
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

)J)J

F A C U L T Y OF E L E C T R I C A L E N G I N E E R I N G A N D
C O M M U N I C A T I O N
D E P A R T M E N T OF R A D I O E L E C T R O N I C S

F A K U L T A E L E K T R O T E C H N I K Y A KOMUNIKAČNÍCH
TECHNOLOGIÍ
ÚSTAV RÁDIOELEKTRONIKY

N E U R A L N E T W O R K S I N I N E R T I A L N A V I G A T I O N

S Y S T E M S

NEURONOVÉ SÍTĚ V FNERCIÁLNÍCH NAVIGAČNÍCH SYSTÉMECH

DOCTORAL THESIS
DOKTORSKÁ PRÁCE

AUTHOR ING. L E N K A TEJMLOVÁ
A U T O R PRÁCE

SUPERVISOR DOC. ING. JIŘÍ ŠEBESTA, PH.D.
VEDOUCÍ PRÁCE

BRNO 2017

Abstract
The dissertation is focused on inertial navigation systems and dead reckoning
positioning. The issue in the problematics is that the dead reckoning systems and
inertial navigation systems are inaccurate for medium-term and long-term application
due to cumulative errors, assuming that the positioning is not supported by another
external system. The dissertation shows possible approaches to the issue of more
accurate positioning system based only on the inertial sensors. Basically we are talking
about 9-DOF inertial measurement unit that allows sensing the global acceleration,
rotation rate and magnetic field strength in three particular axes. The new approach
brings artificial neural networks into data processing, where proper neural network is
able to recognize the character of motion leading to improvement in positioning. The
description of the proposed method includes an analytical procedure of its development
and, i f possible, the analytical performance assessment. Proposed artificial neural
networks are modelled in M A T L A B ™ and they are used for the determination of the
state of the inertial unit. Due to this determination, the position of the inertial
measurement unit is evaluated with higher accuracy. A n application using Qt
framework was developed to create an evaluation system with user interface for
standard inertial measurement unit. The designed system based on artificial neural
networks was verified by experiments using real sensor data.

Keywords
I M U , INS, D R , inertial positioning, dead reckoning, artificial neural network, Arduino
U N O , X - N U C L E O - I K S 0 1 A 1 , M A T L A B ™ , Qt.

Abstrakt
Disertační práce je zaměřena na oblast inerciálních navigačních systémů a systémů,
které pro odhad polohy používají pouze výpočty. Důležitým faktem v dané
problematice je vysoká nepřesnost určení polohy při střednědobém a dlouhodobém
využívání takového systému díky kumulativní chybě za předpokladu, že inerciální
systém není podpořen žádným dalším přídavným systémem. V disertační práci jsou
uvedeny možné přístupy k t é t o problematice a návrh na zvýšení přesnosti určování
polohy pouze na základě inerciálních senzorů. Základem inerciální měřicí jednotky je
systém s 9 stupni volnosti, který umožňuje snímat celkové zrychlení, rychlost rotace a
sílu magnetického pole, jednotlivě ve třech osách. Klíčovou myšlenkou je zařazení
umělých neuronových sítí do navigačního systému tak, že jsou schopny rozpoznat
charakteristické rysy pohybů, a tím zvýšit přesnost určení polohy. Popis navrhovaných
metod zahrnuje analytický postup jejich vývoje a tam, kde je to možné, i analytické
hodnocení jejich chování. Neuronové sítě jsou navrhovány v prostředí M A T L A B ™ a
jsou používány k určení stavu inerciální jednotky. Díky implementaci neuronových sítí
lze určit pozici jednotky s řádově vyšší přesností. Aby byl inerciální polohovací systém
s možností využití neuronových sítí demonstrativní, byla vyvinuta aplikace v prostředí
Qt. Navržený systém a neuronové sítě byly použity při vyhodnocování reálných dat
měřených senzory.

Klíčová slova
I M U , INS, D R , inerciální polohovací systém, umělá neuronová síť, Arduino U N O ,
X - N U C L E O - I K S 0 1 A 1 , M A T L A B ™ , Qt.

Tejmlovä, L . Neural networks in inertial navigation systems. Dissertation. Brno: Brno
University of Technology, Faculty of Electrical Engineering and Communication, 2016.
129 pages.

Declaration
I declare that I have written my doctoral thesis on the theme of "Neural networks in
inertial navigation systems" independently, under the guidance of the doctoral thesis
supervisor and using the technical literature and other sources of information which are
all quoted in the thesis and detailed in the list of literature at the end of the thesis.

A s the author of the doctoral thesis I furthermore declare that, as regards the
creation of this doctoral thesis, I have not infringed any copyright. In particular, I have
not unlawfully encroached on anyone's personal and/or ownership rights and I am fully
aware of the consequences in the case of breaking Regulation § 11 and the following of
the Copyright Act N o 121/2000 Sb., and of the rights related to intellectual property
right and changes in some Acts (Intellectual Property Act) and formulated in later
regulations, inclusive of the possible consequences resulting from the provisions of
Criminal Act N o 40/2009 Sb., Section 2, Head V I , Part 4.

Acknowledgement
I would like to express my gratitude to my supervisor doc. Ing. Jiří Sebesta, Ph.D.

for his mentoring, consultation, patience and inspiring suggestions throughout my
research. I would also like to thank Petr Zelina for inspiring suggestions, long
discussions and software support, and my husband Jan Tejml for his endless
encouragement and patience throughout my studies.

I would like to thank my parents, Mgr . Marie Zelinová and Ing. František Zelina,
for standing beside me throughout my writing this thesis. They have been my
inspiration and motivation for continuing to improve my knowledge and move me
forward.

in

CONTENTS
A B S T R A C T I

A C K N O W L E D G E M E N T Ill

C O N T E N T S IV

L I S T O F F I G U R E S VI

L I S T O F T A B L E S X

L I S T O F A B B R E V I A T I O N S XI

1 I N T R O D U C T I O N 1

2 S T A T E O F T H E A R T 3

2.1 HISTORY 3

2.2 A DIFFERENT APPROACH 4

2.3 COORDINATE SYSTEMS 4

2.4 SENSOR ERROR MODELS 6

2.4.1 List of sensor errors 8
2.5 SENSOR CALIBRATION 9

2.6 ORIENTATION DETERMINATION 10

2.6.1 Eu ler angles 10
2.6.2 Rotation vector 10
2.6.3 Direction cosine matrix 11
2.6.4 Quaternions 12

2.1 ARTIFICIAL NEURAL NETWORK 14

2.8 K A L M A N FILTERING 15

2.8.1 Implementation 15
2.9 TRAJECTORY RECONSTRUCTION 16

2.10 PROBLEMS 17

3 D I S S E R T A T I O N O B J E C T I V E S 18

4 I N E R T I A L M E A S U R E M E N T U N I T 20

4.1 HARDWARE 20

4.2 FIRMWARE 21

4.3 D A T A ACQUISITION 22

4.4 SENSOR CALIBRATION AND COMPENSATION 25

4.4.1 Bias of the accelerometer 27
4.4.2 Bias of the gyroscope 28
4.4.3 Calibration and compensation 28

5 N E U R A L N E T W O R K S 31

5.1 PRINCIPLE OF ANN 32

5.2 ANN TRAINING RESULTS 37

5.2.1 Results of TDNNs with purelin transfer function in output layer 38
5.2.2 Results of TDNNs with tansig transfer function in output layer 46

5.3 ADDITIONAL ANNS 54

5.4 OTHER TYPES OF ANNs 55

6 D A T A P R O C E S S I N G 61

6.1 W H E N THE STATE IS "STILL" 61

6.2 W H E N THE STATE IS "WALKING" 65

6.3 PROBLEMS 67

6.4 FILTERING 67

- iv -

6.4.1 KF applied on ANN outputs 67
6.4.2 Kalman filtering of sensor data 69
6.4.3 Kalman filtering of velocity and position 70
6.4.4 Additional filtration methods 70
6.4.5 Additional filters implementation 71

7 S T R A P D O W N N A V I G A T I O N I M P L E M E N T A T I O N 73

7.1 BASICS OF STRAPDOWN ALGORITHM 73

7.2 SOFTWARE FOR INERTIAL MEASUREMENT UNIT - TRACKER 73

7.2.1 Receiver 74
7.2.2 Calibrator 75
7.2.3 Derotator 77
7.2.4 Integrator 79
7.2.5 Custom graphs 80
7.2.6 FileHandler 81
7.2.7 Graphical representations in software 81

8 V E R I F I C A T I O N B Y M E A S U R E M E N T 83

8.1 CASE I: I M U STAYED STILL ON THE TABLE 83

8.2 CASE II: I M U STAYED STILL HELD IN THE HAND 85

8.3 CASE III: I M U HELD IN THE HAND DURING STEP AND STOP MOTION 87

8.4 CASE IV: I M U HELD IN THE HAND DURING DISCONTINUOUS WALKING 93

8.5 CASE V : I M U HELD IN THE HAND DURING FLUENT WALKING 94

9 C O N C L U S I O N S 95

A P P E N D I X A C O O R D I N A T E T R A N S F O R M A T I O N S 97

A . 1 REPRESENTATION OF TRANSFORMED VECTORS 97

A.2 UNIT COORDINATE VECTORS 97

A.3 DIRECTION COSINES 97

A.4 R P Y / E N U AND R P Y / N E D TRANSFORMATIONS 98

A.5 E N U / E C E F AND N E D / E C E F TRANSFORMATIONS 99

A . 6 COMPOSITION OF COORDINATE TRANSFORMATIONS 101

A P P E N D I X B M E A S U R E M E N T C O N D I T I O N S 101

B . 1 GEOGRAPHIC COORDINATES 101

B.2 TEMPERATURE STABILITY 102

B . 3 CALIBRATION PARAMETERS 102

A P P E N D I X C H A R D W A R E S E T T I N G 102

C . 1 HARDWARE DESCRIPTION 102

C.2 SENSOR SETTINGS 103

C.3 I 2 C COMMUNICATION 104

A P P E N D I X D F I R M W A R E 105

A P P E N D F X E D A T A P R O C E S S I N G 107

R E F E R E N C E S 110

O W N P U B L I C A T I O N S 113

C U R R I C U L U M V I T A E 114

- v -

LIST OF FIGURES
FIGURE 1.1 RECORDED TRAJECTORY 2

FIGURE 2.1 ECI, ECEF, AND GEODETIC COORDINATE FRAME, [11] 5

FIGURE 2.2 DEFINITION OF THE BODY-FIXED FRAME (RPY) WITH RESP.TO LTP FRAME (NED COORDINATES), [12] 6

FIGURE 2.3 INERTIAL NAVIGATION SYSTEM ERROR AS A FUNCTION OF SENSOR ERROR AND TRACKING TIME 7

FIGURE 2.4 SENSOR BLACK-BOX MODEL 7

FIGURE 2.5 COMMON INPUT-OUTPUT RECOVERABLE ERRORS, IN ORDER FIRST LINE: BIAS, SCALE FACTOR, NONLINEARITY; IN

ORDER SECOND LINE: ± ASYMMETRY, DEAD-ZONE, QUANTIZATION, [13] 9

FIGURE 2.6 ROTATING COORDINATES 11

FIGURE 2.7 THE ARTIFICIAL NEURON MODEL, [18] 14

FIGURE 2.8 THE STRUCTURE OF A N N , [22] 14

FIGURE 2.9 BASIC CONCEPT OF KALMAN FILTERING, [35] 15

FIGURE 2.10 KALMAN FILTER PROCESS, [35] 16

FIGURE 2.11 SIMPLE STRAPDOWN INS AND ITS OUTPUTS [13] 17

FIGURE 4.1 MINIMU-9 v2 BOARD AND SENSOR AXIS ORIENTATION, [46] 2 0

FIGURE 4.2 X-NUCLEO-IKS01A1 BOARD [46] 21

FIGURE 4.3 ONE ARDUINO COMMUNICATION CYCLE, CONSEQUENTLY. TX, SDA, SCL 21

FIGURE 4.4 DIRECTION OF DETECTABLE ANGULAR RATES 23

FIGURE 4.5 DIRECTION OF DETECTABLE ACCELERATIONS 23

FIGURE 4.6 DIRECTION OF DETECTABLE MAGNETIC FIELD 23

FIGURE 4.7 BODY-FIXED RPY (ROLL-PITCH-YAW) AXIS 23

FIGURE 4 .8 SINGLE-SIDED AMPLITUDE SPECTRUM OF THE SENSOR'S DATA-WALK 24

FIGURE 4.9 SINGLE-SIDED AMPLITUDE SPECTRUM OF THE SENSOR'S DATA - SWINGING 25

FIGURE 4.10 RAW ROTATION RATE IN TIME WHEN I M U IS STILL- 30 MINUTES 25

FIGURE 4.11 THE ERROR IN ANGLE DETERMINATION CAUSED BY OFFSET AND DRIFT 26

FIGURE4.12 RAW ACCELERATION AFTER THE EXPECTED VALUE SUBTRACTION WHEN THE IMU IS STILL 26

FIGURE 4.13 RAW ROTATION RATES (TOP) AND RAW ACCELERATIONS (BOTTOM) IN PARTICULAR AXIS 2 6

FIGURE 4 .14 DATA FROM UNCALIBRATED SENSORS IN TIME [S] 29

FIGURE 4 .15 CALIBRATED MAGNETOMETER DATA (360° ROTATION) [MGAUSS] IN TIME [S] 29

FIGURE4 .16 C++SOURCE CODE-A PART OF CALIBRATION [Or] 30

FIGURE 4.17 DATA FROM CALIBRATED SENSORS WHILE SHAKING 31

FIGURE 5.1 NARX A N N PRINCIPLE 32

FIGURE 5.2 FFTD A N N PRINCIPLE 32

FIGURE 5.3 LINEAR TRANSFER FUNCTION 34

FIGURE 5.4 LOG-SIGMOID TRANSFER FUNCTION 34

FIGURE 5.5 HYPERBOLIC TANGENT SIGMOID TRANSFER FUNCTION 34

FIGURE 5.6 SYMMETRIC HARD-LIMIT TRANSFER FUNCTION 34

FIGURE 5.7 M A T L A B ™ CODE FOR VERIFYING THE SUITABILITY OF TD A N N 36

FIGURE 5.8 A N N STRUCTURE - FEED FORWARD, TIME DELAY, PURELIN TRANSFER FUNCTION IN OUTPUT LAYER 37

FIGURE 5.9 A N N STRUCTURE - FEED FORWARD, TIME DELAY, TANSIG TRANSFER FUNCTION IN OUTPUT LAYER 37

FIGURE 5.10 TRAINING SET FOR TDNN 1 3 8

FIGURE 5.11 TIME-SERIES RESPONSE, EPOCH 1 2 5 , TDNN_DIVIDEBLOCK_1 39

FIGURE 5 .12 TIME-SERIES RESPONSE, EPOCH 214 , TDNN_DIVIDERAND_1 39

FIGURE 5.13 TRAINING REGRESSION, EPOCH 125, TDNN_DIVIDEBLOCK_1 4 0

FIGURE 5.14 TRAINING REGRESSION, EPOCH 2 1 4 , TDNN_DIVIDERAND_1 40

- v i -

FIGURE 5.15 ERROR HISTOGRAM, EPOCH 125, TDNN_DIVIDEBLOCK_1 40

FIGURE 5.16 ERROR HISTOGRAM, EPOCH 214, TDNN_DIVIDERAND_1 40

FIGURE 5.17 TRAINING SET FOR TDNN 2 41

FIGURE 5.18 TIME-SERIES RESPONSE, EPOCH 999, TDNN_DIVIDEBLOCK_2 41

FIGURE 5.19 TIME-SERIES RESPONSE, EPOCH 86, TDNN_DIVIDERAND_2 42

FIGURE 5.20 TRAINING REGRESSION, EPOCH 999, TDNN_DIVIDEBLOCK_2 42

FIGURE 5.21 TRAINING REGRESSION, EPOCH 86, TDNN_DIVIDERAND_2 42

FIGURE 5.22 ERROR HISTOGRAM, EPOCH 999, TDNN_DIVIDEBLOCK_2 42

FIGURE 5.23 ERROR HISTOGRAM, EPOCH 86, TDNN_DIVIDERAND_2 42

FIGURE 5.24 TRAINING SET FOR TDNN 3 43

FIGURE 5.25 TIME-SERIES RESPONSE, EPOCH 366, TDNN_DIVIDEBLOCK_3 44

FIGURE 5.26 TIME-SERIES RESPONSE, EPOCH 81, TDNN_DIVIDERAND_3 44

FIGURE 5.27 TRAINING REGRESSION, EPOCH 366, TDNN_DIVIDEBLOCK_3 44

FIGURE 5.28 TRAINING REGRESSION, EPOCH 81, TDNN_DIVIDERAND_3 44

FIGURE 5.29 ERROR HISTOGRAM, EPOCH 81, TDNN_DIVIDERAND_3 45

FIGURE 5.30 ERROR HISTOGRAM, EPOCH 366, TDNN_DIVIDEBLOCK_3 45

FIGURE 5.31 GRAPHICAL COMPARISON OF TRAINED FEED FORWARD TIME DELAYED NETWORKS 46

FIGURE 5.32 TRAINING SET FOR TDNN 1 TS 46

FIGURE 5.33 TIME-SERIES RESPONSE, EPOCH 29, TDNN_DIVIDEBLOCK_1_TS 47

FIGURE 5.34 TIME-SERIES RESPONSE, EPOCH 27, TDNN_DIVIDERAND_1_TS 47

FIGURE 5.35 TRAINING REGRESSION, EPOCH 29, TDNN_DIVIDEBLOCK_1_TS 48

FIGURE 5.36 TRAINING REGRESSION, EPOCH 27, TDNN_DIVIDERAND_1_TS 48

FIGURE 5.37 ERROR HISTOGRAM, EPOCH 29, TDNN_DIVIDEBLOCK_1_TS 48

FIGURE 5.38 ERROR HISTOGRAM, EPOCH 27,TDNN_DIVIDERAND_1_TS 48

FIGURE 5.39 TRAINING SET FOR TDNN 2 TS 49

FIGURE 5.40 TIME-SERIES RESPONSE, EPOCH 28, TDNN_DIVIDEBLOCK_2_TS 49

FIGURE 5.41 TIME-SERIES RESPONSE, EPOCH 28, TDNN_DIVIDERAND_2_TS 50

FIGURE 5.42 TRAINING REGRESSION, EPOCH 28, TDNN_DIVIDEBLOCK_2_TS 50

FIGURE 5.43 TRAINING REGRESSION, EPOCH 28, TDNN_DIVIDERAND_2_TS 50

FIGURE 5.44 ERROR HISTOGRAM, EPOCH 28,TDNN_DIVIDEBLOCK_2_TS 50

FIGURE 5.45 ERROR HISTOGRAM, EPOCH 28, TDNN_DIVIDERAND_2_TS 50

FIGURE 5.46 TRAINING SET FOR TDNN 3 TS 51

FIGURE 5.47 TIME-SERIES RESPONSE, EPOCH 90, TDNN_DIVIDEBLOCK_3_TS 52

FIGURE 5.48 TIME-SERIES RESPONSE, EPOCH 73, TDNN_DIVIDERAND_3_TS 52

FIGURE 5.49 TRAINING REGRESSION, EPOCH 90, TDNN_DIVIDEBLOCK_3_TS 53

FIGURE 5.50 TRAINING REGRESSION, EPOCH 73, TDNN_DIVIDERAND_3_TS 53

FIGURE 5.51 ERROR HISTOGRAM, EPOCH 90, TDNN_DIVIDEBLOCK_3_TS 53

FIGURE 5.52 ERROR HISTOGRAM, EPOCH 73, TDNN_DIVIDERAND_3_TS 53

FIGURE 5.53 GRAPHICAL COMPARISON OF TRAINED FEED FORWARD TIME DELAYED NETWORKS 54

FIGURE 5.54 THE DATA USED AS A PART OF THE TRAINING SET FOR ADD_TDNN_2 TRAINING 55

FIGURE 5.55 RESPONSE OF THE ADD_TDNN_2 55

FIGURE 5.56 NARX TD A N N STRUCTURE 56

FIGURE 5.57 NARX TD A N N RESPONSE 56

FIGURE 5.58 TRAINING PARAMETERS FOR NARX TD A N N 56

FIGURE 5.59 TRAINING REGRESSION, EPOCH 42 56

FIGURE 5.60 FF A N N STRUCTURE (WITHOUTTIME DELAY) 57

FIGURE 5.61 FF A N N RESPONSE (WITHOUT TIME DELAY) 57

FIGURE 5.62 TRAINING PARAMETERS FOR FF A N N 57

FIGURE 5.63 TRAINING REGRESSION, EPOCH 67 57

FIGURE 5.64 NARX A N N STRUCTURE (WITHOUT TIME DELAY) 58

- v i i -

FIGURE 5.65 NARX A N N RESPONSE (WITHOUTTIME DELAY) 58

FIGURE 5.66 TRAINING PARAMETERS FOR FF A N N 58

FIGURE 5.67 TRAINING REGRESSION, EPOCH 74 58

FIGURE 5.68 PR&C A N N STRUCTURE (3 HIDDEN NEURONS) 59

FIGURE 5.69 TRAINING PARAMETERS PR&C A N N 59

FIGURE 5.70 CONFUSION MATRIX 1 59

FIGURE 5.71 TRAINING PARAMETERS PR&C 60

FIGURE 5.72 CONFUSION MATRIX II 60

FIGURE 6.1 DEROTATION FROM THE RPY (BODY) COORDINATES TO EN U COORDINATES 62

FIGURE 6.2 QUATERNION ORIENTATION DETERMINATION 63

FIGURE 6.3 A PART OF C-CODE FOR DEROTATION 64

FIGURE 6.4 SINGLE STEP OF SUCCESSIVE ATTITUDE DETERMINATION 65

FIGURE 6.5 IMPROVED OUTPUT OF THE ARTIFICIAL NEURAL NETWORK (FILTERED BY LKF) 69

FIGURE 6.6 KALMAN FILTER APPLIED ON THE ACCELERATION DATA 69

FIGURE 6.7 KALMAN FILTER APPLIED ON THE ROTATION RATE SENSOR DATA 70

FIGURE 6.8 RAW PARTICULAR ROTATIONS IN TIME WHEN IMU IS STILL-30 MINUTES 71

FIGURE 6.9 ACCELERATION DRIFT IMPACT 72

FIGURE 7.1 RAW DATA 75

FIGURE 7.2 CALIBRATED DATA 76

FIGURE 7.3 SETTING DIALOG WINDOW FOR TRACKER 78

FIGURE 7.4 DEROTATED DATA 78

FIGURE 7.5 INTEGRATED DATA 80

FIGURE 7.6 EXAMPLE OF CUSTOM PLOT DATA 80

FIGURE 7.7 A DIALOG WINDOW FOR RECORDING AND REPLAYING THE DATA 81

FIGURE 7.8 THE SOFTWARE CONTROLS 82

FIGURE 7.9 VISUAL INFORMATION ABOUT THE HEADING AND THE STATE 82

FIGURE 7.10 CUBE VIEW 82

FIGURE 8.1 EVALUATED TRAJECTORY IN TIME, THE UOG IN [M] (LEFTY-AXIS) AND OTHERS IN [MM] (RIGHT Y-AXIS), STILL

ON THE TABLE 85

FIGURE 8.2 EVALUATEDTRAJECTORYINTIME,THE UOG IN [M] (LEFTY-AXIS) AND OTHERS IN [M] (RIGHT Y-AXIS) 87

FIGURE 8.3 DETAILED POSITIONS OF STEP AND STOP MEASUREMENT 87

FIGURE 8.4 SILLYSTATUS STATE (RED) AND A N N OUTPUT STATE IN TIME [S] 88

FIGURE 8.5 ENU VELOCITY ESTIMATED IN UOG MODE, X-AXIS REPRESENTS MEAS. TIME IN [S] 89

FIGURE 8.6 ENU VELOCITY ESTIMATED WITH SILLYSTATUS FILTER IN PROCESS, X-AXIS REPRESENTS MEAS. TIME IN [S] 89

FIGURE 8.7 ENU VELOCITY ESTIMATED WITH A N N IN PROCESS, X-AXIS REPRESENTS MEAS. TIME IN [S] 89

FIGURE 8.8 ENU POSITION ESTIMATED IN UOG MODE, X-AXIS REPRESENTS MEAS. TIME IN [S] 89

FIGURE 8.9 ENU POSITION ESTIMATED WITH SILLYSTATUS FILTER IN PROCESS, X-AXIS REPRESENTS MEAS. TIME IN [S] 90

FIGURE 8.10 ENU POSITION ESTIMATED WITH A N N IN PROCESS, X-AXIS REPRESENTS MEAS. TIME IN [S] 90

FIGURE 8.11 PARTICULAR DISTANCES FROM (0,0,0) POSITION IN ENU COORDINATES 92

FIGURE 8.12 TRAJECTORY IN ENU COORDINATES IN 2D [M] 92

FIGURE 8.13 TRAJECTORY IN ENU COORDINATES IN 3D [M] 92

FIGURE 8.14 ENU VELOCITY ESTIMATED WITH A N N IN PROCESS [MS_1] IN TIME [S] - INTERRUPTED WALKING 93

FIGURE 8.15 ENU POSITION ESTIMATED WITH A N N IN PROCESS [M] IN TIME[S] - INTERRUPTED WALKING 93

FIGURE 8.16 TRAJECTORY IN ENU COORDINATES, 3D IN [M] - INTERRUPTED WALKING 94

FIGURE 8.17 LINEAR ACCELERATION IN ENU COORDINATES IN [MS 2] IN TIME [S], CONTINUOUS WALKING 94

FIGURE 8.18 POSITION IN ENU COORDINATES IN [M] IN TIME [S], CONTINUOUS WALKING 94

FIGURE 8.19 COMBINED SILLYSTATUS STATE AND A N N DECISION ON THE IMU STATE (GREEN) IN TIME 94

FIGURE B . l CHANGE IN THE MEASURED ROTATION RATE [DEG/S] WHEN THE TEMPERATURE DROPS DOWN (IN 550 s) IN

TIME [S] 102

FIGURE C.2 FOUR ARDUINO COMMUNICATION CYCLES, CONSEQUENTLY. T X , S D A , SCL 104

- v i i i -

FIGURE C.3 DETAIL OF RS232 COMMUNICATION CYCLE, CONSEQUENTLY. T X , SDA, SCL 104

FIGURE C.4 DETAIL OF l 2C COMMUNICATION CYCLE, CONSEQUENTLY. TX, S D A , SCL 105

FIGURE C.5 TRANSMISSION OF ONE BYTE VIA l 2C. S D A , SCL 105

FIGURE E.6 RAW ACCELERATION [G] IN TIME [S] 107

FIGURE E.7 CALIBRATED ACCELERATION [G] IN TIME [S] 107

FIGURE E.8 ENU (LINEAR) ACCELERATION [M-S2] IN TIME [S] 107

FIGURE E.9 ENU (LINEAR) ACCELERATION AFTER KF [M-S2] IN TIME [S] 107

FIGURE E.10 RAW ROTATION RATE [DEG-S1] IN TIME [S] 108

FIGURE E . l l CALIBRATED ROTATION RATE [DEG-S1] IN TIME [S] 108

FIGURE E.12 RAW MAGNETIC FIELD [GAUSS] IN TIME [S] 108

FIGURE E.13 CALIBRATED MAGNETIC FIELD [GAUSS] IN TIME [S] 108

FIGURE E.14 EULER ANGLES [DEG] IN TIME [S] 109

FIGURE E.15 VELOCITY [M-S1] IN TIME [S] 109

FIGURE E.16 POSITION [M] IN TIME [S] 109

FIGURE E.17 STATE AND ARTIFICIAL NEURAL NETWORK OUTPUT IN TIME [S] 109

- ix -

LIST OF TABLES
TABLE 4.1 MAGNETIC FIELD VALUES IN KOHOUTOVICE, BRNO [45] 23

TABLE 4.2 MAGNETIC DECLINATION FOR KOHOUTOVICE, BRNO [47] 29

TABLE 5.1 DEFAULT TRAINING PARAMETERS [MATLAB™] 33

TABLE 5.2 COMPARISON OF NETWORKS-TRAINING PARAMETERS 45

TABLE 5.3 COMPARISON OF NETWORKS II - TRAINING PARAMETERS 53

TABLE 5.4 TRAINING PARAMETERS OF THE ADDITIONAL NETWORKS 54

TABLE 5.5 TRAINING PARAMETERS OF THE OTHER TYPES OF ANNS 60

TABLE 6.1 BIAS OFFSET AND STANDARD DEVIATION OF RAW ROTATIONS WHEN THE IMU IS STILL 71

TABLE 7.1 CONSEQUENCES OF DEFINED STATE IN PARTICULAR MODES 79

TABLE 7.2 VARIABLES AVAILABLE IN CUSTOM PLOT VIEW 81

TABLE 8.1 VELOCITY AND POSITION, UOG MODE STILL ON THE TABLE 84

TABLE 8.2 VELOCITY AND POSITION, SILLYSTATUS FILTER USED ONLY STILL ON THE TABLE 84

TABLE 8.3 VELOCITY AND POSITION, A N N APPLIED STILL ON THE TABLE 84

TABLE 8.4 VELOCITY AND POSITION, UOG MODE STILL IN THE HAND 86

TABLE 8.5 VELOCITY AND POSITION, SILLYSTATUS FILTER USED ONLY STILL IN THE HAND 86

TABLE 8.6 VELOCITY AND POSITION, A N N APPLIED STILL IN THE HAND 86

TABLE 8.7 POSITIONS OF STEP AND STOP MEASUREMENT 88

TABLE 8.8 ESTIMATED OUTPUTS OF THE SYSTEM IN PARTICULAR MODES 90

- x -

LIST OF ABBREVIATIONS
A B S anti-lock brake system
AHRS attitude and heading reference system
A K B S adaptive knowledge based system
A N N artificial neural network
A S R anti-slip regulation
A U V autonomous underwater vehicle
B K bank
BT bluetooth
CPU central processing unit
D C M direction cosine matrix
dly delay
DOF degrees of freedom
DOP dilatation of precision
dps degrees per second
DR dead reckoning
E, W, N , S East, West, North, South
ECEF Earth-centred, earth-fixed (coordinates)
ECI Earth-centred inertial (coordinates)
E L elevation
E N U east-north-up
FF feed forward
FFTD feed-forward time-delay
FIFO first in first out
F L fuzzy logic
g standard acceleration due to gravity (of free fall), 9.80665 ms
GLONASS space-based satellite navigation system used by the Russian
GNSS global navigation satellite system
GPS global positioning system
GUI graphical user interface
H heading
HPF high-pass filter
I 2C inter-integrated circuit
IDE integrated development environment
I M U inertial measurement unit
INS Inertial navigation system
ISA inertial sensor assembly
K F Kalman filter
L K F linear Kalman filter
LPF low-past filter
L Q E linear quadratic estimation
LSB least significant bit
LTP local tangent plane
L V N land vehicle navigation

XI

MATLAB™ software, multi-paradigm numerical computing environment
M C U microcontroller unit
mdps mili-degrees per second
M E M S micro-electro-mechanical systems
M i n l M U inertial measurement unit with L3GD20 gyro,
M S E mean squared error
N A not available
NaN not a number
N A R X nonlinear autoregressive network with exogenous inputs
N E D north-east-down
nnum number of neurons in hidden layer of A N N
N O A A National Oceanic and Atmospheric Administration
ODR octal data rate
ORI orientation of our IMU; defined in quaternion form
PC personal computer
PCB printed circuit board
PR&C pattern recognition and clustering
QT software, cross-platform application framework
R A M random access memories
ROT rotation coordinates
RPY roll-pitch-yaw
SAE society of automotive engineers
SCL serial clock line
SDA synchronous data
SPS samples per second
SSD solid-state drive
T D N N time-delayed artificial neural network
T X transmit
U , D up, down
U O G use only gyro mode
USB universal serial bus
WI-FI wireless fidelity
WMM2015 World Magnetic Model 2015

Xll

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

1 INTRODUCTION

A n implementation of artificial intelligence into an automatic navigation systems is the
one of opportunities how to improve performances of autonomous positioning systems.
Wel l known positioning method which is used in many modern systems, such in cars, is
the dead reckoning. This method is defined as the process of calculating current position
by using a previous determined position and actual data from inertial sensors in
combination with vehicle odometers. The implementation of this method defines actual
position of moving object regarding to the initial position. It also defines the trajectory
during the movement.

