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Abstract 
This thesis focuses on the Field Programmable Neural Networks concept intended to make 
implementation of neural networks in F P G A s less resource demanding. The thesis intro­

duces and discusses several types of Field Programmable Neural Networks which provide 
different trad­offs between the resource consumption and the accuracy of the implemented 
neural network approximation. This thesis also introduces and discusses methods of harden­

ing the Field Programmable Neural Networks against faults with and without redundancy. 

Abstrakt 
Tato práce se zaměřuje na koncept Field Programmable Neural Networks jehož cílem je 
učinit implementaci umělých neuronových sítí v hradlových polích méně náročnou jejich 
prostředky. Za t ímto účelem práce konept rozvíjí a představuje několik jeho různých typů 
jež se vyznačují různými poměry mezi spotřebou zdrojů hradlových polí a přesností s jakou 
aproximují původní neuronovou síť jíž implementují. Teze díle rozšiřuje koncept o metody 
zabezpečení proti poruchám s využitím redundance a také bez ní. 
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Chapter 1 

Introcution 

It was the year 1943 when Warren McCulloch and Walter Pitts introduced the first math­
ematical description of a neuron in their A Logical Calculus of Ideas Immanent in Nervous 
Activity [40] paper. Their neuron was behaving as a logic switch, and they proved that 
an interconnected network composed of such neurons is able to calculate any operation 
of propositional logic. Donald Hebb followed their ideas and introduced the first learn­
ing algorithms for such neural networks in his book The Organization of Behavior [24] in 
1949. Eight years later, Frank Rosenblat introduced perceptron [64], a generalized model 
of a neuron that worked with real numbers. He developed a learning algorithm for neural 
networks based on his model. The algorithm was able to calculate the desired configura­
tion of the network in finite time and independently from the initial state of the network. 
Wi th this algorithm in hand, Rosenblat constructed the very first neuro-computer, which he 
named Mark Perceptron I. The computer was able to recognize characters and its successful 
presentation attracted first serious attention and interest in neural networks. 

The beginning of the seventies came with the first model of a binary associative neural 
network developed by Kar l Steinbuch [70]. At the end of that decade, Marvin Minsky 
and Seymour Papert pointed out in their Perceptrons [43] book that the logical exclusive 
disjunction operation is impossible with only a single perceptron. The authors admitted 
that it was possible to realize the said operation with a network of three perceptrons 
organized into two layers. Unfortunately, no known algorithm could guide such a network 
to learn the operation at that time. From that, they incorrectly concluded that no such 
algorithm could exist. This unfortunate conclusion, together with a lack of new fresh ideas, 
led to a significant drop in interest in neural networks and caused cuts in funding for the 
research. Despite that, the research quietly continued and got the attention back when 
John Hopfield presented a new model of an associative neural network that worked as a 
memory in 1982 [25]. The same year brought another important model of neural networks 
- the Kohonen's networks [32]. 

David Rumelhart, Geo Rey Hinton, and James McClelland published one of the most 
used and essential learning algorithms - the backpropagation algorithm [65]. The algorithm 
was based on the iterative improvement of the network based on propagating the value of 
the network output error back through the network while modifying its weights. The first 
significant conference focused solely on neural networks, the IEEE International Conference 
on Neural Networks, was held in San Diego in 1987 and the neural networks have remained 
in the academic, research and software engineering communities' interest ever since. 
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Chapter 2 

Neural networks 

Neural networks generally are abstract mathematical structures inspired by the human 
brain even though artificial neural networks are massively simplified and more specifically 
focused compared to their original archetype. Just like the brain, artificial neural networks 
are composed of neurons. Similar to their biological counterparts, artificial neurons are 
interconnected by synaptic interconnections or for short, synapses. Synapses represent 
channels through which information flows between neurons while being modified by the 
synapses' parameters. Those parameters are generally called weights, and they represent 
the strength of the connection between neurons. It is the values of these weights that hold 
the knowledge that the particular neural network gained during its learning process. 

2.1 Neurons 

If we refer to Equation 2.1 representing a general model of an artificial neuron we can see 
that the neuron n has x\, ...,xn inputs representing all the incoming synaptic interconnec­
tions equipped with weights wi, ...,wn accordingly. The data modified by the weights then 
enter the function / which computes the output value y of the neuron that would be send 
through outgoing synapses to connected neurons (2.2). This function is called an activation 
function. The input of the activation function is generated by a function called basis func­
tion which transforms the set of input data x i , x n and corresponding weights wi, ...,wn 

into a value called the neuron's potential or net. This value then serves as the input to the 
activation function. One of the most common basis functions is a weighted sum (2.1). 

n 

potential = net = ^^£jtt>i (2-1) 
i=i 

V = f{net) (2.2) 

2.2 Activation functions 

In Section 2.1 we said it is the activation function of a neuron that generates its output 
which then serves as an input to other neurons or as the output data of the neural network 
itself. The activation function is, therefore, a core element of a neuron. Different types 
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Figure 2 .1 : General inside structure of a neuron 

and models of neural networks utilize different activation functions or even combinations 
of different functions. A n activation function is often an increasing continuous and dif-
ferentiable function. Discontinuous functions can also be used, but their downside is that 
neural networks utilizing such a function cannot be learned with a learning algorithm based 
on differentials such as the Backpropagation algorithm described in section 2.5.3. The the 
most frequently used activation functions are for instance the sigmoid function (2.3), the 
uni-polar step function (2.5), bi-polar step function (2.6), hyperbolic tangent (2.4) which 
are defined as follows: 

f(x) = sigmoid(x) = - - ^_dx (2.3) 

f(x) = tanh(s) = - +

2

e _ 2 x - 1 (2.4) 

f(x) = unipolar_step(x) = j J ^ jj (2.5) 

f(x) = bipolar_step(x) = j J

 1 > Q (2-6) 

Fig. 2.2 illustrates the graphs of the said functions. 

2.3 Threshold 

The threshold is a way to improve neural network capabilities by affecting a particular 
neuron's activation function independently. Originally the term threshold referred to an 
actual threshold that guarded the neuron output. It was a minimum limit that the neuron 
potential had to reach for the neuron to „fire," i.e., to produce an output. The neuron 
output would remain null if the potential did not cross this threshold. Even though this 
specific behavior can be achieved with a threshold as it is used in artificial neural networks, 
it is another variable that enters the computation of the neuron's potential rather than a 
limit imposed on it. 
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Figure 2.2: Activation functions 

y = f(net + 9) (2.7) 

Mathematically, a threshold 9 is a value that is added to the neuron's potential as 
shown in equation (2.7). It is figuratively a hidden weight with a constant input data of 
the value of one. The value of this virtual weight then enters the weighted sum of the 
potential as another element. By adding the threshold to the potential, every input of the 
activation function is shifted on the x axis by the same offset. The activation function of 
the particular neuron itself then appears to be shifted permanently on x axis. Furthermore, 
since the threshold is effectively just another weight, it can be determined together with 
the rest of the weights during the learning process. 

2.4 Basic topology 

When Marvin Minsky and Seymour Papert derived that the logical function of exclusive 
disjunction can be realized by a network of three perceptrons, they also implied the most 
prominent building blocks of neural network architectures. That is, layers. Just like their 
three perceptrons network was composed of two successive layers, the following research 
also worked with neural networks like structures organized into layers. A neural network 
can be composed of a single layer, but usually, it is more. When a neural network has more 
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than one layer, then we call the first layer the input layer and the last layer the output 
layer. If the network has more layers than these two, then we speak of hidden layers. The 
number of neurons in each layer can differ from one another. The layers can have only 
one dimension in the form of a row of neurons, but any higher number of dimensions is 
possible. The neural networks working with image data usually have two-dimensional layers 
of neurons, for instance. A basic illustration of a one-dimensional neural network with one 
hidden layer can be seen in Fig. 2.3. 

Another topological property of neural networks is the direction of the information flow. 
In other words, whether a feedback loop exists somewhere in the network. Usually, neural 
networks are feed-forward networks with information flowing from the input layer through 
hidden layers to the output layer and the outside world. It is also possible, however, to 
take a part of the output data vector and feed it back to the input layer. The Hopfield 
networks are an example of this topology. Similar feedback loops can exist between hidden 
layers as well. We can call the network with this property recurrent networks as opposed 
to feed forward networks. 

input layer output layer 

Figure 2.3: Backpropagation model 

2.5 Learning of neural networks 

At the core of learning, algorithms lay the basic principle of how neural networks store 
their knowledge. It is the set of the particular network weights that stores that knowledge. 
Similar to the human brain, the weights represent the strength of connections between 
particular neurons and, therefore, the way how the information flow through different parts 
of the network. Just like the human brain „wires" itself to create neural paths that realize all 
our memories and skills, the artificial neural networks also basically realize their capabilities 
using the fact that the weights implement the way how the particular network is effectively 
wired. 
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Therefore, when we speak about a network learning to perform a specific task, we 
practically speak about setting the network's weights. The learning process sets the weights 
to make the information flow from the network's input through the neurons, transforming 
the input data to produce the desired results. 

Bearing this principle in mind, we can say that the learning process creates a function 
or a map that connects desired output vectors to the inputs. This map is not a strict 
one, however. The relations between inputs and outputs that neural networks gains during 
their learning phase are not necessarily one-to-one. The relations are soft and indirect. 
Furthermore, in that fact lies the true strength of artificial neural networks. They are able 
to discover and generalize the relations between data vectors during learning and then apply 
this generalized knowledge to new and previously unseen input data vectors. 

Moreover, if the network's knowledge is robust and general enough, it will be able to 
infer the correct relation and present a correct output data vector. To put this into a 
practical example, a neural network that has learned to recognize images of cars using a 
set of pre-prepared images. If the learning is sufficient, then the network will correctly 
recognize even an image of a car it has never seen before. 

The learning process is then a process of determining the values of weights. The net­
work usually starts with a randomized set of weights. This set is continuously modified 
in the learning process to bring the network to the desired operation step by step. Many 
algorithms can take the network through this process, and we generally recognize basic 
types - supervised learning and unsupervised learning. 

2.5.1 Supervised learning 

Supervised learning is based on an idea of a supervisor - a figurative entity that has knowl­
edge of the task it wants the neural network to learn to do. Practically that means that the 
input data set intended to be used in the learning process has its desired-output data set 
counterpart. There is a known desired output data vector for every pre-prepared input data 
vector. The supervisor can then judge the output the network produces in response to the 
input data vectors and use this judgment in the consequent modifications to the network 
weights set to lead to the desired behavior. The backpropagation described in subsection 
2.5.3 algorithm is a typical example of this type of learning method. 

2.5.2 Unsupervised learning 

Unsupervised learning is, as the name suggests, a type of learning process that does not 
use a supervisor. That means it does not rely on pre-determined knowledge of how the 
network should ideally operate. Instead, it relies on the network to learn in a way that 
makes it discover the correct output by itself. In other words, unsupervised learning leads 
the network to discover patterns and features in the presented data and generalize the 
discovered relations. Deep learning is a typical example of unsupervised learning. 

2.5.3 Backpropagation 

The backpropagation algorithm was published by David Rumelhart, Geo Rey Hinton, and 
James McClelland [65] in 1986. It is a gradient descent-based learning algorithm for a feed­
forward neural network with multiple layers with all neurons in a layer, except the input 
layer, connected to all neurons in the previous layer. The layers are fully interconnected. 
It is a supervised learning algorithm based on presenting pre-prepared input data vectors 
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to the network, comparing the produced output vectors to corresponding correct output 
vectors, and calculating the difference. This difference is what drives the modification of 
the weights in the subsequent phase when the difference is propagated back to the network, 
from the output layer through the hidden layers back to the input layer. This is where the 
algorithm got its name. Because many methods discussed in the further parts of this work 
reference this algorithm, it is worth exploring it a little deeper. 

The algorithm 

In this method, the supervisor feeds j number of input vectors x\, ...,Xj. For every vector 
xn the network calculates the output vector yn. The supervisor calculates the difference 
between both vectors from the calculated vector and the expected and desired value tn. 
When all the input vectors are presented to the network and all the differences collected, 
the supervisor calculates the sum of all the differences squared to determine the value of 
the error function E, as described by Equation (2.8): 

E=\Y.^-Vi)2 (2.8 2 
j 

The algorithm's goal is to gradually reduce the error function's value and evolve the 
network closer to the desired configuration. Because it is the non-optimal value of the 
weights that cause the network to calculate differently than desired, we can clearly say that 
the error function is the function of the weights. In order to bring the network where the 
supervisor wants it to be, it is necessary to find the minimum of the error function. That 
can be done using simulated annealing or, more commonly, using gradient descent methods. 
Using gradient descend [45] we can derive the equation (2.9) for calculating the necessary 
weights modification in hidden layers and in the output layer: 

(n+l) (n) a (n) / n n \ 
wlj =wlj + H ( 2- 9) 

Where: 

Avj^f = V 5 j 0 i + aAw%-1} (2.10) 

Equation (2.9) describes modification of the wights by adding a difference value calcu­
lated using equation (2.10). The rj and a values in the equation are positive real numbers 
that can be set at will as there is no preset way to calculate them. These values influence 
the algorithm's performance, and it is possible to modify them on the run to achieve better 
and quicker convergence. 

If the activation function is the sigmoid function (2.3) and the network utilizes thresh­
olds, using the function differential [45] we can define the 5j for the output layer: 

5j = (tj - Oj) Oj (1 - Oj) (2.11) 

Where Oj is the output value of the neuron j and tj is its desired value - the particular 
element in the desired output data vector. Similarly, we can calculate the 5j for the hidden 
layers: 

Sj = oj (1 - Oj)^5kWjk (2-12) 

9 



Where k refers to the particular neuron in the output layer which back-propagated its 
5k value calculated using the equation (2.11) to the neuron j in the hidden layer. 

J2k i s a s u m °f a n t n e differences sent back from the output layer and multiplied by the 
corresponding weights. 

These deltas then propagate back to the preceding hidden layer, which calculates their 
on deltas using the same equation (2.12). 
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Chapter 3 

Fault tolerance of neural networks 

The fact that neural networks are distributed, redundant, and relatively homogeneous com­
putational models had the researcher think about their fault tolerance. By nature, neural 
networks seem to have the potential to be inherently robust. A system composed of many in­
terconnected components that are similar to each other and compute simultaneously might 
be able to tolerate a fault in one or even several of them. However, the layered structure 
of neural networks makes neurons dependent on the computation of all the neurons that 
proceed them in the previous layers. Should any of them produce erroneous results, the 
error might propagate and escalate in the following layers. The question of how robust the 
neural network can really be and whether this robustness can be improved has attracted 
research efforts throughout the years. 

3.1 Possible faults in neural networks 

When we want to evaluate possible faults in neural networks, we must consider different 
ways of viewing them because different faults can occur on different levels of abstraction 
and can be recovered using different methods. The natural way is to approach a neural 
network as a whole entity, a computation component. On this general point of view, there 
are two basic types of errors that can occur in a network's operation: 

• Computation error - the network generates erroneous outputs 

• Communication error - the network does not communicate properly with the rest of 
the system 

A problem or a fault within the network would most probably cause the first type of 
error. The second type may be caused either by a fault inside the network or by an incor­
rect design of the network, its implementation, communication protocol, or implementation 
incompatibility with the rest of the system. A synchronization discordance and incompat­
ibility of communication interfaces or protocols would be the most obvious suspects. 

When we look closer at the composition of a neural network, we see that several types of 
faults can occur in the computation components that make the network. From the general 
point of view, a neural network is composed of neurons interconnected with synapses. Both 
can be seen as individual components, and both can suffer from different kinds of faults: 

• The component's output is permanently stuck on a constant value. This type of fault 
can also represent a missing component, considering its output is stuck at zero. 
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• The component's output is erroneous. The output is affected by a value A. The error 
can be additive (the A is added to the output value) or multiplicative (the output 
value is multiplied by A). 

Based on these possibilities, we can distinguish a set of possible faults regarding partic­
ular components: 

Loss of a neuron By a loss of a neuron, we distinguish a situation when a neuron is 
permanently removed from the network or its output value is stuck at zero. The neuron 
does not participate in the following neurons' computation in both cases. 

Loss of a synapse By losing a synapse, we distinguish a situation when a synapse is 
permanently removed from the network or its output value is stuck at zero. This can also 
be caused by an error in the corresponding weight that is stuck at a zero value. Another 
cause might be a problem with the corresponding neuron input. 

Saturated neuron By a saturated neuron, we distinguish a situation when a neuron out­
put is permanently stuck on one of the extrema values of the activation function codomain, 
the range of all its possible values. In the case of bipolar sigmoid activation function, the 
saturated neuron would have the output value 1 or —1. 

Saturated synapse By a saturated synapse, we distinguish a situation when a synapse 
output is permanently stuck on one of the extrema values of the particular data type. 

Stuck neuron By a stuck neuron, we distinguish a situation when a neuron output is 
permanently stuck on a constant value c. This problem can also be caused by an error in 
the neuron arithmetic unit, the following registers or memory cells, or the output bus. 

Stuck synapse By a stuck synapse, we distinguish a situation when a synapse output 
is permanently stuck on a constant value d. This can also be caused by an error in the 
corresponding weight that is stuck at the value d. Another cause might be a problem with 
the corresponding neuron input. 

Transparent synapse By transparent synapse, we distinguish a situation when a synapse 
becomes transparent to the data passing through it. It does not perform the computation 
it is supposed to but its output is not stuck, it let the data coming to its input to pass to 
its output. Effectively, this means that the data are not multiplied by the particular weight 
as they are supposed to. This can be caused by bypassing the computation components. 
The reason to bypass them might be to recover the network from a fault detected in the 
computation components. 

Noisy neuron By a noisy neuron, we distinguish a situation when a neuron output is 
affected by a value A. This situation can be caused by a transient error in the memory 
that participates in the neuron computation. 
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Noisy synapse By a noisy synapse, we distinguish a situation when a synapse output 
is affected by a value A. This situation can be caused by a transient error in the memory 
that holds the corresponding weight. Another cause might be a noise in the corresponding 
neuron input. 

Restricted neuron and synapse By a restricted neuron or synapse, we distinguish a 
situation when the output value of the neuron or the synapse is artificially limited in a 
particular range that is smaller than the activation function codomain (the range of all its 
possible values) or the used datatype. This situation can be caused by a permanent error in 
one of the memory cells that hold a particular weight or a result of the neuron computation. 

For several reasons, it can be helpful to distinguish these fault types on the level of the 
components that make the neural network. The first reason is that we can select a particular 
type of fault, or a group of types, and harden the affected component against them while 
disregarding others to save resources or simplify the implementation. Moreover, we can also 
choose to harden only a particular selected set of components that we consider essential. 
We can also use an enhanced learning algorithm to harden the selected components to 
harden the network during the learning process. In this context, we can refer to two groups 
of components: 

Critical neuron or synapse By a critical neuron or a synapse, we understand a com­
ponent in which erroneous computation would have a significant impact on the quality of 
the results of the entire neural network. A fault in a critical component could cause the 
inability of the network to provide correct results. 

Non-critical neuron or synapse By a non-critical neuron or a synapse, we understand 
a component in which erroneous computation would not have a significant impact on the 
quality of the results of the entire neural network. Even with the fault in the non-critical 
component, the network would still primarily provide correct or close to correct results. 

We can also take a more detailed look beyond the abstract component and focus on 
the structure and building blocks of neurons. Like other computation component, those 
that build up into neurons and neural networks are prone to possible low-level faults like 
Single Event Upset (SEU) and others. Given the functionality of neurons, we can expect 
the design to utilize some of the following components: 

• Adders that are collecting potential. 

• Multipliers for multiplying by weights. 

• Adders, multipliers, and other arithmetic units for computing the activation function. 

• Registers and memory cells involved with the computation components and transfer­
ring data. 

When we take a look at these components, we can predict a possible impact of faults 
occurring in them: 

• Fault in the components computing the activation function would generally lead to the 
activation function changing its shape and therefore into an erroneous computation 
and output results. 
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• A fault in the adder responsible for computing the neuron potential would cause 
erroneous data to enter the activation function making all the following computations 
incorrect. This component's permanent fault would shift the activation function on 
the x axis. 

• A fault in the multiplier responsible for multiplying the input data with corresponding 
weights would also cause erroneous data to enter the activation function. It could 
potentially lead to saturation or generate noise. 

We can consider several approaches based on different principles to counter the possible 
faults on different levels of neural network design or enhance the neural networks' inherent 
robustness granted by their naturally redundant structure. We can increase network re­
dundancy by adding more neurons, duplicating them, creating backup neurons, duplicating 
entire layers, or deploying techniques based on the majority principle like the Triple Modu­
lar Redundancy technique. We can introduce redundancy into the underlying components 
or even communication buses. 

Different methods can be based on utilizing the learning process to harden the network 
naturally. If we set up a goal to learn the network to be more fault-tolerant, we can do so by 
modifying the learning algorithm or the condition in which they operate. In this approach, 
we can also focus on particular types of faults and errors. 

3.2 Hardening neural networks using learning 

Methods of hardening neural networks using learning are based on one of the known learning 
algorithms that were modified and expanded in a way that during the learning process, the 
neural network would not only learn to operate in the desired way but also learn to be fault-
tolerant. These methods take into account different scenarios of possible fault occurrence 
and are designed to mitigate the impact of those scenarios using learning. 

3.2.1 Methods based on faults injection 

The methods based on fault injections utilize the fact that in the learning process, the 
neural network would gradually converge to the desired state regardless of its initial state 
or whether its state is externally changed. Given that the learning algorithm and the 
data used for learning are robust enough, the neural network would converge even when 
faults are introduced into its configuration. These faults would influence the quality of 
the network's output vector, increasing the error function. The faults would then become 
other variables in the error function, and their impact would be gradually reduced in the 
consequent learning. The learning phase would then naturally harden the network. 

Methods based on this principle would use different types of faults to inject. They can 
remove neurons or synapses from the network in order to simulate their failure. They can 
also inject errors into network data, usually to the weights. It was shown that injecting 
faults into neural network weights during the learning phase would not only harden the 
network against faults causing errors in the weights but it would also improve the network 
generalization capabilities [15]. The injected faults would figuratively disrupt the network's 
convergence to the desired state the learning algorithm leads it to. The learning would be 
slower and harder so it would naturally force the network to discover deeper patterns in 
the input data. Therefore it would force the network to learn better potentially. 
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The first possible method based on this principle is a random faults injection into neu­
rons weights in the hidden layers, one neuron at a time [7, 68]. In every iteration of the 
learning algorithm, a single random faults would be injected into a different neuron. The 
network would therefore learn to tolerate a single fault occurring in one of its neurons. We 
can also inject faults into more than one neuron or more than one weight in each iteration in 
order to harden the neural network against faults in multiple neurons. The fault injection, 
however, negatively impacts the error function, and it is possible to prevent the network 
from converging to the desired state at all by injecting too many faults during the learning 
process and therefore making it to fail. 

Another method utilizing fault injection can be based on accounting for all the possible 
faults in a selected neuron [6, 7]. This method also uses fault injection during each iteration 
of the backpropagation learning algorithm. Suppose we have pre-prepared P input data 
vectors, and the hidden layer (suppose a single hidden layer in this description) is composed 
of N neurons. Then during each iteration of the learning algorithm, every input data vector 
is introduced to the network N times, with a fault being injected into a different neuron 
every time. The errors the fault injection caused in the output data are measured and a 
set of N errors are determined for every input vector, one for every neuron. The errors 
are then summarized into a single error value and propagated back through the network 
in the learning step of the backpropagation algorithm. Errors caused by faults in every 
particular neuron are part of the backpropagation algorithm's error function. By getting 
the error values for all neurons and including them in the backpropagation learning step, 
the network naturally learns to tolerate faults in all neurons in the hidden layer. 

This method can be modified to teach the network to tolerate faults in more than 
one neuron. We can present each of the input data vectors Nm times and inject Nm 

combinations of faults when m is the number of faulty neurons we want the network to be 
able to tolerate. However, the number of injected faults can increase rapidly with rising m. 
As we mentioned earlier, it is possible to slow down the network convergence by injecting 
too many faults or events to prevent it from being able to learn at all. 

These methods can be expanded to work with a neural network with more than one 
hidden layer. The methods must be applied to all the hidden layers in the described way. 
It is also possible to select a subset of layers or neurons to be hardened while leaving the 
network vulnerable to faults in the others. 

Another method of injecting multiple faults into a hidden layer is based on injecting an 
entire vector of faults. [28] In every iteration of the learning algorithm, a vector composed 
of n faults with n being equal to or lower than the number of neurons in the particular 
layer. The number of fault vectors is also n, and the x — th element of the x — th fault vector 
has a fixed value. Every vector, therefore, has one fixed value on the position corresponding 
to the vector index in the dataset. The rest of the element values are chosen randomly. By 
having a fixed value in each vector on the different indexes, the method assures that every 
neuron in the layer (or in the selected subset) is injected with a fault while also injecting 
random faults into the rest of the layer. While iterating over the set of the fault vectors, 
the method always injects at least one fault and a random number of random additional 
faults. The random generation of the additional faults is supposed to give the network a 
better chance to converge with its learning process because the authors presume that the 
injection of a fixed set of pre-selected have a chance to disrupt the network convergence. 

Another approach to include hardening into the backpropagation learning algorithm is 
to construct a set of faults we want the network to harden against specifically and then 
use a modified backpropagation algorithm [80] utilizing a modified error function E. The 
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modified algorithm would evaluate the impact of all the faults in the set on the overall value 
of the error function ahead of learning. Then it would incorporate the error value caused 
by the faults into the error function during the learning process. 

It is also possible to go beyond just a fault injection. Method published in [10] is 
based on fault injection and modification of the network structure. In each iteration of 
this algorithm, a random set of a fixed number of neurons is selected. Half of the selected 
neurons are then figuratively removed from the network by setting their outputs to zero, 
while the rest have their outputs artificially saturated. After that, a small set of synapses is 
randomly selected, and their weights are injected with random faults by adding a random 
number from a (—1,1) interval to the weight value. The network then learns to tolerate 
multiple types of faults - lost neurons, saturated neurons, and lost or noisy synapses. 

In order to harden a network against faulty synapses, the authors suggested proceeding 
to modifications of the network structure. After the network learned its task, each neuron's 
impact on the network performance was measured by removing it from the network, followed 
by testing the network. The testing data vectors were introduced to the network's input, 
and the difference between the new output data vectors and the initial data vectors was 
measured. Suppose removal of the neuron proves to cause a less significant difference in the 
output data (the authors accepted differences up to ten percent). In that case, the neuron 
is removed from the network. After the removal, the network goes through the learning 
process again. This process repeats until neurons can no longer be removed. 

After the previous phase is finished and no more neurons can be removed from the 
network, the network is further hardened by successive replicating of the most critical 
neurons. The method determines the neurons whose removal had the most considerable 
impact on the output data quality. Then the neuron is replicated. The weights of the 
replicated neuron's input synapses are kept the same, and the weights of the output synapses 
of both the original neuron and its replica are halved. By halving the weights, the method 
assures the network returns to its original state even with the additional neuron. The 
reason is that the combined value both neurons provide to the neurons in the successive 
layer will sum up to the same potential. Halving the weights of both neurons also reduces 
their influence on the network performance, making a loss of either of them less critical. 
This process is repeated with other critical neurons until the replication no longer improves 
the network robustness. 

3.2.2 Methods based on restricting the weights 

These methods are based on the realization that the most fault-tolerant neural networks 
are those that have the most uniform set of weights, that have weights whose value do 
not significantly vary from one another. The more uniform the values of weights are, the 
more the possibility that some of them may be critical to a neural network's operation is 
reduced. However, most networks do not have this property because the learning process 
usually produces networks with a nonuniform set of weights. The network often has some 
weights that are critical to its function, usually with high values. A fault injected into these 
weights could significantly impact the network performance. Many of the other weights 
are less critical to the network operation. If the weights of the network could be made 
uniform, then a fault in any of them would have a more negligible impact on the network 
performance. This can be achieved by artificially restricting the values of the weights. 

One of the methods how for reducing the number of critical weights is based on con­
tinuous evaluation of their impact on the output data. Those weights that prove to have a 
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large impact are then reduced in value, so their influence would also reduce. If the values 
of the weights are continuously restricted, the learning algorithm is forced to produce a 
network with more uniform weights. However, limiting the time interval during which this 
method is applied might be necessary because it might slow the learning process down or 
event prevent the network from converging to the desired state at all. On the other hand, 
this method can produce a network with higher generalization capabilities [20]. 

Another option to prevent the learning algorithm from generating weight with high 
values is to force it to minimize them during learning [10, 78, 79]. For the algorithm to do 
that, the error function (2.8) needs to be modified. The summarized value of the output 
errors is expanded with a sum of all the weights values squared as illustrated in equation 
(3.1), where W are the set of all weights. 

This modification means that the error function rises with the values of the network 
weights. The learning algorithm is then forced to minimize the network's weights as well 
together with the output error in order to minimize the error function. This method can 
be modified to only consider the weights of synapses connecting the hidden layer to the 
output layer, which might prove to be a more efficient approach to hardening the network 

Besides modifying learning algorithms to make them harden the network, it is possible 
to approach the problem as a direct optimization problem. The need for the network to 
learn and the desire to harden it against fault can be seen as an optimization problem solv­
able with the Minimax method [12]. The algorithm's objective function that is supposed 
to be minimized represents the optimization problem. In this case, the objective function 
is the error function. The constraints set to the method are designed to make the algo­
rithm as uniform a set of weights as possible and thus preventing the occurrence of critical 
weights. The Minimax algorithm is not the only optimization algorithm that can be used 
for hardening a neural network. The usage of quadratic programming [14], an optimization 
method, was also successfully demonstrated. 

It was also shown that Hopfield neural networks [46] can be hardened by restricting the 
weights as well [29]. Hopfield networks are recursive networks containing a feedback loop 
that serves as an associative memory. 

3.2.3 Methods based on activation and basis functions modifications 

These methods are based on the idea that it is possible to harden the network using neurons 
functions manipulation - the basis function that calculates the neuron potential and the 
activation function that calculates the neuron output from its potential. 

The first method is a method modifying the basis function. This method changes the 
way of calculating the potential by replacing the original summation in the basis function 
with calculating a median value instead. The neuron's inputs are still being multiplied by 
the respective weights, but the median value is computed instead of the weighted data being 
summarized. By applying the median, the method filters out the input data influenced by 
weights with very high or very low values. Faults might cause these extreme values, and their 
influence would be mitigated by filtering them from the potential computation. However, 
because the median is not a continuous function and therefore is not a fully differentiable 

(3.1) 

[22, 23]. 
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function, the backpropagation algorithm needs to be modified. The experiments in the 
original paper show that a neural network composed of neurons with a median basis function 
showed a 10% better classification results than the original network with a weighted sum 
basis function. The results also show that the method performs the best when only the 
neurons in the output layer have their basis function replaced by the median [67]. 

Another possible approach is based on manipulating the activation function [30, 81]. 
This method is based on modifying the slope of a sigmoid activation function of the neurons 
to make it steeper. The neural network does through the learning phase with activation 
functions of its neurons having a modest slope. The slope is gradually made steeper and 
steeper. At the end of the learning process, the slope is so steep that the activation functions 
effectively turn into step functions. Wi th the activation function like that, an output of a 
neuron mainly falls into one of the extrema. Should some fault influence the input data of 
the neuron and, therefore, its potential, there would be a significant chance that it would 
not affect the neuron's output at all as the output would still fall into the same extrema. 
This method is, however, suitable only for classification tasks. 

3.2.4 Methods using relearning 

These methods are based on the idea that if some permanent fault should occur in a neural 
network, it can be mitigated by letting the network relearn. The advantage of this approach 
is that there is no need to modify the learning algorithm or the network structure. It is 
the rest of the network that is unaffected by the fault and is still functioning that is used 
to mitigate the fault by relearning how to perform the given task in the presence of the 
fault. However, the network learns and later operates with fewer resources because some 
were lost due to the fault. Therefore, the network might not be able to recover fully. Also, 
the fact that the network relies on relearning is another disadvantage because the learning 
process can be time-consuming, and the original data the network learned from must be 
accessible. Both temporal and spatial complexity of this method is high. 

The most simple but the least practical approach to recovering the network using learn­
ing is just to start the process of learning after the fault is detected. However, inserting a 
new neuron into the network to take the role of the faulty neuron and then take the network 
through relearning might be more effective [68]. This approach can recover the network 
into its fully operational state; however free resources to insert the additional neuron into 
the network must be available. 

In the case of neural networks implemented in hardware, more than errors in data might 
occur but also errors in timing and synchronization. These can be troubling because they 
might not be easily detectable. A method based on the backpropagation algorithm was 
proposed to solve this problem [11]. This method aims to determine and verify the working 
frequency of the device that makes the device work the most reliably. This method is based 
on simulating the computation of the particular neural network with different deviations 
from the estimated ideal working frequency. The results of the simulations are applied to 
the backpropagation algorithm that lets the network learn to work on different frequencies. 
The overall error values the algorithm achieved are monitored. For each iteration of the 
method, the set of weights and the corresponding frequency are saved, and the final setting 
of the network's weights and working frequency is based on which frequency achieved the 
smallest overall error. The selected frequency should be the optimal working frequency for 
the particular network and the device it is running on. 
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3.2.5 Other learning-based methods 

The backpropagation algorithm is not the only gradient descend-based learning algorithm 
that can also be used to harden the network. A learning algorithm based on the gradient 
descent and the Kullback-Leibler divergence was suggested [73]. During each iteration, 
this algorithm includes vectors of Gaussian noise to inject faults into the network weights. 
During learning, the noise is incorporated into the weights and the networks become more 
resilient against faults with Gauss noise characteristic affecting the weights. 

In the case of Hopfield neural networks implemented in software, a method hardening 
the network against errors in data of the learning algorithm due to a corrupted memory is 
in [39]. All-access to data arrays in the memory access was protected by modulo operation 
to ensure that the correct region of the memory was accessed [82]. The iteration counter in 
the core of the learning algorithm, which serves for convergence evaluation, was hardened 
against data corruption by calculating a logical disjunction of its value with the value of an 
additional auxiliary variable. The variable was initialized with a non-zero value that is not 
a multiple of two. The iteration counter was initialized with the same value. This ensures 
that one erroneous bit in the iteration counter would not change its value to zero, thus 
stopping the learning algorithm prematurely. Using the logical dis-junction with another 
variable ensured that the iteration counter value was overwritten each iteration with a 
correct value. 

Another measure of hardening the network learning was based on connecting an identical 
neural network to the hardened network. The second network serves as a golden model 
producing a correct value in case a fault occurs in the original network. The key idea is 
that even if the first network is not able to converge, the second one still is. If the second 
network were faulty, then it would not affect the first one. 

