
B R N O UNIVERSITY OF T E C H N O L O G Y

Faculty of Electrical Engineering
and Communication

B A C H E L O R ' S THESIS

Brno, 2020 P a v l a R y š a v á

T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

WEB-BASED APPLICATION FOR CRYPTOGRAPHIC
PROTOCOLS VISUALIZATION
WEBOVÁ APLIKACE PRO VIZUALIZACI KRYPTOGRAFICKÝCH PROTOKOLU

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Pavla Ryšavá
AUTOR PRÁCE

SUPERVISOR M.Sc. Sara Ricci, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020

Bachelor's Thesis
B a c h e l o r ' s s tudy p r o g r a m I n f o r m a t i o n S e c u r i t y

Depa r tmen t of T e l e c o m m u n i c a t i o n s

Student: P a v l a Ryšavá

Year of
study:

Academic year: 2 0 1 9 / 2 0

ID: 2 0 3 7 1 3

T I T L E O F T H E S I S :

W e b - b a s e d app l i ca t ion for c ryp tog raph ic p ro toco l s v i sua l i za t ion

I N S T R U C T I O N :

A t first, the s tuden t wil l s tudy the foundat ion of c ryp to logy , f o c u s i n g on m o n o a l p h a b e t i c a n d po l ya lphabe t i c c i phe r

(cons ide r ing a l so one - t ime pad s c h e m e) . T h e n , the s tuden t wil l s tudy the di f ferent a t tack t e c h n i q u e s that c a n be

app l ied to t h e s e s c h e m e s and how informat ion on the plain text c a n he lp in the at tack.

T h e n , t he s t u d e n t wi l l i m p l e m e n t a n i n t e r f a c e (e .g . , w e b p a g e) w h e r e g i v e n a p l a i n tex t , d i f f e ren t k ind of

a f o r e m e n t i o n e d e n c r y p t i o n s c h e m e s a r e p r o v i d e d a n d d i f f e ren t a t t a c k s to t he c o m p u t e d c i p h e r tex t a re

interact ively app l i ed .

R E C O M M E N D E D L I T E R A T U R E :

[1] S I N K O V , A b r a h a m ; F E I L , T o d d . E l e m e n t a r y c ryp tana lys i s . M a a , 2 0 0 9 .

[2] K A T Z , J o n a t h a n , et a l . H a n d b o o k of app l ied c ryp tography . C R C p ress , 1 9 9 6 .

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

Date of project
specification:

3 .2 .2020 Deadline for submission: 8 .6 .2020

Supervisor: M . S c . S a r a R i c c i , P h . D .

d o c . Ing . J a n H a j n ý , P h . D .

C h a i r of s tudy p rog ram board

WARNING:

ABSTRACT
The thesis deals with the creation of an interactive web appl icat ion for subst i tut ion
ciphers and their interactive cryptanalysis. S ix ciphers are implemented in the work.
Representatives of monoalphabet ic ciphers are Caesar 's cipher, A tbash , and Keyword
cipher and representatives of polyalphabetic ciphers are Vigenere cipher, Kryptos and
Vernam cipher. Frequency analysis, index of coincidence and n-gram stat ist ics as a
fitness funct ion are used for interactive cryptanalysis. The result is achieved by using
H T M L 5 , C S S and Reac tJS scr ipt ing language which is a JavaScr ip t library with the
ability of variable type-check.

KEYWORDS
Cryptography, subst i tut ion cipher, monoalphabet ic cipher, polyalphabetic cipher, Caesar
cipher, A tbash, Keyword cipher, Vigenere cipher, Kryptos, Vernam cipher, cryptanalysis,
frequency analysis, Kasisk i 's method, index of coincidence, n-gram statist ics, H T M L v 5 ,
Javascr ipt , Reac tJS , web-based appl icat ion

ABSTRAKT
Práce se zabývá vytvořením interakt ivní webové apl ikace pro subst i tuční šifry a jej ich
interakt ivní kryptoanalýzu. V práci je implementováno šest šifer a zástupci monoalfabe-
t ických šifer jsou Caesarova šifra, Atbaš a substi tuce s klíčovým slovem. Dále zástupci
polyalfabetických šifer jsou Vigeněrova šifra, Kryptos a Vernamova šifra. P ro interak­
t ivn í analýzu je použita frekvenční analýza, index koincidence a n-gramová stat ist ika
jako fitness funkce. Výsledek byl dosažen za pomoci H T M L 5 , C S S a skriptovacího j a ­
zyka Reac tJS což je JavaScriptová knihovna s možností typové kontroly proměnných.

KLÍČOVÁ SLOVA
Kryptograf ie, subst i tuční šifra, monoalfabetická šifra, polyalfabetická šifra, Caesarova
šifra, Atbaš, Subst i tutce s klíčovým slovem, Vigeněrova šifra, Kryptos, Vernamova šifra,
kryptoanalýza, frekvenční analýza, Kasisk iho metoda, index koincidence, n-gramová sta­
t is t ika, H T M L v 5 , Javascr ipt , Reac tJS , webová aplikace

RYŠAVÁ, Pav la . Web-based application for cryptographic protocols visualization. Brno,
2020, 66 p. Bachelor 's Thesis. Brno University of Technology, Fakul ta elektrotechniky
a komunikačních technologií, Ústav telekomunikací. Advised by M .Sc . Sara R icc i , P h . D .

Typeset by the t h e s i s package, version 3.05; h t t p : / / l a t e x . f e e c . v u t b r . c z

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT

Zadán ím t é t o bakalářské práce je implementace webové aplikace zaměřené na

tvorbu subs t i tučních šifer a jejich analýzu v in terakt ivní formě.

V prvn í kapitole 1 se práce zaměřuje na vysvětlení principu subs t i tučních šifer,

kde je zák ladn ím principem uta jení zprávy za pomoci určení subs t i tučn ího pravidla

jako je např ík lad definice tabulky, podle k te ré jsou p í smena nebo skupina p ísmen

z o tevřené zprávy následně nahrazována . Tyto šifry se následně dělí podle způ­

sobu šifrování. Nej základnějš ím dělením je dělení podle toho, kolik šifra používá

subs t i tučních abeced na monoalfabetické a polyalfabetické.

M o n o a l f a b e t i c k é s u b s t i t u č n í š i fry používají skrze celý proces šifrování pouze

jednu subs t i tučn í abecedu a jsou tak jedny z nej jednodušš ích ale zároveň nejméně

bezpečných pr incipů zabezpečení informací. Jsou tot iž j ednoduše prolomite lné už

jen př i použi t í frekvenční analýzy šifrového textu, protože i zde budou viditelné

un iká tn í vzorce výsky tu p ísmen v jednot l ivých jazycích.

Mezi notoricky známé zás tupce pa t ř í např . Caesarova šifra, kterou měl používat

s ám Julius Caesar ve své pr ivá tn í korespondenci [46]. Pr incipem t é t o šifry je imag­

inární posun abecedy o definovaný počet znaků dopředu nebo dozadu. Např ík lad

při použi t í klíče = 3 je p ísmeno A v celé zprávě nahrazeno p í smenem D , p ísmeno

B je nahrazeno p í smenem E atd.

Další rozebírané monoalfabet ické šifry v rámci t é t o práce jsou Atbaš používající

jako šifrovou abecedu obrácenou abecedu o tevřeného textu a substituce s klíčovým

slovem což je metoda, kdy je použ i t á abeceda modifikována heslem, které je vloženo

na začá tek celé abecedy - t í m jsou někte ré (ne-li všechny) znaky přesunuty.

P o l y a l f a b e t i c k é s u b s t i t u č n í š i fry používají v procesu šifrování více šifrových

abeced, k teré jsou na základě p ředem definovaného pravidla obměňovány a t ím

dochází k větší p ravděpodobnos t i , že jeden element z o tevřené zprávy bude za­

šifrován více možnými způsoby a tud íž je p o t ř e b a více metod k následné analýze a

prolomení šifrového textu.

Mezi jedny ze známějších polyalfabetických šifer pa t ř í Vigeněrova a Vernamova

šifra. Princip Vigeněrovy šifry je s t ř ídání abeced z definované subs t i tučn í tabulky,

k t e rá obsahuje všechny možné posuny abecedy po jedné pozici a ve k te ré se pohybuje

za pomoci prvních p ísmen v řadě a sloupci (viz př í loha A , kde je vyobrazen celá tab­

ulka pro mezinárodní abecedu). K t e r á abeceda bude použ i t a je definováno heslem,

kdy jednot l ivá p í smena z hesla definují subs t i tučn í abecedu pro jednot l ivé symboly

ze zprávy, k t e rá je šifrována. Ve zprávě se postupuje po jednot l ivých písmenech,

stejně tak v hesle, a tud íž je každé p ísmeno ze zprávy šifrováno j inou abecedou.

Princip Vernamovy šifry je stejný jako u Vigeněrovy, akorá t není použ i to heslo,

ale řetězec n á h o d n ě generovaných čísel, k te ré definují posun v abecedě a když jsou

dodržena všechna pravidla (jako např . že vygenerovaný klíč se nesmí už nikdy

použí t) tak je Vernamova šifra neprolomite lná .

Další polyalfabetické subs t i tuční šifry, k t e rá je v t é to práci dopodrobna roze­

b r á n a je Kryptos (z řeckého slova skrytý). Kryptos není tak úplně šifra jako spíše

kryptogram vytvořený z kombinace více šifer a je vyobrazený na soše na nádvoř í

hlavního š t ábu Central Intelligence Agency (CIA) ve Virginském Langley. K r y p -

togam se skládá ze čtyř část í a do dnešního dne jsou prolomeny pouze prvn í t ř i . V

aplikaci je implementován způsob šifrování použi tých u prvních dvou kryptogramu,

a to je Vigeněrova šifra s použ i t ím tabulky, kde použ i t á abeceda je modifikována

klíčovým slovem.

V poslední podkapitole o subs t i tučních šifrách je zmíněna i Enigma, což je stroj

používaný za d ruhé světové války Německem k šifrování ta jných zpráv. Principem

Enigmy je to t iž taky substituce definována technickým provedením stroje.

V následující kapitole 2jsou předs taveny vybrané metody pro analýzu šifrového

textu. Jde předevš ím o frekvenční analýzu, index koincidence a n-gramovou statis­

t iku jako fitness funkce pro sestavení použ i tého hesla. Je zde zmíněná i Kasiskiho

metoda.

F r e k v e n č n í a n a l ý z a je zvláště úč inná na monoalfabetické subs t i tučn í šifry, jak

bylo již zmíněno, protože každý jazyk m á un iká tn í frekvence p ísmen abecedy a tedy

na základě frekvenční analýzy šifrového textu je možné urči t , k teré p í smeno bylo

nahrazeno k te rým.

Index koincidence je používán zvláště k odhalení o j aký typ subs t i tučn í šifry

se j e d n á a j a k ý m jazykem byla původn í zpráva n a p s a n á a je tud íž j akýmsi rozšířením

frekvenční analýzy. Tento index může být použi t i na výpočet p r avděpodobné délky

hesla.

Kasiskiho metoda je spíše t akovým předchůdcem indexu koincidence. B y l a

hlavně použ ívána k odhalování délky hesla na základě v ý p o č t u společného dělitele

p o č t u p rvků mezi opakujícími se skupinami písmen.

Jako poslední zmíněná metoda analýzy je n - g r a m o v á statistika jako fitness

funkce, k t e rá je v aplikaci implementována pro analýzu šifrového textu, k te rý byl

identifikován jako výs tup Vigeněrovy metody šifrování. V p o d s t a t ě se j e d n á o

frekvenční analýzu definovaného n-gramu kdy je sč í tána logari tmická p ravděpodob­

nost jeho výskytu .

Ve t ř e t í kapitole 3 jsou předs taveny technologie a programovací jazyky použi té

k implementaci webové aplikace. Jsou to: Hypertext Markup Language version

5 (H T M L 5) , Cascading Style Sheets (CSS) a je p ředs taven i React JS což je pro­

gramovací jazyk typu TypeScript což je n a d m n o ž i n a jazyku JavaScript, k t e rá umožňuje

typovou kontrolu kódu.

Následující kapitola č. 4 popisuje implementaci vytvořené webové aplikace za

použi t í zmíněných technologií. Aplikace byla vyvinuta v pros t ředí Visua l Studio

Code verze 1.45.1 v operačn ím sys tému Windows 8.1 a s použ i t ím p rázdného pro­

jektu s taženého z G i tHub pod licencí M I T (odkaz na projekt je pod citací [48]).

J á d r e m aplikace je soubor index.tsx s i tuovaný ve složce s r c kde je celá aplikace

renderována a nás ledně zobrazena do základního webového rozhran í definovaného v

H T M L 5 souboru s názvem intex.html k t e rý je ve složce p u b l i c . Základní ovládací

prvky jako je vs tupn í a výs tupn í pole aplikace jsou definované v souboru basicLay-

out.tsx ve k t e r ém je definováno i p řep ínán í aplikačních m ó d ů šifrování a analýzy za

pomoci dvou plovoucích t lačí tek si tuovaných v p ravém dolním rohu aplikace.

Jednot l ivé m ó d y mají své vlas tn í tř ídy. Základní t ř í da pro šifrový mód je soubor

CipherTab.tsx ve složce c i p h e r s a základní t ř ída pro analyzační mód je soubor

Analyzer.tsx ve složce analyzer.
V š i f r o v é m m ó d u je na s t ránce zobrazen kontejner se záložkami, pod k te rými

se skrývají jednot l ivé šifry. I ty mají své vlas tn í t ř ídy pro lepší orientaci v kódu, kde

mají definované i své ovládací prvky, nas tavení a rozklikávací položku " A B O U T " ,

kde se nachází z jednodušený popis dané šifry. Všechny tyto prvky jsou následně zo­

brazené v záložkovém kontejneru. Jednot l ivé záložky šifer jsou i ba revně rozlišené na

zelené k te ré označují monoalfabet ické zás tupce a m o d r é označující polyalfabetické

zás tupce . Tato práce implementuje webovou aplikaci se zaměřen ím na subs t i tuční

šifry a odpovídající útoky. Aplikace byla vy tvořena předevš ím jako učební pomůcka

pro pochopení způsobu šifrování pomocí subs t i tučních šifer, protože substituce je je­

den ze základních kamenů používaných v pokročilejších systémech jako je např . A E S

a pro pochopení nej základnějších technik analýzy šifrových t e x t ů jako je frekvenční

ana lýza a index koincidence.

P ráce byla implementována jako webová aplikace z důvodu j ednoduchého přís­

tupu pro každého, kdo by se zajímal o subs t i tučn í šifry - není p o t ř e b a nic instalovat

nebo stahovat. Stačí ak tuá ln í webový prohlížeč jako např . Google Chromé, Firefox

nebo t ř eba Opera mimo Internet Explorer na k t e r ém nejsou na t ivně podporované

dva JavaScript objekty a to objekt Map a objekt Set.