This topic is often discussed nowadays and the research in this field can be
divided to many way. To providing of more effective solutions than independent
processing of inertial sensor data offers, additional methods, systems and devices are
required.

Research teams work on acquisition with intention to obtain more precise results
provided by sensor data fusion, by increasing the number of sensors that are used to
measure the same physical quantities, by adding various specific devices, such as W i - F i
or other wireless equipment and its signal strength, by limitation of results
determination, by monitoring of regularities in motions and finally by fusion with
available G N S S / G P S , pedestrian navigation constrains, visual-aided constrains, map
matching etc.

There are three main issues arising from the fundamentals of inertial navigation.
The first of all is the Earth's gravity. We can measure the acceleration. It contains both,
a linear acceleration (that is needed to determine the position) and Earth's gravity
acceleration. This is good when the accelerometers are placed horizontally (flat). The
precise strength of Earth's gravity varies depending on location, nevertheless, at the
Earth's surface the nominal average value (standard acceleration of free fall) should be
in our case subtracted, because we are located on the Earth's surface. The
accelerometers are generally never horizontally placed though the position of inertial
measurement unit is often approaching this state. For that reason it is very hard to
separate Earth's gravity and linear acceleration, both measured together by
accelerometer. We highly focus on this issue in this document. The second difficulty is
Earth's rotation around its axis by 15 degrees per hour and around the sun by 0.041
degrees per hour. This should be solved by using the gyrocompass and by
implementation of proper compensations in computations. The third issue is a
significant inaccuracy caused by sensitivity and typical characteristics of inertial
sensors. Due to low signal to noise rate when the linear acceleration of the F M U or its
orientation vary is the only inertial sensor navigation fundamentally inapplicable for
precise localization. Thus nowadays, many localization methods are combined.

When we are talking about inertial sensor data fusion we are always confronted
by real world challenges. It is thought that nothing is exactly accurate and therefore we
have to consider deviations and errors as an inseparable part of technique. The task is to
use knowledge and enrich it by our own thoughts that complexly lead to invention of
better solution, innovation. The application of inertial sensor data fusion brings
thorough considerations of error models and their implementation in calculations. In
combination with artificial neural network, Kalman filtering and with the support of

1

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

G N S S / G P S the dead reckoning system may achieve a sufficient accuracy to determine
the orientation and the position where the inertial navigation system (INS) is located.

A n inertial navigation system (INS) is a navigation aid that uses a computer,
motion sensors (accelerometers) and rotation sensors (gyroscopes, gyros) and maybe
others to continuously calculate via dead reckoning (DR) actual position, actual
orientation, and actual velocity (direction and speed of movement) of a moving object in
time without any external references [1]. It has been called "Newtonian navigation"
because its theoretical foundations have been known since time of Newton:

Given the position x(to) and velocity v(to) of a vehicle at time to, and its
acceleration a(s) for times s>to, then its velocity, v(t), and position, x(t), for all time t>0
can be defined as (2.1.1), (2.1.2).

t

v(t) = v(t0) + ja(s)ds (1L1)

i

x(t) = x(t0) + jv(s)ds (1L2>
i«

Then, for practical implementation, there are four included issues that have to be solved.
Then the result might look like in Figure 1.1.
1. Sensors for measuring acceleration with sufficient accuracy:

a. 3-axis acceleration sensor (accelerometer)

b. 3-axis rotation sensor (gyroscope)

2. Compatible methods based on integration of the sensor outputs to obtain position
a. Methods integrating the gyro outputs to determine the orientation of the

accelerometer
b. Methods integrating the accelerations to obtain the velocities and integrating

the velocities to obtain the position
3. Hardware and software implementing these methods and for interpretation of the

results
4. Applications that could justify the investments in technology required for

developing the solutions to the capabilities listed above

True trajectory

INS+DR system

GPS system

Figure 1.1 Recorded trajectory.

This dissertation thesis heads with the state of the art, where the short history and
current research state is described. The next Chapter outlines the objectives of the thesis
and the rest of document deals with those objectives. A t the end of the main document
the results are discussed and the proposed method is evaluated. Annexes complement
the described methods.

2

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

2 STATE OF THE ART

This Chapter is devoted to the history of the inertial positioning and navigation and
related progressive methods, new approaches and methods used in this systems, and
particular issues that must be solved when this new approaches are practically applied.

2.1 History
Inertial navigation is a self-contained navigation technique in which measurements
provided by accelerometers and gyroscopes are used to track the position and
orientation of an object relative to a known starting point, orientation and velocity.
Inertial measurement units (EVIUs) typically contain three orthogonal rate-gyroscopes
and three orthogonal accelerometers, measuring angular velocity and linear acceleration
respectively, [2],

B y processing signals from these devices, it is possible to track the position and
orientation of the device. This aim is often discussed nowadays and research is divided
into many directions. To ensure better solution than which is offered by independent
processing of sensor data, additional methods and equipment are required. Proposed
inertial guidance system is based on dead reckoning method supplemented by artificial
neural network (A N N) and Kalman filters (KF).

In 1997, the model based on self-diagnosis system for autonomous underwater
vehicles using artificial neural networks was introduced in Advanced Intelligent
Mechatronics '97, International Conference. The dynamic model was constructed by an
A N N taking advantage of its learning capability. When the sensors seemed to be
defective, D R using its corresponding output attempted to scope with the defect. Then
the proper action scheme, without extra sensors for the detection, was used to minimize
the damage to the autonomous underwater vehicles (A U V) , [3].

In 2002, the dead reckoning system in combination with terrain-aided positioning
was tested up. The processing is based on multiple Kalman filters that estimate the
linear part of the state vector. The appropriate filter is then used for the estimation of
remaining part and the simulations showed that the computational load was significantly
reduced [4],

The neural network implementation was used by researchers when FNS and GPS
were integrated. The neural networks for land vehicle navigation (L V N) application was
introduced in 2002, [5] and an adaptive neuro-fuzzy model for bridging GPS outages in
M E M S - I M U / G P S L V N was introduced in 2004, [6].

A n idea to implement A N N s to the personal navigator was presented in Intelligent
Signal Processing symposium in 2007. The system integrated GPS, tactical grade I M U ,
digital barometer, magnetometer and human pedometer to support navigation and
tracking of military and rescue system for ground personnel has been developed [7],
One year later, in 2008, the prototype of personal navigator had been developed at The
Ohio State University Satellite Positioning and Inertial Navigation (SPIN) Laboratory
[8]. The adaptive knowledge based system (A K B S) was based on A N N and Fuzzy
Logic (FL) and was trained a priori using sensors data collected by various operators in
various environments during GPS signal reception. The K F was then used to improve

3

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

the heading information and to reconstruct the trajectory based on step length and step
direction.

In 2011 researchers used A N N to the compensation of the reckoning error for
A U V when K F were used to estimate positional errors in a soft computing-based
models. They evaluated D R error as an output parameter, while attitude angles,
velocities and relative time were given as input variables. They validated their
algorithms with the conclusion: The absolute error non-compensated is 100.3 m, and the
absolute error compensated is 14.8 m. They compared results with GPS position, the
voyage was 2800 m with the depth of 0.5 m. This result seems very good however the
data measured over this voyage had been used as a training set for to getting of error
predictive models [9],

A very nice example of A N N s implementation for navigation has been shown in
the paper from 12 t h International Conference on Control, Automation and Systems, Jeju
Island, Korea [10]. Authors of this paper developed the indoor navigation system based
on pedestrian dead reckoning (PDR) that uses various sensors in a smartphone. M E M S
EVIU was mounted on the waist, using sensors and A N N status; they estimated the step
length adaptively. They used a map-matching method in addition. If the estimated
trajectory was tracked wrong way or the estimated position in unavailable place to go,
map matching arranged the estimated position to the coordinate defined in a map. So the
computed position was "snapped" to link in the map or to the corner when rotation rate
measured by a gyroscope increased in the moment. A barometer was used for to
distinguish the floor where the I M U belongs.

A major disadvantage of this method is that we need a map of the area where such
a system is used. Without a map, the performance of positioning is not sufficiently
accurate.

2.2 A different approach
The presented method approaches to the issue from another point of view than previous
solutions of P D R inertial units. It is based on the fact that we need to apply D R (INS)
while the terrain is unknown; that means wireless connections are not available, terrain

map is not defined, and GNSS signal is not available. It was investigated that sensor
errors, deviations and drifts achieve significant values, thus, the error in positioning is
large. The fusion of sensor data, Kalman filtering and artificial neural network offer a
solution for the purpose.

2.3 Coordinate systems
The coordinates for inertial systems are given to be natural to the problem at hand. We
use L T P (local tangent plane) coordinates; first-order model of the earth as being flat,
where they serve as local reference directions for representing vehicle attitude and
velocity for operation - on the surface of the earth (or very close to). A common
orientation for L P T coordinates has one horizontal axis (the north axis) in the direction
of increasing latitude and the other horizontal axis (the east axis) in the direction of
increasing longitude.

Furthermore, we have to specify the E C I (earth-cantered inertial) coordinates that
are the favoured inertial coordinates in the near-earth environment. The origin of E C I
coordinates is at the centre of gravity of the earth, with axis directions:

4

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

x - the direction of the vernal equinox;

z - parallel to the rotation axis of the earth (north polar axis);

y - an additional axis to make a right-handed orthogonal coordinate system.

The equatorial plane of the earth is also the equatorial plane of E C I coordinates,
nevertheless the earth itself is rotating relative to the vernal equinox by about 15.04109
deg per hour 1. E C E F (Earth-Centred, Earth-Fixed) coordinates have the same origin and
third, polar axis as E C I coordinates, but rotate with the earth. Consequently, E C I and
E C E F longitudes differ only by a function of time. E C I (indexed by " / ") , E C E F
(indexed by "e ") coordinates and L T P are shown in Figure 2.1.

Figure 2.1 ECI, ECEF, and geodetic coordinate frame, [11 J.

In coordinate system N E D (earth-fixed, north-east-down) right-handed L T P system is
preferred because the direction of a right (clockwise) turn is in the positive direction
with respect to a downward axis and N E D coordinate axes coincide with vehicle-fixed
R P Y (body-fixed, roll-pitch-yaw) coordinates when the vehicle is in the flat position
and headed to north. The other, commonly used right-handed L P T system is E N U (east-
north-up) and the transformation matrix between E N U and N E D shows relation (2.3.1).
The E N U coordinate system is preferred in this thesis. The relation between E C E F
coordinate frame and E N U coordinate frame can be found in A P P E N D I X A , part A . 5.

R P Y coordinates are vehicle fixed, as noted above, with the roll axis in the
nominal direction of motion of the vehicle, the pitch axis out the right-hand side, and
the yaw axis such that tight turning is positive. This is used also for surface ships and
ground vehicles, called S A E coordinates.

1 World Book Encyclopaedia Vol 6. Illinois: World Book Inc.: 1984: 12.
"It takes 23 hours 56 minutes 4.09 seconds for the Earth to spin around once 2n radians/86164.09
seconds"

5

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

In Figure 2.2, body-fixed reference system (R P Y coordinates) with respect to
L T P frame (N E D coordinates) is shown. Other transformations between mentioned
coordinate systems are indicated in A P P E N D I X A .

„ENU f-^NED
NED ~ ENU '

0 1 0
1 0 0
0 0 -1

(2.3.1)

Down, towards
I hi: Kiirih cvnlL-r

Figure 2.2 Definition of the body-fixed frame (RPY) with resp. to LTP frame (NED coordinates), [12].

2.4 Sensor error models
Inertial navigation performance is hardly limited by the performance of used inertial
sensors. The basic formula, Newton's model, gives us an overview of the inertial
navigation system's error evolution over time (2.4.1). This is also shown in Figure
2.3 and you can see that the performance significantly decreases with the time and the
system based only on integrated data from sensors is inapplicable.

1 i
position ~ acceleratbn

6

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

l.E-01

l.E-02

l.E-03

™ l.E-04

Navigation error versus time and accelerometer error

l.E-05

y l.E-06

l.E-07

l.E-08

l.E-09

\
\

\
\ \ \

\
\

\ % \
\ \

\
\

\
. \ V \

\
\ X \

X \ \ \

Im

\
\

1 km
100 km

\ \
\ \

1 km
100 km \ \

- • - Lunar distance \
V \ \

Solar distance X̂ \ X \ \

l.E+08 1.E+00 l.E+02 l.E+04 1.E+06

time [s]

Figure 2.3 Inertial navigation system error as a function of sensor error and tracking time.

The errors in measurement arise from many various reasons. Inertial navigation has
been called "black box navigation" because it is entirely self-contained. It interferes
what is going on outside by what it can sense inside. In addition, inertial sensors are
called black boxes for the same reason. There are more events outside the sensor than
just accelerations or rotations2, see Figure 2.4.

A n important fact to be aware is that accelerometers do not measure gravitational
acceleration, but inertial acceleration. That means, they measure "specific force"
a=F/m, where F is the physically applied force and m is the mass it is applied to [13].

acceleration (a)

angular rate (go)

temperature (7~)

I N E R T I A L

S E N S O R

f (a, (JO, T,

magnetic field (B)

"other"

power variation

electromagnetic interference

Figure 2.4 Sensor black-box model.

2 A comment often heard from inertial sensor designers is „No matter what sort of sensor we
design; it always turns out to be a highly sensitive thermometer!" [13].

- 7 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

2.4.1 List of sensor errors

Zero-mean random errors
Standard types of error models from Kalman filtering of zero-mean random errors are
used for modelling the unpredictable outputs.

White sensor noise
That noise is generated by power supplies, intrinsic noise in semiconductor devices, or
from quantization errors in digitization. It is usually assigned to "electronic noise".

Exponentially correlated noise
A s a time varying additive noise source, the temperature sensitivity of sensor bias
driven by ambient temperature variations or by internal heat variations.

Random walk sensor errors
Those errors depends on variances that grow linearly with time and power spectral
densities that fall off as l / / 2 , that means 20 dB per decade, where / is the frequency.
Magnitudes of those noises are reflected to the outputs of sensors equivalently as white
noise. The random walk error model shows relations in (2.4.2).

s*=**-i+ w*-i

2 / 2\ 2 / 2\ 2
°k = \ s k) = <Jk-\ + \ w k - i) = c r o + k • Qw for static systems (2.4.2)

def 1 2

Qw = f \ w k

The Qw value units are squared error per time step At. For example, gyro errors might be
specified in degl^ih and most navigation-grade gyros have this errors in order of 10"3

deg/Jh or less.

Harmonic noise
Temperature control systems introduce often-cyclical errors because of thermal
transport lags. These can cause harmonic errors in sensor outputs, with periods scaled
with device dimensions. In addition, ambient devices may be a source of other harmonic
noise and that can excite acceleration-sensitive error sources in sensors we use.
1/f noise
This error source is characterized by power spectral density that falls off with factor l/f
where / i s the frequency. It is present in all electronic devices and it is usually modelled
as a combination of white noise and random walk errors.
Fixed-pattern errors
Those errors are identified in the sensor output arising from the input-output
relationship. If this relationship is known they can be eliminated. There are dead-zone
errors and quantization errors, and cumulative effect of both of them is affected by
zero-mean input noise or dithering in addition. Cumulative quantization errors for
sensors with frequency outputs are bounded by ± one-half of the least significant bit
(LSB) of the digitized output.

Some of more common types of input-output errors are shown in Figure 2.5:

- bias is any nonzero output of sensor when the input equals zero;

- scale factor error is usually caused by manufacturing tolerances;

- nonlinearity is present almost in all sensors, typically up to some degree;

8

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

- asymmetry is caused by mismatched push-pull amplifiers and in fact it is scale
factor sign asymmetry;

- dead-zone caused by mechanical static friction or lock-in;

- quantization error is inherited in all digitized systems; the mean value may not
be zero when constant value is on the input, although it could be noted under
calibration conditions.

2.5 Sensor calibration
To calibrate and compensate offsets, biases, scale factors and misalignments, affine
(linear plus offset) model is used. Biases are included in offsets and the rest is linear.
When we define output as shown in relation (2.5.1), where Zmput is the vector
representing the inputs (accelerations or rotation rates), Zoutput is the vector representing
the corresponding outputs, bz is the vector of sensor output biases and M represents the
linear input-output model.

Z O M ^ = M - (z ,„^ + bz) (2.5.1)

*,nPu, = M - X • Z o u t p u t -b z (2-5.2)

To estimate the values of M and bz, several pairs of given input-output vectors [zmput, k,

Zoutput, k] have to be defined, (2.5.2). These outputs are measured while controlled
calibration conditions, thus we get a pair of input-output recorded under these
conditions and applicable for sensor compensation. This result can be generalized for a
cluster of N > 3 gyroscopes or accelerometers. For more information, see [13] and [14].

9

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

2.6 Orientation determination
The orientation of the inertial measurement unit or its tilt is unknown in a real terrain
and it is perhaps the most important step to estimate this state as accurate as possible.
A n y inaccuracy leads to wrong de-rotation from R P Y coordinates to other, inertial
coordinates, e.g. N E D , E N U or E C E F , [13].

2.6.1 Euler angles

This way, the orientation might be defined as rotation angles about each of axes (vehicle
roll, pitch and yaw axis), called Euler angles, named for the Swiss mathematician
Leonard Euler (1707-1783). With this approach, it is always necessary to specify the
order of rotations when specifying Euler angles.

The rotation from R P Y coordinates to N E D coordinates can be composed from
three Euler rotation matrices, consecutively yaw iff, pitch 6 and roll q>, as is shown in
(2.6.1), respectively (2.6.2).

C1

cos(i/s) - sin(i//) 0
sin(i//) cos(y) 0

0 0 1

cos(ö) 0 sin(ö)
0 1 0

-sin(0) 0 cos(ö)

1 0 0
0 cos(cp) - sin(cp)

0 sin(cp) cos(cp)

(2.6.1)

NED '

cos(y/) • cos(6>) - sin(i//) • cos^o) + cos^/) • sin(i9) • sin(y?) sin(^/) • sin(y?) + cos(^/) • sin(6>) • cos((p)

sin(y/) • cos(ß) cos(y/) • cos^o) + sin(i//) • sin(i9) • sinfjo) - cos(y/) • sm(g>) + sin(i//) • sin(6>) • cos(g>)

-sin(i9) cos((9) • sinfjp) cosC^) • cos(y7)

(2.6.2)

This approach leads to problem with discontinuity when the pitch angle equals
90 degrees. Ro l l axis is then pointed upwards and any change in pitch or yaw causes
±180 degrees changes in heading angle. This is called "gimbal lock" and it is the reason
why we do not use Euler angles for the orientation determination of EVlUs.

In addition, it depends on the sample rate of angular rate sensing and how precise
the sensor is, in the other words, computations of q>, 6 and y/ during the time from
gyroscope outputs, body angular rates, are mathematically very complicated.

2.6.2 Rotation vector

The other possibility is to use the rotation vectors. If the origins of two right-handed
orthogonal coordinate systems are the same points, we can define the transformation
between those systems by a single rotation about fixed axis, so we need the direction
(rotation axis) and magnitude (rotation angle) of transformation.

This method brings two disadvantages. A t first, adding multiples of ±2it to the
rotation angle may cause unwanted changes in transformation it represents, and the
other one, rotation angle expression is nonlinear and thus it is complicated to find a
relation for more consecutive rotations (the function of all previous rotations) by one
rotation vector.

The transformation of the rotation vector to the matrix and the transformation of
the matrix to the rotation vector, such as a detailed explanation, you find in A P P E N D I X
A , and in [13].

10

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

2.6.3 Direction cosine matrix

The coordinate transformation matrix between two orthogonal coordinate systems is a
matrix of direction cosines between the unit axis vectors of those two coordinate
systems. For relations, please see A P P E N D I X A . It this method, it is necessary to define
the rotating coordinates R O T (see Figure 2.6).

Figure 2.6 Rotating coordinates.

Then, any vector VROT in rotating coordinates (ROT) can be expressed in terms of its
nonrotating components and unit vectors parallel to the nonrotating axes as (2.6.3), and
thus (2.6.4) defines.

v, ROT = [v. xNON ' ^-xNON + vyNON ' lyNON + v

xNON LyNON LzNON]

zNON ^zNON
vxNON
vyNON
vzNON

(2.6.3)

VROT — CROT "
 VNON (2.6.4)

where VXNON, vYNON and VZNON are nonrotating components of the vector; 1xNON> lywow

and 1zNON
 a r e u n i t vectors along XNON, YNON and ZNON axes, as shows Figure 2.6; \ROT

is the vector v expressed in R P Y , analogously VNON is the vector v expressed in ECI .
Next relation (2.6.5) express the coordinate transformation matrix from nonrotating
coordinates to rotating coordinates.

rNON _ pj* ~7 T 1 (2.6.5)
^ROT — lLxNON LyNON LzNON\

This transformation is applicable when the static situation is expected, but the gyros
measure three nonzero components of the inertial rotation rate vector (2.6.6).

0)ROT —

^xROT
^yROT
t^zROT

(2.6.6)

Finally, we observe a derivative relation of products for time derivation, (2.6.7). This
equation was originally used for maintaining vehicle attitude information in strap-down
FNS implementations.

11

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

d f-iRPY

dt
(OENU ® C R P Y 4-C^RPY

^ENU + ^ENU ' (ÖRPY® (2.6.7)

where o)RPY is the vector of inertial rates measured by the gyro and following applies
(2.6.8)- (2.6.11):

^ENU — ^earthrate + ^vE + <*>vN (2.6.8)

C0S{<P geodetic)

sm(<pgeodetic)

U>vE —
VE

rT + h

"0"
1

.0.

(2.6.9)

(2.6.10)

u>vN -
VN_

rM + h
(2.6.11)

and

0)0 is earth rotation rate;

^geodetic is geodetic latitude;

vE is the east component of velocity with respect to the surface of the earth

rT is the transverse radius of curvature of ellipsoid

vN is the north component of velocity with respect to the surface of the earth

rM is the meridional radius of curvature of ellipsoid
h is altitude above (+) or below (-) the reference ellipsoid surface (-mean sea

level).

Unfortunately, this equation was finally found to be not well suited for accurate
integration in finite-precision arithmetic, so the next, last approach, eventually solves
the integration problem, [13].

2.6.4 Quaternions

Quaternions are members of a noncommutative division algebra first invented by
Wi l l i am Rowan Hamilton. The idea for quaternions occurred to him while he was
walking along the Royal Canal on his way to a meeting of the Irish Academy, and
Hamilton was so pleased with his discovery that he scratched the fundamental formula
of quaternion algebra (2.6.12), into the stone of the Brougham Bridge, [15].

i2 =/ =k2 =i-j-k = - l (2-6-12)

Quaternions are a single example of a more general class of hyper-complex numbers
discovered by Hamilton. While the quaternions are not commutative, they are
associative, and they form a group known as the quaternion group [16].

The algebra of quaternions can be defined by using isomorphism between 4x1
quaternion vectors q and real 4x4 quaternion matrices Q, (2.6.13).

12

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

01 - I i - q 3 ^4
q2 #3

q3

J4 - q 3 g 2 01 _

= • Qi + ai • Qi + a3 • Qi + ax • Qa

where Q I , Q2, Q3 and Q4 are quaternion basis matrices, (2.6.14):

Q,
clef

clef

0
1

0

0

0

0

0

0

0

1

0

clef

•1

Q 4

clef

0 -1 0 0
1 0 0 0

0 0 0 -1

0 0 1 0

0 0 0 -1

0 0 -1 0

0 1 0 0
1 0 0 0

(2.6.13)

(2.6.14)

Quaternion multiplication is noncommutative, the result depends on the order of
multiplication. Let 's imagine quaternions A and B . It applies (2.6.15) and (2.6.16):

A = alQl+a2Q2+a3Q3+a4Q4

and the ordered product A B is (2.6.16):

A B = (al •bl - a2 -b2 - a3 -b3 - o 4 • bx) • Ql + (a2 •bl + al -b2

(2.6.15)

+ (a3 •bl + aA -b2 + al -b3 - a2 - bA)-Q3 +(a 4 • bl a3 -b2 + a2

a4 -b3 +a3 -b4)-Q2

• b3 + a, (2.6.16)

A single quaternion product, the final rotation, is determined by the quaternion product
qnxqn-i... q3x.q2x.q1, can implement each successive rotation. The quaternion
equivalent of the rotation vector p with |p| = 6, and where u is a unit vector, equals
then (2.6.17).

(0^ cos —
u ,

cos —

« , i n
0

II y sin

Pi • — •sin
0 (C 112 •sin

P3 • — •sin
0

(0^

v2y
11, •sin (C

(2.6.17)

When the two coordinate systems are aligned, the initial value of q[oj equals [1 0 0 0] T .
In inertial measuring systems the initial q[oj is determined during INS alignment
procedure. We can then define the calibrated value of the orientation, quaternion qk, as a
quaternion product as shows (2.6.18), where qic-i is a prior value of orientation (a
quaternion that is determined from the vector as [0; v i ; V2; V3]) and \q is the change in
attitude, all represented in quaternion form.

13

http://q3x.q2x.q1

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

<ik=Mk*<ik-i*Mk (1 6 J 8)

The attitude representations and rotation sequences for quaternion expressions are
available in [17] and [18] for example.

2.7 Artificial neural network
A n artificial neural network (A N N) enables to decide how the results of the issue should
be, without any equations, relations between physical quantities, and probabilistic
filters. It is based on an artificial intelligence (AI), which is the intelligence exhibited by
machines or software and such problematics including learning, reasoning, knowledge,
planning, communication, perception and the ability to move and manipulate objects,
[19], [20] and [21]. It depends on the type and extensiveness of the task that is solved by
the A N N . Then the structure and connections inside of A N N are defined and biases and
weights of trained network decide about final results. In general, the A N N may look as
follows (Figure 2.8) and artificial neuron model is shown in Figure 2.7.

Input Artificial neuron
' * f • \

J

Figure 2.7 The artificial neuron model, [18].

1 i I "WiS / I

J K I
I k

Each A N N has its input values representing variables on which the A N N output
depends. A s an output we consider only one value determining the state of the proposed
system. In other cases, more outputs may be present, see [22]. The number of hidden

14

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

layers and the number of neurons in particular layers depends on the complexity of the
problem we solve, [20], [23],

A N N s were used in systems for tracking, positioning or navigation as it is presented for
example in [24], [25] or [26]. Nevertheless, these applications do not use the A N N to
find out the state of the system and also these developments combine the I M U with an
additional data sources.

The artificial neural networks are used also to solving of many specific types of
issues. Always the proper type of the A N N and the method of training and other
parameters have to be selected. Here are some kinds of issues:

- Input-output and curve fitting
- Pattern recognition and classification
- Clustering
- Dynamic time series

Our task is to correctly define the state in time. The classification A N N represents an
appropriate network for this type of data processing. However, the problem is complex
and it is necessary to analyse the data considered in proper time window. Thus we
assume that the more complex, dynamic time series type of problem must be solved,
[27]. There are lot of kinds and types of A N N s that solve completely different issues,
detailed information are provided in Chapter 5.

