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Abstract 
The dissertation is focused on inertial navigation systems and dead reckoning 
positioning. The issue in the problematics is that the dead reckoning systems and 
inertial navigation systems are inaccurate for medium-term and long-term application 
due to cumulative errors, assuming that the positioning is not supported by another 
external system. The dissertation shows possible approaches to the issue of more 
accurate positioning system based only on the inertial sensors. Basically we are talking 
about 9-DOF inertial measurement unit that allows sensing the global acceleration, 
rotation rate and magnetic field strength in three particular axes. The new approach 
brings artificial neural networks into data processing, where proper neural network is 
able to recognize the character of motion leading to improvement in positioning. The 
description of the proposed method includes an analytical procedure of its development 
and, i f possible, the analytical performance assessment. Proposed artificial neural 
networks are modelled in M A T L A B ™ and they are used for the determination of the 
state of the inertial unit. Due to this determination, the position of the inertial 
measurement unit is evaluated with higher accuracy. A n application using Qt 
framework was developed to create an evaluation system with user interface for 
standard inertial measurement unit. The designed system based on artificial neural 
networks was verified by experiments using real sensor data. 
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Abstrakt 
Disertační práce je zaměřena na oblast inerciálních navigačních systémů a systémů, 
které pro odhad polohy používají pouze výpočty. Důležitým faktem v dané 
problematice je vysoká nepřesnost určení polohy při střednědobém a dlouhodobém 
využívání takového systému díky kumulativní chybě za předpokladu, že inerciální 
systém není podpořen žádným dalším přídavným systémem. V disertační práci jsou 
uvedeny možné přístupy k t é t o problematice a návrh na zvýšení přesnosti určování 
polohy pouze na základě inerciálních senzorů. Základem inerciální měřicí jednotky je 
systém s 9 stupni volnosti, který umožňuje snímat celkové zrychlení, rychlost rotace a 
sílu magnetického pole, jednotlivě ve třech osách. Klíčovou myšlenkou je zařazení 
umělých neuronových sítí do navigačního systému tak, že jsou schopny rozpoznat 
charakteristické rysy pohybů, a tím zvýšit přesnost určení polohy. Popis navrhovaných 
metod zahrnuje analytický postup jejich vývoje a tam, kde je to možné, i analytické 
hodnocení jejich chování. Neuronové sítě jsou navrhovány v prostředí M A T L A B ™ a 
jsou používány k určení stavu inerciální jednotky. Díky implementaci neuronových sítí 
lze určit pozici jednotky s řádově vyšší přesností. Aby byl inerciální polohovací systém 
s možností využití neuronových sítí demonstrativní, byla vyvinuta aplikace v prostředí 
Qt. Navržený systém a neuronové sítě byly použity při vyhodnocování reálných dat 
měřených senzory. 
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N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS 

1 INTRODUCTION 

A n implementation of artificial intelligence into an automatic navigation systems is the 
one of opportunities how to improve performances of autonomous positioning systems. 
Wel l known positioning method which is used in many modern systems, such in cars, is 
the dead reckoning. This method is defined as the process of calculating current position 
by using a previous determined position and actual data from inertial sensors in 
combination with vehicle odometers. The implementation of this method defines actual 
position of moving object regarding to the initial position. It also defines the trajectory 
during the movement. 

This topic is often discussed nowadays and the research in this field can be 
divided to many way. To providing of more effective solutions than independent 
processing of inertial sensor data offers, additional methods, systems and devices are 
required. 

Research teams work on acquisition with intention to obtain more precise results 
provided by sensor data fusion, by increasing the number of sensors that are used to 
measure the same physical quantities, by adding various specific devices, such as W i - F i 
or other wireless equipment and its signal strength, by limitation of results 
determination, by monitoring of regularities in motions and finally by fusion with 
available G N S S / G P S , pedestrian navigation constrains, visual-aided constrains, map 
matching etc. 

There are three main issues arising from the fundamentals of inertial navigation. 
The first of all is the Earth's gravity. We can measure the acceleration. It contains both, 
a linear acceleration (that is needed to determine the position) and Earth's gravity 
acceleration. This is good when the accelerometers are placed horizontally (flat). The 
precise strength of Earth's gravity varies depending on location, nevertheless, at the 
Earth's surface the nominal average value (standard acceleration of free fall) should be 
in our case subtracted, because we are located on the Earth's surface. The 
accelerometers are generally never horizontally placed though the position of inertial 
measurement unit is often approaching this state. For that reason it is very hard to 
separate Earth's gravity and linear acceleration, both measured together by 
accelerometer. We highly focus on this issue in this document. The second difficulty is 
Earth's rotation around its axis by 15 degrees per hour and around the sun by 0.041 
degrees per hour. This should be solved by using the gyrocompass and by 
implementation of proper compensations in computations. The third issue is a 
significant inaccuracy caused by sensitivity and typical characteristics of inertial 
sensors. Due to low signal to noise rate when the linear acceleration of the F M U or its 
orientation vary is the only inertial sensor navigation fundamentally inapplicable for 
precise localization. Thus nowadays, many localization methods are combined. 

When we are talking about inertial sensor data fusion we are always confronted 
by real world challenges. It is thought that nothing is exactly accurate and therefore we 
have to consider deviations and errors as an inseparable part of technique. The task is to 
use knowledge and enrich it by our own thoughts that complexly lead to invention of 
better solution, innovation. The application of inertial sensor data fusion brings 
thorough considerations of error models and their implementation in calculations. In 
combination with artificial neural network, Kalman filtering and with the support of 
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G N S S / G P S the dead reckoning system may achieve a sufficient accuracy to determine 
the orientation and the position where the inertial navigation system (INS) is located. 

A n inertial navigation system (INS) is a navigation aid that uses a computer, 
motion sensors (accelerometers) and rotation sensors (gyroscopes, gyros) and maybe 
others to continuously calculate via dead reckoning (DR) actual position, actual 
orientation, and actual velocity (direction and speed of movement) of a moving object in 
time without any external references [1]. It has been called "Newtonian navigation" 
because its theoretical foundations have been known since time of Newton: 

Given the position x(to) and velocity v(to) of a vehicle at time to, and its 
acceleration a(s) for times s>to, then its velocity, v(t), and position, x(t), for all time t>0 
can be defined as (2.1.1), (2.1.2). 

t 

v(t) = v(t0) + ja(s)ds (1L1) 

i 

x(t) = x(t0) + jv(s)ds (1L2> 
i« 

Then, for practical implementation, there are four included issues that have to be solved. 
Then the result might look like in Figure 1.1. 
1. Sensors for measuring acceleration with sufficient accuracy: 

a. 3-axis acceleration sensor (accelerometer) 

b. 3-axis rotation sensor (gyroscope) 

2. Compatible methods based on integration of the sensor outputs to obtain position 
a. Methods integrating the gyro outputs to determine the orientation of the 

accelerometer 
b. Methods integrating the accelerations to obtain the velocities and integrating 

the velocities to obtain the position 
3. Hardware and software implementing these methods and for interpretation of the 

results 
4. Applications that could justify the investments in technology required for 

developing the solutions to the capabilities listed above 

True trajectory 

INS+DR system 

GPS system 

Figure 1.1 Recorded trajectory. 

This dissertation thesis heads with the state of the art, where the short history and 
current research state is described. The next Chapter outlines the objectives of the thesis 
and the rest of document deals with those objectives. A t the end of the main document 
the results are discussed and the proposed method is evaluated. Annexes complement 
the described methods. 
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2 STATE OF THE ART 

This Chapter is devoted to the history of the inertial positioning and navigation and 
related progressive methods, new approaches and methods used in this systems, and 
particular issues that must be solved when this new approaches are practically applied. 

2.1 History 
Inertial navigation is a self-contained navigation technique in which measurements 
provided by accelerometers and gyroscopes are used to track the position and 
orientation of an object relative to a known starting point, orientation and velocity. 
Inertial measurement units (EVIUs) typically contain three orthogonal rate-gyroscopes 
and three orthogonal accelerometers, measuring angular velocity and linear acceleration 
respectively, [2], 

B y processing signals from these devices, it is possible to track the position and 
orientation of the device. This aim is often discussed nowadays and research is divided 
into many directions. To ensure better solution than which is offered by independent 
processing of sensor data, additional methods and equipment are required. Proposed 
inertial guidance system is based on dead reckoning method supplemented by artificial 
neural network ( A N N ) and Kalman filters (KF). 

In 1997, the model based on self-diagnosis system for autonomous underwater 
vehicles using artificial neural networks was introduced in Advanced Intelligent 
Mechatronics '97, International Conference. The dynamic model was constructed by an 
A N N taking advantage of its learning capability. When the sensors seemed to be 
defective, D R using its corresponding output attempted to scope with the defect. Then 
the proper action scheme, without extra sensors for the detection, was used to minimize 
the damage to the autonomous underwater vehicles ( A U V ) , [3]. 

In 2002, the dead reckoning system in combination with terrain-aided positioning 
was tested up. The processing is based on multiple Kalman filters that estimate the 
linear part of the state vector. The appropriate filter is then used for the estimation of 
remaining part and the simulations showed that the computational load was significantly 
reduced [4], 

The neural network implementation was used by researchers when FNS and GPS 
were integrated. The neural networks for land vehicle navigation ( L V N ) application was 
introduced in 2002, [5] and an adaptive neuro-fuzzy model for bridging GPS outages in 
M E M S - I M U / G P S L V N was introduced in 2004, [6]. 

A n idea to implement A N N s to the personal navigator was presented in Intelligent 
Signal Processing symposium in 2007. The system integrated GPS, tactical grade I M U , 
digital barometer, magnetometer and human pedometer to support navigation and 
tracking of military and rescue system for ground personnel has been developed [7], 
One year later, in 2008, the prototype of personal navigator had been developed at The 
Ohio State University Satellite Positioning and Inertial Navigation (SPIN) Laboratory 
[8]. The adaptive knowledge based system ( A K B S ) was based on A N N and Fuzzy 
Logic (FL) and was trained a priori using sensors data collected by various operators in 
various environments during GPS signal reception. The K F was then used to improve 
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the heading information and to reconstruct the trajectory based on step length and step 
direction. 

