
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

raj

Bachelor Thesis

Web application development using Next.Js

Kairat Nurakhmet

© 2024 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

BACHELOR THESIS ASSIGNMENT
Kairat Nurakhmet

Informatics

Thesis title

Web application development using Next.Js

Objectives of thesis

The main aim of this thesis is to analyse the impact of the usage of Next.Js React framework for
developing Web application and demonstrate possible use cases of this Framework on a prototype
application utilizing communication via API services between front and back end.

The partial objectives are :
- To conduct a comprehensive literature review, exploring relevant use cases of the old ways of
developing web applications and the use of the modern Next.Js framework.
- To examine the impact of Next.Js framework on the web application design and programming
technique.

- Demonstrate the use of Next.Js on a prototype web application.

Methodology
The methodology of the thesis is based on the author's own research and the study of relevant information
resources, using qualitative analysis of documents and external desk research focusing on Next.Js frame
work. Based on the synthesis of the knowledge gained, a prototype web application will be developed and
tested. On the basis of this practical example, conclusions and implications for Next.js use will be formu
lated.

Official document * Czech University of Life Sciences Prague * Kamytki 129.165 00 Praha - Suchdol

The proposed extent of the thesis

40-50 pages

Keywords

Web development, Front-end, Next.js

Recommended information sources
De, Brajesh: API Management An Architect's Guide to Developing and Managing APIs for Your

Organization, Berkeley, CA : Apress, 2017, ISBN: 978-1-4842-1305-6, 9781484213063
Elrom, Elad: React and libraries your complete guide to the React ecosystem, New York: Apress, 2021,

ISBN: 978-1-4842-6696-0
FLANAGAN, David. JavaScript: the definitive guide. Sebastopol, CA: O'Reilly, 2002. ISBN 0-596-00048-0.
Griffiths, David: React cookbook: recipes for mastering the React framework, Beijing; Boston ; Farnham ;

Sebastopol; Tokyo : O'Reilly, 2021, ISBN: 978-1-492-08584-3
Horton, Adam: Mastering React, master the art of building modern web applications using React,

Birmingham, Mumbai: Packt publishing, 2016, ISBN: 978-1-78355-856-8.
Konshin, Kirill: Next.js quick start guide, Packt Publishing, 2018, ISBN: [1-78899-366-7; 1-78899-584-8]
Tyson, Matthew: The best new features in Next.js 13, lnfoWorld.com; San Mateo: 2022, 2737142348.

Expected date of thesis defence
2022/23 SS - FEM

The Bachelor Thesis Supervisor
Ing. Petr Hanzlfk, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 7. 3. 2023 Electronic approval: 13. 3. 2023

Ing. Martin Pelikan, Ph.D. doc. Ing. Tomas Subrt, Ph.D.

Head of department Dean

Prague on 19. 02. 2024

Official document * Czech University of Life Sciences Prague * Kamycka 129.165 00 Praha • Suchdol

http://lnfoWorld.com

Declaration

I declare that I have worked on my bachelor thesis titled "Web application

development using Next.Js' by myself and I have used only the sources mentioned at the

end of the thesis. As the author of the bachelor thesis, I declare that the thesis does not break

any copyrights.

In Prague on 15/03/2024

Acknowledgement

I would like to express my sincere gratitude to Ing. Petr Hanzlik, Ph.D. of the

Department of Information Technologies at the Czech University of Life Sciences, Prague.

He was always ready to help whenever I was in trouble and had any query regarding my

thesis. He supported me with his relevant advice and encouragement in every step

throughout the creation of this thesis.

I would like to thank all my previous and current colleagues that I worked with for

their support, guidance, and encouragement throughout the completion of my bachelor's

thesis.

Web application development using Next.Js

Abstract

This research work examines Next.js which is a revolutionary structure that has been

built in relation to React and works towards making web application development better by

improving efficiency, performance, and the experience of the developers. By leveraging

React's extensive ecosystem and component-oriented architecture, Next.js provides

advanced capabilities such as server-side rendering, static site generation and API

communication which introduces modern web applications to a whole new level. Using

numerous academic sources, this paper documents the evolution of frameworks in web

development with emphasis on how React and Next.j s overcome the limitations of traditional

methods. This article goes further to examine one instance where an application was created

using Next.js as well as its usefulness practically. Consequently, these have made it possible

for Next.js based on underlying technology of React to become a simpler way leading to

reducing time spent when developing scalable unique applications.

Keywords: Next.js, React, Framework, Web Development, Server-Side Rendering, Static

Site Generation, API Communication, Modern Web Applications, Efficiency, Scalability,

Developer Experience.

6

Vývoj webové aplikace pomocí Next.js

Abstrakt

Tato výzkumná práce zkoumá Next.js, což je revoluční struktura, která byla

vytvořena v souvislosti s Reactem a pracuje na zlepšení vývoje webových aplikací

zlepšením efektivity, výkonu a zkušeností vývojářů. Díky využití rozsáhlého ekosystému

React a komponentové orientované architektury poskytuje Next.js pokročilé možnosti,

jako je vykreslování na straně serveru, generování statických stránek a komunikace API,

které zavádí moderní webové aplikace na zcela novou úroveň. Tento článek s využitím

četných akademických zdrojů dokumentuje vývoj frameworků ve vývoji webových

aplikací s důrazem na to, jak React a Next.js překonávají omezení tradičních metod. Tento

článek dále zkoumá jeden případ, kdy byla aplikace vytvořena pomocí Next.js, a také jeho

praktickou využitelnost. Ty následně umožnily, aby se Next.js založený na základní

technologii React stal jednodušším způsobem vedoucím ke zkrácení času stráveného při

vývoji škálovatelných unikátních aplikací.

Klíčová slova: Next.js, React, Vývoj Webu, Serverové Vykreslování, Generování

Statických Stránek, Komunikace s API, Moderní Webové Aplikace, Efektivita,

Skálovatelnost, Zkušenosti Vývojářů.

7

Table of content

1 Introduction 11

2 Objectives and Methodology 13
2.1 Objectives 13
2.2 Methodology 13

3 Literature Review 14
3.1 Javascript 14

3.1.1 How Javascript Works in Browser 14
3.2 React. Js 15

3.2.1 How React works 15
3.2.2 Advantages of React: 16

3.2.2.1 Component-Based Architecture 16

3.2.2.2 Declarative Approach 16

3.2.2.3 Virtual D O M 16

3.2.2.4 Flexibility 16
3.2.3 Disadvantages of React: 16

3.2.3.1 Routing in React 16

3.2.3.2 SEO Optimization Challenges 17

3.3 Nextjs 17
3.3.1 Advantages of Next.j s 17

3.3.1.1 Server-Side Rendering (SSR) 17

3.3.1.2 Static-Site Generation (SSG) 18

3.3.1.3 Incremental Static Regeneration (ISR) 18

3.3.1.4 Automatic Code Splitting 18

3.3.1.5 File-Based Routing 18

3.3.1.6 Built-in CSS and Sass Support 19

3.3.1.7 API Routes 19

3.3.1.8 TypeScript Support 19

3.4 Nextjs framework environment setup 19
3.4.1 Node.jsandNPM 19
3.4.2 Source-code Editor 20
3.4.3 Create-next-app 20
3.4.4 Project Structure 20

8

3.4.5 Package.json: 20

4 Practical Part 21
4.1 Architecture 21

4.1.1 Component-Based Architecture (CBA) 21
4.1.2 Document Object Model (DOM) 21
4.1.3 JSX 22
4.1.4 Routing 22
4.1.5 Client-Side Rendering (CSR) 22
4.1.6 Server-Side Rendering (SSR) 23
4.1.7 Static-Site Generation (SSG) 23
4.1.8 Incremental Static Regeneration (ISR) 25

4.2 Environment and Conditions 25
4.2.1 Experimental Applications 25

4.2.1.1 Homepage 26

4.2.1.2 Blogs list page 27

4.2.1.3 Blog details page 28

4.3 Environment 29
4.4 Conventional Way website 31

4.4.1 File structure 31
4.4.2 Layout 31
4.4.3 Homepage 32
4.4.4 Blogs list page 33
4.4.5 Blog details page 34
4.4.6 Conventional application's code length 37

4.5 Next.j s Way web site 37
4.5.1 File structure 37
4.5.2 Layout 39
4.5.3 Homepage 41
4.5.4 Blogs list page 42
4.5.5 Blog details page 43
4.5.6 Next.js application's code length 46

4.6 Lines of code 47
4.7 Experiment Structure 48

4.7.1 List of Chosen Metrics 48
4.7.2 Image Optimization 49

5 Results and Discussion 49
5.1 Analysis of two approaches 49
5.2 Image optimization 50

9

5.3 Page speed 5 1

5.4 Code length 5 2

5.5 Codebase 52

6 Conclusion 53

7 References 54
List of pictures, tables, graphs, and abbreviations 56
7.1 List of pictures 56
7.2 List of tables 56
7.3 List of graphs 56
7.4 List of abbreviations 57
7.5 List of Source Code Snippets 57

10

1 Introduction

The quest for better, smarter, and more user-friendly web applications in today's world

doesn't seem to have an ending. This chase has led to the improvement of web development

methodologies and the adoption of different frameworks that are designed to simplify the

development process while making sure there is a performance boost and enhanced user

experience. Out of this bunch comes Next.js, a React framework that brings the best of

server-side rendering (SSR), static site generation (SSG), and client-side rendering into one

place. This thesis will explore the impact Next.js has on web application development,

placing its modern approach side by side with traditional methodologies and showcasing its

potential through the creation of a prototype application that makes use of API services to

create smooth front-end and back-end communication.

The internet has changed everything about how business is done, how we communicate,

and how innovation works. As such, it's not surprising at all how quickly technologies used

for web development have evolved as well. Traditional methods often had distinct

demarcations between front-ends - which were mostly focused on user interface and

experience - and back-ends - which handled server logic and database interactions. These

siloed processes required different skill sets, so they weren't always efficient. However, with

Node.js came Next.js — a framework that allows developers to use JavaScript across both

ends of a stack. This shift made things easier when it came to optimizing performance for

users.