3.3 Methods based on redundancy 

The neural networks are, by principle, massively parallel and redundant structures. This 
redundancy provides them with inherent fault tolerance. A neural network can withstand 
a fault of a neuron or a synapse, especially if hardening techniques were applied during 
the learning process or modifications of the network's properties were used to improve its 
robustness, as described in the previous sections. However, their robustness can potentially 
be improved by techniques based on adding more redundancies to the network. 

3.3.1 Triple modular redundancy 

The triple modular redundancy (TNR) is a classic method of hardening a system. This 
technique is based on triplicating the system or its subsystems and adding a voter that would 
evaluate the outputs of all three instances and vote for the correct one by the principle of 
majority. Even if one of the three instances were faulty, the system would still operate 
correctly. 

This technique can be applied to neural networks as well. It can be applied to the entire 
network or its components on different levels. Of course, triplicating the whole network is 
an easy way to harden it without needing to modify the network's structure or doing 
any significant interference. However, it also triplicates the network spacial complexity, 
which can be already high in the case of most neural networks. The number of neurons 
and especially the number of weights grow quickly with the complexity of the implemented 
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task, and it might not be possible to expand it much more, let alone multiply it. Depending 
on the network implementation, triplicating may also increase the temporal complexity. 

The T M R method can be applied to the level of individual neurons and synapses. The 
advantage is that we can individually choose what to harden and how. We can choose only 
a subset of neurons and synapses we deem critical. The method can also be used on the 
level of computing blocks themselves. We can triplicate the adders, multipliers, and other 
low-level blocks. We can even go as far as using this technique on the bits themselves. A 
method has been proposed for hardening a neural network using T M R while keeping the 
overhead as low as possible. The method is called Relaxed Triple Modular Redundancy 
(RTMR) [37] based on hardening the computational blocks and the interconnecting buses 
on the bit level but only on the level of the selected subset of high bits. In this approach, 
only the more minor part of the bits is hardened, and the rest of the design is still vulnerable. 
However, it is the least significant bits that are left unhardened. Naturally, the low bits 
have a lower influence on the overall values entering the computation. Its influence may be 
less critical if an error occurs in the lower bits. The advantage is that the spacial overhead 
consumed by replicated resources is significantly lower than in the case of the full T M R . It 
is at the expense of a trade-off between hardening and resource consumption, but it can be 
accommodated to the situation with the proper choice of hardened bits. 

In the case of triplicating entire neural networks, voters with weighted inputs can also 
be used as demonstrated in [5, 35, 63]. The principle of this modification is that the voter 
at the output of the hardened system considers its inputs to have different priorities, and it 
uses those priorities given by their weights in the voting process. The input with a higher 
weight gets priority. For example, the weights can be determined using a backlog of faults 
that occurred in all three replicas. The weights can also be learned [84]. In this approach, 
the system is composed of three neural networks. However, the networks are not identical. 
Each network learns individually and independently from others in three different steps. In 
the first step, the networks learn to perform the desired task. In the second step, they learn 
again, but their input data were individually injected with faults. In the third step, they 
learn one more time and face simulated loss of some of their neurons. The weights for the 
voter are then determined by how well each network operated during the first steps. The 
more reliable and quality each network proved to be, the higher its weight gets. 

In [54] the authors experimented with different replication orders. The root of the 
experiment was to create a set of different neural networks with different numbers in the 
hidden layers and let them learn to perform a classification task called Sonar [19]. In the 
next step, the networks were replicated in different orders. After that, their tolerance to 
loss of one of the neurons or synapses was evaluated. The authors came to two interesting 
conclusions. The first conclusion was that when the resulting neural network had the same 
size, it was the network that was created by a lower number of replications while using a 
larger starting network that proved more reliable. On the contrary, when the network was 
created by more extensive replication but from smaller original networks, it was less reliable. 
So, for example, a neural network composed of eight neurons in the hidden layer created by 
duplicating a network composed of four neurons was more reliable than a network created 
by four replications of a network with two neurons. 

The second conclusion was that neural networks created by replicating smaller networks 
were more reliable than a network of that same size that was not created by replication. 
For example, a neural network composed of eight neurons in the hidden layer created 
by replicating the original four-neuron network was more reliable than a neural network 
constructed and learned with eight neurons without any replications. 
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Another successful use of T M R was demonstrated in [66]. The authors determined 
how critical each neuron was for the considered network computation and ordered them 
by the measured criticality. They selected a number of the most critical neurons and 
hardened them using T M R . They removed the same number of the least critical neurons 
to compensate for increased computation complexity. Their method managed successfully 
to harden the selected network against lost and noisy neurons. 

3.3.2 Inserting new neurons 

Neural networks can also be hardened by inserting new neurons into hidden layers. This 
approach comes with less overhead than replicating an entire network or its significant part. 
Naturally, the hardening effect is lower. As such, they are a middle ground between complete 
replication methods and replication-free methods based on relearning and modification of 
neural network configurations. These methods are always trade-offs between reliability and 
spatial complexity. It is also important to point out that these methods only apply to 
hidden layers because the respective data vector sizes give the input and output layers 
sizes. 

The most basic technique is based on adding a single neuron into a hidden layer [3]. 
This technique not only hardens the network but also allows us to detect a fault in any of 
the neurons of the hardened layer. The technique works as follows. Suppose the neurons in 
the hardened layer are equipped with enough memory storage for two vectors of weights. 
One vector is for storing the operational weights, and the other is the testing vector for 
storing weights used for fault detection. The neurons are then tested in pairs. The weights 
of the first neuron in the pair are set to the values of the testing vector belonging to the 
second neuron in the pair. After that, both neurons receive the same input vector, and 
their output values are compared. If the values are different, then the network is possibly 
affected by a fault in one of the neurons in the pair. The second neuron then becomes the 
first in its own pair, and its subsequent neighbor in the layer becomes the second neuron in 
the pair. Then the test is repeated. Therefore, every neuron is tested twice (the last neuron 
in the layer will be paired with the newly inserted neuron). If a neuron suffers from a fault, 
it likely fails both tests and therefore is detected as faulty. The newly inserted neuron can 
take the faulty neuron role by setting its operation weights vector accordingly. Using this 
approach, we can build a neural network that is able to detect a single faulty neuron and 
recover from the fault. Naturally, every hidden layer can be hardened using this method. 

Another approach [52, 53, 85] is based on multiple replications of all neurons. The 
neurons are replicated h times, then the thresholds of the neurons in the following layer are 
multiplied by the same value. This ensures the network computes the same way despite the 
replicated neurons while also being hardened against the faults in the replicated layer. If 
changing the thresholds does not suit the design for some reason, the same effect can also 
be achieved by dividing the weights of the synapses between the layers by the number h 
[16]. Both methods have the same result. The potentials of the neurons in the following 
layer will have the same values as before replication; therefore, the layer will compute the 
same way. 

3.3.3 Temporal redundancy 

A l l the techniques discussed before were based on redundancy and utilized spatial redun­
dancy to harden neural networks. However, it is also possible to achieve the effects of 
redundancy by performing additional computations. The most trivial method is just to 
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compute the result several times in a row and then compare the results to detect an error 
or select the correct result based on the majority principle. This approach can also be 
utilized together with spatial redundancy. Suppose the network is hardened in a way that 
uses replication and majority principle, but the fault detection fails. In that case, it is 
possible to recompute the results and then retry the fault detection. 

A n approach utilizing both spatial and temporal redundancy was introduced in [26]. 
The arithmetic unit used for computing the weighted sum was divided into three smaller 
units. Its operands were also divided into three parts based on the significance of the bits. 
The computation was divided into three phases. In the first phase, the data part with the 
least significant bits was introduced into all three arithmetic units, and three semi-results 
were computed. The second and third parts of the original operands were introduced to 
the arithmetic units in the two consequent parts. Their results were combined according to 
the significance of the particular parts. Eventually, three independent full-operand results 
were produced using three independent arithmetic units. The results were compared, and 
the final result was selected using the majority principle. 
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Chapter 4 

Field Programmable Neural Arrays 

The concept of Field Programmable Neural Arrays (FPNAs) [17] is designed to enable a 
resource-efficient implementation of artificial neural networks in Field Programmable Gate 
Arrays by adjusting the network's properties and especially its structure in order to make 
them more efficiently implementable into the gate arrays. For instance, F P N A s were used 
for implementing large scale spiking networks [21]. The efficiency comes from the F P N A ' s 
main feature - a highly customizable structure that enables the designer to build it in 
a way that allows sharing the F P G A ' s resources by merging sets of synapses into several 
dedicated components. This concept also simplifies the interconnection structure compared 
to the original neural network. The number of neurons remains the same. 

By the original definition by B. Girau [17], an F P N A is directed graph (iV, E) where iV 
is a set of nodes and E is a set of directed edges that connect the nodes: 

Definition 4.0.1 ( F P N A [17]). We say that structure (N, E) is an FPNA if the following 
statements hold true: 

1. iV is a set of nodes called Activators. Activators represent the original neural network 
neurons. 

2. E is a set of directed edges called Links. Link connect activators. 

3. Each activator n has a set of predecessors: Pred{n) = {p G N, (p, n) G E} 

4. Each activator n has a set of successors: Succ{n) = {s G N, (n, s) G E} 

5. There is a set of input nodes: iVj = {n G N, Pred{n) = 0} ; iVj C iV 

6. Each link (p,n) G E has an affine operator: a( p, n) = Wn{p)x + Tn(p) 

7. Each non-input activator n G iV has an iteration operator: in : M. —>• M. to calculate 
its potential. 

8. Each non-input activator n G iV has an function operator: fn : M. —>• M. to calculate 
the activation function. 

Definition 4.0.1 states that the original neurons are represented by the nodes in the 
graph, the activators. The activators use their iteration operators in to calculate their 
potentials and then apply their function operators fn to calculate the activation functions 
over the potentials and thus generate their outputs. Therefore, the activators principally 
closely mimic the function of neurons. 
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The activators are interconnected by edges, by links. The links calculate an affine trans­
formation of their inputs using their affine operators a. By doing this, they approximate 
multiplying the data by the corresponding weights. Therefore they participate in calculating 
the weighted sum by taking this part of the computation out of activators. Moreover, each 
link can approximate multiple synapses for multiple activators. Therefore, the weighted 
data are calculated for each activator in parallel by a set of links that connect them to the 
preceding activators. The definition allows the activators to be connected by more than a 
single link. It is possible to create chains of links between activators or layers and, therefore, 
to split each synapse and the corresponding weight into a set of successive affine operators. 
Because this possibility exists, it is helpful to introduce a unifying term for both activators 
and links - neural resources. 

F P N A s resemble restructured original neural networks they implement; however, they 
still miss some necessary properties and parameters to achieve their main goal - to convert 
the neural networks into structures suitable for implementation in an F P G A . The additional 
details must be defined using Field Programmable Neural Network to reach this goal. 

4.1 Field Programmable Neural Network 

F P N N (Field Programmable Neural Network) [17] is one of the possible configurations of an 
F P N A . It defines the interconnections between neural resources and, therefore the F P N N ' s 
actual structure, and it defines concrete settings of the parameters and operators: 

Definition 4.1.1 ( F P N N [17]). We say that structure (N, E) is an FPNN if the (N, E) is 
an F P N A and each non-input activator n e N and each link (p, n) e E have the following 
defined: 

1. O n e l - initial value of the variable used by the iteration operator in. This value 
represents a threshold. 

2. o „ e N - the number of iterations to performed by the in operator. 

3. Wn(p),Tn(p) e l - the setting of the affine operator. 

4. Vp,p e Pred(n) : rn(p) - a binary flag indicating whether the link (p,n) and the 
activator n are connected. 

5. Vs, s e Succ(n) : Sn(s) - a binary flag indicating whether the activator n and the link 
(n,s) are connected. 

6. Vp, s ;p , se Pred(n), s e Succ{n) : Rn(p, s) - a binary flag indicating whether the link 
(p, n) and the link (n,s) are connected. 

Moreover, every input activator n e Ni has the following defined: 

1. c e N - the number of inputs 

2. Vs,s e Succ{n) : Sn(s) - a binary flag indicating whether the input activator n and 
the link (n, s) are connected. 

Definition 4.1.1 declares several binary flags that indicate local connections between 
activators and links and between links and other links. These flags, as well as the order of 
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neural resources defined by their Pred and Succ sets, describe the actual structure of the 
particular F P N N . It also defines concrete values of other parameters. 

The F P N N s do not have the same structures as neural networks, although they can 
be constructed that way. They are based on a different model that can be structurally 
different from the original neural network. This also means that the F P N A can differ in its 
capabilities. In principle, the F P N N s are not a straightforward implementation of neural 
networks but rather their approximation designed in an FPGA-friendly way. Since the 
FPNNs can be constructed in various ways and types, the approximation accuracy can be 
different. 

4.1.1 The computation 

The neural resources are autonomous components that work with others in parallel, pro­
cessing the data received from their predecessors (or the F P N N ' s input) and propagating 
their results to their successors. The communication between them is based on the request-
acknowledgment model. When a neural resource finishes its current computation, it prop­
agates the results to its output and generates a request for each of its successive connected 
resources (defined by its Sn and R — N flags). These requests notify each successor individ­
ually. However, the resources may already be busy processing other requests. Therefore, 
the original resource waits until all successors accept their requests and send back the cor­
responding acknowledgment. It only resumes the operation only after all acknowledgments 
are received. Then, it selects a request from its own input to process or wait until a new 
request comes. 

The operation of a neural resource can be summarized in the following successive steps: 

1. The neural resource selects one of the requests waiting on its input. If there are no 
pending requests, the neural resource waits for a new one to come. 

2. The neural resource acknowledges the acceptance of the selected request to the request 
origin. 

3. The neural resource processes the request: 

• Link applies the affine operator a. 

• Activator applies an iteration operator in. Suppose the iteration counter equals 
an, indicating that this is the last supposed iteration, and all the necessary 
data from all the predecessors have been collected. In that case, the cumulative 
result of the iteration operator is presented to the function operator / „ , which 
computes the activation function. The iteration counter is reset. If this is not 
the last iteration yet, the computation returns to step 1. 

4. The result of the computation is propagated to the neural resource's output, and 
requests for all successors are generated. 

5. The neural resource waits until it receives acknowledgments for all generated requests. 

6. Return to step 1. 

The way a request is selected for processing in step 1 is essential. It is necessary the 
requests were selected in a way that ensures that all of them will be processed eventually 
and that the predecessors waiting for the acknowledgments will not be left waiting longer 
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than necessary. It is also necessary for activators to keep track of the number of iterations 
they have been through with the current data set to ensure that they work with the correct 
set and not with the data belonging to a successive set. Failing to do so would cause the 
entire F P N N result to be wrong, and it could also block the F P N N from processing the 
following data by breaking the synchronization. The recommended method of selection is 
Round&Robin. 

The grid structure 

As we mentioned above, the purpose of F P N N s is to implement neural networks in gate 
arrays less resource-consuming way by sharing resources between synapses and by simpli­
fying the interconnections. The primary tool to reach this goal is to shape the F P N N into 
a grid-like structure, illustrated in Fig. 4.2. In the figure, the wide arrows represent links. 
The thin arrows show the connections between neural resources. It can be seen that the 
connections are only local between close neural resources. This is to mitigate the need for 
long buses and complicated routing that would consume a lot of F P G A resources. The 
intended locality of connections is also why the synapses are broken in chains of several 
links - so that the entire F P N N would make the intended grid-like structure that would 
inherently keep the connections local and short. 

Figure 4.1: A grid F P N N . Circles represent activators, wide arrows illustrate links and thin 
arrows show the way how the neural resources are connected to each other. 

The output of each activator is connected to a single link that is subsequently connected 
to the following layer. It is connected to an activator in the next layer's corresponding 
position and to two chains of links (see Definition 4.1.2) that go through the layer in 
opposite directions. We call this set of chains the interconnection chain (Definition 4.1.3). 

Definition 4.1.2 (Chain of links). By a chain of links, we understand a sequence of links 
interconnected in a way that every link is connected to no more than one link on its input 
and no more than one link on its output, and the flow of data through the entire chain is 
one-directional. 

Definition 4.1.3 (Interconnection chain). By an interconnection chain, we understand a 
set of two chains of links going through a layer of activators in opposite directions in order 
to allow the carrying of data from a previous layer to all activators in this layer. 

Example F P N N 

Let us illustrate the operation of an F P N N by an example. Let the neural network in Fig 
4.3 be the original neural network we want to implement using an F P N N . It is a network 
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Figure 4.2: Interconnection chain, 
chain. 

The highlighted links belong to the interconnection 

composed of seven neurons. Three neurons are in the input layer (m, ...,713), three are in 
the hidden layer (714, ...,ne) and one is in the output layer (n 7 ) . Corresponding activators 
will directly replace the original neurons. Chains of interconnected links will replace the 
synapses, as can be seen in Fig. 4.4. In the figure, the wide arrows represent links. The 
thin dashed arrows show the local connections between the neural resources. 

Using the Definitions 4.0.1 and 4.1.1, we can describe the example F P N N as follows: 

N = { n i , n 2 , n 3 , n 4 , n 5 , n 6 , n 7 } 

Ni = { n i , n 2 , n 3 } 

E = { (n i ,n 4 ) , ( n 2 , n 5 ) , ( n 3 , n 6 ) , ( n 4 , n 5 ) , ( n 5 , n 6 ) , ( n 6 , n 5 ) , ( n 5 , n 4 ) 

, ( n 4 , n 7 ) , ( n 5 , n 7 ) , (n 6 ,n 7 ) } 

in4 — in5 — i n g — inr — ((3?) X ) y X + X ) 

fn4 = fn5 = fne = fn7 = (x -> tanh(x)) 
{04,05,06, M era 
V(p, n) £ E : 3Wn(p) G R; 3T„(p) G M 
The flags for for n 4 : r „ 4 ( n i ) , r n 4 (ns ) , 5 n 4 ( n 7 ) are set. 
The flags for for 715 : r „ 5 (712), r „ 5 (n 4 ) , r„ 5 (n6), 5 „ 5 ( n 7 ) are set. 
The flags for for n 6 : r „ 6 ( n 3 ) , r „ 6 ( n 5 ) , 5 „ 6 (n 7 ) are set. 
The flags for for n 7 : r „ 7 ( n 4 ) , r n 7 ( n s ) , r „ 7 ( n 6 ) are set. 
The flags for links : i?„ 4 (n i , n 5 ) , i?„ 5 (n 2 , n 6 ) , i?„ 5 (n 2 , n 4 ) , i ? „ 5 ( n 4 , n 6 ) , 

i ? n 5 ( n 6 , n 4 ) , i ? n 6 ( n 3 , n 5 ) are set. 

a 4 = 3, 05 = 3, a6 = 3, a 7 = 3 

C-ni — Cfi2 — C-nz — 1 

AU the other flags are not set 

The description defines operators and parameters, but most importantly, it defines 
interconnections between neural resources using binary flags. The r flags define connections 
between activators and the links that precede them. In other words, these flags define from 
which links the activators receive their input data. The flags S, on the other hand, define 
the links to which the activators send their output. 
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The links themselves are named by the names of activators they lay in between. However, 
the fact that a link lies in between a certain pair of activators does not necessarily mean that 
it is locally connected to both activators because it also might be a part of an intra-layer 
chain of links that transfers data from one part of the F P N N to another. This is where 
the need to use the flags r and S to describe the actual connections between activators and 
surrounding links comes from. 

The connections between links themselves are denoted by the R flags. The notation 
relays on the naming links scheme and it describes connection between link essentially as 
s two-link chain between source activator src to target activator trg while skipping the 
common activator cmn in between the two links: Rcmn(src,trg). So the flag -R„5 (774,773) 
says that link (714,715) is connected to and sends its output to link (775,716). (See Fig. 4.4.) 

Similarly, the r and S flags use the notion of source activator src and target activator 
trg to describe connections to preceding and successive links. The flag rtrg(src) indicates 
that activator trg is connected to and receives data from link (src, trg). Similarly, the flag 
Ssrc(trg) indicates that activator src is connected and sends its output to link (src, trg). 

Figure 4.5 illustrates how the example F P N N processes input data. The illustration 
is broken into six steps with a different set of neural resources working in parallel in each 
step. The grey filling illustrates the neural resources computing in parallel in the particular 
step, while the solid thin arrows show the directions in which they sent the results of their 
computation and corresponding requests. The steps are explained as follows: 

1. The first step happens after the input data are introduced into the F P N N and propa­
gated through the input nodes into the three links that connect the input layer to the 
hidden layer. After the links finish the computation, they generate requests for the 
successive neural resources - to the closest activator and the links in the chain going 
through the hidden layer. 

2. In the second step, the activators process the incoming requests using their iteration 
operators. The links in the hidden layer's interconnection chain process and carry the 
data to deliver them to the activators that are not directly above each other in the 
layer. 

3. In the third step, the activators process their second requests using the iteration 
operators. The two links at the end of the hidden layer chain generate the third and 
last requests for their successive activators. Wi th those, the data from the furthest 
input activators in the input layer are delivered to the activators on the edges of the 
hidden layer. 

4. In the fourth step, the activators have all requests they were waiting for; therefore, 
after they apply the iteration operator to the third and last request, they pass the 
cumulative result to the function operator and compute the activation functions. 

5. In the fifth step, the three links between the hidden layer and the output layer process 
the data and deliver requests to the activator in the output layer. 

6. In the last step, the activator in the output layer processes all the requests using the 
iteration operator and the function operator. The output it generates is the output 
of the entire F P N N . 
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Figure 4.3: Original network for the example F P N N . 
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Figure 4.5: Successive steps during an F P N N operation. The grey-filled neural resources 
work in parallel and generated requests to their successors along the solid thin arrows. 
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Chapter 5 

Research progress 

In our research, we focused on improving the F P N N concept according to its defining focus -
the effective use of F P G A resources to reduce their consumption. There are different ways of 
how F P N N s can be implemented and constructed from neural resources. Some FPNNs have 
been constructed in a way that utilized long connections between neural resources. However, 
it is the simplification of the connections structure and the effort to keep them as short as 
possible that can bring a significant reduction in F P G A s resource consumption. Therefore, 
our goal was to focus on preserving the connections between neural resources as short and 
local as possible while offering different levels of approximation capabilities coupled with 
different levels of resource consumption on those different approximation levels. 

Another of our goals was to incorporate fault tolerance principles into the F P N N con­
cept, following the focus of our research group to create a possibility to build fault-tolerant 
implementations and F P G A accelerators of neural networks. We aimed to consider and 
evaluate traditional methods based on redundancy but also investigate methods that would 
not rely on redundancies. Instead, we wanted to focus on methods that would utilize the 
already existing neural resources in the F P N N to harden it or to provide a way to recover 
from a possible fault. One way we aimed to investigate was supposed to be based on mod­
ifications of the given F P N N ' s parameters existing within the neural resources that the 
F P N N was built of. Such a technique would take advantage of the naturally redundant 
structure of the FPNNs; a feature inherited from the neural networks that inspired their 
creation. 

Furthermore, just like the neural networks themselves, the F P N N s are generally soft-
computing systems. By their nature, their outputs are always approximate to ideal results, 
the consequence of the learning process. Therefore, a bit-wise precision of their output 
values might not be as critical as it would be in systems based on high precision. Especially if 
the output values, although a bit different, still represent the correct pattern that would, for 
instance, still classify the input data into the correct class. Consequently, a certain margin 
of error in the output data might be acceptable in some tasks, even though it certainly 
would not be acceptable for some other tasks. The point is that given the particular task 
and margins, just like a neural network providing inexact results due to a fault or a different 
reason might not be critical, it might also not be critical for the F P N N to work with an 
error. Given this, a full recovery from a fault or a perfect hardening against them might 
not always be required. Also, smaller resource consumption and lower overhead might be 
preferable over a certain penalty in the precision due to a fault in some cases. Therefore, 
we decide to explore techniques that work only with the existing parameters of the F P N N 

31 



in order to harden it or recover it from a fault, even though they inherently can not provide 
as good results as the traditional and reliable methods based on redundancy. 

Equivalently, to further build up the robustness of F P N N and following research in our 
research group, we decided to explore the possibilities of using F P G A s ' build-in capability 
to reconfigure themselves. The dynamic partial reconfiguration allows the F P G A to re-
program a part of its logic during its operation. We aimed to use online partial dynamic 
reconfiguration as a possible means to recover from a permanent fault in an F P G A . 

5.1 Approximation capabilities 

When it comes to FPNNs , especially grid-like FPNNs , there is not necessarily a direct 
relationship between the number of weights of the original neural network and the number of 
affine operators in the F P N N that implements it. The topology and structure of the F P N N 
may be different from the network. The designer can undoubtedly design the F P N N to 
have basically the same or closely similar structure to the network. The designer can equip 
the F P N N with many links and interconnect them so that the F P N N would resemble the 
original network. To do this is an accessible and good choice for small FPNNs . However, the 
goal of F P N N s is to reduce resource utilization when implemented in F P G A s . The primary 
tool to achieve that goal is to reduce long connections and simplify the overall structure 
of the F P N N using primarily only the local interconnections between neighboring neural 
resources. This reduction is achieved by structuring the F P N N into the grid structure. 
Using extra links beyond the grid goes against the goal because it introduces additional 
connections and consumes resources to implement the links as well. 

Let us consider the grid structure presented in 4.1. Figures 5.1 and 5.2 illustrate two 
perspectives on how the original synapses are approximated by chains of links in the grid 
F P N N . In the figures, the colored solid arrows represent the synapses, and the thin dashed 
arrows represent the chains of links that approximate the synapse with the same color. The 
dashed arrows also show the path the data take from an activator in the previous layer to 
an activator in the following layer. 

Figure 5.1 shows how synapses going from a single activator are approximated by chains 
of links that are subsets of the interconnection chain within the layer. In contrast, the short­
est synapse, denoted in red, is realized by the single link that connects the two subsequent 
activators in the two subsequent layers. The blue synapse is approximated by the chain 
composed of the inter-layer link and the first link in the interconnection chain. The green 
synapse uses the same chain expanded by the following link in the interconnection chain, 
as does the violet synapse. 

We can say that each synapse adds one more link into the mutual chain of links that 
approximates all the previous, shorter synapses. Therefore, each synapse adds an afHne 
operator associated with the link to a series of afHne operators that approximates its original 
weight. If we consider only the operator's multiplicative Wn(p) term (the Tn{p) term is 
zero), then each weight is approximated by a product of a series of Wn{p) values. The final 
product can match the synapse's original weight thanks to the last multiplicand that each 
synapse adds to the series. Therefore, as long as a synapse has a dedicated link in the 
chain that approximates it and its affine operator is appropriately set, the approximation 
can be accurate because the final product of all affine operators in the chain can result in 
the original weight value. 

However, that might prove challenging to achieve if the number of activators in the 
previous layer is higher than two. When there are only a couple of activators in the previous 
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layer, each occupies its own half of the interconnection chain - one of the two chains going 
through the layer. In that case, each synapse going out of the activators has its own 
dedicated link added to the chain, and the approximation is accurate. 

When there are more activators, however, all the links in the interconnection chain have 
to be shared between them, which might put them into conflict and a need to find a com­
promise between different required values of the affine operators. Fig 5.2 illustrates this 
situation. The figure emphasises the (nx, ny) link. The link lies at the end of the intercon­
nection chain a approximates three different synapses. It is the final link in three chains 
of links that approximate those synapses denoted in the corresponding colors. Therefore, 
it is the link that all three synapses need to finalize the product of the affine operators of 
their particular chain links with the final multiplicand in order to bring the overall product 
to match their weights. However, the link has only one affine operator by the Definition 
4.1.1. Therefore, there are three different Wn{p) values the affine operator needs to have to 
ensure all three synapses are approximated accurately, which creates conflict. 

There are three ways how to handle the conflict. The first possibility is to add more 
links into the F P N N that would take the roles of dedicated links for the particular synapses, 
offering them the chance to have their own dedicated affine operators to get the product 
value right. As mentioned in the first paragraph, this solution would consume resources to 
implement the additional link and increase the complexity of interconnections, making the 
resource utilization even higher. 

The second solution is to try to find a compromise between the conflicting values that 
would make the F P N N work as well as possible, even without additional resources. Some 
level of approximation accuracy degradation is inevitable, however. There are several pos­
sible ways how to find this compromise, and we focused on this problem in our paper 
Mapping trained neural networks to FPNNs (Paper A) . Subsection 5.1.1 explains this re­
search in more detail. 

The third approach is to equip the links with more than one affine operator. More 
operators would provide the FPNNs to approximate the synapses better or even accurately. 
The level of improvement depends on how many operators we provide to the links. The 
obvious approach is to provide enough operators to fully approximate all the synapses 
and weight and make the F P N N accurate. However, it is also possible to provide less than 
required for accurate approximation in order to save resources. This approach was the focus 
of our papers Comparison of FPNNs models approximation capabilities and FPGA resources 
utilization (Paper B) and Comparison of FPNNs Approximation Capabilities (Paper C). 
Subsection 5.1.2 describe the research. 

5.1.1 F P N N s with a single operator per link 

In Mapping trained neural networks to FPNNs (Paper A) , we followed our work in [33] 
and focused on the situation when links only have a single affine operator. As we have 
described above, F P N N s composed of links with singular operators face the challenge of 
finding a compromise between conflicting values; the F P N N s need their operators to have 
in order to achieve an accurate approximation of the given network. 

The paper proposed a method for mapping the original neural network and its weights 
into this type of F P N N . The method worked by determining the chains of links approx­
imating the particular synapses and calculating all the ideal values for affine operators 
for approximating the synapses. Then final compromise values of affine operators were 
determined as an arithmetic average between the conflicting values. 
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Figure 5.1: The chains of link approximating the particular synapses denote by the same 
color. 

The paper also visited other approaches to finding a compromise we experienced with. 
The methods were based on weighted averages with weights assigned to the different con­
flicting values determined by several methods. The first method was based on the length 
of the synapses or, more precisely, on the length of chains approximating them. If a con­
flicting value of an affine operator was associated with a longer chain of links, then the 
value got a higher weight. Lets refer to the (nx,ny) link in Figure 5.2 again. The Wn(p) 
value computed for the red synapse would get a higher weight than the value computed for 
the green synapse because the chain of links corresponds to the red synapse (denoted by 
the red dashed line) is longer. The Wn(p) value related to the green synapse would get a 
higher weight than the one related to the violet synapse because the chain approximating 
the violet synapse is shorter. This method is called DIST DP. The second method, called 
DIST IP, is an inversion of the first one. This method assigns higher weights to values 
associated with shorter chains. 

The third method is relatively straightforward. It uses the weight of the original 
synapse directly as the weights of the corresponding Wn(p) values. This method is called 
W E I G _ D P . Like the first method, this one has its inversion, W E I G _ I P , which uses inverse 
proportion as the weights. 

The fifth method determines the weights using the product value of the preceding part 
of the corresponding chain. In the case of (nx,ny) link in Figure 5.2, the Wn(p) value 
computed for the red synapse would get weight computed as a product of Wn(p) values of 
all the preceding links in the chain denoted by the red dashed line. The actual value of the 
product would be used as the weight. The method is called P R O D DP, and the derived 
method that uses inverse proportions of the products is called P R O D IP. 

The last two methods are based on the order of the conflicting values. The values would 
get ordered by their values, and their corresponding weight would match their position in 
the ordered set. In the case of (nx,ny) link in Figure 5.2, there would be three conflicting 
Wn(p) values. The three values would be directly ordered, and their weights would be their 
positions. This method is called P V A L D P . The inverse method P V A L IP works the same 
but uses reverse order. 

34 



Figure 5.2: The link (nx,ny) is the final link in three chains approximating three synapses. 

A l l the methods generally achieved the same approximation accuracy in terms of the 
number of correctly classified input vectors compared to the original neural network. The 
accuracy fell into proximity of 65% for all the methods (see Table I in the Paper A) . To 
achieve better results, we have also tried to combine the methods. We used all possible 
combinations of two, three, and all four basic methods and their inverse version to determine 
the weights. By using the combinations, we actually achieved up to 8% improvement. 

We have also tried to use an optimization algorithm. We selected the Nelder-Mead 
algorithm [47] to experiment with. The Nelder-Mead algorithm is based on searching for 
a maximum of an objective function using simplex. The simplex is a multi-dimensional 
polygon, a polytope, that moves around the objective function's graph, trying to fall to a 
maximum by moving its vertexes around the function graph and evaluating the objective 
value of its central point. 

The objective function was the approximation accuracy; the vertexes were F P N N s with 
randomly generated Wn(p) values. The algorithm was gradually modifying the Wn(p) 
values to reach the objective function maxima and find the best performing F P N N . Using 
this algorithm, we achieved approximately 3% improvement over the best combination of 
weighted sum methods. 

5.1.2 Reduced and Full F P N N s 

In Comparison of FPNNs models approximation capabilities and FPGA resources utilization 
(Paper B), we focused on the possibility for the F P N N s to have multiple affine operators 
to achieve better approximation accuracy. We expanded on the initial Definition 4.1.1 in 
Definition II. 1 in the Paper B . Based on the definition we defined three types of F P N N 
(Definitions II.6-II.8 in Paper B) . The first type is called Light FPNN, and it is the type of 
F P N N we dealt with in Paper A and the previous section. Therefore, the Light F P N N s are 
FPNNs composed of links equipped with singular affine operators. The second type is called 
Full FPNN. This type of F P N N s has all the affine operators necessary to achieve accurate 
approximation. Their links have full sets of operators to approximate all the synapses they 
implement fully. The last type lies between the other two. The Reduced FPNNs have fewer 
affine operators than Full F P N N s but more than one like in the case of Light FPNNs . The 
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number of operators in Reduced F P N N s is determined by the number of each link connected 
to preceding neural resources. So, instead of having an affine operator for every synapse 
ending in it, a link has an operator for every neural resource connected to its input. Should 
the (nx,ny) link in Figure 5.2 lay in a Reduced F P N N , it would have two affine operators. 
One for the link that implements the violet synapse and the other one for the link that 
approximates both the red and the green synapse. The second operator would still have a 
conflict between the two, but it would have been less severe than in the case of the same 
F P N N of the Light type. 

In Paper B we introduced a universal algorithm for mapping a neural network to FPNNs 
of all three types. We measured the approximation accuracy of Reduced F P N N s implement­
ing different networks with different tasks and structures. The approximation accuracy 
could get as bad as 50% but also as good as 93%, showing that there might be some cases 
when reduced FPNNs can provide high approximation accuracy. Prior to these results, 
previous results of Reduced F P N N s accuracy experiments were published in Paper C. 

We have also measured F P G A resource utilization of Reduced and Full F P N N to find 
out how much resources can be saved by using an F P N N with fewer affine operators. The 
results show that Full F P N N s can become multiple times more resource-consuming than 
the Reduced variants. That is especially true for DSP consumption which was generally 
three times higher. The Full F P N N s ' consumption of Look-Up-Tables (LUTs) was also 
multiple of the consumption of the Reduced FPNNs . However, the consumption rise degree 
varied more in the case of LUTs than DSPs. Sometimes the consumption has risen only 
two or three times, but in several instances, it went as high as six times higher than the 
Reduced FPNNs . The increase of LUTs was correlated to the consumption of the DSPs, 
and it spiked the highest when the DSPs were depleted, and the implementation had to 
compensate with the increased use of LUTs. 