2.8 Kalman filtering
Kalman filter (KF) (see literature [28] and [29]), also known as linear quadratic
estimation (LQE) , had become the important instrument for systems that integrate more
data sources to give the final solution. Y o u can imagine this filter as an algorithm that
uses sets of measurements observed over time (containing random variations of noise)
and produces the estimates of unknown variables in order to obtain more precise results
(see Figure 2.9). A n introduction to concepts gives P. S. Maybeck in [30],

2.8.1 Implementation

With respect to the data from sensors and all other available information, the K F
estimates a behaviour by using a form of a feedback control loop. The filter estimates
the process state at some time and then obtains feedback in the form of (noisy)
measurements. This procedure is continually repeated to produce current results (see
Figure 2.10).

Figure 2.9 Basic concept of Kalman filtering, [35].

For example, in the case of land vehicles positioning, K F gets the data from G N S S unit
(GPS, G L O N A S S and Galileo, Compass or Beidou system) and from inertial unit

- 15 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

(accelerometer, magnetometer and gyroscope), [31]. The adaptive Kalman filtering for
low-cost INS/GPS is shown in [32], [33].

It can also get data from systems available in vehicle (data information from A B S
and A S R unit, information about steering wheel deflection and data from odometer), as
shown in [34]. The filter is very powerful because it supports the estimations of past,
present, and even future states, and it can do so even when the precise nature of the
modelled system is unknown, [35]. The theory of the optimal state estimation is
described in [24],

Correction step:
a) Calculate the Kalman Gain

S = HPkHT + R

s
b) Correct the a priori state estimate

xk =x-k+Kk(zk-h(xkfi))

c) Correct the a posteriori error
covariance matrix estimate

Pk=Pk--KkHP~

Prediction step:
a) Predict the state

xk = Axk_x

b) Predict the error covariance matrix

Pk =AkPk_xAk +Qk_1

xk

Z

R

K

A

H

the predicted or a priori value of
the estimated state vector
the corrected or a posteriori
value of the estimated state
vector
the measurement or observation
vector
the sensor noise covariance or
measurement uncertainty
the dynamic disturbance noise
covariance
the predicted or a priori value of
estimation covariance
the corrected or a posteriori
value of estimation covariance
Kalman gain
Jacobian of the system model
with respect to state
the measurement sensitivity
matrix or observation matrix

h(xk, 0) the predicted measurement

zk — /i(x^,0) innovations vector

Figure 2.10 Kalman filter process, [35].

2.9 Trajectory reconstruction
Trajectory reconstruction is difficult process when the high precision is supposed to be
reached and when there is not any support of additional external information system or
auxiliary system implemented, [36], [37]. The successive computation of position is
called strapdown navigation (Figure 2.11). In addition, heading from the magnetometer
should be taken into account. Nevertheless, surrounding environment may differ with
the time and place where the measurement is performed. Because of that, the data from
magnetometer is not always included into the strapdown EVIU system. This issue is
discussed in [35],

The essential processing function includes double integration of acceleration to
obtain the position. The measured angular rates are also integrated to maintain the
knowledge of the EVIU orientation. The initial position, velocity and orientation must be
known before the initialization of integration [13]. The long-term evaluation of the
orientation, velocity and position in time brings high inaccuracies into this results. In

16

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

addition, the inaccuracy in determination of the orientation causes additive de-rotation
of the measured acceleration in I M U ' s body frame and it induces incorrect subtraction
of the Earth gravitational force. Figure 2.11 shows the simple strapdown INS and its
outputs.

I M U

accel

BODY-FIXED
t r t

SCALING, OFFSET,
ERROR COMPENS.

9 y r 0 SCALING, OFFSET.
\^7\ ERROR COMPENS.

T T T
ATTITUDE RATE

SENSED INERTIAL ACC

t t t
COORDINATE

TRANSFORMATION

VELOCITY POSITION

t t t m

1111
ATTITUDE UPDATE

BODY ATTITUDE

GRAVITATION
SUBTRACTION

Figure 2.11 Simpie strapdown INS and its outputs [13].

2.10 Problems
- During the measurement, drifts and offsets arise on the output of the calibrated

gyroscopes. The I M U orientation is defined (R P Y to E N U) . With time, the
inaccuracy of orientation determination rises and thus the velocity and position
is computed with enormous errors (in direction and in size).

- The acceleration also drifts during the time. Then the measured acceleration is
not exactly 1 g while the I M U stays still. When the EVIU stays still, the
acceleration may be averaged and normalised. Nevertheless, during the walk or
any other motion, the acceleration drift is not fully compensated and thus the
estimated velocity (and position) may differ from the true values due to the
integration of the acceleration.

- Metal objects placed close to the I M U affects the magnetometer output. It is
called as soft iron offset. We assume that when the metal objects are present at a
distance of at least fifteen centimetres, they do not affect measured values with
the impact on the result (the magnetic north determination). The hard iron offset
(the effect of the P C B , electronical components, etc.) has to be suppressed.

17

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

3 DISSERTATION OBJECTIVES

In Chapter 2, the recent developments in the field of inertial navigation systems and
inertial positioning systems were presented. The analysis clearly identified new
directions of the future research:

• S Y S T E M F O R T E R R E S T R I A L E V A L U A T I O N OF T H E C U R R E N T S T A T E

This may furnish for example G N S S navigation when the signal is lost, but, also and
above all, this may be used for terrestrial indoor navigation or position determination
for short distances, up to several meters, while walking, jogging, driving, etc.

The task is to develop a system that works without any step detection algorithms
and map assigning, purely based on sensor outputs processing, with sufficient accuracy.
It is also desirable to get a system that can be hold in the hand during its operation.

Therefore, we can define the following objectives of the dissertation:

• To develop the method for determination of the sensors orientation with respect
to the navigation coordinates using only the sensor outputs while the system is
essentially stationary.

• To develop the method for determination of the sensors orientation with respect
to the navigation coordinates using only the sensor outputs while the system is
not stationary and while it moves.

Those tasks lead to coordinate alignment ability and thus to ability of subtraction of
split g-force (measured gravitational acceleration) from particular axes with eminent
focus on accuracy.

• To create an artificial neural network (A N N) that recognizes and defines "what
is going on" with the system and to implement it.

It leads to reduction of the positioning errors due to parasitic sensed rotation rates and
accelerations. It also ensures that the integration errors w i l l not be cumulated during
whole measurement.

• To create a Kalman filter; that is a necessary element where data from the
inertial sensors are used for the position determination.

After performing all these tasks, integrations may follow and the velocity and position
in time may be computed as well as the trajectory of the moving object can be
reconstructed. In addition, the determination of the unit orientation and heading as a
function of time is available.

• To develop an I M U with application that evaluates all previous tasks and
presents results.

Developed EVIU wi l l be based on proper modules with 3-D accelerometer, 3-D rotation
rate sensor and 3-D magnetometer connected to appropriate M C U . Proposed application
running on P C wi l l process data from the I M U and M C U including graphical
representation of results and verification of the system in which a new method of fully
inertial positioning is implemented.

18

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

• To perform and evaluate series of experiments.

The complex system w i l l be experimentally tested in different scenarios to verify
improvements in positioning.

19

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

4 INERTIAL MEASUREMENT UNIT

In this Chapter the hardware, firmware and data acquisition techniques are presented. A t
the end, calibration and compensation process for used sensors is demonstrated. These
steps lead to obtaining of the basic orientation and linear acceleration used for F M U
positioning from inertial sensors.

4.1 Hardware
A s a suitable equipment we chose 9-DOF sensor module. Firstly, we used a module
M i n F M U - 9 v2 with an accelerometer, a gyroscope and a magnetometer, all of them
3-axial (see Figure 4.1). A l l sensors use M E M S technology with communication I 2 C
interface. This module was connected to common M C U combining processor
A T m e g a l 6 L and 32 Mbi t flash memory. Measured data (3-D acceleration, 3-D rotation
rate and 3-D magnetic field in Cartesian coordinates) were stored into the flash memory.
After acquisition they were copied to the P C and processed in M A T L A B ™ [38],
Algorithms for positioning have been developed, including artificial neural network and
Kalman filters.

This hardware represents a cheap solution, but its low computing power
performance caused in very low data rate and insufficient positioning for real scenarios.
For example, when the walk motion is estimated, the rate of data sensing should be
about 80 Hz . Above mentioned module M i n I M U - 9 with M C U provided about 16
timestamps per second. The key problem of this solution is complicated access to
memory for real-time application (continuous time experiment). Thus, it was necessary
to find another solution.

Figure 4.1 MinIMU-9 v2 board and sensor axis orientation, [46].

A s a second hardware X - N U C L E O - I K S 0 1 A 1 board was chosen. It consists of motion
M E M S and environmental sensors. It is compatible with Arduino Uno. Measured data
are sent by B T or by U S B cable to a P C and may be processed in real time or saved for
further processing. This sensor board is designed around STMicroelectronics'
L S M 6 D S 0 3-axis accelerometer, 3-axis gyroscope, the L I S 3 M D L 3-axis magnetometer
and in addition, the HTS221 humidity and temperature sensor and the L P S 2 5 H B *
pressure sensor is available.

Information and technical parameters are in A P P E N D I X C.

- 20 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

• HTS221 LSM6DS0 S T Morpho connector

] LPS25HB [~J LIS3MDL f j Arduino UNO R3 connector

• DIL 24-pin

Figure 4.2 X-NUCLEO-IKS01A1 board [46].

4.2 Firmware
The function of Arduino U N O is to read data from sensors and send them directly to the
P C . I 2 C protocol is used for data retrieval from the sensors. Arduino Uno was
programmed in Arduino I D E application using a programming language C++.

The firmware code is divided into two sections, the first part (setup function) is
performed on start-up of Arduino and applies the settings, as shows the example part of
code below. Further information about the register settings are listed in A P P E N D I X C,
and A P P E N D I X D . Arduino is set as a master and sensors are set as slaves.

v o i d s e t u p ()
{

W i r e . b e g i n () ;
S e r i a l . b e g i n (1 1 5 2 0 0) ;

v o i d s e t u p ()
{

W i r e . b e g i n () ;
S e r i a l . b e g i n (1 1 5 2 0 0) ;

//
//

I 2 C i n i t
SP i n i t

s e t u p M a g () ;
s e t u p A G () ;

}

//
//
//

M a g n e t o m e t e r r e g i s t e r s s e t t i n g
A c c e l e r o m e t e r a n d g y r o s c o p e
r e g i s t e r s s e t t i n g

The second part (loop function) reads the sensor data and sends them to the P C , as it is
shown in next code part. Whole communication cycle captured by oscilloscope is
shown in Figure 4.3. The magenta curve represents Arduino T X in time, yellow curve
represents I 2 C S D A and cyan curve represents I 2 C S C L . For more details on
communication, please see A P P E N D I X D.

|E) 1ms -11.880ms QStop g| 1/ 1 B100»

Figure 4.3 One Arduino communication cycle, consequently. TX, SDA, SCL.

21

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

v o i d l o o p ()
{

S t r i n g o u t p u t = "";
readFrom(30, B00101000, 6) ;

w h i l e (W i r e . a v a i l a b l e ())
{

s h o r t c = W i r e . r e a d () ;
c += (W i r e . r e a d () « 8) ;
o u t p u t += S t r i n g (c , DEC) +

readFrom(107, B00011000, 6) ;

w h i l e (W i r e . a v a i l a b l e ())
{

s h o r t c = W i r e . r e a d () ;
c += (W i r e . r e a d () « 8) ;
o u t p u t += S t r i n g (c , DEC) +

readFrom(107, B00101000, 6) ;

w h i l e (W i r e . a v a i l a b l e ())
{

s h o r t c = W i r e . r e a d () ;
c += (W i r e . r e a d () « 8) ;
o u t p u t += S t r i n g (c , DEC) +

// Magnetometer r e a d i n g

ii ii .

// Gyroscope r e a d i n g

II II .

// A c c e l e r o m e t e r r e a d i n g

o u t p u t += S t r i n g (m i l l i s () , DEC) + " "; // timestamp

i f (d i g i t a l R e a d (b u t t o n P i n) == HIGH) // b u t t o n s t a t e
o u t p u t += "0";

e l s e o u t p u t += "1";

S e r i a l . p r i n t l n (o u t p u t) ; // send t o PC
d e l a y (7) ;

}

4.3 Data acquisition
The firmware in Arduino defines the format in which the data are sent. In the source
code, the package contains measured accelerations in x, y and z-axis from accelerometer
(Figure 4.5), angular rate in x, y and z-axis from gyroscope (Figure 4.4) and magnetic
field in x, y and z-axis from magnetometer (Figure 4.6). There is the possibility to
receive the time stamp to get precise At, in other words, to get accurate time between
two samples. In addition, Arduino sends the button state. This button allows to receive
additional boolean value that is defined by user.

Axes of all sensors have essentially the same origin but magnetometer has a
different right-handed axis system than accelerometer and gyroscope. Thus, we have to
rotate measured magnetic field vector by +90 degrees along common z-axis and then
transform the coordinate system of magnetometer using transformation matrix (2.3.1) to
get one united vehicle-fixed coordinate system R P Y (Figure 4.7).

22

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Figure 4.4 Direction of detectable Figure 4.5 Direction of detectable
angular rates. accelerations.

Figure 4.6 Direction of detectable Figure 4.7 Body-fixed RPY
magnetic field. (roll-pitch-yaw) axis.

Arduino sends just a raw data from converters.

Based on the register settings, the acceleration is measured in range of ±2 g and
the sensitivity is then 0.061 mg/LSB. The rotation rate sensor is set to range of
±500 dps, the sensitivity is then 17.5 mdps/LSB. The magnetometer measures magnetic
field in range of ±4 gauss and the sensitivity is then 0.146 mGauss/LSB. Resolution of
all sensors is 16 bits.

Typical magnetic field at places where the measurements were performed is about
48.897 nT (488.977 mGauss), see T A B L E 4.1.

TABLE 4.1 Magnetic field values in Kohoutovice, Brno [45].

Model Used: WMM2015
Latitude: 49.1962214° N
Longitude: 16.5407075° E
Elevation: 360.0 m GPS

Date
Declination
(+ E 1 - W)

Inclination
(+D|-U)

Horizontal
Intensity

North Comp
(+N|-S)

East Comp
(+ E 1 - W)

Vertical Comp
(+D|-U) Total Field

2015-04-16 4.1030° 65.4184° 20340.9 nT 20288.7 nT 1455.4 nT 44466.1 nT 48897.7 nT
Change /year 0.1218° 0.0068° 7.4 nT 4.3 nT 43.7 nT 30.2 nT 30.5 nT
Uncertainty 0.36° 0.22° 133 nT 138 nT 89 nT 165 nT 152 nT

Finally, we get 11 values from 9-DOF device per sample (this is what the device sends:
[magx, magy, magz, gyrx, gyry, gyrz, accx, accy, accz, time, button], and those sets are sent
with frequency of about 86 Hz.

The required sampling frequency is given by the spectrum of the measured data
during typical and particular movements. For the walk and staying still the sampling
frequency about 80 H z is satisfactory. For the data processing while the I M U motion is

23

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

running or flying, higher sampling frequency is required. For graphic representation see
amplitude spectrums below: Figure 4.8 - Single-sided amplitude spectrum of the
sensor's data - walk, Figure 4.9 - Single-sided amplitude spectrum of the sensor's data
- swinging.

Single-Sided Amplitude Spectrum of acc(t)

0.04

g
>* 0.02

1 o 15

Frequency (Hz)

10 15
Frequency (Hz)

20

20

Single-Sided Amplitude Spectrum of gyro(t)

10 15 20
Frequency (Hz)

10 15 20 25
Frequency (Hz)

30

30

0.04

. N

> 0.02

10 15
Frequency (Hz)

20

- N 2

10 15 20
Frequency (Hz)

25 30

Figure 4.8 Single-sided amplitude spectrum of the sensor's data - walk.

24

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Single-Sided Amplitude Spectrum of acc(t)

0 1

-x 0.05

L

0 1

-N 0.05

Single-Sided Amplitude Spectrum of gyro(t)

5

5 10 15 20
Frequency (Hz)

4 6 8
Frequency (Hz)

5 10 15
Frequency (Hz)

4 6 8
Frequency (Hz)

10

-N 5

5 10 15
Frequency (Hz)

aD
!L

Figure 4.9 Single-sided amplitude spectrum of the sensor's data - swinging.

10

2 4 6 8 10
Frequency (Hz)

4.4 Sensor calibration and compensation
Sensor calibration is the process determining the parameters of the compensation
model. Sensor compensation is the process recovering the sensor inputs from the sensor
outputs.

Figure 4.10 shows the rotation rate measured by the rotation rate sensor when the
I M U was laying on the table for 30 minutes without any movement. The next figure
(Figure 4.11) shows the integration of the measured data in degrees in time. The
detailed figure shows first ten seconds of the measurement. Y o u can see that the data are
almost correct for the first three seconds, then the error rises significantly.

Gyroscope - bias offset and drift in 30 minutes

rotation rate along x-axis
rotation rate along y-axis
rotation rate along z-axis

800 1000 1200

time [s]

Figure 4.10 Raw rotation rate in time when IMU is still - 30 minutes.

1400 1600 1800

25

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Angle from rotation rate sensor in 30 minutes

800
C 600
<u 400
CT 200

0
-200
1̂00

c CO

angle along x-axis
angle along y-axis
angle along z-axis

Detail of first 10 seconds
0.2

0 300 600 900 1200 1500 1800
time [s]

Figure 4.11 The error in angle determination caused by offset and drift.

2 4 6 8 10
time [s]

The integration of the biases of the accelerometer (see Figure 4.12) cause the error in
the position determination, this error increases quadratically over time. The derotation
have also more significant error due to gyroscope biases integration. The bias of the
gyroscope accumulates the position error over time proportional to the cubic function of
the time index. The peaks at the end of the measured data are given by typing on a
keyboard while the EVIU was lying on the same table as the keyboard 1 meter away.

Accelerometer - bias offset and drift in 30 minutes
0.01

£ 0.005

I 0
CD
o -0.005 o o TO

acceleration drift in x-axis
acceleration drift in y-axis
acceleration drift in z-axis

-0.01
300 600 1500 900 1200

time [s]

Figure 4.12 Raw acceleration after the expected value subtraction when the IMU is still

1.2

1800

10 20
time [s]

10 20
time [s]

10 20
time [s]

-0 1 58
10 20

time [s]
10 20

time [s]
10 20

time [s]

Figure 4.13 Raw rotation rates (top) and raw accelerations (bottom) in particular axis.

In Figure 4.13, the raw rotation rates and raw accelerations in particular axes (in order
x-axis, .y-axis and z-axis from left to right) are shown - the 2520 samples are taken over

- 26 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

a period of 30 seconds. The next Chapters show the biases determination for both of the
sensors.

4.4.1 Bias of the accelerometer

The vector of the average output in the body frame of accelerometer is defined by
(4.4.1).

Fb = [fx'fy'fzV (4.4.1)

This is the sum of the correct acceleration vector Fb in the body frame and the bias
vector of the accelerometer in the body frame, (4.4.2).

F b = F b + V b (0) (4.4.2)

After the derotation of acceleration vector into inertial coordinate system, we expect
that the acceleration vector equals [0, 0, 1] T. The transformation from R P Y to E N U
coordinates is defined as:

RRPY
^ ENU [\R lp l y]

(4.4.3)

SyC p CpCy SpSy S p 'SpCy ~\~CpSySp

CyCp

SP

'CpSy ~\~SpCySp SpSy ~\~CpCySp

•SRCp •CRCp

where Y represents yaw angle, P represents pitch angle, R represents roll angle,

SR = sin(i?)

CR = cos(R)

SP = sin(P)

CP = cos(P)

SY = sin(7)

CY = cos(7)

(4.4.4)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)

For details see A P P E N D I X A . The bias of the used accelerometer is then defined by
(4.4.10). The example data are given by the average of the measured data while the
EVIU was laid on a table without any movement.

Vb(0) = Fb-Fb

"-0.160 1910" " - 0.1602160" " 2.5e-05 "
-0.0275174 - -0.0278812 = 3.638e -04

0.986702 0.986698 4e-06

(4.4.10)

where Fb is the average measured acceleration vector and Ft is a vector [0, 0, 1] T

affected by the EVIU's orientation (bank, elevation and heading angle - BK, EL, H in

- 27 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

order) found out during the stationary stage. The BK, EL and H value was determined
from the quaternion that defines the absolute orientation of the F M U in E N U coordinates
(averaged). Those values are:

H= 0.128828 °, EL = 9.219442 °, BK= -1.597682 °

and Fb is determined by (4.4.11):

- sin f3 cos EL

Fh = sin EL • 1
cos BK cos EL

(4.4.11)

where /? = s i n _ 1 (); the heading H does not appear here. Those angles are not
cosEL

equal to the roll, pitch and yaw angle in R P Y coordinates.

4.4.2 Bias of the gyroscope
Theoretically, the biases of the rotation rate sensors are caused by the Earth rotation
rate. The real EVIU gyroscope measures the sum of the Earthrotation rate f l i e and the
bias of the rotation rate sensor V p as shows the relation (4.4.12). A s [45] and [48]
presents, the earth rate is approx. 7.292115090-10"5 rad/s (4.178074184-10"3 7s). This
value may be ignored, the resolution of used I M U is higher (the sensitivity
is 15.258789-10"3 7s when the measuring range of particular gyro axes is ±500 7s) and
equation (4.4.13) is applied. In order to remove the gyro bias, the average rotation rate
vector is subtracted from the measured rotation rate vector.

- b
W

<*>x

* b

(4.4.12)

(4.4.13)

4.4.3 Calibration and compensation

The calibration is divided into two processes in this case. The first one is called "hard"
sensor compensation and calibration and it is performed always when the I M U is
switched on. During this "hard" calibration process the biases of the accelerometer and
gyroscope are subtracted, the scale factor for the accelerometer data is defined and
magnetometer data are adjusted in way that the magnetic field strength is adapted to the
location of measurement (the location should be chosen in the application). Geographic
coordinates of the selected locations are available in A P P E N D I X B , part B . 1.

The second type of calibration, that may be called as recalibration or "soft"
calibration, is performed automatically when the state of the I M U is defined as the
"st i l l" . The acceleration vector is scaled - values are normalised. Based on the measured
rotation rates the new calibration constants are found out and applied when the I M U
state changes to the "walking" as the new bias offsets.

In Figure 4.14 you can see the raw received data from the sensors, converted to
appropriate units ([g] for the acceleration; [7s] for the rotation rate; [mGauss] for the
magnetic field magnitude). On the right side of the charts, the last measured values are

28

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

shown (in order x-axis, _y-axis and z-axis value). This graph shows the one turn in
clockwise direction by 360°, when the blue curve represents the x-axis, the green curve
represents the _y-axis and the red curve represents the z-axis. The x-axis of the graph
represents time in [s], as elsewhere throughout the document of the same graph type.

We are not able to determine the heading of the I M U unless we have data from
the calibrated magnetometer and we know the magnetic declination (S) of the place
where the measurement was performed. The rotation to the flat position must be applied
to the calibrated magnetometer data in order to determine the heading correctly in 3-D.
The magnetic declination is an angle in the horizontal plane between magnetic north
(where the compass needle points, corresponding to the direction of the Earth's
magnetic field lines) and true north (geographic North Pole). See T A B L E 4.2 for
information about the declination in Kohoutovice, Brno.

-0.027
-0.064
1.013
1.173
0.157
1.242

-337.036
69.570

166.764
Figure 4.14 Data from uncalibrated sensors in time fsj.

TABLE 4.2 Magnetic declination for Kohoutovice, Brno [47].

Model Used: WMM2015

Latitude: 49.1962214° N

Longitude: 16.5407075° E

Date Declination

4.02° E ± 0 . 3 6 °
2015-04-16 changing by 0.12° E

per year

True north
Ö

Magnetic
north

5...positive
magnetic

declination

Then, Figure 4.15 shows calibrated magnetometer data and sin(x) and cos(x) function
that is formed when the I M U rotates along a single axis by 360° with starting and
ending heading equals S - the x-axis points straight to magnetic north.

750
500
250

0
-Z50
-500
-750

180.623
-4.718

-405.257
625,5 627 623,5 630 631,5 633 634,5

Figure 4.15 Calibrated magnetometer data (360° rotation) [mGauss] in time [s].

- 29 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

A calibration of accelerometer and magnetometer are based on the same principle.
Because of static nature of quantities measured by those sensors, we can measure
minimum and maximum value in each axis (in any orientation) as the calibration
constants.

In the case of magnetometer, the maximum values were reached when particular
axes were pointing in the same direction as the vector of magnetic field. In the case of
accelerometer, maximum values were reached when particular axes were pointing
downwards, in the direction of gravitational acceleration. The scale factor was then
computed based on the knowledge of the strength of Earth's gravity and Earth's
magnetic field.

The (4.4.14) and (4.4.15) equations have been used to reflect the calibration
constants in measured data. The a is an arithmetic average of minimum and maximum
value of measured acceleration (magnetic field), separately determined for each axis.
The first relation removes sensor offset. The second relation scales measured values to
the interval in which the values should be. The acceleration is correct due to the
multiplication by 1 g. The constant 489.151 for magnetometer scales the measured
magnetic field into the range of the total magnetic field on the specific place on the
Earth's surface (see A P P E N D I X B , part B.3). The part of the code is shown in Figure
4.16. In fact, finally this is expressed in a matrix form.

^output ~ ^'input ^miamax 4-^4)

2-z
_ ^ L output

zoutput*-~ (4.4.15)
min,max

/ / O f f s e t
a c c . s e t X (a c c . x () - ((accMax.x()+accMin . x ()) 12)) ;
a c c . s e t Y (a c c . y () - ((a c c M a x . y () + a c c M i n . y ()) 1 2)) ;
a c c . s e t z (a c c . z () - ((a c c M a x . z () + a c c M i n . z ()) 1 2)) ;

mag.setX(mag.x()-((magMax.x()+magMin.x()) 1 2)) ;
mag.setY(mag.y()-((magMax.y()+magMin.y()) 1 2)) ;
mag.setz(mag.z()-((magMax.z()+magMin.z()) 1 2)) ;

/ / S c a l e
a c c . s e t X (l * a c c . x () / ((a c c M a x . x () - a c c M i n . x ()) 1 2)) ;
a c c . s e t Y (l * a c c . y () / ((a c c M a x . y () - a c c M i n . y ()) 1 2)) ;
a c c . s e t z (l * a c c . z () / ((a c c M a x . z () - a c c M i n . z ())/2)) ;

mag.setX(489.151*mag.x()/((magMax.x()-magMin.x()) / 2)) ;
mag.setY(489.151*mag.y()/((magMax.y()-magMin.y()) / 2)) ;
m a g . s e t z (4 8 9 . 1 5 1 * m a g . z () / ((m a g M a x . z () - m a g M i n . z ()) / 2)) ;

Figure 4.16 C+ + source code -a part of calibration [QtJ.

After the calibration when the EVIU is still, the magnetometer shows magnetic field with
total strength of 489.151 mGauss, the accelerometer shows the total gravitational
acceleration of +1 g. The gyroscope is calibrated every time when the unit is switched
on and drifts are subtracted to achieve zero rotation rate when the EVIU does not rotate
(and does not move). During the measurement when the EVIU is still, the calibration
constants are adjusted accordingly.

- 30 -

http://acc.se

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Recalibration may be done also manually during the measurement. Nevertheless it
is necessary to ensure the conditions for the calibration. The measurement of the still-
shake-still state of the EVIU is shown in Figure 4.17.

Cciiib

1,8

i,2
0,6

0

-0,6

1,2

ated Acceleror eter

0.002
-0.037
0.999

Cciiib

1,8

i,2
0,6

0

-0,6

1,2

0.002
-0.037
0.999

Cciiib

1,8

i,2
0,6

0

-0,6

1,2

j vif v *y v

0.002
-0.037
0.999 -1,8

Calib

25

ated Gyro

5 226,5 228 229,5 231 23 -,5

0.002
-0.037
0.999

450

300

150

a
-150

-j'j'j

-450

B i l i l 0.086
0.248
0.001

450

300

150

a
-150

-j'j'j

-450

l U U ^

0.086
0.248
0.001

450

300

150

a
-150

-j'j'j

-450 Tf
0.086
0.248
0.001

450

300

150

a
-150

-j'j'j

-450

2
1 i i i i i i i

5 226,5 22S

1 1 U V ':..[;! K
229,5 231 23-2,5

0.086
0.248
0.001

Figure 4.17 Data from calibrated sensors while shaking.

A s you can see, the rotation rate and the acceleration show "what is going on" with the
EVIU in the body coordinate frame in time. The EVIU is placed on the table but it is not
perfectly in flat position (in a horizontal plane). The .y-axis of the gyroscope has the
value of 0.248 °/s after the movement. This is the drift and it has to be suppressed for
further processing. Thus, the calibration of the gyroscope is necessary during the
measurement. This is exactly what the "soft" calibration performs.

5 NEURAL NETWORKS

The new proposed approach is primarily based on the artificial neural network that is
designed in order to determine state - "what it is going on". In this work, recognition of
two states are presented. The first case is that the I M U walks, the second case is that the
EVIU is static regardless of its orientation. In principal, further states may be added, for
example jogging, running, driving, riding, shaking, flying, falling etc.

The very important piece of information is that when the A N N determines the
state of the EVIU incorrectly, there are two cases of the wrong decision.

1. The A N N determines the walk and the EVIU is still

2. The A N N determines that the EVIU stays still and the EVIU walks.

The first case does not bring complications, however it is undesirable, since the A N N
does not improve the positioning. The second case is unacceptable, the orientation of
the moving EVIU is recalculated as it is "s t i l l" (from the actual accelerometer data). The
further processing of data after the incorrect determination of the orientation causes the
error with a very high severity.