Next.js is a framework that makes it easy to build fast, scalable applications. It is useful

for SEO in the digital world we live in now. Our pre-rendered servers make pages load faster

and static site generation eliminates the need to rebuild every time they are visited - only

rendering new pages when needed. Next.js also automatically splits code so users will only

download what they need for the page they're visiting. However, one of our most powerful

features has to be Next.js' ease of communication between front-ends and back-ends. So

how does this modern approach compare to traditional development frameworks? To find

out, I'll do a comparison based on qualitative analysis documents from external desk

research. We'l l get an even closer look at its efficiency and flexibility in practice by

developing a prototype web application and testing it out. Hopefully, the tests can give us

some concrete results that we can further analyze later on. In simple terms, this project aims

11

to explore Next.js' potential impact on design and programming techniques in modern web

development environments. Using a prototype project as a base test, I hope to reveal its true

functionality under practical circumstances. With our findings we aim to identify key

strengths and any obstacles or weak points anyone considering Next.js may face —

developers, businesses, or educators alike — so everyone can make informed decisions

going forward.

12

2 Objectives and Methodology

2.1 Objectives

The main aim of this thesis is to analyse the impact of the usage of Next. Js React

framework for developing Web application and demonstrate possible use cases of this

Framework on a prototype application utilizing communication via API services between

front and back end.

The partial objectives are:

To conduct a comprehensive literature review, exploring relevant use cases of the

old ways of developing web applications and the use of the modern Next.Js

framework.

To examine the impact of Next.Js framework on the web application design and

programming technique.

- Demonstrate the use of Next.Js on a prototype web application.

2.2 Methodology

The methodology of the thesis is based on the author's own research and the study of

relevant information resources, using qualitative analysis of documents and external desk

research focusing on Next.js framework. Based on the synthesis of the knowledge gained,

a prototype web application will be developed and tested. On the basis of this practical

example, conclusions and implications for Next.js use will be formulated.

13

3 Literature Review

3.1 Javascript

JavaScript is a scripting language, which is used to dynamically manipulate the content

of a website. The scripting language is characterized by the interpretation of the source code,

rather than using a compiler to convert it into machine code. Since JavaScript is used in web

pages, all web browsers contain a built-in engine, which can render JavaScript code. That is

the reason, why JavaScript does not require any additional programs to run, and inserting

the code into an H T M L document is sufficient for it to get executed. JavaScript is a scripting

language used to manipulate content on a website. Compared to compiled languages, it

interprets source code, meaning it doesn't need a compiler to turn the code into machine

code. A l l web browsers come with an engine that can parse JavaScript, so there's no need

for additional software—just inserting the code into an H T M L document is sufficient for it

to get executed.

3.1.1 How Javascript Works in Browser

Once JavaScript receives the command from a web browser, it makes several

transformations to turn into interactive components that are found on a Web page. First, the

browser loads the H T M L document and comes across JavaScript code which is usually

embedded within <script> tags. The next step for the browser's JS engine is to parse the

script meaning that it translates source code into a memory-based structure of abstract syntax

tree (AST) representing its code organization. Thus, depending on the engine, this AST can

be executed directly or compiled into bytecode and sometimes even optimized machine

code. This process is incredibly efficient in that it allows just-in-time compilation and

execution without any noticeable delays.

In other words, when running, this will enable the JavaScript Engine to interact with

the D O M of web pages thus making them have dynamic content alteration possibilities. For

instance, it can change existing H T M L elements, add new ones, or remove some completely

thereby altering what users see and the layout of that page at large. It is also capable of

responding to user actions such as clicks on links or buttons; keyboard input like typing in a

text field; or maybe page load events thus making a webpage more responsive and

14

interactive. What's amazing about this has been how well-integrated JavaScript has become

with both H T M L and CSS to enable the development of sophisticated web applications that

run smoothly on today's browsers without extra plug-ins/software because they use built-in

JS engines.

3.2 React.Js

React serves as a JavaScript library that helps to make user interfaces, concentrating

mostly on single-page applications. It gives the possibility to make big web applications that

can refresh data without reloading a page. React's main advantage is that it allows for the

composition of complicated UIs through simple isolated code snippets known as

components. It is built in such a way that developers describe what their user interface should

look like by use of declarative-style programming and then React will effectively update the

components and re-render them when any changes occur in data. The virtual D O M system

of React optimizes modifications made within the actual D O M , thus increasing website

efficiency and usability.

3.2.1 How React works

On top of handling the virtual D O M , React uses a process called reconciliation to

find out which parts of the actual D O M need to be updated based on changes evident in the

virtual D O M . For this reason, we compare the new virtual D O M with its previous version

and determine what kind of minimal changes are required for such updates.

React components are small entities that can be reused over and again when

developing user interfaces. The structure and behavior of these components combine to

create complex UIs from smaller building blocks that developers can compose together. It is

characterized by code reusability, maintainability as well as scalability within a given

framework.

React's data flows in one direction only so that it can predictably manage states and

help realize declarative UIs. Instead of directly changing their interface or even managing

the state with an imperative language, such programmers must be able to decide how exactly

each part should appear at any given time based on the current application state. By

15

abstracting away manual manipulation complexities from developers, React simplifies their

work thus automatically updating the D O M whenever there is a change in them.

3.2.2 Advantages of React:

3.2.2.1 Component-Based Architecture

This encourages the use of reusable UI components that lead to more manageable

code and faster development.

3.2.2.2 Declarative Approach

This simplifies code readability and maintenance since developers can specify how

the user interface should appear under different conditions.

3.2.2.3 Virtual DOM

It increases application performance by reducing direct manipulations on the D O M

thus making updates and rendering quicker.

3.2.2.4 Flexibility

By other frameworks or libraries incorporated in the tech stack, React can work with

them hence offering flexibility in terms of development choices made. Also

3.2.3 Disadvantages of React:

3.2.3.1 Routing in React

Perhaps one of the most difficult parts of working with React is making routing work.

This may seem like it is not a big deal but adding routing to your application can mean

adding a lot of other things as well, and that can be a little complex. The React Router Dom

N P M package is mostly used to implement this functionality in React. However, one must

also keep up with current trends and industry standards on routing to avoid future issues that

may arise as technology advances. Not doing so may result in navigation complications such

as failed navigations, URLs being handled differently, or challenges faced in managing

application states across various routes. Consequently, these difficulties may cause time lags

16

in project delivery or inconsistencies between the project requirements and routing

implementations for it.

3.2.3.2 SEO Optimization Challenges

Client-side rendering, a common feature in traditional React applications, is often

implemented where minimal initial H T M L content is delivered to the browser and this is

followed by JavaScript populating the contents of the page dynamically. This method

provides an opportunity for interactivity as well as a smoother user experience but makes it

hard for search engine bots. The first H T M L sent to the browser may not contain substantial

content; hence, search engine bots may find it difficult to index such pages.

Consequently, when compared with other web pages that are inaccessible or have

less content on display, this sets back its visibility and ranking from being appropriately

crawled and indexed. Therefore, traditional React applications that do not optimize SEO

could be potentially non-existent on SERPs (search engine result pages).

3.3 Next.js

Next.js is an open-source framework built with React and intended for creating

JavaScript applications that feature single-page applications (SPA). It is characterized by

aspects like server-side rendering, static site generation, and incremental static regeneration

which enable its performance as well as Search Engine Optimization. File-system-based

routing, automatic code splitting, and optimized prefetching are among the ways Next.js

makes it easy to develop high-performance and scalable web apps.

3.3.1 Advantages of Next.js

3.3.1.1 Server-Side Rendering (SSR)

Next.js has built-in support for server-side rendering, which means that a web page

can be created on the server and then sent to the client with content already in it. SSR speeds

17

up initial load times, helps in SEO by providing pre-rendered H T M L to search engines, and

ensures better performance especially when there is lots of data.

3.3.1.2 Static-Site Generation (SSG)

Next.js supports static site generation where pages are rendered before they are built

out. This way, when building the application, each page's H T M L file is generated thus

eliminating server-side rendering on each request. SSG results in faster page loads; less

server load and improved SEO therefore ideal for sites with content or blogs.

3.3.1.3 Incremental Static Regeneration (ISR)

Incremental Static Regeneration is a new feature that combines the benefits of static

site generation and dynamic content updating. This time-based method allows developers to

keep the pages refreshed without doing full site rebuilds by just simply pre-rendering them

in certain intervals or upon request. The Next.js ensures that static pages are created as they

are requested to achieve a balance between static site efficiency and dynamic content

flexibility which gives users up-to-date material while maintaining peak performance.

3.3.1.4 Automatic Code Splitting

Next.js automatically breaks down the JavaScript bundles based on the page

boundaries thus ensuring that only what is needed is loaded for every other page individually.

This will help reduce load time at start-up and optimize resource utilization thereby

improving user experience, particularly on low network connections.

3.3.1.5 File-Based Routing

Routing becomes easier because Next.js uses a built-in file-based approach where

page directory structure governs app routes directly. This simple routing scheme avoids

complex configurations allowing easy organization and management of routes making the

codebase more maintainable.

18

3.3.1.6 Built-in CSS and Sass Support

To style using CSS or SASS, developers can directly import stylesheets into

components using Next.js. This makes styling modularized and scoped as well as enhances

code organization while removing set-up or reliance on third-party libraries thereby boosting

developer productivity.

3.3.1.7 API Routes

Within an application, developers can create an API route through which

communication between client-side and server-side components can be seamless. These API

routes could handle requests for fetching data, authenticating users, and other server-side

operations that are important in building full-stack applications without additional backend

frameworks.

3.3.1.8 TypeScript Support

In Next.js there is built-in support for Typescript which is a statically typed superset

of JavaScript. Code quality is improved by TypeScript, developer productivity is enhanced,

and the likelihood of runtime errors is reduced through the addition of type checking and

smart suggestions during development.