In 2011 researchers used A N N to the compensation of the reckoning error for 
A U V when K F were used to estimate positional errors in a soft computing-based 
models. They evaluated D R error as an output parameter, while attitude angles, 
velocities and relative time were given as input variables. They validated their 
algorithms with the conclusion: The absolute error non-compensated is 100.3 m, and the 
absolute error compensated is 14.8 m. They compared results with GPS position, the 
voyage was 2800 m with the depth of 0.5 m. This result seems very good however the 
data measured over this voyage had been used as a training set for to getting of error 
predictive models [9], 

A very nice example of A N N s implementation for navigation has been shown in 
the paper from 12 t h International Conference on Control, Automation and Systems, Jeju 
Island, Korea [10]. Authors of this paper developed the indoor navigation system based 
on pedestrian dead reckoning (PDR) that uses various sensors in a smartphone. M E M S 
EVIU was mounted on the waist, using sensors and A N N status; they estimated the step 
length adaptively. They used a map-matching method in addition. If the estimated 
trajectory was tracked wrong way or the estimated position in unavailable place to go, 
map matching arranged the estimated position to the coordinate defined in a map. So the 
computed position was "snapped" to link in the map or to the corner when rotation rate 
measured by a gyroscope increased in the moment. A barometer was used for to 
distinguish the floor where the I M U belongs. 

A major disadvantage of this method is that we need a map of the area where such 
a system is used. Without a map, the performance of positioning is not sufficiently 
accurate. 

2.2 A different approach 
The presented method approaches to the issue from another point of view than previous 
solutions of P D R inertial units. It is based on the fact that we need to apply D R (INS) 
while the terrain is unknown; that means wireless connections are not available, terrain 

map is not defined, and GNSS signal is not available. It was investigated that sensor 
errors, deviations and drifts achieve significant values, thus, the error in positioning is 
large. The fusion of sensor data, Kalman filtering and artificial neural network offer a 
solution for the purpose. 

2.3 Coordinate systems 
The coordinates for inertial systems are given to be natural to the problem at hand. We 
use L T P (local tangent plane) coordinates; first-order model of the earth as being flat, 
where they serve as local reference directions for representing vehicle attitude and 
velocity for operation - on the surface of the earth (or very close to). A common 
orientation for L P T coordinates has one horizontal axis (the north axis) in the direction 
of increasing latitude and the other horizontal axis (the east axis) in the direction of 
increasing longitude. 

Furthermore, we have to specify the E C I (earth-cantered inertial) coordinates that 
are the favoured inertial coordinates in the near-earth environment. The origin of E C I 
coordinates is at the centre of gravity of the earth, with axis directions: 
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x - the direction of the vernal equinox; 

z - parallel to the rotation axis of the earth (north polar axis); 

y - an additional axis to make a right-handed orthogonal coordinate system. 

The equatorial plane of the earth is also the equatorial plane of E C I coordinates, 
nevertheless the earth itself is rotating relative to the vernal equinox by about 15.04109 
deg per hour 1. E C E F (Earth-Centred, Earth-Fixed) coordinates have the same origin and 
third, polar axis as E C I coordinates, but rotate with the earth. Consequently, E C I and 
E C E F longitudes differ only by a function of time. E C I (indexed by " / " ) , E C E F 
(indexed by "e ") coordinates and L T P are shown in Figure 2.1. 

Figure 2.1 ECI, ECEF, and geodetic coordinate frame, [11 J. 

In coordinate system N E D (earth-fixed, north-east-down) right-handed L T P system is 
preferred because the direction of a right (clockwise) turn is in the positive direction 
with respect to a downward axis and N E D coordinate axes coincide with vehicle-fixed 
R P Y (body-fixed, roll-pitch-yaw) coordinates when the vehicle is in the flat position 
and headed to north. The other, commonly used right-handed L P T system is E N U (east-
north-up) and the transformation matrix between E N U and N E D shows relation (2.3.1). 
The E N U coordinate system is preferred in this thesis. The relation between E C E F 
coordinate frame and E N U coordinate frame can be found in A P P E N D I X A , part A . 5. 

R P Y coordinates are vehicle fixed, as noted above, with the roll axis in the 
nominal direction of motion of the vehicle, the pitch axis out the right-hand side, and 
the yaw axis such that tight turning is positive. This is used also for surface ships and 
ground vehicles, called S A E coordinates. 

1 World Book Encyclopaedia Vol 6. Illinois: World Book Inc.: 1984: 12. 
"It takes 23 hours 56 minutes 4.09 seconds for the Earth to spin around once 2n radians/86164.09 
seconds" 
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In Figure 2.2, body-fixed reference system ( R P Y coordinates) with respect to 
L T P frame ( N E D coordinates) is shown. Other transformations between mentioned 
coordinate systems are indicated in A P P E N D I X A . 

„ENU f-^NED 
NED ~ ENU ' 

0 1 0 
1 0 0 
0 0 -1 

(2.3.1) 

Down, towards 
I hi: Kiirih cvnlL-r 

Figure 2.2 Definition of the body-fixed frame (RPY) with resp. to LTP frame (NED coordinates), [12]. 

2.4 Sensor error models 
Inertial navigation performance is hardly limited by the performance of used inertial 
sensors. The basic formula, Newton's model, gives us an overview of the inertial 
navigation system's error evolution over time (2.4.1). This is also shown in Figure 
2.3 and you can see that the performance significantly decreases with the time and the 
system based only on integrated data from sensors is inapplicable. 

1 i 
position ~ acceleratbn 
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Figure 2.3 Inertial navigation system error as a function of sensor error and tracking time. 

The errors in measurement arise from many various reasons. Inertial navigation has 
been called "black box navigation" because it is entirely self-contained. It interferes 
what is going on outside by what it can sense inside. In addition, inertial sensors are 
called black boxes for the same reason. There are more events outside the sensor than 
just accelerations or rotations2, see Figure 2.4. 

A n important fact to be aware is that accelerometers do not measure gravitational 
acceleration, but inertial acceleration. That means, they measure "specific force" 
a=F/m, where F is the physically applied force and m is the mass it is applied to [13]. 

acceleration (a) 

angular rate (go) 

temperature (7~) 

I N E R T I A L 

S E N S O R 

f (a, (JO, T, 

magnetic field (B) 

"other" 

power variation 

electromagnetic interference 

Figure 2.4 Sensor black-box model. 

2 A comment often heard from inertial sensor designers is „No matter what sort of sensor we 
design; it always turns out to be a highly sensitive thermometer!" [13]. 
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2.4.1 List of sensor errors 

Zero-mean random errors 
Standard types of error models from Kalman filtering of zero-mean random errors are 
used for modelling the unpredictable outputs. 

White sensor noise 
That noise is generated by power supplies, intrinsic noise in semiconductor devices, or 
from quantization errors in digitization. It is usually assigned to "electronic noise". 

Exponentially correlated noise 
A s a time varying additive noise source, the temperature sensitivity of sensor bias 
driven by ambient temperature variations or by internal heat variations. 

Random walk sensor errors 
Those errors depends on variances that grow linearly with time and power spectral 
densities that fall off as l / / 2 , that means 20 dB per decade, where / is the frequency. 
Magnitudes of those noises are reflected to the outputs of sensors equivalently as white 
noise. The random walk error model shows relations in (2.4.2). 

s*=**-i+ w*-i 

2 / 2\ 2 / 2\ 2 
°k = \ s k ) = <Jk-\ + \ w k - i ) = c r o + k • Qw for static systems (2.4.2) 

def 1 2 

Qw = f \ w k 

The Qw value units are squared error per time step At. For example, gyro errors might be 
specified in degl^ih and most navigation-grade gyros have this errors in order of 10"3 

deg/Jh or less. 

Harmonic noise 
Temperature control systems introduce often-cyclical errors because of thermal 
transport lags. These can cause harmonic errors in sensor outputs, with periods scaled 
with device dimensions. In addition, ambient devices may be a source of other harmonic 
noise and that can excite acceleration-sensitive error sources in sensors we use. 
1/f noise 
This error source is characterized by power spectral density that falls off with factor l/f 
where / i s the frequency. It is present in all electronic devices and it is usually modelled 
as a combination of white noise and random walk errors. 
Fixed-pattern errors 
Those errors are identified in the sensor output arising from the input-output 
relationship. If this relationship is known they can be eliminated. There are dead-zone 
errors and quantization errors, and cumulative effect of both of them is affected by 
zero-mean input noise or dithering in addition. Cumulative quantization errors for 
sensors with frequency outputs are bounded by ± one-half of the least significant bit 
(LSB) of the digitized output. 

Some of more common types of input-output errors are shown in Figure 2.5: 

- bias is any nonzero output of sensor when the input equals zero; 

- scale factor error is usually caused by manufacturing tolerances; 

- nonlinearity is present almost in all sensors, typically up to some degree; 
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- asymmetry is caused by mismatched push-pull amplifiers and in fact it is scale 
factor sign asymmetry; 

- dead-zone caused by mechanical static friction or lock-in; 

- quantization error is inherited in all digitized systems; the mean value may not 
be zero when constant value is on the input, although it could be noted under 
calibration conditions. 

2.5 Sensor calibration 
To calibrate and compensate offsets, biases, scale factors and misalignments, affine 
(linear plus offset) model is used. Biases are included in offsets and the rest is linear. 
When we define output as shown in relation (2.5.1), where Zmput is the vector 
representing the inputs (accelerations or rotation rates), Zoutput is the vector representing 
the corresponding outputs, bz is the vector of sensor output biases and M represents the 
linear input-output model. 

Z O M ^ = M - (z ,„^ + bz) (2.5.1) 

*,nPu, = M - X • Z o u t p u t -b z (2-5.2) 

To estimate the values of M and bz, several pairs of given input-output vectors [zmput, k, 

Zoutput, k] have to be defined, (2.5.2). These outputs are measured while controlled 
calibration conditions, thus we get a pair of input-output recorded under these 
conditions and applicable for sensor compensation. This result can be generalized for a 
cluster of N > 3 gyroscopes or accelerometers. For more information, see [13] and [14]. 
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2.6 Orientation determination 
The orientation of the inertial measurement unit or its tilt is unknown in a real terrain 
and it is perhaps the most important step to estimate this state as accurate as possible. 
A n y inaccuracy leads to wrong de-rotation from R P Y coordinates to other, inertial 
coordinates, e.g. N E D , E N U or E C E F , [13]. 

