphabetic ciphers we con-
sider are Vernam cipher, Vigenère cipher and Kryptos (I. and II. part). Moreover,
the cryptoanalysis consists on the implementation of frequency analysis, index of
coincidence and n-gram fitness password construction.

This is achieved by developing an interactive web application. We consider a
web-based method since is a widely used way and can easily reach users without the
necessity of being either downloaded or installed.

For the application creation was used HTML5 (Hypertext Markup Language
version 5), CSS (Cascading Style Sheets) and JavaScript library ReactJS. ReactJS
was chosen because it is so called “TypeScript”, which is actually JavaScript which
has the ability to check variable type. For the GUI (Graphical User Interface)
implementation was used Material-UI library in combination with CSS for deeper
customization of the predefined components. HTML5 was used just to create basic
environment for the ReactJS application. Application itself was implemented so

14

that the user could play also with the settings of each cipher and that the process
of deciphering would not be automatic. User has to try different settings to uncover
the original message. For these reasons this application can be used as a teaching
tool, e.g. it can be used for demonstration of the encryption progress.

Sections 1 and 2 contain necessary theory for understanding of the problematic –
acquaintance with substitution ciphers with special focus on the chosen ciphers and
in the Chapter 3 is a short introduction to web interface and to used technologies
to create and implement the application (HTML5, CSS and ReactJS).

Section 4 contains the description of the application implementation. First how
to install and boot up the application is described. Then there is an inside view into
the application itself – how does the Graphical User Interface looks like, what are
the functions behind and how is the whole interface controlled.

This thesis also includes three Appendixes:
• Appendix A that contains full Vigenère substitution table A (alternatively so

called tabula recta),
• Appendix B contains diagram of the application directory tree for better vi-

sualisation of the code structure, e.g. how the application is coordinated in
within the directories, what each file does etc., and

• Appendix C that contains description of the application controls.

15

1 Substitution cipher
Substitution ciphers belong to the symmetric cryptography. Marking “symmetric”
is because ciphers belonging to this category use same secret key during encryption
and decryption. In the encryption process is somehow used of the key to hide
original message (so called plaintext) and then in order to achieve this plaintext from
the created ciphertext (encrypted message), is then the process of the encryption
inverted.

The principle of substitution ciphers is to encrypt plaintext to ciphertext by
replacing (substituting) a certain element (e.g. letter or a group of letters) with
another element by defined rules.

Substitution ciphers have two ways how to differ them. First, they can be di-
vided by the amount of elements that are substituted during the encryption process
on simple, homophonic and polygraphic substitution ciphers. In polygraphic sub-
stitution cipher, the algorithm operates above a group of elements (many-to-many)
while in simple substitution algorithm operates above only one symbol (one-to-one).
To simple substitution ciphers belongs e.g. Morse alphabet or pigpen cipher and an
example of polygraphic substitution cipher is Playfair cipher that was the first en-
crypting two letters together. Homophonic cipher uses one-to-many mapping based
on the frequency of used elements. That is one symbol (e.g. number) represents a
group of symbols (e.g. letters Q, W and X) because they appear scarcely in the
message and during the decryption it is then not hard to appoint the correct letter.

Another way how to differ substitution ciphers can be by whether the elements
are replaced by the same element in the whole process of encryption or not. In this
case, they are split in monoalphabetic and polyalphabetic.

A special substitution ciphers are the nomenclators and codes, which is some
sort of an “extension” of the nomenclators. Both use large homophonic substitution
tables usually containing graphical representatives mapped to letter, words or even
entire phrases. Example of a nomenclator can be for example The Rossignols’ Great
Cipher used during the reign of Louise XIV [29].

1.1 Monoalphabetic ciphers
Monoalphabetic ciphers use only one cipher alphabet that does not change trough
out the whole process and thus are the simplest substitution ciphers but also very
insufficient in secrecy. Even if one randomly assigns all letters from international
alphabet, the number of all combinations is 4.033×1026 thus created cryptogram can
be easily attacked by frequency analysis and can be broken without the knowledge
of the used secret key.

16

One of the first description of monoalphabetic ciphers appeared in Kámasútra
(book from 4th century B.C.) but the concept is probably even older. The reason,
why is substitution cipher mentioned in the “Book of Love” is because author rec-
ommends especially to woman to learn to encrypt their messages so they could write
love letters to their lovers [14].

Mapping of the plaintext element to ciphertext element can be defined by algo-
rithms or by substitution tables where is defined by what will be element substituted
by. For example defined substitution table replaces letter A by letter J and letter
N by letter K. Now if one would like to encrypt name “ANNA” by this table the
result would be “JKKJ”.

1.1.1 Atbash

Atbash (also Temurah or Kabbalah) is a simple monoalphabetic substitution cipher
originally used for Hebrew alphabet. The transliterated name “Atbaš” is formed
from first, last, second and penultimate letter from the Hebrew alphabet – Aleph-
Taw-Bet-Shin.

The principle of this cipher is that each letter from plaintext alphabet is substi-
tuted by its alphabet counterpart. For instance in international alphabet the letter
A is substituted by letter Z, letter B by letter Y, etc. Therefore, the encryption
process can be described as in the following formula 1.1,

𝑐 = 𝑁 − 𝑚 + 1 (1.1)

where 𝑐 is the ciphertext letter position in alphabet, 𝑚 is the plaintext letter position
in alphabet and 𝑁 is the total amount of letters in used alphabet (in international
alphabet it is equal to 26) [55].

Fig. 1.1: Example of plaintext encryption by Atbash cipher.

This cipher was probably invented by small Jewish and is also used in some pas-
sages in Bible, for instance in Jeremiah 51:11 where the word “Leb-kamai” translated
in English as “The Midst of Those who rise up against Me” is actually encrypted in
Atbash. When the word “Leb-kamai” is deciphered, one gets the word “Chaldea”
that is a country that existed that time and was part of Babylonia [27].

1Jeremiah 51:1: “This is what the Lord says: ‘See, I will stir up the spirit of a destroyer against
Babylon and the people of Leb-Kamai.’” (Bible, New International Version).

17

Another interesting myth with the Atbash cipher, was the case of the worship
of so called “Baphomet” by the Templar knights (also known as “Sabbatic Goat”).
Though, when Atbash is used the world changes to something, that can be repre-
sented as Greek word Sophia (wisdom in English) [32].

1.1.2 Caesar cipher

Caesar cipher is one of the most known representative of the monoalphabetic ciphers.
As the name hints, this cipher is named after Julius Caesar, who used it to encrypt
his private correspondence (according to biography “De vita Caesarum” written by
Gaius Suetonius Tranquillus [46]).

The principle of this cipher is very simple. It uses a secret key – number that shift
the set of used elements (in this case alphabet) in some direction (forwards or back-
wards) as shown in the Figure 1.2. Shifted alphabet with 𝑘 = 3 with corresponding
plaintext letters can be seen in Table 1.2.

Fig. 1.2: Example of plaintext encryption by Caesar cipher.

Since each letter of the alphabet can be represented by a number, the whole
process of encryption could be described as shown in 1.2

𝐸(𝑀) = (𝑚 + 𝑘) mod 𝑛 = 𝐶 (1.2)

where M represents the message in plaintext, m is the number representing element
from the message, k the chosen secret, n the amount of elements in the used alphabet
(e.g. for regularly used alphabet - A to Z - it would be 26) and C is then the received
ciphertext, seen in Table 1.1.

Tab. 1.1: Corresponding numbers to letters in English alphabet.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The process of decryption could be mathematically described as shown in 1.3

𝐷(𝐶) = (𝑐 + 𝑘) mod 𝑛 = 𝑀 ′ (1.3)

where C represents the ciphertext, c is the number representing ciphertext element,
and M ′ is then the decrypted message [54].

18

Tab. 1.2: Example of Ceasar alphabet shift with k = 3.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

1.1.3 Keyword cipher

This section presents another substitution cipher which is a bit more sophisticated
with respect to Caesar one. The Keyword cipher uses two different methodologies:
shifting the letter as Caesar cipher and the usage of a secret keyword (password) as
a permutation. In particular, the chosen password is inserted at the beginning of
the alphabet. Then the alphabet is browsed from the start and all letters that had
already occurred are erased i.e. all the doubles are erased.

The creation process of the alphabet (so called transposition) is depicted in the
Figure 1.3.

Fig. 1.3: Transposition of the alphabet with the password “SECRET”.

The encryption is then equal to the Caesar cipher process. Letters are then
during the process of encryption replaced by the corresponding letters from the
derived alphabet. Table 1.3 shows the created substitution table with the method
explained above.

Tab. 1.3: Substitution table for the Keyword cipher with password “SECRET”.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
S E C R T A B D F G H I J K L M N O P Q U V W X Y Z

Figure 1.4 shows an example of the Keyword cipher encryption process with the
chosen password “SECRET”. The decryption process is just inverted encryption
algorithm using the same derived alphabet (shifted with the same password).

19

Fig. 1.4: Keyword cipher with password “SECRET” encryption example.

1.2 Polyalphabetic ciphers

Fig. 1.5: Alberti cipher disk [6].

Polyalphabetic ciphers uses more than one al-
phabet through the encryption process. These
alphabets are usually derived from the used
alphabet more than once. Actually if it is
looked from a different angle, polyalphabetic
ciphers contains multiple different monoalpha-
betic substitutions. These ciphers were in-
vented as a reaction on low security level of the
simple substitution ciphers. In fact, monoal-
phabetic substitution ciphers can be decrypted
with just a paper, pen and one hour of spare
time.

The invention of first polyalphabetic cipher is attributed to Italian architect Leon
Battista Alberti. The Alberti cipher was described in his treatise De componendis
cifris in 1466. This cipher uses different mixed alphabets, variable periods of usage
of given mixed alphabet and it also includes four positions, that can be used as
nulls within text. The complexity of the algorithm also led to invention of the so
called Alberti cipher disk depicted in Figure 1.5, which are two attached concentric
disks, that can rotate one with respect to the other and thus, the encryption and
decryption process of the Alberti cipher was simplified [10].

1.2.1 Vigenère cipher

Vigenère cipher was first introduced by Giovan Battista Bellaso in his book La cifra
del. Sig. Giovan Battista Bellaso published in 1553. This cipher was then missat-
tributed to French cryptographer Blaise de Vigenère, that had in 1586 presented
similar cipher know as autokey or autoclave cipher [52]. Since then, is Bellaso’s
cipher known as Vigenère’s cipher.

Vigenère cipher uses passwords for determination of the alphabet derivation
through the process and thus uses multiple monoalphabetic ciphers [34]. There
are two modes of passwords: running key and autokey.

20

Fig. 1.6: Example of plaintext encryption using running key Vigenère cipher.

In the running key variant (or the “basic” variant), alphabets are derivated
through position of a letter in plaintext alphabet from given password. It is actually
Caesar cipher, where each element of the plaintext, that is being encrypted, has
different key based on the password. When one gets at the end of the password and
the plaintext is not yet fully encrypted, the password is “restarted” which results in
password repetition. Encryption example is depicted in Figure 1.6.

In the autokey variant (also known as autoclave cipher) is the chosen password
used only once and the rest of the cipher is encrypted using the plaintext itself [7].
Example is shown in Figure 1.7.

Fig. 1.7: Example of plaintext encryption using autokey Vigenère cipher.

