

Liberec

Remote setting up the PID controller parameters
based on visual observation of controlled motion

Diploma thesis

Study program:
Specialization:

Author:
Supervisor:
Consultant:

N2612 Electrical Engineering and Informatics
Mechatronics

B. Sc. Dmitry Kochubey
Doc. Ing. Petr Tůma, CSc.
Doc. Ing. Denis A. Kotin, CSc.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 3 -

Declaration
I hereby certify that I have been informed the Act 121/2000, the Copyright Act of the

Czech Republic, namely § 60 - Schoolwork, applies to my master thesis in full scope.

I acknowledge that the Technical University of Liberec (TUL) does not infringe my

copyrights by using my master thesis for TUL’s internal purposes.

I am aware of my obligation to inform TUL on having used or licensed to use my

master thesis; in such a case, TUL may require compensation of costs spent on creating the

work at up to their actual amount.

I have written my master thesis myself using literature listed therein and consulting it

with my thesis supervisor and my tutor.

Concurrently I confirm that the printed version of my master thesis is coincident with

an electronic version, inserted into the IS STAG.

Date:

Signature:

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 4 -

Acknowledgments
I would like to express my sincere appreciation to my advisory committee: my

supervisor Doc. Ing. Petr Tůma, CSc, from Technical University of Liberec and my

consultant Doc. Ing. Denis Kotin, CSc, from Novosibirsk State Technical University for their

guidance, support and patience. They helped me solve most of challenges in my master thesis

by giving their precious advice.

My gratitude also goes to Mr. Pavel Herajn. This person gave me technical support

during the plant design and the assembling process.

Furthermore, I express my strong appreciation to MPAM Tempus program and

European commission for the financial support of this beneficial project.

My special thanks go to my mother, my wife, and my daughter for their continuous

support during the time I wrote my diploma thesis.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 5 -

Abstract
The main project goal was to develop a laboratory stand for visual observation of

changes in the work part motion caused by different settings of PID controller parameters.

The whole scope of work was divided into several steps in order to reach the goal. The

first step was to learn the information about the topic in the field of automation control theory

and propeller theory. The second step was to select components for hardware realization of

the drive system and develop corresponding printed circuit board (PCB). In the step three, I

wrote firmware for the developed electric drive. As step four I created a program for a

personal computer (PC) that can control the drive by a set of commands and perform drive

remote control using internet.

Keywords
Electric drive, pulse-width modulation, microcontroller, AVR, Atmega8, UART, SPI,

USB, RS232, AS5045, magnetic rotary encoder, remote control, position control, PID, PCB,

internet, Skype.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 6 -

Table of contents

Declaration ...3

Acknowledgments ..4

Abstract ..5

Keywords ...5

Table of contents ..6

List of used figures ...8

List of abbreviations ... 10

1. Introduction .. 11

2. Plant description ... 12

2.1. Mechanical part overview ... 12

2.2. Pulse-width modulation .. 14

2.3. DC motors .. 15

3. Control system description .. 18

3.1. PID and PI controllers .. 18

3.2. System overview .. 23

3.3. Description of components used in the project .. 28

3.3.1. Atmel AVR ATmega8 microcontroller .. 28

3.3.2. Synchronous-buck mosfet driver TPS2834D ... 34

3.3.3. Dual operational amplifier LM358N .. 35

3.3.4. Magnetic rotary encoder AS5045 .. 37

3.3.5. FT232RL communication module ... 38

4. Software description ... 40

4.1. Microcontroller firmware ... 40

4.2. Remote control via ProJet ... 41

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 7 -

Table of contents

4.3. Remote control via Skype ... 43

5. Conclusion .. 45

6. Literature .. 46

7. CD ROM .. 48

Appendix 1 ... 49

Appendix 2 ... 52

Appendix 3 ... 53

Appendix 4 ... 72

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 8 -

List of used figures

Figure 1. Plant overview ... 12

Figure 2. Mechanical part ... 13

Figure 3. Working principle .. 13

Figure 4. Pulse width modulation [3] .. 14

Figure 5. Brushed DC motor parts .. 15

Figure 6. Two-pole DC motor operation [4, p. 2] .. 16

Figure 7. Torque-speed and current-torque relations [4, p. 3] .. 16

Figure 8. DC motor block diagram ... 17

Figure 9. DC motors MIG 400 .. 17

Figure 10. Basic block of PID controller ... 18

Figure 11. Effect of P term [6] .. 19

Figure 12. Effect of I term [6] ... 19

Figure 13. Effect of D term [6] ... 20

Figure 14. Basic block of PI controller.. 22

Figure 15. Drive board .. 23

Figure 16. Encoder board.. 24

Figure 17. Power supply converter.. 25

Figure 18. General view of the laboratory stand .. 25

Figure 19. Control system block diagram .. 26

Figure 20. Control closed loop of the armature current ... 26

Figure 21. Closed loop of the work part position control ... 27

Figure 22. Microcontroller ATmega8 in DIP package [1] ... 28

Figure 23. ATmega8 block diagram [1] .. 30

Figure 24. ATmega8 pin configuration [1] .. 30

Figure 25. UART interface [7] .. 32

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 9 -

List of used figures
Figure 26. UART message frame .. 33

Figure 27. SSI(SPI) interface [8]... 33

Figure 28. SSI(SPI) shift registers [8] ... 34

Figure 29. TPS2834D synchronous-buck MOSFET drivers .. 34

Figure 30. Electric circuit of the motor power unit .. 35

Figure 31. Dual operational amplifiers LM358N... 36

Figure 32. Electric circuit of the current measurement node .. 36

Figure 33. Magnetic rotary encoder AS5045 ... 37

Figure 34. Encoder operation [11, p. 1] ... 37

Figure 35. Synchronous serial interface [11, p. 13] ... 38

Figure 36. PWM output signal [11, p. 16] ... 38

Figure 37. FT232RL communication module.. 38

Figure 38. Electric circuit of the communication module .. 39

Figure 39. Propeller project firmware in CodeVisionAVR .. 40

Figure 40. ProJet interface .. 41

Figure 41. Skype logo ... 43

Figure 42. ProJet-Skype platform ... 43

Figure 43. Drive electric circuit .. 49

Figure 44. Top copper of the drive PCB.. 50

Figure 45. Bottom copper of the drive PCB .. 50

Figure 46. Encoder electric circuit .. 51

Figure 47. Encoder PCB ... 51

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 10 -

List of abbreviations
USB – Universal Serial Bus

PC – Personal Computer

RISC – Reduced instruction set computing

MIPS – Microprocessor without Interlocked Pipeline Stages

IC – Integrated Circuit

LED – Light-Emitting Diode

MOSFET – Metal–Oxide–Semiconductor Field-Effect Transistor

UART – Universal Asynchronous Receiver Transmitter

SPI – Serial Peripheral Interface

MCU – Multipoint Control Unit

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 11 -

1. Introduction
The main goal of my master thesis is to develop and assemble the control system of

electric motors of the laboratory stand with a possibility of remote control via internet. In

order to achieve this goal, I had to design an electrical system, a mechanical system,

microcontroller firmware and a remote control application.

The electrical system was built in the trial version of Proteus software. I took all

background information about microcontroller based systems from [1]. Finally, the electrical

part consists of two printed circuit boards (PCBs). One of them is a drive board and another

one is the board of magnetic rotary encoder. The plant has an external power supply in a rage

of seven volts of direct current. Communication with supervisory-application that is located

on the PC is realized by a USB-UART bridge. A special set of commands was developed for

carrying out remote control function via internet. I have decided to use Skype instant

messaging client that is a freemium and the most popular service as a client application. For

this purpose I added several Skype monitoring algorithms into the supervisory-application.

Mechanical part of the project is based on DC motors with propellers, MayTec profiles

and accessories. I selected DC motors due to the easy methods of control, power supply

voltage and low price.

Software is divided into two parts. The first part works on the PC, created in the

professional version of Visual Studio 2013. The second part works on the microcontroller side

that is controlling DC motors and position of the stand work part. Firmware was written in the

evaluation version of CodeVisionAVR environment.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 12 -

2. Plant description

2.1. Mechanical part overview
In this chapter I would like to describe the elements of mechanical part and work

principle of the laboratory stand. Figure 1 illustrates common view of the plant. It based on

industrial profiles and accessories produced by MayTec Company which are often used for

machines and installations prototyping.

Figure 1. Plant overview

As it could be seen the stationary part consists of three E4-slot profiles. Two of them

are used as support. At the fourth profile one pair of bearings with moving shaft is installed.