2.6.1 Euler angles 

This way, the orientation might be defined as rotation angles about each of axes (vehicle 
roll, pitch and yaw axis), called Euler angles, named for the Swiss mathematician 
Leonard Euler (1707-1783). With this approach, it is always necessary to specify the 
order of rotations when specifying Euler angles. 

The rotation from R P Y coordinates to N E D coordinates can be composed from 
three Euler rotation matrices, consecutively yaw iff, pitch 6 and roll q>, as is shown in 
(2.6.1), respectively (2.6.2). 

C1 

cos( i/s) - sin( i//) 0 
sin(i//) cos(y) 0 

0 0 1 

cos(ö) 0 sin(ö) 
0 1 0 

-sin(0) 0 cos(ö) 

1 0 0 
0 cos( cp) - sin( cp) 

0 sin( cp) cos( cp) 

(2.6.1) 

NED ' 

cos(y/) • cos(6>) - sin(i//) • cos^o) + cos^/) • sin(i9) • sin(y?) sin(^/) • sin(y?) + cos(^/) • sin(6>) • cos((p) 

sin(y/) • cos(ß) cos(y/) • cos^o) + sin(i//) • sin(i9) • sinfjo) - cos(y/) • sm(g>) + sin(i//) • sin(6>) • cos(g>) 

-sin(i9) cos((9) • sinfjp) cosC^) • cos(y7) 

(2.6.2) 

This approach leads to problem with discontinuity when the pitch angle equals 
90 degrees. Ro l l axis is then pointed upwards and any change in pitch or yaw causes 
±180 degrees changes in heading angle. This is called "gimbal lock" and it is the reason 
why we do not use Euler angles for the orientation determination of EVlUs. 

In addition, it depends on the sample rate of angular rate sensing and how precise 
the sensor is, in the other words, computations of q>, 6 and y/ during the time from 
gyroscope outputs, body angular rates, are mathematically very complicated. 

2.6.2 Rotation vector 

The other possibility is to use the rotation vectors. If the origins of two right-handed 
orthogonal coordinate systems are the same points, we can define the transformation 
between those systems by a single rotation about fixed axis, so we need the direction 
(rotation axis) and magnitude (rotation angle) of transformation. 

This method brings two disadvantages. A t first, adding multiples of ±2it to the 
rotation angle may cause unwanted changes in transformation it represents, and the 
other one, rotation angle expression is nonlinear and thus it is complicated to find a 
relation for more consecutive rotations (the function of all previous rotations) by one 
rotation vector. 

The transformation of the rotation vector to the matrix and the transformation of 
the matrix to the rotation vector, such as a detailed explanation, you find in A P P E N D I X 
A , and in [13]. 
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2.6.3 Direction cosine matrix 

The coordinate transformation matrix between two orthogonal coordinate systems is a 
matrix of direction cosines between the unit axis vectors of those two coordinate 
systems. For relations, please see A P P E N D I X A . It this method, it is necessary to define 
the rotating coordinates R O T (see Figure 2.6). 

Figure 2.6 Rotating coordinates. 

Then, any vector VROT in rotating coordinates (ROT) can be expressed in terms of its 
nonrotating components and unit vectors parallel to the nonrotating axes as (2.6.3), and 
thus (2.6.4) defines. 

v, ROT = [v. xNON ' ^-xNON + vyNON ' lyNON + v 

xNON LyNON LzNON] 

zNON ^zNON 
vxNON 
vyNON 
vzNON 

(2.6.3) 

VROT — CROT "
 VNON (2.6.4) 

where VXNON, vYNON and VZNON are nonrotating components of the vector; 1xNON> lywow 

and 1zNON
 a r e u n i t vectors along XNON, YNON and ZNON axes, as shows Figure 2.6; \ROT 

is the vector v expressed in R P Y , analogously VNON is the vector v expressed in ECI . 
Next relation (2.6.5) express the coordinate transformation matrix from nonrotating 
coordinates to rotating coordinates. 

rNON _ pj* ~7 T 1 (2.6.5) 
^ROT — lLxNON LyNON LzNON\ 

This transformation is applicable when the static situation is expected, but the gyros 
measure three nonzero components of the inertial rotation rate vector (2.6.6). 

0)ROT — 

^xROT 
^yROT 
t^zROT 

(2.6.6) 

Finally, we observe a derivative relation of products for time derivation, (2.6.7). This 
equation was originally used for maintaining vehicle attitude information in strap-down 
FNS implementations. 
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d f-iRPY 

dt 
(OENU ® C R P Y 4-C^RPY 

^ENU + ^ENU ' (ÖRPY® (2.6.7) 

where o)RPY is the vector of inertial rates measured by the gyro and following applies 
(2.6.8)- (2.6.11): 

^ENU — ^earthrate + ^vE + <*>vN (2.6.8) 

C0S{<P geodetic) 

sm(<pgeodetic) 

U>vE — 
VE 

rT + h 

"0" 
1 

.0. 

(2.6.9) 

(2.6.10) 

u>vN -
VN_ 

rM + h 
(2.6.11) 

and 

0)0 is earth rotation rate; 

^geodetic is geodetic latitude; 

vE is the east component of velocity with respect to the surface of the earth 

rT is the transverse radius of curvature of ellipsoid 

vN is the north component of velocity with respect to the surface of the earth 

rM is the meridional radius of curvature of ellipsoid 
h is altitude above (+) or below (-) the reference ellipsoid surface (-mean sea 

level). 

Unfortunately, this equation was finally found to be not well suited for accurate 
integration in finite-precision arithmetic, so the next, last approach, eventually solves 
the integration problem, [13]. 

2.6.4 Quaternions 

Quaternions are members of a noncommutative division algebra first invented by 
Wi l l i am Rowan Hamilton. The idea for quaternions occurred to him while he was 
walking along the Royal Canal on his way to a meeting of the Irish Academy, and 
Hamilton was so pleased with his discovery that he scratched the fundamental formula 
of quaternion algebra (2.6.12), into the stone of the Brougham Bridge, [15]. 

i2 =/ =k2 =i-j-k = - l (2-6-12) 

Quaternions are a single example of a more general class of hyper-complex numbers 
discovered by Hamilton. While the quaternions are not commutative, they are 
associative, and they form a group known as the quaternion group [16]. 

The algebra of quaternions can be defined by using isomorphism between 4x1 
quaternion vectors q and real 4x4 quaternion matrices Q, (2.6.13). 
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01 - I i - q 3 ^4 
q2 #3 

q3 

J4 - q 3 g 2 01 _ 

= • Qi + ai • Qi + a3 • Qi + ax • Qa 

where Q I , Q2, Q3 and Q4 are quaternion basis matrices, (2.6.14): 

Q, 
clef 

clef 

0 
1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

clef 

•1 

Q 4 

clef 

0 -1 0 0 
1 0 0 0 

0 0 0 -1 

0 0 1 0 

0 0 0 -1 

0 0 -1 0 

0 1 0 0 
1 0 0 0 

(2.6.13) 

(2.6.14) 

Quaternion multiplication is noncommutative, the result depends on the order of 
multiplication. Let 's imagine quaternions A and B . It applies (2.6.15) and (2.6.16): 

A = alQl+a2Q2+a3Q3+a4Q4 

and the ordered product A B is (2.6.16): 

A B = (al •bl - a2 -b2 - a3 -b3 - o 4 • bx ) • Ql + (a2 •bl + al -b2 

(2.6.15) 

+ (a3 •bl + aA -b2 + al -b3 - a2 - bA)-Q3 +(a 4 • bl a3 -b2 + a2 

a4 -b3 +a3 -b4)-Q2 

• b3 + a, (2.6.16) 

A single quaternion product, the final rotation, is determined by the quaternion product 
qnxqn-i... q3x.q2x.q1, can implement each successive rotation. The quaternion 
equivalent of the rotation vector p with |p| = 6, and where u is a unit vector, equals 
then (2.6.17). 

(0^ cos — 
u , 

cos — 

« , i n 
0 

II y sin 

Pi • — •sin 
0 (C 112 •sin 

P3 • — •sin 
0 

(0^ 

v2y 
11, •sin (C 

(2.6.17) 

When the two coordinate systems are aligned, the initial value of q[oj equals [1 0 0 0] T . 
In inertial measuring systems the initial q[oj is determined during INS alignment 
procedure. We can then define the calibrated value of the orientation, quaternion qk, as a 
quaternion product as shows (2.6.18), where qic-i is a prior value of orientation (a 
quaternion that is determined from the vector as [0; v i ; V2; V3]) and \q is the change in 
attitude, all represented in quaternion form. 
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<ik=Mk*<ik-i*Mk ( 1 6 J 8 ) 

The attitude representations and rotation sequences for quaternion expressions are 
available in [17] and [18] for example. 

2.7 Artificial neural network 
A n artificial neural network ( A N N ) enables to decide how the results of the issue should 
be, without any equations, relations between physical quantities, and probabilistic 
filters. It is based on an artificial intelligence (AI), which is the intelligence exhibited by 
machines or software and such problematics including learning, reasoning, knowledge, 
planning, communication, perception and the ability to move and manipulate objects, 
[19], [20] and [21]. It depends on the type and extensiveness of the task that is solved by 
the A N N . Then the structure and connections inside of A N N are defined and biases and 
weights of trained network decide about final results. In general, the A N N may look as 
follows ( Figure 2.8) and artificial neuron model is shown in Figure 2.7. 

Input Artificial neuron 
' * f • \ 

J 

Figure 2.7 The artificial neuron model, [18]. 