Table that holds all derivated alphabets and it is called “tabula recta”. This
table is shown in Appendix A. This term was first used, and thus invented, in book
Polygraphiae2 by German monk Johannes Trithemius who used it within a cipher of
his own – Trithemius cipher. The only difference between this cipher and Vigenère
is, that Trithemius cipher uses the alphabets in the order as they are written in
(thus passowrd is “ABCD...ZABC...”).

There are also different ways of reading from the tabula recta resulting in differ-
ently named ciphers. One is Beaufort cipher which was invented by Irish admiral
sir Francis Beaufort and the other is Variant Beaufort cipher. For better ori-
entation between readings, all methods assigned to each cipher (Vigenère, Beaufort
and Variant Beaufort) are shown in Figure 1.8 [].

2Scan of this book is freely available online on web page of Library of congress. [50]

21

Fig. 1.8: Differences between readings from tabula recta resulting in different ci-
phers.

1.2.2 Vernam cipher

Vernam cipher (also known as the one-time pad) is the safest substitution cipher
ever invented. The encryption algorithm of this cipher is similar to Vigenère cipher
(see Chapter 1.2.1 for more details) with one major difference: the key used during
encryption is randomly generated in the length of the message or longer. Example
of such encryption is shown in Figure 1.9.

Fig. 1.9: Example of plaintext encryption by Vernam cipher.

The proof of the ciphers secrecy was mathematically proven by mathematician
Claude Elwood Shannon in his paper “A Mathematical Theory of Communication”
(commonly known as information theory) in 1948 where the key to all is entropy.
The theory claims that the ciphertext gives no additional information about the
plaintext if certain rules are applied [38].

In order for Vernam cipher to be truly safe one needs to abide four rules during
encryption:

• password used for encryption is randomly generated,
• length of the password is of the same length as the plaintext or longer,
• password is used for the encryption only once and
• there should be maximally two copies of the key and both should be destroyed

immediately after use [36].
Of course there are multiple problems. At first most of the commonly accessible
random generators are pseudorandom, which mimic random generators using math-

22

ematical formulas. Unluckily, these pseudo-generated numbers can be predetermined
[37]. In order to ensure true secrecy a true random generator must be used but these
generators first use hardware device in order to generate a random value and second
they are significantly slower than pseudorandom generators [56].

At second the key needs to be safely distributed. In fact, if an attacker gets the
key then it is equal to sending the message to receiver in plaintext. And at third,
there is also problem with the message authenticity. However the manipulation
of the ciphertext by attacker is possible only if attacker knows the content of the
original message [39].

The cipher was first described by American cryptographer Frank Miller in 1882.
35 years later it was reinvented by Gilbert Standford Vernam who had patented his
binary version of the cipher in 1919 [4]. In particular, the binary variant uses the
Boolean "exclusive or" function (short XOR). The encryption process is then the
plaintext converted to binary form XORed to the bit-stream key again, randomly
generated. This is also why this cipher is also a representative of the stream ciphers
(ciphers where input is combined, usually by XOR function, with random bit-stream
key).

1.2.3 Kryptos sculpture

Kryptos sculpture comes from the workshop of Jim Sanborn – a Washington, D.C.
born artist. This two-part “S” shaped sculpture was installed in 1990 and holds four
cryptograms (photo can be seen in Figure 1.10). To this day are known only three
messages (deciphered in 1999) written on the plastic standing at the entrance to the
Central Intelligence Agency (short CIA) in Langley, Virginia [28].

Sanborn accepted the advise of Edward M. Scheidt, a retiring Chairman of CIA
Cryptographic Center and during four months he created four ciphertexts by com-
bining different techniques [2] that are know just by Jim Sanborn and William
Webster3 [9].

The cryptogram cut through the copper plate in the first half of the sculpture
is divided into four parts by question marks. The second part of the sculpture is a
modified Vigenère substitution table (so called tabula recta, see Appendix A) using
international alphabet transposed by password “KRYPTOS” (see Chapter 1.1.3 for
reminder of alphabet transposition).

The first and the second cryptograms of the Kryptos are encrypted with the
Vigenère cipher using the modified Vigenère substitution table created with the
transposed alphabet by password “KRYPTOS” (see Chapter 1.2.1 for reminder of
the encryption process). The passwords used for Vigenère cipher itself are in the

3That day head of the CIA and to whom had Jim Sanborn provided a key to deciphering.

23

Fig. 1.10: Kryptos sculpture by Jim Sanborn at the CIA Headquarters Langley,
Virginia [40].

first part “PALIMPSEST” and in the second part “ABSCISSA”. An example of
encryption can be seen in Figure 1.11.

The third ciphertext is more complicated. It again uses word “KRYPTOS”
as the key, but the encryption process uses first Route Transposition followed by
Key Columnar Transposition [45]. Since the application that is the result of this
Bachelor work implements just the method used within first and second part of the
cryptogram, this part will not be described in detail.

Fig. 1.11: Example of Kryptos 1st part encryption with password “PALIMPSEST”.

And what do the deciphered messages contain? The first message is on a philo-
sophical base composed by Jim Sanborn himself. It reads: “Between subtle shading
and the absence of light lies the nuance of iqlusion.”. The misspelling of illusion at
the end was intentional according to author to make the deciphering more difficult.
The second bears hints at something buried, holds the location of CIA by latitude
and longitude and also contains reference on William Webster, who is supposed to
know the exact location of the buried mystery on which the message refers to. The
third part contains a section from diary of archaeologist Howard Carter, that de-
scribes the opening of King Tutankhamen’s tomb on 26th of November 1922 again
with few misspellings.

24

Since the last part is still unknown Jim Sanborn released three clues to this day:
“BERLIN” (2010), “CLOCK” (2014) and “NORTHEAST” (2020) [41].

The “celebrity” within the Kryptos fandom is a game developer and cryptologist
Elonka Dunin, that maintains a web-page of background information on the Kryp-
tos and an online community of Kryptos fans. Her web-page can be found under
Reference [8]. Another personality in the Kryptos community is for instance Craig
Bauer who wrote book Unsolved! where the first three parts of Kryptos ciphertext
are described.

1.2.4 Enigma

Fig. 1.12: Enigma Ma-
chine at the Imperial
War Museum, London
[44].

Enigma (or precisely Enigma machine, pictured in Figure
1.12) was used during the World War II by Germans to
encrypt their internal communication (e.g. information
about the movement of the military force or diplomatic
communication).

The first machines were independently developed in
the period from 1917 to 1921 in several countries, but
these “Enigmas” were meant for commerce usage.

The construction of Enigma is very complex. The
machine consists of five rotors, panel of bulbs, keyboard
and since 1930 also a plugboard. This upgrade increased
the amount of possible key combinations (275 of combi-
nations).

Introductory settings of the machine played an im-
portant role. In the period 1930 to 1938 German army
used following settings to determine the daily key:

• order of three middle rotors inside of the machine,
• plugboard connections,
• initial positions of rotors and
• position of rings that sets reflecting positions of first

and last rotors [18].

25

2 Cryptoanalysis of substitution ciphers
Substitution ciphers are nowadays easy to decrypt with the exception of Vernam
cipher as long as all the rules described in Chapter 1.2.2 are followed otherwise,
there is a slight chance of breaking the ciphertext. These days there are multiple
ways how to break the encrypted messages – from brute-force to complex mathemat-
ical analysis for gaining information. But basically all methods used for ciphertext
analysis are the most effective upon a larger amount of data – the bigger the exam-
ined sample is, the more information about the ciphertext is gained and thus the
decryption process is easier.

In this chapter will be described multiple ways how to analyse ciphertext to
achieve as much as possible information to break the cryptogram especially those,
that have been used or studied for the application implementation.

2.1 Frequency analysis
Frequency analysis is a very simple analysis method that compares occurrences of all
elements in the ciphertext to occurrences of elements in a large sample of plaintext
data sourced for instance from books or speeches. This method is based on unique
patterns of occurrences of letters in given language. Examined elements during the
frequency analysis can be single or grouped letters for example two letters (so called
bigrams), three letters (so called trigrams) – in general so called n-grams. The
bigger is the n-gram the easier is the analysis, but also: the higher n the bigger is
the database of permutations of stated n-gram.

If one has the knowledge of in which language is the original plaintext writ-
ten in and the cryptogram is identified as monoalphabetic substitution cipher (on
polyalphabetic and homophonic ciphers must be used different techniques), then
next steps can reveal, what text is hidden in the ciphertext including what key is
used during encryption in case of for instance Ceasar cipher or transposed alphabet
by password cipher.

Example of reference frequency database can be seen in Table 2.2. The size of the
sample plays an important role. For instance, William F. Friedman had published
in his Military Cryptoanalysis an comparison of 75.000, 100.000 and 136.257 letters
long source frequency analysis. The differences can be seen in Table 2.1.

Once one have the frequencies of each element in ciphertext can one determine
what is used to represent each letter from the original message. Already this step
can, for instance, provide the key for Caesar cipher. However, for more sophisticated
ciphers the analysis can go on and, e.g. one can then take the results from the
analysis of the most used words and decide weather in the analysed sample are not

26

Tab. 2.1: Frequency analysis result comparison based on the size of the text sample
[16].

Source size Result
1. 75.000 letters E T R N I O A S D L
2. 100.000 letters E T R I N O A S D L
3. 136.257 letters E T R N A O I S L D

similar structures of words. For instance, the most used word in English is “the”, in
the analyzed sample there is ciphered word “AOL”, and from the previous analysis
was found, that letter L represents letter E – from this knowledge can be deduced,
that letter A represents T and letter O represents H).

Of course result of the frequency analysis can be distorted when applied on a
short text. For instance in the given text “HELLO WORLD!” is most common
letter L and if it would be substituted by any letter it would be mapped to letter
E because of its highest occurrence in the ciphertext (while letter E is the most
common letter in English – see Table 2.2).

Tab. 2.2: English letter frequency based on a sample of 40.000 words [12].

Letter Frequency (%) Letter Frequency(%)
E 12.02 M 2.61
T 9.10 F 2.30
A 8.12 Y 2.11
O 7.68 W 2.09
I 7.31 G 2.03
N 6.95 P 1.82
S 6.28 B 1.49
R 6.02 V 1.11
H 5.92 K 0.69
D 4.32 X 0.17
L 3.98 Q 0.11
U 2.88 J 0.10
C 2.71 Z 0.07

In extreme cases the frequency pattern can be deliberately adjusted to make the
analysis harder or even impossible. An excellent example in this case can be book
La Disparition by Georges Perec written in 1969 in which the occurrence of letter
E is omitted except for the name of the author. In 1995 was the book translated to
English as A Void by Gilbert Adair under the same constraints [15].

27

2.2 Index of coincidence
The index of coincidence is another method used to mine information from cipher-
text. This method was first published in 1922 in a technical paper The Index of
Coincidence and its applications in cryptoanalysis by William F. Friedman that was
written as a further study of a concept of coincidences. The index of coincidence
detects how likely is to draw two same characters from text if randomly chosen. It
can be summarized by the following formula 2.1:

𝐼𝐶 =
∑︀𝑐

𝑛=1 𝑛𝑖 · (𝑛𝑖 − 1)
𝑁 · (𝑁 − 1) · 𝜅𝑟

(2.1)

where 𝑁 is the total amount of letters in ciphertext, 𝑐 the number of letters in the
alphabet (in international alphabet it is 26), 𝑛𝑖 the number of appearance of each
letter (where 𝑖 identifies the letters position in the alphabet) and 𝜅𝑟 is the kappa-
random (the normalizing denominator of the index) and is counted as 𝜅𝑟 = 1

𝑐
.