This place is a point of interaction between stationary and working part. The working part

includes two rails which are connected to the moving shaft. The angle between rails can be

changed by adjusting a female screw in the point of rail-to-shaft connection. Motor mounting

units with installed motors are located in the end of each rail. Motors are equipped with APC

6x4E propellers. Components of the plant are shown in the figure 2.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 13 -

Figure 2. Mechanical part

Working principle of the laboratory stand is described as follows. Propellers during

the motor shaft rotation produce the aerodynamic force. It enables the work part to move

clockwise or counterclockwise relative to the axis of rotation. Therefore, by adjusting the

speed of the motors we can control the position of the working part of the plant. The

illustration of work is provided in the figure 3.

Figure 3. Working principle

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 14 -

2.2. Pulse-width modulation
To control the rotating speed of the plant’s DC motors I used a pulse-width

modulation (PWM) method. A pulse-width modulation technique is kind of a modulation

technology which uses a rectangular pulse, whose pulse width during the period of the signal

modulates an average waveform value [2].

The duty cycle is the percentage of the positive state compared to the period of the

signal. It is calculated by the following formula:

푃푒푟푖표푑(푇) =
1

퐹푟푒푞푢푒푛푐푦(퐹).
(2.1)

The idea of the method can be described in simple words. A PWM signal (with pulse

width the same as period of a duty cycle) would modulate the maximal value of the voltage. If

we decrease this width, the power delivered to the load will be also decreased as illustrated in

the figure 4.

Figure 4. Pulse width modulation [3]

The total power delivered to the connected load each time, is the area under the

positive state of the PWM. It is clearly seen that by altering the pulse width, we can alter the

power delivered by the supply. Due to the fact that the wave form is a square wave, the power

supplied each time is calculated by:

푃 = 푃 ∙ 푝푢푙푠푒	푤푖푑푡ℎ; (2.2)

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 15 -

The PWM principle applying to the DC motor looks as follows. If we supply a DC

motor with nominal voltage, the motor will run at its maximal speed. However, fast switching

between on and off state by applying a periodic signal does not let the motor reach the

nominal voltage and, as a result, the maximal speed. It means the motor speed will be

proportional to the average time of the motor on state.

In my control system speed control is carried out using ATmega8 PWM channels.

This microcontroller is equipped with three timers to generate PWM signals at three channels.

For my project I used only two of them as signal generators. The flexible setting of channels

allows the user to generate a wide variety of PWM signals to control the speed of a DC motor.

2.3. DC motors
A Direct Current (DC) motor is a DC electric machine which converts electrical

energy of direct current into mechanical energy. In my project I used brushed DC motors that

consist of several parts such as rotating shaft with windings (armature), bearings, stator with

magnet, brushes, commutator, stator case and motor wires (see figure 5).

Figure 5. Brushed DC motor parts

Principle of two-pole DC motor operation is shown in the figure 6. The torque is

produced when the coil is powered and generates a magnetic field around the armature. The

same polarity poles are pushed away and opposite polarity poles are attracted. This

phenomenon causes rotation.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 16 -

Figure 6. Two-pole DC motor operation [4, p. 2]

Brushed DC motors with permanent magnets have linear torque-speed and current-

torque relations as illustrated in the figure 7. It makes them perfect control objects.

Figure 7. Torque-speed and current-torque relations [4, p. 3]

푇 – The starting torque is the maximum torque produced by motor at zero speed.

휔 - The no-load speed is the maximum speed that the motor can reach without load.

Differential equations of the DC motor are provided below:

푈 = 푅퐼 + 퐿퐼̇ + 푈 ; (2.3)

푈 = 푘Ф휔; (2.4)

푚 = 푘Ф퐼; (2.5)

푚 = 푚 + 퐽휔̇. (2.6)

Based on these equations we can obtain DC motor block diagram that is shown in the

figure 8.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 17 -

Figure 8. DC motor block diagram

MIG 400 is a brushed DC motor with permanent magnets. General view of the motor

is provided in the figure 9.

Figure 9. DC motors MIG 400

It has the following technical parameters [5]:

- Recommended voltage: 3.6 to 9.6 V;
- Nominal current: 0.55 A;
- Armature resistance: 0.286 Ohm;
- No-load speed: 15,700 rev / min at 7.2 V;
- Max speed: 17,000 rev / min;
- Maximum efficiency of 73 %;
- Motor velocity constant Kv: 2189;
- Shaft diameter: 2.3 mm;
- Motor diameter: 28.9 mm;
- Length: 38mm;
- Weight: 80g.

(-)

1

푅 1 + 푝 퐿푅
 U

kФ

kФ

1
퐽푝 I mn

m
ω

(-)

U
m

ω

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 18 -

3. Control system description

3.1. PID and PI controllers
A proportional-integral-derivative controller (PID controller) is a control loop

feedback mechanism (controller) widely used in industrial control systems (Programmable

Logic Controllers, SCADA systems, Remote Terminal Units, etc.) [6].

Formula of analog PID controller is as follows:

푢(푡) = 푃(푡) + 퐼(푡) + 퐷(푡) = 퐾 ∙ 푒(푡) + 퐾 ∙ 푒(휏)푑휏 + 퐾 ∙
푑푒(푡)
푑푡 ; (3.1)

where 푒(푡) represents the difference between the desired and the actual position.

Block diagram which is shown in the figure 10 describes the formula of analog PID

controller.

Figure 10. Basic block of PID controller

Formula of digital PID is:

푢(푘) = 푃(푘) + 퐼(푘) + 퐷 =

= 퐾 ∙ 푒(푘) + 퐾 ∙ ℎ ∙ 푒(푖) + 퐾 ∙
푒(푘) − 푒(푘 − 1)

ℎ ;

(3.2)

where ℎ is the sampling time.

Output

푃 = 퐾 ∙ 푒(푡)

Process
Setpoint

(-)

퐼 = 퐾 ∙ 푒(휏)푑휏

Error

퐷 = 퐾 ∙
푑푒(푡)
푑푡

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 19 -

The controlled value is held at the desired position by applying a restoring force to the

process (plant) that is proportional to the position error, adding the integral part of the error

and the derivative of the error.

Physical meanings of PID terms are described as following. The proportional term

provides a restoring force proportional to the position error, just as a spring obeying Hooke's

law does. The integration term provides a restoring force that grows with time, and thus

ensures that the static position error is zero. The derivative term provides a force proportional

to the rate of change of position error. It acts just like viscous damping in a damped spring

and mass system. Effect of each PID term is respectively shown in figures 11, 12 and 13.

Figure 11. Effect of P term [6]

Figure 12. Effect of I term [6]

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 20 -

Figure 13. Effect of D term [6]

Tuning a control loop sets the control parameters to their optimum values in order to

obtain desired control response. In this case, the main requirement to the system is stability,

but beyond that, wide variety of systems leads to different demands and behaviors and these

might be incompatible with each other.

From the first look, tuning of three parameters of the PID controller seems to be easy,

however, in practice it is a difficult task. This situation occurs because the complex criteria at

the PID limit should be satisfied. Tuning is mostly a heuristic concept, but there are many

other goals to be reached such as short transient process and high stability increases

complexity of this problem.

As an example, systems might include nonlinearity which means that while the

parameters work properly for full-load operation, they might not work well for no-load

operation. Moreover, wrong choice of PID parameters affects the control process. Input might

be unstable and oscillating. It might lead to diverges of the output until it encounters

saturation or mechanical breakdown.

Nowadays there are too a lot of various methods PID controller tuning, but most

popular of them are as follows [6]:

 Manual Tuning Method;
 Ziegler-Nichols Tuning Method;
 Software Tools Method.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 21 -

The idea of manual tuning method is to select PID parameters in accordance to the

system response. Proportional (P), integral (I) and differential (D) coefficients are changed

until the desired response is obtained.

Setting algorithm has the following sequence of actions. At the beginning we set “I”

and “D” values to zero. “P” is increased until the loop output is oscillated; then “P” value

should be changed to approximately half of the previous value for a "quarter amplitude

decay" type response. Increase I until any offset is corrected in sufficient process time.

However, an excessive value of integral coefficient will cause instability. Finally, change

“D”, if required, until the loop is acceptably quick to reach its reference after a load

disturbance. However, it is crucial to remember, an excessive value of a differential

coefficient will cause excessive response and overshoot. Sometimes real systems require a

“P” value significantly less than the half of the value that was causing oscillation because the

system cannot accept large overshoot caused by fast setting of a PID controller. As it could be

noticed, the successful outcome of manual PID tuning depends on experience and requires a

lot of time.

Ziegler-Nichols tuning method is the method based on the neutral heuristic principle.

This Method works as follows. First of all we have to check polarity of the desired

proportional control gain. For this purpose, we manually increase step input by a small value

and look at the behavior of the steady state output. If its value increases as well, it means the

polarity is positive in the opposite case it is negative. As the next step, “I” and “D”

coefficients are set to zero and “P” coefficient is increased until periodic oscillation appears at

the output response. This critical value of the proportional coefficient is called “ultimate gain”

and denoted as	퐾 . The period where the oscillation occurs is called “ultimate period” and

denoted as	푃 . As a result, the whole process depends on two variables 퐾 and	푃 . Other

coefficients are calculated according to the table 1 [6].