DECLARATION

I declare that I have writ ten the Bachelor 's Thesis t i t led "Web-based appl icat ion for

cryptographic protocols v isual izat ion" independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the thesis and listed in the comprehensive bibl iography at the end of the thesis.

A s the author I furthermore declare that, with respect to the creation of this Bachelor 's

Thesis, I have not infringed any copyright or violated anyone's personal and /o r ownership

rights. In this context, I am fully aware of the consequences of breaking Regulat ion § 11

of the Copyr ight Ac t No . 121 /2000 Co l l . of the Czech Republ ic, as amended, and of

any breach of rights related to intellectual property or introduced within amendments to

relevant Ac ts such as the Intellectual Property Ac t or the Cr iminal Code, Ac t No . 4 0 / 2 0 0 9

Col l . , Sect ion 2, Head VI , Part 4.

Brno

author 's signature

A C K N O W L E D G E M E N T

I would like to thank to my supervisor Mrs . M .Sc . Sara Ricc i , P h . D . for professional

guidance, consul tat ion, patience and suggestions for my bachelor work. I would like to

also thank my family and friends especially to my sister, Tadeáš and Lukáš for undying

support and consultat ions.

Contents

Introduction 14

1 Substitution cipher 16

1.1 Monoalphabetic ciphers 16

1.1.1 Atbash 17

1.1.2 Caesar cipher 18

1.1.3 Keyword cipher 19

1.2 Polyalphabetic ciphers 20

1.2.1 Vigenere cipher 20

1.2.2 Vernam cipher 22

1.2.3 Kryptos sculpture 23

1.2.4 Enigma 25

2 Cryptoanalysis of substitution ciphers 26

2.1 Frequency analysis 26

2.2 Index of coincidence 28

2.3 Kasiski 's method 29

2.4 N-gram fitness measure 29

3 Web interface 32

3.1 H T M L 5 (Hypertext Markup Language version 5) 32

3.2 CSS (Cascading Style Sheets) 33

3.3 JavaScript and TypeScript 34

4 Application implementation 36

4.1 Installation and start up 37

4.2 Appl icat ion development 38

4.3 Appl icat ion visualisation 43

4.3.1 Section of the substitution ciphers 44

4.3.2 Section of the cryptoanalysis 48

Conclusion 53

List of abbreviations 62

A Tabula recta (Vigenere tableau) 63

B Application directory tree 64

C Application controls

List of Figures
1.1 Atbash cipher example 17

1.2 Caesar cipher encryption example 18

1.3 Derivation of alphabet with password 19

1.4 Encrypt ion example by Keyword cipher 20

1.5 Albe r t i cipher disk 20

1.6 Vigenere cipher running key encryption example 21

1.7 Vigenere cipher autokey encryption example 21

1.8 Different readings from tabula recta 22

1.9 Vernam cipher encryption example 22

1.10 Kryptos sculpture 24

1.11 Kryptos encryption example 24

1.12 Photo of Enigma machine 25

4.1 Successful application compilation 38

4.2 Simple application diagram 41

4.3 Divis ion of the application 44

4.4 Detailed Atbash settings 45

4.5 Detailed Caesar settings 45

4.6 Detailed Keyword settings 46

4.7 Detailed Vigenere settings 46

4.8 Detailed Kryptos settings 47

4.9 Detailed Vernam settings 47

4.10 Detailed view of frequency table 48

4.11 Detailed substitution menu 49

4.12 Detailed overview table 50

4.13 Detailed Is this Vigenere cipher? 51

C . l Analysis mode controls 65

C.2 Cipher mode controls 66

List of Tables
1.1 Numerated alphabet order 18

1.2 Ceasar cipher alphabet shift 19

1.3 Keyword substitution table 19

2.1 Frequency result comparison based on source size 27

2.2 English letter frequency 27

2.3 Language index of coincidences 28

2.4 N-fitness text preparation 30

A . l Tabula recta 63

Listings
3.1 Example of CSS document 33

3.2 Example of H T M L file wi th link to CSS document 34

3.3 Example of J S X syntax in ReactJS 35

4.1 Example of J S X syntax in ReactJS 39

4.2 Fragment of CSS document from the implemented application 40

Introduction
Privacy and secrecy of personal information always played an important role in the

history and nowadays, in the "Age of the Internet", it gains even higher importance,

because for earning these information, one does not need to make such effort. A l l

that is needed is connection to the Internet.

That is why diverse ciphers were invented. To understand the complex ciphers

as D E S , A E S or R S A it is important to understand the simplest ones, because they

include functions based on the idea of these primary ciphers, e.g. usage of secret

keys, substitution etc. That is also why substitution ciphers can be considered as

the ancestors of stream ciphers (i.e. ciphers using X O R function for encryption, e.g.

A 5 / 1 used for mobile phone communication) or block ciphers (i.e. ciphers operating

above a group of characters wi th fix length, e.g. above mentioned D E S or A E S) .

First and most known way how to encrypt plaintext is wi th the substitution

method. In fact, the monoalphabetic ciphers came to be for this purpose. However,

this method was not very secure. Even in the antiquity people were able to decipher

the content. Because of this, inventors began to add complexity into their ciphers,

e.g. usage of secret keys to somehow shift the used alphabet. This process caused

the creation of polyalphabetic ciphers.

The thesis focuses on the implementation of several substitutions ciphers and

show how they can be attacked. This is done by the creation of a web application

where the user can interactively choose which cipher to use and how the attack

should be carried out. Goal of this bachelor work is to implement three monoal­

phabetic, and three polyalphabetic substitution ciphers and interactive attacks on

chosen ciphers using H T M L 5 and JavaScript. Chosen monoalphabetic ciphers are

Atbash, Caesar cipher and Keyword cipher. I case of polyalphabetic ciphers we con­

sider are Vernam cipher, Vigenere cipher and Kryptos (I. and II. part). Moreover,

the cryptoanalysis consists on the implementation of frequency analysis, index of

coincidence and n-gram fitness password construction.

This is achieved by developing an interactive web application. We consider a

web-based method since is a widely used way and can easily reach users without the

necessity of being either downloaded or installed.

For the application creation was used H T M L 5 (Hypertext Markup Language

version 5), CSS (Cascading Style Sheets) and JavaScript library ReactJS. ReactJS

was chosen because it is so called " TypeScript", which is actually JavaScript which

has the ability to check variable type. For the G U I (Graphical User Interface)

implementation was used Mater ial-UI library in combination wi th CSS for deeper

customization of the predefined components. H T M L 5 was used just to create basic

environment for the ReactJS application. Appl icat ion itself was implemented so

14

that the user could play also with the settings of each cipher and that the process

of deciphering would not be automatic. User has to try different settings to uncover

the original message. For these reasons this application can be used as a teaching

tool, e.g. it can be used for demonstration of the encryption progress.

Sections 1 and 2 contain necessary theory for understanding of the problematic -

acquaintance wi th substitution ciphers with special focus on the chosen ciphers and

in the Chapter 3 is a short introduction to web interface and to used technologies

to create and implement the application (H T M L 5 , CSS and ReactJS).

Section 4 contains the description of the application implementation. First how

to install and boot up the application is described. Then there is an inside view into

the application itself - how does the Graphical User Interface looks like, what are

the functions behind and how is the whole interface controlled.

This thesis also includes three Appendixes:

• Appendix A that contains full Vigenere substitution table A (alternatively so

called tabula recta),

• Appendix B contains diagram of the application directory tree for better v i ­

sualisation of the code structure, e.g. how the application is coordinated in

within the directories, what each file does etc., and

• Appendix C that contains description of the application controls.

15

1 Substitution cipher
Substitution ciphers belong to the symmetric cryptography. Mark ing "symmetric"

is because ciphers belonging to this category use same secret key during encryption

and decryption. In the encryption process is somehow used of the key to hide

original message (so called plaintext) and then in order to achieve this plaintext from

the created ciphertext (encrypted message), is then the process of the encryption

inverted.

The principle of substitution ciphers is to encrypt plaintext to ciphertext by

replacing (substituting) a certain element (e.g. letter or a group of letters) wi th

another element by defined rules.

Substitution ciphers have two ways how to differ them. First , they can be di­

vided by the amount of elements that are substituted during the encryption process

on simple, homophonic and polygraphic substitution ciphers. In polygraphic sub­

stitution cipher, the algorithm operates above a group of elements (many-to-many)

while in simple substitution algorithm operates above only one symbol (one-to-one).

To simple substitution ciphers belongs e.g. Morse alphabet or pigpen cipher and an

example of polygraphic substitution cipher is Playfair cipher that was the first en­

crypting two letters together. Homophonic cipher uses one-to-many mapping based

on the frequency of used elements. That is one symbol (e.g. number) represents a

group of symbols (e.g. letters Q, W and X) because they appear scarcely in the

message and during the decryption it is then not hard to appoint the correct letter.

Another way how to differ substitution ciphers can be by whether the elements

are replaced by the same element in the whole process of encryption or not. In this

case, they are split in monoalphabetic and polyalphabetic.

A special substitution ciphers are the nomenclators and codes, which is some

sort of an "extension" of the nomenclators. Bo th use large homophonic substitution

tables usually containing graphical representatives mapped to letter, words or even

entire phrases. Example of a nomenclator can be for example The Rossignols' Great

Cipher used during the reign of Louise X I V [29].

1.1 Monoalphabetic ciphers

Monoalphabetic ciphers use only one cipher alphabet that does not change trough

out the whole process and thus are the simplest substitution ciphers but also very

insufficient in secrecy. Even if one randomly assigns all letters from international

alphabet, the number of all combinations is 4.033 x 10 2 6 thus created cryptogram can

be easily attacked by frequency analysis and can be broken without the knowledge

of the used secret key.

16

One of the first description of monoalphabetic ciphers appeared in Kdmasutra

(book from 4th century B . C .) but the concept is probably even older. The reason,

why is substitution cipher mentioned in the "Book of Love" is because author rec­

ommends especially to woman to learn to encrypt their messages so they could write

love letters to their lovers [14].

Mapping of the plaintext element to ciphertext element can be defined by algo­

rithms or by substitution tables where is defined by what wi l l be element substituted

by. For example defined substitution table replaces letter A by letter J and letter

N by letter K . Now if one would like to encrypt name " A N N A " by this table the

result would be " J K K J " .

1.1.1 Atbash

Atbash (also Temurah or Kabbalah) is a simple monoalphabetic substitution cipher

originally used for Hebrew alphabet. The transliterated name uAtbas" is formed

from first, last, second and penultimate letter from the Hebrew alphabet - Aleph-

Taw-Bet-Shin.

The principle of this cipher is that each letter from plaintext alphabet is substi­

tuted by its alphabet counterpart. For instance in international alphabet the letter

A is substituted by letter Z, letter B by letter Y , etc. Therefore, the encryption

process can be described as in the following formula 1.1,

c = N-m + l (1.1)

where c is the ciphertext letter position in alphabet, m is the plaintext letter position

in alphabet and TV is the total amount of letters in used alphabet (in international

alphabet it is equal to 26) [55].

M E S S A G E : H E L L O WORLD! ALPHABET: ABCDEFGHIJKLMNOPQRSTUVWXYZ

C I P H E R T E X T : SVOOL DLIOW!

Fig . 1.1: Example of plaintext encryption by Atbash cipher.

This cipher was probably invented by small Jewish and is also used in some pas­

sages in Bible, for instance in Jeremiah 51: l 1 where the word "Leb-kamai" translated

in English as "The Midst of Those who rise up against M e " is actually encrypted in

Atbash. When the word "Leb-kamai" is deciphered, one gets the word "Chaldea"

that is a country that existed that time and was part of Babylonia [27].

1 Jeremiah 51:1: "This is what the Lord says: 'See, I will stir up the spirit of a destroyer against
Babylon and the people of Leb-Kamai."' (Bible, New International Version).

17

Another interesting myth wi th the Atbash cipher, was the case of the worship

of so called "Baphomet" by the Templar knights (also known as "Sabbatic Goat") .

Though, when Atbash is used the world changes to something, that can be repre­

sented as Greek word Sophia {wisdom in English) [32].

1.1.2 Caesar cipher

Caesar cipher is one of the most known representative of the monoalphabetic ciphers.

A s the name hints, this cipher is named after Julius Caesar, who used it to encrypt

his private correspondence (according to biography LiDe vita Caesarum" written by

Gaius Suetonius Tranquillus [46]).

The principle of this cipher is very simple. It uses a secret key - number that shift

the set of used elements (in this case alphabet) in some direction (forwards or back­

wards) as shown in the Figure 1.2. Shifted alphabet wi th k = 3 wi th corresponding

plaintext letters can be seen in Table 1.2.

P L A I N T E X T : HELLO WORLD!
K E Y : +3 (A -> D)

C I P H E R T E X T : KHOOR ZRUOG!

Fig . 1.2: Example of plaintext encryption by Caesar cipher.

Since each letter of the alphabet can be represented by a number, the whole

process of encryption could be described as shown in 1.2

E(M) — (m + k) mod n = C (1.2)

where M represents the message in plaintext, m is the number representing element

from the message, k the chosen secret, n the amount of elements in the used alphabet

(e.g. for regularly used alphabet - A to Z - it would be 26) and C is then the received

ciphertext, seen in Table 1.1.

Tab. 1.1: Corresponding numbers to letters in English alphabet.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z

The process of decryption could be mathematically described as shown in 1.3

D(C) = (c + k) mod n = M' (1.3)

where C represents the ciphertext, c is the number representing ciphertext element,

and M' is then the decrypted message [54].

18

Tab. 1.2: Example of Ceasar alphabet shift wi th k = 3.

A B C D E F G H I J K L M N 0 P Q R s T U V W X Y Z
D E F G H I J K L M N 0 P Q R s T U V W X Y Z A B c

1.1.3 Keyword cipher

This section presents another substitution cipher which is a bit more sophisticated

wi th respect to Caesar one. The Keyword cipher uses two different methodologies:

shifting the letter as Caesar cipher and the usage of a secret keyword (password) as

a permutation. In particular, the chosen password is inserted at the beginning of

the alphabet. Then the alphabet is browsed from the start and all letters that had

already occurred are erased i.e. all the doubles are erased.

The creation process of the alphabet (so called transposition) is depicted in the

Figure 1.3.

P A S S W O R D : S E C R E T

A L P H A B E T : A B S D E F G H I J K L M N O P Q R S T U V W X Y Z

I N S E R T I O N : S E C R E T A B C D E F G H I J K L M N O P Q R S T U V W X Y Z / / d o u b l e s

E R A S U R E : S E C R T A B D F G H I J K L M N O P Q U V W X Y Z

Fig . 1.3: Transposition of the alphabet with the password "SECRET".

The encryption is then equal to the Caesar cipher process. Letters are then

during the process of encryption replaced by the corresponding letters from the

derived alphabet. Table 1.3 shows the created substitution table wi th the method

explained above.

Tab. 1.3: Substitution table for the Keyword cipher wi th password "SECRET".