Sometimes are the results reported without the normalizing denomination. Then
the result is rather referred to as kappa-plaintext (𝜅𝑝) [33].

The 𝐼𝐶 can be used to gain information about language and type of sub-
stitution cipher (whether the cipher is monoalphabetic or polyalphabetic). Both
information are gained based on the assimilation to pre-calculated values. For in-
stance in case of the type detection will the 𝐼𝐶 for monoalphabetic substitution
ciphers oscillate around 𝜅𝑝 = 0.07 and higher and for polyalphabetic will be the
value declining to 𝜅𝑟. If the index reveals that the ciphertext was created by simple
substitution it can also reveal in what language was the prime plaintext written in
[13]. Some values are presented in Table 2.3.

Tab. 2.3: 𝜅𝑝 results for various languages [3].

Language IC Language IC
English 0.0667 Swedish 0.0681
French 0.0694 Polish 0.0607

German 0.0734 Danish 0.0672
Spanish 0.0729 Icelandic 0.0669

Portuguese 0.0824 Finnish 0.0699
Turkish 0.0701 Czech 0.0510

When the ciphertext is qualified as a polyalphabetic cipher encryption result,
then the index is used for password length computation. In general in the polyal-
phabetic substitution cipher each 𝑛th, 2𝑛th, 3𝑛th, etc. letter fall in the same cipher
alphabet [17]. When is counted the average index of coincidence for each probable

28

password length (i.e. IC for each position in password through out the whole ci-
phertext divided by the password length) then can be determined which password
length was probably used. The one that has the closest result to the “general” IC
(the one counted above the whole ciphertext) would be the most probable. Once
again, the precision of the result depends on how large the ciphertext is [5].

2.3 Kasiski’s method
Kasiski’s method was a predecessor of the index of coincidence (see previous Chapter
2.2 for reminder). It was first described by Charles Babbage in 1846 in an unpub-
lished paper, but in 1863 German military officer Friedrich W. Kasiski published a
book Die Geheimschriften und die Dechiffrierkunst (in English Cryptography and
the Art of Decryption) thus the method was named after him [42].

The principle of the Kasiski’s analysis is search of repeated keywords based on
the fact that identical plaintext encrypted by identical key results in the same cryp-
togram. It is also expected that the number of characters in between the repeating
groups is a multiple of the key length thus it would be possible to compute Greatest
Common Divisor (short GCD) of all these “spaces” to find the probable length of
the used key. The most useful repetitions are groups consistent of more than four
letters. Of course, in the ciphertext can also appear coincidental repetitions that
makes the analysis harder, however the analysis of all encountered “spaces” is still
possible because probability, that in the text will occur more than one group of
four and more letters, that does not come from identical plaintext and password is
almost impossible.

Once the letters in between each identical group are counted divisors for each
gained values are found. Divisors 1 and 2 are usually omitted from considerations,
because password of length 1 is equal to Caesar cipher, so it is usually already
discovered by performing the frequency analysis (see Chapter 2.1 for reminder) and
passwords of length 2 are insufficient thus they are not commonly used. Then “gaps”
whose divisors differ too much are again omitted from consideration and from the
rest is counted the GCD for the most probable password length1 [33].

2.4 N-gram fitness measure
For recapitulation n-gram is a continuous group of 𝑛 elements from one defined
group. In cryptoanalysis the n-gram frequency databases can be used for a fitness

1Sometimes happen, that the GCD is bigger than the real password length but this only results
in multiplication of the password in the final length of GCD.

29

function when searching for a password used in the polyalphabetic substitution
ciphers. The whole process is build on a logarithmic probability and on the use of
the n-gram statistical database.

The first step in the process of recreation of the password is to find the probable
password length. This can be obtained for instance by the Kasiski’s method (see
previous Chapter 2.3 for reminder) or one can try to count the average index of
coincidence for each password length (see Chapter 2.2 for reminder).

Once the password length is known then the ciphertext is divided into groups
in the length of the counted password length. Each group is then divided into the
n-grams so that the following n-gram consists of the last 𝑛 − 1 elements from the
previous and the last element would contain the first element from the group. For
example, if we consider the message “HELLO WORLD” and a password of length
5, then the message is divided in bigrams (n-gram where 𝑛 = 2), i.e. [HE, EL, LL,
LO, OH] and [WO, OR, RL, LD, DW]. For a better visualisation of the process
see Table 2.4.

Tab. 2.4: Bigram division of “HELLO WORLD” if the probable password length
would be equal to 5.

Index 0. 1. 1. 2. 2. 3. 3. 4. 4. 0.
0. H E E L L L L O O H
1. W O O R R L L D D W

The penultimate step takes the most time. This step consists of trying all the
combinations of the n-gram-length password on all the n-grams from one column
and count for each the fitness. The fitness is counted as a sum of decimal logarithmic
probabilities of each n-gram in the column. For instance, column 0. 1. from the
Table 2.4 consists of bigrams “HE” and “WO”. The mathematical formula would
be:

𝑙𝑜𝑔(𝑝(𝐻𝐸𝑊𝑂)) = 𝑙𝑜𝑔(𝑝(𝐻𝐸)) + 𝑙𝑜𝑔(𝑝(𝑊𝑂)) (2.2)

where probabilities of each bigram are counted as

𝑝(𝐻𝐸) = 𝑛𝐻𝐸

𝑁
𝑝(𝑊𝑂) = 𝑛𝑊 𝑂

𝑁
(2.3)

where 𝑛𝐻𝐸 and 𝑛𝑊 𝑂 are the number of occurrences of each bigram in ciphertext
and 𝑁 is the total number of all the bigrams from the database.

The final step is to take the tried password fragments with the smallest fitness
result and put them together. Note that if the following password fragment has
smaller fitness than its elements are preferred to than the one that preceded it. For

30

example if indexes 0. 1. have counted fitness higher than in the indexes 1. 2., the
element that would be used for the index 1 would be from the password fragment
from indexes 1. 2.

In practise at least two n-gram fitness functions are usually combined – one for
password composition and one for the fitness of the decrypted text especially if a
range of password lengths is given. One fitness is used to put the password together,
then this password is applied on the ciphertext and with the other fitness function
is counted the final result that helps to determine which password in case of the
password length range is the best [19].

31

3 Web interface
Who would not know these days what is a Web interface? Modern people use it
every day, but better question is, if they know something about the used technologies
that allows them to access large number of different Web sites.

Everybody knows that to access the Internet one must have a Web browser. In
order to access requested Web site browsers one can use WWW information system
(World Wide Web) that identifies web resources by their URL (Uniform Resource
Location). According to the statistic from July 2019 the most three popular browsers
nowadays are Google Chrome, Apple Safari and Internet Explorer and Edge [30].

The basis of Web pages are HTML or XHTML documents, that can be viewed
on the monitors of PCs or Smartphones trough Web browsers and WWW. These
documents can also include scripts, that can be implemented in many programming
languages such as PHP, Javascript or Actionscript. In order to run these variable
scripts, one must install and allow in Web browser the necessary extension packages.
For instance, Javascript can not run without JVM (Java Virtual Machine) [43].

Web pages can be divided based on usage of scripts into static and dynamic
pages. By static web page is meant that its content does not change, on the contrary
in dynamic web page, multiple features allow to generate content automatically
while running on URL. Nowadays dynamic pages are very popular, because the
interactivity gives the page better appeal then the static one [49]. Of course, too
much is always bad. If there are too many dynamic elements on the page, it can
slow down the loading of the page and also the browsing itself.

This Section focus on HTML5, CSS and Javascript, because these languages
were chosen for implementation of the assigned application.

3.1 HTML5 (Hypertext Markup Language version 5)
Hypertext Markup Language version 5 is an open format markup language developed
by WHATWG (Web Hypertext Application Technology Working Group). HTML5
was introduced to the public in 2008 and in 2014 was this standard updated by
the “W3C Recommendation” group [20]. Before HTML5 was introduced there were
also some attempts to cross XML and HTML syntaxes, because HTML4 was not
upgraded since 2000. This experiment is referred as “XHTML” [24].

As it was mentioned before, HTML5 is a markup language. This means that
it consists of a tree of elements and text. Each component is marked with a tags.
There are two types of tags within HTML: start tag and end tag. Example of such
pair can look like this: <html> ... </html>. Some tags can also be during the
writing of the code omitted and implied by different tags, e.g. tag <html></html>

32

(for closer specification of optional tags see source [20] Section “12.1.2.4 Optional
tags”).

HTML5 had brought several innovations compare to HTML4. To these innova-
tions belongs e.g.:

• new elements (e.g. section, header, figure or embed),
• new attributes for several elements (e.g. hreflang, type and ref for area ele-

ment),
• content model (how elements may be nested) and
• new APIs (e.g. API for enabling the offline Web application within application

cache).
Of course this new standard obsoleted several elements and attributes, e.g. elements
frame or attribute border on element object. For complete list of changes among
HTML5 compare to HTML4 see source [21].

3.2 CSS (Cascading Style Sheets)
Cascading Style Sheets is a language that define style of the Web documents writ-
ten in e.g. HTML. CSS documents can define uniform color, width, height, align,
margins, padding and many other style related information for each element imple-
mented in the whole Web page. Example of how can such CSS document look like
is shown in Listing 3.1.

There are three ways how to use CSS within the HTML document:
1. define style of element with attribute style (e.g. <p style="color: #FF0000">),
2. inside the <head> tag inside <style> tags, or
3. with extra CSS file (with *.css suffix).

Listing 3.1: Example of CSS document
1 /* Example of used CSS file */
2
3 p { // customization of a paragraph
4 color: #FF0000 , // red colour
5 text -align: center ;
6 }

The CSS file is than implemented within the HTML document with tag <link>
with attributes rel that specify the relationship with HTML file (in this case it would
be “stylesheet”). Moreover, href defines the CSS document (this attribute can also

33

contain the full path to the CSS file). An example of such implementation is shown
in Listing 3.2.

Listing 3.2: Example of HTML file with link to CSS document
1 <! DOCTYPE html >
2
3 <!-- Example of link tag in HTML file -->
4
5 <html >
6 <head >
7 <link rel=" stylesheet " href="style.css">
8 </head >
9 <body >

10 ...
11 </body >
12 </html >

What is important to know is that there is a rule that says that the last used
argument within CSS applies, because CSS styles can layer definitions [23].

3.3 JavaScript and TypeScript
JavaScript is a cross-platform object-oriented programming language, that allows
to create scripts within a Web page, and thus creating its dynamic content e.g.
menu animation, slide show etc. This language can also be used to create mobile
applications, or can be used in non-browser applications such as Adobe Acrobat,
but since this thesis is focused on the implementation of a Web-based application,
further content will be concentrated on dynamic Web page development [25].

There are two ways how to implement Javascript scripts in created Web docu-
ment. Either is the script embed inside the HTML (or XHTML) document inside
<script> tags, or it is included in a *.js file in the Web source directory. The script
needs to be downloaded form server into the clients computer in order to be run.
Moreover, client has to have JVM (Java Virtual Machine) environment installed
within the Web browser [53].

TypeScript is an open-source superset of Javascript created and maintained
by Microsoft. It allows for example code refactoring, variable type check and many
other useful functions. This superset allows to create not just client-side application,
but also server-side application, which means, that the script does not have to be

34

downloaded into the clients computer in order to run. TypeScript files have *.ts
appendix and are used the same as Javascript files [51].

