Semantic-Segmentation of Biomedical Images based on Visual Similarity – RNDr. Roman Stoklasa, Ph.D.
RNDr. Roman Stoklasa, Ph.D.
Doctoral thesis
Semantic-Segmentation of Biomedical Images based on Visual Similarity
Semantic-Segmentation of Biomedical Images based on Visual Similarity
Abstract:
Zrak je považován za jeden z nejdokonalejších lidských smyslů. Tento smysl umožňuje lidem přijímat velké množství informací v čase. Zrakové vnímání je složitý proces, který zahrnuje rozpoznávání objektů, interpretaci vjemů a vnímaní souvislostí. Pro počítače je složité automatické vnímání vizuální informace. Klasické počítače dokáží zpracovávat jen číselné a logické hodnoty, a proto každý obrázek vnímají …moreAbstract:
Vision is natural and the most sophisticated sense of human beings. This sense allows people to perceive huge amount of information. Visual perception is a complex process which involves recognition, context awareness and interpretation. It is difficult to solve visual perception problem automatically by computers, because computers can not ``see''. Traditional computers are only able to process numerical …more
Language used: English
Date on which the thesis was submitted / produced: 2. 5. 2016
Identifier:
https://is.muni.cz/th/a5xab/
Thesis defence
- Date of defence: 24. 10. 2016
- Supervisor: doc. RNDr. Petr Matula, Ph.D.
- Reader: prof. Dr. Ing. Jan Kybic, Prof. Jens Rittscher
Citation record
ISO 690-compliant citation record:
STOKLASA, Roman. \textit{Semantic-Segmentation of Biomedical Images based on Visual Similarity}. Online. Doctoral theses, Dissertations. Brno: Masaryk University, Faculty of Informatics. 2016. Available from: https://theses.cz/id/5o4ntg/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsDoctoral programme / field:
Informatics (4-years) / Informatics
Theses on a related topic
-
Biomedical multiregional image segmentation with using of Local Mass method
Wusu Sorie Nanday Kamara -
Image Segmentation with Classifier-based Weak Supervision
Zuzana Moravčíková