A B C D E F G H I J K L M N 0 P Q R S T u V w X Y Z
S E c R T A B D F G H I J K L M N 0 P Q u V w X Y Z

Figure 1.4 shows an example of the Keyword cipher encryption process wi th the

chosen password " S E C R E T " . The decryption process is just inverted encryption

algorithm using the same derived alphabet (shifted wi th the same password).

19

P L A I N T E X T : HELLO WORLD!
KEY: SECRET NEW ALPHABET: SECRTABDFGHIJKLMNOPQUVWXYZ

C I P H E R T E X T : D T I I L WLOIR!

Fig . 1.4: Keyword cipher with password "SECRET" encryption example.

1.2 Polyalphabetic ciphers

Polyalphabetic ciphers uses more than one al­

phabet through the encryption process. These

alphabets are usually derived from the used

alphabet more than once. Actua l ly if it is

looked from a different angle, polyalphabetic

ciphers contains multiple different monoalpha-

betic substitutions. These ciphers were in­

vented as a reaction on low security level of the

simple substitution ciphers. In fact, monoal-

phabetic substitution ciphers can be decrypted

wi th just a paper, pen and one hour of spare F ig . 1.5: Alber t i cipher disk [6].

time.

The invention of first polyalphabetic cipher is attributed to Italian architect Leon

Batt is ta Alber t i . The Alberti cipher was described in his treatise De componendis

cifris in 1466. This cipher uses different mixed alphabets, variable periods of usage

of given mixed alphabet and it also includes four positions, that can be used as

nulls wi thin text. The complexity of the algorithm also led to invention of the so

called Alberti cipher disk depicted in Figure 1.5, which are two attached concentric

disks, that can rotate one wi th respect to the other and thus, the encryption and

decryption process of the Alber t i cipher was simplified [10].

1.2.1 Vigenere cipher

Vigenere cipher was first introduced by Giovan Bat t is ta Bellaso in his book La cifra

del. Sig. Giovan Battista Bellaso published in 1553. This cipher was then missat-

tributed to French cryptographer Blaise de Vigenere, that had in 1586 presented

similar cipher know as autokey or autoclave cipher [52]. Since then, is Bellaso's

cipher known as Vigenere's cipher.

Vigenere cipher uses passwords for determination of the alphabet derivation

through the process and thus uses multiple monoalphabetic ciphers [34]. There

are two modes of passwords: running key and autokey.

20

P L A I N T E X T : H E L L O W O R L D !
PASSWORD: B C D A B C D A B C . . .

C I P H E R T E X T T - I G L O " P Y R R M F !

Fig . 1.6: Example of plaintext encryption using running key Vigenere cipher.

In the running key variant (or the "basic" variant), alphabets are derivated

through position of a letter in plaintext alphabet from given password. It is actually

Caesar cipher, where each element of the plaintext, that is being encrypted, has

different key based on the password. When one gets at the end of the password and

the plaintext is not yet fully encrypted, the password is "restarted" which results in

password repetition. Encrypt ion example is depicted in Figure 1.6.

In the autokey variant (also known as autoclave cipher) is the chosen password

used only once and the rest of the cipher is encrypted using the plaintext itself [7].

Example is shown in Figure 1.7.

P L A I N T E X T : H E L L O W O R L D !
PASSWORD: PREFIX
USED PASSWORD: P R E F I X H E L L O W O R L D / / unused

C I P H E R T E X T T" _ W ~ V _ P _ Q ~ W T~V~V~W o !

Fig . 1.7: Example of plaintext encryption using autokey Vigenere cipher.

Table that holds all derivated alphabets and it is called "tabula recta". This

table is shown in Appendix A . This term was first used, and thus invented, in book

Polygraphiae2 by German monk Johannes Trithemius who used it wi thin a cipher of

his own - Trithemius cipher. The only difference between this cipher and Vigenere

is, that Trithemius cipher uses the alphabets in the order as they are written in

(thus passowrd is " A B C D . . . Z A B C . . . ") .

There are also different ways of reading from the tabula recta resulting in differ­

ently named ciphers. One is Beaufort cipher which was invented by Irish admiral

sir Francis Beaufort and the other is Variant Beaufort cipher. For better ori­

entation between readings, all methods assigned to each cipher (Vigenere, Beaufort

and Variant Beaufort) are shown in Figure 1.8 [].

2 Scan of this book is freely available online on web page of Library of congress. [50]

21

PLAINTEXT

p
A
S
S
W CIPHERTEXT

0
R
D

Vigenere cipher

CIPHERTEXT PASSWORD

p C
L 1
A P
1 H
N PASSWORD E PLAINTEXT

T R
E T
X E
T X

T

Beaufort cipher Variant Beaufort cipher

Fig . 1.8: Differences between readings from tabula recta resulting in different ci­

phers.

1.2.2 Vernam cipher

Vernam cipher (also known as the one-time pad) is the safest substitution cipher

ever invented. The encryption algorithm of this cipher is similar to Vigenere cipher

(see Chapter 1.2.1 for more details) with one major difference: the key used during

encryption is randomly generated in the length of the message or longer. Example

of such encryption is shown in Figure 1.9.

MESSAGE: H E L L O W O R L D !

KEY: 10 8 16 10 7 24 13 5 6 7 // randomly generated key

// H will be ciphered as if using Caesar cipher with key - 10, E with key ~ 8 etc.

C I P H E R T E X T : R M B V V U B W R K !

Fig . 1.9: Example of plaintext encryption by Vernam cipher.

The proof of the ciphers secrecy was mathematically proven by mathematician

Claude Elwood Shannon in his paper " A Mathematical Theory of Communication"

(commonly known as information theory) in 1948 where the key to all is entropy.

The theory claims that the ciphertext gives no additional information about the

plaintext if certain rules are applied [38].

In order for Vernam cipher to be truly safe one needs to abide four rules during

encryption:

• password used for encryption is randomly generated.

• length of the password is of the same length as the plaintext or longer,

• password is used for the encryption only once and

• there should be maximally two copies of the key and both should be destroyed

immediately after use [36].

Of course there are multiple problems. A t first most of the commonly accessible

random generators are pseudorandom, which mimic random generators using math-

22

ematical formulas. Unluckily, these pseudo-generated numbers can be predetermined

[37]. In order to ensure true secrecy a true random generator must be used but these

generators first use hardware device in order to generate a random value and second

they are significantly slower than pseudorandom generators [56].

A t second the key needs to be safely distributed. In fact, if an attacker gets the

key then it is equal to sending the message to receiver in plaintext. A n d at third,

there is also problem wi th the message authenticity. However the manipulation

of the ciphertext by attacker is possible only if attacker knows the content of the

original message [39].

The cipher was first described by American cryptographer Frank Mil le r in 1882.

35 years later it was reinvented by Gilbert Standford Vernam who had patented his

binary version of the cipher in 1919 [4]. In particular, the binary variant uses the

Boolean "exclusive or" function (short X O R) . The encryption process is then the

plaintext converted to binary form X O R e d to the bit-stream key again, randomly

generated. This is also why this cipher is also a representative of the stream ciphers

(ciphers where input is combined, usually by X O R function, with random bit-stream

key).

1.2.3 Kryptos sculpture

Kryptos sculpture comes from the workshop of J i m Sanborn - a Washington, D . C .

born artist. This two-part "S" shaped sculpture was installed in 1990 and holds four

cryptograms (photo can be seen in Figure 1.10). To this day are known only three

messages (deciphered in 1999) written on the plastic standing at the entrance to the

Central Intelligence Agency (short C I A) in Langley, Vi rg in ia [28].

Sanborn accepted the advise of Edward M . Scheidt, a retiring Chairman of C I A

Cryptographic Center and during four months he created four ciphertexts by com­

bining different techniques [2] that are know just by J i m Sanborn and W i l l i a m

Webster 3 [9].

The cryptogram cut through the copper plate in the first half of the sculpture

is divided into four parts by question marks. The second part of the sculpture is a

modified Vigenere substitution table (so called tabula recta, see Appendix A) using

international alphabet transposed by password " K R Y P T O S " (see Chapter 1.1.3 for

reminder of alphabet transposition).

The first and the second cryptograms of the Kryptos are encrypted with the

Vigenere cipher using the modified Vigenere substitution table created wi th the

transposed alphabet by password " K R Y P T O S " (see Chapter 1.2.1 for reminder of

the encryption process). The passwords used for Vigenere cipher itself are in the

3 That day head of the C I A and to whom had J im Sanborn provided a key to deciphering.

23

Fig . 1.10: Kryptos sculpture by J i m Sanborn at the C I A Headquarters Langley.

Vi rg in ia [40].

first part " P A L I M P S E S T " and in the second part " A B S C I S S A " . A n example of

encryption can be seen in Figure 1.11.

The thi rd ciphertext is more complicated. It again uses word " K R Y P T O S "

as the key, but the encryption process uses first Route Transposition followed by

K e y Columnar Transposition [45]. Since the application that is the result of this

Bachelor work implements just the method used within first and second part of the

cryptogram, this part wi l l not be described in detail.

P L A I N T E X T : H E L L O WORLD!
VIGENERE KEY: PALIMPSEST

C I P H E R T E X T : LMBSW KEFWH!

Fig . 1.11: Example of Kryptos 1st part encryption wi th password "PALIMPSEST".

A n d what do the deciphered messages contain? The first message is on a philo­

sophical base composed by J i m Sanborn himself. It reads: "Between subtle shading

and the absence of light lies the nuance of iqlusion.". The misspelling of illusion at

the end was intentional according to author to make the deciphering more difficult.

The second bears hints at something buried, holds the location of C I A by latitude

and longitude and also contains reference on W i l l i a m Webster, who is supposed to

know the exact location of the buried mystery on which the message refers to. The

third part contains a section from diary of archaeologist Howard Carter, that de­

scribes the opening of K i n g Tutankhamen's tomb on 26th of November 1922 again

wi th few misspellings.

24

Since the last part is stil l unknown J i m Sanborn released three clues to this day:

" B E R L I N " (2010), " C L O C K " (2014) and " N O R T H E A S T " (2020) [41].

The "celebrity" within the Kryptos fandom is a game developer and cryptologist

Elonka Dunin , that maintains a web-page of background information on the K r y p ­

tos and an online community of Kryptos fans. Her web-page can be found under

Reference [8]. Another personality in the Kryptos community is for instance Craig

Bauer who wrote book Unsolved! where the first three parts of Kryptos ciphertext

are described.

1.2.4 Enigma

Enigma (or precisely Enigma machine, pictured in Figure

1.12) was used during the Wor ld War II by Germans to

encrypt their internal communication (e.g. information

about the movement of the mil i tary force or diplomatic

communication).

The first machines were independently developed in

the period from 1917 to 1921 in several countries, but

these "Enigmas" were meant for commerce usage.

The construction of Enigma is very complex. The

machine consists of five rotors, panel of bulbs, keyboard

and since 1930 also a plugboard. This upgrade increased

the amount of possible key combinations (2 7 5 of combi­

nations).

Introductory settings of the machine played an im­

portant role. In the period 1930 to 1938 German army

used following settings to determine the daily key:

• order of three middle rotors inside of the machine,

• plugboard connections,

• ini t ial positions of rotors and

• position of rings that sets reflecting positions of first

and last rotors [18].

F ig . 1.12: Enigma M a ­

chine at the Imperial

War Museum, London

[44].

25

2 Cryptoanalysis of substitution ciphers
Substitution ciphers are nowadays easy to decrypt wi th the exception of Vernam

cipher as long as all the rules described in Chapter 1.2.2 are followed otherwise,

there is a slight chance of breaking the ciphertext. These days there are multiple

ways how to break the encrypted messages - from brute-force to complex mathemat­

ical analysis for gaining information. But basically all methods used for ciphertext

analysis are the most effective upon a larger amount of data - the bigger the exam­

ined sample is, the more information about the ciphertext is gained and thus the

decryption process is easier.

In this chapter wi l l be described multiple ways how to analyse ciphertext to

achieve as much as possible information to break the cryptogram especially those,

that have been used or studied for the application implementation.

2.1 Frequency analysis

Frequency analysis is a very simple analysis method that compares occurrences of all

elements in the ciphertext to occurrences of elements in a large sample of plaintext

data sourced for instance from books or speeches. This method is based on unique

patterns of occurrences of letters in given language. Examined elements during the

frequency analysis can be single or grouped letters for example two letters (so called

bigrams), three letters (so called trigrams) - in general so called n-grams. The

bigger is the n-gram the easier is the analysis, but also: the higher n the bigger is

the database of permutations of stated n-gram.

If one has the knowledge of in which language is the original plaintext writ­

ten in and the cryptogram is identified as monoalphabetic substitution cipher (on

polyalphabetic and homophonic ciphers must be used different techniques), then

next steps can reveal, what text is hidden in the ciphertext including what key is

used during encryption in case of for instance Ceasar cipher or transposed alphabet

by password cipher.

Example of reference frequency database can be seen in Table 2.2. The size of the

sample plays an important role. For instance, W i l l i a m F . Friedman had published

in his Military Cryptoanalysis an comparison of 75.000, 100.000 and 136.257 letters

long source frequency analysis. The differences can be seen in Table 2.1.

Once one have the frequencies of each element in ciphertext can one determine

what is used to represent each letter from the original message. Already this step

can, for instance, provide the key for Caesar cipher. However, for more sophisticated

ciphers the analysis can go on and, e.g. one can then take the results from the

analysis of the most used words and decide weather in the analysed sample are not

26

Tab. 2.1: Frequency analysis result comparison based on the size of the text sample

[16].

Source size Result

1. 75.000 letters E T R N I O A S D L

2. 100.000 letters E T R I N O A S D L

3. 136.257 letters E T R N A O I S L D

similar structures of words. For instance, the most used word in English is "the", in

the analyzed sample there is ciphered word " A O L " , and from the previous analysis

was found, that letter L represents letter E - from this knowledge can be deduced,

that letter A represents T and letter O represents H).

Of course result of the frequency analysis can be distorted when applied on a

short text. For instance in the given text " H E L L O W O R L D ! " is most common

letter L and if it would be substituted by any letter it would be mapped to letter

E because of its highest occurrence in the ciphertext (while letter E is the most

common letter in English - see Table 2.2).

Tab. 2.2: English letter frequency based on a sample of 40.000 words [12].

Letter Frequency (%) Letter Frequency (%)

E 12.02 M 2.61
T 9.10 F 2.30
A 8.12 Y 2.11
O 7.68 W 2.09
I 7.31 G 2.03
N 6.95 P 1.82
S 6.28 B 1.49
R 6.02 V 1.11

H 5.92 K 0.69
D 4.32 X 0.17
L 3.98 Q 0.11
U 2.88 J 0.10
c 2.71 z 0.07

In extreme cases the frequency pattern can be deliberately adjusted to make the

analysis harder or even impossible. A n excellent example in this case can be book

La Disparition by Georges Perec written in 1969 in which the occurrence of letter

E is omitted except for the name of the author. In 1995 was the book translated to

English as A Void by Gilbert Adai r under the same constraints [15].