Javascript contains many frameworks and libraries, that developer can work with
such as jQuery, AngularJS, Node.js or ReactJS. Because ReactJS has been selected
to implement the specified application, this library will now be introduced.

ReactJS

As it was mentioned before, ReactJS is a JavaScript library dedicated to build
user interfaces maintained by Facebook. Main advantage of this language is, that
it can build “single page” applications i.e. there is no necessity to reload the page
for viewing another content. Another advantage is that ReactJS allows to reuse
already created user interface components, renders just code, that is needed. It is
also faster, because it uses virtual DOM (Document Object Model) elements which
tries to most effectively update the browser’s DOM [35].

In ReactJS developer can also use JSX syntax. This syntax is similar to the
HTML’s (it uses tags), but it is all “hidden” inside a variable or component [22].
An example of JSX syntax use is shown in the following Listing 3.3:

Listing 3.3: Example of JSX syntax in ReactJS
1 var myVariable = <h1 > Example of JSX syntax . </h1 >;

In the implemented application ReactJS package Material-UI is used, that en-
ables easy definition of GUI elements. Material-UI is an open-source crowd-funded
project licensed under MIT license. Installation of this package is simple. User just
assigns npm install @material-ui/core into the command line. The default CSS
design is then implemented with <link> tag. This project also contains many “free
to use” templates just as prepared Web page templates available in their shop on the
official page of Material-UI. Link to the GitHub project site with all documentation
is found under source [31].

35

4 Application implementation
In this chapter the complete implementation of the bachelor work is described.

At first how to install the created application with essential packages for the
application to run and display correctly is explained. In particular, this chapter
briefly describes the system requirements and browser support. Then, we pass to
the description of the implemented scripts that allows to start up the application on
the local server. At last there is an inside view into the application itself, i.e. its GUI
(Graphical User Interface) and implemented functions (chosen ciphers described in
the previous chapters and methods allowing the ciphertext analysis) with closer
description of their customizable settings.

For the implementation of the application was used an empty template from
GitHub that is licensed under the terms of MIT licence [48]. The whole application
was developed on Microsoft Windows 8.1 operating system in text editor Visual
Studio Code (version 1.45.1) with installed following extensions:

• Code Runner by Jun Han (version 0.10.0),
• Debugger for Chrome by Microsoft (version 4.12.8),
• ESLint by Dirk Baeumer (version 2.1.5),
• TSLint by Microsoft (version 1.2.3) and
• Typescript React code snippets by infeng (version 1.3.1).

All named extensions are available for free in the Visual Studio Marketplace. Ex-
tensions are also downloadable right in the Visual Studio Code menu under View >
Extensions module.

As programming languages we chose HTML5 and JavaScript library ReactJS.
The main reason of this choice is that ReactJS is more user-friendly in building user
interfaces, and unlike JavaScript it also checks the variable type by using Typescript
(for more details see Chapter 3.3).

The main file of the application is index.tsx and the general layout of the page
is defined in basicLayout.tsx. Both files are located in directory src. Further each
ciphers and analyzer methods has its own basic *.tsx files where all components are
implemented. They are located in directories analyzer and ciphers. These files are
then displayed in the corresponding layout based on the users choice. For a better
visualisation of the structure of the code see Appendix B and for inside applica-
tion controls see Appendix C where are described print-screens of the implemented
application.

36

4.1 Installation and start up
As mentioned in Chapter 3.3, ReactJS uses npm scripts for installation and creation
of empty project, and manipulation with created applications that are defined in
the package.json. For their implementation is used Node.js environment – asyn-
chronous JavaScript runtime. In the implemented application are all these npm
scripts referenced in the react-app.d.ts file in the general application directory and
are imported during the application installation.

Installation

All what is needed to do is to get into the directory with the source, open command
line in this directory and run npm install command. This command installs all
needed packages for the application and the environment ReactJS. File where the
created application will be stored can be anywhere on users computer.

JavaScript (and thus TypeScript) applications development is possible on any
device because JavaScript Integrated Development Environment (short IDE) can
run on any operating system also including the phone operation systems. Even
hardware requirements for applications development are not that crucial. According
to Dani Akash S, author of the JavaScript by example guide is recommended Linux or
Windows OS with minimum of 4 GB RAM or any Mac machine but only to achieve
better development experience [1]. The only problem that can be encountered is
with accessing and running the JavaScript applications in some older versions of
web browsers.

The implemented application uses the latest ReactJS (16.13.1) and the latest
Material-UI (4.10.1) and ReactJS supports it from version 16.8.0. The latest
ReactJS version depends on JavaScript Keyed collection Map and Set (definition of
both collections is described in standard ECMAScript1 ECMA-262) that are widely
supported by all latest builds of all major web browsers such as Google Chrome,
Firefox, Opera or Safari with the exception of Internet Explorer version 11, where
multiple essential functions described in the mentioned collections does not have
native support [26]. In case of Material-UI it supports all the stable builds of the
major browsers including Internet Explorer 11 [47].

1“ECMA is an industry association dedicated to standardization of informational and communi-
cation systems.” – official ECMA International® introduction [11]. JavaScript is ECMA standard
since 1997 under official name ECMAScript.

37

Start up of the application server

For starting up the server with this application, the user types down the command
line npm start in the source directory. In Visual Studio Code the server runs,
as default, on local server on port 3000 (start up settings can be changed in file
launch.json located in directory /.vscode).

First the script obtains all necessary information form the application and en-
vironment. Then it starts up the development server and emits all implemented
files. After this step follows the type-check of the code itself. If the type-check is
successful the command line will report a successful compilation and the rendered
application will be available for view in the browser on url http:
localhost:3000. Success message inside the Windows PowerShell command line is
depicted in Figure 4.1.

Fig. 4.1: Print screen of the success message written by the npm start script.

Once one finishes with the web page inspection, the development server can be
closed in the command line first by pressing the key combination of Ctrl + C and
then by confirmation of the batch job termination or just by quitting the Visual
Studio Code environment.

4.2 Application development
the main file index.html is located in the public directory. This file contains just
plain HTML environment with definition of the web icon, manifest, Google font
stylesheet and a statement in case the JavaScript is not enabled in the browser. The
rendering file of the page is defined in the index.tsx file, that is located in the src
directory. The rendering part of the code is shown in the Listing 4.1.

In the above listing, in the ReactDOM.render() function is first declared element
that is supposed to be rendered and then placed in the index.html file, where the

38

Listing 4.1: Example of JSX syntax in ReactJS
1 import React from ’react ’;
2 import ReactDOM from ’react -dom ’;
3 import { ThemeProvider } from ’@material -ui/ styles ’;
4 import { CssBaseline , /* ... */ } from ’@material -ui/core ’;
5 import theme from ’./ theme ’;
6 import styles from ’./ styles .css ’;
7
8 /* ... */
9

10 ReactDOM . render (
11 <ThemeProvider theme ={ theme}>
12 <CssBaseline classes ={ styles }/>
13 <App />
14 </ ThemeProvider >,
15 document . querySelector (’#root ’),
16);

element or in this case application should be shown both separated by comma.
All elements are closed in tags of <ThemeProvider> that implements the created
theme.tsx file which is almost equal to the CSS file but it allows more user-friendly
environment for elements customization than in *.css files especially when it comes
to customization of the Material-UI elements. Inside the theme-rendering tags is
the <CssBaseline/> tag that implements the CSS classes that are imported form
the styles.css file and the <App/> tag that refers to the implemented application.

As it was already mentioned before, the GUI the application uses Material-
UI by default and files theme.tsx and an styles.css are implemented for a better
customization of the components. Both are located in /src directory. The theme.tsx
uses a createMuiTheme provider that allows to effectively override the predefined
looks of the Material-UI elements. It also allows an implementation of a basic color
palette that is then easier accessible in the code. The only problem with this solution
is that the defined customization is general thus is then applied to all the modified
elements. For instance, if the implementation requires two fields that have different
colors while they are used, then the CSS is a better solution. Fragment of the
style.css file is shown in the Listing 4.2.

In the Listing 4.2 was used the method of the external definition described in
the Chapter 3.2. In this particular file are used two types of element description
– in form of a general description (the upper example of the body and img) and

39

Listing 4.2: Fragment of CSS document from the implemented application
1 /* HTML elements customization */
2
3 body { // background definition
4 background -image: url(" background .png");
5 background -color: white;
6 background - position : top;
7 background -position -x: right;
8 background - attachment : fixed;
9 min -inline -size: 500 px;

10 background - repeat : no - repeat ;
11 }
12 img { // image customization
13 align - content : center ;
14 }
15
16 /*
17 * CSS classes used for Material -UI elements
18 * customization (implemented under element
19 * attribute " className ").
20 */
21
22 .title { // custom title
23 font -size: 80px;
24 text -align: center ;
25 text - shadow : 0 0 5px #9 a9a9a;
26 }
27
28 /* ... */

in form of a class description (the lower example of a .title). The general form
is applied on all defined instances in the rendered application without any further
mention in the code but in case of the class description have to be the class name
put in the corresponding attribte field. In case of the Material-UI elements it is
assigned to the className attribute. These CSS classes have to be imported from
the *.css file – this is done in the rendering file index.tsx as it was mentioned few
paragraphs above.

The characteristic of the CSS is that these files contain only the description of
each element, that is then reproduced by the browser, when the code is rendered. It

40

also allows to have all the graphical definitions in one place thus a code duplication
is avoided and the maintenance becomes also easier. Another advantage of the
CSS is that it is widely supported even on the older browsers so the layout of the
application does not scatter when is the CSS file correctly implemented.

Fig. 4.2: Simple diagram of the application hierarchy between files.

Now it is possible to pass to the description of the application implementation
itself, which represents the most complex part. Note that the complete tree directory
with all the application files is shown in Appendix B. This tree directory is also
simply reproduced in the Figure 4.2 where is also shown the hierarchy of the class
files and their bindings.

As it was mentioned before the file that renders the whole application is the
index.tsx where is also defined the general layout of the application:

• the title of the application (“Application for Cryptographic Protocols”),
• application work field hidden under the <basicLayout/> tag that is refer-

ring to the application controls and functions and
• the application footer that contains the copyright reference to the page icon

and a hyperlink to the Material-UI documentation page.
In the file index.tsx, files containing the element customization are also imported –
the previously described styles.css and theme.tsx files.

The core file that puts together all the implemented functions and elements
is the basicLayout.tsx. In this file are defined all the general functions such as

41

language change, JSON databases loader, fields loader etc. This class also holds
important global variables such as the loaded JSON databases, alphabet arrays
and regular expression variable for the input purification from undesired characters.
Most importantly this file implements the input and output field, the menu bar
located above these two fields and two floating buttons located in the right corner
of the page that are switching between the two environments – Cipher mode and
Analysis mode. This two “modes” are actually just two classes implementing the
content under the input/output field that are changed when one of the floating
button is pressed. This “change” is implemented in the basicLayout class in the
public function render() and is based on private class property of type boolean
named fabSwitch.

The CipherTab.tsx contains the class defining the tab-container with the imple-
mented ciphers. Each cipher have its own class and they are merged into the final
application layout by the CipherTab class.