Moreover, the Full FPNNs proved slower because their operating clock frequency could 
get lower than half of the Reduced F P N N s frequencies. The Reduced F P N N s all had 
their working clock period of about twelve nanoseconds. On the other hand, the clock 
periods of the Full F P N N varied. Some periods were close to the twelve nanoseconds: 
however, most were longer. A number of the period were close to twenty nanoseconds, with 
the longest period reaching as high as almost thirty-eight nanoseconds with the largest 
implementations. 

5.2 Fault tolerance 

When it comes to fault tolerance of F P N N s we considered both redundancy based and 
redundancy free methods of hardening. We proposed using Triple Modular Redundancy 
technique to harden F P N N s or their selected sub-components. Beside this traditional tech­
nique we focused on using modification of F P N N s parameters to harden the FPNNs without 
a need for redundancy that would go against the F P N N s ' overall goal to be resource effec­
tive implementation of neural networks in F P G A s . We also proposed a method of detecting 
permanent faults in neural networks' synapses, method that is directly applicable to F P N N s 
as well. 

5.2.1 Identity operators and mapping 

In Fault tolerant Field Programmable Neural Networks (Paper E, the paper was shortened 
after it was accepted, the original full length is enlisted as Paper G), we focused on fault-
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tolerant mapping of F P N N s equipped with identity operators. The idea of the identity 
operator is to change all inner computation operators of a given neural resource into an 
identity function. Practically when applied, it would turn the particular neural resource 
into a register (see Figure 5.3). We suggested this technique to recover from a permanent 
fault in the neural resource computing blocks. Even if the resource cannot compute as 
expected, with the identity operator, it can still let at least pass the data through and let 
the rest of the F P N N function. However, with the neural resource effectively missing from 
the F P N N , the computation would most likely suffer a hit in performance and accuracy. 
The Paper E discusses the feasibility of using the process of mapping the initial neural 
network to F P N N to reduce the possible accuracy hit of an identity operator activation. 

Figure 5.3: Identity operator effect. 

We have also used the identity operator as a tool to identify critical links. We were 
successively activating identity activators, one link at a time, and measuring the impact 
it had on output results of the small F P N N we have experimented with. Some links have 
indeed shown to be more critical than others (see Table I in Paper E). 

In the next phase, we tried to determine if the negative effects of identity operators 
can be mitigated using a modified mapping process. During mapping process (described in 
the full version of Paper E - Paper G and in Paper B), selected links have their identity 
operators activated. That removed them from chains of links to which the mapping process 
mapped the original synapses. That forced the mapping process to use other links in chains 
to approximate the particular weight. The F P N N we experimented with was a light F P N N 
(equipped with only one affine operator, see subsection 5.1.1). That meant that the value 
of the affine operator of the missing link came into conflict with the value of the operator 
taking its place in the mapping. The mapping process would then use the arithmetic average 
of the conflicting values to determine the final value. 

In the experiment, we used the method to harden the F P N N against a fault (and the 
subsequent activation of the particular identity operator) in every link to which the method 
was applicable. We first measured the approximation accuracy of the hardened F P N N , then 
activated the identity operator in the link the F P N N was hardened against. We measured 
the approximation accuracy of the F P N N with the missing link due to the identity operator. 
We compared them with the original accuracy and the accuracy of the completely hardened 
F P N N . We also measured the effect when a different combination of links was considered 
in the mapping process. The results showed that even though sometimes the hardening 
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worked, other times it had a negative effect. As anticipated, the method was not universally 
applicable but rather a potential option to consider. 

5.2.2 Triple modular redundancy 

In Triple modular redundancy used in field programmable neural networks (Paper F) , we 
focused on Triple Modular Redundancy in FPNNs . We utilized two types of triplicating. 
The entire neural resources were triplicated with the first type (referred to in the paper as 
type A ) . In the case of the second type (referred to in the paper as type B), the building 
blocks that implement the neural resources were triplicated. There are several components 
that the neural resources consist of. There are components responsible for the neural 
resource particular calculation. Other blocks take care of communicating with other neural 
resources using the request system described in Section 4.1.1. The communication blocks are 
composed of a multiplexer, a demultiplexer, a register, a generator for generating requests to 
successors, and a block for selecting a request to process from the pool of received requests 
from predecessors (see Figures 2 and 3 in Paper F and detailed explanation of the block 
in the paper's Section 2.1). These blocks and the system they implement are common 
to both types of neural resources, the link and the activators, because both types need 
to communicate. The difference between both types lies in their computation units. The 
links utilize a multiplier that implements its affine operator. The activators use an adder 
to implement the iteration operator and a unit that implements the function operator -
the activation function, using an adder and a multiplier. These computation blocks, the 
multiplexers, and other blocks that implement the communication system are what we 
triplicated with type B . 

We measured the F P G A resource consumption of all the building blocks as well as the 
consumption of the whole neural resources. Then we implemented the T M R technique on 
the two different levels and measured the consumption of the hardened versions of the im­
plementation. Understandably, resource consumption often increased by more than 200%. 
The communication blocks often increased their consumption of registers significantly more 
than their consumption of Look Up Tables (LUTs). This is expected because the commu­
nication blocks do not utilize much computation. Also, given their relatively smaller size, 
the consumption of voters added by the T M R contributed significantly. On the other hand, 
the computation blocks that implement the neural resources' operators primarily increased 
their LUTs consumption. 

When it comes to type B triplicating, when the whole neural resources were triplicated, 
the overall resource consumption was lower than when all the inside blocks were triplicated 
in type A . This is expected because type B does not suffer from the overhead coming with 
the additional voters and connections needed to make the inside blocks hardened with the 
T M R technique. The type B neural resources consumed fewer registers (the link consumed 
2% less, and the activators consumed 11% less). The consumption of LUTs dropped even 
more to 15% for the link and 19% in the case of the activator. These results correlate to 
the fact that the computation blocks consume from 80% to 90% of resources. 

We considered the two types because it might be feasible to harden only some subset 
of the blocks instead of the whole neural resources. The computing blocks are apparent 
candidates for hardening but hardening the communication blocks while leaving the com­
putation blocks unhardened might be a valid option as well, even when they are relatively 
small and therefore less likely to experience a fault. Not only their resource overhead is 
significantly lower, but also the communication blocks are vital for the function of the entire 
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F P N N . Should one of the resources stop generating requests and responding to them, the 
whole F P N N would eventually stop computing. Computation blocks producing erroneous 
data are naturally undesired; however, given the soft computing nature of neural networks, 
such errors might significantly impact the outputs, but they also might not. On the other 
hand, failure in communication between neural resources will always be critical. Moreover, 
hardening the communication blocks can be easily combined with an idea of identity oper­
ator (discussed in Section 5.2.1) in order to produce low-overhead F P N N hardened against 
communication errors if not against errors in computation or data. 

5.2.3 Detecting hard synapses fault 

In Detecting hard synapses faults in artificial neural networks (Paper D), we focused on 
a way how to detect permanent faults in neural network synapses or their weights. In 
particular the work focused on stuck and noisy synapses as referenced to in Section 3.1. 
The general idea of the discussed method was related to the idea of identity operators 
discussed in Section 5.2.1. The algorithm (see Algorithm III.B in Paper D) was based 
on testing all the network's synapses iteratively, one at a time. For every synapse, the 
algorithm determined the set of synaptic sequences connecting the input layer through the 
hidden layers to the output layer that the tested synapse was part of. Let's say the synapse 
between neurons nx and ny - (nx,ny) was under test. Then the algorithm would determine 
all the sequences of synapses that connect the neuron nx to the input layer through the 
neurons in the previous layers. Similarly, the algorithm would determine the sequences of 
synapses that connect the neuron ny to the output layer through the neurons in all the 
successive layers. Sequences from both sets connect in the tested synapse, and therefore, 
they represent all the possible paths the data can flow from the network's input to its 
output while going through the (nx,ny) synapse. 

In the next step, one of the sequences was selected. A l l the weight values in the sequence, 
save the weight of the synapse under the test that was left unchanged, were set to one to 
make the synapses transparent to data passing through them. Then, a predetermined 
testing data vector was introduced to the network's input. The vector was composed 
of identical values except for the element that went to the input neuron in the selected 
sequence. The output data were collected and compared to the expected result that was 
calculated separately. Since all the parameters of the network and the input data were 
known, it was possible to calculate the output data the network should ideally produce 
independently of the network itself. This reference data was then compared to the network's 
output data. If the data were equal, the network performed as expected, and the synapse 
passed the test. If the data differed, however, then there were three possibilities. First, 
the synapse under test might have produced erroneous data that caused the difference. 
Second, there was another synapse producing erroneous data in the tested sequence. It 
could also have been both. The algorithm would repeat the test with several different 
sequences containing the tested synapse to determine which was the case. If all the output 
data were different than expected, then the synapse under the test was faulty. If only some 
of the output data differed, another synapse was faulty. Which synapse it was would be 
determined when the synapse would go through the testing itself. 

The paper also discusses a problem that may complicate fault detection. In cases that 
the value of the tested synapse's weight is high, it might cause saturation of the next neuron 
(the high input would make the neuron generate go to the minimum or the maximum of its 
activation function). If the synapse was faulty and the fault would cause an error that would 
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further increase the weight's value, the error might be left undetected. A faulty synapse 
may also influence other synapse tests by saturating the neurons when it is selected to the 
tested sequence. Therefore, it might lead to false positive detection. The paper suggests 
that the saturation problem may be mitigated by modifying not only the weight of the 
synapses in the testing sequence but also the neurons' activation function. Suppose the 
activation function is replaced by an identity function. In that case, its output could reach 
any value in the range of the used data type. Therefore it would mitigate the saturation 
problem and allow the erroneous value to propagate to the network's output unchanged. 
That would allow determining the actual value of the error. Section III.C of the Paper 5.2.1 
describes the algorithm utilizing the activation function modifications. 

The paper also discusses using different values to set the weight in the tested sequence 
as well as different choices of the input data. Section IV describes experiments we per­
formed with the method that does not utilize the activation function modifications, as it 
is more challenging due to the saturation problems. Tables I-V present the results of the 
experiments. The results show that choosing a higher input value of the element entering 
the tested sequence as well as a smaller value for the other elements helps prevent the 
saturation problem. It also demonstrates that choosing low negative values for weights in 
the tested sequence improves the detection. Overall, the method showed relatively decent 
detection abilities despite the saturation problem. 

5.2.4 The F P N N s robustness 

In a yet unpublished paper Fault tolerance of different Field Programmable Neural Networks 
types (Paper 1), we focused on the robustness of F P N N s themselves. We experimented 
with all the three types of F P N N s - light, reduced, and full as discussed in Section 5.1. 
The F P N N s utilized fixed-point computation with an 8-bits integer part, and the remain­
ing 8-bits were used for the fraction part as recommended in [44]. We experimented with 
six different F P N N s with different structures, all of them in their light, reduced, and full 
versions. Therefore, the number of individual F P N N s under the experiment was eighteen. 
Twelve of the F P N N s were performing the Diabetes task, and the six remaining were imple­
menting the Thyroid task, both tasks being neural network benchmark classification tasks 
from the Proben set of benchmarks [61]. 

Faults were injected into all affine operators of the particular FPNNs . That meant 
that each F P N N had a different number of faults injected into it. We chose this approach 
because the F P N N s had very different sizes; therefore, choosing a constant number of fault 
injections for all of the F P N N s would give some of the larger F P N N s an artificial advantage. 
The faults were injected as bit flips in the affine operators' variables. The bits to flip were 
chosen randomly (see Section III.B in Paper 1). Each F P N N with an injected fault was 
presented with the testing data set, and its outputs were compared to the outputs of the 
original F P N N without a fault to see if the FPNNs classified the input data vectors into 
the same classes. Tables II and III in Paper I illustrate the worst, the best and the average 
results the faulty F P N N s achieved in terms of how many percent of the input data vectors 
the faulty F P N N s classified to the same classes. The M i n column shows the worst result 
reached by any of the faulty F P N N s of the given type, task, and structure. The Max shows 
the best result, and the Avg shows the average success of the particular F P N N . 

The results have shown that light FPNNs were more robust against the infected faults. 
However, we attribute this to the light F P N N s ' lower approximation capabilities and, there­
fore, the approximation accuracy they can achieve. The lower accuracy can mask some of 
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the injected faults because the final computation result might be the same, even with an 
erroneous weight value. 

The full FPNNs , on the other hand, proved to be most robust for the Diabetes task 
(see Table II in Paper I). Their high redundancy gave them the inherent robustness that 
massively parallel structures like neural networks have. We can see they performed best in 
terms of both best and worst results. Their average success rate was also the best of all 
three types. 

However, in the case of the Thyroid task, it was the reduced F P N N that performed 
the best (see Table III in Paper I). The full F P N N s actually provided worse results than 
the FPNNs with fewer affine operators. We believe this phenomenon is due to the inter­
connection chain's length and the input layer's size. These two facts mean that there was 
a high number of affine operators in the relatively long interconnection chains. Any error 
introduced into these affine operators there would have a higher chance of causing a more 
significant effect as its influence would propagate through the interconnection chain and 
impact a higher number of the following affine operators in the successive links. Therefore, 
any error caused by the injected fault would more easily escalate into higher impact as 
opposed to the F P N N implementing the Diabetes task that did have smaller concentrations 
of the affine operators. 

Recovery using 9 parameters modifications 

Besides evaluating how robust the F P N N s can be in this paper, we also experimented with 
a recovery method following the research described in 5.2.1. In that method we tried to 
recover faulty F P N N s using identity operators and utilizing the process of mapping the orig­
inal neural network to the F P N N . In this paper we experimented with a method modifying 
the 9 parameters of the activators. These parameters serve the same function like the neu­
rons' thresholds. Therefore, modification of these parameters would effectively affected the 
activation functions. Just like with the method suing identity operators, the experiments 
with this method were to determine if the modification of the parameters could be used to 
recover from a fault in a link's affine operator. Therefore if this method presented another 
option to recover using modifications of existing F P N N parameters without utilizing more 
complex methods like remapping or retraining or relying on redundancy based methods. 
Similar to the method using the identity operators, we did not expect this method would 
prove universally usable but rather a possibility to consider. 

The method relied on knowing the value of the error in the affected affine operator 
caused by the injected fault. The section 5.2.5 describes a method that could be used to 
determine the value. The method used the value of the error as a modifier to the 9 operator 
of the closest following activator to the affected link. There were several ways the method 
used the value to modify the 9 (see Table I. in I). We also expanded the method by using the 
modifiers only when the faulty link was a direct successor of an activator. It was because 
such a link would be at the beginning of some of the chains of link in the F P N N , therefore 
an error in one of its affine operators would have potentially the most significant impact 
because the erroneous data it would produce would go through links in the rest of the chain 
which could escalate the error's effect. 

The results (see Table IV and Tabke V) was not very assuring. Even though there was 
measurable improvement in the recovered F P N N s ' performance compared to faulty FPNNs , 
the results generally showed decrease of the recovered F P N N ' s performance. No scenario of 
modification showed consistent pattern of positive influence on the results and the potential 
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to be useful in recovery. What the results illustrated however, was the vulnerability of the 
FPNNs to the changes in the 9 parameters. The recovery attempts behaved more like 
additional fault injections furthermore negatively impacting the F P N N s ' performance. 

5.2.5 Recovery using partial dynamic reconfiguration 

One of the main goals of our research was to examine and potentially implement recov­
ery from faults using partial dynamic reconfiguration (PDR). It is the ability of F P G A s 
to reconfigure one or more of their smaller parts, referred to as frames, instead of repro-
gramming the entire logic array. Not only is the process quicker, but more importantly, it 
allows the designs implemented in the remaining frames to continue to function without an 
interruption, which would be necessary for reprogramming the whole F P G A . 

Our research group used partial dynamic reconfiguration extensively for works related to 
fault tolerant systems. We have used it for injecting faults into a hardened robot controller 
[55, 56, 57, 58, 59] as well as into a controller of an electronic lock [36, 60] during the 
experimental evaluation of their robustness. We have also developed a controller capable 
of supervising a recovery from fault using P D R [31, 41, 42, 71, 72] and we worked on 
hardening this reconfiguration controller as well[49, 50, 51]. We have also addressed the 
re-synchronization of the different parts of a design implemented in an F P G A after the 
design recovered from fault using P D R [74, 75, 76, 77]. 

Other researchers utilized partial dynamic reconfiguration in fault-tolerant designs as 
well. For instance, in [38], the authors introduced a hardened voter for systems based 
on Triple Modular Redundancy. The design used P D R to recover the voter from fault 
introduced by Single Event Upsets. A survey of various hardening techniques, including 
double and triple modular redundancy and suggesting D P R for recovery from faults caused 
by Single Event Upsets, was published in [69]. 

The authors of [13] considered the vulnerability of F P G A s and the P D R process to 
errors in the reconfiguration bitstream. They suggested using a partial hardening of the 
critical parts of the bitstream, the part that holds address and control information. This 
method was put in contrast with the method proposed by Xil inx based on hardening all 
the bitstream parts using C R C , which has a lot of spacial and temporal overhead. 

The hardening approaches can also be combined. In [83] the authors presented a frame­
work that would harden the provided design using T M R a recover from faults using P D R . 
The authors used the framework to harden a design implementing a neural network for 
hand-written characters recognition. The D P R was also used as a recovery technique of an 
OpenRISC processor implemented in F P G A [62]. The authors have broken the processor 
into reconfigurable modules and duplicated them in order to detect a S E U and identify 
modules that required to be reconfigured to mitigate the fault. The duplication was also 
used for fault detection in [4]. The authors implemented a pacemaker divided into a set of 
separated, parallel-operated modules and used the spare F P G A resources as a backup space 
for implementing a replacement module. If a fault was detected in a module, it would have 
been implemented in the spare space using dynamic reconfiguration to restore the design's 
functionality. Instead of T M R , the authors of [27] decided to use two hard-core processors 
to control the recovery process and temporarily take the place of a faulty module. Their 
application implemented an FIR filter that was duplicated for fault detection. If a S E U 
was detected, one of the processors identified the faulty region and triggered and controlled 
recovery using P D R while the other processor was computing the FIR filtration software. 
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The approach saved 41% of resources compared to T M R . The reduction was traded off with 
temporarily slowed-down computation. 

The goal of partial dynamic reconfiguration in this work was different from the ap­
proaches used by our research group or by other researchers. A l l the mentioned works were 
based on traditional P D R that would take a correct pre-prepared bitstream representing 
the desired design and use it to reconfigure an F P G A to the desired state. However, within 
this work, we wanted to consider using online partial dynamic reconfiguration - a method 
that would not use pre-prepared bitstreams. Instead, the bitstream would be generated 
from scratch inside the F P G A s themselves. The reasoning behind this idea was that it 
would allow for recovery from a wide range of permanent faults, even those that it was 
not hardened against. Wi th proper detection and localization methods, the F P G A would 
create a new bitstream implementing a new design that would perform the same function 
but mask the detected fault. As much as this idea is intriguing from the fault tolerance 
point of view, we deemed it unfeasible in the end. 

The first problem is that if such a technique is supposed to be practical and usable, it 
would require extensive knowledge of the selected F P G A bitstream format and its inside 
representation. Such information is proprietary to F P G A manufacturers that are not keen 
to pride them in full scale to the F P G A community. A very demanding (and questionable) 
process of reverse engineering would be required, and even though projects such as Project 
X-Ray [2] exist, they do not provide complete information and are aimed to support the 
development of external design tools. 

To generate bitstreams for P D R inside an F P G A would also require a lot of its resources. 
Implementing a design into an F P G A is a demanding process, especially routing the logic in 
the F P G A to the desired working design. Except that the design modifications that would 
go beyond simple changes in contents of selected Look Up Tables or minor modifications 
would ideally require an established set of synthesis tools to be present to perform the 
proper implementation. Both of these facts would introduce a need to have a processor 
core [8] implemented in the F P G A that would sufficiently support the needed tools. Even 
though different soft-core and hard-core processors are available for different F P G A s , the 
current development in the F P G A technology drives toward integrating F P G A s with other 
technologies. Also, the current trends lead to further improvements in the usefulness of 
partial dynamic reconfiguration used in the traditional sense. Improvements can provide 
generally more practical results than online reconfiguration can. 

The rise of integrated devices utilizing processor cores together with a field programmable 
gate array area, such as Zynq, makes implementing hardened neural network accelerators 
easier than before. It is possible to utilize Linux operating systems [1, 34] that would 
provide helpful support for programming systems using partial dynamic reconfiguration to 
implement support systems utilizing the programmable area. The systems can be dynamic, 
changing according to particular situations and needs. Therefore these systems are ideal 
instruments for implementing hardened systems that can use dynamic reconfiguration to 
recover from faults such as S E U . Frameworks such as F R E D [9, 48] and P Y N Q [18] can be 
conveniently used for such purposes. 

5.3 List of Publications Related to the Thesis 

This thesis describes a research that was presented in several related papers the thesis refers 
to. The list of the related publications is as follows: 
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Chapter 6 

Conclusions 

The research presented in this thesis focused on developing multiple types of Field Pro­
grammable Neural Networks in order to provide different options with different trade-offs 
between their resource consumption and their approximation accuracy. One of the goals was 
to remain faithful to the core idea of the F P N N concept - to minimize resource consumption 
by keeping the connections between neural resources as short and local as possible. We can 
achieve this by making the F P N N s in a grid structure suitable for keeping all the connec­
tions only between the closest neural resources that neighbor each other. This measure 
can prevent the need to have many long connections across several neural resources and, 
therefore, reduce resource consumption. 

In our research, we decided to keep to this principle. We researched three types of 
grid F P N N s that differed in the number of affine operators they were equipped with. The 
key idea was to reduce the number of affine operators, which would reduce the amount 
of resources needed to store them. And because the usual F P N N has more links than 
activators, reducing each link's resource consumption could provide a significant savings of 
resources. It is not only the amount of resources needed to store the values of affine operators 
that would be reduced. Assuming that in many cases, the computing units realizing the 
computation with the affine operators would be composed of Look Up Tables, the reduction 
of the number of affine operators would make the computing units simpler and, therefore, 
smaller and faster. Wi th a low number of affine operators, some of the computing units 
could even be replaced by simple constant multiplication in some cases. 

However, just like the reduction in the size of the affine operators set brings savings 
of resources, it also reduces the approximation power of the F P N N . Wi th fewer operators, 
the F P N N also holds less information; therefore, its computation ability is reduced. Wi th 
reduced computation power, the F P N N is less capable of reproducing the results of the 
original neural network it implements, so its approximation capabilities and accuracy is 
affected negatively. 

One of the questions we have sought to answer in our research is how severely reduced the 
approximation accuracy actually is and what are the trade-offs with resource consumption. 
The experiments show that the answer depends on the original neural network the F P N N 
approximates, the task the neural network learned to perform, and naturally on the number 
of affine operators we decided to equip the F P N N with. Some Reduced F P N N s showed only 
a few percent decrease in the approximation accuracy while being times smaller than the 
Full FPNNs . Other Reduced FPNNs , however, showed a significantly higher decrease in 
the approximation accuracy by tens of percent. This was the case with Light F P N N s as 
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well. Ultimately, the designer's choice must be led by the given situation and the neural 
network intended to be implemented with an F P N N . 

Another goal of our research was to explore fault-tolerant properties of F P N N s and 
methods of their hardening. FPNNs , just like neural networks, are massively parallel but 
relatively homogeneous structures. These properties might provide them with some in­
herent robustness; however, grid F P N N s are composed of potentially long chains of links 
that approximate the original synaptic interconnections between layers. This introduces an 
additional dependency between neural resources. If a fault occurs in an F P N N , it might 
be amplified while its consequences would propagate through the F P N N due to this depen­
dency. It may also prevent the F P N N from proper operation. This is the reason why we 
have also focused on permanent faults that could seize the F P N N s from function. 

Even though we worked with the traditional hardening method based on replication -
the Triple Modular Redundancy technique, we primarily focused on methods that would not 
rely on replicating the components. This was following the FPNNs main goal of reducing 
resource consumption. Aligned with this goal, we investigated recovery methods based on 
modifications of F P N N s ' parameters rather than utilizing their resources' replicas. 

We proposed a replication-free method of recovering from a permanent fault in a link 
that would stop its computation. The method utilized identity operators that would make 
the faulty link transparent to the passing data, so it would allow the F P N N to continue its 
operation even with the permanently faulty link. In order to minimize the impact of using 
the identity operators in critical links, we proposed a method of identifying the critical 
links and also a modified mapping algorithm. The algorithm would map the original neural 
network to the F P N N in a way that would potentially harden it against the impact of the 
identity operators' activation. However, just like the approximation accuracy of FPNNs 
was dependent on the particular condition, it was the same with this hardening method as 
could be expected since the method did not rely on replicating the F P N N s ' components. 

Another method of recovery from permanent fault in a link that we have proposed was 
based on modifications of activators parameters. The method utilized changes in the 9 
parameters that would affect the activation function. Even though this technique improved 
the performance of faulty F P N N s in some cases, it also harmed them in others. Depend­
ing on the situation, this could be a way to recover from faults; however, it needs to be 
considered cautiously because it might introduce even more problems to the F P N N . 

We have also proposed a method of detecting permanent faults in neural networks' 
synaptic interconnections. The method was directly applicable to F P N N s as well. The 
method would detect the fault by successively and repeatedly changing the weights in the 
network in a way that would let the sought fault effect to propagate through the network 
to its output. There, it could be detected by comparing the outputs influenced by the fault 
to the correct results. The current configuration of the changes introduced to the weights 
would reveal the location of a fault and possibly the value that the affected weight was 
stuck at. 

We have also performed experiments to determine the level of robustness of the three 
types of FPNNs against faults causing bit-flips in affine operators' values. The bit-flip 
were injected into different F P N N s of all types and with different structures performing 
benchmarking tasks. The impact of the fault was measured. The experiments revealed 
the dependency of the F P N N s ' robustness on their structure. Particularly on the size of 
their layers or, strictly speaking, the lengths of their interconnection chains. The longer 
the interconnection chains were, the more the particular F P N N was prone to faults. 
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We have also investigated the possibility of recovering from permanent fault using online 
partial dynamic reconfiguration. This reconfiguration application was supposed to construct 
the reconfiguration bitstreams on the fly inside the F P G A itself rather than using stored pre-
prepared bitstreams or bitstreams provided by outside systems. While this would be a novel 
approach, we deemed it impractical. Rather than relying on the online reconfiguration, it 
would be more practical to utilize the usual partial dynamic reconfiguration to recover from 
fault, as many authors proposed. 

6.1 Contributions 

The research described in this thesis represents the following contributions: 

• Introduction of three different F P N N types with a different number of affine operators, 
approximation accuracy, and resource consumption: 

— Full FPNNs are the F P N N s with the whole set of affine operators provided for 
approximation of the original neural network. Given that this type of FPNNs are 
equipped with as many affine operators as they need, they can approximate the 
given network accurately. However, they are also the most resource-consuming 
type of FPNNs, with their resource utilization potentially being multiple times 
higher than the resource utilization of the Reduced FPNNs . 

— Reduced FPNNs are the F P N N s with a reduced set of affine operators. Each link 
would have as many affine operators as it has preceding links directly connected 
to its input. These F P N N s have significantly reduced resource consumption. 
Compared to the Full FPNNs, their consumption could be multiple times lower, 
but they suffer reduced approximation accuracy. The penalty to the accuracy 
can be only a few percent or as significant as tens of percent. Therefore, the 
reduced F P N N s can provide an interesting trade-off between accuracy and re­
source consumption. Still, they need to be carefully considered in regards to the 
particular situation, the original neural network type, and its task. 

— Light FPNNs are the F P N N s with the lowest resource consumption but also the 
lowest capabilities and the lowest approximation accuracy. This makes their us­
age limited, and the trade-offs and possible gains need to be considered compared 
to the reduced FPNNs . 

• A method of detecting permanent synapses faults was proposed in our research. The 
method is based on modifications of the neural network's weights in a particular way 
that allows a possible permanent fault to be detected by comparing the modified 
neural network's output data with the expected data. This method is also directly 
applicable for detecting permanent faults in F P N N s ' links as well. 

• FPNNs hardened with TMR applied on different implementation levels were proposed 
in alignment with this traditional method's proven effectiveness. A replication-free 
method method of recovering the FPNNs from permanent faults using identity oper­
ators was proposed. Together with this method, a modified algorithm for mapping 
neural networks to F P N N s that can potentially harden the F P N N s against the effect 
of the identity operators' activation was also proposed. Also, a method to detect 
which links are critical to an F P N N ' s function was proposed. These methods showed 
the potential to increase an F P N N ' s robustness but were not universally effective. 
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Therefore they present an option to consider as an alternative to replication-based 
techniques like the T M R in some particular situations. 

• A different replication-free method to recover from faults in an F P N N ' s link was 
proposed. This method was based on modifications of activators' parameters that 
influence their activation functions. The method proved to be more disruptive than 
helpful, so its usage has to be carefully considered. 

• Measurements of FPNNs' robustness against fault causing bit-flips in affine operators' 
values were presented. The experiments revealed the dependency of the Reduced 
FPNNs robustness on the sizes of their layers. 

6.2 Possibilities of Future Research 

The topics of this thesis surely invite future research. Further research could advance 
the Field Programmable Neural Network both in their capabilities to approximate neural 
network and their robustness and beyond. We believe further research is possible in at least 
these pathways: 

• More replication-free methods of hardening and recovery based on parameters' modifi­
cations can be proposed. Heuristics providing guidance to these recovery methods can 
be introduced. Moreover, methods based on a modification of the structure together 
with the modification of the parameters can be investigated. 

• Additional methods of F P N N s ' construction and mapping neural networks to them 
can be introduced. In an unpublished line of our work, we have experimented with 
FPNNs mapped using an evolutionary algorithm, and given the results, we would 
encourage this line of future research. 

• The methods of recovery from faults based on the partial dynamic reconfiguration 
proposed in multiple research efforts could be integrated as a replacement of the 
online reconfiguration. 
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Abstract—This paper introduces a set of methods for mapping 
the trained neural networks into the lighted grid structured 
Field Programmable Neural Networks without the use of a 
training data set. These methods use information obtained from 
original neural networks such as a network structure, connection 
weights and biases. The principles of these mapping methods are 
described and the used grid FPNNs are explained. The results of 
experiments are presented and summarized. 

I . I N T R O D U C T I O N 

The concept of the Field Programmable Neural Arrays 
(FPNAs) [11 is meant to simplify the implementation of arti­
ficial neural networks in FPGAs. The simplification originates 
from its main feature - a strongly customizable structure which 
makes it possible to share a lot of resources between the origi­
nal synaptic connections due to a more simple interconnection 
model. 

A. FPNAs 

The FPNAs use two different types of units called neural 
resources for approximation of the neurons and the weighted 
connections (synapses) of the original neural network. 

An activator is the first type of neural resource. Activators 
implement the functionality of neurons. The activator collects 
a potential and computes an activation function. The other 
type of neural resource is called link. The links apply the 
weight multiplication to incoming data. By doing this it 
implements the synapses and serves as the interconnection 
of activators. But unlike the traditional neural networks, the 
structure of connections is much more flexible. The FPNAs 
do not prescribe any mandatory type of connection model. It 
makes it fully optional. In the FPNAs it is not necessary to 
connect only activators. It is possible to connect the links as 
well and to chain them. This feature allows us to construct 
new types of connection models. For example, it is possible 
to connect activators with a sequence of a few links and make 
all original connections go through this sequence. Therefore, 
one link in the sequence approximates a number of original 
synaptic connections. The links are shared between a set of 
original connections. This sharing leads to spare hardware 
resources of FPGAs. Moreover, by using this feature it enables 
us to construct the networks with a very simple interconnection 
and make its structure suitable for FPGAs. 

When the connection model is designed and concrete 
parameters of neural resources are assigned, the resulting 
object is called Field Programmable Neural Network (FPNN) 
[2]. It is one of the possible instances of an FPNA. One FPNA 
can be interconnected and parametrized in many ways, so it is 
possible to create many FPNNs from one FPNA. 

B. Grid FPNNs 

In order to obtain as many resources saving FPNNs as 
possible, we have designed a special type of the grid FPNNs 
which became the core of our work [51 [61. An example of 
one layer of this type of FPNN is illustrated in Fig. 1. The 
circles represent activators, the large arrows represent links 
and the thin arrows represent connections between the neural 
resources. The orientation of the connection arrows show the 
way of the passing data. As the picture illustrates, there is only 
one link on the output of every activator. The link realizes the 
connection to another layer. It is directly connected to one 
successive activator. The connection to the other activators 
goes through the sequence of links within the whole layer. 
There are two sequences going in the opposite direction and 
realizing most of the connection. Together they are called 
interconnection chain. Every FPNN layer with more than one 
activator has an interconnection chain. The whole connection 
is realized by the layer_size + 2 x (layer_size — 1) links 
only. Synaptic connections are implemented as a sequence of 
multiplying by the weight of each link. 

Fig. 1. A grid FPNN composed of activators (circles), links (thick arrows) 
and data connections (thin arrows) 

This kind of structure relatively matches the structure of 
an interconnection bus in FPGAs. It consists of a lot of 
shared resources with a very simple local interconnection. 
Accordingly it is suitable for the implementation in FPGAs. In 
order to obtain even more resource savings we have changed 
the original definition [1] and limited the number of links affine 
operators (the weights) to one. Thus, every link (a member of 
the set of all links E) has an affine operator performing the 
multiplication of its input value a; by a constant parameter W 
(1)(2). This single parameter is common for every approxi­
mated synapse. By doing this the universal multiplier in the 
link is turned into a less expensive constant multiplier. We call 
this type of link as light link and the grid FPNN using only 
light links as light grid FPNN. 

Ve £ E(3ae); ae 

We x xe:We,xe £ 
(1) 
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In the light grid FPNN, the original synapse w £ S, S is 
a set of original synapses weights, is approximated with value 
w' computed (4) as a product of all W parameters of all links 
in a sequence approximating the synapse determined by seq 
function (3). 

seq : S -> En,n > 1 (3) 

n we 
(4) 

e£seq(w) 

We have used the grid FPNNs for the implementation of 
basic feedforward layered neural networks for classification 
tasks. We have constructed an FPNN from already trained 
neural networks and tried to map these networks to FPNNs 
as precisely as possible. For mapping purposes we have used 
only the information coming from an original neural network, 
such as the network structure, weights and bias values. Our 
goal was to avoid the use of training data and thus be capable 
of creating the FPNNs from the networks, the training data of 
which were already lost or are not easily available. 