27

2.2 Index of coincidence

The index of coincidence is another method used to mine information from cipher-

text. This method was first published in 1922 in a technical paper The Index of

Coincidence and its applications in cryptoanalysis by W i l l i a m F . Friedman that was

written as a further study of a concept of coincidences. The index of coincidence

detects how likely is to draw two same characters from text if randomly chosen. It

can be summarized by the following formula 2.1:

I C ~ N.(N-1)-Kr

 (2'lj

where TV is the total amount of letters in ciphertext, c the number of letters in the

alphabet (in international alphabet it is 26), n« the number of appearance of each

letter (where % identifies the letters position in the alphabet) and nr is the kappa-

random (the normalizing denominator of the index) and is counted as nr = -.

Sometimes are the results reported without the normalizing denomination. Then

the result is rather referred to as kappa-plaintext (np) [33].

The IC can be used to gain information about language and type of sub­

stitution cipher (whether the cipher is monoalphabetic or polyalphabetic). Bo th

information are gained based on the assimilation to pre-calculated values. For in­

stance in case of the type detection w i l l the IC for monoalphabetic substitution

ciphers oscillate around kp = 0.07 and higher and for polyalphabetic wi l l be the

value declining to Kr. If the index reveals that the ciphertext was created by simple

substitution it can also reveal in what language was the prime plaintext written in

[13]. Some values are presented in Table 2.3.

Tab. 2.3: np results for various languages [3].

Language IC Language IC

English 0.0667 Swedish 0.0681

French 0.0694 Polish 0.0607

German 0.0734 Danish 0.0672

Spanish 0.0729 Icelandic 0.0669

Portuguese 0.0824 Finnish 0.0699

Turkish 0.0701 Czech 0.0510

When the ciphertext is qualified as a polyalphabetic cipher encryption result,

then the index is used for password length computation. In general in the polyal­

phabetic substitution cipher each nth, 2nth, 3nth, etc. letter fall in the same cipher

alphabet [17]. When is counted the average index of coincidence for each probable

28

password length (i.e. IC for each position in password through out the whole ci-

phertext divided by the password length) then can be determined which password

length was probably used. The one that has the closest result to the "general" IC

(the one counted above the whole ciphertext) would be the most probable. Once

again, the precision of the result depends on how large the ciphertext is [5].

2.3 Kasiski's method

Kasiski 's method was a predecessor of the index of coincidence (see previous Chapter

2.2 for reminder). It was first described by Charles Babbage in 1846 in an unpub­

lished paper, but in 1863 German mili tary officer Friedrich W . Kasiski published a

book Die Geheimschriften unci die Dechiffrierkunst (in English Cryptography and

the Art of Decryption) thus the method was named after h im [42].

The principle of the Kasiski 's analysis is search of repeated keywords based on

the fact that identical plaintext encrypted by identical key results in the same cryp­

togram. It is also expected that the number of characters in between the repeating

groups is a multiple of the key length thus it would be possible to compute Greatest

Common Divisor (short G C D) of all these "spaces" to find the probable length of

the used key. The most useful repetitions are groups consistent of more than four

letters. Of course, in the ciphertext can also appear coincidental repetitions that

makes the analysis harder, however the analysis of all encountered "spaces" is stil l

possible because probability, that in the text wi l l occur more than one group of

four and more letters, that does not come from identical plaintext and password is

almost impossible.

Once the letters in between each identical group are counted divisors for each

gained values are found. Divisors 1 and 2 are usually omitted from considerations,

because password of length 1 is equal to Caesar cipher, so it is usually already

discovered by performing the frequency analysis (see Chapter 2.1 for reminder) and

passwords of length 2 are insufficient thus they are not commonly used. Then "gaps"

whose divisors differ too much are again omitted from consideration and from the

rest is counted the G C D for the most probable password length 1 [33].

2.4 N-gram fitness measure

For recapitulation n-gram is a continuous group of n elements from one defined

group. In cryptoanalysis the n-gram frequency databases can be used for a fitness

1 Sometimes happen, that the G C D is bigger than the real password length but this only results
in multiplication of the password in the final length of G C D .

29

function when searching for a password used in the polyalphabetic substitution

ciphers. The whole process is bui ld on a logarithmic probability and on the use of

the n-gram statistical database.

The first step in the process of recreation of the password is to find the probable

password length. This can be obtained for instance by the Kasiski 's method (see

previous Chapter 2.3 for reminder) or one can try to count the average index of

coincidence for each password length (see Chapter 2.2 for reminder).

Once the password length is known then the ciphertext is divided into groups

in the length of the counted password length. Each group is then divided into the

n-grams so that the following n-gram consists of the last n — 1 elements from the

previous and the last element would contain the first element from the group. For

example, if we consider the message " H E L L O W O R L D " and a password of length

5, then the message is divided in bigrams (n-gram where n — 2), i.e. [HE, E L , L L ,

L O , OH] and [WO, O R , R L , L D , DW]. For a better visualisation of the process

see Table 2.4.

Tab. 2.4: Bigram division of " H E L L O W O R L D " if the probable password length

would be equal to 5.

Index 0. 1. 1. 2. 2. 3. 3. 4. 4. 0.

0. H E E L L L L 0 0 H

1. W 0 0 R R L L D D W

The penultimate step takes the most time. This step consists of trying all the

combinations of the n-gram-length password on all the n-grams from one column

and count for each the fitness. The fitness is counted as a sum of decimal logarithmic

probabilities of each n-gram in the column. For instance, column 0. 1. from the

Table 2.4 consists of bigrams " H E " and " W O " . The mathematical formula would

be:

log(p(HEWO)) = log(p(HE)) + log(p(WO)) (2.2)

where probabilities of each bigram are counted as

V(HE) = =S5 V(W0) = ^ (2 . 3 ,

where UHE and nwo a r e the number of occurrences of each bigram in ciphertext

and TV is the total number of all the bigrams from the database.

The final step is to take the tried password fragments with the smallest fitness

result and put them together. Note that if the following password fragment has

smaller fitness than its elements are preferred to than the one that preceded it. For

30

example if indexes 0. 1. have counted fitness higher than in the indexes 1. 2., the

element that would be used for the index 1 would be from the password fragment

from indexes 1. 2.

In practise at least two n-gram fitness functions are usually combined - one for

password composition and one for the fitness of the decrypted text especially if a

range of password lengths is given. One fitness is used to put the password together,

then this password is applied on the ciphertext and wi th the other fitness function

is counted the final result that helps to determine which password in case of the

password length range is the best [19].

31

3 Web interface
W h o would not know these days what is a Web interface? Modern people use it

every day, but better question is, if they know something about the used technologies

that allows them to access large number of different Web sites.

Everybody knows that to access the Internet one must have a Web browser. In

order to access requested Web site browsers one can use W W W information system

(World Wide Web) that identifies web resources by their U R L (Uniform Resource

Location). According to the statistic from July 2019 the most three popular browsers

nowadays are Google Chrome, Apple Safari and Internet Explorer and Edge [30].

The basis of Web pages are H T M L or X H T M L documents, that can be viewed

on the monitors of P C s or Smartphones trough Web browsers and W W W . These

documents can also include scripts, that can be implemented in many programming

languages such as P H P , Javascript or Actionscript. In order to run these variable

scripts, one must install and allow in Web browser the necessary extension packages.

For instance, Javascript can not run without J V M (Java V i r t ua l Machine) [43].

Web pages can be divided based on usage of scripts into static and dynamic

pages. B y static web page is meant that its content does not change, on the contrary

in dynamic web page, multiple features allow to generate content automatically

while running on U R L . Nowadays dynamic pages are very popular, because the

interactivity gives the page better appeal then the static one [49]. Of course, too

much is always bad. If there are too many dynamic elements on the page, it can

slow down the loading of the page and also the browsing itself.

This Section focus on H T M L 5 , CSS and Javascript, because these languages

were chosen for implementation of the assigned application.

3.1 HTML5 (Hypertext Markup Language version 5)

Hypertext Markup Language version 5 is an open format markup language developed

by W H A T W G (Web Hypertext Appl icat ion Technology Working Group). H T M L 5

was introduced to the public in 2008 and in 2014 was this standard updated by

the " W3C Recommendation" group [20]. Before H T M L 5 was introduced there were

also some attempts to cross X M L and H T M L syntaxes, because H T M L 4 was not

upgraded since 2000. This experiment is referred as " X H T M L " [24].

A s it was mentioned before, H T M L 5 is a markup language. This means that

it consists of a tree of elements and text. Each component is marked wi th a tags.

There are two types of tags within H T M L : start tag and end tag. Example of such

pair can look like this: <html> . . . </html>. Some tags can also be during the

writ ing of the code omitted and implied by different tags, e.g. tag <html></html>

32

(for closer specification of optional tags see source [20] Section "12.1.2.4 Optional

tags").

H T M L 5 had brought several innovations compare to H T M L 4 . To these innova­

tions belongs e.g.:

• new elements (e.g. s e c t i o n , header, f i g u r e or embed),
• new attributes for several elements (e.g. hreflang, type and ref for area ele­

ment),

• content model (how elements may be nested) and

• new A P I s (e.g. A P I for enabling the offline Web application within application

cache).

Of course this new standard obsoleted several elements and attributes, e.g. elements

frame or attribute border on element object. For complete list of changes among

H T M L 5 compare to H T M L 4 see source [21].

3.2 CSS (Cascading Style Sheets)

Cascading Style Sheets is a language that define style of the Web documents writ­

ten in e.g. H T M L . CSS documents can define uniform color, width, height, align,

margins, padding and many other style related information for each element imple­

mented in the whole Web page. Example of how can such CSS document look like

is shown in Lis t ing 3.1.

There are three ways how to use CSS within the H T M L document:

1. define style of element wi th attribute style (e.g. <p s t y l e = " c o l o r : #FF0000">),
2. inside the <head> tag inside <style> tags, or

3. wi th extra CSS file (with *.css suffix).

Lis t ing 3.1: Example of CSS document

1 /* Example of used CSS f i l e */
2
3 P { // customization of a paragraph

4 c o l o r : #FF0000, red colour

5 t e x t - a l i g n : c e n t e r ;
6 >

The CSS file is than implemented within the H T M L document wi th tag <l ink>

wi th attributes rel that specify the relationship with H T M L file (in this case it would

be "stylesheet"). Moreover, href defines the CSS document (this attribute can also

33

contain the full path to the CSS file). A n example of such implementation is shown

in Lis t ing 3.2.

Lis t ing 3.2: Example of H T M L file wi th link to CSS document

<!D0CTYPE html>

<! -- Example of l i n k tag in HTML f i l e -->

<html>
<head>

< l i n k r e l = " s t y l e s h e e t " h r e f = " s t y l e . e s s " >
</head>
<body>

</body>
</html>

What is important to know is that there is a rule that says that the last used

argument wi thin CSS applies, because CSS styles can layer definitions [23].

3.3 JavaScript and TypeScript

JavaScript is a cross-platform object-oriented programming language, that allows

to create scripts within a Web page, and thus creating its dynamic content e.g.

menu animation, slide show etc. This language can also be used to create mobile

applications, or can be used in non-browser applications such as Adobe Acrobat,

but since this thesis is focused on the implementation of a Web-based application,

further content wi l l be concentrated on dynamic Web page development [25].

There are two ways how to implement Javascript scripts in created Web docu­

ment. Either is the script embed inside the H T M L (or X H T M L) document inside

<script> tags, or it is included in a *.js file in the Web source directory. The script

needs to be downloaded form server into the clients computer in order to be run.

Moreover, client has to have J V M (Java Vi r tua l Machine) environment installed

wi thin the Web browser [53].

TypeScript is an open-source superset of Javascript created and maintained

by Microsoft. It allows for example code refactoring, variable type check and many

other useful functions. This superset allows to create not just client-side application,

but also server-side application, which means, that the script does not have to be

34

downloaded into the clients computer in order to run. TypeScript files have *.ts

appendix and are used the same as Javascript files [51].

Javascript contains many frameworks and libraries, that developer can work wi th

such as jQuery, AngularJS, Node.js or ReactJS. Because ReactJS has been selected

to implement the specified application, this library wi l l now be introduced.

ReactJS

A s it was mentioned before, ReactJS is a JavaScript library dedicated to build

user interfaces maintained by Facebook. M a i n advantage of this language is, that

it can bui ld "single page" applications i.e. there is no necessity to reload the page

for viewing another content. Another advantage is that ReactJS allows to reuse

already created user interface components, renders just code, that is needed. It is

also faster, because it uses vir tual D O M (Document Object Model) elements which

tries to most effectively update the browser's D O M [35].

In ReactJS developer can also use J S X syntax. This syntax is similar to the

H T M L ' s (it uses tags), but it is all "hidden" inside a variable or component [22].

A n example of J S X syntax use is shown in the following Lis t ing 3.3:

Lis t ing 3.3: Example of J S X syntax in ReactJS

1 v a r m y V a r i a b l e = <hl> Example of JSX s y n t a x . </hl>;

In the implemented application ReactJS package Material-UI is used, that en­

ables easy definition of G U I elements. Mater ial-UI is an open-source crowd-funded

project licensed under M I T license. Installation of this package is simple. User just

assigns npm i n s t a l l @material-ui/core into the command line. The default CSS

design is then implemented with <link> tag. This project also contains many "free

to use" templates just as prepared Web page templates available in their shop on the

official page of Mater ial-UI. L ink to the G i t H u b project site wi th all documentation

is found under source [31].

35

4 Application implementation
In this chapter the complete implementation of the bachelor work is described.

A t first how to install the created application wi th essential packages for the

application to run and display correctly is explained. In particular, this chapter

briefly describes the system requirements and browser support. Then, we pass to

the description of the implemented scripts that allows to start up the application on

the local server. A t last there is an inside view into the application itself, i.e. its G U I

(Graphical User Interface) and implemented functions (chosen ciphers described in

the previous chapters and methods allowing the ciphertext analysis) with closer

description of their customizable settings.

For the implementation of the application was used an empty template from

G i t H u b that is licensed under the terms of M I T licence [48]. The whole application

was developed on Microsoft Windows 8.1 operating system in text editor Visual

Studio Code (version 1.45.1) with installed following extensions:

• Code Runner by Jun Han (version 0.10.0),

• Debugger for Chrome by Microsoft (version 4.12.8),

• ESLint by Di rk Baeumer (version 2.1.5),

• TSLint by Microsoft (version 1.2.3) and

• Typescript React code snippets by infeng (version 1.3.1).

A l l named extensions are available for free in the Visua l Studio Marketplace. Ex ­

tensions are also downloadable right in the Visua l Studio Code menu under View >
Extensions module.

A s programming languages we chose H T M L 5 and JavaScript library ReactJS.

The main reason of this choice is that React JS is more user-friendly in building user

interfaces, and unlike JavaScript it also checks the variable type by using Typescript

(for more details see Chapter 3.3).