1 i I "WiS / I 

J K I 
I k 

Each A N N has its input values representing variables on which the A N N output 
depends. A s an output we consider only one value determining the state of the proposed 
system. In other cases, more outputs may be present, see [22]. The number of hidden 
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layers and the number of neurons in particular layers depends on the complexity of the 
problem we solve, [20], [23], 

A N N s were used in systems for tracking, positioning or navigation as it is presented for 
example in [24], [25] or [26]. Nevertheless, these applications do not use the A N N to 
find out the state of the system and also these developments combine the I M U with an 
additional data sources. 

The artificial neural networks are used also to solving of many specific types of 
issues. Always the proper type of the A N N and the method of training and other 
parameters have to be selected. Here are some kinds of issues: 

- Input-output and curve fitting 
- Pattern recognition and classification 
- Clustering 
- Dynamic time series 

Our task is to correctly define the state in time. The classification A N N represents an 
appropriate network for this type of data processing. However, the problem is complex 
and it is necessary to analyse the data considered in proper time window. Thus we 
assume that the more complex, dynamic time series type of problem must be solved, 
[27]. There are lot of kinds and types of A N N s that solve completely different issues, 
detailed information are provided in Chapter 5. 

2.8 Kalman filtering 
Kalman filter (KF) (see literature [28] and [29]), also known as linear quadratic 
estimation (LQE) , had become the important instrument for systems that integrate more 
data sources to give the final solution. Y o u can imagine this filter as an algorithm that 
uses sets of measurements observed over time (containing random variations of noise) 
and produces the estimates of unknown variables in order to obtain more precise results 
(see Figure 2.9). A n introduction to concepts gives P. S. Maybeck in [30], 

2.8.1 Implementation 

With respect to the data from sensors and all other available information, the K F 
estimates a behaviour by using a form of a feedback control loop. The filter estimates 
the process state at some time and then obtains feedback in the form of (noisy) 
measurements. This procedure is continually repeated to produce current results (see 
Figure 2.10). 

Figure 2.9 Basic concept of Kalman filtering, [35]. 

For example, in the case of land vehicles positioning, K F gets the data from G N S S unit 
(GPS, G L O N A S S and Galileo, Compass or Beidou system) and from inertial unit 
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(accelerometer, magnetometer and gyroscope), [31]. The adaptive Kalman filtering for 
low-cost INS/GPS is shown in [32], [33]. 

It can also get data from systems available in vehicle (data information from A B S 
and A S R unit, information about steering wheel deflection and data from odometer), as 
shown in [34]. The filter is very powerful because it supports the estimations of past, 
present, and even future states, and it can do so even when the precise nature of the 
modelled system is unknown, [35]. The theory of the optimal state estimation is 
described in [24], 

Correction step: 
a) Calculate the Kalman Gain 

S = HPkHT + R 

s 
b) Correct the a priori state estimate 

xk =x-k+Kk(zk-h(xkfi)) 

c) Correct the a posteriori error 
covariance matrix estimate 

Pk=Pk--KkHP~ 

Prediction step: 
a) Predict the state 

xk = Axk_x 

b) Predict the error covariance matrix 

Pk =AkPk_xAk +Qk_1 

xk 

Z 

R 

K 

A 

H 

the predicted or a priori value of 
the estimated state vector 
the corrected or a posteriori 
value of the estimated state 
vector 
the measurement or observation 
vector 
the sensor noise covariance or 
measurement uncertainty 
the dynamic disturbance noise 
covariance 
the predicted or a priori value of 
estimation covariance 
the corrected or a posteriori 
value of estimation covariance 
Kalman gain 
Jacobian of the system model 
with respect to state 
the measurement sensitivity 
matrix or observation matrix 

h(xk, 0) the predicted measurement 

zk — /i(x^,0) innovations vector 

Figure 2.10 Kalman filter process, [35]. 

2.9 Trajectory reconstruction 
Trajectory reconstruction is difficult process when the high precision is supposed to be 
reached and when there is not any support of additional external information system or 
auxiliary system implemented, [36], [37]. The successive computation of position is 
called strapdown navigation (Figure 2.11). In addition, heading from the magnetometer 
should be taken into account. Nevertheless, surrounding environment may differ with 
the time and place where the measurement is performed. Because of that, the data from 
magnetometer is not always included into the strapdown EVIU system. This issue is 
discussed in [35], 

The essential processing function includes double integration of acceleration to 
obtain the position. The measured angular rates are also integrated to maintain the 
knowledge of the EVIU orientation. The initial position, velocity and orientation must be 
known before the initialization of integration [13]. The long-term evaluation of the 
orientation, velocity and position in time brings high inaccuracies into this results. In 
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addition, the inaccuracy in determination of the orientation causes additive de-rotation 
of the measured acceleration in I M U ' s body frame and it induces incorrect subtraction 
of the Earth gravitational force. Figure 2.11 shows the simple strapdown INS and its 
outputs. 

I M U 

accel 

BODY-FIXED 
t r t 

SCALING, OFFSET, 
ERROR COMPENS. 

9 y r 0 SCALING, OFFSET. 
\^7\ ERROR COMPENS. 

T T T 
ATTITUDE RATE 

SENSED INERTIAL ACC 

t t t 
COORDINATE 

TRANSFORMATION 

VELOCITY POSITION 

t t t m 

1111 
ATTITUDE UPDATE 

BODY ATTITUDE 

GRAVITATION 
SUBTRACTION 

Figure 2.11 Simpie strapdown INS and its outputs [13]. 

2.10 Problems 
- During the measurement, drifts and offsets arise on the output of the calibrated 

gyroscopes. The I M U orientation is defined ( R P Y to E N U ) . With time, the 
inaccuracy of orientation determination rises and thus the velocity and position 
is computed with enormous errors (in direction and in size). 

- The acceleration also drifts during the time. Then the measured acceleration is 
not exactly 1 g while the I M U stays still. When the EVIU stays still, the 
acceleration may be averaged and normalised. Nevertheless, during the walk or 
any other motion, the acceleration drift is not fully compensated and thus the 
estimated velocity (and position) may differ from the true values due to the 
integration of the acceleration. 

- Metal objects placed close to the I M U affects the magnetometer output. It is 
called as soft iron offset. We assume that when the metal objects are present at a 
distance of at least fifteen centimetres, they do not affect measured values with 
the impact on the result (the magnetic north determination). The hard iron offset 
(the effect of the P C B , electronical components, etc.) has to be suppressed. 
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3 DISSERTATION OBJECTIVES 

In Chapter 2, the recent developments in the field of inertial navigation systems and 
inertial positioning systems were presented. The analysis clearly identified new 
directions of the future research: 

• S Y S T E M F O R T E R R E S T R I A L E V A L U A T I O N OF T H E C U R R E N T S T A T E 

This may furnish for example G N S S navigation when the signal is lost, but, also and 
above all, this may be used for terrestrial indoor navigation or position determination 
for short distances, up to several meters, while walking, jogging, driving, etc. 

The task is to develop a system that works without any step detection algorithms 
and map assigning, purely based on sensor outputs processing, with sufficient accuracy. 
It is also desirable to get a system that can be hold in the hand during its operation. 

Therefore, we can define the following objectives of the dissertation: 

• To develop the method for determination of the sensors orientation with respect 
to the navigation coordinates using only the sensor outputs while the system is 
essentially stationary. 

• To develop the method for determination of the sensors orientation with respect 
to the navigation coordinates using only the sensor outputs while the system is 
not stationary and while it moves. 

Those tasks lead to coordinate alignment ability and thus to ability of subtraction of 
split g-force (measured gravitational acceleration) from particular axes with eminent 
focus on accuracy. 

• To create an artificial neural network ( A N N ) that recognizes and defines "what 
is going on" with the system and to implement it. 

It leads to reduction of the positioning errors due to parasitic sensed rotation rates and 
accelerations. It also ensures that the integration errors w i l l not be cumulated during 
whole measurement. 

• To create a Kalman filter; that is a necessary element where data from the 
inertial sensors are used for the position determination. 

After performing all these tasks, integrations may follow and the velocity and position 
in time may be computed as well as the trajectory of the moving object can be 
reconstructed. In addition, the determination of the unit orientation and heading as a 
function of time is available. 

• To develop an I M U with application that evaluates all previous tasks and 
presents results. 

Developed EVIU wi l l be based on proper modules with 3-D accelerometer, 3-D rotation 
rate sensor and 3-D magnetometer connected to appropriate M C U . Proposed application 
running on P C wi l l process data from the I M U and M C U including graphical 
representation of results and verification of the system in which a new method of fully 
inertial positioning is implemented. 
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• To perform and evaluate series of experiments. 

The complex system w i l l be experimentally tested in different scenarios to verify 
improvements in positioning. 
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4 INERTIAL MEASUREMENT UNIT 

In this Chapter the hardware, firmware and data acquisition techniques are presented. A t 
the end, calibration and compensation process for used sensors is demonstrated. These 
steps lead to obtaining of the basic orientation and linear acceleration used for F M U 
positioning from inertial sensors. 

4.1 Hardware 
A s a suitable equipment we chose 9-DOF sensor module. Firstly, we used a module 
M i n F M U - 9 v2 with an accelerometer, a gyroscope and a magnetometer, all of them 
3-axial (see Figure 4.1). A l l sensors use M E M S technology with communication I 2 C 
interface. This module was connected to common M C U combining processor 
A T m e g a l 6 L and 32 Mbi t flash memory. Measured data (3-D acceleration, 3-D rotation 
rate and 3-D magnetic field in Cartesian coordinates) were stored into the flash memory. 
After acquisition they were copied to the P C and processed in M A T L A B ™ [38], 
Algorithms for positioning have been developed, including artificial neural network and 
Kalman filters. 

This hardware represents a cheap solution, but its low computing power 
performance caused in very low data rate and insufficient positioning for real scenarios. 
For example, when the walk motion is estimated, the rate of data sensing should be 
about 80 Hz . Above mentioned module M i n I M U - 9 with M C U provided about 16 
timestamps per second. The key problem of this solution is complicated access to 
memory for real-time application (continuous time experiment). Thus, it was necessary 
to find another solution. 

Figure 4.1 MinIMU-9 v2 board and sensor axis orientation, [46]. 