II. E X P E R I M E N T S 

We have experimented with classification tasks from the 
Probenl neural networks benchmarking data set [3]. The 
experiments have been programmed in Python of version 3 
and performed on personal computers. A l l the presented results 
were obtained during experiments with a diabetes8 task from 
the Probenl. The FPNN has eight inputs, sixteen activators in 
the hidden layer and two activators in the output layer. 

A. Basic mapping method 

As all the links W parameters in a sequence have to be 
known for the approximation of a synapse and as prefixes of 
the sequence can approximate another synapses, it is needed 
to start the mapping from the beginning of every sequence and 
with the following steps moved further and further. 

The weight approximation (4) can be reformulated as 
multiplying the partial product of the sequence prefix by its 
last I links W parameter (5). As the prefix value is already 
known from previous steps of mapping, the W™ is needed to 
be determined in an actual step. It is computed as the division 
of original synapse w weight and the prefix value (6). A l l 
synapses approximated by the link I are placed in a set Si. 

w'= I n W A x W 7 ; u ; e S j (5) 
VeGseq(iu)\{/} J 

w? w 
n 

;weSt (6) 

As one link can be placed in more than one sequence and 
\Si | > 1, there is a whole set Pt {\Pt\ = \St |) of W{" computed 
parameters for it. However, in the case of light grid FPNN, the 
link disposes a single W parameter. Thus, there is a need for 
compromise. In the basic method (called ARIT) an arithmetic 
average has been used. 

B. Measuring 

Since the FPNNs are seen in this paper as an FPGA suitable 
for approximation of neural networks, the quality of results 
was measured as a difference between a neural network output 
classification and an FPNN output classification. The number 
of identically classified data vectors and differently classified 
data vectors were measured. The representative value was the 
percentage rate of match. 

C. The accuracy 

During our experiments with the grid FPNNs we have 
found that FPNNs with two inputs and one output have 
been mapped with 100% accuracy. This is not surprising 
considering the grid FPNNs structure. There are two inputs 
and two link sequences in a hidden layer to connect them 
with each activator, so there is no need for sharing the links 
between the synapses (there is one link in the sequence for 
the approximation of each synapse) and it is possible for an 
approximation to be accurate. Secondly, there is only one 
output, thus there is no interconnection chain, no sharing links 
between synapses and approximation is accurate. 

Next, we have found that the accuracy of differently 
organized FPNNs was not very high. If there are more than 
two inputs and one output, the sharing comes into place having 
a strong negative influence on the accuracy. In different kinds 
of approximated neural networks we usually did not get over 
the 70% rate of match level. Usually we reached an over 60% 
rate of match. 

Because of these results, we have decided to find a mapping 
method capable of achieving a satisfying accuracy without the 
use of structural changes. Our goal has been at least 90% rate 
of match, in order to obtain these results two sets of new 
methods have been designed. 

III. M E T H O D S B A S E D O N W E I G H T E D A V E R A G E 

These methods are based on a weighted average (7) and 
differ in a way of computation of the weights v. The compu­
tation is based on information the FPNN provides. 

Wi J2vj* Pi ;l£E,PiePi,i£{l,\Pi\) (7) 

The first method computes the weights from a distance 
between an actual computed link and a source activator of 
computing connection in a previous layer. The weight is 
determined as a count of links between the actual link and the 
source activator. Thus, longer connections have a bigger effect 
to a final value of links weight. Another version of the method 
uses a reciprocal value of the distance between the actual 
link and the source activator. Shorter connection had a bigger 
effect in this case. We call this method DIST_DP for direct 
proportion and DIST_IP for inverse proportion. Computation 
uses dist and clos functions. If a sequence L is composed of n 
links, L = {li..ln},n > 1, then the functions can be defined 
as (8)(9). By using these functions, the weight computation 
can be performed as (10)(11). 

V e m £ L : dist(em) = m 
6 L : clos(em) = (n — m) + 1 

(8) 
(9) 



Vi = dist(pi);pi e Pi,i e (1, \Pi\) (10) A. Combinations of methods 

Vi = clos(pi);pi e Pt,ie (l,\Pi\) (11) 

The second method is based on the value of the original 
synapses weight. The value is directly used as a weight (12). 
Synapses with a bigger weight have a greater effect on a 
link weight. Another version of this method uses an inverse 
proportion to make connections with a smaller weight to have 
a bigger effect on a result (13). We call this method WEIG_DP 
for direct proportion and WEIG_IP for inverse proportion. 

vi = wi;weSl,ie(l,\Sl\) (12) 

vi = —;weSl,ie(l,\Sl\) (13) 
Wi 

The third method is based on the value of the sequence 
prefix. The value is directly used as a weight (14). Synapses 
with a higher prefix value have a greater effect on a result. 
Another version of this method uses an inverse proportion to 
make synapses with a lower value of a prefix to have a bigger 
effect on a result (15). We call this method PROD_DP for 
direct proportion and PROD_IP for inverse proportion. 

vi=i n W A ; w i e S , , » e < i , | S , | ) (14) 
YeGseq(iu)\{/} J 
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The last method is based on the usage of a position of 
a computed approximation value pt in ascending ordered set 
of all approximation values. For completeness, the inverse 
proportion is used as well. We call this method PVAL_DP 
for direct proportion and P V A L J P for inverse proportion. 

Table I contains the results of all methods on the testing 
data set. The column Method contains the name of the method 
and the column Data set specifies the training or testing data 
set. The column Match contains the number of input vectors 
accordingly classified by both the FPNN and the original 
neural network. The column Mismatch contains the number 
of differently classified vectors, and the column Rate contains 
the rate of matches. 

Method Match Mismatch Rate [%1 
ARIT 250 133 65.274 

DIST_DP 237 146 61.879 
D I S T J P 250 133 65.274 

WEIG_DP 250 133 65.274 
WEIG_IP 250 133 65.274 
PROD_DP 251 132 65.535 
P R O D J P 249 134 65.013 
P V A L _ D P 250 133 65.274 
P V A L J P 250 133 65.274 

T A B L E I. T H E METHODS COMPARISON 

As the table shows, the best results were achieved with the 
PROD_DP method with a 65.535% rate of match. However, 
all the results are almost identical and there is hardly any im­
provement on the results according to the basic ARIT method. 
In an effort to gain a better improvement, combinations of 
methods were tested. 

A l l the possible combinations of two, three or all four 
weighted methods were used. A resulting weight Vi was 
computed as an addition of weights computed by all methods 
in a combination. The results are summarized in Table II. The 
results are ordered from the best to the worst. Only the results 
better than 60% are listed. Table III contains the concrete 
values of the gained improvement and these tables contain 
only those methods which achieved an improvement over the 
PROD_DP (the best simple method). The column Increase 
contains the percentage increase of the rate of the match. 

Combination of methods Match Mismatch Rate [%1 
PVAL_DP, P R O D J P , DIST_DP 283 100 73.890 

PVAL_DP, P R O D J P , W E I G J P , DISTJDP 280 103 73.107 
PVALJDP, DISTJDP 279 104 72.845 

PVALJDP, W E I G J P , DIST .DP 277 106 72.323 
P V A L J P , PROD J>P, W E I G J P 259 124 67.624 

P V A L J P , PRODJDP 253 130 66.057 
P V A L J P , PROD J>P, WEIGJDP, DISTJDP 252 131 65.796 
PVALJDP, PROD J>P, W E I G J P , D I S T J P 251 132 65.535 
P V A L J P , P R O D J P , W E I G J P , D I S T J P 250 133 65.274 

PVALJDP, PROD J>P, WEIGJDP, D I S T J P 249 134 65.013 
W E I G J P , DISTJDP 237 146 61.879 

P V A L J P , P R O D J P , DISTJDP 230 153 60.052 

T A B L E II. T H E COMPARSION OF THE COMPLEX METHODS 

Combination of methods Rate [%1 Increase [%] 
P V A L J 3 P , P R O D J P , DISTJDP 73.89033 8.35533 

P V A L J 3 P , P R O D J P , W E I G J P , DISTJDP 73.10704 7.57204 
PVALJDP, DISTJDP 72.84595 7.31095 

P V A L J ) P , W E I G J P , DISTJ3P 72.32375 6.78875 
P V A L J P , PROD J>P, W E I G J P 67.62402 2.08902 

P V A L J P , PRODJDP 66.05744 0.52244 
P V A L J P , PROD J>P, WEIGJDP, DISTJDP 65.79634 0.26134 
PVALJDP, PRODJDP, W E I G J P , D I S T J P 65.53524 0.00024 

T A B L E III. T H E IMPROVEMENT OF THE COMPLEX METHODS 

The combination of methods PVAL_DP, PROD_DP, 
WEIG_DP and DIST_DP gained the best results with a 
73.890% rate. The best achieved improvement was 8.35533%. 
In eight methods, improvements were achieved. 

IV. M E T H O D S B A S E D O N O P T I M I Z A T I O N A L G O R I T H M 

Up till this point only the weights were mapped. The 
neurons biases were directly transferred into activators without 
any modification. In an effort to increase results even more, 
we have developed two methods of mapping, including a 
biases modification. Both methods are based on the Nelder-
Mead optimization simplex algorithm [4]. The error function 
minimized with this algorithm is the sum of the differences 
between the activators output and the original neurons output. 
The methods differs in the way a simplex is constructed and 
the way the error function is applied. The points of the simplex 
in both methods are made of a different set of links weight and 
activator biases. The FPNNs created using methods mentioned 
in the previous section are used as the initial points. The 
FPNNs are listed in Table III plus the basic ARIT method. 
Thus, these new methods serve as an extension of both the 
simple and complex methods. 



A. Computation layer by layer 

The first method creates the points of simplex from a set 
of link weights and activator biases in one layer. Every layer is 
optimized separately. The equation (16) is the error function. 
The T is the testing data set and the H is the set of activators 
(neurons) in a hidden layer. o\ is the activator output on the 
input vector t and d\ is the neuron output. This extension is 
called TLAY. Table IV summarizes the achieved improvement 
over simple methods. 

Combination of methods Rate [%] Increase [%] 
P V A L J P , PROD_DP, W E I G J P , T L A Y 
PVAL_DP, W E I G J P , DIST_DP, T L A Y 

PVAL_DP, PROD_DP, WEIG_DP, DIST_DP, T L A Y 
PVAL_DP, P R O D J P , W E I G J P , DISTJDP, T L A Y 

P V A L J P , PROD J>P, T L A Y 
PVALJDP, PRODJDP, W E I G J P , DISTJP , T L A Y 

68.66840 
67.62402 
67.10182 
66.31853 
66.05744 
65.79634 

3.13340 
2.08902 
1.56682 
0.78353 
0.52244 
0.26134 

T A B L E IV. T H E IMPROVEMENT OVER THE SIMPLE METHODS 

It can be observed that the greatest improvement of 
3.13340% over simple methods this extension was achieved 
with the combinations of P V A L J P , PROD_DP and W E I G J P 
methods. This improvement is smaller compared with only 
using the combinations of the methods without this extension. 

B. Computation activator by activator 

The second method creates the points of simplex from one 
activator bias and from the weights of all links in sequences 
connected to that activator. Every activator is optimized sepa­
rately. The final weights of links are computed as a weighted 
average of the values obtained from all activator optimizations. 
The weight in the average is determined as the distance 
between an optimized activator and a computed link. The 
links weight is computed after all optimizations are done. The 
equation (17) is the error function. The T is the testing data 
set, o\ is the activator output on the input vector t and d\ 
is the neuron output. This extension is called TACT. Table 
V summarizes the achieved improvement over the simple 
methods. 

Err = °\ ~ 4 (17) 

Combination of methods Rate [%1 Increase \%] 
PVALJDP, DISTJDP, TACT 75.45691 9.92191 

PVALJDP, W E I G J P , DISTJDP, TACT 75.19582 9.66082 
P V A L J P , PRODJDP, W E I G J P , TACT 72.32375 6.78875 

P V A L J P , PROD J>P, TACT 67.62402 2.08902 
PVALJDP, P R O D J P , DISTJ3P, TACT 67.36292 1.82792 

ARIT, TACT 65.53524 0.00024 

T A B L E V. T H E IMPROVEMENT OVER THE SIMPLE METHODS 

As the table shows, the best results this expansion achieved 
with the combination of the methods PVAL_DP and DIST JDP 
with a 9.92191% improvement over the simple methods. This 
is the best result achieved with all methods, combinations and 
extensions. 

V. C O N C L U S I O N S A N D F U T U R E R E S E A R C H 

We have developed a set of mapping methods based on the 
weighted average and different kinds of weight determination. 
We have combined these methods into a new set of complex 
methods. We have extended these methods using the Nelder-
Mead optimization algorithm. The combinations of methods 
gained an 8.35533% improvement over the simple methods. 
The best result all the methods have gained is a 75.45691% 
rate of match with the combination of PVALJDP, DISTJDP 
methods and the TACT extension. 

Some of the designed combinations of the methods have 
achieved an improvement over the simple methods, while some 
have produced the same results as the simple methods. Also 
the extensions made an increase of rate of match with some 
combinations of the methods. 

In our future research, we are going to perform significantly 
more experiments with other neural networks. We are going to 
examine other mapping methods and optimization algorithms, 
develop methods of using redundancy to increase the approx­
imation accuracy and examine the light grid FPNNs enhanced 
with links using more than one affine operator in place of light 
links suffering with a high approximation error. Beside this, we 
are going to focus on fault tolerant properties of FPNNs and 
examine the possibilities of using redundancy on the neural 
resources level in order to increase the fault tolerance. We are 
also going to test special algorithms performing the mapping 
of neural networks to FPNNs and establishing a redundancy 
free fault tolerance of selected neural resources. 
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Abstract—This paper presents the concepts of FPNA and 
FPNN, used for the approximation of artificial neural networks 
in FPGAs and introduces derived types of these concepts used by 
the authors. The process of transformation of a trained artificial 
neural network to an FPNN is described. The diagram of the 
FPGA implementation is presented. The results of experiments 
determining the approximation capabilities of FPNNs are pre­

sented and the FPGA resources utilization are compared. 

I. I N T R O D U C T I O N 

The artificial neural networks [9] are one of the impor­

tant models of sofcomputing and artificial intelligence. Their 
structure is inspired by the structure of the human brain and 
they dispose of a high capability of learning and memorizing to 
solve various types of tasks. Basically, the goal of the artificial 
neural network is to learn the relation between two sets of data 
vectors, to generalize the relation, to determine its features 
and to use it for the determining the relation of the unknown 
vectors belonging to the same problem. This capability can 
be used for classification tasks, for timeseries and functional 
prediction, to control tasks, to image recognition, clustering 
and other tasks. 

Neural networks are composed of a set of neurons com­

puting the activation function over the weighted sum of their 
inputs. The neurons are interconnected with the weighted con­

nections called synapses. The learning of the neural network 
is basically a process of setting the weights. 

The networks have been implemented in various kinds of 
devices starting from analog computers to the most modern 
processors, VLSIs, graphical processing units and FPGAs. 
This paper deals with one of the possible implementations of 
artificial neural networks in FPGAs ­ FPNA/FPNN. 

The concept of Field Programmable Neural 
Arrays/Networks (FPNAs/FPNNs) [1], [2] in design is 
meant to simplify the implementation of artificial neural 
networks in FPGAs by adjusting its properties to be 
more suitable for the implementation into their logic. The 
simplification originates from its main feature ­ a highly 
customizable structure which makes it possible to establish 
resource sharing between the original synaptic connections of 
the neural network. This is done by using its customizability 
to simplify the interconnection model. The concept were used 
for implementing large scale spiking networks [11], [12], 

The FPNNs are not the same structures as neural networks, 
although they can be constructed in that way. The FPNNs 

represent a different model which can structurally differ from 
the implemented neural network. They can also have different 
capabilities, which means that they are not only an implemen­

tation of the neural networks, they are an approximation of 
neural networks as well. Since the FPNNs can be constructed 
in various ways and types, the approximation accuracy can be 
different. 

The goal of this paper is to describe the types of FPNNs 
and compare the approximation capabilities of these types. The 
FPGA resources utilization of the FPNNs is compared as well. 

The FPNNs were formally defined in [1], [2]. In order to 
follow the original definitions, the presented work is based on 
these definitions and on definitions derived from them. For our 
purposes we modified the original definitions in order to suit 
them to our way of using the concept. This step allowed us to 
use different level of the approximation accuracy. Our further 
definitions specify special derived types of FPNNs. Also, they 
allow us to describe easily the algorithms of mapping trained 
neural networks to FPNNs. 

In our paper published at NORCAS 2015 conference [7], 
we described the concept of Field Programmable Neural Net­

works for artificial neural networks implementation in FPGA. 
We also presented a model of fault tolerant FPNNs and various 
fault tolerance improving techniques based on the model. 
Experimental results were also provided. Now, in this paper 
we describe how we continue in our research ­ the formal 
definitions of the FPNA/FPNN concept are presented. The 
problem of process of direct transformation of the trained 
neural network to FPNN together with the related algorithms 
are described. The goal of experiments presented in the paper 
is to determine the approximation capabilities of different 
FPNNs of the reduced and the full type, the results are 
described in the paper. In the earlier paper [6] we dealt with 
the mapping of the neural networks to FPNNs of the most 
simple type with a number of methods. This paper follows 
this work by extending it to other types of FPNN with more 
detailed description of the models, methods and algorithms. 

The paper is organised as follows ­ the first section intro­

duces the FPNA/FPNN concept. The second section deals with 
the problem of neural networks transformation to FPNNs and 
describes our transformation algorithms while the third section 
presents the diagrams of FPGA implementation of FPNNs. In 
the fourth section experiments and results are described. The 
last section summarizes the paper. 

mailto:ikrcma@fit.vutbr.cz
mailto:kotasek@fit.vutbr.cz
mailto:ilojda@fit.vutbr.cz


II. F P N N 

For purposes of our research we developed a new definition 
of an FPNN (see Definition II. 1, original definition by B. Girau 
[1], [2]). According to this definition, an FPNN is a structure 
composed of two types of units (together called neural re­
sources). The units of the first type are called activators (the 
set TV) and represent original neural network neurons. They 
perform the same actions as neurons - they iteratively gather 
input data into potential, then apply an activation function to 
obtain the output. The activation function is represented by 
the function operator " / " and the iteration operator "i" is 
responsible for input data processing to provide the input to 
the function operator. 

The interconnections between activators are realized by the 
other unit type called links (the set L). The links perform 
approximation of the original synaptic weights (they compute 
the weight multiplication) according to the rest of the FPNN 
parameters. The actual data interconnection model is presented 
by an oriented graph (TV, E), where E is a set of valued edges 
interconnecting the activators. Every edge is usually split up 
to a sequence of links which allows us to construct various 
structures. The more we split the edges into links, the more 
flexibility we obtain. 

Definition II.l (FPNN [1]). We say that structure 
(TV, L, E, 0, ui) is an FPNN if the following statements 
hold true: 

1) TV is a set of units called activators that dispose of: 
a) An iterative variable tn: V n £ TV : 3tn £ R 
b) A default value of tn: 

V n £ TV : 3on £ K ; tno = on 

c) A number of iterations: V n £ TV : 3an £ N 
d) An iterative operator (xn is an input data): 

V n £ TV : 3in : R x R -> R; 

e) A function operator: V n £ TV : 3f„ : R -> R 
2) L is a set of units called links that dispose of: 

a) A set of link operators \/l £ L : 3Af. 
Al = {an(x)\an(x) = Wn x x;Wn £ 
R;n = l..c} 

3) E is a set of valued oriented edges: (m ,n ) £ 
E;m,n£ TV). 
The edge value is defined: Ve £ E : 3We £ R 

4) (TV, E) is an oriented graph denoting the intercon­
nection between activators. 

5) 0 is a function E —> L+, so that: 
Ve £ E : 0(e) = (h..l„); h..l„ £ L; n > 0 

6) co is a function E —> L+, so that: 
Ve £ E : 0(e) = {h..ln);h..ln £ L ;w(e ) C 
0 ( e ) ; O < n < |0(e)| 

7) Edge-to-operator functions ai : E —» Ai;l £ L: 
Ve £ E A VI £ 0(e) : at(e) = of; of £ Al 

8) Operator determining ipi : E+ —> Ai,l £ L: 
VI £ L: ^ ; ( e i . . e „ ) = ax <^> ax £ At A I £ w(ei) A 
..Ale oj(en) A crj(ei) = .. = ai(en) = ax 

9) A set of input nodes exists: 
BTVi = {n £ TV I deg+{n) = 0} 
V n £ TVi : in = 0; fn(x) = x 

The actual FPNN structure is determined by the (TV, E) 

graph and the 0 function. The edges are split up to the 
sequences of interconnected links, given by the 0 functions 
which realize the interconnection between activators and the 
approximation of the edges weights. The edges weight approx­
imation is determined by the ui,a,tp functions and realized 
by the link operators. Link operators are functions which 
are applied to the data passing through the links. Every 
link disposes of one or more link operators (the A\ sets). 
To determine a link operator which should be assigned to 
the particular edge (to the data which would originally pass 
through the edge) the a functions are constructed. A l l the link 
operators in the sequence (realizing an edge) are applied to all 
the passing data (according to the a functions). To establish 
the weight approximation, it has to be decided which links 
in the sequences will be used for the approximation by the 
construction of the ui function. The actual approximation is 
determined by the tp functions which construct link operators 
for the assigned edges (by the w, a functions). This will be 
further explained in the section III. 

To preserve the consistency with the original definition [1] 
we add the following: If only the graph (TV, E), iteration and 
function operators are defined, the structure is called FPNA 
(Field Programmable Neural Array) [1] and it defines the 
whole class of possible FPNNs. Every FPNN can bee seen 
as an instance of some FPNA. 

A. Grid FPNN 

For our research purposes we developed a special type of 
FPNN based on the above provided definitions. Grid FPNN 
(definition II.2) is an FPNN with an enforced limitation of the 
structure causing it to form a grid shape. The reason for this is 
to make an FPNN suitable for the implementation in FPGAs 
due to the similarity of the grid FPNNs structure and FPGAs 
interconnection bus and the sharing of resources in links. 

Definition II.2 (Grid FPNN). We say that FPNN is the grid 
FPNN if the the following statements hold true: 

1) The activators are organized into layers. 
2) The two sequences of interconnected links exist in 

all layers composed of more than one activator. The 
number of links in every sequence is one less than 
the number of activators in the layer. The output of 
every link is connected to the input of the nearest 
activator. The sequences go in the opposite ways. 

3) The output od every activator is connected only to 
a single link which provides the connection to the 
next layer. The output of the link is connected to 
the nearest activator and to the nearest links of one 
or both link sequences in the layer (which realizes 
connection to all other activators). 

An example of a grid FPNN can be seen in Fig. 1. In the 
figure, the circles represent activators, wide arrows represent 
links and the thin arrows represent data interconnections. The 
orientation of the connection arrows shows the way of the 
passing data. The straight wide dashed/dotted arrows represent 
the original neural networks synapses. The thin dashed/dotted 
arrows represent the sequences of links approximating the 
particular synapses. The synapses and the particular sequences 
are drawn with the same line and arrow styles. As the picture 



illustrates, there is only one link (called initial, Definition 11.4) 
on the output of every activator which provides the connection 
to the following layer. It is directly connected to one successive 
activator in the following layer. The connection to the other 
activators goes through the sequence of links within the whole 
layer. Two sequences of the links are going the opposite 
ways. They are called Interconnection sequence (definitions 
II.3-II.5). Every layer with more than one activator has an 
interconnection sequence within. 

Definition II.3. A sequence of links is generally a sequence 
of directly interconnected links. 

Definition II.4. An initial is a link having no link predecessors. 
It has only an activator predecessor. 

Definition II.5. An interconnection sequence is a sequence of 
links interconnecting activators within a layer. It is composed 
of two sequences going the opposite ways. The input of every 
link is connected to one or two preceding links, the output is 
always connected to the nearest activator and to the succeeding 
link in the sequence (if it exists). 

B. Different levels of approximation 

The approximation capabilities of the FPNN depend on 
the number of available link operators present in links and the 
number of edges assigned by the ui function for approximation 
to the links. Respectively, the ratio between the numbers of 
operators and assigned approximated edges is the essential 
parameter for the FPNN approximation abilities. The numbers 
can be equal. In that case, the tp functions only determine 
the value approximating the given edge (the member of the 
multiplication sequence as described in the next subsection). 
Thus, every edge has its link operator counter part. In this 
case, the approximation of the original neural network weights 
(suppose that original synapses were directly transferred to 
edges, thus (N, E) graph is isomorphic to the original network) 
is accurate. We call the FPNN with these properties as Full 
FPNN. 

The definition allows us to reduce the number of link 
operators. In that case, the tp function is surjective and its 
purpose is to find a compromise between a number of edges 
mapped to one link operator. In this case, the approximation 
accuracy suffers from the decrease caused by sharing the 
link operators between multiple edges. However, this kind of 
sharing reduces the FPGA resources utilization (the main goal 
of the FPNN concept) since, the memories containing the link 
operators are smaller as well as related logic (multiplexors, 
possibly multipliers etc.). And the accuracy decrease does not 
have to be necessary critical since the neural networks are 
potentially robust against some weights losses. The usage of 
this technique of resource utilization reduction is a matter of 
preference and depends on concrete situation and a way of 
usage. 

We distinguish two other types of FPNN. The reduced 
FPNN and the light FPNN. The meaning of light FPNN 
is simple - every link disposes of only one link operator 
(VJ £ I : |A; | = 1). In this case, the link multiplier turns 
into a constant multiplier which offers the highest spare of 
resources. However, the accuracy suffers the most. 

The last type mentioned in this paper is the reduced 

FPNN which disposes of the same number of link operators 
as it has the number of direct link predecessors in the link 
sequences it belongs to. This type approximation capabilities 
are determined by an FPNN structure as the number of link 
operators is directly dependent on the number of existing link 
sequences and their interconnection. The explanation based 
on Fig. 1 would be the most appropriate. Consider the third 
(the rightmost) link of the lower part of the interconnec­
tion sequence (the sequence heading to the right). This link 
approximates three edges originating in the three leftmost 
activators. However, it has only two direct link connected 
predecessors. So, in the case of reduced FPNN, it would 
have two link operators. The first one approximates the edge 
originating in the third leftmost activator. Since there is no 
sharing of this link operator, the approximation of the edge is 
accurate. However, the second link operator is shared between 
two edges originating in the first two leftmost activators. An 
approximation of these edges would be hence less accurate due 
to sharing the link operators. But in case of the full FPNN, the 
approximation would be accurate since there would be three 
affine operators, one for every edge. 

Fig. 1. Synapses (edges) approximation in a grid FPNN 

Definition II.6 (Light FPNN). We say that FPNN is a light 
FPNN if the folowing statemet holds true: V/ £ L : |A ; | = 1. 

Definition II.7 (Full FPNN). We say that FPNN is a full FPNN 
if the following statement holds true: 

£ L A V e £ E : \At\ = \{e\e £ 

Definition II.8 (Reduced FPNN). We say that FPNN is a 
reduced FPNN if the following statements hold true: 

1) The edge equivalence is defined: 
V e i , e2 £ E;l £ L : e\ =i e2 <5 <f>{e\) = l\..lxl..ln/\ 
^(^2) = l\..lyl..lm'i lx = ly 

2) \/l £ L the size of Ai is equal to the number of the 
equivalence classes generated by the 

III. M A P P I N G OF N E U R A L N E T W O R K S TO F P N N S 

Mapping is a process of direct transfer of an artificial 
neural network into an FPNN without using a training data set 
and without the need of learning (other works [31 deal with 
training of FPNNs). Mapping uses information obtainable from 
an original neural network such as weights, biases, activation 
functions and the network structure. 

The first phase of mapping would be the construction of 
an appropriate FPNN. The first step is construction of (N, E) 
graph which should be (but does not have to be) isomorphic 



to the original neural network. This step contain the mapping 
of neurons to activators - the basis functions are mapped to 
the iteration operators, the activation functions to the function 
operators and the biases to the on parameters. The second step 
is the links creation according to the intended shape of the 
FPNN. The next step is to assign the edges to the sequence of 
links (constructing the 0 function) which specify the concrete 
shape of the FPNN. According to the approximation accuracy 
preferences, the Ai sets of link operators needed to be con­
structed now. 

Since all data between activators will flow through the 
sequences of links (given by the 0 function) interconnecting 
them, the data will be modified using link operators of all 
links in the sequences. Therefore, the a functions have to be 
constructed to determine the relations between edges and the 
link operators. 

However, not all link operators have to be used for the 
edges weights approximations. Some of them (or all but one) 
can be used as data passers which can be possibly shared 
between edges. For better understanding, consider an edge e, 
its weight We = 3 and 0(e) = hhhU- Using a functions we 
obtain a sequence of link operators axa^azot^ assigned to the 
edge. If it would be our intention to use all these operators to 
approximate the We, the approximation sequence would then 
be most likely composed of three operators with value of 1 and 
one operator with value of 3. Therefore, we would need to have 
an extra 1-valued operator in all the three links. Which would 
be easy to use, but costs more resources. I could be more wise 
to use other existing operators (approximating other edges) in 
some of links and special operators used for e approximation 
in others. In our case, if a functions map the e to the operators 
in links with values of 1.5,2,2, the link operator in I4 
used for approximation of the e would have the value of 0.25 
(since 1.5 x 2 x 2 x 0.25 = 3). In this case, only one operator 
was used for the e approximation and the others were shared 
with other edges without influencing them (they were used 
for other edges approximation in the same way). To specify 
which link operators are used for approximation of concrete 
edges, the ui function is constructed. If sharing is not in our 
intention (for example for matter of data type accuracy which 
could suffer from multiple multiplications), the ui(e) = 0(e) 
for all edges. 

The last step is to determine the tp functions. These func­
tions serve for finding a compromise if more then one edges 
are mapped to a single link operator for approximation. If all 
the edges dispose of exclusive operators of their own (the full 
FPNN), no tp functions are needed. In other cases (the reduced 
and light FPNNs) they have to be constructed. There are 
plenty of way of finding the compromises - arithmetic average, 
median, weighted average and others. We have described the 
results of using different compromises (ip functions) in our 
paper at DDECS 2015 [61. 

There are several possible ways how to determine the ui and 
the a, tp functions. Using evolution algorithms and optimiza­
tion algorithms could be one of them. In this paper however 
we would like to describe a systematic approach of mapping 
trained layered feedforward neural network (perceptron like) 
to grid FPNNs. We suppose the (N, E) graph to be isomorphic 
to the original neural network and the L set and the 0 function 
to be constructed to form a grid FPNN according to the 

definition II.2. The ui functions is constructed according to 
the equation 1. According to it, every edge is approximated 
by the link operator of the last link in the sequence given 
by the 0 function. The a functions need to be constructed to 
create groups of edges according to the equivalence classes 
generated by the = function from the definition II.8. The tp 
functions were chosen as the arithmetic average (equation 2). 
The opSeqe is the sequence of link operators assigned to the 
edge e except the last one. The Pe is the value of the product 
of the link operators in the opSeq set. It denotes the actual 
multiplication value in the last link before w(e). According 
to the value and the value of the edge weight, the value Ae 

needed to accurate approximation is computed. In full FPNN, 
this value would be directly assigned to the link operator. In 
the presented equation, the arithmetic average is applied to all 
Ae values mapped to the link operator. 

Ve £ E : w(e) = ln <S> (j>(e) = l\..ln 

opSeqe = {af\af = ai(e) A I £ 0(e) \w(e ) ) 

ut £ o p S e < j e 

wP 

(1) 

(2) 

V7 £ L : ipi(ei..en) 

~ieeE:Ae 

E e ,€{e!..en} -

n (3) 

A. Mapping algorithms 

On the base of the presented principles we implemented 
the following algorithms which perform a mapping of trained 
neural network to the grid FPNN. The construction algorithm 
of the FPNN will not be described in explicit details in this 
paper, however the main idea was presented in the preceding 
section. The algorithms use the definitions and equations 
presented above as well as the declaration in Table I. 

At first, the auxiliary variables have to be initialized in 
the Algorithm 1. Then, the ordered set of link sequences 
must be constructed using the Algorithm 2. The set is called 
chains and it is constructed for each layer separately using 
the 0 function and ordering the resulting link sequences by 
their length (ascending order). The reason why to order the 
sequences is that it is suitable to start mapping with the 
shortest sequences of the length 1 (initials - always present 
in the grid FPNN) and continue with longer sequences in 
the next steps, determining one additional operator (member 
of the multiplication sequence) in the sequence in the each 
subsequent step. This means that the links (their operators) 
are mapped one by one creating longer mapped sequences in 
each step. 

In every step a new link is selected and its operators 
determined. In order to compute the values of the operators, 
it is needed to construct the groups of edges related to each 
link operator. Determining of these groups differs in case of 



each type of FPNN. In case of reduced FPNN, the edges are 
separated according to the link predecessor they pass trough, 
as the definition specifies. The groups are constructed as the 
equvalence classes of the =; function from the definition II.8. 
This is done by the Algorithm 3. In case of light FPNN, 
the equation on the second line of the Algorithm 3 shall be 
replaced by the equation 4 assigning all the edges to the one 
group which will be mapped to the single link operator. If a 
full FPNN is being mapped, the line should be replaced by the 
equation 5 assigning every edge to the separated group. 

groups <— w _ 1 (I) (4) 

groups <— {{e}|e £ w _ 1 (I)} (5) 

After the groups edges are constructed, the values of partial 
products Pe from the equation 2 as well as the approximation 
values Ae are computed for every edge in every group in the 
Algorithm 4. As the last step, the related link operator is 
computed for each group using the tp function. The operators 
computation is complete and the link is removed from the 
chain a algorithm continues with the successive link. 

T A B L E I. DECLARATIONS 

Declaration Description 
FPNN = {N,L,E,4>,LO) a grid F P N N 
layers £ { i V * } * The set of FPNN activators layers. 
chains C E* An ordered collection of link sequences. 
sort By Length : EN —> E Sorting by path length. 
firstNodeOf : EN -4 E Chain's first node. 
Ve £ E : 3 P 0 € R Partial product of the operators sequence. 
Ve £ E : 3 A e £ R Approximation value for the operator computa­

tion. 

1: procedure INITIALIZER A^, FPNN) 
/* I n i t o f t he v a r i a b l e s : */ 

2: for all Ve £ E do 
3: Pe <- 1.0 
4: Ae <- 1.0 
5: end for 
6: end procedure 

Algorithm 1. Initialization algorithm 

The presented algorithms represent the very basic mapping 
method. In our previous research [6] we developed a set of 
additional methods for mapping the light FPNNs which can be 
used to map the reduced FPNNs as well. The algorithms differ 
in the way of computing the tp function. They are based on 
different usage of weighted algorithms with different weights 

1 function D E T E R M I N E C H A I N S O = {nl..nn} £ Nn) 
2 chains <— 0 
3 for all n £ Ir A s £ do 
4 for all (n, s) £ E do 
5 chains <— chains U 0((n, s)) 
6 end for 
7 end for 
8 sortBy Length(chains) 
9 return chains 

10 end function 

Algorithm 2. Chain determination algorithm 

l : procedure D E T E R M I N E G R O U S ( 7 £ L) 
2: groups <— [e]=,Ve £ w _ 1 (7 ) 
3: return groups 
4: end procedure 

Algorithm 4. Reduced FPNN mapping algorithm 

determination as well as on more advanced principles. They 
also use different ways of results optimization. However, in 
order to explain the problem we used the basic method only 
since the other methods are more complicated and their results 
could depend more on the concrete network. 