31

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

5.1 Principle of ANN
I decided to create time-delayed neural network, since the static values of one sample do
not have any predictive value. Figure 5.1 shows principle of convenient A N N . It is
nonlinear autoregressive network with external input (NAPvX) [41]. More simple type
of network and also very convenient is F F T D (feed-forward time-delayed) network,
[42], this type does not carry older outputs into the input for to get new output (the
principal scheme is in Figure 5.2).

To obtain the training data we recorded a walk with stops. The person holding the
I M U used the button to determine i f he is walking or is standing still. Then, the neural
network was trained with the input set consisting of measured data and the button state
as the target output.

A part of example script, code for M A T L A B ™ , is shown in Figure 5.7. This
script was written for automatic creation, training and simulation of F F T D artificial
neural network. While the train function is given, the time delay (the number of
previous samples used) and the number of neurons in hidden layer were sweeping. The
training set is divided to three blocks - training part, validation part and test part. The
goal criteria have to be set properly.

Once the neural network is trained (one of the given criterion is reached), the
A N N structure and its constants (weights, biases and others) are saved with information
about time delay and number of neurons in hidden layer. Then, the F F T D A N N is used
with unknown data (the data set which was not included in the training set) and its
results were depicted in graphical form.

[x(t),x(t-1) x(t-n)] ANN hidden layer

Mt-1) y(t-n-i)]

Figure 5.1 NARXANNprinciple.

[x(t),x(t-1),..x(t-n)] ANN hidden layer

Figure 5.2 FFTD ANN principle.

Parameter and architecture properties such as training function, performance function,
divide function, adaptation function, transfer function etc. also have a significant impact
on A N N output.

Following text describes the variables and the most suitable functions for the
input-output time-series problem with a time-delay neural network.

T R A I N I N G F U N C T I O N (net.trainFcn)

trainlm Levenberg-Marquardt backpropagation is recommended for most problems,
but for some noisy and small problems.

Our training occurs according to trainlm training parameters, shown here
(default values are shown, see T A B L E 5.1) with their default values:

32

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

TABLE 5.1 Default training parameters [MATLAB™].

net.trainParam.epochs 1000 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.max fail 6 Maximum validation failures

net.trainParam.min_grad MO" 7 Minimum performance gradient

net.trainParam.mu 0.001 Initial mu

net.trainParam.mudec 0.1 mu decrease factor

net.trainParam.mu inc 10 mu increase factor

net.trainParam.mu max M 0 1 0 Maximum mu

net .trainParam .show 25 Epochs between displays (NaN for no)

net .trainParam. showCommandLine 0 Generate command-line output

net .trainParam. sho wWindow 1 Show training GUI

net.trainParam.time inf Maximum time to train in seconds

The validation vectors are used to stop training i f the network performance on the
validation vectors fails to improving (number of consequent trials is defined in
maxfa i l) .

The test vectors are used as a further check that the network is generated well , but
do not affect the training.

trainbr Bayesian regulation backpropagation can take longer but obtain a better
solution

trainscg Scaled conjugate gradient backpropagation is recommended for large
problems as it uses gradient calculations which are more memory efficient
than the Jacobian calculations the other two algorithms use.

I N I T I A L I Z A T I O N F U N C T I O N (net.initFcn)

learngd Gradient descent weight and bias learning function, calculates the weight
change dW for a given neuron from the neuron's input P and error E, and the
weight (or bias) learning rate LR, according to the gradient descent.

learngdm Gradient descent with momentum weight and bias learning function,
calculates the weight change dW for a given neuron from the neuron's input
P and error E, the weight (or bias) W, learning rate LR, and momentum
constant MC, according to gradient descent with momentum.

A D A P T A T I O N L E A R N I N G F U N C T I O N (net.adaptFcn)

adaptwb Sequential order incremental training w/learning functions, that adapt
network with weight and bias learning rules.

P E R F O R M A N C E F U N C T I O N (net.performFcn)

mse Mean squared normalized error performance function. It measures the
network's performance according to the mean of squared errors.

33

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

msereg

sse

Mean squared error with regularization performance function. It measures
network performance as the weight sum of two factors: the mean squared
error and the mean squared weights and biases.

Sum squared error performance function. It measures performance
according to the sum of squared errors.

T R A N S F E R F U N C T I O N (net.transferFcn)

purelin Linear transfer function is used in final layer of multilayer networks.

i M y . -

/ \
/ 0 >

1 - i

a = purctin(n)

Figure 5.3 Linear Transfer Function.

logsig Log-sigmoid transfer function is commonly used in the hidden layers
logsig(n) = 1 / (1 + en).

i

0 >

-1
a = logsigfn)

Figure 5.4 Log-sigmoid Transfer Function.

tansig Hyperbolic tangent sigmoid transfer function is used in our neural network
in hidden layer; tansig(n) = 2/(l+e ~2*n) -1, mathematically equivalent to
tanh(N).

-> n
0

a = rarisig(n)

Figure 5.5 Hyperbolic tangent sigmoid Transfer Function.

hardlims Symmetric hard-limit transfer function,
hardlims(n) = 1 i f n > 0; -1 otherwise

a
A + l

-1
a - hardlims(ti)

Figure 5.6 Symmetric Hard-Limit Transfer Function.

- 34 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

A R C H I T E C T U R E P R O P E R T I E S

net.numlnputs Number of inputs. M y network has 6 x timeDelay input values.
Those are \gyrx gyry gyrz accx accy accz] and their history.

net.numLayers Number of layers. M y network has two layers.

net.biasConnect Boolean vector, i f net.biasConnect(i)=l (my network), layer i has a
bias, and net.biasesji} is a structure describing that bias.

net.inputConnect numLayer-by-numlnputs Boolean vector,
when net.inputConnect(i,j)=l, layer i has a weight coming from
input j , and net.inputWeightsjij} is a structure describing that
weight.

net.layerConnect numLayer-by-numLayers Boolean vector,
when net.layerConnect(i,j)=l, layer i has a weight coming from
layer j , and net.layerWeightsjij} is a structure describing that
weight.

net.outputConnect 1 -by-numLayers Boolean vector,
i f net.outputConnect(i)=l, then the network has an output
from layer i , and net.outputsji} is a structure describing that
output.

net.numOutputs Number of network outputs according to net.outputConnect.
M y network has one output value. It is [what it is going on],

net.numlnputDelays Maximum input delay according to all net.inputWeightjij}
delays.

net.numLayerDelays Maximum layer delay according to all net.layerWeightjij}
delays.

Further text defines how the time-delay neural network with 15 hidden neurons in one
hidden layer and one hidden neuron in output layer may look. Transfer functions are set
to tansig in layer 1 and purelin in layer 2.

net = network;

net.numlnputs = 6;

net.numLayers = 2;

net.biasConnect(l) = 1;

net.biasConnect(2) = 1;

net.inputConnect(l,l:6) = 1;

net.layerConnect(l,l:15) = 1;

net.layerConnect(l,l) = 1;

net.outputConnect(2) = 1;

net.layers{l}.transferFcn = 'tansig';

net.layers{2}.transferFcn = 'purelin';

This setting is performed by "timedelaynet" script, as shows Figure 5.7. This script
was created to finding the best structure of artificial neural network to solving of the
time-series problem. The best result was achieved by the neural network that has one

35

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

hidden layer with 15 neurons and one neuron in the output layer, with the transfer
functions tansig and purelin in order and with the time delay set to 40 samples; that
corresponds to approx. 0.5 s of the acquisition.

% d l y - t i m e d e l a y ;
% NNUM -number of neurons i n hidden l a y e r ;
% X -INPUT SET; % W -measured data from sensors;
% T -TARGET SET; % Q -manual mark from s w i t c h ;

f u n c t i o n [net, X s , X i , A i , T s , d l y , nnum] = TD_TRAINER (DLY, NNUM, W, Q)

X = t o n n d a t a (W , t r u e , f a l s e) ; %preprocess of v a r i a b l e s f o r ANN
T = t o n n d a t a (Q , t r u e , f a l s e) ;

f o r d l y = l : l : 3 9
f o r nnum=3:l:20
c l e a r t d _ n e t ;
net = timedelaynet(0:dly,nnum, ' t r a i n l m ') ;
n e t . i n p u t . p r o c e s s F e n s = { 1removeconstantrows 1, 1mapminmax 1};
net.output.processFens = {'removeconstantrows 1, 1mapminmax 1};
net.trainParam.min_grad = l e - 6 ;
n e t . t r a i n P a r a m . g o a l = l e - 6 ;
net.trainParam.max_fai1=10;
n e t . d i v i d e F c n = 1 d i v i d e r a n d ' ;
% n e t . d i v i d e F c n = 1 d i v i d e b l o c k 1 ;
n e t . d i v i d e P a r a m . t r a i n R a t i o = 70/100;
n e t . d i v i d e P a r a m . v a l R a t i o = 15/100;
n e t . d i v i d e P a r a m . t e s t R a t i o = 15/100;
[X s , X i , A i , T s] = p r e p a r e t s (n e t , X , T) ;
n e t . l a y e r s { 1 } . t r a n s f e r F c n = ' t a n s i g ' ;
n e t . l a y e r s { 2 } . t r a n s f e r F c n = ' p u r e l i n ' ;

net = t r a i n (n e t , X s , T s , X i , A i) ;
net.name = ['FFTD ' num2str(nnum) '_' n u m 2 s t r (d l y)] ;
save('NNs_FFTD.mat', 'net', '-append');

end;
end;

Figure 5.7 MATLAB™ code for verifying the suitability ofTDANN.

A s the best-input parameters seem to be a vector of raw data from the accelerometer and
a vector of raw data from the gyroscope, both in all three axes. The magnetometer data
were discarded due to important dependence on the surrounding magnetic strength.

The A N N may be also trained by adjusted data from the accelerometer and
gyroscope, e.g. by gravitational vector length as the first input parameter and rotation
vector length as the second input parameter. Nevertheless, trained network showed
worse result.

The training of the A N N with chosen structure (see Figure 5.8) is relatively
computationally complex. It had been trained on P C (16 G B R A M , Intel® C O R E ™ 4 x
i5-4690K C P U @ 3.50GHz, SSD) using M A T L A B ™ .

36

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Figure 5.8 ANN structure -feed forward, time delay, purelin transfer function in output layer.

^ Time Delay Neural Network (view] P X
Hidden Output

15

Figure 5.9 ANN structure -feed forward, time delay, tansig transfer function in output layer.

5.2 ANN training results
Because of the physical background and experimental results, I decided to set the
time-delay n to 40 idly) and number of neurons in hidden layer (nnum) to 15, [39], [40],
Because of satisfactory results, I decided to use less complex T D N N for the time-series
problem.

When the structure and functions in A N N were chosen, other artificial neural
networks with the same structure but different input sets were trained.

The trained neural networks (discussed further) differ in complexity of training
sets and their data division during the training. The first group of trained neural
networks uses the purelin transfer function in output layer (Figure 5.8). The second one
uses tansig transfer function (Figure 5.9).

We used three different training sets. The first set contains only one transmission
between staying still and walking. The second training set contains three state changes.
The last one training set contains many changes between the two states, for which we
supposed the best performance after the training. For each training set, we trained the
A N N with both, the random and block data division. The random data division divides
whole input set into training, validation and test set randomly while the block division
divides the input set sequentially. The training set and the test set are disjoint (test data
is not included in the set that is used for pure training).

The plotresponse(t,y) M A T L A B ™ function takes the target set t and the A N N
output y, and plots them on the graph showing the errors between them. In the following
graphs of the time-series response (Figure 5.11 for example), the blue curve represents a
pure training set, green curve represents a validation set and red one represents a test
set. A t the bottom you can find a graphical representation of the error that occurs in the
output of the trained A N N . The plotregressionftargets,outputs) M A T L A B ™ function
plots the linear regression of the targets relative to the A N N outputs, as it is shown in
Figure 5.13 for example. It clearly shows the deviations of the A N N outputs and the
character of the deviations related to the training outputs. The regression value R closer
to the value 1 indicates the better adaptation of the trained A N N (to the training set).

- 37 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

The ploterrhist(e) M A T L A B ™ function plots a histogram of error values e, see
relation (5.2.1) where / represents required targets from the training set and _y represents
the A N N outputs.

e = t - y (5-2-D

A s the performance function (see performance functions) the M S E was used. It follows
that lower performance means higher accuracy of evaluated results. The result

means that the EvIU "stays sti l l" and means that it "walks".

5.2.1 Results of TDNNs with purelin transfer function in output layer

A s it was noted above, these networks use purelin transfer function in the output layer.
The first training set (see Figure 5.10) shows approx. 22 minutes of walk and
22 minutes of staying still with the I M U in the hand. The changes in acceleration during
"st i l l" phase were caused by orientation changes of the I M U .

Trainig set for TDNN 1

0 0.5 1 1.5 2 2.5

samples x 105

11 1 1—i 1 1

15
S? 0 -
B

_1 I i i I i i
0 05 1 1.5 2 2.5

samples * 10 s

Figure 5.10 Training set for TDNN 1.

The TDNN_divideblock_l was trained until 15 validation checks errors had occurred,
after 140 iterations. The achieved performance was 0.00644 and it took almost 5 hours.
The TDNN_dividerand_l training stopped after 215 iterations when the performance
of training was 0.00787 and it was almost stable for last 200 iterations and the duration
of training A N N was almost 8 hours.

It is clear that the training set T D N N 1 is not a good example of the training set for
required A N N . Nevertheless, it shows what happens when the change of the state occurs
very rarely. In basic, rare changes in state are not a problem for the A N N simulation.
However we need the network to recognize frequent changes accurately. The A N N
easily recognizes the static state (only walking, only staying still). The difficulty is to
recognize the exact moment when the state change occurs. Despite of having good
performance value regardless the data division, the A N N trained by this input set is not
applicable in this case.

38

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Response of Output Element 1 for Time-Series 1

T3
s
-»-»
3 S- -0.5 -
3

o
-1 k

-1.5
1

O 0

w -1

+

+

+

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors

- Response

Targets - Outputs

0.2 0.4 0 6 0 8 1 1.2
Time

1 4 1.6 1 8

Figure 5.11 Time-series response, epoch 125, TDNNdivideblockl.

Response of Output Element 1 for Time-Series 1

1
« 0.5
TS
(0

•4-»

a -0.5 *->
3

O .1

-1.5
2

Training Targets
-I- Training Outputs

Validation Targets
+ Validation Outputs

Test Targets
+ Test Outputs

Errors
Response

LU
Targets - Outputs " p T H — T H H "

0 2 0.4 0 6 0 8 1 1.2
Time

1 4 1 6 i a

10=

7

2

x10 5

Figure 5.12 Time-series response, epoch 214, TDNN divider and 1.

The performance of trained network T D N N d i v i d e b l o c k l is 0.00644, though as the
result seems to be very good, in validation set and test set, only the one state ("-1") of
EVIU is present and for this reason the performance is really good. The performance of
trained network TDNN_dividerand_l is about 0.00787 and the reason is that the A N N
recognize the static state easily. The only one state change is present and also in
validation and test set such a dynamic change occurs only once in whole data set. Figure
5.13 and Figure 5.14 show the linear regression of the test set of both trained networks.
Figure 5.15 and Figure 5.16 show the error histogram of the test set of both trained
networks.

39

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

All: R=0.99737

-1 -05 0 0.5
Target

Figure 5.13 Training regression, epoch 125,
TDNN divideblock 1.

All: R=0.99579

-1 -0.5 0 05 1
Target

Figure 5.14 Training regression, epoch 214,
TDNN divider and 1.

X104 Error Histogram ^ q 4 Error Histogram

Errors = Targets - Outputs Errors = Targets - Outputs

Figure5.15 Error histogram, epoch 125, Figure 5.16 Error histogram, epoch 214,
TDNN divideblockl. TDNN dividerand 1.

This Chapter continues with the results of the training of the same type of neural
network. However, particular A N N s differ in training set - the number of state changes.
This is important i f we want to find out which data are suitable for the A N N training.
Resulting figures and graphs are depicted consecutively in order time-series responses,
training regressions and error histograms.

40

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

500
Trainig set for TDNN 2

samples x10"

5? 0

6 8
samples 12 14

x10"

Figure 5.17 Training set for TDNN 2.

The training set data for T D N N 2 is shown in Figure 5.17. It contains three state
changes and it is composed of the staying still (the EVIU was hold in the hand for
approx. 2 minutes, then it was laying on the table for approx. 4 minutes) and walking
(the was hold in the hand while walking for approx. 6 minutes). This repeats. The
TDNN_divideblock_2 was trained for 1000 iterations, with the best performance in
999 t h epoch. The duration of training was almost 6 hours and the performance achieves
0.0069. TDNN_dividernad_2 reached required performance (less than 0.001) after 86
iterations and it took almost 30 minutes.

The time-series responses are shown in Figure 5.18 and Figure 5.19. Again, in
case of the block division of training, validation and test data, the validation and test set
contains only one stat. That is, again, the reason why the performance achieves such a
good value. The A N N is satisfactory trained for static data and does not meet the
requirement for a good reactions when the state changes.

Response of Output Element 1 for Time-Series 1

1.5
0)

$ 1

•O 0.5
c
•
- 0
3
•2" -0.5

° .1

Training Targets
+ Training Outputs

Validation Targets
+ Validation Outputs

Test Targets
+ Test Outputs

Errors
— Response

4 5 6 7 8
Time

Figure 5.18 Time-series response, epoch 999, TDNN_divideblock_2.

ic ii

• io-

- 41 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

1 5
Response of Output Element 1 for Time-Series 1

<U 1 p
n
h- 0.5
•o
c

EL

Training Targets
+ Training Outputs

Validation Targets
4- Validation Outputs

Test Targets
+ Test Outputs

Errors
Response

tu

Time

Figure 5.19 Time-series response, epoch 86, TDNN_dividerand_2

Targets - Outputs | i i i ' 1 I

•'•'] .
1 2 3 4 5 6 7 8 9 10 11

10"

x 1 0 4 Error Histogram x 1 0 4 Error Histogram

Errors = Targets - Outputs Errors = Targets - Outputs

Figure 5.22 Error histogram, epoch 999, Figure 5.23 Error histogram, epoch 86,
TDNN divideblock 2. TDNN dividerand 2.

42

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

The best resulting A N N is trained with training set that contains many state changes
(Figure 5.24). Such situation occurs when the unit "walks" and stops often. Previous
networks are suitable to be used when the unit is switched on but is staying still, or
when it constantly moves. Further network trainings should be applied in case that the
state changes occur more often. This network is also listed in our INS and it may be
used for state determination.

200
Trainig set for TDNN 3

1

0.5
'S

S? 0

-0.5

-1 6
samples

10
x10

Figure 5.24 Training set for TDNN 3.

The TDNN_divideblock_3 was trained until the performance request was met. The
performance achieved the value of 0.000999 after 367 iterations, the duration of the
training was almost 2 hours. The training of the TDNN_dividerand_3 finished because
of the same reason. The performance achieved the value of 0.000997 after 81 iterations,
the duration of the training was 1.5 hours. Here the validation and test set contains both
the static data and the state changes (3 state changes for validation set, 2 state changes
for test set). To meet the performance request, the A N N must react satisfactorily also for
the dynamic state changes.

- 43 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

1 5
Response of Output Element 1 for Time-Series 1

ö 1 h
k_

|2 05
T3

= 0

1-0.5
3

O -1-H
-1.5

2
o
t o
LU

-2

i i i i i H i n
Training Targels

+ Training Outputs
Validation Targets

+ Validation Outputs
Test Targets

+ Test Outputs
Errors
Response

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ W^^^» ^^^^^^^

Targets - Outputs 5 6
Time

10

x10"

Figure 5.25 Time-series response, epoch 366, TDNN_divideblock_3.

Response of Output Element 1 for Time-Series 1
1 5

01 1

TO
I-
- o e

0 5

0

-0.5

3
o

-1.5
1

UJ
-1

• Training Targets +J(. -f# -W-
+ Training Outputs

Validation Targets
+ Validation Outputs

Test Targets
+ Test Outputs

Errors
Response

1 1 1 1 1 1 1 1 1 1 1 1

1 1 r i i i i i i i

Targets - Outputs '
I , , r l 1 1 1

1 2 3 4 5 6 7

Time

Figure 5.26 Time-series response, epoch 81, TDNN divider and 3.

All: R=0.99945

10
10"

All: R=0.99934

- i -0.5 0 0.5
Target

Figure 5.27 Training Regression, epoch 366, Figure 5.28 Training Regression, epoch 81,

TDNN divideblock 3. TDNNJividerandJ.

44

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

10 •

8 -

N
CÜ
u 6 -
c
rz

In
sl

4 -

2

CM
O

:3
Co
to
o 0.6

1

10" Error Histogram
Training
Validation
Test
Zero Error

N CO ^ f M S
•rf CO O l rt -"t

© Q ©

Errors = Targets - Outputs

Figure 5.29 Error histogram, epoch
TDNN dividerand 3.

81,

10- Error Histogram

c
*J 4
c

cb DO cb ^ rt t-"^TDO
O I I O N C O O I O O C O

I Training
I Validation
JTest
Zero Error

i L A £ c£> ob *; C M C O C O c O ^ r t C N T - l O O f f i
f M C O i n i ß » - N . r t C Ä ^ r - C p

^ n r t N N T - c o o n o n - f M N n n ^ i n L O
© © ,

^ 5 t ü !fi P. ^
T T T T I i © i o O

Errors = Targets - Outputs

Figure 5.30 Error histogram, epoch
TDNN divideblock 3.

366,

The neural network gives the output value as a reaction on time series data. This output
is more or less approaching the value +1 or the -1. This is, as noted above, because in
this neural network two states are recognized, walking and staying still. This output
must be further filtered (L K F and then hard limit filtration is used, see Chapter 2.8).

B y adding other types of movement (measured data and appropriate targets),
artificial neural network may recognize more types of motion. The most important is to
recognize the staying still state as precisely as possible. The staying recognition
enriches the accuracy of the dead reckoning (inertial navigation) most significantly.
Obviously the accuracy is not improved when the EVIU state does not change to "st i l l" .

The duration, final number of epochs and achieved performance of the particular
networks trainings are shown in T A B L E 5.2. In addition, the reliability is shown as a
complement of the performance to 1.

TABLE 5.2 Comparison of networks - training parameters.

Name of ANN Duration* [h] Epochs Performance Reliability
T D N N divideblock 1 4:49:57 140 0.006440 0.993560
T D N N dividerand 1 7:50:28 215 0.007870 0.992130

T D N N divideblock 2 5:48:42 1000 0.006900 0.993100
T D N N dividerand 2 0:29:49 86 0.000940 0.999060

T D N N divideblock 3 1:52:03 367 0.000999 0.999001
T D N N dividerand 3 0:27:15 81 0.000997 0.999003

* PC: 16 GB R A M , Intel® CORE™ 4 x i5-4690K CPU @ 3.50GHz, SSD, using M A T L A B
(used for all following experiments)

45

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Training duration

8:24:00

7:12:00

6:00:00

4:48:00

3:36:00

2:24:00

1:12:00

0:00:00

ANNs ANNs

lTDNN_divideblock_l

TDNN_divideblock_2

ITDNN divideblock 3

lTDNN_dividerand_l

lTDNN_dividerand_2

ITDNN dividerand 3

Figure 5.31 Graphical comparison of trained feed forward time delayed networks.

5.2.2 Results of TDNNs with tansig transfer function in output layer

The Chapter shows results when the tansig transfer function is used in both, hidden and
output layers. The requirement for the performance is higher, because the output of the
trained A N N is limited to the interval <-l ; 1>. Thus the M S E parameter is logically
lower and the performance of about 0.001 is easily achievable. Thus the performance
goal value was set to 10"21.

•3 2

1

03 0
o
u
CO

Training set for TDNN 1 TS

i iJ 1,

500 1000 1500 2000 2500 3000

• x-axis
y-axis
z-axis

3500

x-axis
y-axis
z-axis

1 I ' I L

0 500 1000 1500 20(1000 1500 2000 2500 3000 3500

500 1000 1500 2000
samples

Figure 5.32 Training set for TDNN 1 TS.

2500 3000 3500

- 46 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

The training set is almost the same as in the Chapter 5.2.1; it differs in the number of
samples. Names of these A N N s were changed to be distinguished from the A N N s with
linear transfer function. Further network names are then supplemented by TS (TanSig).
The training set T D N N 1 TS is shown in Figure 5.32.

Following figures show the results of the neural network training while the
training set T D N N 1 TS was used:

The TDNN_divideblock_l_TS was trained for approx. 1.5 seconds and the
performance reached the required value after 29 iterations. The
TDNN_dividerand_l_TS was trained for approx. 0.45 s and the performance reached
the value after 27 iterations. The performance is very good nevertheless the same
situation as in the Chapter 5.2.1 occurs. Only one change in the state is present and the
A N N reacts on the "static" state.

Response of Output Element 1 for Time-Series 1

1500 2000

samples

Figure 5.33 Time-series response, epoch 29, TDNN divideblockl TS.

m
O) 0.5
ro
h-
T 3

S 0

•»-»
Q.
3 -0 5

o

Response of Output Element 1 for Time-Series 1

10-'

Training Targets
+ Training Outputs

Validation Targets
+ Validation Outputs

Test Targets
+ Test Outputs

Errors
Response

2 o
Iii Targets - Outputs

500 1000 1500 2000

samples
2500 3000

Figure 5.34 Time-series response, epoch 27, TDNN'divider'and' 1 TS.

- 47 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

The performance of trained network T D N N d i v i d e b l o c k l T S is 6.23-10 , though as
the result seems to be very good, in validation set and test set, only the one state ("-1")
of I M U is present. The performance of trained network T D N N d i v i d e r a n d l T S is
about 9.77-10"22 and the reason is that the A N N recognizes the static state easily. The
only one state change is present in whole input set.

Figure 5.35 and Figure 5.36 show the linear regression of the test set of both
trained networks. Figure 5.37 and Figure 5.38 show the error histogram of the test set of
both trained networks.

1600

1400

1200
[/>

1000
L>
C
rc 800

c 600

400

200

Error Histogram

I

I Training
I Validation
I Test
Zero Error

Errors = Targets - Outputs - 10

Figure 5.37 Error histogram, epoch
TDNN divideblock 1 TS.

4
-10

29,

3500

3000

M 2500
9
C 2000
(O

•4-»

C 1500

1000

500

0

Error Histogram

I Training
I Validation
j Test
Zero Error

- 2 - 1 0 1 2 3

Errors = Targets - Outputs

Figure 5.38 Error histogram, epoch
TDNN dividerand 1 TS.

10 8

27,

This Chapter continues with the results of other trained neural networks with the tansig
transfer function in the output layer. They have the same structure and properties, but
their input sets differ in the number of changes of the state.

Figures and graphs are depicted in the same order as for the input set T D N N 1 TS.
The input set T D N N 2 TS is shown in Figure 5.39.

48

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

-1
0 1000 2000 3000 4000 5000 6000 7000

samples

Figure 5.39 Training set for TDNN 2 TS.

Further figures show the results of the neural network trainings with the input set

T D N N 2 TS:

- 1

O)
So 0.5
I-
T3

Z 0

Q. -0.5
3
o

Response of Output Element 1 for Time-Series 1

+

+

+

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors

- Response

10 1C

HI

1 1 1 1

•

-1 1

• Targets - Outputs

1 1 1 1

1000 2000 3000 4000 5000 60G0
samples

7000

Figure 5.40 Time-series response, epoch 28, TDNN_divideblock_2_TS.

49

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Response of Output Element 1 for Time-Series 1

~ 1

(5 0.5
h-
•D

3
Q. -0.5
3

° -1

0 2

l 0
Iii

-0.2

+

+

+

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors

- Response

1 1 1 1 1 1

Targets - Outputs |
i i i i i i

1000 2000 3000 4000
samples

5000 6000 7000

Figure 5.41 Time-series response, epoch 28, TDNN_dividerand_2_TS.

All: R=1 All: R=0.99969

Figure 5.42 Training Regression, epoch 28,
TDNN divideblock 2 TS.

Figure 5.43 Training Regression, epoch 28,
TDNN dividerand 2 TS.

3000

Error Histogram

-1.6 -1 -0.5 o 0.5 1

Errors = Targets - Outputs

1.5
• 10

Figure 5.44 Error histogram, epoch
TDNN divideblock 2 TS.

28,

7000 •

6000

a 5000
U
c
5 4000
H
c

~ 3000

2000

1000

-0.5

Error Histogram

I Training
I Validation
JTest
Zero Error

Errors = Targets - Outputs

Figure 5.45 Error histogram, epoch
TDNN dividerand 2 TS.

0 5

28,

The TDNN_divideblock_2_TS was trained for 71 seconds, with achieved performance

of 5.62-10"22. The validation set contains one state change and the test set does not

50

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

contain any change in state. The TDNN_dividernad_2_TS also reached the required
performance after 2 minutes with 28 iterations. Thus the very high performance request
was satisfied after only a few iterations.

The training set T D N N 3 TS is shown in Figure 5.46. Further figures show the
results of the A N N training with the input set T D N N 3 TS.

Training set for TDNN 3 TS

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

a 2

c
9 1
a
2 0
o
a .1

l U ih i . j k i L IL J J. f . , 1 . . . ' , .A^̂ J> LL i LlAA
— x-axis

y-axts
z-axis

\W tr*T* <r W'i*

i i i

IT T ™ i|t' * F mr w i

i i i i_ i i

05
E> 0 -
CD

-1

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t state

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
samples

Figure 5.46 Training set for TDNN 3 TS.

The TDNN_divideblock_3_TS was trained for almost 15 minutes, with the achieved
performance of 0.00187 after 90 iterations. The training process stopped because the
M u maximum value (see T A B L E 5.1) was reached.