A s a second hardware X - N U C L E O - I K S 0 1 A 1 board was chosen. It consists of motion 
M E M S and environmental sensors. It is compatible with Arduino Uno. Measured data 
are sent by B T or by U S B cable to a P C and may be processed in real time or saved for 
further processing. This sensor board is designed around STMicroelectronics' 
L S M 6 D S 0 3-axis accelerometer, 3-axis gyroscope, the L I S 3 M D L 3-axis magnetometer 
and in addition, the HTS221 humidity and temperature sensor and the L P S 2 5 H B * 
pressure sensor is available. 

Information and technical parameters are in A P P E N D I X C. 
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• HTS221 LSM6DS0 S T Morpho connector 

] LPS25HB [~J LIS3MDL f j Arduino UNO R3 connector 

• DIL 24-pin 

Figure 4.2 X-NUCLEO-IKS01A1 board [46]. 

4.2 Firmware 
The function of Arduino U N O is to read data from sensors and send them directly to the 
P C . I 2 C protocol is used for data retrieval from the sensors. Arduino Uno was 
programmed in Arduino I D E application using a programming language C++. 

The firmware code is divided into two sections, the first part (setup function) is 
performed on start-up of Arduino and applies the settings, as shows the example part of 
code below. Further information about the register settings are listed in A P P E N D I X C, 
and A P P E N D I X D . Arduino is set as a master and sensors are set as slaves. 

v o i d s e t u p ( ) 
{ 

W i r e . b e g i n ( ) ; 
S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ; 

v o i d s e t u p ( ) 
{ 

W i r e . b e g i n ( ) ; 
S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ; 

// 
// 

I 2 C i n i t 
SP i n i t 

s e t u p M a g ( ) ; 
s e t u p A G ( ) ; 

} 

// 
// 
// 

M a g n e t o m e t e r r e g i s t e r s s e t t i n g 
A c c e l e r o m e t e r a n d g y r o s c o p e 
r e g i s t e r s s e t t i n g 

The second part (loop function) reads the sensor data and sends them to the P C , as it is 
shown in next code part. Whole communication cycle captured by oscilloscope is 
shown in Figure 4.3. The magenta curve represents Arduino T X in time, yellow curve 
represents I 2 C S D A and cyan curve represents I 2 C S C L . For more details on 
communication, please see A P P E N D I X D. 

|E) 1ms -11.880ms QStop g| 1/ 1 B100» 

Figure 4.3 One Arduino communication cycle, consequently. TX, SDA, SCL. 
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v o i d l o o p ( ) 
{ 

S t r i n g o u t p u t = ""; 
readFrom(30, B00101000, 6) ; 

w h i l e ( W i r e . a v a i l a b l e ( ) ) 
{ 

s h o r t c = W i r e . r e a d ( ) ; 
c += (W i r e . r e a d ( ) « 8 ) ; 
o u t p u t += S t r i n g ( c , DEC) + 

readFrom(107, B00011000, 6) ; 

w h i l e ( W i r e . a v a i l a b l e ( ) ) 
{ 

s h o r t c = W i r e . r e a d ( ) ; 
c += (W i r e . r e a d ( ) « 8 ) ; 
o u t p u t += S t r i n g ( c , DEC) + 

readFrom(107, B00101000, 6) ; 

w h i l e ( W i r e . a v a i l a b l e ( ) ) 
{ 

s h o r t c = W i r e . r e a d ( ) ; 
c += (W i r e . r e a d ( ) « 8 ) ; 
o u t p u t += S t r i n g ( c , DEC) + 

// Magnetometer r e a d i n g 

ii ii . 

// Gyroscope r e a d i n g 

II II . 

// A c c e l e r o m e t e r r e a d i n g 

o u t p u t += S t r i n g ( m i l l i s ( ) , DEC) + " "; // timestamp 

i f ( d i g i t a l R e a d ( b u t t o n P i n ) == HIGH) // b u t t o n s t a t e 
o u t p u t += "0"; 

e l s e o u t p u t += "1"; 

S e r i a l . p r i n t l n ( o u t p u t ) ; // send t o PC 
d e l a y ( 7 ) ; 

} 

4.3 Data acquisition 
The firmware in Arduino defines the format in which the data are sent. In the source 
code, the package contains measured accelerations in x, y and z-axis from accelerometer 
(Figure 4.5), angular rate in x, y and z-axis from gyroscope (Figure 4.4) and magnetic 
field in x, y and z-axis from magnetometer (Figure 4.6). There is the possibility to 
receive the time stamp to get precise At, in other words, to get accurate time between 
two samples. In addition, Arduino sends the button state. This button allows to receive 
additional boolean value that is defined by user. 

Axes of all sensors have essentially the same origin but magnetometer has a 
different right-handed axis system than accelerometer and gyroscope. Thus, we have to 
rotate measured magnetic field vector by +90 degrees along common z-axis and then 
transform the coordinate system of magnetometer using transformation matrix (2.3.1) to 
get one united vehicle-fixed coordinate system R P Y (Figure 4.7). 
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Figure 4.4 Direction of detectable Figure 4.5 Direction of detectable 
angular rates. accelerations. 

Figure 4.6 Direction of detectable Figure 4.7 Body-fixed RPY 
magnetic field. (roll-pitch-yaw) axis. 

Arduino sends just a raw data from converters. 

Based on the register settings, the acceleration is measured in range of ±2 g and 
the sensitivity is then 0.061 mg/LSB. The rotation rate sensor is set to range of 
±500 dps, the sensitivity is then 17.5 mdps/LSB. The magnetometer measures magnetic 
field in range of ±4 gauss and the sensitivity is then 0.146 mGauss/LSB. Resolution of 
all sensors is 16 bits. 

Typical magnetic field at places where the measurements were performed is about 
48.897 nT (488.977 mGauss), see T A B L E 4.1. 

TABLE 4.1 Magnetic field values in Kohoutovice, Brno [45]. 

Model Used: WMM2015 
Latitude: 49.1962214° N 
Longitude: 16.5407075° E 
Elevation: 360.0 m GPS 

Date 
Declination 
(+ E 1 - W) 

Inclination 
(+D|-U) 

Horizontal 
Intensity 

North Comp 
(+N|-S) 

East Comp 
(+ E 1 - W) 

Vertical Comp 
(+D|-U) Total Field 

2015-04-16 4.1030° 65.4184° 20340.9 nT 20288.7 nT 1455.4 nT 44466.1 nT 48897.7 nT 
Change /year 0.1218° 0.0068° 7.4 nT 4.3 nT 43.7 nT 30.2 nT 30.5 nT 
Uncertainty 0.36° 0.22° 133 nT 138 nT 89 nT 165 nT 152 nT 

Finally, we get 11 values from 9-DOF device per sample (this is what the device sends: 
[magx, magy, magz, gyrx, gyry, gyrz, accx, accy, accz, time, button], and those sets are sent 
with frequency of about 86 Hz. 

The required sampling frequency is given by the spectrum of the measured data 
during typical and particular movements. For the walk and staying still the sampling 
frequency about 80 H z is satisfactory. For the data processing while the I M U motion is 
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running or flying, higher sampling frequency is required. For graphic representation see 
amplitude spectrums below: Figure 4.8 - Single-sided amplitude spectrum of the 
sensor's data - walk, Figure 4.9 - Single-sided amplitude spectrum of the sensor's data 
- swinging. 

Single-Sided Amplitude Spectrum of acc(t) 

0.04 

g 
>* 0.02 

1 o 15 

Frequency (Hz) 

10 15 
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20 

Single-Sided Amplitude Spectrum of gyro(t) 

10 15 20 
Frequency (Hz) 

10 15 20 25 
Frequency (Hz) 

30 

30 
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20 

- N 2 

10 15 20 
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Figure 4.8 Single-sided amplitude spectrum of the sensor's data - walk. 
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Single-Sided Amplitude Spectrum of acc(t) 
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Figure 4.9 Single-sided amplitude spectrum of the sensor's data - swinging. 
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4.4 Sensor calibration and compensation 
Sensor calibration is the process determining the parameters of the compensation 
model. Sensor compensation is the process recovering the sensor inputs from the sensor 
outputs. 

Figure 4.10 shows the rotation rate measured by the rotation rate sensor when the 
I M U was laying on the table for 30 minutes without any movement. The next figure 
(Figure 4.11) shows the integration of the measured data in degrees in time. The 
detailed figure shows first ten seconds of the measurement. Y o u can see that the data are 
almost correct for the first three seconds, then the error rises significantly. 

Gyroscope - bias offset and drift in 30 minutes 

rotation rate along x-axis 
rotation rate along y-axis 
rotation rate along z-axis 

800 1000 1200 

time [s] 

Figure 4.10 Raw rotation rate in time when IMU is still - 30 minutes. 
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Angle from rotation rate sensor in 30 minutes 
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Figure 4.11 The error in angle determination caused by offset and drift. 
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The integration of the biases of the accelerometer (see Figure 4.12) cause the error in 
the position determination, this error increases quadratically over time. The derotation 
have also more significant error due to gyroscope biases integration. The bias of the 
gyroscope accumulates the position error over time proportional to the cubic function of 
the time index. The peaks at the end of the measured data are given by typing on a 
keyboard while the EVIU was lying on the same table as the keyboard 1 meter away. 

Accelerometer - bias offset and drift in 30 minutes 
0.01 
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o -0.005 o o TO 

acceleration drift in x-axis 
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Figure 4.12 Raw acceleration after the expected value subtraction when the IMU is still 
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Figure 4.13 Raw rotation rates (top) and raw accelerations (bottom) in particular axis. 

In Figure 4.13, the raw rotation rates and raw accelerations in particular axes (in order 
x-axis, .y-axis and z-axis from left to right) are shown - the 2520 samples are taken over 
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a period of 30 seconds. The next Chapters show the biases determination for both of the 
sensors. 

4.4.1 Bias of the accelerometer 

The vector of the average output in the body frame of accelerometer is defined by 
(4.4.1). 

Fb = [fx'fy'fzV (4.4.1) 

This is the sum of the correct acceleration vector Fb in the body frame and the bias 
vector of the accelerometer in the body frame, (4.4.2). 