3.4 Next.js framework environment setup

3.4.1 Node.js and NPM

Next.js applications use Node.js as their runtime environment; hence, the installation

of Node.js is essential for Next.js development. It was bundled with N P M which among

other things, takes care of libraries and dependencies that support Next.js framework

features.

"npm is the world's largest software registry. Open source developers from every

continent use npm to share and borrow packages, and many organizations use npm to

manage private development as well." 1

1 NPM documentation. Accessed 8 November 2023. Available from: https://docs.npmjs.com/about-npm

19

https://docs.npmjs.com/about-npm

3.4.2 Source-code Editor

Microsoft develops Visual Studio Code (abbreviated VSCode) as a free open-source

source-code editor for programming languages used by many developers. Syntax

highlighting, intelligent code completion, snippets, code refactoring, and embedded Git

control are some of its features supporting various programming languages. VSCode's

extensibility allows the developers to extend it by adding different languages, themes, or

even debuggers and also to connect with more services (VScode Official Documentation).

The powerful tools available in it when designing web and cloud applications compared to

its lightness make it common among programmers who work on both frontend and backend

projects.

3.4.3 Create-next-app

Create-next-app command is designed to help developers streamline the process of

creating a new Next.js project, by generating an optimized directory structure that enhances

the performance and scalability of your projects. It also sets up a development environment

with hot module replacement making it easy for you to test and iterate on your app.

3.4.4 Project Structure

Routes are built using files within the pages directory making it easy to locate them

because each file represents a route as presented here: "Each file inside the pages directory

becomes a route that gets automatically processed" (Next.js Official Documentation).

3.4.5 Package.json:

Package json file is at the root of every Nextjs project through which you define the

scripts necessary for running your development server, building your app ready for

production, or starting your finished product again in case it goes down due to any reason

i.e., crashes or something happens unexpectedly. In addition, this manifest file guarantees

other developers on the team can install all the project dependencies and execute them

consistently.

20

4 Practical Part

4.1 Architecture

4.1.1 Component-Based Architecture (CBA)

In Component-Based Architecture (CBA), web applications are broken down into

components, which are independent and reusable pieces of application. Every component

holds a part of the UI and logic for the application requiring a clear division of labor. This is

different from a traditional monolithic approach which results in more organized

development.

What Next.js adds server-side rendering abilities to React's component model, in

addition to an extensive range of optimization features. In this framework, components do

not only make up the UI but also form the basis of such important elements in the overall

structure as routing, data fetching, and state management.

4.1.2 Document Object Model (DOM)

"The Document Object Model (DOM) is a programming interface for web documents.

It represents the page so that programs can change the document structure, style, and content.

The D O M represents the document as nodes and objects; that way, programming languages

can interact with the page."2

The Virtual D O M in both Next.js and React is a lightweight clone of the real D O M . It

facilitates fast web page updating by reducing direct changes on the actual D O M which may

be slow. When a certain component's state changes, Next.js will first update the Virtual

D O M , then compare this updated version with the previous one that was captured and finally

analyze how to apply those changes to the original D O M more effectively. This technique

called "diffing" ensures a performance boost owing to reduced excessive updates that are

inevitable especially when it comes to dynamic applications like games among others.

2 What is the DOM? Accessed 20 November 2023. Online Source. Available from:
https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/Introduction#what_is_the_dom

21

https://developer.mozilla.org/en-

4.1.3 JSX

"JSX is a syntax extension of JavaScript that combines the JavaScript and HTML-like

syntax to provide highly functional, reusable markup.

It's used to create D O M elements which are then rendered in the React D O M . While

not required in React, JSX provides a neat visual representation of the application's UI.

A JavaScript file containing JSX will have to be compiled before it reaches a web

browser."3

JSX allows developers to write HTML-look-like code in Javascript files. What seems

like H T M L in JSX is hardly that. Instead, you see a set of functions operating behind the

scenes to make optimized JavaScript code for creating elements. The real magic of JSX is

how it lets us mix rendering with UI logic, so developers can use logic inside views and

before they're rendered. This kind of integration makes event handling easier, state

management more responsive, and conditional content rendering flow like water — all

making the development process more intuitive and efficient.

4.1.4 Routing

Routing in Next.js is file-based and the file-naming convention generates a route for

each page in the pages directory. Developers need to include JS or JSX files in this folder.

It'll automatically generate routes as required. Each file name will be a segment of the URL.

For navigating between two pages Next.js provides a built-in component named Link of

next/link library which supports client-side navigation.

4.1.5 Client-Side Rendering (CSR)

Client-Side Rendering H T M L file in the user's browser, using JavaScript. Unlike

Server-Side Rendering (SSR), where the complete H T M L document is generated on the

server, CSR involves sending only the bare minimum H T M L , CSS, and JavaScript needed

to load the page. Once these assets are loaded, JavaScript runs in the browser to generate the

H T M L content dynamically.

3 Writing Markup with JSX. Accessed 12 November 2023. Online Source. Available from:
https://react.dev/learn/writing-markup-with-jsx

22

https://react.dev/learn/writing-markup-with-jsx

4.1.6 Server-Side Rendering (SSR)

Server-Side Rendering generates the complete H T M L document on the server for the

requested page in response to a user, this is a completely different approach than client-side

rendering, where the H T M L document is generated on the client-side and may require more

time and resources.

"Server-side rendering (SSR) is where the server sends a ready-to-render H T M L

page and the JS scripts that are required to make the page interactive."4

SSR (Server-side Rendering)

User request
a site

| O
| o - -
I o - -

(www, q)

Server create Browser Browser Browser Website is fully
ready HTML render HTML downloads JS executes JS interactive

files but its not
interactive

Figure 1: SSR (Server-Side Rendering)

4.1.7 Static-Site Generation (SSG)

"Static Site Generation describes the process of compiling and rendering a website

at build time. The output is a cluster of static files, including the H T M L , Javascript, and CSS

files."5

Pre-rendering in Next.js is a Static Site Generator (SSG) technique where pages are

built to be pre-generated at build time, hence resulting in some static H T M L files. This

process is good for pages whose content changes infrequently because it makes the website

load very fast as well as helps in making the SEO better since this content can easily be

found on search engines. It is in Next. Js that the developers use SSG to enhance performance,

improve user experience through fast content delivery, and keep content still and secure,

meeting the efficiency and dependability requirements of web application architecture.

4 Server-side Rendering vs Static Site Generation in Next.js. Accessed 21 November 2023. Online Source.
Available from: htt4)s://nextjs.org/docs/pages^mlding-your-application/rendering/static-site-generation
5 Server-side Rendering vs Static Site Generation in Next.js. Accessed 21 November 2023. Online Source.
Available from: htt4)s://nextjs.org/docs/pages^ilding-your-application/rendering/static-site-generation

23

SSG (Static-Site Generation)

User request
:t s te

|Q
I Ö - -
I Ö - -

Server sends
static HTML
file with JS
resources

(WWW. Q)

Browser User see the User is redirect Website is fully
render HTML static page, to right file interactive

and downloads not interactive
JS

Figure 2: SSG (Static-Site Generation)

24

4.1.8 Incremental Static Regeneration (ISR)

In Next.js, the Incremental Static Regeneration (ISR) enables static pages to be

regenerated at runtime to allow for dynamic updating of static content. Through ISR,

developers can set situations where a page would be re-rendered; this enhances content

freshness while holding on to the performance advantages provided by static generation. In

web application development, it is a way of having websites display fresh information

without incurring the server-side processing costs for each request at the same time striking

a balance between performance and flexibility in terms of dynamic contents.

4.2 Environment and Conditions

This section describes the conditions under which the required tests were conducted,

as well as the design of these tests and the metrics chosen to quantify the differences in the

work done. This is to ensure reproducibility of results and overall transparency. To mimic

real-world data interactions in both conventional and Next.js apps, will be used the

https://jsonplaceholder.typicode.com/posts endpoint to fetch dummy data. Such standard

datasets provided by this endpoint are like actual blog posts and can be used as a basis for

comparing how well the two development styles perform in terms of data fetching

functionalities.

4.2.1 Experimental Applications

The goal of the thesis will profoundly expound on the construction of two different

web applications that had been designed from the same design file with three core pages,

including Home, Blogs, and Blog details pages (as demonstrated in Figures 3, 4, and 5).

Both applications will share the same CSS file, disparities in styling will not account

for any observed differences in performance, structure, and interactivity because these will

be attributed to the development frameworks and methodologies used. This consistency in

styling will maintain a uniform appearance of both applications such that it is easy to focus

on the technical and architectural aspects of each development approach.

The first application is going to be built in a conventional way using H T M L , CSS,

and JavaScript thus creating an old-fashioned web structure. It will be used as a basic

understanding of normal web development practices.

25

https://jsonplaceholder.typicode.com/posts

The second one will use Next.js on top of the create-next-app npm package for

modern web development technologies. This app would help us understand how efficient or

effective Next.js can be for building large-scale dynamic website applications. There is an

analysis to compare such areas as project structure, API interaction, and routing to show the

differences between traditional and Next.js based application developments.

The goal is to empirically determine what are the enhancements or differences related

to handling several common tasks faced during web development while using Next.js

compared to a usual approach.

4.2.1.1 Home page

A l l pages, including the Home page, will have a navigation bar with 3 links: Logo,

Home, and Blogs.

The Home page will include a banner that represents the promoted blog post as

demonstrated in Figure 3 below.

Lorem ipsum
dolor sit
Occaecat est ipsum reprehenderit reprehenderit
veniam anim laborum est esse duis occaecat
reprehenderit pariatur.