The TDNN_dividernad_3_TS was trained for approx. 10 minutes and the
training process stopped after 73 iterations when the M u parameter reached the limit.
The performance reached the value of 0.00229.

- 51 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Response of Output Element 1 for Time-Series 1

1 1 1 1

1 1

Targets - Outputs

1 1 1 1 1

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

samples xio 4

Figure 5.47 Time-series response, epoch 90, TDNN_divideblock_3_TS.

o
t 0

LU

Response of Output Element 1 for Time-Series 1

IttüiltlillfflH
Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors
Response

Targets - Outputs

-fr

2000 4000 6000 8000
samples

10000 12000 14000

Figure 5.48 Time-series response, epoch 73, TDNN_dividerand_3_TS.

The validation set contains a lot of state changes and so does the test set. Thus the
performance does not reach so good values. Nevertheless, changes in state are
recognized with the best performance. Those trained networks are the most suitable
neural networks for this kind of tasks. Because of the walking is dynamic process and
parameters taken from the sensors may fluctuate or differ in time, the
TDNN_dividerand_3_TS is used in the I M U by default. There is also possibility to
change the used A N N to TDNN_divideblock_3_TS.

52

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

All: R=0.99892 All: R=0.99469

-0.5 0 0.5
Target

Figure 5.49 Training Regression, epoch 90,
TDNN divideblock 3 TS.

Figure 5.50 Training Regression, epoch 73,
TDNN dividerand 3 TS.

x10" Error Histogram

2 5

2

to I 15 re -*-« to
£ 1

0 5

I Training
I Validation
I Test
Zero Error

- 2 - 1 0 1 2

Errors = Targets - Outputs

Figure 5.51 Error histogram, epoch 90,
TDNN divideblock 3 TS.

2 5

8 1 5

c
ra

I 1
G 5

x10" Error Histogram

I Training
I Validation
I Test
Zero Error

-1.5 -1 -0.5 0 0.5 1 1.5

Errors = Targets - Outputs

Figure 5.52 Error histogram, epoch 73,
TDNN dividerand 3 TS.

TABLE 5.3 Comparison of networks II - training parameters

Name of ANN Duration [h] Epochs Performance Reliability
TDNN_divideblock_l_TS 0:01:26 29 6.23-10-22 * 1
TDNN_dividerand_l_TS 0:00:46 27 9.77-lO"22 * 1

TDNN_divideblock_2_TS 0:01:11 28 5.62-10-22 * 1
TDNN_dividerand_2_TS 0:02:00 28 5.99-lO"22 * 1

T D N N divideblock 3 TS 0:14:36 90 0.00187 0.99813
T D N N dividerand 3 TS 0:09:46 73 0.00229 0.99771

53

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Training duration

0:17:17

0:14:24

0:11:31

0:08:38

0:05:46

0:02:53

0:00:00 • - I i

ANNs ANNs

lTDNN_divideblock_l

TDNN_divideblock_2

ITDNN divideblock 3

lTDNN_dividerand_l

lTDNN_dividerand_2

ITDNN dividerand 3

ANNs

Figure 5.53 Graphical comparison of trained feed forward time delayed networks

5.3 Additional ANNs
The first additional neural network was created to demonstrate the results in short
ranges without walking (A D D T D N N 1) . The structure and functions remain, however
the input set was changed to data measured during I M U rotations, vibrations,
oscillations, shifting etc. Output was then set to in case of any movement and
in case of staying "s t i l l " in hand.

The second additional neural network was created from data representing only
transitions between the two states - walk and staying still (A D D T D N N 2). This is not
the situation that usually occurs, nevertheless the network has to be trained as precisely
as possible for state changes. The input set is composed of moving phase (one human
step) and still phase (duration 1 s) repeated many times. The training set contains 41244
samples (record time: 491 s). A part of the collected data set is shown in Figure 5.54.
Both transfer functions inside A D D T D N N 2 were set to hyperbolic tangent sigmoid
(TanSig). The result of the network training shows that the network is highly adapted
for frequent state changes (see Figure 5.55). The results of this A N N are similar to the
TDNN_dividerand_3_TS, however its training set was strictly determined by regular
state changes.

TABLE 5.4 Training parameters of the additional networks.

name of A N N duration [h] epochs performance reliability
A D D T D N N 1 00:47:15 87 0.01091 0.98909
A D D T D N N 2 0:10:56 50 0.00333 0.99667

- 54 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

0 500 1000 1500 2000 2500 3000
samples

500 1000 1500 2000 2500 3000
samples

Figure 5.54 The data used as a part of the training set for ADD TDNN 2 training.

Response of Output Element 1 for Time-Series 1
1 -

•5 0.5
D)

T3
S 0

3 a. *-> 3
O -0.5

-1-
2

o
t 0 UJ

-2

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors

- Response

I

Targets - Outputs |
I I I I

I

1 1 1

500 1000 1500

samples
2000 2500 3000

Figure 5.55 Response of the ADD TDNN 2.

5.4 Other types of ANNs
In order to complete the comparison, the results from some other types of A N N s are
shown in this Chapter. The training set for those A N N s was the same as the training set
for the A D D T D N N 2 (see data example in Figure 5.54). The division of training, test
and validation data set was random in a ratio of 70:15:15.

In time delayed A N N s , the same number of history and the same size of the
hidden layer was set. For the "pattern recognition and classification A N N " the reduction
to 3 neurons in hidden layer was set (the first case). Due to very high inaccuracy, the
hidden layer was enlarged back to 15 neurons (the second case). The results are given
below. Those neural networks are not included in the final data processing software.

- 55 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

- N A R X TD A N N (with time delay) - Figure 5.1 shows the principle

The structure of the N A R X T D A N N shows Figure 5.56. The previous output is
appended to the input of the next sample as the seventh variable. This type of A N N
also solves this task very effectively, as it is clear from Figure 5.57.

Hidden

w L
Output

Figure 5.56 NARX TD ANN structure.

Response of Output Element 1 for Time-Series 1

0)
S 1 0.5
ra
f—
•a
S °
3
a
3

O

-0 5

-1
2

O

n n n
+

+

+

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs

- Errors
- Response

fl

UJ

1 1 1 Targets - Outputs
. , t

1 1 1 I 1
500 1000 1500

samples
2000 2500 3000

Figure 5.57 NARX TD ANN response.

: R=0.99613

Algorithms

Data Division: Random (dividerand)

Training: Le^enberg-Marquardt (trainlrn)
Performance: Mean Squared Error (mse)
Calculations: MATLAB

Progress

1,94e-05
1.00e-10

Figure 5.58 Training parameters for
NARX TD ANN.

Figure 5.59 Training Regression, epoch 42.

- 56 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Figure 5.58 shows the training process parameters and the regression of the trained
neural network is shown in Figure 5.59. The results seem to be very good. Nevertheless,
the output after the Kalman filtration is slightly worse than the T D N N dividerand3
and T D N N dividerand 3 TS output after the Kalman filtration. In addition, the N A R X
T D A N N training and processing is more time consuming due to its larger input matrix.

- Feed forward A N N (FF A N N without time delay)

This type of A N N is not suitable for our dynamic problem because its input set is static.
It reacts to six input variables that were taken from sensors in a single instance and it is
not able to recognize the walk and "s t i l l" phase accurately.

The structure of F F A N N is shown in Figure 5.60 and the time series response is
shown in Figure 5.61. The training parameters (Figure 5.62) and training regression
(Figure 5.62) are available below.

Hidden Output

•
Figure 5.60 FF ANN structure (without time delay).

Response of Output Element 1 for Time-Series 1

Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors

• Response

mm
UJ Targets - Outputs

J .
500 1000 1500 2000

samples
2500 3000

Figure 5.61 FF ANN response (without time delay).

Algorithms

Data Division: Random (dividerand]

Training: Levenberg-Marquardt (trainlm)

Performance: Mean Squared Error (msej

Calculations: MATLAB

All: R=0.80401

Progress

Epoch:

Time:
Performance:

Gradient:

Mu:

Validation Checks:

0.777

0.965

0.00100

0

1.00e-05

0.O0

1.00e*10

18

Figure 5.62 Training parameters for FFANN Figure 5.63 Training Regression, epoch 67.

- 57 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

- N A R X A N N (without time delay)

N A R X A N N without time delay structure is shown in Figure 5.64. The time series
response (Figure 5.65) shows a very clear decision on the EVIU state, this type of A N N
may also be used for given task with further processing. The time and memory
consumption is decreased because of zero history length in the input (time delay), thus
the training process is not so much time consuming. The issue here is the inaccuracy on
state changes, in particular cases when the status changes from "s t i l l " to walk. This is a
very unintended behaviour mentioned previously. Training parameters (Figure 5.66)
and training regression (Figure 5.67) are present below.

Figure 5.64 NARX ANN structure (without time delay).

Response of Output Element 1 for Time-Series 1
1 -

o E? 0.5 10
I-

3
a

- i

2

2 o
JJ

5 i-r n
Training Targets
Training Outputs
Validation Targets
Validation Outputs
Test Targets
Test Outputs
Errors

- Response

T 1 1 I 1

Targets - Outputs
i p i 1

500 1000 1500 2000
samples

2500 3000

Figure 5.65 NARX ANN response (without time delay).

Algorithms

Data Division:

Training:

Performance:

Calculations:

All: R=0.98526

L

Random (dividerand]

Levenberg-Marquardt (trainlm)

Mean Squared Error (mse)

MATLAB

Progress

1.00e-05

O.OO

1.00e+10

18

Figure 5.66 Training parameters for FFANN.
Target

Figure 5.67 Training Regression, epoch 74.

58

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

- Pattern recognition and classification A N N - 3 hidden neurons

Pattern recognition and classification A N N (P R & C A N N) works as a classifier and
divides output into two categories in our case (see Figure 5.68). The Confusion Matrix
(Figure 5.70), [43], shows the correctly and incorrectly classified outputs considering to
training set targets. The training parameters are shown in Figure 5.69. Further figures
represent analogically results of P R & C A N N with 15 neurons in hidden layer instead of
3 neurons (see Figure 5.72 and Figure 5.71). This type of A N N is not suitable for
mentioned task as it is clear from the presented results.

Figure 5.68 PR&C ANN structure (3 hidden neurons).

All Confusion Matrix

Algorithms

Data Division: Random (dividerand)
Training: Scaled Conjugate Gradient (trainscg)
Performance: Cross-Entropy (crossentropy)
Calculations: MEX

Progress

Epoch: 0

Time:

Performance: 1.09

Gradient: 1.12

Validation Checks: 0

1000

0.O0

1.00e-066

6

w

Ü
3 2

o

28098 3771 88.2%
68.1% 9.1% 11.8%

1521 7854 83.8%
3.7% 19.0% 16.2%

94.9% 67.6% 87.2%
5.1% 32.4% 12.8%

Figure 5.69 Training parameters PR&C ANN.

1 2

Target Class

Figure 5.70 Confusion Matrix I.

59

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Pattern recognition and classification A N N - 15 hidden neurons

All Confusion Matrix

: Algorithms

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg]

Performance: Cross-Entropy [crossentropy]

Calculations: MEX

Progress

Epoch;

Time:

Performance:

Gradient:

Validation Checks:

600 iterations

1.32

3.03

1.00e-055

0.00

18

Ifl
ta
O
15 2

o

28227 2592 91.6%
68.4% 6.3% 8.4%

1392 9033 86.6%
3.4% 21.9% 13.4%

95.3% 77.7% 90.3%
4.7% 22.3% 9.7%

1 2
Target Class

Figure 5.71 Training parameters PR&C Figure 5.72 Confusion Matrix II.

T A B L E 5.5 shows comparative results of all other A N N s presented in Chapter 5.4.

TABLE 5.5 Training parameters of the other types of ANNs.

name of A N N duration [h] epochs performance reliability
N A R X TD A N N 0:30:43 42 0.00472 0.99528
FF A N N 0:05:45 67 0.28500 0.71500
N A R X A N N 0:06:23 74 0.02330 0.97670
PR&C - 3 neurons 0:00:02 112 0.32900 0.67100
PR&C - 15 neurons 0:00:28 600 0.23000 0.77000

60

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

6 DATA PROCESSING

Thanks to the A N N we know the state of the EVIU Provided we trust it, the attitude of
the EVIU in time can be determined with higher accuracy. Whenever the state defined by
the A N N is "st i l l" , the accurate (absolute) tilt of the EVIU can be recalculated. The only
property that still remains to be absolutely determined is heading.

The determination of heading comes from magnetometer data. The value that has
to be checked before heading determination is total magnetic field. If the value is too
low or too high, there are other influences than Earth's magnetic field, and the heading
cannot be determined by the magnetometer. In that case we have to rely on integrated
data from gyroscope.

In the second case, when the value of total magnetic field falls within the given
range, the heading can be computed. However, it can be done after the acceleration data
tilt compensation - derotation into the flat level. After the proper magnetometer data
derotation the heading value can be determined only from x-axis and _y-axis of
magnetometer data. The absolute attitude of the I M U can be finally determined.

In the next part, new proposal algorithm for attitude determination is presented.

6.1 When the state is "still"
The neural network decides that the EVIU state is "st i l l" . Then, there are more ways, as
described in theoretical part, how to rotate the EVIU back into flat level (horizontal
plane). Figure 6.1 clearly shows all three Euler stages of derotation from EVIU (RPY)
coordinates into inertial, E N U coordinates.

A t first, the derotation of heading needs to be done by an angle —6. This rotation
is solved separately after the derotation into flat position. Rotations by angles —V and
—<P define the tilt of the EVIU in R P Y coordinates and through them the EVIU
coordinates from R P Y coordinate system into E N U coordinates can be converted.

61

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

+z.

i g

+Y

Figure 6.1 Derotation from the RPY (body) coordinates to ENU coordinates.

The Euler angles or direction cosine matrix (D C M) method seems to be easy to use.
Nevertheless, the gimbal lock is the fundamental problem for the INS. For this reason
the application of quaternions must be implemented. In proposed algorithms, the
rotation around z-axis is denoted by symbol V, the rotation around y-axis is denoted by
symbol 6, and the rotation around x-axis is denoted by symbol 4>.

From accelerometers, after axis alignment, compensation and calibration, the
accelerations in particular axes are obtained, the vector a = (accx, accy, accz) for each
time step. In the source code, the calibrated accelerometer output is stored in
three-dimensional vector a c c with components a c c x , a c c y and a c c z . In each
cycle the computation of a is performed. It expresses the angle between the
acceleration vector a c c and last acceleration vector (a c c X l a s t , a c c Y l a s t ,
a c c Z l a s t) . The vector of the last acceleration acciast is always (0,0,1) in order to
get absolute attitude. That means it is set to the value that is present on the
accelerometer output in case that the I M U is placed horizontally. The angle a is used in
formulas (6.1.1) - (6.1.4) and it is based on fact that we are able to determine the
quaternion, in this source code called o r i e n t a t i o n (Figure 6.2).

a = acos(accXlast • acc. x + accYlast • acc. y + accZlast • acc. z)

1
rotVecX = (accYlast • acc. z — accZlast • acc. y) sin(a)

1
rotVecY = —— • (accZlast • acc. x — accXlast • acc. z)

sin(a)
1

rotVecZ = —• • (accXlast • acc. y — accYlast • acc. x)
sin(a)

(6.1.1)

(6.1.2)

(6.1.3)

(6.1.4)

- 62 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

o r i e n t a t i o n = QQuaternion::fromAxisAndAngle(p, q, r, angle)
//p = rotVecX;
//q = rotVecY;
/ / r = rotVecZ;
//angle = -al f a * 1 8 0 / M _ P I) ;

Figure 6.2 Quaternion orientation determination.

For further application in formulas, the quaternion o r i e n t a t i o n equals ORI.

The angle 6 and (p are subsequently determined from the quaternion by formulas
(6.1.5) and (6.1.6):

9 = - asin (2 • ORI. x • ORI. z - 2 • ORI. y • ORI. scalar) (& L 5)

This algorithm derotates the EVIU to the nearest flat level (by the smallest angle). It
means that there may occur some undesirable rotation around z-axis during this
derotation. It is defined as z r o t and expressed by (6.1.7). This must be subtracted (the
EVIU is rotated by the z r o t quaternion in opposite direction) from computed attitude,
see the part of the source code, Figure 6.3.

N o w the EVIU's tilt is defined by the quaternion r o t T o F l a t . Then the last
rotation around the z-axis by the heading angle is performed to the orientation of the
EVIU into the E N U coordinate system. The acceleration in the E N U coordinates is then
expressed by the vector accDerot . Once the ORI is defined, the acceleration a c c
may be rotated by the ORI quaternion conjugation. After that, the full size of
gravitational acceleration occurs in z-axis and thus the gravitational acceleration (1 g)
can be subtracted in the z-axis to getting of the EVIU inertial acceleration only.

(6.1.6)

where: A = 2- ORI. y • ORI. z + 2- ORI. x • ORI. scalar

B = 1 - 2 • ORI. x • ORI. x - 2 • ORI. y • ORI. y

(6.1.7)

where: A = 2- ORI. y • ORI. x + 2- ORI. z • ORI. scalar

5 = 1 - 2 - ORI. z • ORI. z - 2 • ORI. y • ORI. y

- 63 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

// a t t i t u d e from accelerometer
f l o a t a l f a , c o s A l f a ;
f l o a t rotVecX, rotVecY, rotVecZ;
f l o a t accXlast=0, accYlast=0, a c c Z l a s t = l ;

a c c . n o r m a l i z e () ;
c o s A l f a = a c c X l a s t * a c c . x () + a c c Y l a s t * a c c . y () + a c c Z l a s t * a c c . z () ;
a l f a = a c o s (c o s A l f a) ;

r o t V e c X = l / s i n (a l f a) * ((a c c Y l a s t * a c c . z () - a c c Z l a s t * a c c • y ())) ;
r o t V e c Y = l / s i n (a l f a) * ((a c c Z l a s t * a c c . x () - a c c X l a s t * a c c • z())) ;
r o t V e c Z = l / s i n (a l f a) * ((a c c X l a s t * a c c . y () - a c c Y l a s t * a c c • x())) ;

// remove p a r a s i t e
o r i e n t a t i o n = QQuaternion::fromAxisAndAngle(0,0,-1, z r o t) * o r i e n t a t i o n ;
r o t T o F l a t = o r i e n t a t i o n ;
o r i e n t a t i o n = QQua t e r n i o n : : f r o m A x i s A n o A n g l e (0 , 0 , 1 , h e a d i n g) * o r i e n t a t i o n ;

// d e r o t a t i o n
QVector3D accDerot = o r i e n t a t i o n . r o t a t e d V e c t o r (a c c) r
QVector3D magFlat = r o t T o F l a t . r o t a t e d V e c t o r (m a g) ;

Figure 6.3 A part of c-code for derotation.

A s it was written above, when the EVIU is still, we can compute the heading from the
magnetometer. When the measured data are rotated to flat level (m a g F l a t , Figure
6.3) and the result of absolute magnetic field meets the conditions (the outcome has to
be found within the interval (44985.24; 52808.76) nT, this is ± 8 % from the standard
environment where the measurements were performed, obtained as an average value
from long-term measurement).

The computation of the heading from magnetometer in 2D is shown in relation
(6.1.8); the vector m a g F l a t is used. Because of the data measured by magnetometer
are transformed into flat level, the determination of the heading (8) in 2D is correct. In
the other case, when the magnetometer data are not derotated into the flat level, another
formula for the determination of the declination in 3D has to be used [44],

S = - — atari (ma9platx\ when maqFlat. y > 0
2 KmagFlat.yJ a J

S = 3 • - — atari (ma9Flatx\ when maqFlat. y < 0
2 KmagFlat.yJ a J

(6.1.8)

8 = n when magFlat. y = 0 and magFlat. x < 0

5 = 0 when magFlat. y = 0 and magFlat. x > 0

This gives us the heading (azimuth), the direction of the EVIU x-axis due to the magnetic
north (inertial x-axis). To be correct, the geodetic declination must be added to get the
heading regarding to the geographic north. O f course, it has to be adjusted for different
locations by different values, which are determined in map charts [45]. For Brno,

64

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Kohoutovice, the geodetic declination reaches 4 . 1 6 ° [47]. This is positive, east
declination and thus the value has to be subtracted from the calculated true azimuth.

6.2 When the state is "walking"
The neural network decides that the I M U state is "walking". The accelerometer
measures the gravitational acceleration mixed with inertial acceleration that it needs to
be separated. A t first, the transfer from R P Y to E N U coordinates is performed. This is
quite difficult since the gyroscope has almost full confidence. Then the full size of
gravitational acceleration occurs in z-axis again and 1 g can be subtracted to get the
inertial acceleration only.

A s already mentioned, the accelerometer data cannot be used for the attitude
determination and only the data that was measured by the gyroscope have to be use.
There is no other way than the application of the mathematical integration, due to there
the gradually increasing inaccuracy appears. This is caused by the need of the
integration of the rotation rates from the sensor to find out deltas (differences) of
particular angles. However the inaccuracy here leads to really huge error while the
velocity and position is calculated (another two mathematical integrations of computed
accelerations in time).

Figure 6.4 shows how the quaternion deltaFrame is defined and how the
quaternion orientation is rotated by deltaFrame to find out the new orientation.

// a t t i t u d e from gyro
QQuaternion deltaFrame;
f l o a t qO=l, ql=0, q2=0, q3=0, gy, gz, gx;

gx=gyr.x()/18 0*M P I ;
gy=gyr.y()/18 0*M P I ;
gz=gyr.z()/18 0*M P I ;

f l o a t q D o t l , qDot2 , qDot3,qDot4;
qDotl = 0.5 * (-ql * gx - q2 * gy - q3 * gz) ;
qDot2 = 0.5 * (qO * gx + q2 * gz - q3 * gy);
qDot3 = 0.5 * (qO * gy - q l * gz + q3 * gx);
qDot4 = 0.5 * (qO * gz + q l * gy - q2 * gx);

qO += qDo t l * frameTime;
q l += qDot2 * frameTime;
q2 += qDot3 * frameTime;
q3 += qDot4 * frameTime;
deltaFrame = QQuaternion(qO,ql,q2,q3);

o r i e n t a t i o n = o r i e n t a t i o n * deltaFrame; / / s u c c e s s i v e a t t i t u d e determ.
headG = headingFromQuat(orientation) *180/M P I ; //heading a f t e r the mov.
o r i e n t a t i o n = QQuaternion::fromAxisAndAngle(0,0 , - 1 , h e a d G) * o r i e n t a t i o n ;

Figure 6.4 Single step of successive attitude determination.

The matrix dcm (direct cosine matrix, D C M) is created from recalculated quaternion
orientation (after the deltaFrame application), as seen in equation (6.2.1).

65

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

dcm(l,l) = 2 • OR/, scalar2 -1 + 2- ORI. x2

dcm(l, 2) = 2 • ORI. x • ORI. y + 2 • ORI. z • ORI. scalar

dcm(l, 3) = 2 • ORI. x • ORI. z-2- ORI. y • ORI. scalar

dcm(2,1) = 2 • ORI. x • ORI. y - 2 • ORI. z • ORI. scalar

dcm(2,2) = 2 • ORI. scalar2 - 1 + 2 • ORI. y2 (6.2.1)

dcm(2,3) = 2 • ORI. y2 + 2 • ORI. x • ORI. scalar

dcm(3,1) = 2 • ORI. x • ORI. z + 2- ORI. y • ORI. scalar

dcm(3,2) = 2 • ORI. y2 -2- ORI. x • ORI. scalar

dcm(3,3) = 2 • ORI. scalar2 - 1 + 2 • ORI. z2

A l l over, the angles 6 and cp are determined from quaternion by formulas (6.1.5) and
(6.1.6) where is applied:

A = 2- ORI. x • ORI. z + 2- ORI. y • ORI. scalar (6-2-2)

5 = 1 - 2 - ORI.x2 - 2 • ORI.y2

The rotation around the z-axis, zrotation, is computed by equation (6.2.3). The rotation
around the z-axis is then performed. The acceleration in the E N U coordinate frame is
then expressed by the accDerot vector.

(A B \
zrotation = atan.2 T ^ T . T^T (6.2.3)

\COS{U) COSya) J

where: A = 2- ORI. y • ORI. x + 2 • ORI. z • ORI. scalar

5 = 1 - 2 - ORI.z2 - 2 • ORI.y2

The same result of the I M U orientation from the D C M can be obtained while the vector
multiplication of the dcm with measured acceleration vector is used. Nevertheless, the
problem with the gimbal lock effect persists.

The heading is computed by the same way as in the case when the I M U is "st i l l" .
In this case, when the I M U state is "walking" there is not parasitic rotation present. On
the other hand, the heading is computed only from the integrated data (that was
measured by the gyroscope) as well as the tilt and this leads to growing inaccuracy in
time, as mentioned above. We can improve the accuracy by replacing heading
calculated from the gyroscope by absolute heading from the magnetometer.

- 66 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

6.3 Problems
Because of data history is needed in process, the type of the A N N cannot be from group
of the classification A N N s . It results in a fact that the continuous output is in the range
from -1 to +1 (in classification A N N the output is exactly -1 or +1, see Chapter 5.4). To
distinguish of two states (walking and staying still) a decision border has to be defined.

Also, the neural network output is filtered by a K F and due to this filtering, some
delay in network decision on state occurs. The movement is then evaluated later and the
orientation is determined in a bad way.

To avoid this, two additional steps are performed:

1. Auxil iary condition has to be met to classify the EVIU state as "st i l l" , see (6.3.1),
where 5 a Cc is the actual deviation in [g] of the measured acceleration and (6.3.2)
where 8gyr is defined by maximum value of rotation rate. This condition block is
called SillyStatus filter and it returns "0" when any of the values was out of the
required range in the last N samples, otherwise it returns "1" . Tolerance of
acceleration deviation 8ACC was set to 0.01 g and the rotation rate tolerance was set
to 2 °/s. Figure 7.3 shows the Tracker setting dialog for these values.

2. The second step is to delay the data processing by N samples in order to be able to
"see the future". Whenever the state changes to "walking", the walk processing
algorithm runs using N samples in advance and thus the K F delay and A N N delay
are eliminated. This ensures that the orientation quaternion is not absolutely
computed from accelerometer while the EVIU is already moving.

Another issue is heading computation when the EVIU's x-axis points upwards or
downwards. When such a situation occurs, the heading is not defined and the
orientation (particularly the rotation around E N U z-axis) is computed fully from
rotation rate sensor, regardless of whether the EVIU is "s t i l l " or not.

6.4 Filtering
In my thesis, Kalman filter is used in several cases. A t first, Kalman filter affects the
output of the artificial neural network; the other K F is used for the rotation rate and
acceleration evaluation. A l l of them use the linearization of the system model.

It is also suitable to filtering of the measured magnetic field. The short-term
deviations are smoothened and the heading determination is then more stable. We do
not apply the filter on the determined heading values since the heading values are
always found in <-TC; TC> interval.

6.4.1 K F applied on A N N outputs

The maximum deviations of the A N N outputs (zk) from optimum output values (-1, +1)
typically reach up to approx. 0.5 and here the Kalman filtering seems to be very
desirable. The Kalman gain is computed based on the theory according to (6.4.1). Then
the a priori state estimation is performed (6.4.2) and the a posteriori error covariance
matrix estimation (a measure of the estimated accuracy of the state estimate) is

(6.3.1)

Sgyr = max(gyrx, gyry, gyrz) (6.3.2)

- 67 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

corrected (6.4.3). The predicted value of estimated state vector (6.4.4) and the predicted
value of estimation covariance (6.4.5) is computed.

S = HPj7HT + R

PkHT _ PkHT (6-4-D

S ~ HPIH7 + R

x k = A x , . , (6-4-2)

Pk = AkP^Al + Qk_t (6-4-3)

xk = xk + Kk(zk -H(xk,0)) (6-4-4)

Pk = Pk~ - KkHPk = (1 - KkH)Pk (64.5)

Because of the course of the function (continuous A N N output) is relatively simple,
linear Kalman filter is used and its entities A (the state-transition model), H (the
observation model), Po (input a priori estimate covariance), Pk (a priori estimate
covariance), Q (the covariance of the process noise) and R (the covariance of the
observation noise) are set experimentally in order (6.4.6):

A = [l]

H = [l]

Q = [0.5]
(6.4.6)

Po = [0.1]

P * = F P (k - i) F R + Q

R = [5]

Sensitivity matrix H was set to one, thus (6.4.7) applies. Corrected value of estimated
state vector is then computed according to (6.4.8). The predicted measurement value is
based on weighted arithmetic mean of previous state vectors summed with integrated
value of measurement. The error covariance is updated (6.4.9), based on (6.4.5), and the
algorithm repeats.

Pk
K k = p J T R ^ 4 - 7)

Xk = Xl+ Kk(zk - Xl) (6.4.8)

Pk= (1 - Kk)P~k (6.4.9)

Thus, the output of the A N N in this work is filtered by the L K F to avoid oscillations
around the decision boundary which eliminates the hopping between and
status of the I M U . In addition, because of the output of the A N N is not exactly or

the filter modifies the raw A N N outputs to get closer to expected values. B y this

- 68 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

way the L K F output is prepared for the hard limit filter application. The improvement of
the A N N output values after the L K F in time is shown in Figure 6.5.

1.5

3 1

o.
3 0.5 o

-0.5

-1

ANN result improvement

• J

M U

0.5

Ö
•TDNN output
•output after KF

- M U

1.5
samples

2.5
• 10"

Figure 6.5 Improved output of the artificial neural network (filtered by LKF).

6.4.2 Kalman filtering of sensor data

Because of the quaternion orientation is computed only from the accelerometer data
when the state is "st i l l" , the acceleration data may not be filtered before the orientation
determination and hence before the transformation from the R P Y coordinates to E N U
coordinates. After that derotation, the acceleration data should be filtered by L K F and
used for further evaluation of the velocity and consequently of the position (Figure
6.6).