The main file of the application is index.tsx and the general layout of the page

is defined in basicLayout.tsx. Bo th files are located in directory src. Further each

ciphers and analyzer methods has its own basic *.tsx files where all components are

implemented. They are located in directories a n a l y z e r and ciphers. These files are

then displayed in the corresponding layout based on the users choice. For a better

visualisation of the structure of the code see Appendix B and for inside applica­

tion controls see Appendix C where are described print-screens of the implemented

application.

36

4.1 Installation and start up

A s mentioned in Chapter 3.3, ReactJS uses npm scripts for installation and creation

of empty project, and manipulation wi th created applications that are defined in

the package.json. For their implementation is used Node.js environment - asyn­

chronous JavaScript runtime. In the implemented application are all these npm

scripts referenced in the react-app.d.ts file in the general application directory and

are imported during the application installation.

Installation

A l l what is needed to do is to get into the directory wi th the source, open command

line in this directory and run npm i n s t a l l command. This command installs all

needed packages for the application and the environment ReactJS. File where the

created application wi l l be stored can be anywhere on users computer.

JavaScript (and thus TypeScript) applications development is possible on any

device because JavaScript Integrated Development Environment (short IDE) can

run on any operating system also including the phone operation systems. Even

hardware requirements for applications development are not that crucial. According

to Dani Akash S, author of the JavaScript by example guide is recommended Linux or

Windows OS wi th minimum of 4 G B R A M or any Mac machine but only to achieve

better development experience [1]. The only problem that can be encountered is

wi th accessing and running the JavaScript applications in some older versions of

web browsers.

The implemented application uses the latest ReactJS (16.13.1) and the latest

Material-UI (4.10.1) and ReactJS supports it from version 16.8.0. The latest

ReactJS version depends on JavaScript Keyed collection Map and Set (definition of

both collections is described in standard E C M A S c r i p t 1 E C M A - 2 6 2) that are widely

supported by all latest builds of all major web browsers such as Google Chrome,

Firefox, Opera or Safari wi th the exception of Internet Explorer version 11, where

multiple essential functions described in the mentioned collections does not have

native support [26]. In case of Mater ial-UI it supports all the stable builds of the

major browsers including Internet Explorer 11 [47].

1 " E C M A is an industry association dedicated to standardization of informational and communi­
cation systems." - official E C M A fnternational® introduction [11]. JavaScript is E C M A standard
since 1997 under official name ECMAScr ip t .

37

Start up of the application server

For starting up the server with this application, the user types down the command

line npm s t a r t in the source directory. In Visua l Studio Code the server runs,

as default, on local server on port 3000 (start up settings can be changed in file

launch.json located in directory / .vscode).
First the script obtains all necessary information form the application and en­

vironment. Then it starts up the development server and emits all implemented

files. After this step follows the type-check of the code itself. If the type-check is

successful the command line wi l l report a successful compilation and the rendered

application wi l l be available for view in the browser on url http:

localhost:3000. Success message inside the Windows PowerShell command line is

depicted in Figure 4.1.

Windows PowerShell

Copyright (C) 2014 Microsoft Corporat ion. A l l r ights reserved.

PS D: \ReactJ5\Appl icat ion 4 Cryptographic Protocols> npm star t

> appl ica t ion- fDr -cryptDgraphic -protDCDls^ . f l .S s ta r t D: \React3S\Appl icat ion 4 Cryptographic Protocols

> r e a c t - s c r i p t s s ta r t

Compiled success fu l l y !

You can now view application-for-cryptographic-protocols in the browser.

Local: hrt±p://localhDst:300e/~Hrysav29
On Vour Network: http://192.16B.l.lB3:3eae/«Jtrysav29

Note that the development bu i ld i s not optimized.
To create a production builds use npm run b u i l d .

D

F ig . 4.1: Print screen of the success message written by the npm s t a r t script.

Once one finishes wi th the web page inspection, the development server can be

closed in the command line first by pressing the key combination of C t r l + C and

then by confirmation of the batch job termination or just by quitting the Visual

Studio Code environment.

4.2 Application development

the main file index.html is located in the p u b l i c directory. This file contains just

plain H T M L environment wi th definition of the web icon, manifest, Google font

stylesheet and a statement in case the JavaScript is not enabled in the browser. The

rendering file of the page is defined in the index.tsx file, that is located in the sre
directory. The rendering part of the code is shown in the Lis t ing 4.1.

In the above listing, in the ReactDOM. render () function is first declared element

that is supposed to be rendered and then placed in the index.html file, where the

38

file://D:/ReactJ5/Application
file://D:/React3S/Application
http://192.16B

List ing 4.1: Example of J S X syntax in React JS

import React from ' r e a c t ' ;
i mport ReactDOM from 'react-dom';
import { ThemeProvider } from '©material-ui/styles ' ;
import { C s s B a s e l i n e , /*...*/ } from '©material-ui/core';
import theme from './theme';
import s t y l e s from ' . / s t y l e s . ess ' ;

/*

ReactDOM.render(
<ThemeProvider theme={theme}>

< C s s B a s e l i n e c l a s s e s = { s t y l e s } / >
<App />

</ThemeProvider>,
d o c u m e n t . q u e r y S e l e c t o r (' # r o o t ') ,

) ;

element or in this case application should be shown both separated by comma.

A l l elements are closed in tags of <ThemeProvider> that implements the created

theme.tsx file which is almost equal to the CSS file but it allows more user-friendly

environment for elements customization than in *.css files especially when it comes

to customization of the Material-UI elements. Inside the theme-rendering tags is

the <CssBaseline/> tag that implements the CSS classes that are imported form

the styles, ess file and the <App/> tag that refers to the implemented application.

A s it was already mentioned before, the G U I the application uses Material-

U I by default and files theme.tsx and an styles.ess are implemented for a better

customization of the components. Bo th are located in / s r e directory. The theme.tsx

uses a createMuiTheme provider that allows to effectively override the predefined

looks of the Mater ial-UI elements. It also allows an implementation of a basic color

palette that is then easier accessible in the code. The only problem wi th this solution

is that the defined customization is general thus is then applied to all the modified

elements. For instance, if the implementation requires two fields that have different

colors while they are used, then the CSS is a better solution. Fragment of the

style.ess file is shown in the Lis t ing 4.2.

In the Lis t ing 4.2 was used the method of the external definition described in

the Chapter 3.2. In this particular file are used two types of element description

- in form of a general description (the upper example of the body and img) and

39

List ing 4.2: Fragment of CSS document from the implemented application

/* HTML elements customization */

body { // background d e f i n i t i o n

background - image: u r 1 (" b a c k g r o u n d . p n g ") ;
background - c o l o r : w h i t e ;
b a c k g r o u n d - p o s i t i o n : t o p ;
b a c k g r o u n d - p o s i t i o n - x : r i g h t ;
b a c k g r o u n d - a t t a c h m e n t : f i x e d ;
m i n - i n l i n e - s i z e : 500px;
b a c k g r o u n d - r e p e a t : n o - r e p e a t ;

}

img { // image customization

a l i g n - c o n t e n t : c e n t e r ;

/*
* CSS classes used for Material -UI elements

* customization (implemented under element

* a t t r i b u t e "className ").

*/

. t i t l e { // custom t i t l e

f o n t - s i z e : 80px;
t e x t - a l i g n : c e n t e r ;
t e x t - s h a d o w : 0 0 5px #9a9a9a;

}

/* ... */

in form of a class description (the lower example of a . t i t l e) . The general form

is applied on all defined instances in the rendered application without any further

mention in the code but in case of the class description have to be the class name

put in the corresponding attribte field. In case of the Mater ial-UI elements it is

assigned to the className attribute. These CSS classes have to be imported from

the *.css file - this is done in the rendering file index.tsx as it was mentioned few

paragraphs above.

The characteristic of the CSS is that these files contain only the description of

each element, that is then reproduced by the browser, when the code is rendered. It

40

also allows to have all the graphical definitions in one place thus a code duplication

is avoided and the maintenance becomes also easier. Another advantage of the

CSS is that it is widely supported even on the older browsers so the layout of the

application does not scatter when is the CSS file correctly implemented.

t h e m e . t s x i n d e x . t s x t h e m e . t s x i n d e x . t s x

s ty le .ess

b a s i c L a y o u t . t s x

analyzer

A n a l y z e r . t s x

ciphers

C i p h e r T a b . t s x

IsThis. tsx

cipherProtocols

Atbash.tsx VigenereCipher.tsx

CaesarCipher.tsx Kryptos.tsx

PasswordCipher.tsx VernamCipher.tsx

isThisCiphers

C a e s a r A n a l y z e r . t s x

P a s s w o r d A n a l y z e r . t s x

V Igen ere A n a l y z e r . t s x

Fig . 4.2: Simple diagram of the application hierarchy between files.

Now it is possible to pass to the description of the application implementation

itself, which represents the most complex part. Note that the complete tree directory

wi th all the application files is shown in Appendix B . This tree directory is also

simply reproduced in the Figure 4.2 where is also shown the hierarchy of the class

files and their bindings.

A s it was mentioned before the file that renders the whole application is the

index.tsx where is also defined the general layout of the application:

• the title of the application ("Application for Cryptographic Protocols"),

• application work field hidden under the <basicLayout/> tag that is refer­

ring to the application controls and functions and

• the application footer that contains the copyright reference to the page icon

and a hyperlink to the Mater ial-UI documentation page.

In the file index.tsx, files containing the element customization are also imported -

the previously described styles.ess and theme.tsx files.

The core file that puts together all the implemented functions and elements

is the basicLayout.tsx. In this file are defined al l the general functions such as

41

language change, J S O N databases loader, fields loader etc. This class also holds

important global variables such as the loaded J S O N databases, alphabet arrays

and regular expression variable for the input purification from undesired characters.

Most importantly this file implements the input and output field, the menu bar

located above these two fields and two floating buttons located in the right corner

of the page that are switching between the two environments - Cipher mode and

Analysis mode. This two "modes" are actually just two classes implementing the

content under the input/output field that are changed when one of the floating

button is pressed. This "change" is implemented in the basicLayout class in the

public function render() and is based on private class property of type boolean
named fabSwitch.

The CipherTab.tsx contains the class defining the tab-container with the imple­

mented ciphers. Each cipher have its own class and they are merged into the final

application layout by the CipherTab class.

A l l the cipher classes has three general properties from the CipherTab class (that

assumes it from the basicLayout class) which are:

1. identifier of the input field,

2. identifier of the output field and

3. identifier of the encrypt ion/decrypt ion switch.

Each cipher class also always contains a method defining the cipher algorithm wi th

the ability to run in the encryption mode just as in the decryption mode. This ability

was implemented because the processes are the same wi th the only exception of the

processed text. These methods names can be generalized as <cipher_name>Cipher(<parameters>
and are also always constituted from two steps:

1. input load to s t r i n g array from the input field (eventually also the key

load) that is cleared from undesirable characters and definition of other vari­

ables necessary for the progress - at least a variable where the encrypted or

decrypted text is stored and

2. the own cipher algorithm performed above the loaded input array with the

f o r E a c h O function.

Each cipher also defines it own control elements used for the settings visualization

(these are described in the following chapter 4.3).

The Analyzer.tsx contains class defining the first half of the implemented an­

alyzer - the frequency analysis table and substitution menu and overview table

containing various values, that can be found useful during the ciphertext analysis.

This class also assume three identifiers of the input and output fields and encryp­

tion/decryption switch and distributes it to the further implemented classes. In

the Analyzer class, the file IsThis.tsx is imported. This file holds the implemented

"cipher checkers". In particular, each "checker" has again its own implementa-

42

t ion file containing custom settings element and isThis<cipher_name>() method,

that implements public methods from corresponding cipher files in fixed decryption

mode with the exception of the Atbash cipher, that is implemented directly in the

IsThis.tsx selector container. Further details on how the settings of each cipher or

analyzer function looks like see the following Chapter 4.3.

4.3 Application visualisation

The application is thought for both creating encrypted data and analyzing them.

This allows users to understand the hardness of attacking the different implemented

ciphers even if they have knowledge either on the secret key or on the text that has

been encrypted. Moreover, users can personally try to attack the cipher.

A t the first boot of the application, the user wi l l be directed to the default page

containing these implemented substitution ciphers:

1. Monoalphabetic substitution ciphers (green tabs)

• Atbash cipher,

• Caesar cipher,

• Password-modified cipher,

2. Polyalphabetic substitution ciphers (blue tabs)

• Vigenere cipher,

• Kryptos , part I & II,

• Vernam cipher.

The basic G U I division can be seen in Figure 4.3. In the upper part of the

application layout are always located two fields: customizable Input field and

Output field available only for reading. Bo th fields are working wi th s tr ing type.

User can also find above these two fields three general controls described form left

to right:

• The encryption and decryption switch that defines whether wi l l be the action

buttons under each cipher tab encrypting or decrypting the given s tr ing in

the input field.

• Two buttons for resetting the fields and copying the output to input (these

two buttons are disabled in the Analyzer mode). The " R E S E T F I E L D S "

button throws everything in the application into the state that is loaded at

the first access to the page. The " C O P Y O U T P U T T O I N P U T " button allows

the user to copy the encrypted text into the input field. This step is necessary

since the encrypted text can be then pass to the analyzer in order to try to be

decrypted.

• The language selector that enables change between English (international)

and Czech alphabet, that are within the implemented functions.

43

The context of the lower part is based on the mode of the application. Modes can

be changed with buttons that are always situated at the right bottom of the page.

In the Cipher mode user can encrypt (or decrypt) plaintext that can be defined

in the input field. In the Analyzer mode user can play with created cryptogram

and try variable analytical methods.

F ig . 4.3: Basic layout division of the web application.

4.3.1 Section of the substitution ciphers

Applicat ion in the Cipher mode contains in the lower section box wi th six tabs of

two colors: green that represents monoalphabetic ciphers and blue that represents

polyalphabetic ciphers. Under each tab are situated the settings for each cipher.

Each setting wi l l be described in the following sub-chapters.

Atbash cipher

Since this cipher that is described in Chapter 1.1.1 does not have any possible

settings then there are situated only two elements in the box under tab "Atbash

cipher":

• button " A T B A S H G O ! " that encrypts the text given in the input field and

shows the result in the output field and

• table that shows mapping of the plaintext alphabet to the ciphertext alphabet

used during the encryption (or decryption).

44

Atbash tab layout can be seen in Figure 4.4.

— No settings available! —

ATBASH GO!

a b c d e f g h i j k l m n o p q r s t u v w x y z

z y x w Y L l s r q p o n m l k j i h g f e d c b a

Fig . 4.4: Detailed view of the Atbash cipher settings.

Caesar cipher

In case of the Caesar cipher described in the Chapter 1.1.2, the tab section wi th one

customizable input field for the cipher key definition labeled as a "Movement key"

field (type of number) wi th default value key = 3. This field is a required parameter

so if the field is empty, then the application shows a prompt box requiring a value

when the action button (labelled as " C A E S A R GO!") is pressed. But ton is located

under the key field. When no value is given to the prompt box, application wi l l use

the default value of key = 3.