Read more

Figure 3: Home page picture

26

4.2.1.2 Blogs list page

The blog list page displays a grid of blog post cards, clicking on a card will redirect

the user to the blog details page of that post. Figure 4 below demonstrates the page:

0 J |_OC|0 H o m e B I ° 9 S Sign in |

Blogs list

Tempor nostru

Sint aliquip nulla ad cillum ex eiusmod proident
cupidatat aliqua sit minim

Tempor nostru

Sint aliquip nulla ad cillum ex eiusmod proident
cupidatat aliqua sit minim

Tempor nostru

Sint aliquip nulla ad cillum ex eiusmod proident
cupidatat aliqua sit minim

Tempor nostru

Sint aliquip nulla ad cillum ex eiusmod proident
cupidatat aliqua sit minim

Tempor nostru

Sint aliquip nulla ad cillum ex eiusmod proident
cupidatat aliqua sit minim

Tempor nostru

Sint aliquip nulla ad cillum ex eiusmod proident
cupidatat aliqua sit minim

Figure 4: Blogs list picture

27

4.2.1.3 Blog details page

The blog details page displays the full content of a single blog post as demonstrated

in Figure 5 below.

^ J LOCJO Home Blogs Sign in |

Homepage > Blogs > From Startup to Success

From Startup to Success:
Expert Tips and Resources By Kairat Nurakh

Date issued May 13 2023

for Entrepreneurs

Veniam voluptate ea enim fugiat elit dolor deserunt anim cillum officia
tempor laborum fugiat quis cupidatat. Nisi enim ipsum cillum duis labore
et voluptate pariatur. Sit dolor incididunt Lorem laborum officia mollit.
Aliqua magna esse officia duis culpa aute tempor eu laboris sunt laborum
Lorem reprehenderit veniam nisi nisi est minim aliquip. Adipisicing minim
aliquip do occaecat do commodo sint consectetur nisi nisi cillum
commodo officia dolor sint cillum cupidatat nisi.Ullamco

Veniam voluptate ea enim fugiat elit dolor deserunt anim cillum officia
tempor laborum fugiat quis cupidatat. Nisi enim ipsum cillum duis labore
et voluptate pariatur. Sit dolor incididunt Lorem laborum officia mollit.
Aliqua magna esse officia duis culpa aute tempor eu laboris sunt laborum
Lorem reprehenderit veniam nisi nisi est minim aliquip. Adipisicing minim
aliquip do occaecat do commodo sint consectetur nisi nisi cillum
commodo officia dolor sint cillum cupidatat nisi.Ullamco.

The Latest

Startup journey insights for female
entrepreneurs

Creative Marketing Strategies to
Boost Your Brand

The Power of Networking for Business
Success

Figure 5: Blog details picture

28

4.3 Environment

The following is a table detailing the present versions of the tools due to be employed

throughout unit testing phases:

Table 1: List of tools and respective versions.

TOOL VERSIONS

Node 20.11.0

create-next-app 14.1.2

React 18.0

react-dom 18.0

Next 14.1.0

Npm 10.3.0

VS Code Counter 3.4.0

Prettier - Code formatter 10.1.0

Google Lighthouse 11.4.0

The following code demonstrated in Source code represents the settings.json file's

content in the VS Code editor, highlighting how it ensures consistent formatting across the

project's codebase.

29

Source code 1. Content of the settings.json file

{
" e d i t o r . f o r m a t O n S a v e " : t r u e ,

" e d i t o r . t a b S i z e " : 2,
" e d i t o r . a u t o C l o s i n g Q u o t e s " : " a l w a y s " ,

" e d i t o r . d e f a u l t F o r m a t t e r " : " e s b e n p . p r e t t i e r - v s c o d e " ,

" [j a v a s c r i p t] " : {

" e d i t o r . d e f a u l t F o r m a t t e r " : " e s b e n p . p r e t t i e r - v s c o d e "

},
" p r e t t i e r . j s x S i n g l e Q u o t e " : t r u e ,
" p r e t t i e r . s i n g l e Q u o t e " : t r u e ,

" p r e t t i e r . b r a c k e t S a m e L i n e " : t r u e ,
" p r e t t i e r . p r i n t W i d t h " : 120,

" p r e t t i e r . u s e E d i t o r C o n f i g " : f a l s e ,
" e d i t o r . a c c e s s i b i l i t y S u p p o r t " : " o f f " ,

" workbench.colorTheme": " D e f a u l t L i g h t Modern"

In the practical part of the thesis, an extension tool VS Code Counter6 tests a chosen

code analysis utility. This is important for evaluating the lines of code (LOC) in both

traditional applications and those built on Next.js. With this tool, developers can count lines

of code in real-time and get statistics for entire directories or workspaces. Also, it is essential

for its compatibility with language-specific extensions to ensure correct language

identification while analyzing source codes. Therefore, results as shown by graphical

representations via the Code Viz Stat extension bring visual and analytical dimensions to the

evaluation of coding efforts in thesis projects. The tool also provides Real-time Counter

Visibility which provides the ability to count the range of the selected code.

For formatting purposes, an extension tool Prettier - code formatter7. The code

formatter will be employed to ensure code consistency across the project. This extension

imposes a fixed set of regulations to automatically format code by deleting inconsistencies

and enhancing ease of reading. The settings.json configuration sets Prettier as the default

formatter and other coding standards such as style of quotes, line length, and where to put

brackets for correct spacing. It makes sure that all codes have uniformity in their styles.

6 VS Code Counter. Accessible from: https://github.com/uctakeoff/vscode-counter
7 Prettier - Code formatter. Accessible from: https://github.com/prettier/prettier-vscode

30

https://github.com/uctakeoff/vscode-counter
https://github.com/prettier/prettier-vscode

4.4 Conventional Way website

4.4.1 File structure

Figure 6 illustrates the structure of the source code for the application in the project

directory which is displayed in a tree structure. The assets folder is where all the images are

used on the website. This small-scale application has a single CSS file at its root for styles.

On larger production projects, however, styles would usually be separated into separate

folders or files. Whenever users go to this site's root URL, they land on index.html as it is

an entry point to that application.

1m assets
B blog-details-hero.png
B logo.png
B post-image.png

B blog-details.html
0 blogs-list.html
0 index.html
3 styles.ess

Figure 6: Conventional way file structure

4.4.2 Layout

To be consistent across pages, the layout of the application is designed in such a way

that there is a header section that does not change. The unvarying nature of this heading

promotes user-friendliness, so that the main content within the <main> tag differs from page

to page to deliver unique content, but its overall structure and navigation elements are

familiar to users wherever they are within the app. This makes it easier for people who use

it since they only must concentrate on individual and simple contents being loaded after each

page load of dynamic contents into their main sections. The layout of the website is

demonstrated below in Figure 7.

31

• • •
1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8" />
5 <meta name="vi.ewport" content="wi.dth=devi.ce-width, i n i . t i . a l - s c a l e = 1 . 0 " />
6 < l l n k r e l = " s t y l e s h e e t " h r e f = " . / s t y l e s . e s s " />
7 < t l t l e > < / - - Page t i t l e - - x / t i t l e >
8 <meta name="description" content="Welcome t o HTML" />
9 </head>

10 <body>
11 <header>
12 <i.mg s r c = " . / a s s e t s / l o g o . p n g " alt="Logo of the w e b s i t e " />
13 <nav>
14 <ul class="nav_pages">
15 < l i x a href="/">Home</ll>
16 <U><a h r e f = " b l o g s - l t s t . h t m l " > B l o g s < / a x / l i >
17
18 <ul class="nav_auth">
19 <U>Sign t n < / a x / l l >
20 Slgn up</lt>
21
22 </nav>
23 </header>
24 <main>
25 <!— Main content goes here. -->
26 </main>
27 <scrtpt>
28 <!— Script content goes here. -->
29 </scrtpt>
30 </body>
31 </html>

Figure 7: Website layout

4.4.3 Home page

This is an index.html file in a traditional project where we are establishing the

structure of a simple web page. In the body, the article element is located which showcases

the featured blog post in the main section. Initially, this post shows "Loading..." text which

later changes into content fetched from an API endpoint using JavaScript's fetch method.

This script dynamically modifies both the title and body of the post showcasing how

JavaScript blends with static H T M L for interactive user experience. Contents of the main

and script tags are demonstrated below in Figure 8.

32

• • •
1 <matn class="home_matn">
2 <arti.de class="hero">
3 <sectlon class="hero_text">
4 <hl ld="post-tltle">Loading...</hl>
5 <p id="post-body">Loadlng...</p>
6 Read more
7 </section>
8 <section class="hero lmg">
9

10 </sectlon>
11 </article>
12 </maln>
13 <script>
14 fetch('https://jsonplaceholder.typicode.eom/posts/l')
15 .then((response) => response.json())
16 .then((data) => {
17 document.getElementById('post-title').textContent = d a t a . t i t l e ;
18 document.getElementById('post-body').textContent = data.body;
19 })
20 .catch((error) => console.error('Error fetching post : 1, e r r o r)) ;
21 </scrlpt>

Figure 8: Contents of main and script tags (index.html)

4.4.4 Blogs list page

In the blogs-list.html code snippet, JavaScript fetches a blog post list from

placeholder API. Then it renders the posts dynamically throughout the webpage. Initially,

the document's main section is empty and can be filled with content later on. The page loads

and the script executes, fetching posts and iterating through them. An element (<a>) that has

an image, title, and body of the post is created for each post. This is then appended to the

articles-grid section. It demonstrates dynamic client-side rendering whereby the contents are

loaded when a user interacts with it or when a page loads. Demonstration of the main and

script contents are below in Figure 9.