We implemented these algorithms into our framework [5] 
dealing with the FPNNs. The framework allow us to construct 
FPNNs and map the neural networks to FPNNs as well as 
simulating the computation of the FPNN and generating the 
V H D L design for every FPNN. Using the framework, the 
mapping is very fast, depending on the methods, FPNN size 
and used optimizations it takes seconds to minutes to be 
executed. 

IV. I M P L E M E N T A T I O N OF FPNNs INTO FPGAs 

The V H D L implementation of both types was created 
according to the original design and schematic [1]. Another 
implementation was proposed in [10]. Both, activators and 
links were designed as separated units communicating with 
signals. The communication is based on the asynchronous 
request - acknowledgement model. Every neural resource gen­
erates requests for all units directly connected to its output 
(successors) when its computation is done. Once a successor 
starts to process the request, it sends the acknowledgement 
back to the original resource. When the original resource 
receives acknowledgements from all successors, it selects a 
new input request to process, sends the acknowledgement and 
begins the computation. The activators also send a flag together 

Algorithm 3. Initialization algorithm 

1 procedure M A P F P N N ( A T AT, FPNN) 
2 iNITIALIZEtAW, FPNN) 
3 for all layer £ layers do 
4 chains <- DETERMlNECHAlNS(Zayer) 

/* Mapping p a t h by p a t h : */ 
5 for all r £ chains do 
6 I <— firstLinkOf(r) 

/* M u l t i p l i c a n d s comput . : */ 
7 for all g £ D E T E R M I N E G R O U P S ( 0 do 
8 for all e £ g do 
9 Pe = Y[a, £oPSeqe

 a ' 

10 A e ^ ^ 
11 end for 

/ * Comput ing t he l i n k 
o p e r a t o r s : */ 

12 a*(e<Eg) = 1p{g) = %] 

*/ 

13 end for 
/* S h o r t e n i n g the c h a i n : */ 

14 r <— r\{l} 
*/ 

15 chains <— {p\p £ chains A p ̂  0} 
16 end for 
17 end for 
18 end procedure 



with the requests. The flag is a constant number and it is 
used by links to select the proper weight to multiply width the 
input data. The links then propagate the flag to all connected 
links. Only the full FPNNs use flags. The reduced and light 
FPNNs implementation do not contain the logic related to flags 
processing and transition. 

The implementations of both types of neural resources are 
similar, however they differ in used computational units. The 
diagram of standard link implementation is illustrated in Fig. 
2 and the diagram of the activator in Fig. 3. Both types are 
composed of a multiplexor, demultiplexer, register, computa­
tion units and units for processing requests. The meaning of 
common units is described bellow: 

or disables (new request was selected - start signal 
is up) its function. 

• A C T _ R E Q _ G E N is similar to the LINK_REQ_GEN, 
but it allows to activate the free signal using the 
nextjreq signal without the requests generation. 

These units are responsible for the control of the neural re­
source. When the processing of the selected request is started, 
they block the SELECT unit preventing it from selecting 
another request before the actual one is processed. After 
the computation is done, they generate output requests and 
hold the entire neural resource inactive until all requests are 
successfully received by the successors. 

• S E L E C T selects one of the active requests for pro­
cessing using the Round&Robin algorithm. The re­
quests from preceding neural resources are indicated 
by the set bits on its input. When the request is 
selected, it sets the start signal up. 

• M U X is an input data vectors multiplexer. It is con­
trolled by the SELECT unit. 

• R E G is a register storing the selected data vector. 

• A C K _ D E M U X delivers an acknowledgement (gener­
ated by the start signal) to the proper predecessor. It 
is controlled by the SELECT unit. 

These units are present in both links and activators. They serve 
for input requests processing and delivery of the input data to 
the computation part of the unit. Computation part of links and 
activators is composed of different units: 

• M U L T _ A D D applies the weights to the data. The key 
to select the proper weight is the flag associated with 
the request. The flag is selected from all of the flags 
at the input FLAG_IN by the value at the input s. 
The weights are stored in the memory inside this unit. 
Full FPNNs contain significantly more weights than 
reduced or light FPNNs. 

• I T E R iteratively computes the sum of all input data 
(simulates the neuron basis function). After a prede­
fined number of iterations, it transmits the result to 
the TRANS unit and activates it using the fin signal. 
After every iteration it activates the next signal which 
starts the processing of another request. 

• T R A N S computes the activation function (the output 
of the activator). The input is gained from the ITER 
unit. The activation function were sigmoid like func­
tion suitable for hardware implementation [13]. 

A l l computation units take the input data from the register 
REG, perform the computation of the result and transmit it to 
the neural resource output. They also activate the signal ready 
which is an input of the output requests generators: 

• L I N K _ R E Q _ G E N generates the requests to the con­
nected successors when the ready signal is set. It also 
receives the acknowledgements from the successors. 
Using the free signal it controls the SELECT unit -
it enables (when all acknowledgements are received) 

ack_outO , 
a c k _ o u t l ' 

r e q J n O » reqjno e n 

r e q j n l — reqjn 
\ SELECT 

r e q J n N « req_inN req_numL_ 

reset • 
elk • 

FLAG INI 

ready 

L INK_REQ_GEN ^ m 0 

• req_outO 
• r e q _ o u t l 

req_outS 
a c k J n O 
a c k j n l 

Fig. 2. Diagram of a link implementation - the interconnection of the inner 
units 

ACT REQ GEN 
leijlciNlS 

Fig. 3. Diagram of an activator implementation - the interconnection of the 
inner units 

V . E X P E R I M E N T A L R E S U L T S 

We experimented with the presented models and algo­
rithms, the experiments and results will be now described and 
summarized. The experiments were focused on the approx­
imation capabilities of the reduced and full FPNNs model, 
and on their FPGA resource consumption. The goals of the 
experiments were to show and compare the capabilities of both 
models and their space complexity. To perform the experiments 
we used our framework to simulate the FPNNs in order to get 



the approximation accuracy. The V H D L design of every FPNN 
was generated using the framework as well. 

The core of the experiments was a set of neural networks, 
and a set of structurally corresponding FPNNs of both types. 
Each trained neural network and the particular FPNN were 
both tested on a set of testing input vectors and their outputs 
were compared to each other to determine how the FPNN 
output differs from the reference neural network output. Since 
the FPNN serves as an approximation of the network, the 
match between their outputs is the essential information. 

We worked with 15 neural networks of different structures 
trained for 3 classification tasks originating in the Probenl 
neural networks set of benchmarks [4]. The selected tasks 
were Diabetes, Thyroid and Two Spiral. The referential neural 
networks were constructed with respect to obtaining the set 
of networks with different structures not too big for the 
implementation in the selected FPGA, with no respect to their 
classification capabilities irrelevant for the FPNNs approxima­
tion quality determination. 

Table II contains the information about reference neural 
networks. The Name column contains the network name 
(which is derived from the particular network task), the Struc­
ture column describes the network structure as numbers of 
neurons in each layer separated by the dashes. The Neurons 
and Weights columns summarize the numbers of neurons and 
weights of the network. The last column contains the number 
of links of the particular FPNN. The number of activators is 
equal to the numbers of neurons. 

The experiments were run ten times and the best and the 
worst results of the approximation are presented in table III. 
Table III contains the approximation accuracy test results. The 
Name column refers to the particular FPNN (and the reference 
network), the Reduced best column contains the approximation 
accuracy of the reduced type FPNN output. The best case 
results are evident from this column. The Reduced worst 
column contains the approximation accuracy of the worst case 
results. It is the rate of the identically classified input vectors 
by both the network and the FPNN. The the rate of match of 
the Full FPNNs is 100%. 

The created FPNNs were implemented using V H D L and 
were synthesized using the Xilinx ISE 14.4 tool. The target 
FPGA was the Xilinx Virtex-7 device xc7v2000t-2flgl925. A l l 
computations were implemented in fixed point form with 8 
bits of the integer part and 8 bits of the fractional part [8]. The 
utilization of slice registers, slice LUTs, DSPs and minimum 
recommended clock period after synthesis were measured. The 
result are summarized in tables IV and V. The columns contain 
the utilization of the particular FPGA resources in the form 
of the total number and the percentual usage of the total 
available resources. The last column contains the minimum 
recommended clock period. 

As the table III shows, the reduced FPNNs reached dif­
ferent levels of the approximation capabilities. Five of the 
reduced FPNNs were approximating the original network with 
the accuracy higher than 90 %. Three other FPNNs outreached 
the level of 70 % accuracy. However, some FPNNs did not 
cross the level of 50 % accuracy. The worst case results, which 
were in most cases very different from the best case results, 
were few times close to the 0% accuracy. These particular 

T A B L E II. T H E LIST OF NEURAL NETWORKS AND THEIR 
PROPERTIES 

Network name Structure Neurons Weights Links 
diabetes 1 8-16-8-2 34 272 78 
diabetes2 8-64-2 74 640 200 
diabetes3 8-64-32-2 106 2624 294 
diabetes4 8-32-32-2 74 1344 198 
diabetes5 8-32-32-32-2 106 2368 292 
diabetes6 8-96-2 106 960 296 
diabetes7 8-16-32-16-2 74 1184 196 
diabetes8 8-16-32-64-2 122 2816 340 
diabetes9 8-16-32-16-32-16-2 122 2208 336 
thyroid 1 21-21-3 45 504 86 
thyroid2 21-42-3 66 1008 149 
thyroid3 21-63-3 87 1512 212 
thyroid4 21-84-3 108 2016 275 
thyroid5 21-21-42-21-3 108 2268 271 
thyroid6 21-63-21-3 108 2709 273 

twoSpirall 2-32-1 35 96 96 
twoSpiral2 2-64-1 67 192 192 
twoSpiral3 2-96-1 99 288 288 
twoSpiral4 2-128-1 131 384 384 
twoSpiral5 2-16-32-16-1 67 1072 188 
twoSpira!6 2-16-32-48-1 99 2128 284 

T A B L E III. T H E REDUCED FPNNs APPROXIMATION ACCURACY 

FPNN name Reduced best [%] Reduced worst [%] 

diabetes 1 69.712 60.052 
diabetes2 72.062 67.885 
diabetes3 72.584 67.624 
diabetes4 69.451 34.203 
diabetes5 71.279 31.331 
diabetesó 70.496 33.942 
diabetes7 73.107 31.592 
diabetes8 60.835 26.370 
diabetes9 56.919 26.631 
thyroid 1 93.498 6.640 
thyroid2 93.498 18.644 
thyroid3 93.414 2.222 
thyroid4 93.136 47.513 
thyroid5 73.214 3.111 
thyroidó 91.386 2.472 

twoSpirall 56.770 52.604 
twoSpiral2 54.166 51.562 
twoSpiral3 49.479 46.875 
twoSpiral4 53.645 53.645 
twoSpiral5 52.604 48.437 
twoSpiraló 74.479 63.541 

networks are unable to be approximated using the reduced 
FPNN and the full FPNN is the only choice. These findings 
show, how the mapping process is dependent on the concrete 
situation, the concrete neural network and the set of its weights. 
It shows that in some cases the mapping can be successful 
and the particular neural network can be approximated with 
the reduced FPNN, in other cases it is not possible. However, 
only the basic mapping method was used in these experiments. 
We developed a set of additional mapping methods which 
could provide better results. We presented and compared these 
methods and their optimizations in [6]. 

As the tables IV and V show, the results of the FPGA 
resources utilization experiments differ in case of both FPNN 
types. The slice registers consumption does not differ much, 
other results however differ significantly. As expected, the 
full FPNNs consume more resources than reduced FPNNs. 
Considering the number of consumed LUTs, the difference is 
in some cases only a few percent (diabetes 1, twoSpirall). In 
some other cases, the full FPNNs consume multiple number of 
resources than their reduced equivalents (diabetes4, diabetes5, 
thyroid2 and others). Also, full FPNNs consume multiple times 
more DSPs than the reduced FPNNs. This was expected since 
the multipliers are supposed to be more complex due to higher 



T A B L E IV. T H E RESULTS OF THE SYNTHESIS OF THE REDUCED 
FPNNs 

Name Regs (%) LUTs (%) DSPs (%) MinPer [ns] 
diabetesl 4726 (0%) 18235 (1%) 182 (8%) 12.725 
diabetes2 11165 (0%) 45604 (3%) 464 (21%) 12.725 
diabetes3 16252 (0%) 67049 (5%) 686 (31%) 12.725 
diabetes4 11229 (0%) 45908 (3%) 462 (21%) 12.725 
diabetes5 17270 (0%) 69225 (5%) 684 (31%) 12.719 
diabetes6 16254 (0%) 67405 (5%) 688 (31%) 12.725 
diabetes7 6028 (0%) 23996 (1%) 238 (11%) 12.725 
diabetes8 18865 (0%) 77224 (6%) 796 (36%) 12.725 
diabetes9 18699 (0%) 76614 (6%) 792 (36%) 12.725 
thyroid 1 5738 (0%) 20059 (1%) 182 (8%) 12.725 
thyroid2 9164 (0%) 33763 (2%) 329 (15%) 13.629 
thyroid3 12538 (0%) 48346 (3%) 476 (22%) 12.725 
thyroid4 15898 (0%) 62788 (5%) 623 (28%) 12.725 
thyroid5 15763 (0%) 62679 (5%) 619 (28%) 12.738 
thyroidö 15906 (0%) 61993 (5%) 621 (28%) 12.733 

twoSpirall 5217 (0%) 21713 (1%) 228 (10%) 12.725 
twoSpiral2 10209 (0%) 43543 (3%) 452 (20%) 12.733 
twoSpiral3 15201 (0%) 64994 (5%) 676 (31%) 12.745 
twoSpiral4 20193 (0%) 85449 (6%) 900 (41%) 12.874 
twoSpiral5 10329 (0%) 42877 (3%) 448 (20%) 12.725 
twoSpiralö 15413 (0%) 63528 (5%) 672 (31%) 12.725 

T A B L E V. T H E RESULTS OF THE SYNTHESIS OF THE FULL FPNNs 

Name Regs (%) LUTs (%) DSPs (%) MinPer [ns] 

diabetesl 5108 (0%) 29564 (2%) 376 (17%) 11.519 
diabetes2 11530 (0%) 69785 (5%) 904 (41%) 20.312 
diabetes3 18078 (0%) 392493 (32%) 2160 (100%) 37.806 
diabetes4 11536 (0%) 111880 (9%) 1608 (74%) 18.685 
diabetes5 18630 (0%) 325759 (26%) 2159 (99%) 21.249 
diabetesö 16618 (0%) 103702 (8%) 1352 (62%) 30.555 
diabetes7 11460 (0%) 103727 (8%) 1448 (67%) 14.937 
diabetes8 22166 (0%) 460280 (37%) 2159 (99%) 20.416 
diabetes9 21418 (0%) 284021 (23%) 2159 (99%) 18.780 
thyroid 1 6780 (0%) 47190 (3%) 600 (27%) 11.519 
thyroid2 13546 (0%) 132290 (10%) 1776 (82%) 13.402 
thyroid3 13546 (0%) 132290 (10%) 1776 (82%) 13.402 
thyroid4 17594 (0%) 215282 (17%) 2159 (99%) 34.575 
thyroid5 18027 (0%) 286474 (23%) 2160 (100%) 16.469 
thyroid6 18151 (0%) 391568 (32%) 2159 (99%) 17.423 

twoSpirall 5311 (0%) 17672 (1%) 228 (10%) 11.519 
twoSpiral2 10303 (0%) 35684 (2%) 452 (20%) 11.406 
twoSpiral3 15295 (0%) 53188 (4%) 676 (31%) 19.025 
twoSpiral4 20287 (0%) 70903 (5%) 900 (41%) 25.345 
twoSpiral5 10393 (0%) 93953 (7%) 1332 (61%) 14.937 
twoSpiralö 17051 (0%) 223580 (18%) 2160 (100%) 18.481 

number of weights in the full FPNNs. While links in the 
reduced FPNNs contain usually up to three weights, the links 
in full FPNNs can dispose of tens of weights. Reduced FPNNs 
also can generally operate on higher clock frequencies. 

VI. C O N C L U S I O N S A N D F U T U R E R E S E A R C H 

In this paper, the formal definitions of the FPNA/FPNN 
concept were presented. The definitions of the new derived 
types were introduced. The process of direct transformation of 
the trained neural network to FPNN and the related algorithms 
were described. The diagrams of the FPGA implementation 
were presented. The experiments determining the approxima­
tion capabilities of different FPNNs of the reduced and the full 
type were run and their results were presented in this paper. 
The results show that in some cases, the reduced FPNN type 
is capable of good approximation performance. However, this 
depends on the concrete neural network and its weight values 
and their combinations. Therefore, the reduced FPNN are not 
suitable for all neural network implementations. 

One of the main ideas of this paper was to show the 
possible trade-off between neural network approximation ac­

curacy and the FPGA resources consumption. The experiments 
showed that reduced FPNNs consume significantly less re­
sources than full FPNNs and that they are faster as well. On 
the other hand, the reduced FPNNs offer limited approximation 
accuracy compared to the accurate full FPNNs. 

During the future research, we are going to perform ex­
periments using our more advanced mapping techniques to 
increase the usability of reduced FPNNs as well as develop 
new methods and optimizations. Also we are going to include 
more types of neural networks into our research. 
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I . I N T R O D U C T I O N 

The artificial neural networks [5] are one of the important 
models of softcomputing and artificial intelligence. They are 
structures composed of neurons interconnected by weighted 
synapses. Basically, the goal of the networks is to learn 
the relation between two sets of data vectors, to generalize 
the relation, to determine its features and to use it for the 
determining the relation of the unknown vectors belonging to 
the same problem. This capability can be used for classification 
tasks, for time series and functional prediction, to control tasks, 
to image recognition, clustering and other tasks. 

The implementation of neural networks is challenged with 
two great neural networks complexities ­ space complexity and 
time complexity. The usual solution of both is to use a pow­

erful hardware, such as graphical processor units or processor 
clusters, which suffer from a high power consumption. For 
some networks, FPGAs can be one of the possible solutions if 
a lower power consumption is desired. In this case, the time 
complexity is solvable by parallelism which is easy to achieve 
in both FPGAs and neural networks since both are parallel by 
their nature. The space complexity is bigger problem since an 
FPGA has limited resources. Thus, there is a need for such 
designs that exploit the neural networks parallel character for 
fast computations and save the FPGA resources as well. A 
Field Programmable Neural Networks (FPNN) concept can be 
seen as one of the possible solutions. The goal of this paper is 
to describe the types of FPNNs and compare their capabilities. 

II. F I E L D P R O G R A M M A B L E N E U R A L N E T W O R K S 

The concept of FPNNs [1] is meant to simplify the imple­

mentation of artificial neural networks in FPGAs by adjusting 
their properties to be more suitable for implementation into 
them. The simplification originates from its main feature 
­ a highly customizable structure which makes it possible 
to establish resource sharing between the original synaptic 
connections of the neural network. The FPNNs are composed 
of dedicated interconnected units called neural resources which 
approximate the original neurons and synaptic interconnec­

tions. The units of the first type are called activators and 
represent the original neural network neurons. The other units 
are called links and serve as an approximation of the original 
synaptic interconnection. Every link disposes of a set of affine 
operators serving as an approximation of the original synaptic 
weights. 

An example of a grid FPNN can be seen in Fig. 1. The 
circles in the figure represent activators, wide arrows represent 
links and the thin arrows represent data interconnections. The 
orientation of the connection arrows shows the way of the 

passing data. The straight wide dashed/dotted arrows represent 
the original neural networks synapses. The thin dashed/dotted 
arrows represent the sequences of links approximating the 
particular synapses. The synapses and the particular sequences 
are drawn with the same line and arrow styles. 

The FPNNs are not the same structures as neural networks, 
although they can be constructed in that way. The FPNNs 
represent a different model which can structurally differ from 
the implemented neural network. They can also have different 
capabilities which means that they are not only an imple­

mentation of the neural networks, they are an approximation 
of neural networks as well ­ with different structure and 
properties, they can provide similar results as the networks. 
The accuracy is the main problem here. 

The approximation capabilities depend on the number of 
affine operators belonging to links. This number depends 
on the FPNN structure directly. However, the model can be 
altered to dispose of different number of affine operators. 
Two different models with different approximation capabilities 
exist. The original model disposes of as many affine operators 
as the number of directly connected preceding units. These 
operators are shared between groups of synapses approximated 
by the particular preceding units. This type of an FPNN is 
called Standard FPNN. We derived a stronger model that has 
the number of affine operators that allows it to reach the precise 
approximation accuracy. This type of an FPNN is called Full 
FPNN. In case of a full FPNN, every link disposes of dedicated 
affine operator for every synapse it approximates. There is 
no sharing of affine operators between synapses, therefore 
the accurate approximation is ensured. Although, this type of 
FPNN demands more FPGA resources. 

Fig. 1. Synapses approximation in a grid FPNN 
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III. E X P E R I M E N T A L R E S U L T S 

We experimented with the presented models and algo­
rithms, the experiments and results will be now described and 
summarized. The experiments were focused on the approx­
imation capabilities of the standard and full FPNNs model. 
The goal of the experiments was to show and compare the 
capabilities of both models and their space complexity. 

The base of the experiments was a set of neural networks, 
which were transformed (using our algorithm described in [3]) 
to FPNNs of both types. Both, the trained neural network and 
the particular FPNN were tested on a set of testing input 
vectors and their outputs were compared to each other to 
determine how the FPNN output differs from the reference 
neural network output. Since the FPNN serves as an approx­
imation of the network, the match between their outputs is 
the essential information. We worked with 15 neural networks 
of different structures trained for three classification tasks 
{Diabetes, Thyroid and Two Spiral) originating in the Probenl 
neural networks benchmark tasks set [2]. 

Table I contains the information about the reference neural 
networks. The columns contain the network name and its 
structure (numbers of neurons in each layer), the numbers of 
neurons and synapses of the network and the number of links 
of the FPNN. The number of activators is equal to the numbers 
of neurons. 

The experiments were run ten times and the best and the 
worst results of the approximation are presented in table II. 
The Standard best and Standard worst columns contain the 
percentual rate of match of the reference network and the 
standard type FPNN output. It is the rate of the identically 
classified input vectors by both the network and the FPNN. 
The Full column contains the rate of match of the Full FPNN 
type. 

Network name Structure Neurons Synapses Links 

diabetesl 8-64-2 74 640 200 
diabetes2 8-32-32-32-2 106 2368 292 
diabetes3 8-96-2 106 960 296 
diabetes4 8-16-32-64-2 122 2816 340 
diabetes5 8-16-32-16-32-16-2 122 2208 336 
thyroid 1 21-42-3 66 1008 149 
thyroid2 21-84-3 108 2016 275 
thyroid3 21-21-42-21-3 108 2268 271 
thyroid4 21-63-21-3 108 2709 273 
thyroid5 21-10-63-10-3 107 1500 268 

twoSpirall 2-64-1 67 192 192 
twoSpiral2 2-128-1 131 384 384 
twoSpiral3 2-16-32-16-1 67 1072 188 
twoSpiral4 2-16-32-64-32-16-1 163 5168 472 
twoSpira!5 2-16-32-48-1 99 2128 284 

T A B L E I. T H E LIST OF THE NEURAL NETWORKS A N D THEIR 
PROPERTIES 

As the table II shows, the standard FPNNs reached different 
levels of the approximation capabilities. Some of the standard 
FPNNs reached an accuracy higher than 90 %. However, some 
FPNNs did not cross the level of 50 % accuracy. The worst 
case results, which were in most cases very different from the 
best case results, were few times closer to the 0% accuracy. 
These findings show that in some cases the mapping to a 
standard FPNN can be successful, in other cases it is not 
possible. However, the results can be potentially improved by 
methods and optimizations described in [3]. 

F P N N name Standard best [%] Standard worst [%] Full [%1 

diabetesl 72.062 67.885 100 
diabetes2 71.279 31.331 100 
diabetes3 70.496 33.942 100 
diabetes4 60.835 26.370 100 
diabetes5 56.919 26.631 100 
thyroid 1 93.498 18.644 100 
thyroid2 93.136 47.513 100 
thyroid3 73.214 3.111 100 
thyroid4 91.386 2.472 100 
thyroid5 75.715 1.972 100 

twoSpirall 54.166 51.562 100 
twoSpiral2 53.645 53.645 100 
twoSpiral3 52.604 48.437 100 
twoSpiral4 49.479 33.333 100 
twoSpiral5 74.479 63.541 100 

T A B L E II. T H E LIST OF THE F P N N S APPROXIMATION RESULTS 

IV. C O N C L U S I O N S A N D F U T U R E R E S E A R C H 

In this paper, the FPNN concept was described. The origi­
nal (standard) and the derived new (full) type were presented. 
The experiments determining the approximation capabilities 
of different FPNNs of the standard and the full type were 
run and their results were presented in this paper. The results 
show that in some cases, the standard FPNN type is capable 
of good approximation performance. However, this depends on 
the concrete neural network and its weights values. 

During the future research, we are going to include more 
types of neural networks into our research and we are going 
to perform more hardware oriented experiments. We are also 
going to devote to the comparison of our results and method­
ologies with other approaches. 
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Abstract—This paper presents the concepts of detecting hard 
faults in artificial neural network synapses using the modification 
of the neural network settings. The core of this work is based 
on weights values modification and inserting the chosen testing 
data when comparing the neural network output to the known 
valid results. The paper also discusses the problem of neural 
networks output saturation and provides experiments regarding 
an influence of the neural network settings to the problem. 

I. I N T R O D U C T I O N 

The artificial neural networks [71 are one of the important 
models of soft­computing and artificial intelligence. Their 
structure is inspired by the structure of the human brain and 
they dispose of a high capability of learning and memorizing to 
solve various types of tasks. Basically, the goal of the artificial 
neural network is to learn the relation between two sets of data 
vectors, to generalize the relation, to determine its features 
and to use it for the determining the relation of the unknown 
vectors belonging to the same problem. This capability can 
be used for classification tasks, for time­series and functional 
prediction, for control tasks, image recognition, clustering and 
other tasks. 

The networks have been implemented in various kinds of 
devices starting from analog computers to the most modern 
processors, VLSI units, graphical processing units and FPGAs. 
In the hardware implementation there is a chance that a fault 
occurs in the device influencing its computation. The fault 
can be transient, temporary which can be solved by numerous 
ways. If the fault is hard and permanent however, it may not 
be possible to fix it. In this case, the detecting of the fault 
is even more important than in the case of temporary faults 
because the computation of the device and the data it produces 
are permanently affected by the fault. This paper deals with 
one of the possible ways how to detect hard faults in neural 
network synapses. 

I I . A R T I F I C I A L N E U R A L N E T W O R K S 

Neural networks are composed of a set of neurons. A neuron 
is a simple unit which computes an activation function (2) 
over a result of a basis function which is often a weighted 
sum (1) of the neuron inputs. A neuron is illustrated in Fig. 1. 
The neurons are interconnected with the weighted connections 
called synapses. The learning of the neural network is basically 
a process of setting the weights. 

978­l­7281­1756­0/19/$31.00 ©2019 IEEE 

The value 9 in equation (2) represents the neuron threshold. 
The threshold allows us to affect the shape of the neuron 
activation function (its position on the x axis) which increases 
the power of the network and the efficiency of its learning. 

The neurons are often organized into the layered structure 
composed of an input layer, output layer and a number of 
hidden layers. This type of structure is illustrated in Fig. 2. 
Sometimes, the neural network is composed of only one or 
two layers or of layers with different neuron types (i.e. neurons 
with different basis and activation functions) or interconnec­

tion structures. 

n 
net = ^^XiWi (1) 

j=i 
y = f(net + 9) (2) 

I 

Fig. 1. The neuron. 

\ . ./ ' hidden layer \ y 

input layer output layer 

Fig. 2. The neural network layered structure. 

A. Activation functions approximations 
A number of different activation functions which are used 

in neural networks exists. One of the most used activation 
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Fig. 3. The sigmoid function and its approximation. 

functions in classical neural networks is a sigmoid function (3). 
It is a growing differentiable function, the features of which 
are important for gradient-descent based learning algorithms 
like the well known backpropagation algorithm [7]. However, 
this function uses operations of division and power which are 
not suitable for implementation in hardware. Therefore, it is 
appropriate to replace it with a more effective approximation 
with similar features. One of possible approximations is Fs 
function (7) which is based on equations (4),(5) and (6). Both 
the sigmoid function graphs and the Fs function are compared 
in Fig. 3.[81 

sigmoid(x) 1 

L 2 

1 + e-

Hs(x) 

Gs(x) 

x(f3 + 6x) for x e 0) 
x{P- Ox) for x £ (0, L) 

— 1 for x £ (—oo, — L) 
Hs(x) for x £ (-L, L) 

1 for x £ (L, oo) 

Fs(x) 

(3) 

(4) 

(5) 

(6) 

(7) 

III. D E T E C T I N G T H E H A R D FAULTS 

Artificial neural networks are inherently massively parallel 
structures with a lot of redundancy. Even though this property 
makes them able to tolerate some faults, this fault tolerance 
reaches only a certain level and it is complicated to predict 
its quality. In order to enhance the fault tolerant properties of 
neural networks, several techniques are used. Some techniques 
are based on modifications of the neural networks training 
process to force the networks to learn to be fault tolerant 
[101, [11], [12]. Other techniques use retraining as a way 

of recovery from a fault [9], [18]. In some techniques, dif­
ferent modifications and restrictions of weights and neurons 
activation functions take place [13], [14], [15], [16], [17]. 
Also, techniques which utilize redundancy are commonly 
used. Either based on neurons replications [19], [21], [24], 
[25] or on the well known Triple Modular Redundancy (TMR) 
technique which is used for both faults detection and masking 
it in order to produce a correct output. 

When implemented in hardware, the neural networks may 
face two types of faults. The soft (temporary) faults occur only 
temporarily and affect the computation only for some time. 
These faults are often caused by radiation generating a Single 
Event Upset (SEU) - flipping a bit in a memory. This type of 
fault may be often solved by rewriting the memory with correct 
data. Other type of faults - hard faults are persistent faults often 
caused by a physical condition or failure in the device. Most 
approaches of faults detection, masking and recovery are based 
on the TMR techniques [22], [23]. This technique, though 
proven reliable, may fail in some combinations of faults as 
shown in [20]. 

We propose a method of permanent faults detection that 
does not utilize redundancy or learning but it uses properties of 
neural networks computation instead. It utilizes modifications 
of basic neural network parameters - weights values and 
activation function shapes in order to detect a fault using 
the network output. As we present general principles and 
algorithm which may be used on any neural network platform 
and implementation which are flexible enough to allow the 
needed neural network parameters settings modification, we 
primarily intent this method to be used on reconfigurable 
hardware implementations, where a hard fault is more likely to 
occur and is harder to mask and recover from them in a purely 
software implementation. In our research, we intent to use 
these methods, while utilizing a dynamic reconfiguration, with 
our neural network Field Programmable Gate Array (FPGA) 
implementation. This platform is based on the concept of Field 
Programmable Neural Network (FPNN)[1] and we presented 
this platform in [4], [5]. 

A. Definitions 

In order to describe the principles clearly, we declare a set of 
terms presented in the following list and equations. The terms 
describe the neural network structure and derive additional 
terms. Going through the list we define sets and functions 
containing neurons, synapses and their weights (N,S and W). 
Using those, we declare a set of neurons layers L, the input 
layer / and the output layer O. For all neurons we define two 
sets - (j> and r. The (j> set contains all the sequences of synapses 
which connect the selected neuron to the input layer (to all its 
neurons). To the opposite, the T set contains all sequences of 
synapses that connect the neuron to the output neurons. 

Based on these sets we define a set n for all the neurons 
which contains all sequences of synapses connecting the input 
layer to the output layer through the selected neuron. It is 
important to have this set as we need to find a way to propagate 
the test data through the network in the sequence that includes 



the neuron or synapse we want to test against the presence of 
a hard fault. 

1) TV is the set of all neurons. 
2) S C (N x N) is the set of all synapses. 
3) W = S —> R is the set of weights of all synapses. 
4) W = {ws £ R\s £ S} is the set of weights of all 

synapses. 
5) B = {bn : Rm -» R\n £ N \ I,m £ N} is the set of 

basis functions of all neurons except the input neurons. 
m is the number of the neuron n inputs. 

6) L is set of network layers defined by equation (8). 
7) I is the input layer defined by equation (9). 
8) O is the output layer defined by equation (10). 
9) F = {/„ : R -» R\n £ N \ 1} is the set of activation 

functions of all neurons except the input neurons. 
10) 4>n is a set of sequences of synapses connecting the 

neuron n to the neurons in the input layer (11). 
11) T„ is a set of sequences of synapses connecting the 

neuron n to the neurons in the output layer (12). 
12) Vn £ N : nn = (j>„ x T„ is a set of all sequences of 

synapses connecting the input layer to the output layer 
through the neuron n. 

13) tp(s) is a sequence of all source neurons of the synapses 
in the synaptic sequence s (13). 

14) x(s) is a sequence of all target neurons of the synapses 
in the synaptic sequence s (14). 

15) £ R is a chosen global value of weights to be used 
in further algorithms. 

16) da,d0 £ R are chosen input data values for an active 
neuron (da) and for other neurons in the input layer 
(do). 

L C -/V : V(n l , n2) £ S : n l £ L i A n2 £ L2: 
L1,L2£L 

I £ L : Vn £ I A 3(n, nx) £ S : fl{ny, n) £ S: 
nx,ny £ N 

O £ L : Vn £ O A 3 (n x , n) £ S : fl(n, nv) £ S: 
nx,ny £ N 

(8) 

(9) 

(10) 

Vn £ N3(j>„ C 5 A : ( n x , n x + i ) £ cf>n,x £ {i..m}: 
i,m £ N;rii £ I;nm+i = n 

Vn £ N3T„ C Sx : (nx,nx+1) £ Tn,x £ {m..o}\ 
m, o £ N ; n m = n; n 0 + i £ O 

Vs = s1s2..sm = (n l ,n2)(n2,n3) . . . (n m _i ,n m ) £ 5" 
iP(s) = n l ,n2 , . . . , n m _ i 

(11) 

(12) 

Vs = s1s2.-sm = (n l ,n2)(n2,n3) . . . (n m _i ,n m ) £ STl 

X(s) = n2,n3, . . . , n m 

(13) 

(14) 

B. Detecting a fault in a synapse without affecting the acti­
vation functions 

Using the previous definitions we declare an algorithm 
which utilizes the modifications of neural networks properties 
in order to detect the hard fault of a synapse. The principle 
of the algorithm is to check sequentially all the synapses by 
propagating the test data to the network and checking the 
network output while setting all the other synapses weights 
to 1 in order to omit them from the computation. Omitting 
the weight ensures that the passing test data are affected only 
by the weight of the tested synapse which makes the result 
easy to determine. The algorithm is as follows: 

A ) Declare a set FS = 0 to store the faulty synapses. 
B) For all synapses s £ S execute: 

1) To test a synapse s = (ni,n2) £ S compute Trn2. 
2) Select a sequence a out of nn2. a = /3j,f3 £ (j>„2,j £ 

T„2-

3) Set all other weights to fi: Vw £ W \ {W(a)\a £ a} : 
w = O. 