1D Kalman Filter

l oo 110 120 130 140 150 160

100 110 120 130 140 150 160

100 110 120 130 140
Time [s]

Figure 6.6 Kalman filter applied on the acceleration data.

ISO 160

- 69 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

The quaternion orientation is computed from the rotation rate sensor when the state is
"walk", but that sensor is not used when the state is "st i l l" . Thus, the filtration of the
rotation rates must be performed very sensitively. The filter contains two groups of
coefficients; the first of them is used when the state is "s t i l l" and the second one when
the state is "walk". Then the deviations are suppressed highly when the I M U remains
stationary and they are satisfactorily filtered when the I M U "walks". The situation is
clear from Figure 6.7.

1D Kaiman filtering of gyr.z

x
TO
N

•*-»

re

o
or •100

110 120 130 140
T ime [s]

150 160 170

Figure 6.7 Kalman filter applied on the rotation rate sensor data.

The data from magnetometer is also filtered to ensure as high smoothness of the
particular magnetic strengths in time as possible. The filtration of the heading is
inconvenient due to the interval of values (<-7i; %> or <0; 2n>) depending on relation for
the heading determination. It ensures a smoother graph of the heading in time, in other
words, the direction of found North does not vary in short-term conditions from the
EVIU's R P Y coordinates point of view.

6.4.3 Kalman filtering of velocity and position

The filtration of the velocity and position is not necessary because the derotated
accelerometer data are already filtered and thus any further filtering even after
integration is redundant and undesirable.

6.4.4 Additional filtration methods

Moving Average Filter

In principal, a new value is averaged with given count of previous values k and resulting
value is used. Then, the smoother curve of signal is obtained. The size of the filtration
window indicates the degree of smoothness; with higher A: the line is smoother,
however, the resulting time-delay rises.

Simple L o w Pass Filter

The smoother curve is in this case obtained as well . The weight of a new sample relative
to the previous is determined and the result value is affected by the weighted previous
sample. The implementation has various forms, see (6.4.10) - (6.4.11):

x result

X. result

= a • xk_1 + (1 — a) • xk

= x f c _ ! + (1 - a) • (x f c - x k _ i)

(6.4.10)

(6.4.11)

- 70 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

x. result xk-l +
(xk — Xk-i) (6.4.12)

a
The smoothness of resulting curve depends on cr, in case of multiplication a e < 0 ; l > ,
in case of division a e<l ;oo>. This filtering brings the same disadvantage, with higher
crthe time-delay rises.

Thresholding

The output values are compared with a pre-set threshold value. In case of hard
thresholding the measured value is set to zero when the output is less than the pre-set
threshold value. In case of the soft thresholding, the pre-set threshold value is subtracted
from every sample. That means the signal is shifted by the pre-set threshold value.

When data from accelerometer is processed, the thresholding might not be used.
Nevertheless, this filtration is suitable in the soft calibration process.

6.4.5 Additional filters implementation

Gyroscope raw output

The data from gyroscope was received for 30 minutes when the E M U laid on a table in a
room. Figure 6.8 shows particular rotations in time. The bias offset (the mean value)
and standard deviation along particular axes are shown in T A B L E 6.1.

Gyroscope - bias offset and drift in 30 minutes
0.04 I

Raw rotation along x axis
Raw rotation along y axis
Raw rotation along z axis

800 1000 1200 1400 1600 1800
time [s]

Figure 6.8 Raw particular rotations in time when IMU is still - 30 minutes.

From the measured data we can deduce that the offset error (the shift of zero level) is
quite small and it may be filtered by the moving average filter when the EVIU is still.
The dynamic error that is caused by a signal fluctuation (drift) affects the result
orientation significantly. The tilt angle increases due to the drift though the EVIU is still,
and this effect, in this case, deeply applies when the EVIU is moving and the orientation
of the EVIU is computed from the rotation rates.

TABLE 6.1 Bias offset and standard deviation of raw rotations when the IMU is still.

x-axis j-axis z-axis

bias offset [°] 1.910- lO"2 1.31M0-2 1.25M0-2

standard deviation [°] 2.198- 10"3 3.105-10"3 1.36M0-3

Thus the low-pass filter according to (6.4.10) formula was chosen to filter the rotation
rates during the walk with smaller alpha coefficient - it brings quite small time delay

71

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

after the filtration. To be accurate, the thresholding is used to decide whether the I M U is
still or not when the U O G (use only gyro) mode is turned on. Then, a differs due to
defined state of the I M U . When the I M U is still, alpha is set to almost one. The time
delay then causes negligible errors.

Acceleration raw output

The measured acceleration (after the hard offset compensation and axes scaling)
achieves the absolute value of 1 g (the gravitational acceleration) while no other forces
(movements) are present. When the I M U is turned on, the necessary condition for the
correct measurement is that the I M U has to stay still at least for 2 seconds. Because of
the motion brings almost always attitude changes, there is no way how to filter the
acceleration sensor drift in time.

Despite of that, this system allows to estimate the velocity and position based on
the artificial neural network output and whenever the I M U state is „still" the velocity is
set to zero and thus the position is not changing. Then drifts do not apply. The impact of
the accelerometer drift is shown in Figure 6.9. The error rises significantly during the
time due to the integrations (actual velocity and position is computed based on
equations (6.4.1) - (6.4.3)). In our system we suppose that the state changes frequently
(the figure shows 23 minutes of the measurement while the I M U was laying on a table).

Acceleration drift impact in approx. 23 minutes

.5000 ' 1

0 200 400 600 800 1000 1200 1400
time [s]

Figure 6.9 Acceleration drift impact.

72

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

7 STRAPDOWN NAVIGATION IMPLEMENTATION

Once the EVIU coordinate system is transformed into the E N U coordinates, the inertial
velocity and position of the device can be computed.

7.1 Basics of strapdown algorithm
The basic formulas of strapdown algorithm are shown in relations (7.1.1), (7.1.2) and
(7.1.3). Since the acceleration is measured discontinuously, we use deltas in equations
to express the velocity and the trajectory in time.

Va = V ° l - 1 ^ + V k (7.1.1)

vk = v(k-l) + a c c ' At (7.1.2)

1
Sk = S(fc-i) + v k • At + - • a • At2 (7-1.3)

A very important correction step now is to set the derotated acceleration vector to (0, 0,
1) in E N U coordinates and inertial velocity vector to (0, 0, 0) when the state is "st i l l" . If
we do not process it we obtain an acceleration value very close to zero, but the velocity
value would change more significantly. During the "s t i l l " period, the position of the
EVIU would change, which is unacceptable, moreover when the state changes to
"walking", evaluation of velocity and position would be affected by this inaccuracy.
Next part describes the developed software for strapdown navigation. Once the
application receives data from the I M U , the steps described further may be performed.

7.2 Software for Inertial Measurement Unit - Tracker
A s a suitable environment Qt has been chosen. Qt is the leading independent technology
for cross-platform development. A n application for data processing and visualization
was created including visualization. Besides the main.cpp file, further C++ source files
have been developed:

M a i n source codes for processing: pplotgroup.cpp
putils.cpp

receiver, cpp F F ^
calibrator.cpp User interface source codes:
derotator.cpp , ,• ,

F F cubedialog.cpp
integrator, cpp . . ,
_, , & „ F F customtab.cpp
rilehandler.cpp , r , . F F pack! ormater. cpp
brain, cpp

F F settings, cpp
A N N source codes: vizualizer.cpp

genericnetwork. cpp
mod.cpp Visuals source codes:

Utils source codes: , . . calstatus.cpp
brain.cpp glcubevidget.cpp

73

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

qcustomplot.cpp
tcompass.cpp

Next Chapters contain a description of main source files of the application.

7.2.1 Receiver

When data is sent from Arduino U N O and serial link is opened the data is available for
processing in Qt. There are two possible ways how to transmit the data, the first is via
U S B cable and the second is wireless, v ia Bluetooth. Received data are converted to the
appropriate physical units, depending on the sensitivity (how the output registers were
set, see page 102, A P P E N D I X C), as further lines show.

//Sensor U n i t s C o n v e r s i o n Con s t a n t s
magLSB Gaus = l/6.842e3; //+- 4 gauss
gyrMDPŠ LSB = 17.5e-3; //+- 500 °/s
accMg LSB = 0.061e-3; //+- 2 g 2 g

// C a p t u r e d d a t a c o n v e r s i o n (to a p p r o p r i a t e u n i t s)
/ / C o n v e r s i o n o f a c c e l e r o m e t e r d a t a t o a c c e l e r a t i o n i n [g]
a c c . s e t X (r a w D a t a [6] * a c c M g _ L S B) ;
a c c . s e t Y (r a w D a t a [7] * a c c M g _ L S B) ;
a c c . s e t Z (r a w D a t a [8] * a c c M g _ L S B) ;
// C o n v e r s i o n o f gyro d a t a t o r o t a t i o n r a t e i n [deg/s]
g y r . s e t X (r a w D a t a [3] * g y r M D P S _ L S B) ;
gyr.setY(rawData[4]*gyrMDPS_LSB) ;
gy r . s e t Z (r a w D a t a [5] * g y r M D P S _ L S B) ;
// C o n v e r s i o n o f magnetometer d a t a t o ma g n e t i c f i e l d i n [gauss]
// x - a x i s i s r e p r e s e n t e d by y - a x i s
// y - a x i s i s r e p r e s e n t e d by x - a x i s i n t h e o p p o s i t e d i r e c t i o n
mag.setX(rawData[1]*magLSB Gaus);
mag.setY(-rawData[0]*magLSB Gaus);
mag.setZ(rawData[2]*magLSB Gaus);

To align the coordinate frames of sensors, magnetometer coordinate axes had to be
swapped - this is clear from the last part of c-code above. The offsets and the scale
factors of sensor axes were computed from experimentally found out (measured) data.

In addition, the expected measured acceleration is 1 g in the appropriate axis
while the I M U is still and the axis points exactly downwards. In practise the value is
little bit different from the 1 g and it differs for each of the axes as shows the c-code
part below. Those differences have to be compensated and the measured values are thus
shifted and scaled.

74

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

//Hardware c o n s t a n t s o f a c c e l e r o m e t e r
a c c M i n = QVector3D(-1.0055485, -0.9946478, -0.9949894);
accMax = QVector3D(1.0008940, 1.0017908, 1.0239429);

/ / O f f s e t
a c c . s e t X (a c c . x () - ((a c c M a x . x () + a c c M i n . x ()) / 2)) ;
a c c . s e t Y (a c c . y () - ((a c c M a x . y () + a c c M i n . y ()) / 2)) ;
a c c . s e t Z (a c c . z () - ((a c c M a x . z () + a c c M i n . z ()) / 2)) ;

/ / S c a l e
a c c . s e t X (a c c . x () / ((a c c M a x . x () - a c c M i n . x ()) / 2)) ;
a c c . s e t Y (a c c . y () / ((a c c M a x . y () - a c c M i n . y ()) / 2)) ;
a c c . s e t Z (a c c . z () / ((a c c M a x . z () - a c c M i n . z ())/2)) ;

Figure 7.1 shows the converted raw data - acceleration in [g], rotation rate in [deg/s]
and the magnetic strength in [gauss]. The blue colour represents the data measured in
x-axis, the green colour represents the data measured in ^-axis and the red one
represents the data measured in z-axis.

Numbers on the right side represent last measured value in appropriate axis. The
motion that is captured in this figure represents walking. A s you can see from the
depicted accelerations and rotation rates, four steps in approximately same direction
were performed during this experiment.

H Tracker

Raw Data Calibrated Data Derotated Data KFofENU Acceleration Integrated Data Custom

Raw Acceleration [g]

Raw Magnetic field [Gauss]

0,45 :

-045
A 3

-0.286
0.252
J).841

~J I z 1

3.553
5.845
6.948

ifc i

-0.137
-0.007
0.147

-Ü.5

: |t±yACM0 File Writer

J C;/U ser s/L en i £ka

Format

1

File Reader
Ci.Jse-s.Le--1-:^ De .e-=-.:-:--ľ:_pí^;L,;x;

Play

ti speed |T

Target FPE |25

I B ŕ s l » t j 33 f ŕm j

Calibrate J Setňngs- ~ |

rto> I Popupfte I

Figure 7.1 Raw data.

7.2.2 Calibrator

This part calibrates received data for the environment where the measurement is
performed. The adjustable values for magnetometer calibration are local magnetic
strength, linear Kalman filter constants for magnetometer data filtration and the length
of history (the previous sensor data that are available in each time-step). The process of
active calibration takes about two seconds.

75

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

//Mag o f f s e t
mag.setX(mag.x)-((magMax.x()+magMin x()) /2)) ;
mag.setY(mag.y)-((magMax.y()+magMin y ()) / 2)) ;
mag.setz(mag.z)-((magMax.z()+magMin z()) / 2)) ;

//Mag s c a l e
mag.setX(mag.x)/((magMax.x()-magMin x()) /2)) ;
mag.setY(mag.y()/((magMax.y()-magMin y ()) / 2)) ;
mag.setZ(mag.z)/((magMax.z()-magMin z()) / 2)) ;

/ / M a g n e t i c l o c a l f i e l d s t r e n g t h
mag = MagLocal * mag;

//KF f o r mag
mag = kalMag->getrValue(mag);

Always when the I M U is "st i l l" , the gyro data offset is found out and this offset is
subtracted (passive calibration). The subtraction of the last detected offset value is
applied also during the "walking". We assume that no movement occurs when the
calibration is running, thus the acceleration and the magnetic field may be averaged to
get the first orientation quaternion. In addition, the mode (s t a t e) is defined at the end
of the calibration.

Figure 7.1 and Figure 7.2 show the same data sample, before and after the
calibration. The significant difference can be found in the graph for the magnetic
strength. N o w the values are converted into [mGauss] and the total magnetic field
corresponds to the place where the measurement was performed (see A P P E N D I X B).

I] Tracker

Raw Date Calibrated Data Demoted Data KFofENU Acceleration Integrated Data Custom

Calibrated Acceleration [g]

781.5

Calibrated Magnetic field [mGauss]

1̂50.
-soa

|ttyACM0 File Writer

j C:AJsers(lenir3sa

Fci'iviat

1

File Reader
C:.,Lis&,s.,L& -̂:̂ 5.,L^= ..e:-e:v.,5-;-e_park2,tKt

Custom speed 115

-0.356
0.313
J).897

Zl 12 1

0.044
-1.702

-53.913
.10 I 130 ~ |

72.465
158.510
-558.003
TOO ^ Jain I

Moving fbr 3ß4

Target FPS |25 § |

rtde I Popupfife

Figure 7.2 Calibrated data.

The active calibration may be also called during the measurement by the user. It
requires keeping the I M U still for at least two seconds. The calibration resets the

76

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

position to (0, 0, 0), resets the velocity to (0, 0, 0) and at the end of the calibration the
orientation quaternion is recomputed based on the averaged accelerations.

7.2.3 Derotator

The derotation algorithms were described in Chapter 0. Based on the settings, in
addition, the derotator may use "Use Only Gyro" (UOG) mode or SillyStatus mode.
When the U O G mode is activated, the measured acceleration vector is derotated into
E N U coordinate system by the quaternion deltas that are fully defined by the data from
the calibrated and compensated rotation rate sensor. The data processing is then similar
as in Chapter 6.2: When the state is "walking".

The SillyStatus mode works as a hardlimit filter and it defines the state of the
I M U based only on the filter output. Providing the data deviations from reference are
lower than user-defined decision values, the state of the I M U is "st i l l" . In that case, we
expect that the absolute acceleration equals 1 g (the deflection is set in [g]). We also
expect that the I M U does not rotate, thus the expected value from gyroscope is zero in
each axis (the deflection is set in degrees). This situation may occur also incidentally,
thus the still limit defines the minimal number of the successive samples that match
given conditions, before the state is changed to "st i l l" . The tolerance of acceleration
deflection ("Acc limit"), the tolerance of rotation rate deflection ("Gyro limit") and
("Still limit") for SillyStatus mode are set in the setting dialog window.

There are several artificial neural networks that may decide on the actual state of
the TMU. Thus the "Select NN" allows to define the A N N that is used. The activation of
the A N N processing is given by checking the "Neural network" checkbox. Constants
for A N N Kalman filter ("KF for NN") and 'NN status boundary" can be set by the user
before or during the measurement in the setting dialog window. The boundary value
defines the border between the final "s t i l l" decision and final "walking" decision. The
A N N output after the Kalman filtration is compared to the given value. We expect the
A N N output values between -1 and 1. We can also use the combination of the
SillyStatus mode and A N N implementation. The A N N then defines the "s t i l l" and
"walking" phases. Nevertheless, the quaternion orientation is recomputed and corrected
only in case that the SillyStatus filter decides that the I M U is "s t i l l " and the A N N
detects the "s t i l l " state too.

77

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

E Settings • X

• Use Only Gyro

I I Restart on button press

1̂ 1 Simple status determination range

Ace limit 0.01

Gyro limit | 2

Still limit

0 Neural network

Select NN TS02.txt

NN status boundary

KFfor NN

P:

-0,99

KFo fECI Ace

P:

0,5

R:

G.i

Save

Figure 7.3 Setting dialog window for Tracker.

The heading value is computed from the magnetometer regardless of the defined state.
In cases when the heading cannot be determined from the magnetometer neither from
the gyroscope (the x-axis points upwards or downwards or the tilt is in given range from
those directions), the heading is not further computed and the orientation quaternion is
updated only by the deltaFrame quaternion using the gyroscope.

"""I Tracker

Raw Data Calibrated Data Derotated Data KF of ENU Acceleration Integrated Data Custom

ENU Acceleration [m/sA2J

: |tryACM0 File Writer File Reader
Ci.Us&s.L&^-^s/D? ..ereiv:'i;is_park2,tKt

-..atom Meed [7i | Fa*. | ^2rfjj ™

-2.645
5.205

-2.888
I -8 I 110

-5.600
-15.569
-29.024

I-50] I 20

Target FPS |25 § |

3D Vie*

Figure 7.4 Derotated data.

Figure 7.4 shows the data of the same measurement (see Figure 7.1 and Figure 7.2)
after the derotation. The acceleration presented in the figure is in E N U coordinate
system and because of the subtraction of gravitational force from the z-axis, the
acceleration is "fully linear". It is also converted from [g] to [ms"2].

- 78 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

The bottom graph shows evaluated Euler angles (cp, 6, y/) of the I M U in the E N U
coordinates. The red curve represents the y/ angle, which is equivalent to the heading.
A l l angles are defined in (—180; 180) interval range in [deg]. The Kalman filtration of
magnetic strength data has an impact on the evaluated heading value. This graph shows
the situation when the magnetic strength was not filtered by a K F . Thus there are cases
when the heading value hops by few degrees, e.g. at time about 782 s, 786 s and 787 s.

7.2.4 Integrator

The integrator evaluates the final output values, the velocity and position in time. It
operates depending on the state; appropriate computations are further performed. The
consequence of defined mode in each possible state is clearly shown in T A B L E 7.1.
When the heading value from magnetometer cannot be determined, the velocity and
position is computed by the same way as in U O G mode.

TABLE 7.1 Consequences of defined state in particular modes.

mode state consequence
UOG ANY orientation of the IMU is defined by the calibrated gyroscope data only

SillyStatus
STILL orientation of the IMU is recalculated from the accelerometer data only

SillyStatus
OTHER the UOG mode data processing applies

ANN
STILL global acceleration is set to (0, 0, 1), actual velocity is set to (0, 0, 0)

ANN
WALK the UOG mode data processing applies

ANN&SillyStatus
STILL orientation of the IMU is recalculated from the accelerometer data only

global acceleration is set to (0, 0, 1), actual velocity is set to (0, 0, 0) ANN&SillyStatus
WALK the UOG mode data processing applies

Then, (6.4.2) and (6.4.3) formulas are used to get the velocity and position in inertial 3D
E N U coordinate frame. In the presented experiment four human steps can be clearly
recognized, see Figure 7.5. They may be detected from the velocity curves or from the
position defined below. Between steps, the acceleration, respectively velocity, drops to
zero. O f course, during human steps the algorithm thoroughly evaluates the measured
data.

79

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

U Tracker

Raw Data Calibrated Data Derotated Data KF of ENL1 Acceleration Integrated Data Custom

Velocity [rn/sj

-0,8 -

-1,0

Port; |ttyACMu

Reconnect

Drscnnriect

File Writer File Reader
C:/Users.leni-i^/De .e:e:^.s;is_parkZtxt

Custom speed 115 | | Pafri |

Disconnect timer

Moving for 5.18

0.552
0.792
0.138

2.164
-1.476
0.116

|-3 IfjZZl

Target FPS \l5 \4

I Restart J 3-1 few J

Calibrate | Setftigs "|

rtde I PDfMtnTe |

Figure 7.5 Integrated data.

7.2.5 Custom graphs

The software allows to set a number of the custom plots in which the graphs of chosen
variables are shown in one window. For example, as Figure 7.6 shows, the calibrated
acceleration and artificial neural network output. In the "State and Neural Network
output" window you see three curves. The red one represents the SillyStatus filter
output ("still" state is defined when the output value is "1"). The green one represents
the A N N output and the blue one the A N N output after K F . In those A N N outputs,
"s t i l l" state is defined when the output value is lower than the "AW status boundary"
value.

Raw Data Calibrated Data Derotated Data KF of ENU A c c e - e ! • • êa-'ated Data d-^ity

Number of custom plots: 2 $ \

\&L/m- -.r-| [ltt^artptit~~-H
ApplY

rslihrsfprl ArrpIrir̂ tirin [Wl

A rtA.iU - ° " 4 1 6 1,2 A tut J Vv i \ A „ . A A.J1 . . A rtA.iU - ° " 4 1 6

— J \ j ^ \ / V v \ / v v \ A ^ l — v —VV-^VVVV" Ay^ V
„ — — . A - . . .A-^- 'A n"?ifi 0

- - ' . y t y w -'"C ' l i t U.J 10

0.845
-1,8

0.845
781,5 783 734,5 7i \6 7S7,5 789 |-Z | |z

Stritp nnri NpnrrJ NptiA'orL mitnut

1.000 1.000
15

j/̂ v i in« /r m » K n ' rr^ 1.000
-1,5 0.000
-4,5

0.000
781,5 783 784,5 7t i 737,5 789 | _ 5 | ;

File Writer File Reader
CLAJsers/Lenicka/TJe.. ereni/EnsjarkZbrt

c 1230 j 13713

Custom speed |j| H I ! Moving for 513

ftestiri I I 30 Viett |
Settings

Ode I I Popup file

Figure 7.6 Example of Custom plot data

- 80 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

The next table shows all values that may be plotted in the application.

TABLE 7.2 Variables available in custom plot view.

Raw Acc. Raw accelerometer data Cal. Acc. Calibrated accelerometer data

Raw Gyro Raw gyroscope data Cal. Gyro Calibrated gyroscope data

Raw Mag. Raw magnetometer data Cal. Mag. Calibrated magnetometer data

ENUACC Linear acceleration in ENU
coordinate frame ENU KF ACC Linear acceleration in ENU

coordinate frame after KF

Euler angles Euler angles of actual
orientation Neural output ANN output, ANN output after KF,

combined state (with SillyStatus)

Velocity Velocity in ENU coordinate
frame Position Position in ENU coordinate frame

7.2.6 FileHandler

A s it is indicated in the name, this part allows to record data to plain text format and
also load the data from such a format. The user may configure data format to be saved.
It seems to be suitable to choose the set that is measured by I M U (raw rotation rates,
raw accelerations, raw magnetometer, and time) because of the further data processing
(e.g. possibility of calibration) in Tracker software. The list of all variables (output
variables) that can be saved are shown in Figure 7.7. The linear acceleration in E N U
coordinates (E N U acc) may be further processed in M A T L A B ™ , for example. The
"Disconnect timer" defines the period [ms]; when the timer is switched on, after
expiration of the pre-set period the connection with the I M U is closed.

Enabled: Disabled:
Raw Gyro Cal. Acc.
Raw Acc. Cal Gyro
Raw Mag. Cal. Mag. Raw Mag. Cal. Mag.
FrameTime < ECI Acc FrameTime ECI Acc
ElapTime > ECI KF Acc

Euler angles
velocity
Position
Neural output

Save Button

Figure 7.7 A dialog window for recording and replaying the data.

When the saved data is red, the custom speed of reading may be set. The reading may
be paused or stopped.

7.2.7 Graphical representations in software

In the bottom of the application window, there are labels and buttons that allow the
control of the software (Figure 7.8). A t first, the port can be set in case we process the
I M U data real-time. There is the possibility to reconnect and disconnect the I M U and
also to freeze the view. The File Writer and File Reader allow to define the read/write
data format. The path may be also defined by the user. The custom speed defines the
speed of data flow in graphs. The menu on the right allows to restart the evaluation
process, load the calibration process, hide graphs during the measurement, show the

81

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

setting dialog window, pop-up the file writer and file reader to a separate dialog window
and show the 3D Cube V i e w window.

File Writer File Reader
Ci^JEerE/Lenicka/tJe. ereni/sns _park2.t(t

Patti ~| Custom speed 115 | | Path |

Restart 30 View

Calibrate Settings

Hide Popup file

Figure 7.8 The software controls.

Information about the heading is represented by an arrow in the rectangle that points
upwards while the EVIU (body frame) x-axis points to the north. In addition, the
information about state is represented by the green/yellow/red background of the
rectangle. The number of samples corresponding to the last defined state is shown under
this rectangle. The visual output is shown in Figure 7.9. n i

Still for 129
samples.

Moving for 174
samples,

Not Defined

TT
X axis is vertical.

Using only Gyro. [652]

Figure 7.9 Visual information about the heading and the state

The next visual result is the cube in 3D that represents the EVIU body (see Figure
7.10). The window that allows to track the EVIU also contains information about the
number of samples per second (SPS), current position and velocity, and the actual
orientation quaternion value. The user may set the view zoom or lock the cube on
(0, 0, 0) position (the centre of the screen). Then only the orientation of the cube in
E N U coordinates is shown in time. The user may also call the calibration or reset the
view (zoom and viewport adjustments) from this screen.

SPS: 83

Position:
-0.75
0.165
-0.114

Velocity
-0.501
0.813
-0.161

Quaternion:
0.996

-0.087
-0.014
-0.026

View distance:

1200,0 i |
I I Lod< Position

Auto View
| Reset View|
| Reset All
| Calibrate"]

Close

Figure 7.10 Cube view

- 82 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

8 VERIFICATION BY MEASUREMENT

To verify achieved improvements, five situations were performed. The first two
measurements contain data when the I M U stays still on the table and in the hand. Next
measurement contains data when the I M U is held in the hand and the still phase
alternates with step phase. This is called Step and Stop. Last two measurement contain
data when the I M U is held in the hand in the still phase to calibration for three seconds
and follows with discontinuous or fluent walking.

Results are presented in this way:

The first two measurements were performed while the EVIU stood still. The expected
A N N output is thus always "s t i l l " and the results of the inertial accelerations in E N U
coordinates or the A N N outputs are not presented. For comparison, the velocity and the
position for each measurement was evaluated by three methods:

- evaluation based only on the calibrated and compensated inertial sensor data
(U O G mode)

- evaluation based on the SillyStatus filter that decides whether the EVIU is still or
not

- evaluation based on the A N N decision whether the EVIU is still or walking
supported by SillyStatus

The results of the measurements containing any walking are also evaluated by these
three methods. The A N N output and results using SillyStatus mode are shown in
graphs. Furthermore, the velocity and position in E N U coordinate system is depicted.

8.1 Case I: IMU stayed still on the table
The velocity and the position in time is shown in tables below. The values were taken
after 5, 10, 30, 60 and 120 seconds of the measurement. The initial velocity is v = (0, 0,
0) ms"1 and initial position is s = (0, 0, 0) m. T A B L E 8.1 shows the results when the
U O G mode was activated. T A B L E 8.2 shows the results when the SillyStatus filter was
used only and T A B L E 8.3 shows the results with application of A N N with SillyStatus.
Because of the zero values of the velocity and thus position in time, the absolute values
are presented in the third table only. From these results the fact that SillyStatus filter
works properly is clear. The U O G mode results verify that the inertial sensors were
correctly calibrated. The A N N operates with 100 % of reliability.

Figure 8.1 shows the U O G mode curve depicted by the red colour, the
SillyStatus mode curve depicted by the blue colour and the A N N aided result curve
depicted by the green one. The result of the U O G mode is in meters, the result of the
SillyStatus mode and A N N mode are in millimetres (the second axis on the right hand
side). The setting dialog window in Figure 7.3 shows the values of the parameters that
were used while the data was processed in SillyStatus mode and which parameters were
set while the data was processed with the A N N :

- The " A c c limit" value was set to 0.01.

- The "Gyro limit" value was set to 2.

- The "still l imit" value was set to 4.

83

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

- The " N N status boundary" value was set to -0.99.

- K F for A N N constants: P = 1; Q = 0.5; R = 2.

TABLE 8.1 Velocity and position, UOG mode still on the table.

Time [s] 5 10 30 60 120

v in A--axis [m/s] -0.012 -0.077 -1.504 -5.812 -24.846

v in ><-axis [m/s] -0.005 -0.083 -2.259 -10.911 -48.498

v in z-axis [m/s] -0.147 -0.351 -1.412 -3.126 -7.882

A v [m/s] 0.1475737 0.368808 3.059222 12.75152 55.05911

s in x-axis [m] -0.012 -0.177 -12.372 -120.881 -936

s in ><-axis [m] -0.004 -0.14 -17.331 -202.286 >999

s in z-axis [m] -0.213 -1.208 -18.86 -86.95 -403.975

A s [m] 0.21337526 1.2288991 28.445202 251.1815 >999

TABLE 8.2 Velocity and position, SillyStatus filter used only still on the table.