33

http://arti.de%20class=%22hero%22
http://'https://jsonplaceholder.typicode.eom/posts/l'

• • •
1 <main c l a s s = " b l o g s - l i s t _ m a i n " >
2 <hl c l a s s = " b l o g s - l i s t _ h e a d i n g " > B l o g s l l s t < / h l >
3 < s e c t i o n c l a s s = " a r t i c l e s - g r i d " i d = " a r t i c l e s - c o n t a i n e r " >
4 <! — Dynamic content renders here. -->
5 </sectlon>
6 </main>
7 < s c r i p t >
8 f e t c h (' h t t p s : / / j s o n p l a c e h o l d e r . t y p i c o d e . c o m / p o s t s ? _ s t a r t = 0 & _ l i m i t = 6 ')
9 . t h e n ((r e s p o n s e) => r e s p o n s e . j s o n ())

10 . t h e n ((p o s t s) => {
11 c o n s t c o n t a i n e r = d o c u m e n t . g e t E l e m e n t B y I d (' a r t i c l e s - c o n t a i n e r ') ;
12 c o n t a i n e r . i n n e r H T M L = ''; // Clear existing content
13 p o s t s . f o r E a c h ((p o s t) => {
14 c o n s t a r t i c l e = d o c u m e n t . c r e a t e E l e m e n t (' a ') ;
15 a r t i c l e . c l a s s L i s t . a d d (' b l o g - c a r d ');
16 a r t i c l e . h r e f = V b l o g - d e t a i l s . h t m l ? i d = $ { p o s t . i d } ' ;
17 a r t i c l e . i n n e r H T M L =
18 < a r t i c l e " >
19
20 < s e c t i o n >
21 < h 2 > $ { p o s t . t i t l e } < / h 2 >
22 <p>${post.body}</p>
23 </section>
24 < / a r t i c l e >
25
26 c o n t a i n e r . a p p e n d C h i l d (a r t i c l e) ;
27 }) ;
28 })
29 . c a t c h ((e r r o r) => c o n s o l e . e r r o r (' E r r o r f e t c h i n g p o s t s : ' , e r r o r)) ;
30 < / s c r i p t >

Figure 9: Contents of main and script tags

4.4.5 Blog details page

In the main tag of the blog-details.html file, the layout prominently features

elements like a hero section with an image and breadcrumb navigation, a title (hi with id

article-title-hl), and a paragraph (p with id article-body) that displays the blog post's

content as demonstrated below in Figure 10. These elements are dynamically filled with

data via JavaScript to provide detailed information about the blog post.

34

https://j

• • •
<maln class="blog-details_main">

2 < a r t i c l e c l a s s = " b l o g - d e t a i l s _ a r t i c l e " >
3 <sectton class="blog-details_hero">
4 <section class="blog-details_breadcrumb">
5 Home
6 ❯
7 <a h r e f = " / b l o g s - l t s t . html">Blogs list
8 ❯
9 F r o m Startup to Success
10 </section>
11 <tmg src="./assets/blog-detatls-hero.png" alt="Post Image mask" />
12 <sectlon class="blog-detatls_hero-bottom-container">
13 <hl i d = " a r t i c l e - t i t l e - h l " > L o a d i n g . . .</hl>
14 o d d res s class="blog-details_address">
15
16 By
17 Date issued
18
19
20 Kairat Nurakhmet
21 <li.xti.me datetime="2023-05-13" tttle="May 13 2023">May 13 2023</time>
22
23 </address>
24 </sectlon>
25 </section>
26 <secti.on class="blog-detatls_content">
27 <sectton>
28 <p id="article-body">Loading.. .</p>
29 </sectlon>
30 <sectlon>
31 <h3>The Latest</h3>
32 <hr />
33
34
35 Startup journey i n s i g h t s f o r female entrepreneurs
36 5 mtn read
37 </U>
38 <hr />
39
40 Creatlve Marketing S t r a t e g i e s to Boost Your Brand
41 5 min read
42 </U>
43 <hr />
44 <lt>
45 The Power of Networking f o r Business Success
46 5 min read
47 </U>
48
49 </section>
50 </section>
51 </article>
52 <section c l a s s = " b l o g - d e t a i l s _ a d d i t i o n a l - a r t i c l e s - g r i d " i d = " a d d i t i o n a l - a r t i c l e s - c o n t a i n e r " >
53 </-- Dynamic content renders here. -->
54 </section>

</main>

Figure 10: Content of main tag (blog-details.html)

The script tag contains JavaScript that fetches blog post data based on the post's ID from the

U R L and populates the content within the main tag, including the post's title and body.

Additionally, it fetches a list of posts to populate a section (section with id additional-

articles-container) at the bottom of the page, demonstrating dynamic data retrieval and

35

http://li.xti.me%20datetime=%222023-05-13%22%20tttle=%22May%2013%202023%22

D O M manipulation to enhance user interactivity and engagement with the content. The

content of Javascript code is demonstrated below in Figure 11.

• • •
1 < s c r i p t >
2 const queryParams = new URLSearchParams(window.location.search);
3
A

const p o s t l d = queryParams.get('td');
H

5 f e t c h (v h t t p s : / / j s o n p l a c e h o l d e r . t y p i c o d e . c o m / p o s t s / $ { p o s t I d } ")
6 .then((response) => r e s p o n s e . j s o n ())
7 . t h e n ((p o s t) => {
8 d o c u m e n t . g e t E l e m e n t B y ! d (' a r t i c l e - t i t l e ') . t e x t C o n t e n t = p o s t . t i t l e ;
9 d o c u m e n t . g e t E l e m e n t B y I d (' a r t i c l e - t i t l e - h l ') . t e x t C o n t e n t = post . t i t l e ;

10 document.getElementById('article-body').innerHTML = ~<p>${post . body}</p>*;
11 })
12 . c a t c h ((e r r o r) => c o n s o l e . e r r o r (' E r r o r f e t c h i n g post:', e r r o r)) ;
13
14 f e t c h (' h t t p s : / / j s o n p l a c e h o l d e r . t y p i c o d e . c o m / p o s t s ? _ s t a r t = 0 & _ l i m i t = 6')
15 .then((response) => r e s p o n s e . j s o n ())
16 . t h e n ((p o s t s) => {
17 const c o n t a i n e r = d o c u m e n t . g e t E l e m e n t B y I d (' a d d i t i o n a l - a r t i c l e s - c o n t a i n e r ') ;
18 container.innerHTML = '';
19 p o s t s . f o r E a c h ((p o s t) => {
20 const a r t i c l e = document.createElement('a');
21 a r t i c l e . c l a s s L i s t . a d d (' b l o g - c a r d ') ;
22 a r t i c l e . h r e f = V b l o g - d e t a i l s . h t m l ? i d = $ { p o s t . i d } " ;
23 a r t i c l e . i n n e r H T M L =
24 < a r t i c l e " >
25
26 <section>
27 <h2>${post.title }</h2>
28 <p>${post.body}</p>
29 </section>
30 < / a r t i c l e >
31 »

32 c o n t a i n e r . a p p e n d C h i l d (a r t i c l e) ;
33 });
34 })
35 . c a t c h ((e r r o r) => c o n s o l e . e r r o r (' E r r o r f e t c h i n g p o s t s : ' , e r r o r))
36 </scrlpt>

Figure 11: Content of script tag (blog-details.html)

36

https://jsonplaceholder.typicode.com/posts/$%7bpostId%7d
https://jsonplaceholder.typicode.com/posts?_start=0&_limit=

4.4.6 Conventional application's code length

The following is a table detailing counts of lines of code for the html files
responsible for the pages presented in this approach.

Table 2. Conventional way corresponding files and lines of code of the entire file.

FILE NAME LINES OF CODE

index.html - Home page 46

blogs-list.html - Blogs list page 54

blog-details.html - Blog details page 122

The following table presents counts of lines of code to make an API request and

render an element. The lines of code are counted line by line, not counting empty lines,

formatting, and corrections added by code the editor.

Table 3. Conventional way count representing the purpose of each API endpoint in the files for

FILE NAME PURPOSE LINES OF CODE

index.html - Home page Fetch featured blog post
with ID 1 7

blogs-list.html - Blogs list
page

Fetch 6 additional blog
posts 22

blog-details.html - Blog
details page

Fetch blog post by ID
from the ID query

parameter
10

blog-details.html - Blog
details page

Fetch 6 additional blog
posts 22

4.5 Next.js Way website

4.5.1 File structure

The Next.js file structure as demonstrated below in Figure 12 consists of more files

and folders compared to the conventional way.

Application created using the npx create-next-app command automatically created the

following files and folders:

• node_modules: The nodemodules folder is a key constituent of this structure
because it contains libraries and dependencies that are managed by npm. It
encompasses a wide range of reusable code that is important for modern web

37

development. At the root U R L path of the app, static assets like images are in the
public folder.

• public: The public folder contains static assets like images, and fonts which are
accessible from any files in the application.

• src: The source (src) folder is the core where the application's source code resides.
• src/app: In this folder, the application contains page-specific JS or JSX files

organized, according to route hierarchy. In Next.js routes are made by creating files
in this folder, such as the blogs-list folder containing the page.jsx file by the meaning
application has a blogs-list route.

• .gitignore: The file contains intentionally untracked files to ignore by Git, such as
environmental keys or other configuration files of the project.

• package.json: Describes the application's metadata, scripts, and the list of
dependencies.

• package-lock.json: Automatically created file based on package.json to lock down
the versions of a package's dependency files.

• README.md: Contains the project description, usually developers describe the
project and other information in this file.

Manually created files and folders:
• components: The components folder is the key of the React paradigm, containing

reusable components inside any file of the application, such as the Header.jsx,
PostCard.jsx, and other specific UI elements.

38

> ft node_modules
^ % public

v ft assets
B blog-details-hero.png
B logo.png
B post-image.png

v ft src
v ft app

^ ft blogs-list
^ ft [id]

<&> page.jsx
<$» page.jsx

3S> layout.jsx
page.jsx

3 styles.css
^ ft components

® Header.jsx
38> PostCard.jsx
@ PostDetailsAddress.jsx
<£8> PostDetailsBreadcrumb.jsx

PostDetailsLatestPostsFeed.jsx
^ .gitignore
Efe jsconfig.json
© next.config.mjs
dsl package-lock.json
(§) package.json
O README.md

Figure 12: Next.js way file structure

4.5.2 Layout

In the Next.js framework, the RootLayout component serves as a wrapper

component of the whole website and determines how the application's structure should look

on the whole website as demonstrated in Figure 13 below. The children prop inside the

component is a special prop that is automatically provided by React. It is used for displaying

whatever content is passed between the opening and closing curly brackets.