All the cipher classes has three general properties from the CipherTab class (that
assumes it from the basicLayout class) which are:

1. identifier of the input field,
2. identifier of the output field and
3. identifier of the encryption/decryption switch.

Each cipher class also always contains a method defining the cipher algorithm with
the ability to run in the encryption mode just as in the decryption mode. This ability
was implemented because the processes are the same with the only exception of the
processed text. These methods names can be generalized as <cipher name>Cipher(<parameters>)
and are also always constituted from two steps:

1. input load to string array from the input field (eventually also the key
load) that is cleared from undesirable characters and definition of other vari-
ables necessary for the progress – at least a variable where the encrypted or
decrypted text is stored and

2. the own cipher algorithm performed above the loaded input array with the
forEach() function.

Each cipher also defines it own control elements used for the settings visualization
(these are described in the following chapter 4.3).

The Analyzer.tsx contains class defining the first half of the implemented an-
alyzer – the frequency analysis table and substitution menu and overview table
containing various values, that can be found useful during the ciphertext analysis.
This class also assume three identifiers of the input and output fields and encryp-
tion/decryption switch and distributes it to the further implemented classes. In
the Analyzer class, the file IsThis.tsx is imported. This file holds the implemented
“cipher checkers”. In particular, each “checker” has again its own implementa-

42

tion file containing custom settings element and isThis<cipher name>() method,
that implements public methods from corresponding cipher files in fixed decryption
mode with the exception of the Atbash cipher, that is implemented directly in the
IsThis.tsx selector container. Further details on how the settings of each cipher or
analyzer function looks like see the following Chapter 4.3.

4.3 Application visualisation
The application is thought for both creating encrypted data and analyzing them.
This allows users to understand the hardness of attacking the different implemented
ciphers even if they have knowledge either on the secret key or on the text that has
been encrypted. Moreover, users can personally try to attack the cipher.

At the first boot of the application, the user will be directed to the default page
containing these implemented substitution ciphers:

1. Monoalphabetic substitution ciphers (green tabs)
• Atbash cipher,
• Caesar cipher,
• Password-modified cipher,

2. Polyalphabetic substitution ciphers (blue tabs)
• Vigenère cipher,
• Kryptos, part I & II,
• Vernam cipher.

The basic GUI division can be seen in Figure 4.3. In the upper part of the
application layout are always located two fields: customizable Input field and
Output field available only for reading. Both fields are working with string type.
User can also find above these two fields three general controls described form left
to right:

• The encryption and decryption switch that defines whether will be the action
buttons under each cipher tab encrypting or decrypting the given string in
the input field.

• Two buttons for resetting the fields and copying the output to input (these
two buttons are disabled in the Analyzer mode). The “RESET FIELDS”
button throws everything in the application into the state that is loaded at
the first access to the page. The “COPY OUTPUT TO INPUT” button allows
the user to copy the encrypted text into the input field. This step is necessary
since the encrypted text can be then pass to the analyzer in order to try to be
decrypted.

• The language selector that enables change between English (international)
and Czech alphabet, that are within the implemented functions.

43

The context of the lower part is based on the mode of the application. Modes can
be changed with buttons that are always situated at the right bottom of the page.
In the Cipher mode user can encrypt (or decrypt) plaintext that can be defined
in the input field. In the Analyzer mode user can play with created cryptogram
and try variable analytical methods.

Fig. 4.3: Basic layout division of the web application.

4.3.1 Section of the substitution ciphers

Application in the Cipher mode contains in the lower section box with six tabs of
two colors: green that represents monoalphabetic ciphers and blue that represents
polyalphabetic ciphers. Under each tab are situated the settings for each cipher.
Each setting will be described in the following sub-chapters.

Atbash cipher

Since this cipher that is described in Chapter 1.1.1 does not have any possible
settings then there are situated only two elements in the box under tab “Atbash
cipher”:

• button “ATBASH GO!” that encrypts the text given in the input field and
shows the result in the output field and

• table that shows mapping of the plaintext alphabet to the ciphertext alphabet
used during the encryption (or decryption).

44

Atbash tab layout can be seen in Figure 4.4.

Fig. 4.4: Detailed view of the Atbash cipher settings.

Caesar cipher

In case of the Caesar cipher described in the Chapter 1.1.2, the tab section with one
customizable input field for the cipher key definition labeled as a “Movement key”
field (type of number) with default value 𝑘𝑒𝑦 = 3. This field is a required parameter
so if the field is empty, then the application shows a prompt box requiring a value
when the action button (labelled as “CAESAR GO!”) is pressed. Button is located
under the key field. When no value is given to the prompt box, application will use
the default value of 𝑘𝑒𝑦 = 3.

The last component of the tab section is a table underneath all named compo-
nents, that enables better visualization of the defined movement within the used
cipher alphabet.

Caesar cipher settings are shown in the Figure 4.5.

Fig. 4.5: Detailed view of the Caesar cipher settings.

Keyword cipher

Under the Keyword cipher tab can be found settings for the implemented cipher
described in Chapter 1.1.3. In this settings are again three components: action
button labelled “CIPHER GO!”, table showing the mapping of plaintext alphabet
to by password modified alphabet and a required field of type string for custom
password with default value SECRET. Once again if an action button is pressed and

45

the password field is empty, application will ask for the password or it will use the
default value.

Fig. 4.6: Detailed view of the Keyword cipher settings.

Password field is also treated with protection against punctuation and other
characters that are not included in the used alphabet (like for instance numbers)
chosen by the selector located in the upper part of the application. All described
elements are depicted in the Figure 4.6.

Vigenère cipher

Vigenère cipher settings consists only from action button labeled “VIGENÈRE GO!”
and of a customizable field of type string that is once again required. The default
password is SECRET and when is this field left empty just as the following prompt
box then this default value is used. The algorithm of the cipher is described in the
Chapter 1.2.1.

Fig. 4.7: Detailed view of the Vigenère cipher settings.

Custom password field is again treated from usage of different characters than
those that are included in the alphabet chosen in the general settings in the upper
part of the application. Depicted Vigenère settings are shown in the Figure 4.7.

Kryptos cipher, part I & II

In the Kryptos cipher tab are prepared setting for the cipher combination used
in the part I and II of the ciphertext engraved in the Kryptos sculpture. This

46

sculpture and its cryptogram is described in the Chapter 1.2.3. In this settings
are defined two customizable fields of type string (both are required) with default
values of PALIMPSEST for Vigenère cipher and KRYPTOS for the used cipher alphabet
modification, both again protected from invalid characters. Action button located
beneath these fields is labeled “KRYPTOS GO!” and all these elements are shown
in the Figure 4.8.

Fig. 4.8: Detailed view of the Kryptos, part I & II settings.

Vernam cipher

Vernam cipher (also known as the one-time pad) described in the Chapter 1.2.2 have
in the tab section prepared once again two fields: one labeled as “USED PASS-
WORD”, second labeled as “CUSTOM PASSWORD”. Both fields operate again
with the string type. At the beginning of the encryption (or decryption) process
is checked, if any value is given in the “CUSTOM PASSWORD” field. If the value
is given then is this value loaded into an array of number type. If the field is empty
a random key is generated. The used password then appears in the “USED PASS-
WORD” field. Also the “CUSTOM PASSWORD” field is protected from loading
different characters – this time from other characters than numbers. Action button
located beneath the fields is labeled “VERNAM GO!”.

Fig. 4.9: Detailed view of the Vernam cipher settings.

If the encryption process is launched several times (more than once) an expansion
panel labeled as “History of used keys” appears beneath the action button where

47

all the previously used keys are saved. Figure 4.9 shows the Vernam settings in the
Cipher mode.

4.3.2 Section of the cryptoanalysis

When the application is switched to the Analyzer mode the lower part of the layout
changes. There are two general sections:

1. upper part where:
• the frequency analysis result table (see Chapter 2.1 for reminder) that is

counted immediately once the mode is changed or when the input field
changes (depiction of the exemplar table can be seen in the Figure 4.10),

• substitution menu and
• an overview table holding values such as index of coincidence (described in

Chapter 2.2), counted Ceasar cipher key from the performed substitutions
and other values, that can be useful during the cryptogram analysis,

2. the lower “Is this...?” section, where customized settings are located for quick
check if the ciphertext was not encrypted with some of the implemented cipher.

Fig. 4.10: Exemplar result table with the result of the frequency analysis formed
from the given ciphertext.

Frequency analysis

The frequency analysis of the text in the input field is performed when the ap-
plication mode is changed, or when the input field is modified. The results that
are shown in the table labeled as “Character analysis” are then mirrored in the
“Frequency analysis menu” shown in the Figure 4.11.

The menu is constituted of two selectors – one for ciphertext letters (the ones
that are mirrored from the frequency analysis result) and one for the letters used for
substitution that are mirrored from the formed database created from a large sample
of text (see Chapter 2.1 for analysis process reminder). Values in the selectors are
sorted by the falling occurrence.

Both selectors have to contains chosen values otherwise the button “SUBSTI-
TUTE!” will throw an information alert. This action button will convert all the
chosen cipher letters to upper case plaintext letters and the modified text is then

48

shown in the output field. First substitution is created from the string in the input
field but next steps consider the modified string in the output field.

Fig. 4.11: Detailed view of the substitution menu in the web application.

Under the button “SUBSTITUTE!” is located button for the analysis restart.
This button erase all achieved information and trows the analyzer in the default
state. Important is that the string in the input field stays unmodified the whole
time.

Also in case the user is stuck with the analysis then under the substitution menu
are two links that refer to pages with frequency analysis of the most used words in
Czech and English language.

Overview table

The overview table is situated next to the Frequency analysis menu and is shown in
the Figure 4.12. This table provides the user at the beginning a few basic information
about the cipher: counted index of coincidence (see Chapter 2.2 for reminder) and
information gained from IC about whether is the cipher monoalphabetic, polyalpha-
betic or if it is just random text and information about probable plaintext language
(in this application are differed five languages: Czech, English, French, Spanish and
German). Other information are gained through executed substitutions.

Counted Caesar key is computed from the executed substitution by deduction
of the cipher letter position in alphabet from the substituting letter position. The
best key is then decided based on the number of key occurrences. This function
was implemented by using Hash Map package, its implemented functions and the
use of the native function sort() above arrays in JavaScript. Atbash counter

49

Fig. 4.12: Detailed view of the overview table in the web application.

simply counts the occurrences of matches between the executed substitution and
the Atbash alphabets mapping and finally the Password alphabet shows cipher
alphabet created from all past substitutions.

Is this...? section

The Is this...? section is similar to the cipher setting as they were described in the
Chapter 4.3.1 in some cases with small differences. The idea of this section is, that
user does not have to switch between the Analysis mode and Cipher mode in order
to confirm whether an examined ciphertext is not encrypted by one of the given
substitution ciphers.

On the first sight can be seen that some ciphers are missing – Kryptos and
Vernam. In case of Vernam there is a simple answer since it is unbreakable. In case
of Kryptos it is because the analysis of the Kryptos is not simple since this cipher
uses a mixture of two encrypting method. Analysis have to be “handmade” since
no method was yet encountered that could make the Kryptos analysis easier.

As it was already mentioned, the cipher setting implemented in this section have
slight anomalies in order to make the analysis more comfortable. The only setting
that does not change is in case of Atbash since it has none.