Time [s] 5 10 30 60 120

v in x-axis [m/s] 0 0 0 0 0

v in ><-axis [m/s] 0 0 0 0 0

v in z-axis [m/s] 0 0 0 0 0

A v [m/s] 0 0 0 0 0

s in x-axis [m] 0 0 0 0.001 0.001

s in ><-axis [m] 0 0 0 0 0

s in z-axis [m] 0 0 0 -0.001 -0.001

A s [m] 0 0 0 0.0014142 0.0014142

TABLE 8.3 Velocity and position, ANN applied still on the table.

Time [s] 5 10 30 60 120

A v [m/s] 0 0 0 0 0

A s [m] 0 0 0 0 0

- 84 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Evaluated trajectory in time
1600

1200

^ 1000

>• 800
o

'S 600

*= 400

200

0
20 40 60 80

time [s]
100 120

— X - - • UOG mode
/

/
/

/

— i - — SillyStatus filter
/

/

/
/

r

- - A N N mode
/

/
/

/
/

h

W W e ^ >—

3.2

2.8

2.4

2 £
£

1.6

1.2
ST

0.8 £

0.4

0 140

Figure 8.1 Evaluated trajectory in time, the UOG in fmj (lefty-axis) and others in [mm] (righty-axis),
still on the table.

8.2 Case II: IMU stayed still held in the hand
The results in this case are presented similarly to the results in Chapter 8.1. The
SillyStatus filter does not work with satisfactory accuracy. Contrariwise the A N N
catches the still states very successfully. After 2 minutes of the measurement, the
position is evaluated with the error about 0.17 m in x-axis, 0.13 m in y-axis and 0.08 m
in z-axis. The absolute error in positioning with A N N is then about 0.23 m.

The U O G mode results confirm the theory of inertial sensors and show that I M U
cannot be used for positioning without auxiliary system.

Figure 8.2 shows the U O G mode curve depicted by the red colour, the SillyStatus
mode curve depicted by the blue colour and the A N N aided result curve depicted by the
green one. The result of the U O G mode is in meters, the result of the SillyStatus mode
and the A N N mode has the second axis on the right hand side in meters. The setting
dialog window in Figure 7.3 shows the values of the parameters that were used while
the data was processed in SillyStatus mode and which parameters were set while the
data was processed with the A N N :

- The " A c c limit" value was set to 0.01

- The "Gyro limit" value was set to 2.

- The "still l imit" value was set to 4.

- The " N N status boundary" value was set to -0.99.

- K F for A N N constants: P = 1; Q = 0.5; R = 2.

85

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

TABLE 8.4 Velocity and position, UOG mode still in the hand.

Time [s] 5 10 30 60 120

v in x-axis [m/s] 0.046 0.358 3.264 10.72 45.923

v in y-axis [m/s] 0.038 0.197 2.161 9.677 34.569

v in z-axis [m/s] -0.094 -0.382 -1.48 -3.301 -8.518

A v [m/s] 0.111337 0.559372 4.184975 14.81416 58.10761

s in x-axis [m] 0.036 0.959 32.02 239.678 >999

s in y-axis [m] 0.027 0.569 22.346 187.27 >999

s in z-axis [m] -0.08 -1.313 -20.272 -92.479 -443.554

A s [m] 0.0917878 1.7226175 43.995205 317.91188 >999

TABLE 8.5 Velocity and position, SillyStatus filter used only still in the hand.

Time [s] 5 10 30 60 120

v in x-axis [m/s] 0 -0.006 -0.012 -0.01 0

v in y-axis [m/s] 0 -0.005 -0.005 -0.01 0

v in z-axis [m/s] 0 -0.008 -0.004 -0.006 0

A v [m/s] 0 0.01118 0.013601 0.015362 0

s in x-axis [m] 0.001 -0.015 -0.203 -0.506 -2.042

s in y-axis [m] 0.001 -0.004 -0.149 -0.421 -1.495

s in z-axis [m] -0.002 -0.017 -0.162 -0.308 -0.892

A s [m] 0.002449 0.023022 0.299423 0.726733 2.683366

TABLE 8.6 Velocity and position, ANN applied still in the hand.

Time [s] 5 10 30 60 120

v in x-axis [m/s] 0 0 0 -0.004 0

v in y-axis [m/s] 0 0 0 -0.005 0

v in z-axis [m/s] 0 -0.001 0 -0.001 0

A v [m/s] 0 0.001 0 0.006481 0

s in x-axis [m] 0 -0.001 -0.004 -0.013 -0.169

s in y-axis [m] 0 0 -0.005 -0.014 -0.128

s in z-axis [m] -0.001 -0.001 -0.009 -0.017 -0.077

A s [m] 0.001 0.001414 0.011045 0.025573 0.225553

- 86 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

1600

1400

1200

— 1000
>•
o
u 800
0J
ST
h 600

400

200

0

Evaluated trajectory in time

— X — UOG mode

SillyStatus filter

- - • - - A N N mode

-+>'"" -o
4> —

D 20 40
•o-
60 80 100 120

time [s]

3.2

2.8

2.4

2 I
> •
i _ o +-< 1.6
0J
ST

1.2 £

0.8

0.4

0 140

Figure 8.2 Evaluated trajectory in time, the UOG in fmj (lefty-axis) and others in fmj (righty-axis)
still in the hand.

8.3 Case III: IMU held in the hand during Step and Stop motion
A s it was described above, the Step and Stop measurement contain both, steps and still
phases. The measurement was performed in Brno, Cerna pole. The true shape of the
trajectory is a square with a side length of about a = 4 m (A => B => C => D). This
trajectory repeats for 5 minutes. The detailed trajectory in selected coordinates is shown
in Figure 8.3. These data are summarized in T A B L E 8.7 Positions of Step and Stop
measurement.

The direction to the North (x-axis of the I M U) is positive. The direction to the
East (y-axis of the EVIU) is negative. That is reason why the minus is present in
calculations when the distance in y-axis is computed.

North A=a x ,a y A=[0;0;0] C = [1.464;-5.464; 0]

B = [3.464; -2; 0] D = [-2; -3.464; 0]

Figure 8.3 Detailed positions of Step and Stop measurement.

87

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

TABLE 8.7 Positions of Step and Stop measurement.

square part length sum [m] Position vector [m] azimuth [°]
1. A=>B 4 A = (0.000; 0.000; 0.000) 30
2. B=>C 8 B = (3.464; 2.000; 0.000) 120
3. C=>D 12 C = (1.464; 5.464; 0.000) 210
4. D=>A 16 D = (-2.000; 3.464; 0.000) 300

The first three steps are presented in following figures. In this example you can observe
the rising inaccuracy in time. The SillyStatus state (red coloured) and neural network
output (raw output is green coloured, output after Kalman filtration is blue coloured) is
shown in Figure 8.4. The x-axis of all graphs represents time in [s].

In Figure 8.5 the velocity in E N U coordinate system in U O G mode is shown.
The corresponding position in time is depicted in Figure 8.8. Again, the velocity in
E N U coordinates in shown Figure 8.6, however the estimation in time is adjusted by
SillyStatus filter. The corresponding position in time to this result is depicted in Figure
8.9. The last one mode is shown in Figure 8.7. This is the velocity in E N U coordinates
estimated when the A N N is applied. The corresponding position in time is depicted in
Figure 8.10. The data was processed with the A N N :

- The " A c c limit" value was set to 0.01.

- The "Gyro limit" value was set to 2.

- The "still l imit" value was set to 4.

- The " N N status boundary" value was set to -0.99.

- K F for A N N constants: P = 1; Q = 0.5; R = 2.

State and Neural Network output

lj p m m r L - p [x m i p | f l i p n

-i,5 r
~3 L . 1 . , 1 , . 1 . . 1 . , 1 . . 1 , ^ _

780 731,5 733 734,5 736 787,5
Figure 8.4 SillyStatus state (red) and ANN output state in time fsj.

T A B L E 8.8 shows the estimated outputs in all three modes, U O G mode, SillyStatus
mode and the mode with our A N N in process. The expected values, i f could be defined,
are shown in the last column. The first part shows the results after three steps. The
second part shows the results after 20 steps (approx. 60 seconds of measurement, the
position in this time is the same as the initial position, the A point, see Figure 8.3). The
third part shows the results after 40 steps (approx. 120 seconds of measurement, the
position in this time is the same as the initial position, the A point, see Figure 8.3).

88

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Velocity [m/s]

7,4

1,6

0

•0,8

-1,6

-2,4

•0,8

-1,6

-2,4

•0,8

-1,6

-2,4

780 781,5 733 784,5 786 787,5

Figure 8.5 ENU velocity estimated in UOG mode, x-axis represents meas. time in [sj.

Veloci ty [rn/s]

780 781,5 783 784,5 786 787,5 789

Figure 8.6 ENU velocity estimated with SillyStatus filter in process, x-axis represents meas.
time in fsj.

Velocity [rn/s]

780 781,5 783 784,5 786 787,5

Figure 8.7 ENU velocity estimated with ANN in process, x-axis represents meas. time in [sj.

The heading value represents negative value of azimuth of the FMU's x-axis in E N U
coordinate system (deviation of north from the x-axis). The table also contains
acceleration (a), velocity (v) and position (p) information. In addition, the distance
from estimated position to reference (0, 0, 0) in horizontal plane (|P2D I) a n d in 3D
(IP3DI) is stated. The | s 2 D | value is the length of the trajectory, the sum of lengths of
the particular trajectories. The step length (laVg) is then calculated as the average length
of human steps performed during the measuring period. Those values are calculated
using equations (8.3.1) - (8.3.4).

Position [m]

••'

3,5

0

-3,5

-7

10,5

-3,5

-7

10,5
i i

780 781,5 733 784,5 786 787,5 789

Figure 8.8 ENU position estimated in UOG mode, x-axis represents meas. time in [sj.

89

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Position [m]

Figure 8.9 ENU position estimated with SillyStatus filter in process, x-axis represents meas.
time in fsj.

Position [m]

1,2
0,6

0
-0,6
-1,2
-1,8

780 781,5 78 3 784,5 786 787r5

Figure 8.10 ENU position estimated with ANN in process, x-axis represents meas. time in fsj.

Inaccuracies arise when rotations by 90 degrees occurs. The applied A N N is not trained

to rotations around z-axis without human steps. The graph of distances from the (0, 0, 0)

position in E N U coordinate system is shown in Figure 8.11. Figure 8.12 shows the

reconstructed 2D trajectory (East-North view) and Figure 8.13 shows the reconstructed

3D trajectory (East-North-Up view) of this measurement using the inertial measurement

system only. Graphs show 60 seconds of measurement.

TABLE 8.8 Estimated outputs of the system in particular modes.

mode UOG SillyStatus ANN applied expected

IN
IT

IA
L

 heading a0 [°] -23.35 -26.38 -27.12 -30

IN
IT

IA
L

tilt, x-axis cp0 [°] -1.71 -2.17 -1.93 NA

IN
IT

IA
L

tilt^-axis 60 [°] -5.92 -6.74 -6.22 NA

mode UOG SillyStatus ANN applied expected

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

heading a± [°] 34.14 38.85 38.89 30

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

tilt, x-axis cp-i [°] 5.37 6.40 6.23 NA

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

) tilt^-axis 61 [°] 6.59 7.50 8.34 NA

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

alx [ms2] 0.54 0.09 -0.05 0.00

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

aly [ms-2] -0.42 -0.25 -0.18 0.00

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

alz [ms2] -0.40 0.26 0.26 0.00

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

vlx [ms1] 1.42 0.009 -0.001 0.00

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

vly [ms1] -2.37 -0.014 -0.002 0.00

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

vlz [ms1] -0.80 0.002 0.003 0.00

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

Pix [m] 8.16 3.74 1.95 2.08

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

Ply [m] -11.08 -3.07 -1.05 -1.20

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

Piz [m] -4.48 -0.84 0.01 0.00

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

\P2D\ [ml 8.81 4.84 2.21 2.40

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

\PSD\ [ml 9.89 4.91 2.21 2.40 A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

|S2DI [m] 8.81 4.84 2.21 2.40

A
FT

E
R

 T
H

R
E

E
 S

T
E

PS
 (

ap
pr

ox
.

13
 s

)

step length lavq [m] 2.94 1.61 0.74 0.80

90

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

mode UOG SillyStatus ANN applied expected
heading a0 [°] 18.05 30.53 30.58 30

tilt, x-axis cp0 [°] 5.23 2.68 2.89 NA

tilt^-axis e0 [°] 11.18 8.97 9.21 NA

a2x [ms2] -0.339 -0.022 -0.042 0.00
o
ND

a 2 y [ms2] -0.547 -0.193 -0.140 0.00

p a2z [ms2] -0.869 -0.64 0.025 0.00

& [ms1] -13.24 14.01 0.006 0.00 &
i72 y [ms1] -3.67 5.930 -0.006 0.00

OH v2z [ms1] -3.62 -5.933 0.002 0.00

o P2x [m] -307.6 6.95 0.13 0.00
CS Ply [m] -227.1 6.33 -0.015 0.00

P2z [m] -105.9 -5.06 0.18 0.00

IP2DI [m] 382.4 9.40 0.13 0.00

\P3D\ [m] 396.7 10.68 0.18 0.00

|S2DI [m] NA 25.71 16.10 16.00

step length lavq [m] NA 1.29 0.81 0.80

mode UOG SillyStatus ANN applied expected
heading a0 [°] 37.82 32.24 61.62 60

tilt, x-axis cpo [°] 7.99 8.49 8.64 NA

tilt^-axis 60 [°] 12.41 9.52 9.73 NA

«3x [ms2] 0.029 -0.098 0.00 0.00
m a3y [ms2] -0.087 0.400 0.00 0.00

a 3 z [ms2] -0.176 0.285 0.00 0.00
S
Q. v3x [ms1] -25.40 1.99 0.00 0.00

' S
T

E
PS

 (
aj

i? 3 y [ms1] -11.41 0.07 0.00 0.00

' S
T

E
PS

 (
aj

i73z [ms1] -7.44 -0.56 0.00 0.00

' S
T

E
PS

 (
aj

Pix [m] NA 19.55 0,09 0.00

TE
R

 4
0

Pay [m] -961 8.84 0.19 0.00

TE
R

 4
0

P-iz [m] -442 -11.45 0,31 0.00

IP2DI [m] NA 21.46 0.21 0.00

IPSDI [m] NA 24.32 0,37 0.00

|S2DI [m] NA 57.05 30.12 32.0

step length lavq [m] NA 1.43 0.75 0.80

IP2DI = ^|P3x2 + P 3 y 2

IPSDI = JP3X 2 +P3y2 +P3Z 2

| S 2 D | = j s x

2 + s y

2

Z„„„ = 2Dl
a v a number of steps

(8.3.1)

(8.3.2)

(8.3.3)

(8.3.4)

- 91 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Particular distances from [0,0,0] position
5

4

3
E

0

-1

- E A S T
NORTH

- U P fj

- E A S T
NORTH

- U P

0 10 20 30 40 50 60
time [s]

Figure 8.11 Particular distances from (0,0,0) position in ENU coordinates.

Trajectory in ENU coordinates 2D

5r

.1 I 1 1 • •

- 2 - 1 0 1 2

>
EAST Figure 8.12 Trajectory in ENU coordinates in 2D [mj.

Trajectory in ENU coordinates 3D

EAST
Figure 8.13 Trajectory in ENU coordinates in 3D fmj.

92

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

8.4 Case IV: IMU held in the hand during discontinuous walking
The source of this measurement is walking interrupted by staying. Following graphs
show parts with more frequent status changes only, because the improvement caused by
the LNS is based on the presence of still phases.

Next figures capture the velocity (Figure 8.14) and position (Figure 8.15) of the
two steps in the North direction and short still phase repeated three times. The blue
curve represents the x-axis, the green one y-axis the red one z-axis. After the walking
part shown in graphs, proposed A N N caught the still phase clearly, nevertheless it does
not improve the positioning during the walking. The position after six steps was 5.28 m
in the North direction; 0.3 m in the West direction and 0.8 m in the Down direction.
Velodty [m/s]

601,5 603 604 r5 606 607,5 609

Figure 8.14 ENU velocity estimated with ANN in process fms'1] in time fsj - interrupted walking.

Position [m]

601,5 603 601,5 606 607,5 609

Figure 8.15 ENU position estimated with ANN in process fmj in timefsj - interrupted walking.

Whole measurement trajectory is shown in Figure 8.16. The movement in the North
direction consists of double steps (repeated five times) and the movement in the South
direction, after the rotation by 180 degrees, consists of continuous three steps and still
phase, repeated three times. The start position was defined as (0;0;0) m and expected
final position was (1;0;0) m.

The resulted final position was (2.6;-1.55;-2.0) m. The length of the measurement
was 50 seconds. The error rises significantly with the length of the continuous walking.

- 93 -

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

Trajectory in ENU coordinates 3D

NORTH
0 .2

EAST

Figure 8.16 Trajectory in ENU coordinates, 3D in fmj - interrupted walking.

8.5 Case V: IMU held in the hand during fluent walking
A s it is clear from the principle of the A N N implementation, the improvement is not
achieved when the walking is present only. This case explains it illustratively. Further
figures show linear acceleration in E N U coordinate frame (Figure 8.17), computed
position (Figure 8.18), and decision on the state of the EVIU (Figure 8.19). A t the
beginning (up to 191.2 s) the still phase is present and successfully determined by the
A N N . After that the motion continues with fluent walking - the A N N indicate it
successfully and of course further positioning process is not improved by the A N N .

ENU Acceleration [rn/ŝ Z]

Figure 8.17 Linear acceleration in ENU coordinates in [ms~2] in time [s], continuous walking.

Figure 8.18 Position in ENU coordinates in fmj in time fsj, continuous walking.

State and Neural Network output

4 ,5 - •

192 133,5 195 196,5- 198 199 r 5

Figure 8.19 Combined Si llyStatus state and ANN decision on the IMU state (green) in time.

94

N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS

9 CONCLUSIONS

In proposed dissertation thesis, the processing of inertial navigation sensor data is
presented. A s the new approach method I decided to estimate the state of the E M U by an
artificial neural network without any support of auxiliary or global positioning system.
It ensures that the data from the inertial sensors are processed typically (with the
integration disadvantages) only for a vital period. The orientation of the I M U is fully
deriváte from inertial sensors.

The correction of the EVIU orientation is performed during data processing when
the A N N decides that the EVIU is still. That leads to more accurate positioning based on
D R , regardless of the environment (indoor, outdoor, underground, etc.). A s the EVIU
hardware, Arduino U N O was chosen in combination with ST Nucleo expansion board,
which contains all used inertial sensors.

Special positioning system software called Tracker was developed in C++
programming language using Qt framework. It also offers graphical environment for the
user. It process the data from the EVIU and presents various intermediate and final
results. The system also allows to record data into a file in adjustable format -
raw/calibrated/derotated sensor data, Euler angles, heading, velocity and position in all

available modes. A window with 3D EVIU model is also available.

Proposed A N N was designed in M A T L A B ™ software and estimates the state of
the EVIU based on the previous 40 values from inertial sensors, the type of the A N N is
time-delayed feed-forward. It does not take the data from magnetometer into account,
because of the magnetic field typically extremely fluctuates. The output of the A N N
defines the state of the EVIU - „walking" or „staying still", which is applied in data
processing to improve positioning.

Such a system works very precisely in case that the EVIU stays still on the table or
stays still in the hand. In those cases, the error in positioning reached about
2 millimetres in the case the EVIU was lying on the table and about 20 centimetres in
case the EVIU was held in the hand, after 2 minutes of acquisition.

The very interesting results were achieved when the EVIU was held in the hand
and the user performed a walk that often changes with still phases. Such a motion can
be seen for example in a museum or in an art gallery. In these cases proposed system
achieves very small positioning errors compared to the systems based purely on D R
method. A s shown in Chapter 8.3 the INS achieved the error of only 2 meters after 2
minutes of measurement in 2D (horizontal positioning). The error in vertical z-axis
reached up to 5 meters and that was caused by subtraction of the inaccurately
determined earth's gravitational acceleration constant.

In situations when the A N N decides that the EVIU is still, the system is
recalibrated and the cumulative error caused by integration is reset. Thus the position
during discontinuous walking is effectively estimated with low error. When the walking
motion is present during the measurement only, this method fails and the INS works as
a simple D R system (however, in a real world a man must stop anytime).

95

APPENDIX A

In this dissertation thesis, proposed method based on A N N state recognition has
been successfully validated by experiments focused on pedestrian movements. Anyway,
more applications can be found in a human life in which this method could improve
positioning, for example in specific professions, military applications or different types
of vehicles. It opens new opportunities in future research for specific applications where
the suitable artificial neural network structure have to be investigated and properly
trained or modified with wider classification group (more types of movements).

96

APPENDIX A

APPENDIX A COORDINATE TRANSFORMATIONS

A.l Representation of transformed vectors
a vector v in X Y Z coordinates:

(A.1)

the same vector v in U V W coordinates:

(A.2)

then, in any Cartesian system apply:

f^UVW
— ^XYZ

Vz_

(A.3)

cfE

Y

D then denotes the coordinate transformation matrix from vehicle body-fixed
roll-pitch-yaw (RPY) frame coordinates to earth-fixed north-east-down (NED)
coordinates.

A.2 Unit coordinate vectors
The components of a vector in either coordinate system can be expressed in terms of the
vector components along unit vectors parallel to the respective coordinate axes:

v = v -1 + v -1 + v -1
x x y y z z

=v 1 +v 1 +v 1
u u v v w w

(A.4)

A.3 Direction cosines
The respective components can be also represented as a dot products, in matrix form:

T

V y

^x 1«

V X

i T i
X w

i T i
y w

v.,
def
_ f^UVW
- ^XYZ v., (A.5)

97

APPENDIX A

dot product of unit vector satisfy the cosine rule: vTw = |v| • |w| • cos(0ah), where 9ab is
the angle between vectors v and w. The coordinate transformation matrix can be then
written as:

C WW
XYZ

cos (O
K)

c o s f c)

cos

cos
K)
K)

<™>(0
cos

cos

cos (A.6)

The angles determination do not depend on the order of the direction vectors (9ab=
Oba), the inverse transformation matrix is simply transposition of the forward
coordinate transformation matrix:

XYZ
UVW

J "

(A.7)

A.4 RPY/ENU and RPY/NED transformations
The resulting unit vectors of the roll, pitch and yaw axes in E N U coordinates are
defined as:

sin(7)cos(P)

cos(7)cos(P)

sin(P)
(A.8)

cos(i?) cos(7) + sin(/?) sin(T) sin(P)

- cos(7?) sin(T) + sin(/?) cos(7) sin(P)

-sin(/?)cos(P)
(A.9)

- sin(/?) cos(7) + cos(7?) sin(T) sin(P)

sin(/?) sin(T) + cos(7?) cos(7) sin(P)

- cos(7?) cos(.P)
(A. 10)

The unit vectors of the east, north and up axes in R P Y coordinates are defined as

sin(T)cos(F)

1 w = cos(R) cos(7) + sm(R) sin(Y) sin(P)

- sm(R) cos(7) + cos(7?) sin(T) sin(P)
(A l l)

98

APPENDIX A

cos(7)cos(i 5)

- cos(R) sin(7) + sm(R) cos(7) sin(P)

sm(R) sin(7) + cos(R) cos(7) sm(P)
(A. 12)

s i n ^)

-sin(7?)cos(F)

cos(R) cos(.P)
(A. 13)

The rotation from R P Y coordinates to N E D coordinates is determined by:

r'
cos(i//)

sin(i//)

0

-sin(i//)

cos(i//)

0

cos(6>)

0

-sin(6>)

0 sin(<9)

1 0

0 cos(6>)

0

cos(#>)

sin(<p)

0

-sin(<p)

cos(<p)
(A. 14)

cos(i//) • cos(6>) - sin(i//) • cos(p) + cos^/) • sin(6>) • sin(<p)

sin(i//) • cos(6>) cos(y/) • cos(p) + sin(i//) • sin(6>) • sin(<p)

- sin(6>) cos(6>) • sin(<p)

sin(i//) • sin(<p) + cos(i//) • sin(i9) • cos(<p)

- cos(y/) • sin(<p) + sin(i//) • sin(6>) • cos(<p)

cos(6>) • cos(#>)

The rotation from R P Y coordinates to E N U coordinates is determined by:

(A. 15)

sin(i//) • 005(6*) cos(i//) • cos(<p) + sin(i//) • sin(6>) • sin(<p) - cos(//) • sin(<p) + sin(i//) • sin(6>) • cos(#>)

cos(//) • 005(6*) - sin(i//) • cos(<p) + cos(//) • sin(6>) • sin(<p) sin(i//) • sin(<p) + cos(//) • sin(6>) • cos(<p)

sin(6>) - cos(6>) • sin(<p) - cos(6>) • cos(<p) (A. 16)

A.5 ENU/ECEF and NED/ECEF transformations
The unit vectors in local north, east and down directions, as expressed in E C E F
Cartesian coordinates are defined as:

cos (#) s in (^ e o d e t ; c)

- s in (#) s in (^ e o d e t ; c)
C 0 S (^ e 0 de t / C)

(A. 17)

sinO?)"

cosO?)

0
(A. 18)

cos(#)cos (^ e o d e t ; c)

-sin(6>)cos(^ e o d e t ; c)

- s i n (^ e 0 d e t / C)
(A. 19)

99

APPENDIX A

A n d the unit vectors in the E C E F X , Y and Z directions, as expressed in N E D
coordinates are defined as:

-cos(0)s in({i g e o d e t r c)

- sin(0)

cos (0)cos(0 g e o d e t i c)
(A. 20)

s in (0) s i n (0 g e o d e t i c)

cos(Ô)

s i n (6 ») c o s (^ e o d e t ; c)
(A.21)

c o s (^ e o d e U c)

0

- s i n (^ e o d e t ; c)

The rotation from N E D coordinates to E C E F coordinates is determined by:

(A.22)

C NED
ECEF'

-cos(6>)sm$ g e o d e t / c) -sin(0) - c o s (6 ») c o s ^ e o d c f c)

- s rn((9)s in(^ e o d e ü c) cos(#) - s i n (0 c o s ^ e o d e t / c)

c o s $ g e o d c f c) 0 - s m ^ g e o d e f c)

The rotation from E N U coordinates to E C E F coordinates is determined by:

(A.23)

C ENU
ECEF'

-sin(6>) -cos@)sm@geüdc{lc) cos (60cos$ g e o d e U c)

cos(6>) -sm(0)sm(0geodctic) srn(6>)cos^ e o d c f e.)
0 c o s ^ e o d c t ; c) s i n ^ e o d e f c)

The rotation from E C E F coordinates to N E D coordinates is determined by:

rECEF
'-NED '

- cos(<9) sm(0geodetic) - sin(6>) sm($geodeiic) c o s $ g e o d e t ,

cos((9) 0 -srn(#)

_-cos(#)cos(j/i g e o d e t

The rotation from E C E F coordinates to E N U

,) - s rn ((9)cos^ e o d c t i ,) - s in(0 g e o d e t / C)_

coordinates is determined by

r ECEF
ENU '

cos(<9) 0 -srn(6>)

-cos(6>)sin^ e i x l c t ; c) - s i n ((9) s i n ^ e o d c f c) c o s $ g e o d e t ; c)

cos(#)cos(^ g e o d c f e.) sin(#)cos(0 g e o d c t / c) s rn(^ g e o d e t / c)

(A.24)

(A.25)

(A.26)

100

APPENDIX B

A.6 Composition of coordinate transformations
When A , B and C represent different coordinate frames, next composition rule
applies:

rB r A _ r A (A.27)

APPENDIX B MEASUREMENT CONDITIONS

B.l Geographic coordinates
Stamicova, Brno - Kohoutovice, Czech Republic:

Latitude: 4 9 ° 1 1 ' 4 2 " N
Longitude: 16°36'28" E
Elevation above sea level: 361m

Coordinates of the place in decimal degrees:

Latitude: 49.1952200 N
Longitude: 16.6079600 E

Tomanova, Brno - Cerna pole, Czech Republic:

Latitude: 49°12 '24"N
Longitude: 16°37'04 " E
Elevation above sea level: 239 m

Coordinates of the place in decimal degrees:

Latitude: 49.2078766 N
Longitude: 16.6193204 E

Volejnikova, Brno - Cerna pole, Czech Republic:

Latitude: 49°12 '31"N
Longitude: 16°37'19" E
Elevation above sea level: 233 m

Coordinates of the place in decimal degrees:

Latitude: 49.2085308 N
Longitude: 16.6219269 E

Technická, Brno - Královo Pole, Czech Republic:

Latitude: 49°13 '37"N
Longitude: 16°34'29" E
Elevation above sea level: 287 m

Coordinates of the place in decimal degrees:

Latitude: 49.2271495 N
Longitude: 16.5726303 E

101

A P P E N D I X C

B.2 Temperature stability
Accel erometer and gyroscope sensor included in chip L S M 6 D S 0 are sensitive to
temperature changes. Due to this fact, the additional temperature calibration have to be
performed assuming that the temperature changes occurs during the measurement.

The gyroscope reaction is captured in Figure B . l . The temperature dropped by 5
degrees after about 550 seconds of measurement. The _y-axis of the graph represents
rotation rate in [deg/s], x-axis represents the time [s]. The P M U stood still on the table
during this measurement.

0 150 300 450 600 750 900

Figure B.l Change in the measured rotation rate [deg/s] when the temperature drops down (in 550 s)
in time fsj.