39

• • •
1 import Header from 1@/components/Header';
2 import ' . / s t y l e s . e s s 1 ;
3
4 export const metadata = {
5 t i t l e : 'Blogs website',
6 d e s c r i p t i o n : 'Description of the website',

7 };
8
9 export d e f a u l t f u n c t i o n RootLayout({ c h i l d r e n }) {

10 return (
11 <html lang='en'>
12 <body>
13 <Header />

{ c h i l d r e n }
</body>

16 </html
17);
18 }

Figure 13: RootLayout of the application (layout.jsx)

In Figure 13 above, line 1 of the code demonstrates the import of the reusable

Header component. The Header component is placed in line 13 and will be used across the

website. React as a library and Next.js as a React framework insert the content of the Header

component instead of line 13. The content of the Header component is shown below in

Figure 14.

• a I •
l import Image from 'next/image';
2 import Link from 'next/link';
3
4 export default function Header)) {

return (
<header>

7 <Link href='/'>
8 <Image src='/assets/logo.png' alt='Logo of the website' width={133} height={44} />
9 </Link>

10 <nav>
11 <ul className='nav_pages'>
12 <U>
13 <Link href='/'>Home</Link>
14 </U>
15
16 <Link href='/blogs-list'>Blogs</Link>
17
18
19 <ul className='nav_auth' >
20 <U>
21 <Link href=''>Sign in</Link>
22 </U>
23 <U>
24 <Link href='' className='nav_stgn-up'>
25 Sign up
26 </Llnk>
27
28
29 </nav>
30 </header>
31);
32 }

Figure 14: Content of the Header component

40

4.5.3 Home page

In the Next.js application, the index of the website is located on the page.jsx file

which is located within the app folder. In this file, the code demonstrated below in Figure

15 illustrates the use of a built-in Image component for optimized image handling and a

Link component for client-side routing, instead of and <a> tags in H T M L .

The page displays a Home page with a featured blog post, dynamically loaded from

a placeholder API using the asynchronous function getPosts.

In the asynchronous getPost function the code retrieves data by the following URL:

https://jsonplaceholder.typicode.eom/posts/l. Where the number 1 indicates the ID of the

featured post.

Inside the body of the Home component post variable is assigned to the result of the

getPost function, to be later used on line 22 and line 23 to render the post title and post body.

1 import Image from 'next/image 1;
2 import L i n k from ' n e x t / l i n k ' ;
3

ex p o r t const metadata = {
5 t i t l e : 'Home',
6 d e s c r i p t i o n : ' D e s c r i p t i o n of the w e b s i t e ' ,
7 };
8
9 async f u n c t i o n g e t P o s t f) {
.0 const res = await f e t c h (' h t t p s : / / j s o n p l a c e h o l d e r . t y p i c o d e . e o m / p o s t s / l ');
.1

r e t u r n r e s . j s o n ();

ex p o r t d e f a u l t async f u n c t i o n Home() {
co n s t post = await g e t P o s t () ;

r e t u r n (
<main className='home_main'>

o r t i c l e className='hero'>
< s e c t i o n className='hero_text'>

< h l > { p o s t . t i t l e } < / h l >
<p>{post.body}</p>
<Link h r e f = ' / b l o g s - l i s t / a r t i c l e - l ' className='btn'>

Read more
</Link>

</section>
< s e c t i o n className='hero_img'>

<Image src='/assets/post-image.png' a l t = ' P o s t image mask 1 f i l l />
</section>

< / a r t i c l e >
</main>

);

Figure 15: Home page component (page.jsx file in the app folder)

41

https://jsonplaceholder.typicode.eom/posts/l
http://'https://jsonplaceholder.typicode.eom/posts/l'

4.5.4 Blogs list page

In the Next.j s application, the BlogsListPage component presents a list of blog posts.

The page's blog posts content is rendered by the getPosts function which fetches data

asynchronously from a mock API, specifically from the endpoint

https://jsonplaceholder.typicode.com/posts?_start=0&_limit=6 using query parameters

that limit results to six posts as demonstrated in the line 10 in Figure 16 below. After that,

the fetched data is stored in the posts variable, line 16.

The page is structured semantically with a main tag capturing the header and a section

for articles. Next.j s's client-side routing capability can be seen in the Link component

wrapping the PostCard component for each blog post. Here, JavaScript template literals are

used within the href attribute to create links dynamically to detailed pages for each blog post

using its unique ID.

1 import PostCard from '@/components/PostCard';
2 import L i n k from ' n e x t / l i n k 1 ;
3
4 export const metadata = {
5 t i t l e : 'Blogs l i s t ' ,
6 d e s c r i p t i o n : ' D e s c r i p t i o n of the w e b s i t e ' ,
7 };
8
9 async f u n c t i o n g e t P o s t s () {

10 const res = await f e t c h (' h t t p s : / / j s o n p l a c e h o l d e r . t y p i c o d e . c o m / p o s t s ? _ s t a r t = 0 & _ l i m i t = 6 ') ;
11
12 r e t u r n r e s . j s o n ();
13 }
14
15 export d e f a u l t async f u n c t i o n B l o g s L i s t P a g e () {
16 const p o s t s = await g e t P o s t s () ;
17
18 r e t u r n (

<main className='blogs-list_main'>
<hl c l a s s N a m e = ' b l o g s - l i s t _ h e a d i n g ' > B l o g s l i s t < / h l >
< s e c t i o n c l a s s N a m e = ' a r t i c l e s - g r i d ' >

{ p o s t s &&
posts.map((post) => (

<Link key={post.id} h r e f = { 1 / b l o g s - l i s t / $ { p o s t . i d } ~ } className='blog-card'>
<PostCard t i t l e = { p o s t . t i t l e } body={post.body} />

26 </Link>
27)) }

</section>
29 </main>
30);
31 }

Figure 16: Blogs list page (page.jsx file in the blogs-list folder)

The PostCard component is an example of a reusable component meant to display

individual cards of posts. The component receives a title and body as props to display

individual blog post card content as demonstrated in Figure 17 below.

42

https://jsonplaceholder.typicode.com/posts?_start=0&_limit=6
https://jsonplaceholder.typicode.com/posts?_start=0&_limit=6'

• • •
1 import Image from 'next/image';
2
3 export d e f a u l t f u n c t i o n PostCard({ t i t l e , body }) {
4 r e t u r n (
5 < a r t i c l e >

<Image src='/assets/post-image.png' a l t = ' P o s t image mask' width={400} height={400} />
7 <section>

<h2>{title}</h2>
<p>{body}</p>

10 </section>
11 < / a r t i c l e >
12);
13 }

Figure 17: PostCardt.jsx components content

4.5.5 Blog details page

In Next.js, the use of square brackets ([]) in a folder or file name, such as [id], means

it is a dynamic route. This practice enables the creation of a page that can show different

content based on the U R L path. The BlogDetailsPage function is built to respond to fetching

and showing a blog post from an ID passed within the route parameters as demonstrated in

Figure 18 below.

There are two asynchronous functions; getPostByld and getPosts, which have

separate goals:

1. getPostByld: retrieves single post details using its id.

2. getPosts: fetches a list of other blog posts to display as additional content on the page.

The BlogDetailsPage component gets an ID from its params object in the props and

then uses it to fetch and render an appropriate post.

43

import PostDetailsAdditionalPosts from '@/components/PostDetailsAdditionalPosts';
2 import PostDetailsAddress from '@/components/PostDetailsAddress';

import PostDetailsBreadcrumb from '@/components/PostDetailsBreadcrumb';
4 import PostDetailsLatestPostsFeed from '@/components/PostDetailsl_atestPostsFeed';
5 import Image from 'next/image';
6
7 export const metadata = {
8 t i t l e : 'Blog d e t a i l s ' ,
9 d e s c r i p t i o n : 'Description of the website',

10 };
11
12 async function getPostById(id) {
13 const res = await fetch(1https://jsonplaceholder.typicode.com/posts/' + i d) ;
14 return res.json();
15 }
16
17 async function getPosts() {
18 const res = await fetch('https://jsonplaceholder.typicode.com/posts?_start=0&_limit=6');
19 return res.json();

}
21
22 export default async function BlogDetailsPage({ params: { i d } }) {
2i const post = await getPostByldtid);
24 const additionalPosts = await getPosts();
25
26 return (

<main className='blog-details_main'>
o r t i c l e className=' bl o g - d e t a i l s '>

<section className='blog-details_hero'>
<PostDetailsBreadcrumb t i t l e = { p o s t . t i t l e } />
<Image src='/assets/blog-details-hero.png' alt='Post image mask' width={1200} height={400} />
<section className='blog-details_hero-bottom-container'>

<hl>{post.title}</hl>
34 <PostDetailsAddress />
35 </section>
36 </section>

<section className='blog-details_content' >
<section>

<p>{post.body}</p>
40 </section>

<PostDetailsLatestPostsFeed />
42 </section>
43 </article>

<PostDetailsAdditionalPosts additionalPosts={additionalPosts} />
45 </main>
46);

}

Figure 18: page.jsx file in the [id] folder indicating the Blog details page

The page is made up of various reusable components including PostCard to be used

in the related additional posts section, and PostDetailsAdditionalPosts for the section

rendering additional blog posts after the main content, the code is demonstrated below in

Figure 19.

44

https://jsonplaceholder.typicode.com/posts/'
https://jsonplaceholder.typicode.com/posts?_start=0&_limit=6'

• • •
1 Import Link from ' n e x t / l i n k ' ;
2 import React from 'react';
3 import Postcard from './Postcard';
4
5 export d e f a u l t f u n c t i o n P o s t D e t a i l s A d d i t i o n a l P o s t s K a d d i t i o n a i P o s t s }) {
6 return (

<section c i a s s N a m e = ' b l o g - d e t a i l s _ a d d i t i o n a l - a r t i c l e s - g r i d ' >
{ a d d i t i o n a i P o s t s &&

add i t i o n a i P o s t s . m a p ((p o s t) => (
<Link key={post.id} h r e f = { ' / b l o g s - l l s t / ' + p o s t . i d } className='blog-card'>

<PostCard t i t l e = { p o s t . t i t l e } body={post.body} />
12 </Link>
13))}
14 </section>
15);
16 }

Figure 19: PostDetailsAdditionalPosts.jsx file content

PostDetailsAddress for authorship and date information as demonstrated in Figure

20 below.