In case of the Caesar cipher an extra button labeled “OTHER POSSIBILI-
TIES” is located under the action button that is just renamed to “IS THIS CAE-
SAR?” but it implements the same function as in the Cipher application mode (but
just the decryption). The “OTHER POSSIBILITIES” button is at the beginning

50

disabled because first have to be pressed the action button that executes the de-
cryption of the ciphertext by a given key. This button holds a dialogue window,
which contains the decrypted ciphertext by all the possible keys (in the length of
the chosen alphabet).

In case of the Password-modified cipher the only change except the renamed
action button to the “IT THIS PASSWORD-MODIFIED?” is in the table situ-
ated under the settings. It maps ciphertext letters to plaintext letters and at the
beginning it the first row filled with dashes. This table fills with each executed
substitution.

Fig. 4.13: Detailed view of the Vigenère cipher settings in the Is this...? section.

The greatest change is in the Vigenère cipher settings. This section works
only when the chosen language in the language selector in the menu bar above
the input and output field is English because there is no free n-gram database for
Czech language!

The settings are shown in the Figure 4.13. Three new elements had appeared:
new customizable field for password length range, button “GUESS PASSWORD?”
and a table with information about input length, computed password length and best
computed password. These all new elements appear here because for the Vigenère
cipher analysis was chosen to implement the N-gram fitness method described in
the Chapter 2.4.

In this particular case are implemented bigram fitness for password construction
and quadgram fitness for final check of the decrypted text using the build password.
The databases used in the process are implemented with use of JSON files located
in the \src directory (for the application tree directory see Appendix B).

51

The probable password length is computed using the index of coincidence for all
possible password lengths considering that each letter form alphabet was used only
once (see Chapter 2.2 for the principle reminder). For example for international
alphabet (English language) would be the average IC counted for lengths 1 to 26.

The length range field is protected from other characters than one number or
two numbers separated by dash and from empty field. Default value for this field is
the computed password length. Value written into this field is read as a string and
then loaded to a number array that is then used in the password construction func-
tion hidden under the “GUESS PASSWORD?” button. The password construction
function is also partially protected from “freezing” since the password construction
is a very demanding operation. Partially protected it is because if the input is too
long and the user does not give a password length range or gives the range too wide,
a prompt box will appear informing the user about the complexity of the operation.
Though if the user will not respond or will insist on the wide range there is a high
probability that the application will freeze.

52

Conclusion
This thesis focuses on the creation of an interactive web-based application for
monoalphabetic and polyalphabetic ciphers and their cryptoanalysis. Within the
application were implemented three monoalphabetic substitution ciphers in partic-
ular Atbash, Caesar and Password-modified cipher and three polyalphabetic ciphers
precisely Vigenère and Vernam cipher and cipher combinations used in Kryptos
sculpture.

The most challenging part was the creation of a methodology that allows users
to directly attack (cryptoanalysis) the aforementioned ciphers. The attacks consist
on 3 parts:

1. an interactive frequency analyses field which allows user to attack the en-
crypted message,

2. an overview table with index of coincidence and counters that helps in the
attack choice, and

3. the possibility to check if the cipher is of a determined form for some selected
cases.

In the frequency analysis, the user can compare the statistical letter occurrences
in the selected language with the one in the ciphertext. This plus an interactive
interface allow the user to directly attack the cipher keeping trace of the change
made.

The aforementioned “possibility check” cases are functional for Atbash, Ceasar
cipher, Keyword cipher or Vigenère cipher. These ciphers have its own settings that
allow user to try if the ciphertext is not created by one of the chosen ciphers.

In the overview table, for instance Atbash counter informs the user if some of
the executed substitutions are equal to the one in Atbash cipher as well as Counted
Ceasar Key informs the user about what key was probably used (again counted
from the executed substitutions).

Moreover, the n-gram fitness is an important part of the statistical analysis which
allows one to gain the most accurate results in password reconstruction in case the
cipher text is identified as a result of an polyalphabetic cipher.

The project was implemented as a web-application because it is easily reachable
by a large spectrum of users and it does not have to be installed nor downloaded.
All that is required is latest version of any modern web browser such as Google
Chrome, Firefox or Safari (with the exception of Internet Explorer).

The whole web application was developed using the Visual Studio Code (version
1.45.1) environment on Windows 8.1 operating system.

Languages used for implementation of the application itself are HTML5, CSS
and JavaScript. HTML5 was chosen because of several reasons:

53

• it is one of the commonly used (and supported) languages among the WWW
(World Wide Web),

• it is the current version of HTML language and
• it is easy to learn and to use.

JavaScript was chosen since it is widely used and supported, easy to learn and
user-friendly. The precised JavaScript library that was employed to implement the
application was TypeScript library ReactJS2. CSS was applied alongside with the
Material-UI, which is ReactJS package for easier GUI implementation.

2For reminder – TypeScript is a superset for JavaScript, with many more functions, especially
with ability to check variable type

54

Bibliography
[1] AKASH S, D. JavaScript by Example. 2017. url: https://subscription.p

acktpub.com/book/web_development/9781788293969/1/01lvl1sec8/syst
em-requirements.

[2] APPL, F. Hádanka jménem Kryptos: Rozluští konečně někdo největší tajemství
CIA? 2019. url: https://enigmaplus.cz/hadanka-jmenem-kryptos-rozl
usti-konecne-nekdo-nejvetsi-tajemstvi-cia/. last revision 14. 5. 2019,
[cit. 2020-25-05].

[3] BARTER, A. Index of Coincidence. 2016. url: http://alexbarter.com/st
atistics/index-of-coincidence/. last revision 22. 12. 2016, [cit. 2020-02-
06]. Cryptography, Alex Barter.

[4] BELLOVIN, S. M. “Frank Miller: Inventor of the One-Time Pad”. In: Cryp-
tologia 35.3 (2011), pp. 203–222. doi: 10 . 1080 / 01611194 . 2011 . 583711.
eprint: https://doi.org/10.1080/01611194.2011.583711. url: https:
//doi.org/10.1080/01611194.2011.583711. [cit. 2020-25-05]. An earlier
version is available as technical report CUCS-009-11.

[5] BROWN, D. C. “A Cryptanalysis of the Autokey Cipher Using the Index
of Coincidence”. In: Proceedings of the ACMSE 2018 Conference. ACMSE
’18. Richmond, Kentucky: Association for Computing Machinery, 2018. isbn:
9781450356961. doi: 10.1145/3190645.3190679. url: https://doi.org/1
0.1145/3190645.3190679. [cit. 2020-03-06].

[6] BUONAFALCE, A. File:Alberti cipher disk.JPG. [online]. 2008. url: https
://commons.wikimedia.org/wiki/File:Alberti_cipher_disk.JPG. last
revision 18. 3. 2008, [cit. 2020-19-05]. Wikimedia Available under CC BY-SA.

[7] CrypTool contributors. Autokey. 2020. url: https://www.cryptool.org/en
/cto-ciphers/autokey. last revision 4. 6. 2020, [cit. 2020-04-06]. Copyright
© 1998 - 2020 CrypTool Contributors.

[8] DUNIN, E. Kryptos. 2002. url: https://elonka.com/kryptos/. last revision
29. 1. 2020, [cit. 2020-30-05].

[9] DUNIN, E. This is a transcript of a portion of ABC’s World News Tonight
broadcast from April 2, 1991. 2004. url: https://elonka.com/kryptos
/mirrors/WNT.html. last revision 11. 3. 2004, [cit. 2020-30-05]. From page
dedicated to Kryptos https://elonka.com/kryptos/, created by Elonka
Dunin.

55

https://subscription.packtpub.com/book/web_development/9781788293969/1/01lvl1sec8/system-requirements
https://subscription.packtpub.com/book/web_development/9781788293969/1/01lvl1sec8/system-requirements
https://subscription.packtpub.com/book/web_development/9781788293969/1/01lvl1sec8/system-requirements
https://enigmaplus.cz/hadanka-jmenem-kryptos-rozlusti-konecne-nekdo-nejvetsi-tajemstvi-cia/
https://enigmaplus.cz/hadanka-jmenem-kryptos-rozlusti-konecne-nekdo-nejvetsi-tajemstvi-cia/
http://alexbarter.com/statistics/index-of-coincidence/
http://alexbarter.com/statistics/index-of-coincidence/
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1145/3190645.3190679
https://doi.org/10.1145/3190645.3190679
https://doi.org/10.1145/3190645.3190679
https://commons.wikimedia.org/wiki/File:Alberti_cipher_disk.JPG
https://commons.wikimedia.org/wiki/File:Alberti_cipher_disk.JPG
https://www.cryptool.org/en/cto-ciphers/autokey
https://www.cryptool.org/en/cto-ciphers/autokey
https://elonka.com/kryptos/
https://elonka.com/kryptos/mirrors/WNT.html
https://elonka.com/kryptos/mirrors/WNT.html
https://elonka.com/kryptos/

[10] DUPONT, Q. The Printing Press and Cryptography. 1st Edition. Routledge,
2017. isbn: 978-1-138-24464-1. doi: https://doi.org/10.4324/9781315267
449. url: http://iqdupont.com/wp-content/uploads/2018/06/DuPont-2
018-The_Printing_Press_and_Cryptography.pdf. [cit. 2020-19-05]. U.S.

[11] ECMA International®. ECMA International - Standards@Internet Speed. 2020.
url: https://www.ecma-international.org/. last revision 13. 3. 2020, [cit.
2020-05-06]. Ecma International®.

[12] English Letter Frequency (based on a sample of 40,000 words). url: http://p
i.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies
.html. [cit. 2020-01-06]. Math Explorer’s Club, National Science Foundation
supported project. Cornell Department of Mathematics.

[13] FOJTOVÁ, L. “Softwarová podpora výuky klasické kryptoanalýzy”. Master
thesis. Brno University of Technology. The faculty of Electrical engineering
and Communication. Department of Telecommunications, 2010. url: http:
//hdl.handle.net/11012/6354. [cit. 2019-12-12]. Supervisor doc. Ing. Karel
Burda, CSc.

[14] FOLTÝNEK, T.; PŘICHYSTAL, J. Komprimace a šifrování. 2008. url: h
ttps://is.mendelu.cz/eknihovna/opory/index.pl?opora=621. [cit.
2020-27-05]. Elektronické studijní materiály, Mendelova univerzita v Brně.

[15] Frequency Analysis: Breaking the Code. 2019. url: https://crypto.inter
active-maths.com/frequency-analysis-breaking-the-code.html. [cit.
2020-01-06]. Crypto Corner, © 2013-2019 Daniel Rodriguez-Clark, All rights
reserved Interactive Maths, © 2012-2019 Daniel Rodriguez-Clark, All rights
reserved.

[16] FRIEDMAN, W. F. Military cryptoanalysis, part I. 4th Edition. 1952, p. 36.
url: https://www.nsa.gov/Portals/70/documents/news-features/de
classified-documents/friedman-documents/publications/FOLDER_241
/41748389078762.pdf. [cit. 2020-01-06]. REF ID:A56895, National Security
Agency Washington 25, D.C. Declassified and approved for release by NSA on
02-03-2014 pursuant to E.O. 135226.

[17] FRIEDMAN, W. F. “The index of coincidence and its applications in crypt-
analysis”. In: 1935. url: https://www.nsa.gov/Portals/70/documents/n
ews-features/declassified-documents/friedman-documents/publicat
ions/FOLDER_233/41761039080018.pdf. [cit. 2020-02-06]. REF ID:A64722,
United States, Government printing office, National Security Agency, Wash-
ington D.C.