4) Set weights in a synapses to 1, leave the original value 
of the tested synapse - W(s): Vw £ W(S\a\s) : w = 1. 

5) Present the input data i to the input layer of the network 
in the form of a vector composed of da on the place of 
the neuron from the a sequence and dQ in places of 
others input neurons. Let the neural network compute 
the output o(a, s, i). 

6) Compute an co value. uj(a, s,i) £ R represents the 
expected output value for the selected synaptic sequence 
a, tested synapse (ni ,n2) and the input data i. It is 
computed using equation (16) as a sequence of applica­
tion of all activation functions of the neurons in the f3 
sequence over the input data followed by multiplication 
with the tested synapse weight. Then, the sequence of 
all activation functions of the neurons in the 7 sequence 
is applied. 

7) Compute the difference e between the expected and the 
actual output value: 
e(a, s, i) = o(a, s, i) — ui(a, s, i). 

8) If the difference e = 0 (the output is not affected by a 
fault), return to the step A). Otherwise execute: 

a) Repeat the steps 1 to 8 for several other a se­
quences containing the synapse s. 

b) If all the e values are not zero, the synapse s is 
affected by a fault. Add then the synapse s to the 
set FS. 

w{a,s,i) = P (f13 (in) x ws) : 
n £ N, in £ R, ws £ S; 
f13 = fni o ••• o fno; i>(P) = nO,nl: 
F = fm ° ••• ° fno; X(l) = nO,nl 

(15) 

The general problem to deal with in this algorithm is a 
possibility of neurons outputs saturation preventing the fault 
detection. This problem has its origin in the input (the da, da 

values), used weights values (the O value) during the algorithm 



and the activation functions. Regular sigmoid function has the 
range of (0,1) and the value of 0.5 as the function value 
of zero (sigmoid(0) = 0.5). When the weights of synapses 
outside an a sequence are set to zero, it causes all the neurons 
in the rest of the network to emit value of 0.5. This can affect 
the neurons in the a sequence as well as these values enter 
their basis functions. Together with data passing through the a 
sequence this can cause the neuron outputs to be saturated, i.e. 
to have the value of 1.0 or 0.0. When these are valid values 
for properly functioning network and there are no changes in 
them, this can cause a fault to be masked from detection. This 
effect can be straightened even more by values presented to the 
input neurons both in and outside the a sequence (the da, da 

values). It is necessary to choose all these values wisely to 
obtain as correct detection as possible. 

Another problem related to the saturation problem is the 
problem of false positive detection. In the case that the fault 
causes the weight to have a high value, it may saturate the 
successive neuron itself causing saturation of neurons in higher 
level as well as the saturation of the network outputs. The 
saturated output then may be detected as fault even in case 
when other synapses than the faulty one is under the test. This 
problem may be solved by repetitive detection using different 
settings as well as using heuristics to obtain specific strategies 
of the test. This heuristics and methods will be part of the 
future research. 

C. Detecting a fault in a synapse with affecting the activation 
functions 

The hard faults detection becomes easier and less 
demanding if there is an option to change shapes of neurons 
activation functions. By changing the functions to the linear 
functions f(x) = x we can prevent the saturation problem 
mentioned in the previous paragraph. However, the saturation 
problem is still present but it is far less likely as the 
only risk of saturation is reaching the upper or the lower 
boundary given by the used data-type and the bit width. Also, 
by changing the activation functions, we obtain a higher 
precision of the output computation and lesser influence of 
neurons faults to the output. The algorithm, derived from the 
previous algorithm, which utilizes the change of activation 
functions is as follows: 

A) Declare a set FS = 0 to store the faulty synapses. 
B) For all synapses s £ S perform: 

1) Perform 1) - 4) steps of the section B algorithm. 
5) Set the activation functions of the neurons in the a 

sequence to linear function: 
Vn £ U xil) • fn(x) = x; fn(x) £ F. When the 
activation function is approximated using the function 
(7), the modification can be done using constants mod­
ifications according to the (17) equation. 

6) Perform 5) step of the section B algorithm. 
7) Compute an co value. oj(a, s,i) £ R represents the 

expected output value for the selected synaptic sequence 
a, tested synapse (n i ,n 2 ) and the input data i. It is 

computed using equation (16) as a sequence of appli­
cations of all activation functions of the neurons in 
the (3 sequence. In this case, the activation functions 
are linear, therefore the applications are in principle 
function of identity. The output data of the activation 
functions sequence is data followed by multiplication 
with the tested synapse weight. Then the sequence of 
all activation functions of the neurons in the 7 sequence 
is applied, again as a sequence of identities. 
Perform 7) - 8) steps of the section B algorithm. 

uj(a,s,i) = in x ws; 
n £ N,in £ R, ws £ S: (16) 

D. Activation functions modifications 
If the implementation uses the Fs function as the activation 

function approximation, it can be simply forced to behave like 
a linear function in order to pass the neuron input data directly 
to the output without affecting them by the activation function. 
In the case of the Fs function, it can be done using constants 
modifications and input data propagation to the multiplexers 
realizing the Gs function. The modifications of the functions 
and the constants are as follows: 

6 = 0: 

Hs(x) 

Gs(x) 

Fs(x) 

--1 

x{P + Ox) 
x(/3- 6x) 

- x for a; £ (—L, 0) 
- x for a; £ (0, L) 
for x £ (—00, — L) 
for x £ (-L, L) 
for x £ (L, 00) 

= Gs(x) 

(17) 

IV. E X P E R I M E N T S 

We have experimented with the first algorithm which does 
not utilize the activation functions modifications in order 
to determine the influence of the da, da and O values to 
the saturation problem and therefore to the quality of faults 
detection. 

The used neural network was composed of 8 neurons in 
the input layer, 2 neurons in the output layer and of 64 and 
16 neurons in two hidden layers. The sigmoid function was 
used as the activation function of all the neurons and the 
function of the weighted sum was used as basis functions. 
The experiments were implemented using a FANN library 
[3] using 32-bit floating point arithmetic. The neural network 
was trained to solve the Diabetes classification task from the 
Proben [2] set of neural networks benchmark tasks. Every 
experiment used two identical neural networks, one as a golden 
model, the second to inject fault and perform the algorithm. 
Only one fault per test was injected randomly into a synapse 
and the algorithm was executed to detect the fault. 

With each set of da,da and values, 100 tests were run 
and the number of successful detections was measured as 
a result. The dQ values were chosen in the (—10,0) as we 
expected that low values around zero may help to prevent the 
saturation problem as well as the negative values. We expect 



these values cause the neurons to emit low values as well 
which may help to prevent the basis function to generate high 
values which would saturate the neurons outputs in the higher 
layers making the neural network output to be saturated as 
well. The values were chosen to be the same for the same 
reasons as it may help to lower the high values emitted by 
neurons and thus lower the risk of saturation in higher layers. 
On the other hand, the di values are the most important as they 
enter the computation in the a sequence. In order to explore 
their influence on the detection quality, we chose them to be 
in the (-10,10) interval. 

Tables I - III illustrate the results of the experiments. In 
each table, the fi value is the same for all listed experiments 
and it is declared on the top row of the table. The values of d0 

are declared in the third rows of the tables (the first numerical 
rows) and the di values are listed in the first columns of the 
tables. The cells contain the experiments results illustrating 
how many detections out of 100 were successful with the fi, di 
and d0 set according to the position in the table. 

T A B L E I 
T H E EXPERIMENTS RESULTS WHEN Q = 0.0 

n = 0.0 
d0 

di -10.0 -1.0 -0.1 -0.01 0.0 
-10.0 21 21 56 21 24 
-1.0 20 99 32 58 78 
-0.1 66 99 72 1 97 
-0.01 81 100 0 0 71 
0.01 70 96 79 58 0 
0.1 79 100 75 63 85 
1.0 86 100 83 100 82 
10.0 100 100 1 63 91 

T A B L E II 
T H E EXPERIMENTS RESULTS WHEN Q = —0.01 

a = - 0.01 
d0 

di -10.0 -1.0 -0.1 -0.01 0.0 
-10.0 97 97 98 92 75 
-1.0 98 98 98 100 81 
-0.1 99 99 100 99 70 
-0.01 100 96 97 96 64 
0.01 96 98 100 99 61 
0.1 100 100 100 98 68 
1.0 99 100 100 97 72 
10.0 100 100 100 96 80 

As you can see in the tables, the most of the experiments 
resulted in the high ratio of detected faults. If we are going to 
identify the general trends of the O, di and da values influence 
on the results, we can see that higher values of di often led 
to better results. This can be also stated in general about 
influence of the higher negative values of da. As we expected, 
the negative values of da helped the detection by lowing the 
risk of saturation and allowing the fault detection by doing 
so. On the other hand, the 0.0 value of da proved to provide 
generally worse results. As it was said before, the value of 0.0 
as an input to the neuron causes to emit the value of 0.5 as 

a result in case it uses the sigmoid function as an activation 
function, which is the case of these experiments. Also, the high 
negative values of di provided worse results as they probably 
increased the saturation problem in case the weights values 
were high in the a sequence or the injected fault had a high 
value. 

T A B L E IH 
T H E EXPERIMENTS RESULTS WHEN Q = —10.0 

n = - 10.0 
d0 

di -10.0 -1.0 -0.1 -0.01 0.0 
-10.0 75 55 53 54 60 
-1.0 99 84 84 88 64 
-0.1 84 91 92 100 58 
-0.01 88 85 93 87 43 
0.01 74 85 92 95 64 
0.1 81 89 94 99 60 
1.0 81 86 89 89 55 
10.0 100 89 100 98 78 

T A B L E IV 
T H E EXPERIMENTS RESULTS WHEN Q = —0.1 

n = --0.1 
d0 

di -10.0 -1.0 -0.1 -0.01 0.0 
-10.0 97 97 98 93 82 
-1.0 99 98 99 98 85 
-0.1 99 99 100 100 73 
-0.01 99 98 98 99 61 
0.01 96 100 100 100 64 
0.1 100 100 100 99 77 
1.0 99 100 99 100 83 
10.0 100 100 100 97 77 

T A B L E V 
T H E EXPERIMENTS RESULTS WHEN Q = —1.0 

a = -1.0 
d0 

di -10.0 -1.0 -0.1 -0.01 0.0 
-10.0 21 24 56 21 24 
-1.0 20 58 32 58 66 
-0.1 66 97 72 1 97 
-0.01 81 71 0 0 71 
0.01 70 91 79 58 0 
0.1 79 85 75 63 85 
1.0 86 100 83 100 100 
10.0 100 91 1 63 91 

As the tables II and IV illustrate, the low negative values of 
has positive influence on the results. These values reduced 

the neurons output to higher layers helping to prevent the 
saturation problem. The assumption of false positive detection 
during the experiments was also confirmed, however this 
aspect of the problem is beyond the range of this paper. 

V. C O N C L U S I O N S A N D F U T U R E R E S E A R C H 

In this paper, we described basis of neural networks as well 
of formal basis of two algorithms which are the core of this 
research. The algorithms offer the way to detect hard fault 
in neural network synapses. Both algorithms are based on the 



principle of setting the synapses weights to some chosen value, 
then creating an interconnected sequence from input layer to 
an output layer. One of the synapses is then set with its original 
weight and chosen testing data are passed trough the network 
and the output is compared to the pre-calculated valid result. 
The difference between the outputs indicates a fault. 

One of the algorithms uses the change of activation func­
tions to linear ones preventing the problem with an output 
saturation which may occur with the other algorithm. The 
experimental part of this work focuses on this problem and 
shows the effect of the chosen values of the input data and 
the weights to the quality of faults detection. The results show 
that combination of low negative values with high values of 
d0 and negative values of da led in general to the best results 
as they were the most successful preventing the saturation of 
the network output. 

In the future research, more extensive experiments with 
both algorithms will be done as well as an optimization of 
the algorithms based on a test strategy selection heuristics. 
The heuristics are needed to achieve higher speed and better 
precision of detection as well as saving of resources. Also, the 
heuristics will help to prevent false positive detection which 
may occur in case of the algorithm which does not utilize 
the activation function modification. In addition, experiments 
with limited precision will be performed, as in case of classical 
neural networks, 16-bit fixed point precision was proven to be 
sufficient [6]. We have also designed modifications for both 
algorithm to be used to detect fault in both neurons basis 
functions and their activation functions. 
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Abstract—This paper describes a concept of Field Pro­
grammable Neural Networks (FPNNs) for artificial neural net­
works implementation in FPGAs, presents a model of fault tol­
erant FPNNs and different fault tolerance improving techniques 
based on the model. It describes an experiment based on one of 
these techniques and presents its results. 

I. I N T R O D U C T I O N 

In the area of fault tolerant system design, three clearly 
distinguished groups of methodologies can be identified: a) 
the methodologies of constructing fault tolerant systems which 
guarantee that the system behaves as fault tolerant [41 [71, 
b) the methodologies for detecting erroneous behavior of the 
system [6], c) the methodologies which allow the system to 
be recovered from the fault and reestablish its correct function 
[51. 

In our previous research we dealt with all above mentioned 
methodologies [31. Anyway, in the past we concentrated pri­
marily on developing these methodologies for classical digital 
systems, while now we deal also with the design of fault 
tolerant neuron nets. It is a very specialized area which requires 
unique approaches to be used. The principles developed by us 
in this area so far belong to the area which is mentioned above 
as c). It means, we expect that the neuron net is designed 
as fault tolerant (e.g. as TMR system) and our methodology 
brings the TMR faulty component back to correct operation. 

In this paper we focus on one of the possible implementa­
tions of neural networks in FPGAs - on Field Programmable 
Neural Networks (FPNNs) and ways how to bring a fault 
tolerance into design based on them. The paper is structured as 
follows - first we will describe the concept of FPNNs, next we 
will introduce a model of fault tolerant FPNNs and techniques 
based on this model and eventually we will present the results 
of one of our experiments with these techniques. 

II. FPNNs 

The concept of FPNNs [11 in design is meant to simplify 
the implementation of artificial neural networks in FPGAs by 
adjusting its properties to be more suitable for implementation 
into them. The simplification originates from its main feature 
- a highly customizable structure which makes it possible 
to establish resource sharing between the original synaptic 
connections of the neural network. This is done by using its 
customizability to simplify the interconnection model. 

FPNAs are one of the possible implementations of neural 
networks in FPGAs. And just like others, they are vulnerable 
to various kinds of faults, the Single Event Upset (a change 

of a bit value caused by a ionizing particle) is the most 
impending one. The vulnerability is even higher since FPNNs 
are composed of a set of interconnected and interdependent 
dedicated units. On the other hand, this allows us to use a 
plenty of fault tolerance improving techniques. Some of them 
are presented in this paper. 

The author originally defined the FPNNs formally [1] but 
now we shall describe it mostly in natural language in this 
paper. However, we will introduce a formal model, which we 
have based on the original definitions, in order to support our 
effort to bring the fault tolerance into FPNNs. Our definitions 
specify special derived types of units the FPNNs are composed 
of. They gave us proper instruments for further research 
leading to the design of fault tolerant FPGA artificial neural 
network architectures based on the FPNN concept as well. 

A. FPNN 

The FPNN is defined [11 as an oriented graph (N,E). 
Nodes (the set N) and edges (the set E) of this graph represent 
two different types of units. Nodes are called activators and 
represent original neural network neurons. Edges are called 
links and serve as an approximation of an original synaptic 
interconnection. Both types of units (together called neural 
resources) specify operators responsible for computation. Ac­
tivators dispose of two operators. The first operator is an 
iterative operator i - a binary operator on the set of real 
numbers. This operator serves for iteration computing of an 
activator inner potential (similarly to a neuron potential). The 
first input of the operator is an activator input and the second 
input is an inner accumulator variable. The second activator 
operator is a function operator / - an unary operator on the 
set of real numbers. The operator performs an activator output 
computation - it computes an activation function (similarly to 
a neuron). The input of this operator is the value of the inner 
accumulator variable. The concrete functions of the operators 
are not predefined, only the conditions that they have to 
be binary and unary real functions. Then, there is a set of 
affine operators for every link serving as an approximation 
of original synaptic weights. There is one affine operator for 
every activator predecessor. The links dispose of a set of 
affine operators (1) performing a transformation of an input 
x using two real constants W and T for the original neural 
network weight approximation. Weights are approximated by 
the sequence of one or more affine transformations performed 
by affine operators in a sequence of connected links. In case, 
that all Tn (p) = 0, the approximation is done by a sequence of 
multiplications. In [2] we have described one of the possible 
ways of transformation of neural network weights to affine 
operators. 
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C. FPNN operation 

a{P,n) =Wn(p)xx + Tn(p); Wn(p), Tn{p) £ R; 
p,n £ N; (p, n) £ E (1) 

Also, the data interconnection between neural resources are 
specified using binary flags determining interconnections be­
tween particular neural resources. We are allowed to connect 
not only links to activators and activator to links, but even to 
connect links to other links. This is a new property regarding 
the neural networks, the possibility of connecting links to other 
links and to construct sequences of interconnected links is the 
core feature allowing us to construct FPNNs with very various 
structures. Using this we are able to fit more effectively an 
FPNN structure for implementation in FPGAs. 

If only a graph (N, E), iteration, function and affine 
operators are specified and data interconnection structure is 
left unspecified, the result object is called Field Programmable 
Neural Array (FPNA) [1]. This object specifies the whole 
class of possible FPNNs. Adding the structure specification 
and other details like default value of the inner accumulator 
variable and number of i operator iterations allows us to create 
FPNNs with different configurations. 

Since an FPNN could be structurally different object from 
the original neural network, it can have different parameters 
and it generally can be constructed as an object of lower 
power than the original network, we can generally say that 
the FPNN is an approximation of the original network. The 
approximation can have a different accuracy [2]. 

B. Grid FPNN 

A special type of FPNN can now be defined using pre­
vious definitions. Grid FPNN is an FPNN with an enforced 
limitation of the structure causing it to form a grid shape. The 
reason for this is to make an FPNN suitable for implementation 
in FPGAs due to the similarity of the grid FPNNs structure 
and FPGAs interconnection bus. 

An example of a grid FPNN can be seen in Fig. 1. The 
circles on the figure represent activators, wide arrows represent 
links and the thin arrows represent data interconnections. 
The orientation of the connection arrows show the way of 
the passing data. As the picture illustrates, there is only 
one link on the output of every activator which realizes the 
connection to another layer. It is directly connected to one 
successive activator in the next layer. The connection to the 
other activators goes through two sequence of links going the 
opposite ways within the whole layer. 

Fig. 1. A grid FPNN 

The communication and computation model [1] of the 
FPNNs used in this paper is asynchronous (synchronous 
FPNNs have been designed [11 as well). It is based on the 
request-acknowledgement model. The neural resources within 
a whole FPNN generate requests for all the connected suc­
ceeding units once they finish the output value computation. 
Then they wait until all the successors process the requests 
and send the acknowledgements. A l l acknowledgements have 
to be obtained before the new iteration of computation starts. 
So, all the neural resources work as follows: 

1) Wait for the request from the predecessors. 
2) Select a request from all the waiting requests. 
3) Process the request and compute the new output. 
4) Generate requests for all successors. 
5) Wait for the acknowledgements from all the succes­

sors. 
6) Go back to 1. 

This model makes FPNNs to be flexible, easily con-
structable and extensible. However, it also brings an overhead 
in space and time complexity due to resources needed for an 
implementation of the communication. 

III. F A U L T T O L E R A N C E 

In this paper we would like to present a formal model 
of fault tolerant neural resources allowing us to use different 
techniques to ensure a fault tolerance of an FPNN. 

Definition III.l (Fault tolerant link), is a set rLinkn = 
{S, s, R, U, I, m, D}, where: 

• S is a set of link settings (sets of parameters) 

• R = {linki,link2, ..,linkn} is a set of n identical 
links with settings s £ S 

• U = {0,1}™ is a set of binary flags determining the 
links activity 

• I is an identity operator (x is a link input): I(x) = 
x;x£~M. 

• m is a majority level 

• D £ {/, r, i} is a link mode: 
o f - output is taken from the first active link 
o r - output is taken as a majority of the first m 

active links 
o i - output is taken from the identity operator 

Definition III.2 (Fault tolerant activator), is a set rLinkn = 
{S, s, R, U, C, m, c, D}, where: 

• S is a set of activator settings (sets of parameters) 

• R = {linki,link2, ..,linkn} is a set of n identical 
activators with settings s £ S 

• U = {0,1}™ is a set of binary flags determining the 
activators activity 

• C is a constant operator (x is a activator input): 
C{x) = c;x,c£R 

• m is a majority level 



• D G {/, r, i, t} is an activator mode: 
o f - output is taken from the first active activator 
o r - output is taken as a majority of the first m 

active activators 
o t - output is taken from the constant operator 

TMRLink = {{s}, s, {h,l2, l3}, {1,1,1}, 0, 2, r} (2) 

The definitions allows us to use different techniques to 
secure neural resources against faults. It allows us to use unit-
based redundancy techniques (such as TMR) and techniques 
without unit-based redundancy. The neural resources based on 
the definitions are composed of a set R of n identical neural 
resources with identical settings s. The s is a set of all neural 
resources parameters (W and T values for links, / , i, a, 9 for 
activators). The set of binary flags U determines the activity 
of the particular resources in the R set. The positive flags 
determine the active resources. Using the set U, we are able 
both to switch between resources and have resources working 
concurrently. The way, how the final neural resource output is 
constructed from the active resources in the R is based on a 
neural resource mode. The mode is specified by the tuple last 
member. Both fault tolerant link and activator have / and r 
mode. In the / mode, the output is taken from the first active 
resource in the R set. So, in this mode we are able to use 
the resources in the R set as backup units and switch between 
them in case of a fault. In the mode r, the neural resource is 
taken as a majority of m (the majority level) first active links 
in the R set. So, in this mode we are able to realize techniques 
such as TMR. The example of TMR secured link is in equation 
(2). So, the combinations of usage of R and U sets and / and 
r modes allow us to use unit-based redundancy techniques. 

Techniques without unit-based redundancy are based on the 
different principles. The first principle is switching between 
neural resources settings. The settings are determined by the 
member s G S. The set S contains possible neural resource 
settings. It allows us to switch between different settings in 
case of a fault. For example, if one of the resource output bits 
is hardly set due to a fault, we can compensate it by a change 
of the settings. We can also use this principle to compensate 
other neural resources faults. So, in case of our example, we 
may be able to compensate the error even more by a change of 
a successive link settings. Basically, the s and S is a dynamic 
reconfiguration formalization. 

The second unit redundancy free technique is based on two 
new operators - an identity and constant operator. These oper­
ators allows us to secure an FPNN against the unpredictable 
effect of a faulty neural resource. It allows us to stabilize the 
state of the FPNN. The main idea is to force some value to the 
faulty neural resource output instead leaving its output affected 
by the fault. So this technique does not solve the fault but it 
offers a way, how to lower the fault impact until the recover 
is done. For this purposes, the fault tolerant links dispose of 
the identity operator which is activated in the i mode. An 
identity operator makes a resource to be transparent to the 
passing data, i.e. it turns the resource in to a register. This 
however negatively affects the passing data, since the link 
W parameter is removed from the multiplication sequence. 
In some cases (according to the weights distribution) we are 

able to lower this negative effect by switching the settings 
of the other neural resources. And, if we anticipate a failure 
of some particular link, we might be able to intercorporate 
this prediction into the final FPNN during the mapping of an 
original neural network into it - we can map it as if the secured 
link was already gone (transparent) and final FPNN will be 
configured to work without it. We have described the process 
of mapping of neural networks to FPNNs in [2]. According to 
the weights distribution, this step can negatively influence the 
approximation accuracy in both the faulty and faulty free state. 
So, this method is usable only in some cases. The experimental 
results of this technique are presented in the next section. 

Fault tolerant activators dispose of the second operator, the 
constant operator. This operator is activated in the t mode, 
and it forces the value of c to the activator output. So, it turns 
it to a constant register. In this case we can use statistics of 
the activator output and assign for example the most common 
value (or average of the most common values, or limit values 
of an activation function) to the c to ensure that et least in 
some cases, the data will not be affected by the fault and the 
constant operator. 

In case of all presented techniques, the other advantage of 
the asynchronous communication model comes to place. That 
is, that in case of the possible usage of the technique to solve or 
compensate some fault, the mid-state during the recover does 
not harm the the computation of other neural resources neither 
the synchronization of the FPNN. The only negative effect is 
that other neural resources have to wait until the recover is 
done. This delays the FPNN computation by the time of the 
recover, but the result of the computation shall be correct, not 
affected by the recover itself. 

IV. E X P E R I M E N T A L R E S U L T S 

In this section we present an experiment dealing with an 
influence of mapping neural network to an FPNN [2] in order 
to decrease a negative influence of identity operator activation 
according to the principle presented in the previous section. 
We have experimented with the very basic neural network 
task which allows us, due to its simplicity, to perform an 
experiment with many combinations of faults and security. A l l 
links dispose of only one affine operator in this FPNN. 

The task is a logical exclusive addition - XOR. The original 
neural network and derived grid FPNN have 2 inputs, 3 
neurons in a hidden layer and 1 output. As a first step, we 
measured the influence of link failures to the correctness of 
the FPNN classification of all four input vectors. Table I 
summarizes the results. The first column contains the name 
of faulty links, the next two columns contain the numbers of 
correctly and incorrectly classified inputs. The next column 
shows the percentage rate of correctness. The last column 
indicates if the link can be secured by the technique. The 
faulty links were supposed to be treated as transparent (i.e. 
their identity operators were activated). The link names are 
derived from the names of activators (nl...n6) they connect, 
as (source, destination), for example (n4, n6). 

As the table shows, two link failures ((n4, n6),(n4, n3)) 
did not have an effect on the FPNN output. But the remaining 
seven failures caused an output error. It can be seen that links 
(nl , n3),(n2, n5) in the first layer caused the highest error. 



Missing resource Correct Incorrect Match [%1 Possible to secure 

- 4 0 100 -
(n4,n6) 4 0 100 No 
(n4,n3) 4 0 100 Yes 
(n3,n4) 3 1 75 Yes 
(n4,n5) 3 1 75 Yes 
(n3,n6) 3 1 75 No 
(n5,n4) 3 1 75 Yes 
(nl,n3) 2 2 50 No 
(n2,n5) 2 2 50 No 
(n5,n6) 2 2 50 No 

TABLE I. FAILURES EFFECT ON THE XOR F P N N 

This is expected since they lay at the beginning of the FPNN 
and thus have a high influence on the rest of it. Also, one 
of the links in the last layer caused the same error. However, 
all these links cannot be secured by mapping since they have 
no link predecessors [2]. Other links caused a smaller error 
and three of them ((n3, n4),(n4, n5),(n5, n4)) can be secured 
using the presented technique. 

We tried to secure these links. First, only one link at the 
time was secured. Next, we tried to secure combinations of 
two links and finally the combination of all three links. In all 
experiments we ran the FPNN with and without failure of the 
secured links in all possible combinations. Table II summarizes 
the results of these experiments. 

Secured resources Faulty resources Correct Incorrect Match [%1 

(n4,n5) - 4 0 100 
(n4,n5) (n4,n5) 4 0 100 
(n3,n4) - 3 1 75 
(n3,n4) (n3,n4) 2 2 50 
(n5,n4) - 3 1 75 
(n5,n4) (n5,n4) 3 1 75 

(n4,n5),(n3,n4) - 4 0 100 
(n4,n5),(n3,n4) (n4,n5) 4 0 100 
(n4,n5),(n3,n4) (n3,n4) 4 0 100 
(n4,n5),(n3,n4) (n4,n5),(n3,n4) 4 0 100 
(n4,n5),(n5,n4) - 3 1 75 
(n4,n5),(n5,n4) (n4,n5) 4 0 100 
(n4,n5),(n5,n4) (n5,n4) 3 1 75 
(n4,n5),(n5,n4) (n4,n5),(n5,n4) 3 1 75 
(n3,n4),(n5,n4) - 3 1 75 
(n3,n4),(n5,n4) (n3,n4) 2 2 50 
(n3,n4),(n5,n4) (n5,n4) 3 1 75 
(n3,n4),(n5,n4) (n3,n4),(n5,n4) 2 2 50 
(n3,n4),(n4,n5), 

(n5,n4) - 3 1 75 

(n3,n4),(n4,n5), 
(n5,n4) (n3,n4) 2 2 50 

(n3,n4),(n4,n5), 
(n5,n4) (n4,n5) 3 1 75 

(n3,n4),(n4,n5), 
(n5,n4) (n5,n4) 3 1 75 

(n3,n4),(n4,n5), 
(n5,n4) (n3,n4),(n4,n5) 2 2 50 

(n3,n4),(n4,n5), 
(n5,n4) (n4,n5),(n5,n4) 3 1 75 

(n3,n4),(n4,n5), 
(n5,n4) (n3,n4),(n5,n4) 2 2 50 

(n3,n4),(n4,n5), 
(n5,n4) 

(n3,n4),(n4,n5), 
(n5,n4) 2 2 50 

TABLE II. FAILURES EFFECT ON THE XOR F P N N 

As the table shows, in five cases the technique really 
increased the influence of the identity operators activation. In 
some cases the technique did not help and in some cases it 
led to an even higher error. It also caused new errors which 
occurred in the faulty free state. Both findings were expected 

since the result of this technique depends on the original weight 
distribution as mentioned above. 

V. C O N C L U S I O N S A N D F U T U R E R E S E A R C H 

In this paper we have followed the FPNNs author's original 
formal model and derived the model of the fault tolerant neural 
resources. We have presented the techniques of fault tolerance 
ensurance based on the described models. It allow us to use 
unit based redundancy using fault tolerant techniques such as 
TMR or backup copies. The techniques based on the identity 
and the constant operator do not use the unit based redundancy 
and offer the way how to potentially lower the influence of a 
fault. The presented experiment showed, that in some cases, 
the usage of link identity operator may lead to increase of 
fault tolerance if we perform the mapping of a neural network 
to an FPNN with assumption of the fault. It also proved that 
this technique, because its usability depends on the weight 
distribution, can have a negative effect on the FPNN in both 
a fault-free and faulty state. 

In future work, we are going to perform more practical 
experiments with presented models and techniques and to 
develop them. These efforts should lead to a design of a fault 
tolerant neural network architecture implemented in FPGAs 
using FPNNs and offering suitable features for implementing 
deep neural networks. 
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Abstract 

This paper presents the concepts of FPNA and 
FPNN, used for the approximation of artificial neural 
networks in FPGAs and discusses the usage of TMR 
technique in order to reach a fault tolerance. The 
schemes of the FPGA implementation are presented. 
The results of experiments determining the FPGA re­

sources utilization with different usage of the TMR 
technique are provided. 

1 Introduction 

The artificial neural networks [10] are one of the 
important models of softcomputing and artificial in­

telligence. They are structure inspired by the human 
brain with high capability of learning and memorizing 
to solve various types of tasks. Basically, the goal of the 
artificial neural network is to learn the relation between 
two sets of data vectors, to generalize the relation, to 
determine its features and use it for the determining 
the relation of the unknown vectors belonging to the 
same problem. This capability can be used for classi­

fication tasks, for timeseries and functional prediction, 
to control tasks, to image recognition, clustering and 
other tasks. 

Neural networks are composed of a set of neurons 
computing the activation function over the basis func­

tion (often the weighted sum) of their inputs. The neu­

rons are interconnected with the weighted connections 
called synapses. The learning of the neural network is 
basically a process of setting the weights. 

The networks have been implemented in various 
kinds of devices starting from analog computers to 
the most modern processors, VLSIs, graphical process­

ing units and F P G A s . This paper deals with one of 

the possible implementations of artificial neural net­

works in F P G A s ­ Field Programmable Neural Ar­

rays/Networks (FPNAs /FPNNs) . 
In our paper published at N O R C A S 2015 conference 

[8], we described the concept of Field Programmable 
Neural Networks for artificial neural networks imple­

mentation in F P G A . We also presented a model of fault 
tolerant FPNNs and various fault tolerance improving 
techniques based on the model. Experimental results 
were also provided. 

This paper is organised as follows ­ the first section 
introduces the F P N A / F P N N concept. The second sec­

tion describes the implementation of FPNNs into FP­

GAs. The third section deals with fault tolerance tech­

niques. The fourth section presents the experimental 
results and the last section summarizes the whole pa­

per. 

2 Field Programmable Neural Net­

works 

The concept of FPNNs [4] is meant to simplify the 
implementation of artificial neural networks in F P G A s 
by adjusting their properties to be more suitable for im­

plementation into them. The simplification originates 
from its main feature ­ a highly customizable structure 
which makes it possible to establish resource sharing 
between the original synaptic connections of the neu­

ral network and to simplify the interconnection model. 
The FPNNs are composed of dedicated interconnected 
units called neural resources which approximate the 
original neurons and synaptic interconnections. The 
units of the first type are called activators and repre­

sent the original neural network neurons. The other 
units are called links and serve as an approximation of 
the original synaptic interconnection. Every link dis­

poses of a set of weights serving as an approximation 
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of the original synaptic weights. 
A n example of a grid F P N N can be seen in Fig. 

1. The circles in the figure represent activators, wide 
arrows represent links and the thin arrows represent 
data interconnections. The orientation of the connec­
tion arrows shows the way of the passing data. The 
straight wide dashed/dotted arrows represent the orig­
inal neural networks synapses. The thin dashed/dotted 
arrows represent the sequences of links approximating 
the particular synapses. The synapses and the partic­
ular sequences are drawn with the same line and arrow 
styles. 

The FPNNs are not the same structures as neural 
networks, although they can be constructed in that 
way. The FPNNs represent a different model which can 
structurally differ from the implemented neural net­
work. They can also have different capabilities which 
means that they are not only an implementation of the 
neural networks, they are an approximation of neural 
networks as well - with different structure and proper­
ties, they can provide similar results as the networks. 
The accuracy is the main problem here. Since the 
FPNNs can be constructed in various ways and types, 
the approximation accuracy can be different. We dealt 
with the approximation accuracy in [7]. 