 Table 1
Control type P I D

P 0.5 ∙ 퐾 - -

PI 0.45 ∙ 퐾 1.2 ∙
푃
푃 -

PID 0.6 ∙ 퐾 2 ∙
푃
푃

푃 ∙ 푃
8

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 22 -

Most modern industrial plants no longer tune loops using the manual calculation

methods shown above. Instead, PID tuning and loop optimization software are used to ensure

consistent results. These software packages will gather the data, develop process models, and

suggest optimal tuning.

A proportional-integral controller or PI Controller is a particular case of the PID

controller which does not use the (D) derivative term. It is mainly used to remove the steady

state error resulting from P controller. However, in terms of the response speed and overall

stability of the system, it has a negative effect. This controller is mostly used in areas where

speed of the system is not an issue. Since PI controller has no ability to predict the future

errors of the system it cannot decrease the rise time and remove the oscillations.

Formula of analog PI controller is listed below:

푢(푡) = 푃(푡) + 퐼(푡) = 퐾 ∙ 푒(푡) + 퐾 ∙ 푒(휏)푑휏 ; (3.3)

where 푒(푡) represents the difference between the desired and the actual position.

Block diagram shown in figure 14 describes the formula of analog PI controller.

Figure 14. Basic block of PI controller

Formula of digital PI is:

푢(푘) = 푃(푘) + 퐼(푘) = 퐾 ∙ 푒(푘) + 퐾 ∙ ℎ ∙ 푒(푖) ; (3.4)

where ℎ is the sampling time.

Output

푃 = 퐾 ∙ 푒(푡)

Process
Setpoint

(-) 퐼 = 퐾 ∙ 푒(휏)푑휏

Error

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 23 -

3.2. System overview
During the work on my master project I developed the control system of the laboratory

stand. It consists of three main parts. The first part is the drive board which is illustrated in the

figure 15. This element is based on the microcontroller ATmega8 and plays the main role in

the control system. ATmega8 is responsible for command processing, motors controlling,

current measurement, encoder data exchange and calculations of control impact.

1

8

 7

2

3

4

 6

 5

Figure 15. Drive board

We can split this board into several nodes which are given below:

1. USB-UART converter with digital isolator and indication LEDs;

2. Drive power supply input, encoder power supply output and circuit of a voltage regulator for

controller power supply with indicator of the work;

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 24 -

3. Socket of SSI (SPI) interface for data transfer between magnetic rotary encoder and controller;

4. Motors power supply unit consists of four power MOSFETs and three power diodes;

5. Control module of the motors power supply unit;

6. Current measurement node consists of two amplifiers with LC-filters and trimmer resistors;

7. Local setpoint potentiometer with drive state LED indicators;

8. Controller with peripheral, reset button, programmer socket and mode switch.

The second part is the encoder board which is shown in the figure 16. The main

element of this board is a magnetic rotary encoder AS5045. It is used to control the position

of the movable part relative to the fixed part.

1

4

2 3

Figure 16. Encoder board

Nodes from the figure 16 are described as follows:

1. Encoder with permanent polar magnet and peripheral capacitors;

2. Contact points of unused signals such as +3.3V, A, B and increment;

3. Encoder power supply input and SSI(SPI) interface socket;

4. Indication LEDs with limiting resistors.

The third part is an external power supply converter from 110V or 220V of alternative

current to 7V of the direct current which is presented in the figure 17.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 25 -

Figure 17. Power supply converter

Figure 18 illustrates the general view of the assembled plant with all parts described

above. For additional information about electric circuit and used components see appendix 1

and 2.

Figure 18. General view of the laboratory stand

Block diagram of the laboratory stand is illustrated in the figure 19. As you can see

the system has two possible options to set up the angle setpoint. In the first option the value

can be selected by adjusting of the potentiometer. In the second option the value can be

specified by using UART interface. This interface is also used for setting up of controller’s

parameters and system monitoring. To control the speed of DC motors, system uses a power

supply unit based on TPS2834D MOSFET drivers. Two sensors are used for armature current.

A magnetic encoder is used to receive actual work part position.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 26 -

Figure 19. Control system block diagram

As a result, a multi control loop system was obtained. In my application I used

cascaded control. The first loop is the control loop of the armature current based on PI

controller. It is shown in the figure 20. The work principle of the loop could be described as

follows. The current setpoint goes through the adder where its value is summarized with the

negative feedback from the sensor. As a result of this action we obtain a regulating error

which goes through the PWM generator and motor driver to the DC motor after multiplying

with the coefficients of the PI controller.

Figure 20. Control closed loop of the armature current

Microcontroller
Atmega8

DC motor #1

DC motor #2

Communication
module FT232RL

MOSFET drivers
TPS2834D

Magnetic encoder
AS5045

Potentiometer

Current sensor
#1

Current sensor
#2

PI

controller
PWM

generator
Motor
driver

Current
sensor

INPUT:
Current
setpoint

OUTPUT:
Actual
current
value

(-)

DC motor

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 27 -

The second loop is the work part position control loop based on the PID controller. It

is presented in the figure 21. The work principle of the loop might be described as follows.

The position setpoint goes through the adder where its value is summarized with negative

feedback from the encoder. As a result of this action we obtain a regulating error which goes

to the motor control logic block where it is converted to current setpoint for each motor. Then

the obtained setpoints go to the armature current control loop of the corresponding motor. The

motors start to run. Propellers’ rotation causes change of the work part position.

Figure 21. Closed loop of the work part position control

INPUT:
Work part
position
setpoint Motor control

logic block

Closed loop current
control system #2

PID
controller Aerodynamics

Closed loop current
control system #1

Magnetic rotary
encoder

OUTPUT:
Work part
actual
position

(-)

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 28 -

3.3. Description of components used in the project

3.3.1. Atmel AVR ATmega8 microcontroller

There are lot important features in selection of a right microcontroller. In my project I

decided to use ATmega8 produced by Atmel Company (see figure 22). This is a low-power

CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful

instructions in a single clock cycle, the ATmega8 achieves throughputs approaching 1 MIPS

per MHz, allowing to optimize power consumption versus processing speed.

Figure 22. Microcontroller ATmega8 in DIP package [1]

Chosen microcontroller characterized by following features:

 High-performance, Low-power AVR® 8-bit Microcontroller

 Advanced RISC Architecture

- 130 Powerful Instructions – Most Single-clock Cycle Execution

- 32 x 8 General Purpose Working Registers

- Fully Static Operation

- Up to 16 MIPS Throughput at 16 MHz

- On-chip 2-cycle Multiplier

 Nonvolatile Program and Data Memories

- 8K Bytes of In-System Self-Programmable Flash

Endurance: 10,000 Write/Erase Cycles

- Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program

True Read-While-Write Operation

- 512 Bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

- 1K Byte Internal SRAM

- Programming Lock for Software Security

 Peripheral Features

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 29 -

- Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode

- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and

Capture Mode

- Real Time Counter with Separate Oscillator

- Three PWM Channels

- 8-channel ADC in TQFP and MLF package

Six Channels 10-bit Accuracy

Two Channels 8-bit Accuracy

- 6-channel ADC in PDIP package

Four Channels 10-bit Accuracy

Two Channels 8-bit Accuracy

- Byte-oriented Two-wire Serial Interface

- Programmable Serial USART

- Master/Slave SPI Serial Interface

- Programmable Watchdog Timer with Separate On-chip Oscillator

- On-chip Analog Comparator

 Special Microcontroller Features

- Power-on Reset and Programmable Brown-out Detection

- Internal Calibrated RC Oscillator

- External and Internal Interrupt Sources

- Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and

Standby

 I/O and Packages

- 23 Programmable I/O Lines

- 28-lead PDIP, 32-lead TQFP, and 32-pad MLF

 Operating Voltage

- 4.5 - 5.5V

 Speed Grades

- 0 - 16 MHz

 Power Consumption at 4 MHz, 3V, 25°C

- Active: 3.6 mA

- Idle Mode: 1.0 mA

- Power-down Mode: 0.5 μA

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 30 -

Figure 23. ATmega8 block diagram [1]

Figure 24 shows pin configuration of Atmega8 microcontroller.

Figure 24. ATmega8 pin configuration [1]

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 31 -

Description of possible usage of the pins is provided below:

VCC Digital supply voltage. (+5V).

GND Ground.