F b = F b + V b ( 0 ) (4.4.2) 

After the derotation of acceleration vector into inertial coordinate system, we expect 
that the acceleration vector equals [0, 0, 1] T. The transformation from R P Y to E N U 
coordinates is defined as: 

RRPY 
^ ENU [\R lp l y ] 

(4.4.3) 

SyC p CpCy SpSy S p 'SpCy ~\~CpSySp 

CyCp 

SP 

'CpSy ~\~SpCySp SpSy ~\~CpCySp 

•SRCp •CRCp 

where Y represents yaw angle, P represents pitch angle, R represents roll angle, 

SR = sin(i?) 

CR = cos(R) 

SP = sin(P) 

CP = cos(P) 

SY = sin(7) 

CY = cos(7) 

(4.4.4) 

(4.4.5) 

(4.4.6) 

(4.4.7) 

(4.4.8) 

(4.4.9) 

For details see A P P E N D I X A . The bias of the used accelerometer is then defined by 
(4.4.10). The example data are given by the average of the measured data while the 
EVIU was laid on a table without any movement. 

Vb(0) = Fb-Fb 

"-0.160 1910" " - 0.1602160" " 2.5e-05 " 
-0.0275174 - -0.0278812 = 3.638e -04 

0.986702 0.986698 4e-06 

(4.4.10) 

where Fb is the average measured acceleration vector and Ft is a vector [0, 0, 1] T 

affected by the EVIU's orientation (bank, elevation and heading angle - BK, EL, H in 
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order) found out during the stationary stage. The BK, EL and H value was determined 
from the quaternion that defines the absolute orientation of the F M U in E N U coordinates 
(averaged). Those values are: 

H= 0.128828 °, EL = 9.219442 °, BK= -1.597682 ° 

and Fb is determined by (4.4.11): 

- sin f3 cos EL 

Fh = sin EL • 1 
cos BK cos EL 

(4.4.11) 

where /? = s i n _ 1 ( ); the heading H does not appear here. Those angles are not 
cosEL 

equal to the roll, pitch and yaw angle in R P Y coordinates. 

4.4.2 Bias of the gyroscope 
Theoretically, the biases of the rotation rate sensors are caused by the Earth rotation 
rate. The real EVIU gyroscope measures the sum of the Earthrotation rate f l i e and the 
bias of the rotation rate sensor V p as shows the relation (4.4.12). A s [45] and [48] 
presents, the earth rate is approx. 7.292115090-10"5 rad/s (4.178074184-10"3 7s). This 
value may be ignored, the resolution of used I M U is higher (the sensitivity 
is 15.258789-10"3 7s when the measuring range of particular gyro axes is ±500 7s) and 
equation (4.4.13) is applied. In order to remove the gyro bias, the average rotation rate 
vector is subtracted from the measured rotation rate vector. 

- b 
W 

<*>x 

* b 

(4.4.12) 

(4.4.13) 

4.4.3 Calibration and compensation 

The calibration is divided into two processes in this case. The first one is called "hard" 
sensor compensation and calibration and it is performed always when the I M U is 
switched on. During this "hard" calibration process the biases of the accelerometer and 
gyroscope are subtracted, the scale factor for the accelerometer data is defined and 
magnetometer data are adjusted in way that the magnetic field strength is adapted to the 
location of measurement (the location should be chosen in the application). Geographic 
coordinates of the selected locations are available in A P P E N D I X B , part B . 1. 

The second type of calibration, that may be called as recalibration or "soft" 
calibration, is performed automatically when the state of the I M U is defined as the 
"st i l l" . The acceleration vector is scaled - values are normalised. Based on the measured 
rotation rates the new calibration constants are found out and applied when the I M U 
state changes to the "walking" as the new bias offsets. 

In Figure 4.14 you can see the raw received data from the sensors, converted to 
appropriate units ([g] for the acceleration; [7s] for the rotation rate; [mGauss] for the 
magnetic field magnitude). On the right side of the charts, the last measured values are 
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shown (in order x-axis, _y-axis and z-axis value). This graph shows the one turn in 
clockwise direction by 360°, when the blue curve represents the x-axis, the green curve 
represents the _y-axis and the red curve represents the z-axis. The x-axis of the graph 
represents time in [s], as elsewhere throughout the document of the same graph type. 

We are not able to determine the heading of the I M U unless we have data from 
the calibrated magnetometer and we know the magnetic declination (S) of the place 
where the measurement was performed. The rotation to the flat position must be applied 
to the calibrated magnetometer data in order to determine the heading correctly in 3-D. 
The magnetic declination is an angle in the horizontal plane between magnetic north 
(where the compass needle points, corresponding to the direction of the Earth's 
magnetic field lines) and true north (geographic North Pole). See T A B L E 4.2 for 
information about the declination in Kohoutovice, Brno. 

-0.027 
-0.064 
1.013 
1.173 
0.157 
1.242 

-337.036 
69.570 

166.764 
Figure 4.14 Data from uncalibrated sensors in time fsj. 

TABLE 4.2 Magnetic declination for Kohoutovice, Brno [47]. 

Model Used: WMM2015 

Latitude: 49.1962214° N 

Longitude: 16.5407075° E 

Date Declination 

4.02° E ± 0 . 3 6 ° 
2015-04-16 changing by 0.12° E 

per year 

True north 
Ö 

Magnetic 
north 

5...positive 
magnetic 

declination 

Then, Figure 4.15 shows calibrated magnetometer data and sin(x) and cos(x) function 
that is formed when the I M U rotates along a single axis by 360° with starting and 
ending heading equals S - the x-axis points straight to magnetic north. 

750 
500 
250 

0 
-Z50 
-500 
-750 

180.623 
-4.718 

-405.257 
625,5 627 623,5 630 631,5 633 634,5 

Figure 4.15 Calibrated magnetometer data (360° rotation) [mGauss] in time [s]. 
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A calibration of accelerometer and magnetometer are based on the same principle. 
Because of static nature of quantities measured by those sensors, we can measure 
minimum and maximum value in each axis (in any orientation) as the calibration 
constants. 

In the case of magnetometer, the maximum values were reached when particular 
axes were pointing in the same direction as the vector of magnetic field. In the case of 
accelerometer, maximum values were reached when particular axes were pointing 
downwards, in the direction of gravitational acceleration. The scale factor was then 
computed based on the knowledge of the strength of Earth's gravity and Earth's 
magnetic field. 

The (4.4.14) and (4.4.15) equations have been used to reflect the calibration 
constants in measured data. The a is an arithmetic average of minimum and maximum 
value of measured acceleration (magnetic field), separately determined for each axis. 
The first relation removes sensor offset. The second relation scales measured values to 
the interval in which the values should be. The acceleration is correct due to the 
multiplication by 1 g. The constant 489.151 for magnetometer scales the measured 
magnetic field into the range of the total magnetic field on the specific place on the 
Earth's surface (see A P P E N D I X B , part B.3). The part of the code is shown in Figure 
4.16. In fact, finally this is expressed in a matrix form. 

^output ~ ^'input ^miamax 4-^4) 

2-z 
_ ^ L output 

zoutput*-~ (4.4.15) 
min,max 

/ / O f f s e t 
a c c . s e t X ( a c c . x ( ) - ( (accMax.x()+accMin . x () ) 12) ) ; 
a c c . s e t Y ( a c c . y ( ) - ( ( a c c M a x . y ( ) + a c c M i n . y ( ) ) 1 2 ) ) ; 
a c c . s e t z ( a c c . z ( ) - ( ( a c c M a x . z ( ) + a c c M i n . z ( ) ) 1 2 ) ) ; 

mag.setX(mag.x()-((magMax.x()+magMin.x()) 1 2 ) ) ; 
mag.setY(mag.y()-((magMax.y()+magMin.y()) 1 2 ) ) ; 
mag.setz(mag.z()-((magMax.z()+magMin.z()) 1 2 ) ) ; 

/ / S c a l e 
a c c . s e t X ( l * a c c . x ( ) / ( ( a c c M a x . x ( ) - a c c M i n . x ( ) ) 1 2 ) ) ; 
a c c . s e t Y ( l * a c c . y ( ) / ( ( a c c M a x . y ( ) - a c c M i n . y ( ) ) 1 2 ) ) ; 
a c c . s e t z ( l * a c c . z ( ) / ( ( a c c M a x . z ( ) - a c c M i n . z ( ) )/2) ) ; 

mag.setX(489.151*mag.x()/((magMax.x()-magMin.x()) / 2 ) ) ; 
mag.setY(489.151*mag.y()/((magMax.y()-magMin.y()) / 2 ) ) ; 
m a g . s e t z ( 4 8 9 . 1 5 1 * m a g . z ( ) / ( ( m a g M a x . z ( ) - m a g M i n . z ( ) ) / 2 ) ) ; 

Figure 4.16 C+ + source code -a part of calibration [QtJ. 

After the calibration when the EVIU is still, the magnetometer shows magnetic field with 
total strength of 489.151 mGauss, the accelerometer shows the total gravitational 
acceleration of +1 g. The gyroscope is calibrated every time when the unit is switched 
on and drifts are subtracted to achieve zero rotation rate when the EVIU does not rotate 
(and does not move). During the measurement when the EVIU is still, the calibration 
constants are adjusted accordingly. 
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Recalibration may be done also manually during the measurement. Nevertheless it 
is necessary to ensure the conditions for the calibration. The measurement of the still-
shake-still state of the EVIU is shown in Figure 4.17. 
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Figure 4.17 Data from calibrated sensors while shaking. 

A s you can see, the rotation rate and the acceleration show "what is going on" with the 
EVIU in the body coordinate frame in time. The EVIU is placed on the table but it is not 
perfectly in flat position (in a horizontal plane). The .y-axis of the gyroscope has the 
value of 0.248 °/s after the movement. This is the drift and it has to be suppressed for 
further processing. Thus, the calibration of the gyroscope is necessary during the 
measurement. This is exactly what the "soft" calibration performs. 

5 NEURAL NETWORKS 

The new proposed approach is primarily based on the artificial neural network that is 
designed in order to determine state - "what it is going on". In this work, recognition of 
two states are presented. The first case is that the I M U walks, the second case is that the 
EVIU is static regardless of its orientation. In principal, further states may be added, for 
example jogging, running, driving, riding, shaking, flying, falling etc. 