B.3 Calibration parameters
//Tomanova, exapmle
magMin = QVector3D(-0.650, -0.640, 0.220);
magMax = QVector3D(0.325, 0.320, 1.150);

/ / L o c a l m a g n e t i c f i e l d
MagLocal = 415.230; //Stamicova [mGauss];
MagLocal = 4 8 9.151; //Tomanova [mGauss];
MagLocal = 439.696; / / V o l e j n i k o v a [mGauss];
MagLocal = 429.190; / / T e c h n i c k a [mGauss];

/ / L o c a l d e c l i n a t i o n
M a g D e c l i n a t i o n = 4.21; //Stamicova [deg];
M a g D e c l i n a t i o n = 4.21; //Tomanova [mGauss];
M a g D e c l i n a t i o n = 4.21; / / V o l e j n i k o v a [mGauss];
M a g D e c l i n a t i o n = 4.20; / / T e c h n i c k a [mGauss];

APPENDIX C HARDWARE SETTING

C.l Hardware description
MinPMU-9 v2 Gyro, Accelerometer, and Compass

L3GD20 - M E M S chip containing and 3-axis gyroscope

The range of maximum and minimum value of measured signals is user-defined:

- Gyroscope available scales: ±250, ±500, ±2000 deg/s

102

A P P E N D I X C

LSM303DLHC - M E M S chip containing 3-axis magnetometer and accelerometer

The range of maximum and minimum value of measured signals is user-defined:

- Accelerometer available scales: ±2, ±4, ±8 , ±16 g

- Magnetometer available scales: ±1.3 , ±1.9, ±2.5, ±4.0, ±4.7,

±5.6, ±8.1 gauss

Sensors work within the temperature range of -40 °C to 85 °C.

The ĽVIU logs measured data to its own memory and sends data to P C via serial link
after the measurement. The transmission is performed after "send" button is pressed.
The sample rate of logging data reaches 22 sps (using this construction).

Motion M E M S and environmental sensor expansion board X - N U C L E O - I K S 0 1 A l

LSM6DS0 - M E M S chip containing and 3-axis gyroscope and accelerometer

The range of maximum and minimum value of measured signals is user-defined:

- Gyroscope available scales: ±245, ±500, ±2000 deg/s

- Accelerometer available scales: ±2, ±4, ±8 g

LIS3MDL - M E M S chip containing 3-axis magnetometer
- Magnetometer available scales: ±4, ±8 , ±12, ±16 gauss

LPS25HB* - barometer M E M S pressure sensor
- Barometer absolute digital output: 260 - 1260 hPa

HTS221 - capacitive digital relative humidity and temperature sensor

The expansion board is compatible with Arduino Uno. Measured data are sent by B T or
by U S B cable to a P C . Processing is available real time or there is ability to save
measured data for further processing based on the user defined settings in the software
Tracker. The I M U transmits data to P C via Bluetooth or U S B cable during the
measurement. The sample rate of incoming data can reach 160 sps.

C.2 Sensor settings
X - N U C L E O - I K S 0 1 A 1 board sensors are set:

Angular rate sensor control register

CTRL REG1 G
B00010000

ODR G [2:0] 100 ODR = 238 Hz; cutoff (LPF1) = 76 Hz CTRL REG1 G
B00010000 FS G [1:0] 01 gyro scale ±500 deg/s CTRL REG1 G
B00010000 BW_G [1:0] 10 cutoff (LPF2) = 63 Hz - not used

CTRL REG2 G INTSEL [1:0] 00 default
B00010001 OUTSEL [1:0] 00 default

CTRL REG3 G
B 00010010

LP mode 0 low-power disable CTRL REG3 G
B 00010010 HP EN 0 HPF disabled CTRL REG3 G
B 00010010

HPCFG [3:0] 0000 high-pass filter cutoff = 15 Hz

Linear acceleration sensor control register
CTRL REG5 XL DEC_[0:1] 00 no decimation on OUT REG and FIFO

B00011111 Zen XL Yen XL Xen XL x, y, z axis enable
ODR XL [2:0] 000 ODR = 238 Hz (same as gyro ODR)

CTRL REG6 XL FS_XL [1:0] 00 accelerometer full-scale ±2 g
B00100000 BW SCAL ODR 0 bandwidth determined by ODR selection

BW_XL [1:0] 00 anti-aliasing filter bandwidth = 408 Hz

103

A P P E N D I X C

CTRL REG7 XL
B00100001

HR 1 High resolution mode enabled
CTRL REG7 XL

B00100001
DCF[1:0] 01 LP cutoff freq. = ODR/100 Hz CTRL REG7 XL

B00100001 FDS 0 internal filter bypassed
CTRL REG7 XL

B00100001
HPIS1 0 filter bypassed

Magnetic field sensor control register

CTRL REG1
B00010000

TEMP EN 0 temperature sensor disabled

CTRL REG1
B00010000

OM[1:0] 10 high-performance mode CTRL REG1
B00010000 DO[2:0] 111 ODR = 80 Hz CTRL REG1
B00010000

FAST ODR 0 fast ODR disabled

CTRL REG1
B00010000

ST 0 self-test disabled

CTRL REG2
B00010001

FS[1:0] 00 magnetometer full-scale ±4 gauss CTRL REG2
B00010001 REBOOT 0 normal mode reboot memory CTRL REG2
B00010001

SOFT RST 0 default

CTRL REG3
B00010010

LP 0 default CTRL REG3
B00010010 SIM 0 4-wire interface CTRL REG3
B00010010

MD[1:0] 01 Single-conversion mode
CTRL REG4
B00010011

OMZ[1:0] 10 high-performance mode CTRL REG4
B00010011 BLE 0 data LSb at lower address
CTRL REG5
B00010100

FAST READ 0 FAST READ disabled CTRL REG5
B00010100 BDU 1 continuous update

C.3 I2C Communication
B| 5ms -5.4000ms

Figure C.2 Four Arduino communication cycles, consequently. TX, SDA, SCL.

E|500|is -6. 8600ms •stou B

Figure C.3 Detail ofRS232 Communication cycle, consequently. TX, SDA, SCL.

104

A P P E N D I X D

iniOOus -3.27B0ms rjStop jj 1/ 1 0100%

Figure C.4 Detail of PC communication cycle, consequently. TX, SDA, SCL.

Figure C.5 Transmission of one byte via PC. SDA, SCL

APPENDIX D FIRMWARE

ftinclude <Wire.h>

v o i d r e a d F r o m (i n t a d d r e s s , b y t e sub, i n t count)
{

i f (count > 1) sub += B10000000;

W i r e . b e g i n T r a n s m i s s i o n (a d d r e s s) ;
W i r e . w r i t e (s u b) ;
W i r e . e n d T r a n s m i s s i o n () ;

W i r e . r e q u e s t F r o m (a d d r e s s , c o u n t) ;
}

v o i d w r i t e T o (i n t a d d r e s s , b y t e sub, b y t e data)
{

W i r e . b e g i n T r a n s m i s s i o n (a d d r e s s) ;
W i r e . w r i t e (s u b) ;
W i r e . w r i t e (d a t a) ;
W i r e . e n d T r a n s m i s s i o n () ;

105

A P P E N D I X D

v o i d setupMag()
{

w r i t e T o (3 0 , B00100000,
w r i t e T o (3 0 , B00100001,
w r i t e T o (3 0 , B00100010,
w r i t e T o (3 0 , B00100011,
w r i t e T o (3 0 , B00100100,

B01011100); // CTRL_REG1 20h
BO0000000); // CTRL_REG2 21h
B00000001); // CTRL_REG3 22h
BO0001000); // CTRL_REG4 2 3h
B01000000); // CTRL REG5 24h

v o i d setupAG()
{

w r i t e T o (1 0 7 ,
w r i t e T o (1 0 7 ,
w r i t e T o (1 0 7 ,
w r i t e T o (1 0 7 ,
w r i t e T o (1 0 7 ,
w r i t e T o (1 0 7 ,

B00010000,
B00010001,
B00010010,
B00011111,
B00100000,
B00100001,

B10001010)
B00000000)
B00000000)
B00111000)
B00000000)
B10100000)

// CTRL_REG1_G lOh
// CTRL_REG2_G l l h
// CTRL_REG3_G 12h
// CTRL_REG5_XL l F h
// CTRL_REG6_XL 2 Oh
// CTRL REG7 XL 2 l h

v o i d s e t u p ()
{

W i r e . b e g i n () ;
S e r i a l . b e g i n (1 1 5 2 0 0) ;

s e t u p M a g () ;
s e t u p A G () ;

}

v o i d l o o p ()
{

readFrom(30, B00101000, 6) ;
w h i l e (W i r e . a v a i l a b l e ())
{

s h o r t c = W i r e . r e a d () ;
c += (W i r e . r e a d () « 8) ;
S e r i a l . p r i n t (c , DEC);
S e r i a l . p r i n t (" ") ;

}

readFrom(107, B00011000, 6) ;
w h i l e (W i r e . a v a i l a b l e ())
{

s h o r t c = W i r e . r e a d () ;
c += (W i r e . r e a d () « 8) ;
S e r i a l . p r i n t (c , DEC);
S e r i a l . p r i n t (" ") ;

}

readFrom(107, B00101000, 6) ;
w h i l e (W i r e . a v a i l a b l e ())
{

s h o r t c = W i r e . r e a d () ;
c += (W i r e . r e a d () « 8) ;
S e r i a l . p r i n t (c, DEC);
S e r i a l . p r i n t (" ") ;

}

S e r i a l . p r i n t (" \ n ") ;
d e l a y (7) ;

}

106

A P P E N D I X E

APPENDIX E DATA PROCESSING

Further figures show all successive phases of processing that are graphically available in
our app Tracker during the processing of the incoming sensor signal.

Raw Acceleration [gj

-0,3 b , ; i ; , i ; , i , ; i ; ; i , ; L_

192 193,5 195 196,5 198 139,5

Figure E.6 Raw acceleration fgj in time fsj.

Calibrated Acceleration [g]

192 193,5 195 196,5 19S 199,5

Figure E. 7 Calibrated acceleration fgj in time fsj.

ENU Acceleration [rn/s A2]

--
ii

192 193,5 195 196,5 19S 199,5

Figure E.8 ENU (linear) acceleration [m -s~2J in time fsj.

-9 -

192 193,5 195 196,5 198 199,5

Figure E.9 ENU (linear) acceleration after KF [m-s~2] in time [sj.

107

A P P E N D I X E

Raw Rotat ion rate [deg/s]

135

192 193,5 195

Figure E.10 Raw rotation rate fdeg-s'1] in time fsj.

Calibrated Rotation rats [deg/s]

135 h

192 193,5 195 196,5

Figure E.ll Calibrated rotation rate [deg -s'1] in time fsj.

Raw Magnetic field [Gauss]

0,4

199,5

199,5

192 193,5 195

Figure E.12 Raw magnetic field [gauss] in time fsj

Calibrated Magnetic field [mGauss]

196,5 199,5

-300

1̂50

192 193,5 195 196,5

Figure E. 13 Calibrated magnetic field [gauss] in time fsj.

199,5

108

A P P E N D I X E

132 193,5 195

Figure E. 14 Euler angles fdegj in time fsj.

Velocity [m/s]

Figure E. 15 Velocity [m-s'1] in time fsj.

Figure E.16 Position fmj in time [sj.

State and Neural Network output

4,5

3

1,5

-1,5

-4,5

192 193,5 195 195,5

Figure E.17 State and artificial neural network output in time [sj.

193 199,5

109

REFERENCES

[I] Titterton, D. H. and J. L. Weston. Strapdown inertial navigation technology. 2nd ed. Stevenage:
Institution of Electrical Engineers, c2004. ISBN 08-634-1358-7.

[2] Woodman, O. An introduction to inertial navigation. Technical Report 696, University of
Cambridge, 2007. UCAM-CL-TR-696. ISSN 1476-2986.

[3] Takai, M. and T. Ura. A model based self-diagnosis system for autonomous underwater vehicles
using artificial neural networks. Proceedings of IEEE/ASME International Conference on
Advanced Intelligent Mechatronics. Tokyo, Japan: IEEE, 1997, p. 82. DOI: 10.1109. ISBN
0-7803-4080-9.

[4] Nordlund, P-J. and F. Gustafsson. Recursive estimation of three-dimensional aircraft position
using terrain-aided positioning. In: IEEE International Conference on Acoustics Speech and
Signal Processing. IEEE, 2002, II-1121-11-1124. Orlando, 2002.
DOI: 10.1109/ICASSP.2002.5743996. ISBN 0-7803-7402-9.

[5] Chiang, K.-W. and N. El-Sheimy. INS/GPS Integration Using Neural Networks for Land Vehicle
Navigation Application Proceedings of the 15th International Technical Meeting of the Satellite
Division of The Institute of Navigation (IONGPS 2002), pp. 535-544. Portland, Oregon, 2002.

[6] Chiang, K.-W.; El-Sheimy, N; Lachapelle, G. An Adaptive Neuro-fuzzy Model for Bridging GPS
Outages in MEMS-IMU/GPS Land Vehicle Navigation. Proceedings of the 17th International
Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), pp.
1088-1095. Long Beach, California, 2004.

[7] Toth, C; Grejner-Brzezinska, DA.; Moafipoor, S. Pedestrian Tracking and Navigation Using
Neural Networks and Fuzzy Logic. 2007 IEEE International Symposium on Intelligent Signal
Processing, Alcala de Henares, 2007, pp. 1-6. DOI: 10.1109/WISP.2007.4447525.

[8] Moafipoor, S.; Grejner-Brzezinska, D. A.; Toth, C.K. Multi-sensor personal navigator supported by
adaptive knowledge based system: Performance assessment. 2008 IEEE/ION Position, Location
and Navigation Symposium, Monterey, CA, 2008, pp. 129-140.
DOI: 10.1109/PLANS.2008.4570049.

[9] Zheping, Y.; Dongnan, Ch.; Zhi, Z.; Chao, D. Dead reckoning error compensation algorithm of
AUV based on SVM. OCEANS 2011MTS/IEEE KONA, pp. 1-7, Sept. 2011. Waikoloa, HI, 2011.
DOI: 10.23919/OCEANS.2011.6107037.

[10] B. Shin et al. Indoor 3D pedestrian tracking algorithm based on PDR using smarthphone. 2012
12th International Conference on Control, Automation and Systems. JeJu Island, 2012, pp.
1442-1445. 17-21 Oct. 2012. ISBN: 978-89-93215-04-5.

[II] Wind frame and body-fixed frames. ECI-ECEF and geodetic coordinate frames - Scientific Figure
on ResearchGate. [accessed Nov 11, 2015]. Available from: http://www.researchgate.net/
figure/27868083 5_figl_Figure-4-4.4-ECI-ECEF-and-geodetic-coordinate-frames.

[12] Wind frame and body-fixed frames. Definition-of-the-body-fixed-frame-with-respec-to-LTP-
frame - Scientific Figure on ResearchGate. [accessed Nov 11, 2015]. Available from:
http://www.researchgate.net/figure/278680835_fig7_Figure-6-4.6-Definition-of-the-body-fixed-
frame-with-respec-to-LTP-frame.

[13] Grewal, M. S.; Andrews, A. P.; Bartone, Ch. G. Global navigation satellite systems, inertial
navigation, and integration. Third edition. Hoboken: John Wiley, 2013. ISBN 978-1-118-44700-0.

[14] Aggarwal, P.; Syed, Z.; Niu, X.; El-Sheimy, N. A Standard Testing and Calibration Procedure for
Low Cost MEMS Inertial Sensors and Units. 2008. Journal of Navigation, 61, pp 323-336.
DOI: 10.1017/S0373463307004560.

[15] Hamilton, W. R. and Ch. J. Joly. Elements of quaternions. [3d ed.]. New York: Chelsea Pub. Co,
1969. ISBN 08-284-0219-1.

110

http://www.researchgate.net/
http://www.researchgate.net/figure/278680835_fig7_Figure-6-4.6-Definition-of-the-body-fixed-

[16] Altmann, S., L.; Andrews, A., P.; Bartone, Ch. Rotations, quaternions, and double groups. New
York: [Ny] udg. Mineola, New York: Dover, 2005. ISBN 04-864-4518-6.

[17] Yang, Y. Spacecraft attitude determination and control: Quaternion based method. In Annual
Reviews in Control. Volume 36, Issue 2, 2012, Pages 198-219. ISSN 1367-5788.

[18] Kuipers, J., B. Quaternions and rotation sequences: a primer with applications to orbits,
aerospace, and virtual reality. Princeton: Princeton University Press, 2002. ISBN
978-0691102986.

[19] Hassoun, M. H. Fundamentals of artificial neural networks. Cambridge, Mass.: MIT Press, cl995,
511 p. ISBN 02-620-8239-X.

[20] Tanikic, D. and V. Despotovic. Artificial Intelligence Techniques for Modelling of Temperature in
the Metal Cutting Process. Metallurgy - Advances in Materials and Processes. InTech, 2012.
DOI: 10.5772/47850. ISBN 978-953-51-0736-1.

[21] Sumathi, S.; Hamsapriya, T.; Surekha, P. Evolutionary intelligence: an introduction to theory and
applications with Matlab. Online-Ausg. Berlin: Springer, 2008. ISBN 978-354-0753-827.

[22] Tejmlová, L. and J. Šebesta. Design of wideband Wilkinson dividers using neural network. In
Proceedings of 23rd International Conference Rádioelektronika 2013. 2013. p. 204 - 208.
ISBN 978-1-4673-5517-9.

[23] Tomáš, L.-P., and L. Kaelbling. Techniques in Artificial Intelligence (SMA 5504), lecture 2, Fall
2002. Massachusetts Institute of Technology: MIT OpenCourseWare, MIT Course Number 6.825.
http://ocw.mit.edu (Accessed 4 Feb, 2015). License: Creative Commons BY-NC-SA.

[24] Omura, Y.; Funabiki, S.; Tanaka, T. A monocular vision-based position sensor using neural
networks for automated vehicle following. Power Electronics and Drive Systems, 1999. PEDS '99.
Proceedings of the IEEE 1999 International Conference on, 1999, pp. 388-393 vol.1. DOI:
10.1109/PEDS. 1999.794594.

[25] Ji, Y.; Zhang, M.; Liu, G.; Liu, Z. Positions research of agriculture vehicle navigation system
based on Radial Basis Function neural network and Particle Swarm Optimization. 2070 Sixth
International Conference on Natural Computation. Yantai, Shandong, 2010, pp. 480-484.
DOI: 10.1109/ICNC.2010.5583145.

[26] Hu, Y.; Xu, J.; Zhong, H.; Wu,Y. Fusion model of vehicle positioning with BP neural network.
Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems,
2003, pp. 643-648 vol.1. DOI: 10.1109/ITSC.2003.1252031.

[27] Touretzky, D. and K. Laskowski. Artificial Neural Networks: Neural Networks for Time Series
Prediction. In Engineering Applications ofFPGAs, pp 117-150. Springer, Cham. ISBN 978-3-319-
34113-2.

[28] Bishop, G. and G. Welch. An introduction to the Kalman filter. Proceedings ofSIGGRAPH 2001
course 8, In Computer Graphics, Annual Conference on Computer Graphics & Interactive
Techniques. Los Angeles, C A, USA. SIGGRAPH 2001 course pack edition, 2001.

[29] Simon, D. Optimal state estimation: Kalman, H [infinity] and nonlinear approaches. Hoboken,
N.J.: Wiley-Interscience, 2006. ISBN 9780471708582.

[30] Maybeck, P. S. The Kalman filter: An introduction to concepts. Autonomous Robot Vehicles. I. J.
Cox and G. T. Wilfong. New York, Springer-Verlag: 194- 204, 1990. ISBN 0387972404.

[31] Wu, Z.; Yao, M.; Ma, H.; Jia, W. Improving Accuracy of the Vehicle Attitude Estimation for
Low-Cost INS/GPS Integration Aided by the GPS-Measured Course Angle. In IEEE Transactions
on Intelligent Transportation Systems, vol. 14, no. 2, pp. 553-564, June 2013. DOI:
10.1109/TITS.2012.2224343.

[32] Hide, Ch.; Moore, T.; Smith, M. Adaptive Kalman Filtering for Low-cost INS/GPS. Journal of
Navigation, 56, pp 143-152. DOI:10.1017/S0373463302002151.

[33] Asada, H. Identification, Estimation, and Learning. Spring 2006, Massachusetts Institute of
Technology: MIT OpenCourseWare, MIT Course Number 2.160. http://ocw.mit.edu (Accessed 4
Feb, 2015). License: Creative Commons BY-NC-SA.

I l l

http://ocw.mit.edu
http://ocw.mit.edu

[34] Sukkarieh, S.; Nebot, E. M.; Durrant-Whyte, H. F. A high integrity IMU/GPS navigation loop for
autonomous land vehicle applications. In IEEE Transactions on Robotics and Automation, vol. 15.
no. 3, pp. 572-578, Jun 1999. DOI: 10.1109/70.768189.

[35] Tejmlová, L. Fusion methods for GNSS/INS using neural networks for precision navigation. Brno:
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2013. 24 p.
Dissertation preview. Supervisor: doc. Ing. Jiří Šebesta, PhD.

[36] Barrios, C. and Y. Motai. Improving Estimation of Vehicle's Trajectory Using the Latest Global
Positioning System With Kalman Filtering. In IEEE Transactions on Instrumentation and
Measurement, vol. 60, no. 12, pp. 3747-3755, Dec. 2011. DOI: 10.1109/TIM.2011.2147670.

[37] Borenstein, J.; Everett, H. R.; Feng, L; Wehe, D. Mobile robot positioning: Sensors and
techniques. J. Robotic Syst, 14: 231-249, 1997. DOI: 10.1002/(SICI) 1097-4563(199704)
14:4<231::AID-ROB2>3.0.CO;2-R.

[38] Homolka M. Inerciální navigační systém. Brno: Vysoké učení technické v Brně, Fakulta
elektrotechniky a komunikačních technologií. Ustav rádioelektroniky, 2012. 43 p. Bachelor thesis.
Supervisor : Ing. Lenka Tejmlová.

[39] Tejmlová, L. and J. Šebesta. Fusion methods for INS using neural networks for precision
navigation In International Conference on Indoor Positioning and Indoor Navigation, 2013,
Montbéliard, France. Piscataway, N.J.: IEEE, p. 1-5. ISSN 2162-7347.

[40] Sheela, K. G. and S. N. Deepa. Review on Methods to Fix Number of Hidden Neurons in Neural
Networks. Mathematical Problems in Engineering, vol. 2013, Article ID 425740, 11 pages, 2013.
doi:10.1155/2013/425740.

[41] Design Time Series NARX Feedback Neural Networks. Math Works: Accelerating the pace of
engineering and science, [online]. 2016 [cit. 2016-07-26]. Available from:
https://www.mathworks.com/help/nneťug/design-time-series-mrx-feedback-neural-networks.htnu

[42] Time delay neural network. MathWorks: Accelerating the pace of engineering and
science, [online]. 2016 [cit. 2016-07-26]. Available from:
https://www.mathworks.com/help/nnet/ref/timedelaynet.html.

[43] Confusion matrix. Math Works: Accelerating the pace of engineering and science, [online]. 2016
[cit. 2016-07-26]. Available from: https://www.mathworks.conVhelp/sMs/confusionmat.html.

[44] Henke, D. Magnetometer Reading to Compass Heading, [online]. Small Golden
SceptreTechnology, 2016 [cit. 2016-07-26]. Available from: http://mythopoeic.org/magnetometer/.

[45] NOAA. National Geophysical Data Center: National Centers for Environmental Information
[online], [cit. 2015-4-16]. Available from http://www.ngdc.noaa.gov/geomag-web.

[46] Pololu. MinIMU-9 v2 Gyro, Accelerometer, and Compass. Pololu Robotics and
Electronics, [online]. USA, 2013 [cit. 2015-11-09]. Available from:
https://www.pololu.com/product/1268.

[47] Calculation of Magnetic Declination. Find Magnetic Declination with Google Maps, [online],
2015. [cit. 2015-4-16]. Available from: http://geosats.com/magdecli.html.

[48] International Earth Rotation Service (IERS) Service International de la Rotation Terrestre. Federal
Agency for Cartography and Geodesy. Paris Observatory IERS Centers [online],
[cit. 2016-04-04], Available from: http://hpiers.obspm.fr/eoppc/bul/bulb/BULLETINB.html.

[49] Kong, X. Inertial navigation system algorithms for low cost IMU. University of Technology
Sydney, School of Computing and Communications, 2000, 178 p. Doctoral thesis.

112

https://www.mathworks.com/help/nne�ug/design-time-series-mrx-feedback-neural-networks.htnu
https://www.mathworks.com/help/nnet/ref/timedelaynet.html
https://www.mathworks.conVhelp/sMs/confusionmat.html
http://mythopoeic.org/magnetometer/
http://www.ngdc.noaa.gov/geomag-web
https://www.pololu.com/product/1268
http://geosats.com/magdecli.html
http://hpiers.obspm.fr/eoppc/bul/bulb/BULLETINB.html

OWN PUBLICATIONS

Tejmlová, L.; Šebesta, J.; Zelina, P. Artificial Neural Networks in an Inertial Measurement Unit. In
Proceedings of 26th International Conference Rádioelektronika 2016. 2016. p. 176 - 180. ISBN 978-1-
5090-1673-0.'

Tejmlová, U. and J. Šebesta. Fusion methods for INS using neural networks for precision navigation. In
International Conference on Indoor Positioning and Indoor Navigation. 2013. p. 814 - 815. ISBN 978-1-
4673-1954-6.

Tejmlová, U. and J. Šebesta. Design of wideband Wilkinson dividers using neural network. In
Proceedings of 23rd International Conference Rádioelektronika 2013. 2013. p. 204 - 208. ISBN 978-1-
4673-5517-9.

Tejmlová, U. Ultra-Wide Band Power Divider for Mobile Frequency Bands. ElectroScope - Online
magazine (www.electroscope.zcu.cz), [online], 2012,(5 p.). ISSNVl802-4564.

Tejmlová, U. Ultra-Wide Band Pulse Generator and Positioning System. In Proceedings of the conference
Vsacký Cáb 2012. 2012. s. 1-6. ISBN: 978-80-214-4579- 6.

Zelinová, L. UWB generátor a system pro určení polohy. Elektrorevue - Online magazine
(http://www.elektrorevue.cz), [online], 2012, č. 21, s. 1-5. ISSN: 1213- 1539.

113

http://www.electroscope.zcu.cz
http://www.elektrorevue.cz

C U R R I C U L U M V I T A E

CURRICULUM VITAE

PERSONAL DETAILS

Name Lenka Tejmlová Ing., b.
Zelinová

Date of Birth 24.9.1986

Address Uzbecká 10, 625 00, Brno

Telephone +420702089559

E-mail teimlova.lenka@amail.com

Nationality Czech
Field Electrotechnics and

communications

PROFESSIONAL EXPERIENCE

from August 2016

April 2013 - Dec. 2014

Job description:

Feb. 2012 - Nov. 2013

SAP CR, Vyskočilova 1481/4, Praha 4 - Michle, 140 00
Software developer, department of AIS

Dept. of Radioelectronics, Brno University of Technology
Technická 12, 61600 Brno, Czech Republic
Research into wireless channels for intra-vehicle
communication and positioning (GACR no 13-38735S)
Christoph Mecklenbrauker, Ales Prokes

Publications on current research (VaV)
- UWB technologies, ultra wideband power dividers
- cooperation with Skoda auto a.s.
- ANNs for precision tracking systems (Doctoral Thesis)
- Lessons and leadership (bachelor's and master's theses)

ŠKODA AUTO a.s., Tř. Václava Klementa 869,
293 60 Mladá Boleslav
R&D - SoL device, in-car implementation

Oct. 2009 - July 2011

June 2007 - Oct. 2007
June 2008 - Oct. 2008
June 2009 - Oct. 2009

Feb. 2007 - May 2007

June 2006 - Nov. 2006

ABB, Vídeňská 117,619 00 Brno, CZ
Switchgear Design, working in a team
Electrical Engineer

Giannos Rhodopoulos,
Adrina Beach hotel, Skopelos, Greece
Electrical maintenance services
Network management and technical support

Honeywell, Technická 13, 616 00 Brno, CZ

Research and Development
PCB for the testing of pressure sensor
Mediaservis s.r.o, Moravské nám. 13, 602 00 Brno, CZ

Active telemarketing
Operator, communication with customers

114

mailto:teimlova.lenka@amail.com

EDUCATION

Sept. 2011 - Sept. 2017

Faculty:

Program title:

Study level:

Study form:

Brno University of Technology, Antonfnskä 1, 601 90 Brno

Faculty of Electrical Engineering and Communication

Electrical Engineering and Communication
Department of Radio Electronics
Doctoral, PhD.
full-time study

Sept. 2009 - June 2011
Study level:

Brno University of Technology, Antonfnskä 1, 601 90 Brno
Master's, Master's degree, Ing.

Sept. 2006 - June 2009

Study level:

Brno University of Technology, Antonfnskä 1, 601 90 Brno

Bachelor's, Bachelor's degree, Be.

SKILLS

LANGUAGE SKILLS:

NATIVE LANGUAGE:

LANGUAGES:

DRIVER'S LICENSE:

TECHNICAL SKILLS:

Czech

English
German
Russian
Greek

upper-intermediate/advanced
basic
basic
basic

B (January 2005) - daily active

Matlab™, Qt (C-code)

- own source codes, application development
Oread PSpice, HFSS, CST studio suite
- hardware development, HW testing
CAD, Eplan, Cadelec

- switchgear designing

MS Office

C H ARACTE RISTICS:

ABILITIES:

INTERESTS:

reliabe, organized, self-reliant, cooperative and hardworking
punctual and accurate
willing to learn, fast learner

analytical thinking, good communication skills
ability to work in a team as well as self-sufficiently
excellent planning and organising abilities
advanced time management skills
creation of presentations, documentations, articles etc.

healthy lifestyle
fantasy books
TV documentaries (Discovery, National Geographic)
board games
culture

115