Port B
(PB7..PB0)
XTAL1/XTAL2/
TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors
(selected for each bit). The Port B output buffers have symmetrical drive
characteristic s with both high sink and source capability. As inputs, Port
B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset
condition becomes active, even if the clock is not running. Depending on
the clock selection fuse settings, PB6 can be used as input to the inverting
Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as an
output from the inverting Oscillator amplifier. If the Internal Calibrated
RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1
input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.
The various special features of Port B are elaborated in Atmega8
datasheet [1] on pages 23 and 56.

Port C
(PC5..PC0)

Port C is an 7-bit bi-directional I/O port with internal pull-up resistors
(selected for each bit). The Port C output buffers have symmetrical drive
characteristics with both high sink and source capability. As inputs, Port
C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset
condition becomes active, even if the clock is not running.

PC6/RESET If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note
that the electrical characteristics of PC6 differ from those of the other
pins of Port C. If the RSTDISBL Fuse is unprogrammed, PC6 is used as a
Reset input. A low level on this pin for longer than the minimum pulse
length will generate a Reset, even if the clock is not running. The
minimum pulse length is given on page 36 of the datasheet. Shorter
pulses are not guaranteed to generate a Reset. The various special features
of Port C are elaborated on page 59 of Atmega8 datasheet [1].

Port D
(PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors
(selected for each bit). The Port D output buffers have symmetrical drive
characteristics with both high sink and source capability. As inputs, Port
D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset
condition becomes active, even if the clock is not running. Port D also
serves the functions of various special features as listed on page 61 of
Atmega8 datasheet [1].

RESET Reset input. A low level on this pin for longer than the minimum pulse
length will generate a reset, even if the clock is not running. The
minimum pulse length is given on page 36 of Atmega8 datasheet [1].

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 32 -

Shorter pulses are not guaranteed to generate a reset.

AVCC AVCC is the supply voltage pin for the A/D Converter, Port C (3..0), and
ADC (7..6). It should be externally connected to VCC, even if the ADC is
not used. If the ADC is used, it should be connected to VCC through a
low-pass filter. Note that Port C (5..4) use digital supply voltage, VCC.

AREF AREF is the analog reference pin for the A/D Converter.

3.3.1.1. UART

A Universal Asynchronous Receiver Transmitter (UART) is one of the most famous,

reliable and widely used interfaces. It provides communication between devices by two wires

connection. One wire plays the role of a transmitter (TXD) and another one is a receiver

(RXD). This configuration makes connection possible to work in a full duplex mode as shown

in the figure 25.

Figure 25. UART interface [7]

In some cases, we can use only one wire of this interface if it is required only to send

(display) or receive the information (sensor). The microcontroller Atmega8 has integrated into

a USART circuit. It is asynchronous serial interface. Its protocol has frame bits at the

beginning and end of a data byte. These bits inform the receiver about new incoming data

byte and also indicate that information was completely sent. The bit rate of asynchronous

serial interface is relatively slow, but it only demands a single wire for communication. The

UART is capable to transfer 7 or 8 data bits and 2 or 3 frame bits. Normal message consists of

one start bit, eight bits of data and one stop bit. UART message frame is presented in the

figure 26.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 33 -

Figure 26. UART message frame

3.3.1.2. SPI (SSI)

The Serial Peripheral Interface (SPI) is a 4 wires bus which performs serial data

transfer between Master and Slave circuits as it is shown in the figure 27. In most cases (but

not always) MCU performs the Master function. This interface was developed by the

Motorola Company, but it is currently used by all manufacturers. The main distinction of this

interface is simplicity of use and implementation, high data rate and small working distance.

The SPI has the following work principle. The selection line (CS or SS, Chip Select or

Slave Select) is used to select a device and activate its communication. Every data block or

command consists of 8 bits and aligned on the CS signal. The data is transferred in clock

cycles synchronized by the SCLK line (generated always by the Master). The two remaining

lines allow full duplex data transferences: MOSI (Master Output Slave Input) and MISO

(Master Input Slave Output).

Figure 27. SSI(SPI) interface [8]

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 34 -

The SPI is physically realized on the shift register basis which performs transmitter

and receiver function. The principle of the data exchange via SPI is illustrated in the figure

28.

Figure 28. SSI(SPI) shift registers [8]

3.3.2. Synchronous-buck mosfet driver TPS2834D

The TPS2834 is a MOSFET driver for synchronous-buck power stages. It is shown in

the figure 29. This device is ideal for designing a high-performance power supply using

switching controllers that do not include on-chip MOSFET driver. The driver is designed to

deliver at least minimum 2-A peak currents into large capacitive loads. The high-side driver

can be configured as ground-reference or as floating-bootstrap. An adaptive dead-time control

circuit eliminates shoot-through currents through the main power FETs during switching

transitions, and provides high efficiency for the buck regulator. The TPS2834 has additional

control functions: ENABLE, SYNC, and CROWBAR. Both high-side and low-side drivers

are off when ENABLE is low. The driver is configured as a nonsynchronous-buck driver

disabling the low-side driver when SYNC is low. The CROWBAR function turns on the low-

side power FET, overriding the IN signal, for overvoltage protection against faulted high-side

power FETs [9, p. 1].

Figure 29. TPS2834D synchronous-buck MOSFET drivers

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 35 -

In my application these devices perform a controller function of a motor power supply

unit. Figure 30 illustrates electrical circuit of the unit. As it is shown, the unit includes two

half H-bridges. Each of them consists of two MOSFETs, one diode, several capacitors and

resistors which perform accurate work of the drivers.

Figure 30. Electric circuit of the motor power unit

3.3.3. Dual operational amplifier LM358N

These circuits consist of two independent, internally frequency-compensated high-

gains which were designed specifically to operate from a single power supply over a wide

range of voltages [10, p. 1]. The low power supply drain is independent of the magnitude of

the power supply voltage. The general view of the device is illustrated in the figure 31.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 36 -

Figure 31. Dual operational amplifiers LM358N

Application areas include transducer amplifiers, DC gain blocks and all the

conventional op-amp circuits which now can be more easily implemented in single power

supply systems. For example, these circuits can be directly supplied with the standard +5V

which are used in logic systems and easily provide the required interface electronics without

any additional power supply. In the linear mode, the input common-mode voltage range

includes ground and the output voltage can also swing to ground, even though it is operated

from only a single power supply voltage.

I used this device for amplification of the measured armature current. It consists of

several resistors (which help to tune the gain coefficients) and two filters. One filter is a LC-

filter and another one is an RC-filter. They are used to obtain smoothed value for armature

current feedback. The electric circuit of the current measurement node is presented in the

figure 32.

Figure 32. Electric circuit of the current measurement node

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 37 -

3.3.4. Magnetic rotary encoder AS5045

The AS5045 is a contactless magnetic rotary encoder for an accurate angular

measurement over a full turn of 360°. It is a system-on-chip, combining integrated Hall

elements, analog front end, and a digital signal processing in a single device. General view of

the encoder is illustrated in the figure 33.

Figure 33. Magnetic rotary encoder AS5045

To measure the angle, only a simple two-pole magnet, rotating over the center of the

chip, is required. The magnet may be placed above or below the IC (see figure 34).

Figure 34. Encoder operation [11, p. 1]

The absolute angle measurement provides instant indication of the magnet’s angular

position with a resolution of 0.0879° = 4096 positions per revolution. There digital data are

available as a serial bit stream and as a PWM signal. Both diagrams are provided in the

figures 35 and 36 correspondingly [11].

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 38 -

Figure 35. Synchronous serial interface [11, p. 13]

Figure 36. PWM output signal [11, p. 16]

3.3.5. FT232RL communication module

The FT232RL chip is a bridge between USB and serial UART interfaces with the

following advanced features. The chip is defined as COM-port at the PC side in case of the

default settings. From the device side it has an interface UART. This circuit simplifies the

process of connection your handmade device to PC via USB. It is very reliable, stable and

supported by all operating systems [12].

In my application, FT232RL allows developed PWM drive to communicate with the

supervisory application which is located on the PC side. Figure 37 presents hardware

implementation of the communication module.

Figure 37. FT232RL communication module

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 39 -

As it could be noticed, the module consists of one FT232RL chip, two indication

LEDs with limiting resistors, one mini-USB socket, three capacitors and one digital isolator.

Indicators allow us to know how the process of data exchange is going and the digital isolator

allows adapting the voltage between the PC and PWM drive. The module electric circuit is

illustrated in the figure 38.

Figure 38. Electric circuit of the communication module

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 40 -

4. Software description

4.1. Microcontroller firmware
Microcontroller firmware was written in the evaluation version of CodeVisionAVR

environment. Project structure is shown in the figure 39. It consists of six source files. Each

file includes a set of functions.