The last component of the tab section is a table underneath all named compo­

nents, that enables better visualization of the defined movement within the used

cipher alphabet.

Caesar cipher settings are shown in the Figure 4.5.

Key"

3

Movement key (alphabet
movement).

J CAESAR GO J
a b c d e 9 h I J k 1 m n 0 p q r S 1 u V y z

d e f a h i J k 1 m n 0 P q 1 S i U V X y Z 3 b c

Fig . 4.5: Detailed view of the Caesar cipher settings.

Keyword cipher

Under the Keyword cipher tab can be found settings for the implemented cipher

described in Chapter 1.1.3. In this settings are again three components: action

button labelled " C I P H E R G O ! " , table showing the mapping of plaintext alphabet

to by password modified alphabet and a required field of type s t r i n g for custom

password wi th default value SECRET. Once again if an action button is pressed and

45

the password field is empty, application wi l l ask for the password or it wi l l use the

default value.

Pa &s word *

SECRET

Password used for alphabet modification.

CIPHER GO!

a b c d e f g h i j k l m n o p q r s l u v w x y z

s e c r I a b d f g h i j k l m n o p q u v w u y z

Fig . 4.6: Detailed view of the Keyword cipher settings.

Password field is also treated wi th protection against punctuation and other

characters that are not included in the used alphabet (like for instance numbers)

chosen by the selector located in the upper part of the application. A l l described

elements are depicted in the Figure 4.6.

Vigenere cipher

Vigenere cipher settings consists only from action button labeled " V I G E N E R E G O ! "

and of a customizable field of type s t r i n g that is once again required. The default

password is SECRET and when is this field left empty just as the following prompt

box then this default value is used. The algorithm of the cipher is described in the

Chapter 1.2.1.

Password*

S E C R E T

Please typedown the chosen password.

VIGENERE GO!

Fig . 4.7: Detailed view of the Vigenere cipher settings.

Custom password field is again treated from usage of different characters than

those that are included in the alphabet chosen in the general settings in the upper

part of the application. Depicted Vigenere settings are shown in the Figure 4.7.

Kryptos cipher, part I & II

In the Kryptos cipher tab are prepared setting for the cipher combination used

in the part I and II of the ciphertext engraved in the Kryptos sculpture. This

46

sculpture and its cryptogram is described in the Chapter 1.2.3. In this settings

are defined two customizable fields of type s t r i n g (both are required) with default

values of PALIMPSEST for Vigenere cipher and KRYPTOS for the used cipher alphabet

modification, both again protected from invalid characters. Ac t ion button located

beneath these fields is labeled " K R Y P T O S G O ! " and all these elements are shown

in the Figure 4.8.

Password lor Vigenere cipher * Password lor Password-Modifed cipher *

P A L I M P S E S T K R Y P T O S

Please typedown the chosen password Please typedown the chosen password.

K R Y P T O S GO!

Fig . 4.8: Detailed view of the Kryptos, part I & II settings.

Vernam cipher

Vernam cipher (also known as the one-time pad) described in the Chapter 1.2.2 have

in the tab section prepared once again two fields: one labeled as " U S E D P A S S ­

W O R D " , second labeled as " C U S T O M P A S S W O R D " . Bo th fields operate again

wi th the s t r i n g type. A t the beginning of the encryption (or decryption) process

is checked, if any value is given in the " C U S T O M P A S S W O R D " field. If the value

is given then is this value loaded into an array of number type. If the field is empty

a random key is generated. The used password then appears in the " U S E D P A S S ­

W O R D " field. Also the " C U S T O M P A S S W O R D " field is protected from loading

different characters - this time from other characters than numbers. Act ion button

located beneath the fields is labeled " V E R N A M G O ! " .

USED PASSWORD

5,2,14,2,14,0,18.6,16,7,10,4,21,11,9,7,7,13,12,6,13,20,3,9,8,5,22,9,9,2,25,19,21,25,20,5,7,2,7,5,22,16,18,6,20,25,20,22,1.23,17,21,3,7,2,21,2,19,11,13,18,7,4,5,8,13,
25,3,15,3,4,17,3,12,10,2,6,17,7,17,14,21,24,17,11,3,19,24,10,6,4.16.10

CUSTOM PASSWORD

21,4,7,15,3, ...

Field for cjstom password [otherwise auto generated)

^ ^ ^ H VERNAM GO! I ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H

History of used keys V

Fig . 4.9: Detailed view of the Vernam cipher settings.

If the encryption process is launched several times (more than once) an expansion

panel labeled as "History of used keys" appears beneath the action button where

47

all the previously used keys are saved. Figure 4.9 shows the Vernam settings in the

Cipher mode.

4.3.2 Section of the cryptoanalysis

When the application is switched to the Analyzer mode the lower part of the layout

changes. There are two general sections:

1. upper part where:

• the frequency analysis result table (see Chapter 2.1 for reminder) that is

counted immediately once the mode is changed or when the input field

changes (depiction of the exemplar table can be seen in the Figure 4.10),

• substitution menu and

• an overview table holding values such as index of coincidence (described in

Chapter 2.2), counted Ceasar cipher key from the performed substitutions

and other values, that can be useful during the cryptogram analysis,

2. the lower "Is this...?" section, where customized settings are located for quick

check if the ciphertext was not encrypted with some of the implemented cipher.

Character analysis

T I G E R B U N H F O S W A M L D Y C

11.83% 7.53% 5.3B% 10.75% 10.75% 2.15% 3.23% 5.38% 7.53% 5.38% 5.38% 2.15% 1.08% 5.38% 5.38% 3.23% 2.15% 4.3% 1.08%

Fig . 4.10: Exemplar result table with the result of the frequency analysis formed

from the given ciphertext.

Frequency analysis

The frequency analysis of the text in the input field is performed when the ap­

plication mode is changed, or when the input field is modified. The results that

are shown in the table labeled as "Character analysis" are then mirrored in the

"Frequency analysis menu" shown in the Figure 4.11.

The menu is constituted of two selectors - one for ciphertext letters (the ones

that are mirrored from the frequency analysis result) and one for the letters used for

substitution that are mirrored from the formed database created from a large sample

of text (see Chapter 2.1 for analysis process reminder). Values in the selectors are

sorted by the falling occurrence.

Both selectors have to contains chosen values otherwise the button " S U B S T I ­

T U T E ! " wi l l throw an information alert. This action button wi l l convert a l l the

chosen cipher letters to upper case plaintext letters and the modified text is then

48

shown in the output field. First substitution is created from the s t r i n g in the input

field but next steps consider the modified s t r i n g in the output field.

F R E Q U E N C Y A N A L Y S I S M E N U

C iphe r tex t letter • Subs t i t u te letter •

Please select ciphertext letter Please select substituting letter

S U B S T I T U T E !

RESTART ANALYSIS

S tuck 7 Here are ranked lists of most used words:

• Czech words: Matematika.cz
• English words: WordFrequency.info

Fig . 4.11: Detailed view of the substitution menu in the web application.

Under the button " S U B S T I T U T E ! " is located button for the analysis restart.

This button erase all achieved information and trows the analyzer in the default

state. Important is that the s t r i n g in the input field stays unmodified the whole

time.

Also in case the user is stuck wi th the analysis then under the substitution menu

are two links that refer to pages wi th frequency analysis of the most used words in

Czech and English language.

Overview table

The overview table is situated next to the Frequency analysis menu and is shown in

the Figure 4.12. This table provides the user at the beginning a few basic information

about the cipher: counted index of coincidence (see Chapter 2.2 for reminder) and

information gained from IC about whether is the cipher monoalphabetic, polyalpha-

betic or if it is just random text and information about probable plaintext language

(in this application are differed five languages: Czech, English, French, Spanish and

German). Other information are gained through executed substitutions.

Counted Caesar key is computed from the executed substitution by deduction

of the cipher letter position in alphabet from the substituting letter position. The

best key is then decided based on the number of key occurrences. This function

was implemented by using Hash Map package, its implemented functions and the

use of the native function s o r t () above arrays in JavaScript. Atbash counter

49

http://Matematika.cz

Index of co inc idence: 1 .592332865825152

Probable type of subst i tut ion cipher: monoalphabet ic

Probable language: Engl ish

Counted Caesar key: 0

Atbash cor respondence counter: 0

Pa s s wo r d a 1 p h a bet: -frrrrrrrrrrrrrrrrrrrrrfrr

Fig . 4.12: Detailed view of the overview table in the web application.

simply counts the occurrences of matches between the executed substitution and

the Atbash alphabets mapping and finally the Password alphabet shows cipher

alphabet created from all past substitutions.

Is this...? section

The Is this... ? section is similar to the cipher setting as they were described in the

Chapter 4.3.1 in some cases with small differences. The idea of this section is, that

user does not have to switch between the Analysis mode and Cipher mode in order

to confirm whether an examined ciphertext is not encrypted by one of the given

substitution ciphers.

O n the first sight can be seen that some ciphers are missing - Kryptos and

Vernam. In case of Vernam there is a simple answer since it is unbreakable. In case

of Kryptos it is because the analysis of the Kryptos is not simple since this cipher

uses a mixture of two encrypting method. Analysis have to be "handmade" since

no method was yet encountered that could make the Kryptos analysis easier.

A s it was already mentioned, the cipher setting implemented in this section have

slight anomalies in order to make the analysis more comfortable. The only setting

that does not change is in case of Atbash since it has none.

In case of the Caesar cipher an extra button labeled " O T H E R P O S S I B I L I ­

T I E S " is located under the action button that is just renamed to "IS T H I S C A E ­

S A R ? " but it implements the same function as in the Cipher application mode (but

just the decryption). The " O T H E R P O S S I B I L I T I E S " button is at the beginning

50

disabled because first have to be pressed the action button that executes the de­

cryption of the ciphertext by a given key. This button holds a dialogue window,

which contains the decrypted ciphertext by all the possible keys (in the length of

the chosen alphabet).

In case of the Password-modified cipher the only change except the renamed

action button to the "IT T H I S P A S S W O R D - M O D I F I E D ? " is in the table situ­

ated under the settings. It maps ciphertext letters to plaintext letters and at the

beginning it the first row filled wi th dashes. This table fills wi th each executed

substitution.

Is this...?
CAESAR CIPHER KEYWORD CIPHER VIGENER CIPHER

Password * Password length *

e.g. 3-8 or 5

Please typedown the chosen password. Password length for computation (min 2, man 99).

IS THIS VIGENERE?

GUESS PASSWORD?

Input length: 118

Computed password length: S

Best computed password: —

Fig . 4.13: Detailed view of the Vigenere cipher settings in the Is this...? section.

The greatest change is in the Vigenere cipher settings. This section works

only when the chosen language in the language selector in the menu bar above

the input and output field is English because there is no free n-gram database for

Czech language!

The settings are shown in the Figure 4.13. Three new elements had appeared:

new customizable field for password length range, button " G U E S S P A S S W O R D ? "

and a table wi th information about input length, computed password length and best

computed password. These all new elements appear here because for the Vigenere

cipher analysis was chosen to implement the N-gram fitness method described in

the Chapter 2.4.

In this particular case are implemented bigram fitness for password construction

and quadgram fitness for final check of the decrypted text using the bui ld password.

The databases used in the process are implemented wi th use of J S O N files located

in the \ s rc directory (for the application tree directory see Appendix B) .

ATBASH CIPHER

51

The probable password length is computed using the index of coincidence for al l

possible password lengths considering that each letter form alphabet was used only

once (see Chapter 2.2 for the principle reminder). For example for international

alphabet (English language) would be the average IC counted for lengths 1 to 26.

The length range field is protected from other characters than one number or

two numbers separated by dash and from empty field. Default value for this field is

the computed password length. Value written into this field is read as a s t r i n g and

then loaded to a number array that is then used in the password construction func­

tion hidden under the " G U E S S P A S S W O R D ? " button. The password construction

function is also partially protected from "freezing" since the password construction

is a very demanding operation. Part ial ly protected it is because if the input is too

long and the user does not give a password length range or gives the range too wide,

a prompt box wi l l appear informing the user about the complexity of the operation.

Though if the user wi l l not respond or wi l l insist on the wide range there is a high

probability that the application wi l l freeze.

52

Conclusion
This thesis focuses on the creation of an interactive web-based application for

monoalphabetic and polyalphabetic ciphers and their cryptoanalysis. W i t h i n the

application were implemented three monoalphabetic substitution ciphers in partic­

ular Atbash, Caesar and Password-modified cipher and three polyalphabetic ciphers

precisely Vigenere and Vernam cipher and cipher combinations used in Kryptos

sculpture.

The most challenging part was the creation of a methodology that allows users

to directly attack (cryptoanalysis) the aforementioned ciphers. The attacks consist

on 3 parts:

1. an interactive frequency analyses field which allows user to attack the en­

crypted message.

2. an overview table wi th index of coincidence and counters that helps in the

attack choice, and

3. the possibility to check if the cipher is of a determined form for some selected

cases.

In the frequency analysis, the user can compare the statistical letter occurrences

in the selected language wi th the one in the ciphertext. This plus an interactive

interface allow the user to directly attack the cipher keeping trace of the change

made.

The aforementioned "possibility check" cases are functional for Atbash, Ceasar

cipher, Keyword cipher or Vigenere cipher. These ciphers have its own settings that

allow user to try if the ciphertext is not created by one of the chosen ciphers.

In the overview table, for instance Atbash counter informs the user if some of

the executed substitutions are equal to the one in Atbash cipher as well as Counted
Ceasar Key informs the user about what key was probably used (again counted

from the executed substitutions).

Moreover, the n-gram fitness is an important part of the statistical analysis which

allows one to gain the most accurate results in password reconstruction in case the

cipher text is identified as a result of an polyalphabetic cipher.

The project was implemented as a web-application because it is easily reachable

by a large spectrum of users and it does not have to be installed nor downloaded.

A l l that is required is latest version of any modern web browser such as Google

Chrome, Firefox or Safari (with the exception of Internet Explorer).

The whole web application was developed using the Visua l Studio Code (version

1.45.1) environment on Windows 8.1 operating system.

Languages used for implementation of the application itself are H T M L 5 , CSS

and JavaScript. H T M L 5 was chosen because of several reasons:

53

• it is one of the commonly used (and supported) languages among the W W W

(World Wide Web),

• it is the current version of H T M L language and

• it is easy to learn and to use.

JavaScript was chosen since it is widely used and supported, easy to learn and

user-friendly. The precised JavaScript library that was employed to implement the

application was TypeScript library Reac tJS 2 . CSS was applied alongside wi th the

Material-UI, which is ReactJS package for easier G U I implementation.