Figure 1. Synapses approximation in a grid 
FPNN 

2.1 Implementation of FPNNs into FPGAs 

The V H D L implementation of both types was cre­
ated according to the original design and schematic 
[4]. Both, activators and links were designed as sep­
arated units communicating with signals. The com­
munication is based on the asynchronous request - ac­
knowledgement model. Every neural resource gener­
ates requests for all units directly connected to its out­
put (successors) when its computation is done. Once 
a successor starts to process the request, it sends the 

acknowledgement back to the original resource. When 
the original resource receives acknowledgements from 
all successors, it selects a new input request to process, 
sends the acknowledgement and begins the computa­
tion. The activators also send a flag together with the 
requests. The flag is a constant activator number and 
it is used in links to select the proper weight to mul­
tiply the input data width. The links then propagate 
the flag to all connected links. 

The implementations of both types of neural re­
sources are similar, however they differ in used com­
putational units. The scheme of standard link imple­
mentation is illustrated in Fig. 2 and the scheme of 
the activator in Fig. 3. Both types are composed of a 
multiplexor, demultiplexer, register, computation units 
and units for processing requests. The meaning of com­
mon units is described bellow: 

• S E L E C T selects one of the active requests for 
processing using the Round&Robin algorithm. 
The requests from preceding neural resources are 
indicated by the set bits on its input. When the 
request is selected, it sets the start signal up. 

• M U X is an input data vectors multiplexer. It is 
controlled by the SEL unit. 

• R E G is a register storing the selected data vector. 

• A C K _ D E M U X delivers an acknowledgement 
(generated by the start signal) to the proper pre­
decessor. It is controlled by the SEL unit. 

These units are present in both links and activators. 
They serve for input requests processing and delivery 
of the input data to the computation part of the unit. 
Computation part of links and activators is composed 
of different units: 

• M U L T . A D D applies the weights to the data. 
The key to select the proper weight is the flag asso­
ciated with the request. The flag is selected from 
all of the flags at the input FLAG-IN by the value 
at the input s. 

• I T E R iteratively computes the sum of all input 
data (simulates the neuron basis function). After 
a predefined number of iterations, it transmits the 
result to the T R A N S unit and activates it using 
the fin signal. After every iteration it activates 
the next signal which starts the processing of an­
other request. 

• T R A N S computes the activation function (the 
output of the activator). The input is gained from 
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the I T E R unit. The activation function were sig­
moid like function suitable for hardware imple­
mentation [9]. 

A l l computation units take the input data from the 
register R E G , perform the computation of the result 
and transmit it to the neural resource output. They 
also activate the signal ready which is an input of the 
output requests generators: 

• L I N K _ R E Q _ G E N generates the requests to the 
connected successors when the ready signal is set. 
It also receives the acknowledgements from the 
successors. Using the free signal it controls the 
SEL block - it enables (when all acknowledgements 
are received) or disables (new request was selected 
- start signal is up) its function. 

• A C T _REQ _ G E N is similar to the 
LINK_REQ_GEN, but it allows to activate 
the free signal using the nextjreq signal without 
the requests generation. 

These units are responsible for the control of the neural 
resource. When the processing of the selected request 
is started, they block the SEL unit preventing it from 
selecting another request before the actual one is pro­
cessed. After the computation is done, they generate 
output requests and hold the entire neural resource in­
active until all requests are successfully received by the 
successors. 

ac l cou tO . 
ack_out l ' 

A C K 
DEMUX 

r e q J n O ™ reqJnO e n 

r e q j n l » reqjn s e | 

I SELECT 
r e q J n N « reqJnN req_nLim 

reset • 
elk • 

FLAGJN I 

LINK_REQ_CEN 

» req_outO 
• req_out l 

t req_outS 
• ack_inO 

Figure 2. Scheme of a link implementation -
the interconnection of the inner units 

3 Fault tolerant F P N N using T M R 

The neural networks are parallel structures with lot 
of redundancy performing an approximate (soft) com-

ACT RCQ GUN 

Figure 3. Scheme of an activator implementa­
tion - the interconnection of the inner units 

puting. Therefore they dispose of inherent fault toler­
ant properties which differ with every network though. 
There are a number of techniques designed to increase 
the fault tolerant properties. Some do it using an addi­
tional redundancy on different levels (for example T M R 
on the level of the whole network [13], or adding redun­
dant neurons [1]) in order to build the network to be 
fault tolerant. Others modify the process of training [2] 
in order to train the network to be fault tolerant (for 
example [5] uses weight minimization during the train­
ing) or use retraining after a fault occurs [3]. Others 
modify the basis function [11] or activation function 
[12]. A l l approaches are combined as well. 

Our approach based on extension of the imple­
mented neural network fault tolerance (or substitution 
if no fault tolerant technique was used on the network). 
Different approaches can be used to make an F P N N 
fault tolerant. The approaches can utilize replication 
or can use other principles. We introduced a fault tol­
erance technique which does not use replication in [8]. 
The homogeneous structure of FPNNs is suitable for 
using replication based techniques as well as for the 
recovery using the online reconfiguration. The asyn­
chronous model of communication is suitable for this 
type of recovery as well since the F P N N can be simply 
put on hold until the recovery is finished and then re­
sume its function without a need of resetting the whole 
F P N N . 

T M R is a well known fault tolerant technique based 
on triple replication of the secured unit and comparison 
of the triplet output data in order to determine the 
major result which is then used as the output of the 
whole triplet. This technique can be used on different 
levels with FPNNs. In this paper we focus on two levels 
- the level of inner units (we will refer to this type as 
type A) and the level of the whole neural resources (type 
B). 



On the level of inner units (type A) , there are six 
(link) or seven (activator) main units which can be se­
cured using the T M R technique. Using the technique 
on this level has several advantages. It allows us to 
choose which units (if not all) will be secured. There­
fore it allows us to adjust the security/overhead ratio. 
Also, if we focus on the smaller inner units, the recov­
ery from fault using the dynamic reconfiguration will 
be easier and faster than in the case of reconfiguration 
of the whole neural resources. However, on this level 
the interconnection between units will not be secured. 
This will occur on the level of the whole neural re­
sources (type B) . On this level, the fault tolerance will 
be generally higher because of duplication the whole 
resources but overhead will be higher as well. Also, re­
covery from fault using dynamic reconfiguration will be 
more complicated and slower due to larger reconfigured 
area. 

We decided to compare these two levels in the mean­
ing of area utilization in order to have a base for deci­
sion which level of T M R will be used. There are other 
criteria to evaluate the fault tolerant techniques. The 
power consumption, maximum clock frequency and la­
tency belong to the most important. However, in this 
paper we deal with area (resource utilization) only, 
with other criteria we shall deal with in our future re­
search. 

4 Experimental results 

In order to determine the area usage (in the number 
of slice registers and LUTs) of the neural resources and 
their inner units in both the unsecured and the T M R 
versions, we implemented them in V H D L and synthe­
sized them using the Xil inx ISE 14.7 tool. The tar­
get F P G A was the Xilinx Virtex-6 device xc6vlx240t-
1-JJ1156. A l l computations were implemented in fixed 
point form with 8 bits of the integer part and 8 bits 
of the fractional part [6]. The voters were imple­
mented using bit operations, therefore the voting was 
performed on the level of bits. A l l neural resources 
were implemented to be connected with three prede­
cessors and two successors. The number of connected 
neural resources affects the size of the communication 
units. The link has three weights with real values. The 
use of DSP blocks was switched off. The optimization 
level was left on default but the Equivalent registers 
removal option was switched off to avoid the drop of 
the duplicated units. A l l results were provided by the 
synthesis only. 

The resources utilization of the unsecured units are 
shown in Table 1. In the table, the Unit column iden­
tifies the units by their name. The columns Slice Regs. 

and Slice-LUTs contain the resources utilization. The 
columns LUTs of act. and LUTs of link compare the 
LUTs utilization of the unit with the utilization of the 
whole neural resources in order to illustrate the area 
portion of the inner units. 

Table 1. Utilization of unsecured blocks 
Unit Slice Slice- L U T s L U T s 

Regs. L U T s of act. of link 
S E L E C T 8 17 1% 1% 
I T E R 49 104 6% 0% 
T R A N S 1 1478 86% 0% 
M U L T -
_ADD 0 1389 0% 88% 

R E Q -
_GEN 2 5 0.3% 0.3% 

A C T I ­
V A T O R 126 1723 100% 0% 

L I N K 57 1582 0% 100% 

As the table illustrates the most significant por­
tion of F P G A resources are utilized in the computa­
tion units M U L T . A D D and T R A N S . The communica­
tion and control units utilize around one percent of re­
sources and around 5%-10% of resources are utilized by 
the units interconnection. This shows that the compu­
tation units are the best candidates for using the T M R 
technique as the probability of failure is the highest 
with them. On the other hand, the communication 
and control units are essential for the data flow, there­
fore for the functionality of the whole F P N N and the 
failure in these units could stop the operation of the 
whole F P N N , while the failure in the computing unit 
could only cause the degraded precision. Moreover ac­
cording to their low resources utilization, it could be 
suitable to apply the T M R technique to secure them. 

Table 2 summarizes the resource utilization of the 
building blocks secured using the T M R technique. The 
columns Registers and LUTs have the same meaning 
as in Table 1, the other columns contain the percent 
increase of the resources utilization. As expected, the 
resource utilization has increased approximately three 
times or less in most of the units. The neural resources 
are marked by the used T M R type. The utilization 
of the type A activator (all units were T M R secured 
although not all of them are listed in the table) has 
increased around 2.7 times and the utilization of the 
type A link around 2.9 times (registers) and 2.3 times 
(LUTs). The type B resources L U T s utilization has 
increased even more but their registers utilization has 
increased less than in case of type A resources. 

Table 3 compares the utilization of neural resources 
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Table 2. Utilization of TMR-secured blocks 
Secured 
unit 

Register sLUTs Increase 
of 
Regs. 

Increase 
of 
L U T s 

S E L E C T 28 40 250% 135% 
I T E R 179 331 265% 218% 
T R A N S 83 4291 83 190% 
M U L T -
_ADD 83 3641 83 162% 

R E Q -
_GEN 6 6 200% 20% 

A C T I V -
ATOR_-
T Y P E . A 

346 4699 174% 173% 

LINK_-
T Y P E . A 166 3737 191% 136% 

A C T I V -
ATOR_-
T Y P E . B 

311 5611 147% 226% 

A C T I V -
ATOR_-
T Y P E . B 

163 4299 185% 172% 

Table 3. Comparison of different TMR levels 

Neural re­
source (se­
cured using 
type B) 

Increase of 
registers 
utilization 
vs. type A 

Increase 
of L U T s 
utilization 
vs. type A 

Link -2% 15% 
Activator -11% 19% 

secured by the both T M R types. As the table illus­
trates, the type B neural resources consumes less reg­
isters than neural resources of type A . This is due to 
the number of voters consuming the registers in the 
type A resources. However, the type B neural resources 
consume more LUTs . This is due to interconnection in­
cluded into the duplicates. It is needed to consider that 
there is around twice more registers than L U T s avail­
able in the F P G A . From this point of view the type A 
neural resources seems to be more resource and area 
efficient than type B resources. However, the type B 
resources are secured including the interconnection be­
tween inner units, therefore their fault tolerance should 
be higher. 

5 Conclusions and future research 

In this paper we briefly described the concept of 
F P N N serving for the implementation of artificial neu­
ral networks in F P G A s . We also described the imple­
mentation using the schematics and explained the con­
struction of neural resources and the communication 
model. The fault tolerance techniques were considered 
and two levels of application of the T M R technique on 
the neural resources were discussed. 

The application of the T M R technique on the inner 
units of the neural resources (type A) has proven to be 
less consuming in the meaning of the number of con­
sumed LUTs , although this type consumed more reg­
isters. However, the registers are more available than 
LUTs, so this type seems to be more resource efficient. 
Due to smaller areas secured using T M R it might be 
more effective to use the dynamic reconfiguration in 
order to recover from fault. 

The type of the T M R that secures the whole neu­
ral resources (type B) consumes less registers but more 
LUTs. In the meaning of the available resources, this 
type is less resource effective. Also, using the dynamic 
reconfiguration to recover from fault might be less ef­
fective and slower due to larger area needed to be re­
configured. 

In our future research we will deal with other fault 
tolerance techniques. Especially with techniques which 
do not use the replication but they are based on a 
change of parameters and on the robustness of the 
F P N N which we designed. We shall also perform ex­
periments with fault injection. We shall measure how 
the techniques affect the consumption and the value of 
the frequency on which the system works as well. 
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Abstract—This paper presents formal definitions of FPNA and 
FPNN concepts and introduces new types of FPNN derived and 
used by author. The process of mapping a trained artificial neural 
network to FPNNs is described. Techniques of redundancy free 
fault tolerance of the selected parts of FPNN are introduced, the 
derived algorithms are presented and the experimental results of 
this algorithm are summarized. 

I. I N T R O D U C T I O N 

The concept of the Field Programmable Neural Arrays 
(FPNAs) [11 is in design meant to simplify the implemen­
tation of artificial neural networks in FPGAs by adjusting its 
properties to be more suitable for implementation in them. 
The simplification originates from its main feature - highly 
customizable structure which makes possible to establish a 
resource sharing between the original synaptic connections of 
the neural network. This is done by using its customizability 
to simplify the interconnection model. 

FPNAs are one of the possible implementation of neural 
networks in FPGAs. And just like others, they are vulnerable 
to various kinds of faults, the SEU is the most impending one. 
The vulnerability is even higher since FPNNs are composed of 
a set of interconnected and interdependent dedicated units. On 
the other hand, this allows us to use a plenty of fault tolerance 
improving techniques Since the main goal of FPNN is the 
FPGAs resources savings, it is appropriate to avoid the use of 
redundancy techniques and exploit other techniques preserving 
this core property. One of the possible methods is presented 
in this paper. 

The author originally hase defined the FPNNs in quite 
formal way in his work [1]. I have reformulated the origi­
nal definitions (see definiton 1.1 and 1.2) to suit us further 
definitions which we have based on them. These definitions, 
we are introducing in this paper, specify special types of 
FPNNs and allow us to easily describe the algorithms of fault 
tolerant mapping we are presenting. It also gave us proper 
instruments for further research leading to the design of fault 
tolerant FPGA artificial neural network architectures based on 
the FPNA/FPNN concept. 

A. FPNA 

The FPNA is defined (definition 1.1) [11 as an oriented 
graph. Nodes and edges of this graph represent two different 
types of unit. Nodes are called activators and represent original 
neural network neurons. Edges are called links and serve 
as an approximation of an original synaptic interconnection. 
Both types of units (together called neural resources) specify 
operators responsible for computation. Activators dispose of 

an iterative operator i serving for activator potential computing 
(similarly to a neuron potential). The Second activator operator 
is a function operator / performing an activator output com­
putation, i.e. the computation of an activation function over 
the potential. Then, there is a set of affine operators for every 
link serving as an approximation of original synaptic weights. 
There is one affine operator for every activator predecessor. 

Definition LI (FPNA [11). Let N be a set of nodes (activators) 
and E a set of oriented edges (links denoted as (TO, n); TO, n £ 
N). We say that graph (N, E) is an FPNA if the following 
statements hold: 

1) Every node has a set of predecessors: 
\JneN : 3Pred(n) = {p £ N \ (p,n) £ E) 

2) Every node has a set of successors: 
Vn £ N : 3Succ(n) = {s£N\{n,s)£ E) 

3) A set of input nodes exists: 
3Ni = {nen\ Pred(n) = 0} 

4) Every link has an affine operator (x is an input data): 
Vp, n £ N A p £ Pred(n) : 3a^p „) = Wn{p) x x + 
Tn{p) 

5) Every non-input activator has an iterative operator: 
Vn £ N \ Nt : 3in : R x R -> R 

6) Every non-input activator has a function operator: 
Vn £ N \ Ni : 3fn : R -> R 

The definition specifies the existence of neural resources, 
declare their operators and determines the topology. However, 
it does not declare the affine operator parameters, starting 
value of an iteration operators and it does not specify the full 
structure of the resulting object from the data connections point 
of view. Thus, the FPNA specifies a whole class of possible de­
signs, and to obtain a fully specified and implementable object 
there is need for something more. The remaining specification 
is offered by a Field Programmable Neural Network - FPNN. 

B. FPNN 

An FPNN (definition 1.2) [11 is one of the possible FPNA 
instances. It defines concrete values of W and T parameters 
of affine operators. It also defines a starting value 9 of an 
activator iteration operator and a number of iterations a. For 
every input node it gives a number of input batches c. That is 
because input vectors can be separated to parts and fed to an 
FPNN part by part saving the number of necessary inputs in 
this way. 

FPNN also specifies the data interconnection between 
neural resources. It uses four types of binary flags to do that. 
The nterconnections between links and successive activators 
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is determined by r flags. The s flags define interconnections 
between activators and successive links. Similarly, the S flags 
determine interconnections between input nodes and succes­
sive links. 

The last type of flag, R, specifies interconnection between 
two links. This is a new property regarding the neural net­
works, the possibility of connecting links to other links, to 
construct sequences of interconnected links. This is the core 
feature allowing to construct FPNNs with very various struc­
tures, thus structures suitable for implementation in FPGAs. 

Definition 1.2 (FPNN [1]). Let N be a set of nodes {activators) 
and E a set of oriented edges (links denoted as (TO, n); TO, n G 
AO. We say that graph (TV, E) is an FPNN if the following 
statements hold: 

1) (TV, E) is an FPNA 
2) A default value of an activators iteration variable 

exists: Vn G TV : 39n G K. 
3) A number of iterations is defined: 

Vn G TV : 3an G N 
4) Concrete values of affine operators parameters are 

defined: 
Va ( p ,„) : Wn{p),Tn{p) Gffi 

5) Number of inputs for every input node is defined: 
Vn G TVi : 3cn G N 

6) For every activator n a binary flag determining inter­
connection with a link (p, n) exists: 
Vp, n G TV A p G Pred(n) : 3rn(p) G {0,1} 

7) For every activator n a binary flag determining inter­
connection with a link (n, s) exists: 
Vn, s G TV A s G Succ(n) : 3sn(s) G {0,1} 

8) For every link (p, n) a binary flag determining inter­
connection with a link (n, s) exists: 
Vn,p, s G TV A p G Pred(n) A s G Succ(n) : 
3Rn[p,s) G {0,1} 

9) For every input node n a binary flag determining 
interconnection with a link (n, s) exists: 
Vn G TVi, Vs G TV A s G Succ(n)) : 3Sn{s) G {0,1} 

C. Grid FPNN 

For further definition purposes some auxiliary variables are 
defined (definition 1.3). These variables contain information 
about numbers of connected neural resource to a particular 
resource the variable is related to. 

Definition 1.3 (FPNN structural variables). Structural variables 
are variables related to individual neural resources and contain­
ing numbers of connected resources derived from the number 
of the positive structural flags (i.e. rn(p),sn(s),Rn(p,s) and 
Sn(s) flags). Four types of structural variables are defined as 
follows: 

1) num_rn and num_sn variables for every activator: 
Vn G TV : 3num_rn = 
\{rn(p)\rn(p) = 1 A p G Pred(n)}\ 
Vn G TV : 3num_sn = 
\{s„(s)\sn(s) = 1 A s G 5ucc(n)}| 

2) num_Rn (p) variable for every link: 
V(p, n) G E : 3num_Rn (p) = 
\{R„(p, s)\Rn{p, s) = 1 A n G Pred(s) A (n, s) G E}\ 

3) num_Sn variable for every input node: 
Vn G TVi : 3num_Sn = 
\{Sn(s)\Sn(s) = 1 A 8 G TV}| 

A special type of FPNN can now be defined using previous 
definitions. Grid FPNN (definition 1.4) is an FPNN with 
enforced limitation of the structure causing it has to form a 
grid shape. The reason of this is to make FPNN suitable for 
implementation in FPGAs due to similarity of grid FPNNs 
structure and FPGAs interconnection bus. 

Definition 1.4 (Grid FPNN). Let N be a set of nodes (ac­
tivators) and E a set of oriented edges (links denoted as 
(TO, n); TO, n G TV). We say that graph (TV, E) is n grid FPNN 
if the following statements hold: 

1) (TV, E) is an FPNN 
2) A limited number of connected preceding links is 

defined: 
Vn G TV : num_rn > 2 

3) A limited number of connected successive links is 
defined: 
Vn G TV : num_sn G {0,1} 
Vn G TV : num_Sn G {0,1} 
V(p, n) G E : num_Rn(p) G {0,1, 2} 

4) A limited number of iterations is defined: Vn G TV : 
an > 2 

5) A limited number of inputs is defined: Vn G TVi : 

The example of grid FPNN is in Fig. 1. The circles on 
the figure represent activators, wide arrow represent links and 
thin arrow represent data interconnections. The orientation of 
the connection arrows show the way of the passing data. As 
the picture illustrates, there is only one link on the output 
of every activator which realizes the connection to another 
layer. It is directly connected to one successive activator in 
the next layer. The connection to the other activators goes 
through the sequence of links within the whole layer. The are 
two sequences of the links going the opposite ways. They are 
called Interconnection train (definitions 1.5-1.9). Every layer 
with more than one activator has an interconnection chain 
within. 

Definition 1.5. Train of links is generally a sequence of 
interconnected links. 

Definition 1.6. Initial is a link having no link predecessors. It 
has only an activator predecessor. 

Definition 1.7. Terminal is a link having no link successors. 
It has only an activator successor. 



Definition 1.8. Chain of links is a train of links bordered by 
initial (the beginning of the chain) and terminal (the end of 
the link) respectively. 

Definition 1.9. Interconnection train is a train of links inter­
connecting activators within a layer. It is composed of two 
trains going the opposite ways. 

Before introducing another special type of FPNNs, the 
new type of links has to be established. The definition 1.10 
specifies a light link. The difference between a standard link 
and the light link is that the light link disposes of only one 
affine operator. This leads to another spare of FPGA resources 
because universal multiplier, which the standard link has to 
contain, can be replaced by a less expensive constant multiplier 
in the light link. 

Definition 1.10 (Light link). Let [N,E) be an FPNN and 
(p, n) £ E a link. We say that (p, n) is a light link if it 
dispose of only one affine operator which is common for all 
predecessors (x is an input data): 
Mp, n £ N A (p, n) £ E : a{p>n) = W-x;W£R 

Now the core type of FPNN of this paper can be intro­
duced. It is a special type of grid FPNN called a Light grid 
FPNN (definition 1.11) and it is composed only of light links. 
This type is oriented on maximal spare of FPGAs resources 
using both principles described above. 

Definition 1.11 (Light grid FPNN). Let N be a set of nodes 
(activators) and E a set of oriented edges (links denoted as 
(m, n) ; m , n £ N). We say that graph (TV, E) is an light grid 
FPNN if the following statements hold: 

1) (N, E) is a grid FPNN 
2) all e £ E are the light links 

II. M A P P I N G 

Mapping is a process of direct transfer of an artificial 
neural network into an FPNN without using a training data set 
and without the need of learning. Mapping uses information 
obtainable from an original neural network such as weights, 
biases, activations functions and the network structure. 

multiplicands in a sequence has to be known) for equation (1) 
to hold. For computation, it is possible to exploit the fact that 
in the light grid FPNN the links can be part of more than one 
chain, ad thus we are able to compute the last multiplicand in 
chain multiplication sequence using one link shorter chain. In 
this case only a chain terminal (syniast) has to be computed 
(2). So, if mapping begins on the chains with length 1, which 
are present in every grid FPNN, the mapping process can be 
effectively performed with one link longer chain in every step 
leading to fully mapped FPNN. 

Vs £ Synapses : sapx = I Yl W e I x syn^»t 
\e£approx(s)\syniaBt ) 

(2) 

Since the multiplication values of the rest of the chain are 
known, the syniast can be computed as the division of the 
original synapse weight and the product of all the previous 
multiplicands in a sequence (3). 

Vs £ Synapses : syniast = ^ — — (3) 
i *-e£Lapprox(s)\syniast e 

Since the light link can approximate more than one synapse 
(Ve £ E : \apprSynse\ > 1), there is more than one syniast 

values for it. However, the light links dispose of only one W 
parameter, so there is a need for compromise. This compromise 
can be computed in different ways [3], in this paper the 
arithmetic average will be used. 

B. Fault tolerance 

There are many popular ways to enhance a fault tolerance 
of various types of technology. In this paper we are proposing a 
method increasing the light grid FPNNs fault tolerance without 
using redundancy. The new type of link is defined (definition 
II. 1) for the purposes of this method. It adds new operators to 
the standard or light link. 

Definition II.l (Fault tolerant link). Let (N, E) be an FPNN 
and e £ E a link. We say that e is a Fault tolerant link if the 
following statements hold: 

A. Theory 

Considering the declarations in table I, the artificial neural 
network will be seen in this paper as a double composed of set 
of neurons and set of synapses. Every object in these sets rep­
resents an original object in the original network and its related 
properties such as weights, biases and activation functions (i.e. 
synvai, neuact and synbiases in table I respectively). 

In light grid FPNN, every original synapse is approximated 
with sequence of multiplications performed by some chain of 
links (1). The chain of links is determined by approx function 
(table I). 

Vs £ Synapses : sapx = Yl W e ^ 
e£approx(s) 

There is a set of chains of different length approximating 
the synapses. Every chain has to be fully specified (i.e every 

1) it dispose of an identity operator (xe is e input data): 
3Ie;Ie :R^R;Ie(xe) = xe 

2) there is a binary flag usele £ {0 ,1} determining the 
activity of the identity operator (ye is e output data): 
ye = Ie(xe) <=> usele = 1 

The new operator is an identity operator. If this operator 
is active it replaces a link affine operator on a computation of 
an output data and it simply copies the link input data to its 
output. Using this technique the identity operator makes the 
link to be transparent for the passing data. So, if the link is 
faulty, the activation of this operator ensures the propagating 
data against unpredictable effect of the defective link. 

Even if we secure the propagating data against unknown 
defects caused by faulty link, a problem of invalid data (a chain 
is broken and one of the elements of a multiplication sequence 
is missing) passing to the rest of the FPNN remains. To ensure 
as correct FPNN computation results as possible we need to 



settle this problem in some way. Since we do not intend to 
use redundancy, we have no other choice than to use other 
neural resources to compensate the missing (transparent) link. 
The best candidates for this are the direct link predecessors 
of the faulty link. If we anticipate the possible failure of 
some particular link, or if we decide that one of links is more 
important than others for some reason and we want to ensure 
the FPNN against its failure, we might be able to delegate the 
link function to its predecessors in advance. Thus compute the 
failure of the link to the parameters of its predecessors. This 
can be done by considering the link just not be there. Then 
the predecessors are forced to approximate the link synapses 
instead of it. So, basically the predecessors take a part of a link 
apprSyns set and intercorporate it into their own apprSyns 
sets. Then, during the process of mapping, the approximated 
synapses of the selected neuron are approximated by its prede­
cessors. But since these synapses are together with the original 
predecessor synapses, the approximation accuracy suffers from 
a decrease caused by this sharing. And the accuracy of the 
approximation of the original synapses is degraded as well. 
So this method should be applied only if the fault tolerance 
and FPGA resources savings is so important to the user that 
a decrease of the accuracy is acceptable. Also, it is applicable 
only on link having link predecessors, i.e. not initials. 

Another problem is how to pick the link to be ensured with 
this method. We can use different metrics. For example we can 
consider links approximating synapses with high weights to 
be more important then links approximating lower weighted 
synapses. Or link being placed closer to the beginnings of 
chains can be seen as more important as the higher number of 
successive links depends on them compared to terminals for 
example. Also links having more predecessors can be regarded 
as more important, and so on. The next section introduces 
an algorithm of selecting links for fault tolerance ensuring as 
well as the mapping algorithm using the previously described 
technique to mapping neural network to FPNN with securing 
selected links against faults. 

C. Algorithms 

The presented principles are implemented in the following 
algorithms which perform a fault tolerant mapping. Algorithm 
1 is one of the possible algorithm for link fault tolerant 
importance ranking. The resulting ranking is the addition of a 
sum of all link approximated synapses weights and an inverse 
proportion sum of all chains the link is part of. This ranking 
method comes from an idea that a link is more important if 
more successive links depend on it, i.e. the longer parts of 
the chains rests on it. And also link is more important if it 
approximates a higher weights, i.e. has a bigger impact in the 
result. 

After the ranking is done, the initialization must be done 
(Algorithm 2). A graph of the link interconnection is con­
structed making links to be new nodes and interconnecting 
those nodes with new edges according to original link to 
link connections (Rn (p, s) flags). This graph is separated 
to its components, where every component represents link 
interconnection within one layer. Next, the links intended to 
be secured are selected and stored in a SEL set. Then all the 
synapse variables are initialized, val variable gets and original 

synapse weight, prod and aprx gets 1.0 (multiplication neutral 
element). 

As a next step, the apprSyns sets are actualized (Algo­
rithm 3). The approximated synapses of links in SEL set are 
copied to their chain predecessors apprSyns sets. 

Finally, the mapping is done (algorithm 5). It it performed 
layer by layer. In every layer the set of chains is determined 
(algorithm 4). Links are divided into two sets with respect to 
their input and output degree - links with zero input degree 
(no predecessors) are the first links in chains and are stored 
in the first set and the links with a zero output degree (no 
successors) are the last links in chains and stored in the last 
set. Next, all chains existing between all the links in first 
and last sets are determined and stored in chains set together 
with all their subsets (chains between links from the sets are 
the longest chains within a layer. Thus, their subsets make all 
possible chains. At least the chains are sorted by length in the 
ascending order to make possible to start the mapping with the 
shortest chains. 

Algorithm then iterate over all the chains. Every chain is 
fully mapped before the algorithm moves to the next one. First 
link of every chain is picked and all its syniast are computed. 
Then a compromise is find and used as new value for link W 
parameter. The illustrated algorithm uses an arithmetic average 
(11th line) as the compromise. When W is known, it is used 
for actualization of partial products values (prod variables) of 
synapses passing trough the link, i.e. longer chains. Finally the 
computed link is removed from the chain and the algorithm 
can continue with another link in the chain. 

It is needed to be mentioned, that the mapping algorithm 
is the universal algorithm for mapping neural networks to 
FPNNs. It only performs the mapping using the input sets and 
variables bud it does not improve the fault tolerance itself. 
That is done by the algorithm 3 which perform expansion of 
secured links predecessors approximated synapses sets. 

The presented mapping algorithm can be easily used even 
for the standard FPNNs mapping with only two changes 
needed to be done. The equation on the 11th line of the 
algorithm has to be replaced with equation 4. These equations 
does not use any compromise and assign the value directly 
since there is affine operator for every predecessor. Second, 
the equation on the 13th line of the algorithm (actualization 
of the synapses product variables) has to be switched to the 
equation 5. The algorithm 3 can be used without any changes. 

Wn(p) = syn^st <=> srcNeuron(syn) = p (4) 

AdstN euron(syn) = n 
synprod = synprod x Wn(p) <=> srcNeuron(syn) = p (5) 

AdstN euron(syn) = n 

III. E X P E R I M E N T S 

We have experimented with the presented algorithms and 
in this paper we are going to present results from experiments 
over the very basic neural networks task which allows us, due 
to its simplicity, to perform an experiment with many com­
binations of faults and security. The task is logical exclusive 



Declaration Description 

W W = (Neurons, Synapses) an input neural network 
(N, E) light an grid F P N N 
NeuToAct : Neurons —¥ N Mapping neurons lo activators. 
ActToNeu = NeuToAct'1 Inverse mapping. 
srcNeuron : Synapses —> Neurons Source neuron of a synapse. 
dstNeuron : Synapses —¥ Neurons Destination neuron of a synapse. 
approx : Synapses —¥ En Determination of chain of links ap-

prixmating a synapse. 
sortByLength : E71 —> E Sorting by path length. 
findChain : E X E —> E n , n > 1 Find path. 
firstNodeOf : En —> E Chain's first node. 
V u £ E : 3apprSynsu C Synapses Set of synapses ending in the link. 
V u £ E : 3passSynsu C Synapses Set of synapses passing trough the 

link. 
V u £ E : 3connPredu C N Set of connected preceding activa­

tors. 
\fneu £ Neurons : 3neuact : R —»• R Neurons activation functions. 
\fneu £ Neurons : 3neu^ias £ R Neurons biases. 
V s y n £ Synapses : 3synvai £ R Synapses weight. 
V s y n £ Synapses : 3synproci £ R Partial product approximating the 

synapse. 
V s y n £ Synapses : 3synapx £ R The value of synapse approximation. 
V s y n £ Synapses : 3syn[ast £ R Last multiplicand of approximation 

product. 
chains C -B* an ordered collection of all chains. 
belongTo : E {£'T1}m Set of chains the link belongs to. 
lengthOf Chain (En) = n Length of chain function. 
VHnfc £ £ : 3rankHnk £ R Link's fault tolerant ranking. 

TABLE I. DECLARATIONS 

procedure R A N K L I N K S ( 7 V 7 V , FPNN) 
for all Vlink £ E do 

r a n k l ^ j 2 s v n e a p p r S y n S H " k synval 

rank2 Y j c e b e ' ° ™ 9 T o ( ' l ™ f c ) lengthOfChain(c) 
rankunk <— rank\ + 

end for 
end procedure 

j 

procedure I N I T I A L I Z E R V , FPNN) 
Construct a graph of the link connection 
Separate components of the graph and store them in a 
CONN set. 
Select the links intended to have a non-redundant 
security and store them in a SEL set. 
for all Vsyn £ Synapses do 

synvai <— original_weight 
synprod <- 1.0 
synapx <r- 1.0 

end for 
end procedure 

Algorithm 2. Initialization algorithm 

l : procedure E X P A N S E ( J V J V , FPNN) 
/* E x p a n s i o n o f p r e d e c e s s o r s i n the 
apprSyns s e t s o f a l l s e l e c t e d l i n k s : 

2: for all (U,V)e CONN do 
3: for all (n, s) £ SEL A (n, s) £ U do 
4: for all (p, n) £ Pred(n) A R„(p, s) do 
5: for all Vsyn £ apprSyns(n,s)) do 
6: if Bad; £ connPred^p^ 

ActToNeu(act) 
srcNeuron(syn) then 

7: apprSyns(Ptn) <— apprSyns(Pt,, 
syn 

8: end if 
9: end for 

10: end for 
11: end for 
12: end for 
13: end procedure 

U 

Algorithm 1. Ranking algorithm 
Algorithm 3. Expansion algorithm 

addition - X O R . As the first step, we measured the influence 
of link failures to the correctness of the FPNN classification 
of all four input vectors. Table II summarizes the results. 
The first column contains the name of faulty links, the next 
two columns contain the numbers of correctly and incorrectly 
classified vectors. The next column shows the percentage rate 
of correctness. The last column says if the link can be secured 
by fault tolerant mapping. The faulty links were supposed to be 
treated as transparent, i.e. their identity operator were activated. 