Code from “adc.c” performs interaction between analog-digital converter of Atmega8

and the main program of controller. “as5045.c” source communicates with magnetic rotary

encoder AS5045. Due to this file we can select zero setpoint position for encoder or receive

information about the actual position of the work part. Code of the main file collects all

functions together. It incorporates a few basic algorithms and instructions. Here you can find

the realization way of PI and PID controller and their implementation in the cascade closed

loop. Commands received from PC are processed by functions from “parser.c”. Control of

PWM A and B of Atmega8 is realized by “pwmab.c”. “usart.c” contents set of data transfer

functions. Using this set you can change parameters PC to drive connection such as baud rate,

data bits and parity. Content of all source files is shown in the appendix 3.

Figure 39. Propeller project firmware in CodeVisionAVR

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 41 -

4.2. Remote control via ProJet
ProJet is my own developed software application which allows us to control the plant

via PC or via Internet. This program is written in Visual Studio 2013 by using C#

programming language. It performs the following functions: command processing, PWM

drive control, and system monitoring. The program interface is shown in the figure 40.

1

19

2

3 18

4 17

5 16

6 15

7 14

8 13

9 12

10 11

Figure 40. ProJet interface

The purpose of corresponding elements from figure 40 is described below:

1. Port. This ListBox shows the list of all available COM-ports. User should select a port which

is connected to the plant;

2. Drive log. TextBox shows information about the plant and status of command processing;

3. Angle. User should type desired angle setpoint to this field;

4. P. User should enter desired value of proportional coefficient of PID controller to this field;

5. I. User should enter desired value of integral coefficient of PID controller to this field;

6. D. User should enter desired value of differential coefficient of PID controller to this field;

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 42 -

7. PWM TrackBar1. Runner of TrackBar1 selects setpoint value for PWM1;

8. PWM TextBox1. This field shows selected value from TrackBar1;

9. PWM TrackBar2. Runner of TrackBar1 selects setpoint value for PWM2;

10. PWM TextBox2. This field shows selected value from TrackBar2;

11. START/STOP Button. This button click starts or stops the experiment. If the button was in the

START state, motors begin to rotate and work part moves to desired position, otherwise the

experiment is interrupted.

12. PWM2 SEND Button. By clicking this button user will immediately set the value from PWM

TextBox2 as a setpoint for PWM generator #2 of the drive;

13. PWM1 SEND Button. By clicking this button user will immediately set the value from PWM

TextBox1 as a setpoint for PWM generator #1 of the drive;

14. D SEND Button. Clicking this button leads to setting of the value from D field to differential

coefficient of drive PID controller;

15. I SEND Button. Clicking this button leads to setting of the value from I field to integral

coefficient of drive PID controller;

16. P SEND Button. Clicking this button leads to setting of the value from P field to proportional

coefficient of drive PID controller;

17. Angle SEND Button. Clicking this button leads to setting of the value from Angle field to

angle setpoint of drive;

18. Remote mode CheckBox. Check of this CheckBox means the start of the work in the remote

control mode via Skype. In this mode control of the plant it is possible only by set of

command words. See chapter 4.3 for extra information;

19. CONNECT/DISCONNECT Button. After clicking this button in the “CONNECT” state

ProJet try to connect to the drive system and start to receive information from drive. If the

button was in “DISCONNECT” state, click leads to connection interrupting and the data

exchange stops.

For additional information about application source code see appendix 4.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 43 -

4.3. Remote control via Skype
Nowadays Skype is the most popular and famous free voice-over-IP service and

instant messaging client. This cross platform application is currently being developed by the

Microsoft Skype Division. The name was derived from "sky" and "peer". Skype logo is

presented in the figure 41.

Figure 41. Skype logo

The service allows users to communicate with peers by voice using a microphone,

video by using a webcam, and instant messaging over the Internet. These three criteria and

free license of the program influenced my decision to use Skype as internet transport to

deliver commands from remote client to the plant.

Figure 42. ProJet-Skype platform

Implementation of this idea becomes possible thanks to Skype4COM library. The

platform stricture is shown in the figure 42. This component gives access to various Skype

functions and we can use it in external application. Operating range is quite impressive and

can be seen in the library manual [13]. Despite the procedures variety I used only three of

them in my application - message send, message receive and video call.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 44 -

During the work process I developed a set of command words. Each command is

written as a usual text message in Skype, but it has to include “+” sign in the beginning. Plus

in this case plays role of command identifier.

Words with short description are shown below:

• +drive – drive status check and signal to start controlling via Skype;
• +start – start the experiment;
• +angle %value% - set deviation angle for work part of the plant;
• +p %value% - set proportional coefficient of PID controller;
• +i %value% - set integral coefficient of PID controller;
• +d %value% - set differential coefficient of PID controller;
• +stop – stop the experiment;
• +help – commands description.

In our case %value% is any numeric value in corresponding range which has float or

integer format.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 45 -

5. Conclusion
In this work I have developed and described the laboratory stand, including hardware,

firmware and software aspects of the design. The main goal of my master thesis was fulfilled.

Obtained plant can visually show the effect of the PID parameters change. Not a very

complex and user friendly application ProJet allows any user to interact with the stand easily.

For example, it became possible to make the setpoint or parameters change. The set of

command and functions can be easily extended.

Using Skype service is an innovative step that allows us to control the plant from any

modern mobile phone, tablet or PC in any point of the world. For instance, students from any

country will be able to make laboratory work with the equipment which is located in the

Czech Republic and vice versa.

All algorithms were written in the very popular and well know programming

languages such as C# and C++. Making software in the form of separate libraries lets us use

its functions in new projects without any difficulties. Devised solutions can be implemented

in a wide range of areas from education to industry.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 46 -

6. Literature

[1] Atmel, 8-bit AVR with 8k bytes in-system programmable flash. ATmega8 ATmega8L

datasheet., 2011, p. 303.

[2] "Pulse-width modulation," [Online]. Available: http://en.wikipedia.org/wiki/Pulse-

width_modulation. [Accessed 12 Apr 2014].

[3] "Pulse Width Modulation," [Online]. Available:

http://pctuning.tyden.cz/ilustrace3/urbanek/lcdoc/PWM.gif. [Accessed 3 May 2014].

[4] M. Ghioni, "DC Motor Fundamentals.pdf," [Online]. Available: ftp://ftp.elet.polimi.it.

[Accessed 12 Apr 2014].

[5] "MIG 400 7.2V," [Online]. Available:

http://homepages.paradise.net.nz/bhabbott/MIG400_72V.html. [Accessed 15 Apr 2014].

[6] "PID controller," [Online]. Available: http://en.wikipedia.org/wiki/PID_controlle.

[Accessed 12 April 2014].

[7] "UART BASICS," [Online]. Available:

http://www.layadcircuits.com/layad_articles/UART_Basics.htm. [Accessed 20 May

2014].

[8] "Serial Peripheral Interface Bus," [Online]. Available:

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus. [Accessed 10 Apr 2014].

[9] "TPS2834 Non-inverting Fast Synchronous Buck MOSFET Drivers with TTL Inputs and

Enable," TI, [Online]. Available: http://www.ti.com/product/tps2834. [Accessed 24 May

2014].

[10] "LM158, LM258, LM358 Low-power dual operational amplifiers," ST, [Online].

Available: http://www.farnell.com/datasheets/1718567.pdf. [Accessed 24 May 2014].

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 47 -

[11] "AS5045 Rotary Sensor," ASM, [Online]. Available:

http://www.ams.com/eng/Products/Position-Sensors/Magnetic-Rotary-Position-

Sensors/AS5045. [Accessed 10 May 2014].

[12] "FT232RL USB UART IC Datasheet Version 2.10," FTDI, [Online]. Available:

http://www.farnell.com/datasheets/1647396.pdf. [Accessed 24 May 2014].

[13] Skype, Desktop API Reference Manual, SkypeSDK.pdf, p. 100.

[14] P. V., Automatic control of electric drives: DC drives coordinate regulation. Part 1.,

Novosibirsk: NSTU, 2013, p. 200.

[15] F. G. Vostrikov A. S., The theory of automatic control, Moscow: Higher School, 2006, p.

365.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 48 -

7. CD ROM
The CD ROM contains the following components:

1. PDF file of the diploma thesis;

2. PDF file of the drive and encoder electrical circuits;

3. PDF file with top and bottom copper of the drive PCB;

4. PDF file of encoder PCB;

5. GBR and EXC files for the boards’ production;

6. HEX file of the microcontrollers’ firmware;

7. Source files of the firmware;

8. EXE file of the ProJet software;

9. Source file of the ProJet software;

10. Manuals and datasheets.

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 49 -

Appendix 1

This appendix presents whole electric circuit of the drive which is shown in the figure 43 and

electric circuit of encoder (see figure 46). It also includes printed circuit boards of both

devices. Top and bottom copper of the drive PCB are presented in the figures 44 and 45

correspondingly. Figure 47 illustrates the encoder PCB.