The very important piece of information is that when the A N N determines the 
state of the EVIU incorrectly, there are two cases of the wrong decision. 

1. The A N N determines the walk and the EVIU is still 

2. The A N N determines that the EVIU stays still and the EVIU walks. 

The first case does not bring complications, however it is undesirable, since the A N N 
does not improve the positioning. The second case is unacceptable, the orientation of 
the moving EVIU is recalculated as it is "s t i l l" (from the actual accelerometer data). The 
further processing of data after the incorrect determination of the orientation causes the 
error with a very high severity. 
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5.1 Principle of ANN 
I decided to create time-delayed neural network, since the static values of one sample do 
not have any predictive value. Figure 5.1 shows principle of convenient A N N . It is 
nonlinear autoregressive network with external input (NAPvX) [41]. More simple type 
of network and also very convenient is F F T D (feed-forward time-delayed) network, 
[42], this type does not carry older outputs into the input for to get new output (the 
principal scheme is in Figure 5.2). 

To obtain the training data we recorded a walk with stops. The person holding the 
I M U used the button to determine i f he is walking or is standing still. Then, the neural 
network was trained with the input set consisting of measured data and the button state 
as the target output. 

A part of example script, code for M A T L A B ™ , is shown in Figure 5.7. This 
script was written for automatic creation, training and simulation of F F T D artificial 
neural network. While the train function is given, the time delay (the number of 
previous samples used) and the number of neurons in hidden layer were sweeping. The 
training set is divided to three blocks - training part, validation part and test part. The 
goal criteria have to be set properly. 

Once the neural network is trained (one of the given criterion is reached), the 
A N N structure and its constants (weights, biases and others) are saved with information 
about time delay and number of neurons in hidden layer. Then, the F F T D A N N is used 
with unknown data (the data set which was not included in the training set) and its 
results were depicted in graphical form. 

[x(t),x(t-1) x(t-n)] ANN hidden layer 

Mt-1) y(t-n-i)] 

Figure 5.1 NARXANNprinciple. 

[x(t),x(t-1),..x(t-n)] ANN hidden layer 

Figure 5.2 FFTD ANN principle. 

Parameter and architecture properties such as training function, performance function, 
divide function, adaptation function, transfer function etc. also have a significant impact 
on A N N output. 

Following text describes the variables and the most suitable functions for the 
input-output time-series problem with a time-delay neural network. 

T R A I N I N G F U N C T I O N (net.trainFcn) 

trainlm Levenberg-Marquardt backpropagation is recommended for most problems, 
but for some noisy and small problems. 

Our training occurs according to trainlm training parameters, shown here 
(default values are shown, see T A B L E 5.1) with their default values: 
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TABLE 5.1 Default training parameters [MATLAB™]. 

net.trainParam.epochs 1000 Maximum number of epochs to train 

net.trainParam.goal 0 Performance goal 

net.trainParam.max fail 6 Maximum validation failures 

net.trainParam.min_grad MO" 7 Minimum performance gradient 

net.trainParam.mu 0.001 Initial mu 

net.trainParam.mudec 0.1 mu decrease factor 

net.trainParam.mu inc 10 mu increase factor 

net.trainParam.mu max M 0 1 0 Maximum mu 

net .trainParam .show 25 Epochs between displays (NaN for no) 

net .trainParam. showCommandLine 0 Generate command-line output 

net .trainParam. sho wWindow 1 Show training GUI 

net.trainParam.time inf Maximum time to train in seconds 

The validation vectors are used to stop training i f the network performance on the 
validation vectors fails to improving (number of consequent trials is defined in 
maxfa i l ) . 

The test vectors are used as a further check that the network is generated well , but 
do not affect the training. 

trainbr Bayesian regulation backpropagation can take longer but obtain a better 
solution 

trainscg Scaled conjugate gradient backpropagation is recommended for large 
problems as it uses gradient calculations which are more memory efficient 
than the Jacobian calculations the other two algorithms use. 

I N I T I A L I Z A T I O N F U N C T I O N (net.initFcn) 

learngd Gradient descent weight and bias learning function, calculates the weight 
change dW for a given neuron from the neuron's input P and error E, and the 
weight (or bias) learning rate LR, according to the gradient descent. 

learngdm Gradient descent with momentum weight and bias learning function, 
calculates the weight change dW for a given neuron from the neuron's input 
P and error E, the weight (or bias) W, learning rate LR, and momentum 
constant MC, according to gradient descent with momentum. 

A D A P T A T I O N L E A R N I N G F U N C T I O N (net.adaptFcn) 

adaptwb Sequential order incremental training w/learning functions, that adapt 
network with weight and bias learning rules. 

P E R F O R M A N C E F U N C T I O N (net.performFcn) 

mse Mean squared normalized error performance function. It measures the 
network's performance according to the mean of squared errors. 
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msereg 

sse 

Mean squared error with regularization performance function. It measures 
network performance as the weight sum of two factors: the mean squared 
error and the mean squared weights and biases. 

Sum squared error performance function. It measures performance 
according to the sum of squared errors. 

T R A N S F E R F U N C T I O N (net.transferFcn) 

purelin Linear transfer function is used in final layer of multilayer networks. 

i M y . -

/ \ 
/ 0 > 

1 - i 

a = purctin(n) 

Figure 5.3 Linear Transfer Function. 

logsig Log-sigmoid transfer function is commonly used in the hidden layers 
logsig(n) = 1 / (1 + en). 

i 

0 > 

-1 
a = logsigfn) 

Figure 5.4 Log-sigmoid Transfer Function. 

tansig Hyperbolic tangent sigmoid transfer function is used in our neural network 
in hidden layer; tansig(n) = 2/(l+e ~2*n) -1, mathematically equivalent to 
tanh(N). 

-> n 
0 

a = rarisig(n) 

Figure 5.5 Hyperbolic tangent sigmoid Transfer Function. 

hardlims Symmetric hard-limit transfer function, 
hardlims(n) = 1 i f n > 0; -1 otherwise 

a 
A + l 

-1 
a - hardlims(ti) 

Figure 5.6 Symmetric Hard-Limit Transfer Function. 
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A R C H I T E C T U R E P R O P E R T I E S 

net.numlnputs Number of inputs. M y network has 6 x timeDelay input values. 
Those are \gyrx gyry gyrz accx accy accz] and their history. 

net.numLayers Number of layers. M y network has two layers. 

net.biasConnect Boolean vector, i f net.biasConnect(i)=l (my network), layer i has a 
bias, and net.biasesji} is a structure describing that bias. 

net.inputConnect numLayer-by-numlnputs Boolean vector, 
when net.inputConnect(i,j)=l, layer i has a weight coming from 
input j , and net.inputWeightsjij} is a structure describing that 
weight. 

net.layerConnect numLayer-by-numLayers Boolean vector, 
when net.layerConnect(i,j)=l, layer i has a weight coming from 
layer j , and net.layerWeightsjij} is a structure describing that 
weight. 

net.outputConnect 1 -by-numLayers Boolean vector, 
i f net.outputConnect(i)=l, then the network has an output 
from layer i , and net.outputsji} is a structure describing that 
output. 

net.numOutputs Number of network outputs according to net.outputConnect. 
M y network has one output value. It is [what it is going on], 

net.numlnputDelays Maximum input delay according to all net.inputWeightjij} 
delays. 

net.numLayerDelays Maximum layer delay according to all net.layerWeightjij} 
delays. 

Further text defines how the time-delay neural network with 15 hidden neurons in one 
hidden layer and one hidden neuron in output layer may look. Transfer functions are set 
to tansig in layer 1 and purelin in layer 2. 

net = network; 

net.numlnputs = 6; 

net.numLayers = 2; 

net.biasConnect(l) = 1; 

net.biasConnect(2) = 1; 

net.inputConnect(l,l:6) = 1; 

net.layerConnect(l,l:15) = 1; 

net.layerConnect(l,l) = 1; 

net.outputConnect(2) = 1; 

net.layers{l}.transferFcn = 'tansig'; 

net.layers{2}.transferFcn = 'purelin'; 

This setting is performed by "timedelaynet" script, as shows Figure 5.7. This script 
was created to finding the best structure of artificial neural network to solving of the 
time-series problem. The best result was achieved by the neural network that has one 
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hidden layer with 15 neurons and one neuron in the output layer, with the transfer 
functions tansig and purelin in order and with the time delay set to 40 samples; that 
corresponds to approx. 0.5 s of the acquisition. 

% d l y - t i m e d e l a y ; 
% NNUM -number of neurons i n hidden l a y e r ; 
% X -INPUT SET; % W -measured data from sensors; 
% T -TARGET SET; % Q -manual mark from s w i t c h ; 

f u n c t i o n [net, X s , X i , A i , T s , d l y , nnum] = TD_TRAINER (DLY, NNUM, W, Q) 

X = t o n n d a t a ( W , t r u e , f a l s e ) ; %preprocess of v a r i a b l e s f o r ANN 
T = t o n n d a t a ( Q , t r u e , f a l s e ) ; 

f o r d l y = l : l : 3 9 
f o r nnum=3:l:20 
c l e a r t d _ n e t ; 
net = timedelaynet(0:dly,nnum, ' t r a i n l m ' ) ; 
n e t . i n p u t . p r o c e s s F e n s = { 1removeconstantrows 1, 1mapminmax 1}; 
net.output.processFens = {'removeconstantrows 1, 1mapminmax 1}; 
net.trainParam.min_grad = l e - 6 ; 
n e t . t r a i n P a r a m . g o a l = l e - 6 ; 
net.trainParam.max_fai1=10; 
n e t . d i v i d e F c n = 1 d i v i d e r a n d ' ; 
% n e t . d i v i d e F c n = 1 d i v i d e b l o c k 1 ; 
n e t . d i v i d e P a r a m . t r a i n R a t i o = 70/100; 
n e t . d i v i d e P a r a m . v a l R a t i o = 15/100; 
n e t . d i v i d e P a r a m . t e s t R a t i o = 15/100; 
[X s , X i , A i , T s ] = p r e p a r e t s ( n e t , X , T ) ; 
n e t . l a y e r s { 1 } . t r a n s f e r F c n = ' t a n s i g ' ; 
n e t . l a y e r s { 2 } . t r a n s f e r F c n = ' p u r e l i n ' ; 

net = t r a i n ( n e t , X s , T s , X i , A i ) ; 
net.name = ['FFTD ' num2str(nnum) '_' n u m 2 s t r ( d l y ) ] ; 
save('NNs_FFTD.mat', 'net', '-append'); 

end; 
end; 

Figure 5.7 MATLAB™ code for verifying the suitability ofTDANN. 