2 For reminder - TypeScript is a superset for JavaScript, with many more functions, especially
with ability to check variable type

54

Bibliography
[1] A K A S H S, D . JavaScript by Example. 2017. U R L : h t t p s : / / s u b s c r i p t i o n . p

acktpub.eom/book/web_development/9781788293969/l/011vllsec8/syst
em-requirements.

[2] A P P L , F . Hádanka jménem Kryptos: Rozluští konečně někdo největší tajemství

CIA? 2019. U R L : https://enigmaplus.cz/hadanka-jmenem-kryptos-rozl
u s t i - k o n e c n e - n e k d o - n e j v e t s i - t a j e m s t v i - c i a / . last revision 14. 5. 2019.
[cit. 2020-25-05].

[3] B A R T E R , A . Index of Coincidence. 2016. U R L : h t t p : / / a l e x b a r t e r . c o m / s t
a t i s t i c s / i n d e x - o f - c o i n c i d e n c e / , last revision 22. 12. 2016, [cit. 2020-02-
06]. Cryptography, Alex Barter.

[4] B E L L O V I N , S. M . "Frank Mil ler : Inventor of the One-Time Pad". In: Cryp-

tologia 35.3 (2011), pp. 203-222. DOI: 10.1080/01611194.2011.583711.
eprint: https://doi.org/10.1080/01611194.2011.583711. U R L : h t t p s :
/ / d o i . org/10. 1080/01611194.2011.583711. [cit. 2020-25-05]. A n earlier

version is available as technical report CUCS-009-11.

[5] B R O W N , D . C . " A Cryptanalysis of the Autokey Cipher Using the Index

of Coincidence". In: Proceedings of the ACMSE 2018 Conference. A C M S E

'18. Richmond, Kentucky: Association for Computing Machinery, 2018. ISBN:

9781450356961. DOI: 10.1145/3190645.3190679. U R L : h t t p s : / / d 0 i . 0 r g / l
0.1145/3190645.3190679. [cit. 2020-03-06].

[6] B U O N A F A L C E , A . File:Alberti cipher disk.JPG. [online]. 2008. U R L : h t t p s
: / / c o m m o n s . w i k i m e d i a . o r g / w i k i / F i l e : A l b e r t i _ c i p h e r _ d i s k . J P G . last

revision 18. 3. 2008, [cit. 2020-19-05]. Wik imedia Available under C C B Y - S A .

[7] CrypTool contributors. Autokey. 2020. U R L : https://www.cryptool.org/en
/cto- c i p h e r s / a u t o k e y . last revision 4. 6. 2020, [cit. 2020-04-06]. Copyright

© 1998 - 2020 CrypTool Contributors.

[8] D U N I N , E . Kryptos. 2002. U R L : h t t p s : //elonka. com/kryptos/. last revision

29. 1. 2020, [cit. 2020-30-05].

[9] D U N I N , E . This is a transcript of a portion of ABC's World News Tonight

broadcast from April 2, 1991. 2004. U R L : h t t p s : / / e l o n k a . com/kryptos
/mirrors/WNT .html, last revision 11. 3. 2004, [cit. 2020-30-05]. From page

dedicated to Kryptos h t t p s : / / e l o n k a . com/kryptos/, created by Elonka

Dunin .

55

http://acktpub.eom/book/web_development/9781788293969/l/011vllsec8/syst
https://enigmaplus.cz/hadanka-jmenem-kryptos-rozl
http://alexbarter.com/st
https://doi.org/10.1080/01611194.2011.583711
https://d0i.0rg/l
https://www.cryptool.org/en

D U P O N T , Q. The Printing Press and Cryptography. 1st Edi t ion. Routledge,

2017. ISBN: 978-1-138-24464-1. DOI: https://doi.org / 1 0.4324/9781315267
449. U R L : http://iqdupont.com/wp-content/uploads/2018/06/DuPont-2
018-The_Printing_Press_and_Cryptography.pdf. [cit. 2020-19-05]. U.S .

E C M A Internat ional®. ECMA International - Standards@Internet Speed. 2020.

U R L : https://www.ecma-international.org/. last revision 13. 3. 2020, [cit.

2020-05-06]. Ecma Internat ional®.

English Letter Frequency (based on a sample of 40,000 words). U R L : h t t p : / / p

i.math.Cornell.edu/~mec/2003-2004/cryptography/subs/frequencies
.html. [cit. 2020-01-06]. M a t h Explorer's Club, National Science Foundation

supported project. Cornell Department of Mathematics.

F O J T O V A , L . "Softwarová podpora výuky klasické k ryp toana lýzy" . Master

thesis. Brno University of Technology. The faculty of Electrical engineering

and Communication. Department of Telecommunications, 2010. U R L : h t t p :
//hdl.handle.net / 11012/6354. [cit. 2019-12-12]. Supervisor doc. Ing. Kare l

Burda, CSc.

F O L T Ý N E K , T.; P R I C H Y S T A L , J . Komprimace a šifrování 2008. U R L : h

t t p s : / / i s . mendelu . c z / e k n i h o v n a / o p o r y / i n d e x . p l ? o p o r a = 621. [cit.

2020-27-05]. Elektronické s tudi jní mater iá ly , Mendelova univerzita v Brně .

Frequency Analysis: Breaking the Code. 2019. U R L : h t t p s : / / c r y p t o . i n t e r
active-maths . com/frequency-analysis-breaking-the-code .html. [cit.

2020-01-06]. Crypto Corner, © 2013-2019 Daniel Rodriguez-Clark, A l l rights

reserved Interactive Maths, © 2012-2019 Daniel Rodriguez-Clark, A l l rights

reserved.

F R I E D M A N , W . F . Military cryptoanalysis, part I. 4th Edi t ion. 1952, p. 36.

U R L : h t t p s : //www . nsa . gov/Portals/70/documents/news-f eatures/de
classified-documents/friedman-documents/publications/F0LDER_241
/41748389078762.pdf. [cit. 2020-01-06]. R E F ID:A56895, National Security

Agency Washington 25, D . C Declassified and approved for release by N S A on

02-03-2014 pursuant to E . O . 135226.

F R I E D M A N , W . F . "The index of coincidence and its applications in crypt-

analysis". In: 1935. U R L : https://www.nsa.gOv/Portals/70/documents/n
ews-fe a t u r e s / d e c l a s s i f i e d - d o c u m e n t s / f r i e d m a n - d o c u m e n t s / p u b l i c a t
ions/F0LDER_233/41761039080018.pdf . [cit. 2020-02-06]. R E F ID:A64722,

United States, Government printing office, National Security Agency, Wash­

ington D . C .

56

https://doi.org/10.4324/9781315267
http://iqdupont.com/wp-content/uploads/2018/06/DuPont-2
https://www.ecma-international.org/
http://p
https://www.nsa.gOv/Portals/70/documents/n

G A J , K . ; O R L O W S K I , A . "Facts and Myths of Enigma: Breaking Stereo­

types". In: (2003), pp. 106-109. DOI: 10.1007/3-540-39200-9. U R L : h t t p s
://link.springer.com/content/pdf/10.1007%2F3-540-39200-9_7 . pdf.
[cit. 2019-12-13]. Advances in Cryptology — E U R O C R Y P T 2003. Berl in, Hei­

delberg: Springer Ber l in Heidelberg, 2003, 2656.

G U B A L L A , J . Implementierung eines Vigenere Solvers. 2015. U R L : h t t p s :
/ / www . g u b a l l a . de / implementierung - eines - vigenere - s o l v e r s , [cit.

2020-03-06]. www.guballa.de, © 2015 Jens Guballa.

HTML, Living standard. 2019. U R L : https://html.spec.whatwg.org/. last

revision 13. 12. 2019, [cit. 2019-16-12]. Web Hypertext Appl icat ion Technology

Working Group (W H A T W G) Copyright © 2018 W H A T W G .

HTML5 Differences from HTML4- 2014. U R L : https://www.w3.org/TR/htm
1 5 - d i f f / . last revision 9. 12. 2014, [cit. 2019-16-12]. W 3 C : Leading the web

to its full potential Copyright © 2019 W 3 C ® .

Introducing JSX. 2019. U R L : h t t p s : / / r e a c t j s . o r g / d o c s / i n t r o d u c i n g - j s x
.html, last revision 21. 2. 2019, [cit. 2019-17-12]. React - A JavaScript library

for building user interfaces Copyright © 2019 Facebook Inc.

J A N O V S K Ý , D . CSS styly - úvod. 2019. U R L : h t t p s ://www. jakpsatweb . c
z/ c s s / c s s - u v o d . html, last revision 13. 6. 2019. [cit. 2019-17-12]. Jak psá t

web: o tvorbě , úd ržbě a zlepšování in ternetových s t ránek.

J A N O V S K Ý , D . Syntaxe XHTML. 2019. U R L : https://www.jakpsatweb.cz
/html/xhtml.html. last revision 13. 6. 2019. [cit. 2019-16-12]. Jak psá t web:

o tvorbě , úd ržbě a zlepšování in ternetových s t ránek.

JavaScript. 2019. U R L : https://developer.mozilla.org/en-US/docs/We
b / J a v a S c r i p t , last revision 9. 12. 2019, [cit. 2019-17-12]. M D N Web Does ©

2005-2019 Moz i l l a and individual contributors. Content is available under C C

B Y - S A 2.5.

JavaScript Environment Requirements. 2020. U R L : h t t p s : / / r e a c t j s . o r g / d o
c s / j a v a s c r i p t - e n v i r o n m e n t - r e q u i r e m e n t s .html. [cit. 2020-05-06]. React

- A JavaScript library for building user interface. Copyright © 2020 Facebook

Inc.

Jeremiah 51. 2020. U R L : https://www.biblegateway.com/passage/7sea
rch=Jeremiah+51°/„5C&version=NIV. last revision 1. 1. 2020, [cit. 2020-22-
05]. BibleGateway.com: A searchable online Bible in over 150 versions and 50
languages Holy Bible, New International Version®, NIV® Copyright ©1973,
1978, 1984, 2011 by Bibl ica , Inc.® Used by permission. A l l rights reserved

worldwide.

57

http://www.guballa.de
https://html.spec.whatwg.org/
https://www.w3.org/TR/htm
https://reactjs.org/docs/introducing-jsx
https://www.jakpsatweb.cz
https://developer.mozilla.org/en-US/docs/We
https://reactjs.org/do
https://www.biblegateway.com/passage/7sea
http://BibleGateway.com

Kryptos. 2007. U R L : h t t p s : / / w w w . c i a . g o v / a b o u t - c i a / h e a d q u a r t e r s - t
our/kryptos. last revision 29. 1. 2020, [cit. 2020-30-05]. Central Intelligence

Agency: The work of a Nation. The center of Intelligence.

L Y O N S , J . Codes and Nomenclators Cipher. 2012. U R L : h t t p : / / p r a c t i c
a l cryptography . com/ci p h e r s / c o d e s - a n d - n o m e n c l a t o r s - c i p h e r / , [cit.

2020-30-05]. Practical Cryptography, Copyright James Lyons © 2009-2012.

M A R T I N , J . The best web browsers for 2019. 2020. U R L : https://www.tec
hadvisor.co.uk/test-centre/software/best-web-browsers - 3 6 3 5 2 5 5 / .

last revision 6. 8. 2019, [cit. 2019-17-12]. Tech Advisor - technology reviews,

advice, videos, news and forums Copyright © 2019 I D G Communications L t d .

A l l Rights Reserved.

Material-UI. 2019. U R L : https://github.com/mui-org. last revision 14. 12.

2019. G i tHub . The world's leading software development platform.

MATUŠINSKÝ, P. Šifry v Bibli - Atbaš. 2007. U R L : h t t p : / /www . myty . i
nf o/view . p h p ? c i s l o c l a n k u = 2007110003. last revision 26. 11. 2007, [cit.

2020-21-05]. M ý t y a skutečnost .

M E N E Z E S , A . J . ; V A N S T O N E , S. A . ; O O R S C H O T , P. C. Van. Handbook

of Applied Cryptography. 1st Edi t ion. U S A : C R C Press, Inc., 1996. ISBN:

0849385237. DOI: 10.5555/548089. [cit. 2020-02-06].

P I L L Á R , J . "Kryptografie a šifrovací algoritmy". Bachelor thesis. University

of Pardubice, 2011, pp. 25-27. U R L : http://hdl.handle.net / 1 0 1 9 5 / 3 9 6 3 5 .

[cit. 2019-13-12]. Supervisor R N D r . Iva Ruličová.

React.js (Introduction and Working). 2019. U R L : https://www.geeksf orgee
k s . o r g / r e a c t - j s - i n t r o d u c t i o n - w o r k i n g / . last revision 17. 5. 2018, [cit.

2019-17-12]. GeeksforGeeks | A computer science portal for geeks ©Sgeeks-

forgeeks, C C B Y - S A 4.0.

R E U V E R S , P.; S I M O N S , M . One-Time Pad (OTP). 2013. U R L : https://we
b.archive.org/web /20140314175211/http://www.cryptomuseum.com/cr
ypto/otp.htm. last revision 29. 1. 2013, [cit. 2020-25-05]. Wayback Machine,

Internet archive Copyright 2009-2013.

R I V E S T , R. L . " C H A P T E R 13 - Cryptography". In: Algorithms and Com­

plexity. E d . by J A N [V A N L E E U W E N] . Handbook of Theoretical Computer

Science. Amsterdam: Elsevier, 1990, pp. 717-755. ISBN: 978-0-444-88071-0.

DOI: h t t p s : / / d o i . o r g / 1 0 . 1 0 1 6 / B 9 7 8 - 0 - 4 4 4 - 8 8 0 7 1 - 0 . 50018-7 . U R L :

http://www.sciencedirect.com/science/article/pii / B 9 7 8 0 4 4 4 8 8 0 7 1 0 5

00187. [cit. 2020-28-05].

58

https://www.cia.gov/about-cia/headquarters-t
https://www.tec
https://github.com/mui-org
http://hdl.handle.net/10195/39635
https://www.geeksf
http://ks.org/react-js-introduction-working/
https://we
http://www.cryptomuseum.com/cr
http://www.sciencedirect.com/science/article/pii/B97804448807105

R Y A B K O , B . "The Vernam cipher is robust to small deviations from random­

ness". In: CoRR abs/1303.2219 (2013), pp. 2-5. a rXiv : 1303.2219. U R L : h t t
p://arxiv.org/abs/1303.2219. [cit. 2020-25-05]. Ithaca: Cornell University

Library ProQuest Central.

S A F A V I - N A I N I , R. Information Theoretic Security: Third International Con­

ference, ICITS 2008, Calgary, Canada, August 10-13, 2008, Proceedings. Lec­

ture Notes in Computer Science. Springer Berl in Heidelberg, 2008. ISBN: 978-

3-540-85093-9. DOI: 10.1007/978-3-540-85093-9. U R L : h t t p s : / / l i n k . s
p r i n g e r . com / content / pdf /10 . 1007 % 2F978 - 3 - 540 - 85093 - 9 . pdf . [cit.

2020-04-06].