Figure 43. Drive electric circuit

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 50 -

Figure 44. Top copper of the drive PCB

Figure 45. Bottom copper of the drive PCB

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 51 -

Figure 46. Encoder electric circuit

Figure 47. Encoder PCB

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 52 -

Appendix 2
List of used elements is shown in the table 2.

Table 2
Number Component Quantity

1 SOCKET 10 PIN 1
2 7805 VOLTAGE REGULATOR 1
3 AS5145 ENCODER 1
4 AVR MICROCONTROLLER ATMEGA8 1
5 CAPACITOR 1.0UF 4
6 CAPACITOR 100N 15
7 CAPACITOR 100UF 1
8 CAPACITOR 22PF 2
9 CAPACITOR 330NF 1

10 CAPACITOR 4.7UF 1
11 CAPACITOR 470UF 2
12 CONNECTOR 2.54MM 11
13 CRYSTAL 8MHZ 1
14 DIGITAL ISOLATOR ISO7221AD 1
15 SWITCHING DIODE 1
16 DIODE MUR8100EG 3
17 FT232R USB UART IC 1
18 HEAT SINK 3
19 INDUCTOR 1UH 2
20 IRLR3802PBF TRANSISTOR 4
21 LED, SMD, 1206 BLUE 9
22 LM358N 2
23 MINI USB B 1
24 POTENTIOMETER, 10K 1
25 RESISTOR 0R100 2
26 RESISTOR 10 KOHM 3
27 RESISTOR 1KOHM 2
28 RESISTOR 1MOHM 2
29 RESISTOR 20R0 2
30 RESISTOR 220 OHM 10
31 RESISTOR 3K74 2
32 RESISTOR 4R7 2
33 RESISTOR 5R1 2
34 SWITCH FSM4JRT 1
35 SWITCH SPDT-CO 1
36 TERMINAL BLOCK 2PIN 5
37 TPS2834D DRIVER 2
38 TRIMMER 1K 2

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 53 -

Appendix 3
This appendix contains the source codes of the microcontroller firmware.

The "adc.c" source code is presented below:

#include "adc.h"

#include <delay.h>

void ADC_Init(void)

{

ADMUX=ADC_VREF_TYPE & 0xff;

ADCSRA=(1<<ADPS0)|(1<<ADPS1)|(1<<ADEN);

}

// Read the AD conversion result

unsigned int ADC_Read(unsigned char adc_input)

{

ADMUX=adc_input | (ADC_VREF_TYPE & 0xff);

// Delay needed for the stabilization of the ADC input voltage

delay_us(10);

// Start the AD conversion

ADCSRA|=(1<<ADSC);

// Wait for the AD conversion to complete

while ((ADCSRA & 0x10)==0);

ADCSRA|=(1<<ADIF);

return ADCW;

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 54 -

The "as5045.c" source code is presented below:

#include "as5045.h"

#include <delay.h>

#include <io.h>

void AS5045_Init()

{

 DDRB |= (1 << DDB0); //prog

 PORTD &=~((1 << PIND7)); //do->low level

 DDRD |= (1 << DDD5)|(1 << DDD6); // cs,clk

 DDRD &=~((1 << DDD7)); //do->input

 PORTD.PORTD5 = 0; //cs=0

 PORTD.PORTD6 = 1; //clk=1

 PORTB.PORTB0 = 0; //prog=0

}

uint16_t AS5045_Ssi(void)

{

 uint16_t i, data;

 PORTD.PORTD5 = 0; //cs=0

 PORTD.PORTD6 = 0;

 data = 0;

 for (i = 0; i < 16; i++)

 {

 PORTD.PORTD6 = 1;

 delay_us(1);

 PORTD.PORTD6 = 0; // conversion after falling edge CS

 data = data << 1; // shift bits in target variable one to the left

 if (PIND & (1<<PIND7)) // read port bit

 {

 data |=0x01; // set new bit in 16 bit variable

 }

 delay_us(1);

 }

 PORTD.PORTD5 = 1; //cs=1

 return data;

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 55 -

The "main.c" source code is presented below:

//***

//

// Author(s)...: Dmitry Kochubey

//

// Target(s)...: Atmega8

//

// Compiler....: CodeVision 2.05

//

// Description.: Propeler project v0.1

//

// Data........: 14.04.14

//

//***

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "compilers.h"

#include "config.h"

#include "parser.h"

#include "usart.h"

#include "pwmab.h"

#include "adc.h"

#include "as5045.h"

/*Comands*/

__flash char comStat[] = "state"; //Status

__flash char comPwma[] = "pwma"; //Set pwma

__flash char comPwmb[] = "pwmb"; //Set pwmb

__flash char comAngl[] = "angle"; //Set angle

__flash char comPreg[] = "p"; //Set proportional coefficient of PID controller

__flash char comIreg[] = "i"; //Set integral coefficient of PID controller

__flash char comDreg[] = "d"; //Set differential coefficient of PID controller

__flash char comStart[] = "start"; //Start

__flash char comStop[] = "stop"; //Stop

/*Answers*/

__flash char error[] = "error\r";

__flash char ok[] = "ok\r";

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 56 -

__flash char start[] = "ready\r";

/* declare variables */

int vla = 0;

int vlb = 0;

float vlm = 120.0;

short int stp, enc_zero, psn, old_psn;

int turn=0;

int sflag=0;

int pwmf = 0;

unsigned char infoc[10];

unsigned char infog[10];

/*Variables of PID*/

float CMNDVX;

float INTX;

float ADRCX;

float ERRX;

float ERRM1X;

float NEWDTY;

float MAXDTY = 0.9;

float SMTIME = 0.01;

float KP;

float KI;

float KD;

/*Variables of PI*/

 float KP1;

float KI1;

float KP2;

float KI2;

float INTX1;

float INTX2;

float NEWDTY1;

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 57 -

float NEWDTY2;

float ADRCX1;

float ADRCX2;

/*PI*/

float pi_calc(float pi_kp, float pi_ki, float pi_sp, float pi_ig, float time, float pi_fb, float pi_lm)

{

float pi_er, pi_rg;

pi_er = (pi_sp - pi_fb);

pi_ig+=pi_ki*pi_er*time;

if (pi_ig>pi_lm)

{

pi_ig=pi_lm;

}

else if(pi_ig<-pi_lm)

{

pi_ig=-pi_lm;

}

pi_rg = pi_kp*(pi_er)

+ pi_ig;

if (pi_rg > pi_lm)

 {

 pi_rg = pi_lm;

 }

else if (pi_rg < -pi_lm)

 {

 pi_rg = -pi_lm;

 }

return pi_rg;

}

/*PID*/

void pid_calc(void)

{

ERRX = (CMNDVX - ADRCX);

INTX+=KI*ERRX*SMTIME;

if (INTX>MAXDTY)

{

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 58 -

INTX=MAXDTY;

}

else if(INTX<-MAXDTY)

{

INTX=-MAXDTY;

}

NEWDTY = KP*(ERRX)

+ INTX

+ KD*((ERRX - ERRM1X)/SMTIME);

if (NEWDTY > MAXDTY)

 {

 NEWDTY = MAXDTY;

 }

else if (NEWDTY < -MAXDTY)

 {

 NEWDTY = -MAXDTY;

 }

ERRM1X = ERRX;

}

interrupt [TIM0_OVF] void timer0_ovf_isr(void)

{

 if (pwmf==0)

 {

 TCNT0=0x9E;

 PWM_A(vla);

 PWM_B(vlb);

 psn=(AS5045_Ssi() & 0b1111111111110000) >> 4;

 psn-=enc_zero;

 if (psn<0)

 {

 psn=4095+psn;

 }

 if (psn<45&&old_psn>4050)

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 59 -

 {

 turn++;

 }

 else if(psn>4050&&old_psn<45)

 {

 turn--;

 }

 old_psn=psn;

 if (turn!=0)

 {

 psn=psn+(turn*4095);

 }

 ADRCX = ((float)psn)/4095;

 pid_calc(); /*PID LOOP/PWM routine */

 if (NEWDTY < 0){

 vla = (int)((MAXDTY+NEWDTY) * vlm);

 vlb = (int)(MAXDTY * vlm);

 }

 else if(NEWDTY > 0)

 {

 vla = (int)(MAXDTY * vlm);

 vlb = (int)((MAXDTY-NEWDTY) * vlm);

 }

 else if (NEWDTY == 0)

 {

 vla = (MAXDTY * vlm);

 vlb = (MAXDTY * vlm);

 }

vla = pi_calc(KP1, KI1, vla, INTEX1, ADRCX1, MAXDTY);

vlb = pi_calc(KP2, KI2, vlb, INTEX2, ADRCX2, MAXDTY);

 }

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 60 -

/*Comand processor*/

void PARS_Handler(uint8_t argc, char *argv[])