• • •
1 export d e f a u l t f u n c t i o n P o s t D e t a i l s A d d r e s s () {
2 r e t u r n (
3 o d d r e s s className='blog-details_address
4
5 By
6 Date is s u e d < / l i >
7
8
9 < l i > K a i r a t Nurakhmet

10 <U>
11 <time dateTime='2023-05-13' t i t l e = 'May 13 2023'>
12 May 13 2023
13 </time>
14 </U>
15
16 </address>
17)
18 }

Figure 20: PostDetailsAddress.jsx component

The PostDetailsBreadcrumb for navigation assistance that reflects modular design

ideologies in web development, to help users identify on which page they are located as

illustrated in Figure 21 below.

45

• • •
1 import Link from ' n e x t / l i n k ' ;
2
3 export d e f a u l t f u n c t i o n PostDetailsBreadcrumb({ t i t l e }) {
4 return (

<section className='blog-details_breadcrumb'>
<Link href='/'>Home</Link>
❯
<Link href='/blogs-list'>Blogs l i s t < / L i n k >
❯
{title}

11 </section>
12);
13 }

Figure 21: PostDetailsBreadcrumb.jsx component

4.5.6 Next.js application's code length

The following is a table detailing lines of code for the page files presented in this
approach.

Table 4. Next.js approach corresponding files and lines of code of the entire file.

FILE NAME LINES OF CODE

src/app/page.jsx - Home page 29

src/blogs-list/page.jsx - Blogs list page 26

src/blogs-list/[id]/page.jsx - Blog details
page 50

The following table displays the line count required for making an API call and

assigning the retrieved data to corresponding elements. In this count, empty lines and lines

added or formatted by the code editor are excluded, focusing solely on the actual code

content.
Table 5. Next.js approach count represents the purpose of each API endpoint in the files.

FILE NAME PURPOSE LINES OF CODE

src/app/page.jsx - Home page Fetch featured blog post
with ID 1 7

src/blogs4ist/page.jsx - Blogs
list page

Fetch 6 additional blog
posts 11

src/blogs4ist/[id]/page.jsx -
Blog details page

Fetch blog post by ID
from the ID query

parameter
10

src/blogs4ist/[id]/page.jsx -
Blog details page

Fetch 6 additional blog
posts 14

46

4.6 Lines of code

After putting the results of counting lines of code demonstrated in Graph 1 below,

it has been discovered, that the Next.js way application had a total of 105 lines of code and

the Conventional way application had a total of 222 lines of code for the files representing

pages.

140

120

100

Lines of code in page files

Next.js Conventional

I Home page • Blogs list page • Blog details page

Graph 1. Result of counting code lines.

The charts demonstrated below in Graph 2 show the result of counting lines of codes that

were used to fetch data using the API endpoint and then render elements with fetched data,

that the Next.js application had a total of 42 lines of codes, and the conventional way

application had a total of 61 lines of code.

47

Lines of code used to fetch API endpoints and render
HTM L/JSX elements

25

Next.js Conventional

• Home page - Fetch featured blog post with ID 1

• Blogs list page - Fetch 6 additional blog posts

• Blog details page - Fetch blog post by ID from the ID query parameter

Blog details page - Fetch 6 additional blog posts

Graph 2. API and render code lines

4.7 Experiment Structure

The practical part of the thesis comprised experiments that were done in five different

ways.

1. Changes were made to the source code of the Next.js experimental application so

that it will satisfy the test requirements for the chosen property.

2. The following npm run build command was used to compile new source code.

3. The built application is started in a private window on the browser.

4. Google Chrome web browser's Lighthouse tool was utilized by selecting a Mobile

device to analyze the built application to collect performance data.

5. Each test started with a hard refresh of the page by pressing Ctrl + Shift + R from the

keyboard on Windows or Cmd + Shift + R on MacOS devices.

6. The data was stored, and an average value was derived from it.

4.7.1 List of Chosen Metrics

1. Speed Index: A page load performance metric that evaluates the speed at which a

page's content becomes visible, measured in seconds (s).

48

2. Largest Contentful Paint: Total Blocking Time is calculated by summing up the

blocking durations of all significant tasks that occur between First Contentful Paint

(FCP) and Time to Interactive (TTI), with the result expressed in milliseconds (ms).

4.7.2 Image Optimization

The conventional way of building an application does not support a built-in image

optimizer, usually, developers use third-party services to optimize and maintain images in

the application.

Next.js provides a built-in Image component, that optimizes image files based on the

device size and resolution, but a default img tag also could be used. Next.js also provides

lazy loading for all images that were used by the Image component, which loads images only

when they come to the viewport of the browser. In this part will be used images from the

Unsplash8 free images source, the Next.j s built-in Image component, and the default img

tag.

To test the Next.js application the following npm run build command will be used

to create a build file. Running this command will generate an optimized version of the

application ready to be sent to production. Running the following npm start command in

the terminal of the project will start the local server to test our application, by default server

starts on this path - http://localhost:3000.

A single image9 weighing 4.6 M B and the original size of 6496x4331 was used for

all tests.

5 Results and Discussion

5.1 Analysis of two approaches

The conventional and Next.js approaches to developing the websites have been

compared using identical style.ess files and identical tags, except for Next.js' built-in Link

and Image components to demonstrate the benefits of the Next.js approach. The results are

significant, as they provide a specific comparison of the two approaches in the same scenario

8 Unsplash. Available from: https://unsplash.com/
9 That Prague bridge. Author: Anthony DELANOIX. Available from: https://unsplash.com/photos/people-
walking-on-bridge-aDxmYZtYj7g

49

http://localhost:3000
https://unsplash.com/
https://unsplash.com/photos/people-

and can help with the decision, on which approach a developer should rely on when starting

a project. The results also demonstrate the possible benefits of switching from one approach

to another on an existing project.

5.2 Image optimization

The first test shows that the image used with the img tag has an unchanged weight of

4.59 mb and the image width is unchanged at the original 6496px.

The second test shows that the image used with the Image component has a modified

compressed weight of 360.59 kb, and the image resolution has changed to the screen width

of the device being used and is 1920px.

In analysing the data collected, it can be observed that a notable difference in image

optimization performance can be achieved at a 92.34% improvement as shown in Table of

Results 1.

This suggests that i f the Image component tag is used, it will result in a noticeable

increase in web page loading performance for the end user. This can be explained by the fact

that the Image component is specifically developed to optimize image weight and resolution.

Although, given that the tests were conducted on a mobile device, it can be assumed that

users on desktop devices will experience a difference as desktop devices have different

internet speeds than mobile devices.

Table 6. Table of Results 1.

TAG SIZE WIDTH

img 4.6 M B 6496px(original)

Image 360.59 K B 1920px

50

5.3 Page speed

In analysing the collected data, it can be concluded that a significant improvement in

page speed performance, was achieved at a 174.58% or at a 10.44-second improvement, as

demonstrated in Table of Results 2 below. The observed increase in page speed can be

attributed to the use of the Image component in Next.js, which pre-optimizes locally stored

images. This component implements optimization, increasing page speed by performing

resource-intensive tasks ahead of time.

Table 7. Table of Results 2.

Speed Index Before (s) Speed Index After (s)

Test 1 10.9 0.8

Test 2 12.1 0.7

Test 3 10.6 0.8

Test 4 11.0 0.8

Test 5 11.4 0.7

Average 11.2 0.76

51

Perfomance by using the Image component
14

Testl Test 2 Test 3 Test 4 Test 5

• Speed Index Before (s) • Speed Index After (s)

Graph 3. Effects of Image Component. Speed Index in Seconds.

5.4 Code length

A comparison has been made between Conventional and Next.js applications

concerning the length of the code. A l l the files responsible for pages in the application in

Conventional and Next.js folders are considered, and their lines of code are counted.

As Graph 1 and Graph 2 demonstrate above, the number of lines in the Next.js application

has decreased by over 52.7%.

5.5 Codebase

Developing an application using Next.js, it was discovered that the Component-

Based Approach (CBA) in the application helps to reduce code length and allows to use of

the same code in different parts of the application. It was also discovered that the nesting of

components into each other can be infinite, which allows developers to create a flexible and

convenient environment for developing and debugging the application.

52

6 Conclusion

In conclusion, the theoretical part covered the unique features and functional gains

that are realized when Next.js is used for web application development as compared to

traditional ways of developing websites. The framework built in the opening sections

established a strong foundation for appreciating the basic technologies behind contemporary

web design, H T M L , CSS, and Javascript as well as the advanced features of Next.js.

Through creating two different applications with one relying on conventional

methods while another using Next.js, it was evident that Next.js was efficient. This study

focused mainly on project structure, API interaction, and routing and demonstrated how it

made a difference by improving code organization, maintainability, and performance

optimization.

Based on empirical evidence drawn from comparative analysis, it was evident that

Next.js exhibited remarkable performance improvements and developer experience

leapfrogging. This also validated its benefits in practice hence advocating for a radical shift

towards more holistic development approaches as well as deepening insights into its

applicability within real-life settings.

Consequently, this research paves the way for future studies on the expansive

potential of Next.js in web development. Exploration should be done into how it connects to

new internet concepts and can be applied at scale to big projects or across diverse domains

of applications thereby expanding debates around methodologies employed during web

development so that communities can develop better ways of creating user-friendly systems

with less effort involved.