S A N B O R N , J . File:Kryptos sculptor.jpg. [online]. 1991. U R L : https://commo
ns . wikimedia. o r g / w i k i / F i l e : Krypt os_ s c u l p t or. jpg. last revision 17. 4.

2020, [cit. 2020-30-05]. C C B Y - S A (https://creativecommons.org/licens
es/by-sa/3.0).

S C H W A R T Z , J . ; C O R U M J . "This Sculpture Holds a Decades-Old C L A .

Mystery. A n d Now, Another Clue." In: The New York Times (2020). U R L :

https://www.nytimes.com/interactive/2020/01/29/climate/kryptos-s
c u l p t u r e - f i n a l - c l u e . h t m l . last revision 29. 1. 2020, [cit. 2020-30-05].

S H E N E , C . - K . Kasiski's method. 2014. U R L : https://pages.mtu.edu/~s
h e n e / N S F - 4 / T u t o r i a l / V I G / V i g - K a s i s k i . html, last revision 15. 6. 2015,

[cit. 2020-03-06]. Cryptography Visualizat ion Tools: A Tutorial Department

of Computer Science Michigan Technological University © 2014 C . - K . Shene.

S I K O R A , M . "Webová vizualizace kryptografických sys témů". Bachelor the­

sis. Brno University of Technology. The faculty of Electrical engineering and

Communication. Department of Telecommunications, 2014, p. 10. U R L : h t t p :
//hdl.handle.net/11012/6354. [cit. 2019-14-12], Supervisor Ing. Jan Hajný,

P h . D .

S P E R L I N G , K . File: EnigmaMachine.jpg. [online]. 2005. U R L : https://com
mons . wikimedia . o r g / w i k i / F i l e : EnigmaMachine . jpg. last revision 15. 4.

2005, [cit. 2020-19-05]. Available under public domain.

S T E I N , D . D . The Puzzle at CIA Headquarters: Cracking the Courtyard Crypto.

2009. eprint: https://nsarchive2.gwu.edu//NSAEBB/NSAEBB431/docs/in
tell_ebb_010.PDF. U R L : https://www.elonka.com/kryptos/mirrors/da
w / s t e i n a r t i c l e . html, last revision , [cit. 2020-30-05]. Originally an article

at h t t p : //www . c s i . c i a / s t u d i e s / v o l 4 3 n o l / a r t 5 . html (nowadays inac­

cessible). From page dedicated to Kryptos https://elonka.com/kryptos/,
created by Elonka Dunin .

59

https://commo
http://creativecommons.org/licens
https://www.nytimes.com/interactive/2020/01/29/climate/kryptos-s
https://pages.mtu.edu/~s
https://com
https://nsarchive2.gwu.edu//NSAEBB/NSAEBB431/docs/in
https://www.elonka.com/kryptos/mirrors/da
https://elonka.com/kryptos/

S U E T O N I U S . The Lives of the Twelve Caesars - Julius Caesar. Trans, by M .

I H M . Loeb Classical Library, 1913. U R L : https://penelope.uchicago.edu
/Thayer/E/Roman/Texts/Suetonius/12Caesars/Julius*.html.

Supported platforms. 2020. [cit. 2020-05-06]. Mater ial-UI Released under the

M I T License. Copyright © 2020 Mater ial-UI.

T A S S I N A R I , O. Create React App example with TypeScript. U R L : h t t p s : / / g
i t h u b . c o m / m u i - o r g / m a t e r i a l - u i / t r e e / m a s t e r / e x a m p l e s / c r e a t e - r e a c t
- a p p - w i t h - t y p e s c r i p t . Ver. 4.0.0, last commit 2019-23-05. Licensed under

M I T License.

The Difference Between Dynamic & Static Web Pages. 2018. U R L : h t t p s :
//web.archive.org/web/20190320233700/https://smallbusiness.chr
on. com/difference-between-dynamic-static-pages-69951 .html, last

revision 10. 8. 2018. [cit. 2019-17-12]. Chron.com Copyright © 2019 Hearst

Newspapers, L L C .

T R I T H E M I U S , J . ; Ear ly Pr int ing Collection & George Fabyan Collection.

Polygraphiae libri sex Ioannis Trithemij, abbatis Peapolitani quondam Span-

heimensis, ad Maximilianum Caesarem. [Reichenau] : Impressum ductu Ioan­

nis Haselberg de A i a , biblipolae, anno a Christo nato 1518, men. Iulio., 1518,
p. 471. U R L : https://www.loc.gov/resource/rbc0001.2009fabyanl234
5/?sp=471. 22. 10. 1996, [cit. 2020-22-05]. [Washington, D.C.] : Library of

Congress, 2000. L C C N : 32017914.

TypeScript Overview. 2019. U R L : h t t p s : / /www . t u t o r i a l s t e a c h e r . com/t
y p e s c r i p t / t y p e s c r i p t - o v e r v i e w , last revision 12. 12. 2019, [cit. 2019-17-
12]. TutorialsTeacher Online Web Tutorials © 2019 TutorialsTeacher.com. A l l

Rights Reserved.

Vigenere Cipher. 2019. U R L : h t t p s : / / c r y p t o . i n t e r a c t i v e - m a t h s . c o m / v i
genegravere-cipher .html*, [cit. 2020-19-05]. Crypto Corner, © 2013-2019
Daniel Rodriguez-Clark, A l l rights reserved Interactive Maths, © 2012-2019
Daniel Rodriguez-Clark, A l l rights reserved.

What is Javascript? 2019. U R L : h t t p s : / / s k i l l c r u s h . c o m / 2 0 1 2 / 0 4 / 0 5
/ j a v a s c r i p t / , last revision 17. 12. 2019 , [cit. 2019-17-12]. Learn to Code

I Digi ta l Skills are Job Skills | Skillcrush © 2012 - 2019 Skillcrush, Inc. A l l

Rights Reserved.

Y A D A V , G . S.; O J H A , A . A novel visual cryptography scheme based on substi­

tution cipher. I E E E , 2013, pp. 640-643. ISBN: 978-1-467-36101-9. DOI: 10.110

60

https://penelope.uchicago.edu
https://g
https://smallbusiness.chr
http://Chron.com
https://www.loc.gov/resource/rbc0001.2009fabyanl234
http://TutorialsTeacher.com
https://crypto.interactive-maths.com/vi
https://skillcrush.com/2012/04/05

9/ICIIP.2013.6707673. [cit. 2019-10-12]. 2013 I E E E 2nd International Con­

ference on Image Information Processing, I E E E ICIIP 2013. © 2014 Elsevier

B . V . , A l l rights reserved.

Z A P E C H N I K O V , S. V . and a group of N R N U students. Atbash. 2013. U R L :

h t t p : / / c r y p t o w i k i . n e t / i n d e x . p h p ? t i t l e = Atbash. last revision 2. 12.

2003, [cit. 2020-20-05]. C r y p t o W i k i : Encyclopedia of Theoretical and Appl ied

Cryptography © Security department at National Research Nuclear University

(N R N U) at Moscow, Russia.

Z O U H A R , P. "Generá to r náhodných čísel". Master thesis. Brno University

of Technology. The faculty of Electrical engineering and Communication. De­

partment of Telecommunications, 2010, pp. 12-13. U R L : https://www.vutbr
. cz/studenti/zav-prace ? z p_id= 3 2 0 6 5 . [cit. 2020-25-05] . Supervisor Ing.

Jiří Sobotka.

61

https://www.vutbr

List of abbreviations
CSS Cascading Style Sheets

C I A Central Intelligence Agency

D O M Document Object Mode l

G C D Greatest Common Divisor

G U I Graphical User Interface

H T M L 5 Hypertext Markup Language version 5

I D E Integrated Development Environment

J V M Java Vi r tua l Machine

N S A National Security Agency

U R L Uniform Resource Location

W H A T W G Web Hypertext Appl icat ion Technology Working Group

W W W Wor ld Wide Web

X O R Boolean "exclusive or" function

(32

A Tabula recta (Vigenere tableau)

Tab. A . l : Substitution table for Vigenere cipher.

A B C D E F G H I J K L M N 0 P Q R s T u V w X Y z

A A B C D E F G H I J K L M N 0 P Q R s T u V w X Y z

B B C D E F G H I J K L M N 0 P Q R S T U V w X Y Z A

C C D E F G H I J K L M N 0 P Q R S T u V w X Y Z A B

D D E F G H I J K L M N 0 P Q R S T U V w X Y Z A B C
E E F G H I J K L M N 0 P Q R S T U V w X Y Z A B C D

F F G H I J K L M N 0 P Q R S T U V w X Y Z A B C D E

G G H I J K L M N 0 P Q R S T U V w X Y Z A B C D E F

H H I J K L M N 0 P Q R S T U V w X Y Z A B C D E F G

I I J K L M N 0 P Q R S T U V w X Y Z A B C D E F G H

J J K L M N 0 P Q R S T U V w X Y Z A B C D E F G H I

K K L M N 0 P Q R S T U V w X Y Z A B C D E F G H I J

L L M N 0 P Q R S T U V w X Y Z A B C D E F G H I J K

M M N 0 P Q R S T U V w X Y Z A B C D E F G H I J K L

N N 0 P Q R S T U V w X Y Z A B C D E F G H I J K L M

0 0 P Q R S T U V w X Y Z A B C D E F G H I J K L M N

P P Q R S T U V w X Y Z A B C D E F G H I J K L M N 0
Q Q R S T U V w X Y Z A B C D E F G H I J K L M N 0 P

R R S T U V w X Y Z A B C D E F G H I J K L M N 0 P Q
S S T U V w X Y Z A B C D E F G H I J K L M N 0 P Q R

T T U V w X Y Z A B C D E F G H I J K L M N 0 P Q R S

U U V w X Y Z A B C D E F G H I J K L M N 0 P Q R S T

V V w X Y Z A B C D E F G H I J K L M N 0 P Q R S T U

w w X Y Z A B C D E F G H I J K L M N 0 P Q R S T U V

X X Y Z A B C D E F G H I J K L M N 0 P Q R S T U V w
Y Y Z A B C D E F G H I J K L M N 0 P Q R S T U V w X

Z Z A B C D E F G H I J K L M N 0 P Q R S T U V w X Y

63

B Application directory tree
For better navigation through the semestral work, is in this chapter viewed the direc­

tory tree of the whole application. This code was created and tested wi th software

Visua l Studio Code vl.45 .1.

/ root directory of the application
p u b l i c public directory of the application

favicon.png icon of the web-page
index.html
manifest. j s o n web-page manifest

s r c source directory of the application
a n a l y z e r directory containing implemented analysis features

i s T h i s C i p h e r s
_ CaesarAnalyzer.tsx
_ PasswordAnalyzer.tsx
_ V i g e n e r e A n a l y z e r . t s x

A n a l y z e r . t s x analyzer main features and layout
i s T h i s . t s x Is this ...? tab-box implementation

c i p h e r s directory containing implemented ciphers
c i p h e r P r o t o c o l s

_Atbash.tsx
_ CaesarCipher.tsx
_ K r y p t o s . t s x
PasswordCipher.tsx
VernamCipher.tsx
Vig e n e r e C i p h e r . t s x

CipherTab.tsx implementation of the cipher tab-box
background.png
b a s i c L a y o u t . t s x
i n d e x . t s x main file for application render
JSON_english_bigram_data. j s o n J S O N database
JSON_english_quadrams_data. j s o n J S O N database
module.d.ts created modules for A P I
react-app-env.d.ts
s t y l e s . ess ess file for customization of the G U I
theme.tsx Material-ui elements themes customization

. g i t i g n o r e files, that should be ignored by git
package-lock.j son
package, j s o n project metadata (containing dependencies, scripts etc.)
README. md. R E A D M E file created by the author of the application template
t s c o n f i g . j s o n configuration of Typescript

64

C Application controls

A P P L I C A T I O N FOR C R Y P T O G R A P H I C P R O T O C O L S

Encryption/decryption switch

ENCRYPTIONS^ DECRYPTION COPY OUTPUT TO INPUT

••! ETFll

•-• pi aba
English Alphabet

Please select used alphjbeT""

Tiger, Tiger, burning bright, in the forest of the night; What immortal
hand or eye, could frame thy fearful symmetry?

Input field Output field

Frequency analysis result table

Character analysis

T I G E R B U N H F O S W A M L D Y

11.83% 7.53% 5.38% 10.75% 10.75% 2.15% 3.23% 5.38% 7.53% 5.3B% 5.38% 2.15% 1.08% 5.38% 5.38% 3.23% 2.15% 4.3%

First character with highest occurence is T (11.83 %}.

Substitution menu -

FREQUENCY ANALYSIS MENU

Ciphertext letter • substitute letter
Please select ciphenen letter P .

SUBSTITUTE!

RESTART ANALYSIS

select substituting letter Please select ciphenen letter P .

SUBSTITUTE!

RESTART ANALYSIS

Index of coincidence: 1.592332865825152

Button for analysis^,
restart Stuck' Here are tanked lists of most used words

• Čiech words Matematika cz
• Ertglishnord» Word Frequency mfo

Probable type of substitution cipher monoalphabetic

Probable language: English

Counted Caesar key: 0

Atbash correspondence counter: 0

Password alphabet: y,v.v,v,v.v,v,-,v

Is this cipher selector

• • • •

• • • • • i
• •• ••• • i •

Overview table

ATBASH CIPHER

ABOUT analyzer expansion panel

ABOUT Analyzer

CAESAR CIPHER KEYWORD CIPHER

"action" button Movement key (alphabet

• IS THIS CAESAR?

OTHER POSSIBILITIES

• Cipher settings

Copyright © xrysav29,2020. Puzzle icon by IconsS. Created with Matenal-UI.

VI GEN EH CIPHER

Button for the "cipher" mode

Button for the "analysis'

Fig . C . l : Controls of the web application in Analysis mode.

65

APPLICATION FOR CRYPTOGRAPHIC PROTOCOLS
Button to copy the output

Encryption/decryption switch

ENCRYPTION # DECRYPTION COPY OUTPUT TO INPUT

RESET FIELDS B u t t o r f o r

Tields reset

Alphabet

English Alphabet

Please select used alphabet^

Tiger, Tiger, burning bright, in the forest of the night; What immortal
hand or eye, could frame thy fearful symmetry^

Input field

Cipher selector
i

ATBASH CIPHER

"action" button

Key"

3

Movement key (alphabet

movement) Cipher settings

• 1

• •

IB

Language
selector

CAESAR CIPHER KEYWORD CIPHER VIGEWERE CIPHER KRYPTOS, PART 1 £ II VERNAM CIPHER

a b c d e f g h

d e f g h i j k

j k l m n o p q r & i u v w x y z

m n o p q r s t u v w x y z a b c

ABOUT cipher expansion panel

"ABOUT Caesar Cipher

Button for the "cipher" mode

Copyright © xrysav29,2020. Puzzle icon by IconsB. Created with Material-UI.

Button for the "analysis'

Fig . C.2: Controls of the web application in Cipher mode.