{

 uint8_t value = 0;

 char __flash *resp = error;

 if (PARS_EqualStrFl(argv[0], comPwmb)){

 if (argc > 1){

 value = PARS_StrToUchar(argv[1]);

 if (value <= 250){

 PWM_B(value);

 pwmf = 1;

 resp = ok;

 }

 else{

 resp = error;

 }

 }

 }

 else if (PARS_EqualStrFl(argv[0], comPwma)){

 if (argc > 1){

 value = PARS_StrToUchar(argv[1]);

 if (value <= 250){

 PWM_A(value);

 pwmf = 1;

 resp = ok;

 }

 else{

 resp = error;

 }

 }

 }

 else if (PARS_EqualStrFl(argv[0], comStart)){

 sflag=1;

 PORTC.3=1;

 PORTC.4=1;

 resp = ok;

 }

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 61 -

 else if (PARS_EqualStrFl(argv[0], comStop)){

 sflag=0;

 PORTC.3=0;

 PORTC.4=0;

 pwmf = 0;

 resp = ok;

 }

 else if (PARS_EqualStrFl(argv[0], comPreg)){

 if (argc > 1){

 KP = atof(argv[1]);

 resp = ok;

 }

 }

 else if (PARS_EqualStrFl(argv[0], comIreg)){

 if (argc > 1){

 KI = atof(argv[1]);

 resp = ok;

 }

 }

 else if (PARS_EqualStrFl(argv[0], comDreg)){

 if (argc > 1){

 KD = atof(argv[1]);

 resp = ok;

 }

 }

 else if (PARS_EqualStrFl(argv[0], comAngl)){

 if (argc > 1){

 CMNDVX=(atof(argv[1]))/360;

 resp = ok;

 }

 }

 else if (PARS_EqualStrFl(argv[0], comStat)){

 resp = start;

 }

 USART_SendStrFl(resp);

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 62 -

void main(void)

{

/*Variables*/

 char sym;

/*Libraries initialization*/

 USART_Init(USART_NORMAL, 57600);

 PARS_Init();

 PWMAB_Init();

 ADC_Init();

 AS5045_Init();

 DDRC|=0b00111000;

 DDRD|=0b00010000;

 TCCR0=0x05;

 TCNT0=0x9E;

 TIMSK=0x01;

 #asm("sei");

 delay_ms(50);

 enc_zero=(AS5045_Ssi() & 0b1111111111110000) >> 4;

 KP=50.0;

 KI=10.0;

 KD=20.0;

 KP1=50.0;

 KI1=10.0;

 KP2=50.0;

 KI2=10.0;

 while(1){

 delay_ms(50);

 if (PIND.2)

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 63 -

 {

 PORTC.3=1;

 PORTC.4=1;

 stp=ADC_Read(ADC2)*4;

 CMNDVX=((float)stp)/4095;

 }

 else if (sflag==0)

 {

 PORTC.3=0;

 PORTC.4=0;

 }

 if (USART_GetRxCount()){

 sym = USART_GetChar();

 PARS_Parser(sym);

 }

 delay_ms(100);

 }

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 64 -

The "parser.c" source code is presented below:

#include "parser.h"

char buf[SIZE_RECEIVE_BUF];

char *argv[AMOUNT_PAR];

uint8_t argc;

uint8_t i = 0;

uint8_t flag = 0;

void PARS_Init(void)

{

 argc = 0;

 argv[0] = buf;

 flag = FALSE;

 i = 0;

}

void PARS_Parser(char sym)

{

 if (sym != '\r'){

 if (i < SIZE_RECEIVE_BUF - 1){

 if (sym != ' '){

 if (!argc){

 argv[0] = buf;

 argc++;

 }

 if (flag){

 if (argc < AMOUNT_PAR){

 argv[argc] = &buf[i];

 argc++;

 }

 flag = FALSE;

 }

 buf[i] = sym;

 i++;

 }

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 65 -

 else{

 if (!flag){

 buf[i] = 0;

 i++;

 flag = TRUE;

 }

 }

 }

 buf[i] = 0;

 return;

 }

 else{

 buf[i] = 0;

 if (argc){

 PARS_Handler(argc, argv);

 }

 argc = 0;

 flag = FALSE;

 i = 0;

 }

}

#ifdef __GNUC__

uint8_t PARS_EqualStrFl(char *s1, char const *s2)

{

 uint8_t i = 0;

 while(s1[i] == pgm_read_byte(&s2[i]) && s1[i] != '\0' && pgm_read_byte(&s2[i]) != '\0'){

 i++;

 }

 if (s1[i] =='\0' && pgm_read_byte(&s2[i]) == '\0'){

 return TRUE;

 }

 else{

 return FALSE;

 }

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 66 -

}

#else

uint8_t PARS_EqualStrFl(char *s1, char __flash *s2)

{

 uint8_t i = 0;

 while(s1[i] == s2[i] && s1[i] != '\0' && s2[i] != '\0'){

 i++;

 }

 if (s1[i] =='\0' && s2[i] == '\0'){

 return TRUE;

 }

 else{

 return FALSE;

 }

}

#endif

uint8_t PARS_StrToUchar(char *s)

{

 uint8_t value = 0;

 while(*s == '0'){

 s++;

 }

 while(*s){

 value += (*s - 0x30);

 s++;

 if (*s){

 value *= 10;

 }

 };

 return value;

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 67 -

The "pwmab.c" source code is presented below:

#include "pwmab.h"

void PWMAB_Init(void)

{

 DDRB|=(1<<DDB1)|(1<<DDB2);

 TCCR1A=(1<<WGM10)|(1<<COM1B1)|(1<<COM1A1);

 TCCR1B=(1<<CS12)|(1<<WGM12);

}

void PWM_A(int pls)

{

 if (pls>=lim) {

 pls=lim;

 };

OCR1A=pls;

}

void PWM_B(int pls)

{

 if (pls>=lim) {

 pls=lim;

 };

OCR1B=pls;

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 68 -

The "usart.c" source code is presented below:

#include "usart.h"

static volatile char usartTxBuf[SIZE_BUF_TX];

static volatile uint8_t txBufTail = 0;

static volatile uint8_t txBufHead = 0;

static volatile uint8_t txCount = 0;

static volatile char usartRxBuf[SIZE_BUF_RX];

static volatile uint8_t rxBufTail = 0;

static volatile uint8_t rxBufHead = 0;

static volatile uint8_t rxCount = 0;

#ifndef F_CPU

#error "F_CPU is not defined"

#endif

void USART_Init(uint8_t regime, uint16_t baudRate)

{

 uint16_t ubrrValue;

 uint8_t save = SREG;

 #asm("cli");

 txBufTail = 0;

 txBufHead = 0;

 txCount = 0;

 rxBufTail = 0;

 rxBufHead = 0;

 rxCount = 0;

 UCSRB = 0;

 UCSRC = 0;

 if (regime == USART_NORMAL){

 ubrrValue = F_CPU/(16UL*baudRate) - 1;

 }

 else{

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 69 -

 ubrrValue = F_CPU/(8UL*baudRate) - 1;

 }

 UBRRH = (uint8_t)(ubrrValue >> 8);

 UBRRL = (uint8_t)ubrrValue;

 UCSRA = (1<< (1 & U2X));

 UCSRB = (1<<RXCIE)|(1<<RXEN)|(1<<TXEN);

 UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0);

 SREG = save;

}

uint8_t USART_GetTxCount(void)

{

 return txCount;

}

void USART_PutChar(char sym)

{

 uint8_t save;

 while(txCount == SIZE_BUF_TX);

 save = SREG;

 #asm("cli");

 if (!txCount){

 UCSRB |= (1<<UDRIE);

 }

 if (txCount < SIZE_BUF_TX){

 usartTxBuf[txBufTail] = sym;

 txCount++;

 txBufTail++;

 if (txBufTail == SIZE_BUF_TX) txBufTail = 0;

 }

 SREG = save;

}

void USART_SendStr(char * data)

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 70 -

{

 char sym;

 while(*data){

 sym = *data++;

 USART_PutChar(sym);

 }

}

void USART_SendStrFl(char __flash * data)

{

 char sym;

 while(*data){

 sym = *data++;

 USART_PutChar(sym);

 }

}

interrupt [USART_DRE] void usart_udre(void)

{

 if (txCount > 0){

 UDR = usartTxBuf[txBufHead];

 txCount--;

 txBufHead++;

 if (txBufHead == SIZE_BUF_TX) txBufHead = 0;

 }

 else{

 UCSRB &= ~(1<<UDRIE);

 }

}

uint8_t USART_GetRxCount(void)

{

 return rxCount;

}

char USART_GetChar(void)

{

 char sym;

 uint8_t save;