56

https://doi.org/https://doi.org/10.4324/9781315267449
https://doi.org/https://doi.org/10.4324/9781315267449
http://iqdupont.com/wp-content/uploads/2018/06/DuPont-2018-The_Printing_Press_and_Cryptography.pdf
http://iqdupont.com/wp-content/uploads/2018/06/DuPont-2018-The_Printing_Press_and_Cryptography.pdf
https://www.ecma-international.org/
http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html
http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html
http://pi.math.cornell.edu/~mec/2003-2004/cryptography/subs/frequencies.html
http://hdl.handle.net/11012/6354
http://hdl.handle.net/11012/6354
https://is.mendelu.cz/eknihovna/opory/index.pl?opora=621
https://is.mendelu.cz/eknihovna/opory/index.pl?opora=621
https://crypto.interactive-maths.com/frequency-analysis-breaking-the-code.html
https://crypto.interactive-maths.com/frequency-analysis-breaking-the-code.html
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/publications/FOLDER_241/41748389078762.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/publications/FOLDER_241/41748389078762.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/publications/FOLDER_241/41748389078762.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/publications/FOLDER_233/41761039080018.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/publications/FOLDER_233/41761039080018.pdf
https://www.nsa.gov/Portals/70/documents/news-features/declassified-documents/friedman-documents/publications/FOLDER_233/41761039080018.pdf

[18] GAJ, K.; ORŁOWSKI, A. “Facts and Myths of Enigma: Breaking Stereo-
types”. In: (2003), pp. 106–109. doi: 10.1007/3-540-39200-9. url: https
://link.springer.com/content/pdf/10.1007%2F3-540-39200-9_7.pdf.
[cit. 2019-12-13]. Advances in Cryptology — EUROCRYPT 2003. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2003, 2656.

[19] GUBALLA, J. Implementierung eines Vigenere Solvers. 2015. url: https:
/ / www . guballa . de / implementierung - eines - vigenere - solvers. [cit.
2020-03-06]. www.guballa.de, © 2015 Jens Guballa.

[20] HTML, Living standard. 2019. url: https://html.spec.whatwg.org/. last
revision 13. 12. 2019, [cit. 2019-16-12]. Web Hypertext Application Technology
Working Group (WHATWG) Copyright © 2018 WHATWG.

[21] HTML5 Differences from HTML4. 2014. url: https://www.w3.org/TR/htm
l5-diff/. last revision 9. 12. 2014, [cit. 2019-16-12]. W3C: Leading the web
to its full potential Copyright © 2019 W3C®.

[22] Introducing JSX. 2019. url: https://reactjs.org/docs/introducing-jsx
.html. last revision 21. 2. 2019, [cit. 2019-17-12]. React – A JavaScript library
for building user interfaces Copyright © 2019 Facebook Inc.

[23] JANOVSKÝ, D. CSS styly - úvod. 2019. url: https://www.jakpsatweb.c
z/css/css-uvod.html. last revision 13. 6. 2019. [cit. 2019-17-12]. Jak psát
web: o tvorbě, údržbě a zlepšování internetových stránek.

[24] JANOVSKÝ, D. Syntaxe XHTML. 2019. url: https://www.jakpsatweb.cz
/html/xhtml.html. last revision 13. 6. 2019. [cit. 2019-16-12]. Jak psát web:
o tvorbě, údržbě a zlepšování internetových stránek.

[25] JavaScript. 2019. url: https://developer.mozilla.org/en-US/docs/We
b/JavaScript. last revision 9. 12. 2019, [cit. 2019-17-12]. MDN Web Docs ©
2005-2019 Mozilla and individual contributors. Content is available under CC
BY-SA 2.5.

[26] JavaScript Environment Requirements. 2020. url: https://reactjs.org/do
cs/javascript-environment-requirements.html. [cit. 2020-05-06]. React
- A JavaScript library for building user interface. Copyright © 2020 Facebook
Inc.

[27] Jeremiah 51. 2020. url: https://www.biblegateway.com/passage/?sea
rch=Jeremiah+51%5C&version=NIV. last revision 1. 1. 2020, [cit. 2020-22-
05]. BibleGateway.com: A searchable online Bible in over 150 versions and 50
languages Holy Bible, New International Version®, NIV® Copyright ©1973,
1978, 1984, 2011 by Biblica, Inc.® Used by permission. All rights reserved
worldwide.

57

https://doi.org/10.1007/3-540-39200-9
https://link.springer.com/content/pdf/10.1007%2F3-540-39200-9_7.pdf
https://link.springer.com/content/pdf/10.1007%2F3-540-39200-9_7.pdf
https://www.guballa.de/implementierung-eines-vigenere-solvers
https://www.guballa.de/implementierung-eines-vigenere-solvers
https://html.spec.whatwg.org/
https://www.w3.org/TR/html5-diff/
https://www.w3.org/TR/html5-diff/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://www.jakpsatweb.cz/css/css-uvod.html
https://www.jakpsatweb.cz/css/css-uvod.html
https://www.jakpsatweb.cz/html/xhtml.html
https://www.jakpsatweb.cz/html/xhtml.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://reactjs.org/docs/javascript-environment-requirements.html
https://reactjs.org/docs/javascript-environment-requirements.html
https://www.biblegateway.com/passage/?search=Jeremiah+51%5C&version=NIV
https://www.biblegateway.com/passage/?search=Jeremiah+51%5C&version=NIV

[28] Kryptos. 2007. url: https://www.cia.gov/about-cia/headquarters-t
our/kryptos. last revision 29. 1. 2020, [cit. 2020-30-05]. Central Intelligence
Agency: The work of a Nation. The center of Intelligence.

[29] LYONS, J. Codes and Nomenclators Cipher. 2012. url: http://practic
alcryptography.com/ciphers/codes- and- nomenclators- cipher/. [cit.
2020-30-05]. Practical Cryptography, Copyright James Lyons © 2009-2012.

[30] MARTIN, J. The best web browsers for 2019. 2020. url: https://www.tec
hadvisor.co.uk/test-centre/software/best-web-browsers-3635255/.
last revision 6. 8. 2019, [cit. 2019-17-12]. Tech Advisor - technology reviews,
advice, videos, news and forums Copyright © 2019 IDG Communications Ltd.
All Rights Reserved.

[31] Material-UI. 2019. url: https://github.com/mui-org. last revision 14. 12.
2019. GitHub. The world’s leading software development platform.

[32] MATUŠINSKÝ, P. Šifry v Bibli – Atbaš. 2007. url: http://www.myty.i
nfo/view.php?cisloclanku=2007110003. last revision 26. 11. 2007, [cit.
2020-21-05]. Mýty a skutečnost.

[33] MENEZES, A. J.; VANSTONE, S. A.; OORSCHOT, P. C. Van. Handbook
of Applied Cryptography. 1st Edition. USA: CRC Press, Inc., 1996. isbn:
0849385237. doi: 10.5555/548089. [cit. 2020-02-06].

[34] PILLÁR, J. “Kryptografie a šifrovací algoritmy”. Bachelor thesis. University
of Pardubice, 2011, pp. 25–27. url: http://hdl.handle.net/10195/39635.
[cit. 2019-13-12]. Supervisor RNDr. Iva Rulićová.

[35] React.js (Introduction and Working). 2019. url: https://www.geeksforgee
ks.org/react-js-introduction-working/. last revision 17. 5. 2018, [cit.
2019-17-12]. GeeksforGeeks | A computer science portal for geeks @geeks-
forgeeks, CC BY-SA 4.0.

[36] REUVERS, P.; SIMONS, M. One-Time Pad (OTP). 2013. url: https://we
b.archive.org/web/20140314175211/http://www.cryptomuseum.com/cr
ypto/otp.htm. last revision 29. 1. 2013, [cit. 2020-25-05]. Wayback Machine,
Internet archive Copyright 2009-2013.

[37] RIVEST, R. L. “CHAPTER 13 - Cryptography”. In: Algorithms and Com-
plexity. Ed. by JAN [VAN LEEUWEN]. Handbook of Theoretical Computer
Science. Amsterdam: Elsevier, 1990, pp. 717–755. isbn: 978-0-444-88071-0.
doi: https://doi.org/10.1016/B978-0-444-88071-0.50018-7. url:
http://www.sciencedirect.com/science/article/pii/B97804448807105
00187. [cit. 2020-28-05].

58

https://www.cia.gov/about-cia/headquarters-tour/kryptos
https://www.cia.gov/about-cia/headquarters-tour/kryptos
http://practicalcryptography.com/ciphers/codes-and-nomenclators-cipher/
http://practicalcryptography.com/ciphers/codes-and-nomenclators-cipher/
https://www.techadvisor.co.uk/test-centre/software/best-web-browsers-3635255/
https://www.techadvisor.co.uk/test-centre/software/best-web-browsers-3635255/
https://github.com/mui-org
http://www.myty.info/view.php?cisloclanku=2007110003
http://www.myty.info/view.php?cisloclanku=2007110003
https://doi.org/10.5555/548089
http://hdl.handle.net/10195/39635
https://www.geeksforgeeks.org/react-js-introduction-working/
https://www.geeksforgeeks.org/react-js-introduction-working/
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://doi.org/https://doi.org/10.1016/B978-0-444-88071-0.50018-7
http://www.sciencedirect.com/science/article/pii/B9780444880710500187
http://www.sciencedirect.com/science/article/pii/B9780444880710500187

[38] RYABKO, B. “The Vernam cipher is robust to small deviations from random-
ness”. In: CoRR abs/1303.2219 (2013), pp. 2–5. arXiv: 1303.2219. url: htt
p://arxiv.org/abs/1303.2219. [cit. 2020-25-05]. Ithaca: Cornell University
Library ProQuest Central.

[39] SAFAVI-NAINI, R. Information Theoretic Security: Third International Con-
ference, ICITS 2008, Calgary, Canada, August 10-13, 2008, Proceedings. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2008. isbn: 978-
3-540-85093-9. doi: 10.1007/978-3-540-85093-9. url: https://link.s
pringer.com/content/pdf/10.1007%2F978- 3- 540- 85093- 9.pdf. [cit.
2020-04-06].

[40] SANBORN, J. File:Kryptos sculptor.jpg. [online]. 1991. url: https://commo
ns.wikimedia.org/wiki/File:Kryptos_sculptor.jpg. last revision 17. 4.
2020, [cit. 2020-30-05]. CC BY-SA (https://creativecommons.org/licens
es/by-sa/3.0).

[41] SCHWARTZ, J.; CORUM J. “This Sculpture Holds a Decades-Old C.I.A.
Mystery. And Now, Another Clue.” In: The New York Times (2020). url:
https://www.nytimes.com/interactive/2020/01/29/climate/kryptos-s
culpture-final-clue.html. last revision 29. 1. 2020, [cit. 2020-30-05].

[42] SHENE, C.-K. Kasiski’s method. 2014. url: https://pages.mtu.edu/~s
hene/NSF-4/Tutorial/VIG/Vig-Kasiski.html. last revision 15. 6. 2015,
[cit. 2020-03-06]. Cryptography Visualization Tools: A Tutorial Department
of Computer Science Michigan Technological University © 2014 C.-K. Shene.

[43] SIKORA, M. “Webová vizualizace kryptografických systémů”. Bachelor the-
sis. Brno University of Technology. The faculty of Electrical engineering and
Communication. Department of Telecommunications, 2014, p. 10. url: http:
//hdl.handle.net/11012/6354. [cit. 2019-14-12], Supervisor Ing. Jan Hajný,
Ph.D.