Missing resource Correct Incorrect Match [%1 Possible to secure 

- 4 0 100 -
(n4,n6) 4 0 100 No 
(n4,n3) 4 0 100 Yes 
(n3,n4) 3 1 75 Yes 
(n4,n5) 3 1 75 Yes 
(n3,n6) 3 1 75 No 
(n5,n4) 3 1 75 Yes 
(nl,n3) 2 2 50 No 
(n2,n5) 2 2 50 No 
(n5,n6) 2 2 50 No 

TABLE II. FAILURES EFFECT ON THE XOR F P N N 

As the table shows, two link failures ((n4,n6),(n4,n3)) did 
not have an effect on the FPNN output. But the remaining 
seven failures caused the output error. It can be seen that 

initials in the first layer ((nl,n3),(n2,n5)) caused the highest 
error. This is expected since they lay in the beginning of the 
FPNN and thus have a big influence on the rest of it. Also one 
of the links in the last layer caused the same error. However, 
all these link cannot be secured by mapping since they have 
no link predecessors. Another links caused a smaller error and 
three of them ((n3,n4),(n4,n5),(n5,n4)) can be secured using 
the presented algorithms. 

We tried to secure these links. First, we secured only one 

function D E T E R M I N E C H A I N S ( ( i 7 , V)) 
first <r- {u £ U\deg+(u) = 0} 
last <r- {u £ U\deg+(u) = 0} 
chains <— 0 
for all Vu £ first do 

for all Vv £ last do 
p <— findChain(u,v), 
chains <— chains U 2 P , 
sortBy Length(chains)) 

end for 
end forreturn chains 

end function 

Algorithm 4. Chain determination algorithm 

file:///fneu
file:///fneu


1 procedure M A P L I G H T F P N N ( A W , FPNN) 
2 INITTALIZE() 
3 E X P A N S E ( ) 
4 for all (U, V) £ CONN do 
5 chains <- D E T E R M I N E C H A I N S ( ( ( 7 , V ) ) 

*/ /* Mapping path by path: */ 
6 for all Vr £ chains do 
7 (p, n) <— firstNodeOf(r) 

*/ /* Mult ipl icands computation: */ 
8 for all Vsyn £ apprSyns^p „) do 
9 

10 end for 
/* Computing a l ink W: */ 

11 
yP'n> \apprSyns(pn)\ 

/* Updating the products: */ 
12 for all syn £ passSyn^^) do 
13 synprod <- synprod * W(P,n) 
14 end for 

/* Deleting f in ished node from 
the path: */ 

15 r <— r \ {{p, n)} 
16 chains <— {p\p £ chains A p ^ 0} 
17 end for 
18 end for 
19 end procedure 

Algorithm 5. Light FPNN mapping algorithm 

singular link at the time. Next, we tried to secure combinations 
of two links and finally we tried the combination of all 
three links being secured. In all experiments we ran the 
FPNN with and without failure of the secured links in all 
possible combinations. Table III summarizes the results of 
these experiments. 

Secured resources Faulty resources Correct Incorrect Match [%] 

(n4,n5) - 4 0 100 
(n4,n5) (n4,n5) 4 0 100 
(n3,n4) - 3 1 75 
(n3,n4) (n3,n4) 2 2 50 
(n5,n4) - 3 1 75 
(n5,n4) (n5,n4) 3 1 75 

(n4,n5),(n3,n4) - 4 0 100 
(n4,n5),(n3,n4) (n4,n5) 4 0 100 
(n4,n5),(n3,n4) (n3,n4) 4 0 100 
(n4,n5),(n3,n4) (n4,n5),(n3,n4) 4 0 100 
(n4,n5),(n5,n4) - 3 1 75 
(n4,n5),(n5,n4) (n4,n5) 4 0 100 
(n4,n5),(n5,n4) (n5,n4) 3 1 75 
(n4,n5),(n5,n4) (n4,n5),(n5,n4) 3 1 75 
(n3,n4),(n5,n4) - 3 1 75 
(n3,n4),(n5,n4) (n3,n4) 2 2 50 
(n3,n4),(n5,n4) (n5,n4) 3 1 75 
(n3,n4),(n5,n4) (n3,n4),(n5,n4) 2 2 50 

(n3,n4),(n4,n5),(n5,n4) - 3 1 75 
(n3,n4),(n4,n5),(n5,n4) (n3,n4) 2 2 50 
(n3,n4),(n4,n5),(n5,n4) (n4,n5) 3 1 75 
(n3,n4),(n4,n5),(n5,n4) (n5,n4) 3 1 75 
(n3,n4),(n4,n5),(n5,n4) (n3,n4),(n4,n5) 2 2 50 
(n3,n4),(n4,n5),(n5,n4) (n4,n5),(n5,n4) 3 1 75 
(n3,n4),(n4,n5),(n5,n4) (n3,n4),(n5,n4) 2 2 50 
(n3,n4),(n4,n5),(n5,n4) (n3,n4),(n4,n5),(n5,n4) 2 2 50 

case the mapping did not help and in some cases it led to even 
higher error. Also it caused new errors showing in the state 
without failure. Both findings are expectable since the FPNN 
is the light grid FPNN suffering of sharing affine operators 
between multiple synapses. However, the results show that 
fault tolerant mapping can lead in some cases to real increase 
of the fault tolerance. 

IV. C O N C L U S I O N A N D F U T U R E R E S E A R C H 

In this paper we have followed the FPNNs author's original 
formal model and derived the model of the new type of FPNN 
- the light grid FPNN. We have based algorithms on this model 
serving for the mapping trained neural networks to the standard 
or the light grid FPNNs. Beside mapping, these algorithm are 
able to secure an FPNN against failure of some link only using 
other links and without the usage of any redundancy. 

This method was the core of the experiments presented in 
this paper. During these experiments we tried to secure the 
light grid FPNN implementing the logical exclusive addition 
against failure of almost all securable links. In some cases we 
observed an actual increase of fault tolerance, in other cases 
it remained the same or even getting worse. In some cases the 
usage of the method led to worse functionality of the FPNN 
in the failure free state. This was expexted due to the fact the 
FPNN is the light grid FPNN which have smaller strength than 
standard FPNN. However, the presented method proved to be 
able to increase an FPNN fault tolerance in some cases and 
thus, it can be used for this purpose. 

In the future work, we are going to perform more exper­
iments with bigger FPNNs and the standard FPNNs as well. 
Also we are going to design other redundancy free methods of 
securing the neural networks and FPNN against failures. We 
are going to examine method using redundancy as well. These 
efforts should lead to a design of a fault tolerant neural network 
architecture implemented in FPGAs using FPNNs and offering 
suitable features for implementing deep neural networks. 
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Abstract—This paper presents concepts of FPNN which can 
be used for the implementation of artificial neural networks in 
FPGAs and introduces fault tolerant techniques applied on this 
concept that are developed by the authors. 

I. I N T R O D U C T I O N 

The artificial neural networks [4] are one of the important 
models of softcomputing and artificial intelligence. They are 
structures composed of neurons interconnected by weighted 
synapses. Basically, the goal of the networks is to learn 
the relation between two sets of data vectors, to generalize 
the relation, to determine its features and to use it for the 
determining the relation of the unknown vectors belonging to 
the same problem. This capability can be used for classification 
tasks, for time series and functional prediction, to control tasks, 
to image recognition, clustering and other tasks. 

The implementation of neural networks is challenged with 
two great neural networks complexities ­ space complexity and 
time complexity. The usual solution of both is to use a pow­

erful hardware, such as graphical processor units or processor 
clusters, which suffer from a high power consumption. For 
some networks, FPGAs can be one of the possible solutions 
if a lower power consumption is required. In this case, the 
time complexity is solvable by parallelism which is easy to 
be achieved in both FPGAs and neural networks since both 
are parallel by their nature. The space complexity is bigger 
problem since an FPGA has limited resources. Thus, there 
is a need for such designs that exploit the neural networks 
parallel character for fast computations and save the FPGA 
resources as well. A Field Programmable Neural Networks 
(FPNN) concept can be seen as one of the possible solutions. 
The goal of this paper is to describe the types of FPNNs and 
compare their capabilities. 

II. F I E L D P R O G R A M M A B L E N E U R A L N E T W O R K S 

The concept of FPNNs [1] is meant to simplify the imple­

mentation of artificial neural networks in FPGAs by adjusting 
their properties to be more suitable for implementation into 
them. The simplification originates from its main feature 
­ a highly customizable structure which makes it possible 
to establish resource sharing between the original synaptic 
connections of the neural network. The FPNNs are composed 
of dedicated interconnected units called neural resources which 
approximate the original neurons and synaptic interconnec­

tions. The units of the first type are called activators and 
978-l-5090-5602-6/16/$31.00 © 2016 IEEE 

represent the original neural network neurons. The other units 
are called links and serve as an approximation of the original 
synaptic interconnection. Every link disposes of a set of affine 
operators serving as an approximation of the original synaptic 
weights. 

An example of a grid FPNN can be seen in Fig. 1. The 
circles in the figure represent activators, wide arrows represent 
links and the thin arrows represent data interconnections. The 
orientation of the connection arrows shows the way of the 
passing data. The straight wide dashed/dotted arrows represent 
the original neural networks synapses. The thin dashed/dotted 
arrows represent the sequences of links approximating the 
particular synapses. The synapses and the particular sequences 
are drawn with the same line and arrow styles. 

The FPNNs are not the same structures as neural networks, 
although they can be constructed in that way [2]. The FPNNs 
represent a different model which can structurally differ from 
the implemented neural network. They can also have different 
capabilities which means that they are not only an imple­

mentation of the neural networks, they are an approximation 
of neural networks as well ­ with different structure and 
properties, they can provide similar results as the networks. 
The accuracy is the main problem here. 

The approximation capabilities depend on the number of 
affine operators belonging to links. This number depends 
on the FPNN structure directly. However, the model can be 
altered to dispose of different number of affine operators. 
Two different models with different approximation capabilities 
exist. The original model disposes of as many affine operators 
as the number of directly connected preceding units. These 
operators are shared between groups of synapses approximated 
by the particular preceding units. This type of an FPNN is 
called Standard FPNN. A stronger model was derived that has 
the number of affine operators that allows it to reach the precise 
approximation accuracy. This type of an FPNN is called Full 
FPNN. In case of a full FPNN, every link disposes of dedicated 
affine operator for every synapse it approximates. There is 
no sharing of affine operators between synapses, therefore 
the accurate approximation is ensured. Although, this type of 
FPNN demands more FPGA resources. 

III. F A U L T T O L E R A N C E 

The present research is dealing with a fault tolerance of 
neural networks implemented using the FPNN concept and 
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Fig. 1. Synapses approximation in a grid FPNN 

developing new methods to improve the fault tolerance. The 
well known redundancy based techniques such as Triple Mod­
ular Redundancy (TMR) are considered. These techniques are 
well usable in many levels - on the level of neural resources, 
on the level of their inner implementation or on the level of 
the FPNN itself. However, at present the research focuses on 
methods that do not use this kind of redundancy (replication). 
Instead the goal is to use the FPNN parameters to partially or 
completely mask faults. In this paper, the methods are briefly 
described. 

The first method relies on the inherit robustness of FPNN. 
It uses two operators. The identity operator has a simple 
function - it turns a faulty neural resource to the transparent 
register. The dataflow and the synchronization are restored 
and the computation continues. However, the neural resource 
is missing from the computation sequence. Depending on 
the missing resource parameters and the parameters of other 
resources in the sequence, the approximation accuracy of the 
original network is decreased. In some cases, the decrease 
is only marginal, in some other cases, the impact could 
be critical. The method decreasing the negative influence of 
identity operators usage on links was developed [3]. 

The other operator is a constant operator. It turns the neural 
resource to a constant register (the synchronization signals 
pass transparently). This operator takes advantage from the fact 
that in many neural networks neurons which have the similar 
output in the majority cases exist. In case of fault if the neuron 
(activator) is switched to the constant register with the most 
frequent value, the network will compute properly in the major 
cases (related to the value). The principle of switching neural 
resource is illustrated in Fig. 2. 

the proper change it might be possible to mask or partially 
compensate the fault impact (or the impact of operators usage). 
However, there are many possible modification of parameters 
and according algorithms is under development. The principle 
is illustrated in Fig. 3. In the figure, the gray resources are 
the resources preceding the faulty one in the sequence i.e. the 
most probable candidates to apply changes to. 

Fig. 2. Illustration of the identity operator principle 

The second technique is based on changing the settings of 
neural resources laying in the same sequence as the faulty re­
source (especially resources lying before the faulty one). With 

Fig. 3. Illustration of the parameters change principle 

IV. C O N C L U S I O N S A N D F U T U R E R E S E A R C H 

In this paper, the FPNN concept was described. It is the 
concept of resource saving implementation of neural networks 
in FPGAs which can serve as an approximation as well. The 
techniques of increasing the fault tolerance of FPNNs were 
also described. The first technique uses two operators - the 
identity operator and the constant operator. These operators 
turn selected neural resource to the transparent or constant 
register. These techniques exploit the FPNN robustness - that 
it can withstand the loss of a neural resource. The second idea 
is that neural resource (activator specifically) can be replaced 
by a constant register with the median of its values to make 
the FPNN computation correct at least in some cases. These 
techniques serve as temporal partial masking of the fault. 
The second technique uses the changes of FPNN resources 
parameters to compensate the fault impact. Both techniques 
are under development and they are the core of the future 
research. 
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Abstract—This paper presents deals with fault tolerance prop­

erties of Field Programmable Neural Networks (FPNNs). The 
paper describes the concept of FPNNs in context of our works 
and presents experiments we did to get insight to the concept 
robustness against Single Event Upset (SEU) induced errors. The 
experiments were based on simulating SEUs by injecting bit­flips 
into the FPNNs data representing the weights. Different FPNNs of 
three different essential types were evaluated. The experimental 
results were presented. 

I. I N T R O D U C T I O N 

The artificial neural networks are one of the important 
models of soft­computing and artificial intelligence and they 
popularity rises. Their structure is inspired by the structure of 
the human brain. They try to emulate the brain's capability 
of learning and memorizing in order to solve various types 
of tasks in an intelligent way. Basically, the goal of the 
artificial neural networks is to learn the relation between two 
sets of data vectors (known data of the selected problem), 
to generalize the relation, to determine its features and then 
to use it to estimate the relation between previously unseen 
vectors belonging to the same problem. This capability can 
be used for classification tasks, for time­series and functional 
prediction, to control tasks, to image recognition, clustering 
and other tasks. 

Neural networks are composed of a set of neurons com­

puting the activation function over the weighted sum (their 
potential) of their inputs. The neurons are interconnected 
with the connections called synapses. Each synapse has its 
own weight which represents the strength of the connection 
similarly to the synapses in the human brain. The weights 
represent the neural network knowledge. The learning of 
the neural network is basically a process of calculating the 
weights. 

The fault tolerance properties of artificial neural networks 
have been researched since the very beginning of the field's 
development. Many techniques were suggested to enhance the 
robustness of neural networks in order to harden them enough 
to be used in real world applications as controllers for various 
systems. 

Many method utilize fault injection in the training phase to 
harden the network. The faults can be injected into neurons 
in the hidden layers during some of the iterations of the 
selected learning algorithm [1]. It is possible to harden the 

978­l­7281­1756­0/19/$31.00 ©2019 IEEE 

network against multiple faults or even against a particular set 
of faults selected by the network's designer [2]. These methods 
were proven to potentially increase the generalization ability 
of neural networks [5]. 

Many methods are based on increasing neural networks 
redundancy. They are inherently highly redundant structures 
which grands them some level of built­in fault tolerance, it is 
possible however to harden the networks even more by adding 
redundancy to address possible faults specifically. It is possible 
to determine the most valuable neurons (in therm having the 
most measurable impact on the output data) in the network 
and then replicate them to harden the networks against their 
failure [31. 

The neural networks have been implemented in various 
kinds of devices starting from analog computers to the most 
modern processors, Very large Scale Integrated circuits (VL­

SIs), graphical processing units and Field Programmable Gate 
Arrays (FPGAs). This paper deals with one of the possible 
implementations of artificial neural networks in FPGAs ­

FPNA/FPNN. 
The goal of this paper is to describe the types of FPNNs 

and compare the fault tolerant properties of these types. 

II. FPNNs 

The concept of Field Programmable Neural 
Arrays/Networks (FPNAs/FPNNs) [61 is designed to 
enable a resource efficient implementation of artificial neural 
networks in FPGAs by adjusting the networks properties in 
order to make them more suitable for the FPGAs structure. 
The efficiency comes from the FPNN's main feature ­ a 
highly customizable structure which enables the designer to 
build it in a way that allows sharing the FPGA's resources 
between synaptic connections of the original neural network 
by simplifying its interconnection structure. FPNNs were 
used for implementing large scale spiking networks [8]. 

The FPNNs have not the same structures as neural networks, 
although they can be constructed that way. They are based 
on different model that can be structurally different from 
the original neural network. This also means that the FPNN 
can differ in its capabilities. In principle, the FPNNs are not 
straightforward implementation of neural networks but rather 
their approximation designed in an FPGA friendly way. Since 
the FPNNs can be constructed in various ways and types, the 
approximation accuracy can be different. 
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For purposes of our research we developed a new definition 
of an FPNN (see Definition II. 1, original definition by B. 
Girau [61) in order to support various FPNN types and 
algorithms developed to map the neural networks, enhance the 
approximation accuracy, detect hard faults and other tasks. We 
define an FPNN to be a structure composed of two types of 
units (together called neural resources). The set N contains 
the first type of units called activators. The activators directly 
represent the original neural network neurons. They perform 
the same actions the original neurons do - they gather input 
data into potential and apply an activation function to compute 
the activator's output. The activation function is represented 
by the function operator " / " and the iteration operator "i" 
substitutes the potential computation and is responsible for 
input data processing to provide the input to the function 
operator. 

The activators are interconnected by the other type of neural 
resources called links (in the set L). The links approximate 
the original synaptic interconnection of the network. Unlike 
the synapses in neural networks link do not only transmit data 
between neurons (activators), they also perform the weight 
multiplication. This allows the weighting of the transmitted 
data to be computed in parallel across the FPNNs and leaves 
the activators the only duty to apply the iteration operator "i 
(usually but not necessarily a simple addition) to finish the 
weighted sum that forms the activator's potential. 

The interconnection of the neural resources is described by 
an oriented graph (N,E), where E is a set of valued edges 
interconnecting the activators. Every edge is usually split up 
to a sequence of links which allows us to construct various 
structures. The more we split the edges into links, the more 
flexibility we obtain. 

Definition II.l (FPNN [61). We say that structure 
(N, L, E, <j>, ui) is an FPNN if the following statements hold 
true: 

1) N is a set of units called activators that dispose of: 
a) An iterative variable tn: V n £ N : 3tn £ R 
b) A default value of tn: 

V n £ N : 3o„ £ R; t„0 = on 

c) A number of iterations: V n £ N : 3an £ N 
d) An iterative operator (xn is an input data): 

V n £ N : 3in : R x R -> R; 
tna in (fna—i : *£n)) ^ l-.ttn 

e) A function operator: V n £ N : 3fn : R -» R 
2) L is a set of units called links that dispose of: 

a) A set of link operators \/l £ L : 3Af. 
Ai = {an(x)\an(x) = Wn x x; Wn £ R; n = 
l..c} 

3) E is a set of valued oriented edges: ( m , n ) £ E;m,n £ 
AO-
The edge value is defined: Ve £ E : 3We £ R 

4) (N, E) is an oriented graph denoting the interconnection 
between activators. 

5) 0 is a function E —> L+, so that: 
Ve £ E : 0(e) = (h..l„); l\..ln £ L; n > 0 

6) co is a function E —> L+, so that: 
Ve £ E : 0(e) = (h..ln);h..ln £ L ;w(e) C 0(e);0 < 
n < |0(e)| 

7) Edge-to-operator functions 07 : E —» Ai;l £ L: 
Ve £ E A \/l £ 0(e) : 07(e) = o f ; o f £ At 

8) Operator determining ipi : E+ —> Ai,l £ L: 
VI £ L : ipi(e1..e„) = ax <^> ax £ Ax A / £ w(ei) A .. A 
I £ w(e„) A 07(ei) = .. = ai{en) = ax 

9) A set of input nodes exists: 
3Ni = {n £ N I deg+(n) = 0} 
V n £ N{ : in = 0; fn(x) = x 

A. Grid FPNN 

For our research purposes we developed a special type of 
FPNN based on the above provided definitions. Grid FPNN 
(definition II.2) is an FPNN with an enforced limitation of the 
structure causing it to form a grid shape. The reason for this is 
to make an FPNN suitable for the implementation in FPGAs 
due to the similarity of the grid FPNNs structure and FPGAs 
interconnection bus and the sharing of resources in links. 

Definition II.2 (Grid FPNN). We say that FPNN is the grid 
FPNN if the the following statements hold true: 

1) The activators are organized into layers. 
2) The two chains of interconnected links exist in all layers 

composed of more than one activator. The number of 
links in every chain is one less than the number of 
activators in the layer. The output of every link is 
connected to the input of the nearest activator. The 
chains go in the opposite ways. 

3) The output of every activator is connected only to a 
single link which provides the connection to the next 
layer. The output of the link is connected to the nearest 
activator and to the nearest links of one or both link 
chains in the layer (which realizes connection to all other 
activators). 

An example of a grid FPNN can be seen in Fig. 1. In the 
figure, the circles represent activators, wide arrows represent 
links and the thin arrows represent data interconnections. The 
orientation of the connection arrows shows the way of the 
passing data. The straight wide dashed/dotted arrows represent 
the original neural networks synapses. The thin dashed/dotted 
arrows represent the chains of links approximating the particu­
lar synapses. The synapses and the particular chains are drawn 
with the same line and arrow styles. As the picture illustrates, 
there is only one link on the output of every activator which 
provides the connection to the following layer. It is directly 
connected to one successive activator in the following layer. 
The connection to the other activators goes through the chain 
of links within the whole layer. Two chains of the links are 
going the opposite ways. They are called Interconnection chain 
(definitions II.3-II.4). Every layer with more than one activator 
has an interconnection chain within. 

Definition II.3. A chain of links is generally a sequence of 
directly interconnected links. 



Definition II.4. An interconnection chain is a chain of links 
interconnecting activators within a layer. It is composed of 
two chains going the opposite ways. The input of every link 
is connected to one or two preceding links, the output is always 
connected to the nearest activator and to the succeeding link 
in the chain (if exists). 

Fig. 1. Synapses (edges) approximation in a grid FPNN 

Definition II.5 (Light FPNN). We say that FPNN is a light 
FPNN if the following statement holds true: V/ £ L : \At\ = 1. 

Definition II.6 (Full FPNN). We say that FPNN is a full 
FPNN if the following statement holds true: 
V/ £ L A Ve £ E : \At\ = \{e\e £ w - 1 (Z)}l-

Definition II.7 (Reduced FPNN). We say that FPNN is a 
reduced FPNN if the following statements hold true: 

1) The edge equivalence is defined: 
V e i , e 2 £ E;l £ L : e\ =i e2 <5 <f>{e\) = lj..lxl..l„ A 
(j){C2) = ll..lyl..lTfl'1 lX = ly 

2) Ml £ L the size of Ai is equal to the number of the 
equivalence classes generated by the =i. 

In this paper we focus on determining the FPNNs robustness 
against S E U introduced errors. We already presented a FPNN 
implementation hardened by Triple Module Redundancy on 
multiple levels of the concept in [10] and evaluated the 
resource penalty of this approach. 

III. E X P E R I M E N T S 

In this work we focused on measuring effects of faulty 
links. Therefore we we were injecting faults into links weights 
to simulate possible S E U causing errors in the computation. 
The injected faults were generated randomly and in the range 
determined by the used datatype bit-length. The bit-length 
were chosen to be 16 bits with fixed point arithmetic. The 
fraction as well as the integer part have both 8 bits. It has 
been demonstrated that this particular setup is good enough 
for most neural networks computations in hardware [7]. 

We experimented with all three of the FPNNs types to find 
out the differences in their robustness as well as the general 
fault tolerant properties of the FPNN concept. The FPNNs 
were generated from neural networks trained to perform se­
lected tasks from the [4] set of benchmarks intended to test 

neural networks. The input data used in the experiments were 
the test data from this set. 

A. Injecting faults 

The faults were injected by flitting a random bit in a weight. 
Given the different sizes and types of FPNN, we decided to 
consequently inject faults into all of the FPNN's weight rather 
than to inject a predefined number of faults. In that case, 
larger FPNNs would have been advantaged and their inherently 
higher fault tolerance (in comparison to smaller FPNNs) might 
have been illusionary increased. Therefore we rather injected 
faults into all the FPNNs weights to put them under higher 
and better determined stress. 

B. Injecting faults 

The experiment procedure for all of the tested FPNNs is as 
follows: 

1) Test the FPNN using a test data set and save the results. 
2) Save the original state of the FPNN. 
3) Repeat until all weights have been tested: 

a) Select a weight that has not been tested yet. 
b) Inject a fault into the selected weight. 
c) Re-test the FPNN with the same data-set and 

compare the current results with the saved results 
of the original FPNN. Calculate the number of 
matching results. 

d) Restore the FPNN into its original state. 
The FPNN is tested with all the test data vectors after each 

fault injection. Every iteration of this algorithm goes through 
the full testing data-set then. 

IV. R E C O V E R Y F R O M FAULTS U S I N G 9 P A R A M E T E R 
M O D I F I C A T I O N 

We have also tried to experiment with a method of recovery 
from an error in an affine operator by modifying the FPNN's 
parameters. The idea was to recover the FPNN without utiliz­
ing techniques based on redundancy, relearning, or any other 
complex mechanisms. Instead, the already existing resources 
and settings would be used. We have not expected the method 
to prove universally useful but rather to be another option to 
choose from, similarly to the method published in [9]. The 
method modified 9 of the faulty link's succeeding activators 
using the fault's value. The fault values were known at the time 
of injection and could also be determined using the method 
described in [11]. The Table I shows modifiers used to change 
the 9 values. The methods 7..12 used the same modifiers in 
the same order but applied them only when the faulty link 
had an activator among its predecessors. The idea is that the 
presence of the activators would indicate that the faulty link 
is at the beginning of some link of chains. Therefore its fault 
would impact all the following links in the chain, amplifying 
its effect. Therefore a fault in such a link would be a candidate 
for recovery. The methods 13 — 15 added an additional modifier 
with a value of 0.5. 



T A B L E I 
T H E RECOVERY MODIFIERS 

Method 9 modifier 
1 + fault 
2 - fault 
3 + fault/10 
4 - fault/10 
5 x fault 
6 + fault/10 

V. E X P E R I M E N T A L R E S U L T S - R O B U S T N E S S 

We have used six different FPNNs structures constructed 
to solve two benchmarks (Diabetes and Thyroid) from the 
Proben set. A l l six FPNNs were used in all three varieties 
of types, so the total number of FPNNs that went through 
experiments is eighteen. The structures of all the six basic 
FPNNs are listed in first columns of tables II and III. The 
structures are written as numbers of activators in all layers 
separated by the character x. The second column identify their 
types. The last three columns list the minimum, maximum and 
average percentages of matching original-faulty FPNN output 
vectors through all iterations of the experiment. 

T A B L E II 
T H E EXPERIMENTS RESULTS OF THE DIABETES-TASK FPNNs 

Diabetes 
Structure Type Faults Min.[%] Max.[%] Avg.[%] 
8x16x8x2 light 78 64.8 100 99.7 
8x16x8x2 reduced 124 5.9 98.7 94.4 
8x16x8x2 full 384 36.2 100 99.7 
8x16x16x2 light 102 64.8 100 99.5 
8x16x16x2 reduced 164 30.5 96.4 85.1 
8x16x16x2 full 576 11.2 91.7 87.5 

8x64x2 light 200 36.2 100 97.1 
8x64x2 reduced 328 38.8 100 94.5 
8x64x2 full 4160 53.4 97.4 95.6 

8x32x32x2 light 198 64.8 100 99.6 
8x32x32x2 reduced 324 100 100 100 
8x32x32x2 full 2112 0 100 98.8 

T A B L E III 
T H E EXPERIMENTS RESULTS OF THE THYROID-TASK FPNNs 

Thyroid 
Structure Type Faults Min.[%] Max.[%] Avg.[%] 
21x21x3 light 86 98.6 100 99.9 
21x21x3 reduced 130 95 100 99.7 
21x21x3 full 882 96.3 98.8 96.3 
21x63x3 light 212 93.8 98.8 96.3 
21x63x3 reduced 340 86.2 90 87.5 
21x63x3 full 4410 10 75 60.1 

As you can see in the tables, the light FPNNs types 
proved to be the most robust against bit-flipping faults. This 
is probably due to their reduced approximation capabilities 
of the original neural network that that already limits the 
approximation precision and therefore the injected faults had 
less disrupting potential as opposed of the more complex types 

of FPNNs that hold more computing power than the light 
FPNNs. The high redundancy of full FPNNs on the other 
hand provides them with some inherent robustness makes them 
perform decently in the Diabetes task as opposed to reduced 
FPNNs which are more prone to errors as their redundancy is 
lower as well as their computing and approximation power. 

The Thyroid task results show an interesting trend. Larger 
the FPNN gets, more prone to errors it seems. That goes 
against the idea that larger FPNNs would have more re­
dundancy and therefore would be more robust. It is due to 
the structure if these particular FPNNs that introduce this 
trend. The FPNNs have relatively small number of layers (as 
opposed to the Diabetes task FPNNs) with relatively high 
number of activator in the input and hidden layers. These 
large layers mean that their interconnection chain is rather 
long. Any introduced error in these chains (especially at their 
beginnings) would go trough a number of the consequent links 
and get potentially worse as it participates in the following 
computations in the chain. The longer the interconnection 
chain is the higher the chance of a fault to introduce an 
increasingly influential error into the computation. We can see 
this effect even with the Diabetes FPNN with 64 activators in 
the hidden layer. 

VI. E X P E R I M E N T A L R E S U L T S - R E C O V E R Y 

We have experimented with the recovery method applied to 
both Diabetes and Thyroid tasks and their particular FPNNs 
listed in the previous section. We have also generated faulty 
FPNNs using the method described in the previous section. 
We used all the fifteen techniques described in Section . 
Given the number of combinations of these settings and the 
quantity of resulting data, we could not include them in detail 
in this paper. Instead, we decided to include average rates 
between all the FPNNs performing the given task regarding 
the particular recovery method. Table IV contains the results 
of the Diabetes FPNNs, and Table V contains the results 
of the Thyroid FPNNs. The first column Mtd. identifies the 
recovery method by its number. Then each table contains three 
triplets of columns that list the data of the three FPNN types 
implementing the given task. In each triplet, the first column 
denoted by F contains the average results of the FPNNs after 
injecting a fault. Like in the previous experiments, the results 
are in terms of average correspondence between the original 
FPNNs' and the Faulty FPNNs' results. The R column shows 
the average correspondence between the original FPNNs and 
the Recovered FPNN. The last column, the / column, shows 
the Improvement of the recovered FPNN over the faulty FPNN; 
therefore, how closer to the original FPNNs the recovered 
FPNNs' results got. 

Unfortunately, the method proved to be more disrupting than 
repairing. Even though there were instances of improving the 
results of the recovered FPNNs as compared to the faulty 
FPNNs, there is not a particular method that would show a 
general pattern of improvements. Most results show that the 
9 parameter modifications led to even worse results than the 
faulty FPNN. What these results show, however, is that FPNNs 



T A B L E IV 
T H E RECOVERY RESULTS OF THE DIABETES-TASK F P N N S 

Diabetes 
Light Reduced Full 

Mtd F R I F R I F R I 
1 47.5 47.4 -0.1 57.9 66.8 8.9 55.7 54.7 -1.0 
2 47.5 51.3 3.8 57.9 56.7 -1.2 55.7 56.1 0.4 
3 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 55.5 -0.2 
4 47.5 47.5 0 57.9 55.2 -2.7 55.7 49.3 -6.4 
5 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 56.9 1.2 
6 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 49.4 -6.3 
7 47.5 47.4 -0.1 57.9 66.8 8.9 55.7 55.7 0 
8 47.5 51.3 3.8 57.9 56.7 -1.2 55.7 55.8 0.1 
9 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 55.7 0 
10 47.5 47.5 0 57.9 55.2 -2.7 55.7 49.3 -6.4 
11 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 55.7 0.0 
12 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 49.3 -6.4 
13 47.5 47.4 -0.1 57.9 62.2 4.3 55.7 55.7 0 
14 47.5 47.5 0 57.9 56.0 -1.9 55.7 49.3 -6.4 
15 47.5 47.4 -0.1 57.9 57.6 -0.3 55.7 49.3 -6.4 

T A B L E V 
T H E RECOVERY RESULTS OF THE THYROID-TASK FPNNs 

Thyroid 
Light Reduced Full 

Mtd F R I F R I F R I 
1 74.6 74.6 0 97.6 97.6 0 71.1 66.4 -4.7 
2 74.6 90.9 16.3 97.6 97.6 0 71.1 65.5 -5.6 
3 74.6 74.6 0 97.6 97.6 0 71.1 70.9 -0.2 
4 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4 
5 74.6 61.4 -13.2 97.6 97.6 0 71.1 69.6 -1.5 
6 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4 
7 74.6 74.6 0 97.6 97.6 0 71.1 66.4 -4.7 
8 74.6 90.9 16.3 97.6 97.6 0 71.1 65.6 -5.5 
9 74.6 74.6 0 97.6 97.6 0 71.1 70.9 -0.2 
10 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4 
11 74.6 61.4 -13.2 97.6 97.6 0 71.1 70.2 -0.9 
12 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4 
13 74.6 74.6 0 97.6 97.6 0 71.1 66.4 -4.7 
14 74.6 90.9 16.3 97.6 97.6 0 71.1 65.9 -5.2 
15 74.6 74.6 0 97.6 97.6 0 71.1 70.7 -0.4 

are particularly sensitive to the 8 parameters modification, 
which can also be seen as errors in activators. 

VII. C O N C L U S I O N 

In this paper we focused on robustness of different FPNN 
types against SEU introduced errors. We presented experi­
mental results showing that light FPNNs are relatively robust 
against faults due to their limited computing power while 
full FPNN proved to be more robust in the Diabetes task. 
In the Thyroid task, we also demonstrated that robustness of 
FPNN depends on its structure. It is shown that FPNNs with 
large hidden layers featuring a long interconnection chain are 
more prone to errors due to cumulative effect of an error 
going trough the long chain of links. The experiments with 
recovery from a fault using activator's 9 parameters shown the 
vulnerability of the FPNNs to changes in these parameeters. 

In the future work we focus on more experiments with more 
FPNNs as well on methods to harden the FPNNs using other 
activators parameters modifications as well as using the weight 
re-computation without a need of retraining and remapping the 
FPNNs. 
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