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 71 -

 if (rxCount > 0){

 sym = usartRxBuf[rxBufHead];

 rxBufHead++;

 if (rxBufHead == SIZE_BUF_RX) rxBufHead = 0;

 save = SREG;

 #asm("cli");

 rxCount--;

 SREG = save;

 return sym;

 }

 return 0;

}

interrupt [USART_RXC] void usart_rxc(void)

{

 char data = UDR;

 if (rxCount < SIZE_BUF_RX){

 usartRxBuf[rxBufTail] = data;

 rxBufTail++;

 if (rxBufTail == SIZE_BUF_RX) rxBufTail = 0;

 rxCount++;

 }

}

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 72 -

Appendix 4
This appendix contains the source codes of the ProJet software.
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading;
using System.Windows.Forms;
using System.IO;
using SKYPE4COMLib;

namespace Propeller
{
 public partial class Form1 : Form
 {

 private Skype skype;
 private const string trigger = "+";
 private const string name = "Drive";
 private string message;
 private string client="";

 public Form1()
 {
 InitializeComponent();
 }

 #region Form Handlers
 private void Form1_Load(object sender, EventArgs e)
 {
 string[] myPort;

 myPort = System.IO.Ports.SerialPort.GetPortNames();

 comboBox1.Items.AddRange(myPort);
 string[] parameter = new string[7];
 using (var load = new System.IO.StreamReader(@"parameters.ini"))
 {
 int i=0;
 while ((parameter[i]=load.ReadLine())!=null)
 {
 i+=1;
 }
 textBox6.Text = parameter[0];
 textBox7.Text = parameter[1];
 textBox5.Text = parameter[2];
 textBox4.Text = parameter[3];
 textBox2.Text = parameter[4];
 textBox3.Text = parameter[5];
 int.TryParse(parameter[4], out i);
 trackBar1.Value = i;
 int.TryParse(parameter[5], out i);
 trackBar2.Value = i;
 }
 }

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 73 -

 private void Form1_FormClosing(object sender, FormClosingEventArgs e)
 {
 if (serialPort1.IsOpen == true)
 { serialPort1.Close(); }
 timer1.Stop();
 using (var save = new System.IO.StreamWriter(@"parameters.ini"))
 {
 save.WriteLine(textBox6.Text);
 save.WriteLine(textBox7.Text);
 save.WriteLine(textBox5.Text);
 save.WriteLine(textBox4.Text);
 save.WriteLine(textBox2.Text);
 save.WriteLine(textBox3.Text);
 }
 }
 #endregion

 private void button2_Click(object sender, EventArgs e)
 {
 serialPort1.Write("pwma " + textBox2.Text + "\r");
 }

 private void button3_Click(object sender, EventArgs e)
 {
 if (button3.Text.Equals("Connect"))
 {
 if (comboBox1.Text.Equals(""))
 {
 MessageBox.Show("WARNING: SELECT PORT");
 }
 else
 {
 serialPort1.BaudRate = 57600;
 serialPort1.PortName = comboBox1.Text.ToString();
 if (serialPort1.IsOpen == false)
 {
 serialPort1.Open();
 timer1.Start();
 }
 checkBox1.Enabled = true;
 if (checkBox1.Checked == false)
 {
 en_buttons();
 }
 serialPort1.Write("state\r");
 button3.Text = "Disconnect";
 }
 }
 else
 {
 if (serialPort1.IsOpen == true)
 { serialPort1.Close(); }
 timer1.Stop();
 checkBox1.Enabled = false;
 textBox1.Text="";
 di_buttons();
 button3.Text = "Connect";
 }
 }

 private void comboBox1_SelectedIndexChanged(object sender, EventArgs e)

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 74 -

 {
 serialPort1.PortName = comboBox1.Text.ToString();
 }

 private void button4_Click(object sender, EventArgs e)
 {
 serialPort1.Write("p " +textBox7.Text + "\r");
 }

 private void trackBar1_Scroll(object sender, EventArgs e)
 {
 textBox2.Text = trackBar1.Value.ToString();
 }

 private void timer1_Tick(object sender, EventArgs e)
 {
 if (serialPort1.BytesToRead > 0)
 {
 message = serialPort1.ReadExisting();
 textBox1.Text = textBox1.Text + Environment.NewLine + message;
 textBox1.SelectionStart = textBox1.Text.Length;
 textBox1.ScrollToCaret();
 textBox1.Refresh();
 if (checkBox1.Checked == true)
 {
 skype.SendMessage(client, name + " answer: " + message);
 }
 }
 }

 private void trackBar2_Scroll(object sender, EventArgs e)
 {
 textBox3.Text = trackBar2.Value.ToString();
 }

 private void checkBox1_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBox1.Checked == true)
 {
 skype = new Skype();
 if (!skype.Client.IsRunning)
 {
 skype.Client.Start(true, true);
 }
 skype.Attach(7, false);
 skype.MessageStatus += new
_ISkypeEvents_MessageStatusEventHandler(skype_MessageStatus);

 di_buttons();
 }
 else
 {
 en_buttons();
 }

 }

 private void en_buttons()
 {
 button1.Enabled = true;
 button2.Enabled = true;

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 75 -

 button4.Enabled = true;
 button5.Enabled = true;
 button6.Enabled = true;
 button7.Enabled = true;
 button8.Enabled = true;
 }

 private void di_buttons()
 {
 button1.Enabled = false;
 button2.Enabled = false;
 button4.Enabled = false;
 button5.Enabled = false;
 button6.Enabled = false;
 button7.Enabled = false;
 button8.Enabled = false;
 }

 private void skype_MessageStatus(ChatMessage msg, TChatMessageStatus status)
 {
 if (msg.Body.IndexOf(trigger) >= 0 && checkBox1.Checked == true)
 {
 string command = msg.Body.Remove(0, trigger.Length).ToLower();
 client = msg.Sender.Handle;
 if (command.IndexOf(' ') == -1)
 {
 skype.SendMessage(client, name + " answer: " +
ProcessCommand(command, "", client));
 command = "";
 }
 else
 {
 string[] comind = command.Split((new Char[] { ' ' }));
 if (comind.Length > 2)
 {
 skype.SendMessage(client, name + "WRONG COMMAND");
 }
 else
 {
 skype.SendMessage(client, name + " answer: " +
ProcessCommand(comind[0], comind[1], client));
 }
 }
 }
 }

 private void skype_call(string user)
 {
 Call call = skype.PlaceCall(user);
 do
 {
 System.Threading.Thread.Sleep(1);
 } while (call.Status != TCallStatus.clsInProgress);
 call.StartVideoSend();
 }

 private string ProcessCommand(string com, string num, string nick)
 {
 string result="Error";
 switch (com)
 {

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 76 -

 case "drive":
 serialPort1.Write("state\r");
 ThreadStart connect = new ThreadStart(delegate { skype_call(nick);
});
 Thread scc = new Thread(connect);
 scc.Start();
 result = "Connecting";
 break;
 case "help":
 result = "Not presented";
 break;
 case "start":
 serialPort1.Write("start\r");
 result = "started";
 break;
 case "stop":
 serialPort1.Write("stop\r");
 result = "stopped";
 break;
 case "angle":
 serialPort1.Write("angle " + num + "\r");
 result = "angle is set";
 break;
 case "p":
 serialPort1.Write("p " + num + "\r");
 result = "P coefficient is set";
 break;
 case "i":
 serialPort1.Write("i " + num + "\r");
 result = "I coefficient is set";
 break;
 case "d":
 serialPort1.Write("d " + num + "\r");
 result = "D coefficient is set";
 break;
 case "pwma":
 serialPort1.Write("pwma " + num + "\r");
 result = "PWMA is set";
 break;
 case "pwmb":
 serialPort1.Write("pwmb " + num + "\r");
 result = "PWMB is set";
 break;
 default:
 result = "Unknown command";
 break;
 }
 return result;
 }

 private void button1_Click(object sender, EventArgs e)
 {
 serialPort1.Write("angle " + textBox6.Text + "\r");
 }

 private void button5_Click(object sender, EventArgs e)
 {
 serialPort1.Write("i " + textBox5.Text + "\r");
 }

 private void button6_Click(object sender, EventArgs e)

Diploma Thesis Dmitry Kochubey

Remote setting up the PID controller parameters based on visual observation of controlled motion

- 77 -

 {
 serialPort1.Write("d " + textBox4.Text + "\r");
 }

 private void button7_Click(object sender, EventArgs e)
 {
 serialPort1.Write("pwmb " + textBox3.Text + "\r");
 }

 private void button8_Click(object sender, EventArgs e)
 {
 if (button8.Text.Equals("Start"))
 {
 serialPort1.Write("start\r");
 button8.Text = "Stop";
 }
 else
 {
 serialPort1.Write("stop\r");
 button8.Text = "Start";
 }

 }

 }
}