[44] SPERLING, K. File:EnigmaMachine.jpg. [online]. 2005. url: https://com
mons.wikimedia.org/wiki/File:EnigmaMachine.jpg. last revision 15. 4.
2005, [cit. 2020-19-05]. Available under public domain.

[45] STEIN, D. D. The Puzzle at CIA Headquarters: Cracking the Courtyard Crypto.
2009. eprint: https://nsarchive2.gwu.edu//NSAEBB/NSAEBB431/docs/in
tell_ebb_010.PDF. url: https://www.elonka.com/kryptos/mirrors/da
w/steinarticle.html. last revision , [cit. 2020-30-05]. Originally an article
at http://www.csi.cia/studies/vol43no1/art5.html (nowadays inac-
cessible). From page dedicated to Kryptos https://elonka.com/kryptos/,
created by Elonka Dunin.

59

https://arxiv.org/abs/1303.2219
http://arxiv.org/abs/1303.2219
http://arxiv.org/abs/1303.2219
https://doi.org/10.1007/978-3-540-85093-9
https://link.springer.com/content/pdf/10.1007%2F978-3-540-85093-9.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-85093-9.pdf
https://commons.wikimedia.org/wiki/File:Kryptos_sculptor.jpg
https://commons.wikimedia.org/wiki/File:Kryptos_sculptor.jpg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0
https://www.nytimes.com/interactive/2020/01/29/climate/kryptos-sculpture-final-clue.html
https://www.nytimes.com/interactive/2020/01/29/climate/kryptos-sculpture-final-clue.html
https://pages.mtu.edu/~shene/NSF-4/Tutorial/VIG/Vig-Kasiski.html
https://pages.mtu.edu/~shene/NSF-4/Tutorial/VIG/Vig-Kasiski.html
http://hdl.handle.net/11012/6354
http://hdl.handle.net/11012/6354
https://commons.wikimedia.org/wiki/File:EnigmaMachine.jpg
https://commons.wikimedia.org/wiki/File:EnigmaMachine.jpg
https://nsarchive2.gwu.edu//NSAEBB/NSAEBB431/docs/intell_ebb_010.PDF
https://nsarchive2.gwu.edu//NSAEBB/NSAEBB431/docs/intell_ebb_010.PDF
https://www.elonka.com/kryptos/mirrors/daw/steinarticle.html
https://www.elonka.com/kryptos/mirrors/daw/steinarticle.html
http://www.csi.cia/studies/vol43no1/art5.html
https://elonka.com/kryptos/

[46] SUETONIUS. The Lives of the Twelve Caesars – Julius Caesar. Trans. by M.
IHM. Loeb Classical Library, 1913. url: https://penelope.uchicago.edu
/Thayer/E/Roman/Texts/Suetonius/12Caesars/Julius*.html.

[47] Supported platforms. 2020. [cit. 2020-05-06]. Material-UI Released under the
MIT License. Copyright © 2020 Material-UI.

[48] TASSINARI, O. Create React App example with TypeScript. url: https://g
ithub.com/mui-org/material-ui/tree/master/examples/create-react
-app-with-typescript. Ver. 4.0.0, last commit 2019-23-05. Licensed under
MIT License.

[49] The Difference Between Dynamic & Static Web Pages. 2018. url: https:
//web.archive.org/web/20190320233700/https://smallbusiness.chr
on.com/difference-between-dynamic-static-pages-69951.html. last
revision 10. 8. 2018. [cit. 2019-17-12]. Chron.com Copyright © 2019 Hearst
Newspapers, LLC.

[50] TRITHEMIUS, J.; Early Printing Collection & George Fabyan Collection.
Polygraphiae libri sex Ioannis Trithemij, abbatis Peapolitani quondam Span-
heimensis, ad Maximilianum Caesarem. [Reichenau] : Impressum ductu Ioan-
nis Haselberg de Aia, biblipolae, anno a Christo nato 1518, men. Iulio., 1518,
p. 471. url: https://www.loc.gov/resource/rbc0001.2009fabyan1234
5/?sp=471. 22. 10. 1996, [cit. 2020-22-05]. [Washington, D.C.] : Library of
Congress, 2000. LCCN: 32017914.

[51] TypeScript Overview. 2019. url: https://www.tutorialsteacher.com/t
ypescript/typescript-overview. last revision 12. 12. 2019, [cit. 2019-17-
12]. TutorialsTeacher Online Web Tutorials © 2019 TutorialsTeacher.com. All
Rights Reserved.

[52] Vigenère Cipher. 2019. url: https://crypto.interactive-maths.com/vi
genegravere-cipher.html#. [cit. 2020-19-05]. Crypto Corner, © 2013-2019
Daniel Rodriguez-Clark, All rights reserved Interactive Maths, © 2012-2019
Daniel Rodriguez-Clark, All rights reserved.

[53] What is Javascript? 2019. url: https://skillcrush.com/2012/04/05
/javascript/. last revision 17. 12. 2019 , [cit. 2019-17-12]. Learn to Code
| Digital Skills are Job Skills | Skillcrush © 2012 - 2019 Skillcrush, Inc. All
Rights Reserved.

[54] YADAV, G. S.; OJHA, A. A novel visual cryptography scheme based on substi-
tution cipher. IEEE, 2013, pp. 640–643. isbn: 978-1-467-36101-9. doi: 10.110

60

https://penelope.uchicago.edu/Thayer/E/Roman/Texts/Suetonius/12Caesars/Julius*.html
https://penelope.uchicago.edu/Thayer/E/Roman/Texts/Suetonius/12Caesars/Julius*.html
https://github.com/mui-org/material-ui/tree/master/examples/create-react-app-with-typescript
https://github.com/mui-org/material-ui/tree/master/examples/create-react-app-with-typescript
https://github.com/mui-org/material-ui/tree/master/examples/create-react-app-with-typescript
https://web.archive.org/web/20190320233700/https://smallbusiness.chron.com/difference-between-dynamic-static-pages-69951.html
https://web.archive.org/web/20190320233700/https://smallbusiness.chron.com/difference-between-dynamic-static-pages-69951.html
https://web.archive.org/web/20190320233700/https://smallbusiness.chron.com/difference-between-dynamic-static-pages-69951.html
https://www.loc.gov/resource/rbc0001.2009fabyan12345/?sp=471
https://www.loc.gov/resource/rbc0001.2009fabyan12345/?sp=471
https://www.tutorialsteacher.com/typescript/typescript-overview
https://www.tutorialsteacher.com/typescript/typescript-overview
https://crypto.interactive-maths.com/vigenegravere-cipher.html#
https://crypto.interactive-maths.com/vigenegravere-cipher.html#
https://skillcrush.com/2012/04/05/javascript/
https://skillcrush.com/2012/04/05/javascript/
https://doi.org/10.1109/ICIIP.2013.6707673
https://doi.org/10.1109/ICIIP.2013.6707673
https://doi.org/10.1109/ICIIP.2013.6707673

9/ICIIP.2013.6707673. [cit. 2019-10-12]. 2013 IEEE 2nd International Con-
ference on Image Information Processing, IEEE ICIIP 2013. © 2014 Elsevier
B.V., All rights reserved.

[55] ZAPECHNIKOV, S. V. and a group of NRNU students. Atbash. 2013. url:
http://cryptowiki.net/index.php?title=Atbash. last revision 2. 12.
2003, [cit. 2020-20-05]. CryptoWiki: Encyclopedia of Theoretical and Applied
Cryptography © Security department at National Research Nuclear University
(NRNU) at Moscow, Russia.

[56] ZOUHAR, P. “Generátor náhodných čísel”. Master thesis. Brno University
of Technology. The faculty of Electrical engineering and Communication. De-
partment of Telecommunications, 2010, pp. 12–13. url: https://www.vutbr
.cz/studenti/zav-prace?zp_id=32065. [cit. 2020-25-05] . Supervisor Ing.
Jiří Sobotka.

61

https://doi.org/10.1109/ICIIP.2013.6707673
https://doi.org/10.1109/ICIIP.2013.6707673
https://doi.org/10.1109/ICIIP.2013.6707673
http://cryptowiki.net/index.php?title=Atbash
https://www.vutbr.cz/studenti/zav-prace?zp_id=32065
https://www.vutbr.cz/studenti/zav-prace?zp_id=32065

List of abbreviations
CSS Cascading Style Sheets
CIA Central Intelligence Agency
DOM Document Object Model
GCD Greatest Common Divisor
GUI Graphical User Interface
HTML5 Hypertext Markup Language version 5
IDE Integrated Development Environment
JVM Java Virtual Machine
NSA National Security Agency
URL Uniform Resource Location
WHATWG Web Hypertext Application Technology Working Group
WWW World Wide Web
XOR Boolean "exclusive or" function

62

A Tabula recta (Vigenère tableau)

Tab. A.1: Substitution table for Vigenère cipher.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

63

B Application directory tree
For better navigation through the semestral work, is in this chapter viewed the direc-
tory tree of the whole application. This code was created and tested with software
Visual Studio Code v1.45.1.

/..root directory of the application
public.................................public directory of the application

favicon.png..................................... icon of the web-page
index.html
manifest.json.....................................web-page manifest

src....................................source directory of the application
analyzer............directory containing implemented analysis features

isThisCiphers
CaesarAnalyzer.tsx
PasswordAnalyzer.tsx
VigenereAnalyzer.tsx

Analyzer.tsx....................analyzer main features and layout
isThis.tsx.....................Is this ...? tab-box implementation

ciphers......................directory containing implemented ciphers
cipherProtocols

Atbash.tsx
CaesarCipher.tsx
Kryptos.tsx
PasswordCipher.tsx
VernamCipher.tsx
VigenereCipher.tsx

CipherTab.tsx................implementation of the cipher tab-box
background.png
basicLayout.tsx
index.tsx main file for application render
JSON_english_bigram_data.json JSON database
JSON_english_quadrams_data.json...................JSON database
module.d.ts................................. created modules for API
react-app-env.d.ts
styles.css css file for customization of the GUI
theme.tsx..................Material-ui elements themes customization

.gitignore............................files, that should be ignored by git
package-lock.json
package.json project metadata (containing dependencies, scripts etc.)
README.md.README file created by the author of the application template
tsconfig.json configuration of Typescript

64

C Application controls

Fig. C.1: Controls of the web application in Analysis mode.

65

Fi
g.

C
.2

:
C

on
tr

ol
s

of
th

e
we

b
ap

pl
ic

at
io

n
in

C
ip

he
r

m
od

e.

66

	Introduction
	Substitution cipher
	Monoalphabetic ciphers
	Atbash
	Caesar cipher
	Keyword cipher

	Polyalphabetic ciphers
	Vigenère cipher
	Vernam cipher
	Kryptos sculpture
	Enigma

	Cryptoanalysis of substitution ciphers
	Frequency analysis
	Index of coincidence
	Kasiski's method
	N-gram fitness measure

	Web interface
	HTML5 (Hypertext Markup Language version 5)
	CSS (Cascading Style Sheets)
	JavaScript and TypeScript

	Application implementation
	Installation and start up
	Application development
	Application visualisation
	Section of the substitution ciphers
	Section of the cryptoanalysis

	Conclusion
	List of abbreviations
	Tabula recta (Vigenère tableau)
	Application directory tree
	Application controls