53

References

1. N P M documentation. Accessed 8 November 2023. Available from:
http s://docs.npmjs. com/ab out-npm

2. What is the DOM? Accessed 20 November 2023. Online Source. Available from:
https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/Introduction#what_is_the_dom

3. Writing Markup with JSX. React Dev Docs [online]. [Accessed 15 November
2023]. Available from: https://react.dev/learn/writing-markup-with-jsx

4. Server-side Rendering vs Static Site Generation in Next.js. Accessed 21 November
2023. Online Source. Available from: https://nextjs.org/docs/pages/building-your-
appli cati on/rendering/stati c- site- generati on

5. Server-side Rendering vs Static Site Generation in Next.js. Accessed 21 November
2023. Online Source. Available from: https://nextjs.org/docs/pages/building-your-
appli cati on/rendering/stati c- site-generati on

6. VS Code Counter. Accessible from: https://github.com/uctakeoff/vscode-counter
7. Prettier - Code formatter. Accessible from: https://github.com/prettier/prettier-

vscode
8. Unsplash. Available from: https://unsplash.com/
9. That Prague bridge, Anthony DELANOIX. Unsplash [online]. [Accessed 5

January 2024]. Available from: https://unsplash.com/photos/people-walking-on-
bridge-aDxmYZtYj 7g

10. 8 Best Practices for React.js Component Design. Dev.to [online]. [Accessed 20
December 2023]. Available from: https://dev.to/blossom/8-best-practices-for-
reactj s-component-design-4jn5

11. CSS Imports. M D N Web Docs [online]. [Accessed 25 October 2023]. Available
from: https://developer.mozilla.org/en-US/docs/Web/CSS/(g),import

12. DUCKETT, Jon. H T M L & CSS: Design and Build Websites. Wiley, 2011. ISBN
1118008189

13. Introduction to Programming in JavaScript. Launchschool [online]. [Accessed 25
October 2023]. Available from

14. Web Development Framework. TechTarget [online]. [Accessed 12 October 2023],
Available from:
https://www.techtarget.com/searchcontentmanagement/definition/web-
development-framework-WDF

15. Document Object Model. M D N Web Docs [online]. [Accessed 12 November
2023]. Available from: https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Mode

16. How to Assure a Well-Formed Website. InformIT [online]. [Accessed 27
September 2023]. Available from:
https://www.informit.com/articles/article.aspx?p=l 193471

17. Working with JSON. M D N Web Docs [online]. [Accessed 27 September 2022],
Available from: https://developer.mozilla.org/en-
US/docs/Learn/JavaScript/Objects/JSON Schema.org Markup. M D N Web Docs
[online]. [Accessed 27 September 2022]. Available from:
https://moz.com/learn/seo/schema-strucrured-
data#:~:text=Schema.org%20(often%20called%20schema,represent%20your%20p
age%20in%20SERPs.

54

https://developer.mozilla.org/en-
https://react.dev/learn/writing-markup-with-jsx
https://nextjs.org/docs/pages/building-your-
https://nextjs.org/docs/pages/building-your-
https://github.com/uctakeoff/vscode-counter
https://github.com/prettier/prettier-
https://unsplash.com/
https://unsplash.com/photos/people-walking-on-
https://dev.to/blossom/8-best-practices-for-
https://developer.mozilla.org/en-US/docs/Web/CSS/(g),import
https://www.techtarget.com/searchcontentmanagement/definition/web-
https://developer.mozilla.org/en-
https://www.informit.com/articles/article.aspx?p=l
https://developer.mozilla.org/en-
http://Schema.org
https://moz.com/learn/seo/schema-strucrured-

18. De, Brajesh: API Management An Architect's Guide to Developing and Managing
APIs for Your Organization, Berkeley, C A : Apress, 2017, ISBN: 978-1-4842-
1305-6, 9781484213063

19. Elrom, Elad: React and libraries your complete guide to the React ecosystem, New
York: Apress, 2021, ISBN: 978-1-4842-6696-0

20. F L A N A G A N , David. JavaScript: the definitive guide. Sebastopol, CA: O'Reilly,
2002. ISBN 0-596-00048-0.

21. Griffiths, David: React cookbook: recipes for mastering the React framework,
Beijing ; Boston ; Farnham ; Sebastopol; Tokyo : O'Reilly, 2021, ISBN: 978-1-
492-08584-3

22. Horton, Adam: Mastering React, master the art of building modern web
applications using React, Birmingham, Mumbai: Packt publishing, 2016, ISBN:
978-1-78355-856-8.

23. Konshin, Kir i l l : Next.js quick start guide, Packt Publishing, 2018, ISBN: [1-
78899-366-7; 1-78899-584-8]

24. Tyson, Matthew: The best new features in Next.js 13, InfoWorld.com; San Mateo:
2022, 2737142348.

25. Google LightHouse. Google Developers [online]. [Accessed 10 January 2024],
Available from: https://developer.chrome.com/docs/lighthouse/overview/

26. About PageSpeed Insights [online]. Google Developers [Accessed 10 January
2024]. Available from:
https://developers.google.com/speed/docs/insights/v5/about

27. React - A JavaScript Library for building user interfaces [online]. [Accessed 10
January 2023]. Available from: https://reactjs.org/

28. Visual Studio Code, [online]. [Accessed 10 January 2024]. Available from:
https://code.visualstudio.com

29. How to use the Next.js Image component Effectively [online]. [Accessed 15
January 2024]. Available from: https://www.zachgollwitzer.com/posts/nextjs-
image-component-tutorial

30. Next.js. Next.js Documentation [online]. [Accessed 14 February 2024]. Available
from: https://nextjs.org/docs

31. How to Create a Full-Stack Application with Next.j s - A Step-By-Step Tutorial for
Beginners, [online]. [Accessed 21 July 2023]. Available from:
https://www.freecodecamp.org/news/build-a-full-stack-application-with-nextjs/

32. Next.js tutorial with examples: Build better React apps with Next, [online],
[Accessed 14 September 2023]. Available from:
https://www.educative.io/blog/nextjs-tutorial-examples

33. Client-Side Rendering vs. Server-Side Rendering, [online]. [Accessed 10
November 2023]. Available from: https://www.educative.io/courses/next-js-build-
react-apps/client-side-rendering-vs-server-side-rendering

34. Incremental Static Regeneration with Next.js. [online]. [Accessed 11 November
2023]. Available from: https://blog.logrocket.com/incremental-static-regeneration-
next-j s/

35. Simple Guide to Client-Side Rendering (CSR) in React.js. [online]. [Accessed 1
March 2024]. Available from: https://javascript.plainenglish.io/simple-guide-to-
client-side-rendering-csr-in-react-j s-9eb019cb6d73

36. How To Optimize Images for Web and Performance, [online]. [Accessed 21
January 2024]. Available from: https://kinsta.com/blog/optimize-images-for-web/

55

http://InfoWorld.com
https://developer.chrome.com/docs/lighthouse/overview/
https://developers.google.com/speed/docs/insights/v5/about
https://reactjs.org/
https://code.visualstudio.com
https://www.zachgollwitzer.com/posts/nextjs-
https://nextjs.org/docs
https://www.freecodecamp.org/news/build-a-full-stack-application-with-nextjs/
https://www.educative.io/blog/nextjs-tutorial-examples
https://www.educative.io/courses/next-js-build-
https://blog.logrocket.com/incremental-static-regeneration-
https://javascript.plainenglish.io/simple-guide-to-
https://kinsta.com/blog/optimize-images-for-web/

List of pictures, tables, graphs, and abbreviations

7.1 List of pictures

Figure 1: SSR (Server-Side Rendering) 23
Figure 2: SSG (Static-Site Generation) 24
Figure 3: Home page picture 26
Figure 4: Blogs list picture 27
Figure 5: Blog details picture 28
Figure 6: Conventional way file structure 31
Figure 7: Website layout 32
Figure 8: Contents of main and script tags (index.html) 33
Figure 9: Contents of main and script tags 34
Figure 10: Content of main tag (blog-details.html) 35
Figure 11: Content of script tag (blog-details.html) 36
Figure 12: Next.js way file structure 39
Figure 13: RootLayout of the application (layout.jsx) 40
Figure 14: Content of the Header component 40
Figure 15: Home page component (page.jsx file in the app folder) 41
Figure 16: Blogs list page (page.jsx file in the blogs-list folder) 42
Figure 17: PostCardt.jsx components content 43
Figure 18: page.jsx file in the [id] folder indicating the Blog details page 44
Figure 19: PostDetailsAdditionalPosts.jsx file content 45
Figure 20: PostDetailsAddress.jsx component 45
Figure 21: PostDetailsBreadcrumb.jsx component 46

7.2 List of tables

Table 1: List of tools and respective versions 29
Table 2. Conventional way corresponding files and lines of code of the entire file 37
Table 3. Conventional way count representing the purpose of each API endpoint in the
files for 37
Table 4. Next.js approach corresponding files and lines of code of the entire file 46
Table 5. Next.js approach count represents the purpose of each API endpoint in the files. 46
Table 6. Table of Results 1 50
Table 7. Table of Results 2 51

7.3 List of graphs

Graph 1. Result of counting code lines 47
Graph 2. API and render code lines 48
Graph 3. Effects of Image Component. Speed Index in Seconds 52

56

7.4 List of abbreviations

1. HTML: Hyper Text Markup Language
2. X M L : Extensible Markup Language
3. JSX: Javascript X M L
4. JS: Javascript
5. N P M : Node Package Manager
6. UI: User Interface
7. CSS: Cascading Style Sheets
8. D O M : Document Object Model
9. CBA: Component-Based Architecture
10. CSR: Client-Side Rendering
11. SSG. Static-Site Generation
12. SSR: Server-Side Rendering
13. ISR: Incremental Static Regeneration
14. AST: Abstract Syntax Tree
15. API: Application Program Interface
16. SPA: Single Page Application
17. LOC: Lines of Code
18. FCP: First Contentful Paint
19. TTI: Time to Interactive

7.5 List of Source Code Snippets

Source code 1. Content of the settings.json file

57