A s the best-input parameters seem to be a vector of raw data from the accelerometer and 
a vector of raw data from the gyroscope, both in all three axes. The magnetometer data 
were discarded due to important dependence on the surrounding magnetic strength. 

The A N N may be also trained by adjusted data from the accelerometer and 
gyroscope, e.g. by gravitational vector length as the first input parameter and rotation 
vector length as the second input parameter. Nevertheless, trained network showed 
worse result. 

The training of the A N N with chosen structure (see Figure 5.8) is relatively 
computationally complex. It had been trained on P C (16 G B R A M , Intel® C O R E ™ 4 x 
i5-4690K C P U @ 3.50GHz, SSD) using M A T L A B ™ . 
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Figure 5.8 ANN structure -feed forward, time delay, purelin transfer function in output layer. 

^ Time Delay Neural Network (view] P X 
Hidden Output 

15 

Figure 5.9 ANN structure -feed forward, time delay, tansig transfer function in output layer. 

5.2 ANN training results 
Because of the physical background and experimental results, I decided to set the 
time-delay n to 40 idly) and number of neurons in hidden layer (nnum) to 15, [39], [40], 
Because of satisfactory results, I decided to use less complex T D N N for the time-series 
problem. 

When the structure and functions in A N N were chosen, other artificial neural 
networks with the same structure but different input sets were trained. 

The trained neural networks (discussed further) differ in complexity of training 
sets and their data division during the training. The first group of trained neural 
networks uses the purelin transfer function in output layer ( Figure 5.8). The second one 
uses tansig transfer function ( Figure 5.9). 

We used three different training sets. The first set contains only one transmission 
between staying still and walking. The second training set contains three state changes. 
The last one training set contains many changes between the two states, for which we 
supposed the best performance after the training. For each training set, we trained the 
A N N with both, the random and block data division. The random data division divides 
whole input set into training, validation and test set randomly while the block division 
divides the input set sequentially. The training set and the test set are disjoint (test data 
is not included in the set that is used for pure training). 

The plotresponse(t,y) M A T L A B ™ function takes the target set t and the A N N 
output y, and plots them on the graph showing the errors between them. In the following 
graphs of the time-series response (Figure 5.11 for example), the blue curve represents a 
pure training set, green curve represents a validation set and red one represents a test 
set. A t the bottom you can find a graphical representation of the error that occurs in the 
output of the trained A N N . The plotregressionftargets,outputs) M A T L A B ™ function 
plots the linear regression of the targets relative to the A N N outputs, as it is shown in 
Figure 5.13 for example. It clearly shows the deviations of the A N N outputs and the 
character of the deviations related to the training outputs. The regression value R closer 
to the value 1 indicates the better adaptation of the trained A N N (to the training set). 
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The ploterrhist(e) M A T L A B ™ function plots a histogram of error values e, see 
relation (5.2.1) where / represents required targets from the training set and _y represents 
the A N N outputs. 

e = t - y (5-2-D 

A s the performance function (see performance functions) the M S E was used. It follows 
that lower performance means higher accuracy of evaluated results. The result 

means that the EvIU "stays sti l l" and means that it "walks". 

5.2.1 Results of TDNNs with purelin transfer function in output layer 

A s it was noted above, these networks use purelin transfer function in the output layer. 
The first training set (see Figure 5.10) shows approx. 22 minutes of walk and 
22 minutes of staying still with the I M U in the hand. The changes in acceleration during 
"st i l l" phase were caused by orientation changes of the I M U . 
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Figure 5.10 Training set for TDNN 1. 

The TDNN_divideblock_l was trained until 15 validation checks errors had occurred, 
after 140 iterations. The achieved performance was 0.00644 and it took almost 5 hours. 
The TDNN_dividerand_l training stopped after 215 iterations when the performance 
of training was 0.00787 and it was almost stable for last 200 iterations and the duration 
of training A N N was almost 8 hours. 

It is clear that the training set T D N N 1 is not a good example of the training set for 
required A N N . Nevertheless, it shows what happens when the change of the state occurs 
very rarely. In basic, rare changes in state are not a problem for the A N N simulation. 
However we need the network to recognize frequent changes accurately. The A N N 
easily recognizes the static state (only walking, only staying still). The difficulty is to 
recognize the exact moment when the state change occurs. Despite of having good 
performance value regardless the data division, the A N N trained by this input set is not 
applicable in this case. 
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Figure 5.11 Time-series response, epoch 125, TDNNdivideblockl. 
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Figure 5.12 Time-series response, epoch 214, TDNN divider and 1. 

The performance of trained network T D N N d i v i d e b l o c k l is 0.00644, though as the 
result seems to be very good, in validation set and test set, only the one state ("-1") of 
EVIU is present and for this reason the performance is really good. The performance of 
trained network TDNN_dividerand_l is about 0.00787 and the reason is that the A N N 
recognize the static state easily. The only one state change is present and also in 
validation and test set such a dynamic change occurs only once in whole data set. Figure 
5.13 and Figure 5.14 show the linear regression of the test set of both trained networks. 
Figure 5.15 and Figure 5.16 show the error histogram of the test set of both trained 
networks. 
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Figure 5.13 Training regression, epoch 125, 
TDNN divideblock 1. 
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Figure 5.14 Training regression, epoch 214, 
TDNN divider and 1. 
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Figure5.15 Error histogram, epoch 125, Figure 5.16 Error histogram, epoch 214, 
TDNN divideblockl. TDNN dividerand 1. 

This Chapter continues with the results of the training of the same type of neural 
network. However, particular A N N s differ in training set - the number of state changes. 
This is important i f we want to find out which data are suitable for the A N N training. 
Resulting figures and graphs are depicted consecutively in order time-series responses, 
training regressions and error histograms. 
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Figure 5.17 Training set for TDNN 2. 

The training set data for T D N N 2 is shown in Figure 5.17. It contains three state 
changes and it is composed of the staying still (the EVIU was hold in the hand for 
approx. 2 minutes, then it was laying on the table for approx. 4 minutes) and walking 
(the was hold in the hand while walking for approx. 6 minutes). This repeats. The 
TDNN_divideblock_2 was trained for 1000 iterations, with the best performance in 
999 t h epoch. The duration of training was almost 6 hours and the performance achieves 
0.0069. TDNN_dividernad_2 reached required performance (less than 0.001) after 86 
iterations and it took almost 30 minutes. 

The time-series responses are shown in Figure 5.18 and Figure 5.19. Again, in 
case of the block division of training, validation and test data, the validation and test set 
contains only one stat. That is, again, the reason why the performance achieves such a 
good value. The A N N is satisfactory trained for static data and does not meet the 
requirement for a good reactions when the state changes. 
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Figure 5.18 Time-series response, epoch 999, TDNN_divideblock_2. 

ic ii 

• io-

- 41 -



N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS 

1 5 
Response of Output Element 1 for Time-Series 1 

<U 1 p 
n 
h- 0.5 
•o 
c 

EL 

Training Targets 
+ Training Outputs 

Validation Targets 
4- Validation Outputs 

Test Targets 
+ Test Outputs 

Errors 
Response 

tu 

Time 

Figure 5.19 Time-series response, epoch 86, TDNN_dividerand_2 
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Figure 5.22 Error histogram, epoch 999, Figure 5.23 Error histogram, epoch 86, 
TDNN divideblock 2. TDNN dividerand 2. 
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The best resulting A N N is trained with training set that contains many state changes 
(Figure 5.24). Such situation occurs when the unit "walks" and stops often. Previous 
networks are suitable to be used when the unit is switched on but is staying still, or 
when it constantly moves. Further network trainings should be applied in case that the 
state changes occur more often. This network is also listed in our INS and it may be 
used for state determination. 
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Figure 5.24 Training set for TDNN 3. 

The TDNN_divideblock_3 was trained until the performance request was met. The 
performance achieved the value of 0.000999 after 367 iterations, the duration of the 
training was almost 2 hours. The training of the TDNN_dividerand_3 finished because 
of the same reason. The performance achieved the value of 0.000997 after 81 iterations, 
the duration of the training was 1.5 hours. Here the validation and test set contains both 
the static data and the state changes (3 state changes for validation set, 2 state changes 
for test set). To meet the performance request, the A N N must react satisfactorily also for 
the dynamic state changes. 
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Figure 5.25 Time-series response, epoch 366, TDNN_divideblock_3. 
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Figure 5.26 Time-series response, epoch 81, TDNN divider and 3. 
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Figure 5.27 Training Regression, epoch 366, Figure 5.28 Training Regression, epoch 81, 

TDNN divideblock 3. TDNNJividerandJ. 
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The neural network gives the output value as a reaction on time series data. This output 
is more or less approaching the value +1 or the -1. This is, as noted above, because in 
this neural network two states are recognized, walking and staying still. This output 
must be further filtered ( L K F and then hard limit filtration is used, see Chapter 2.8). 

B y adding other types of movement (measured data and appropriate targets), 
artificial neural network may recognize more types of motion. The most important is to 
recognize the staying still state as precisely as possible. The staying recognition 
enriches the accuracy of the dead reckoning (inertial navigation) most significantly. 
Obviously the accuracy is not improved when the EVIU state does not change to "st i l l" . 

The duration, final number of epochs and achieved performance of the particular 
networks trainings are shown in T A B L E 5.2. In addition, the reliability is shown as a 
complement of the performance to 1. 

TABLE 5.2 Comparison of networks - training parameters. 

Name of ANN Duration* [h] Epochs Performance Reliability 
T D N N divideblock 1 4:49:57 140 0.006440 0.993560 
T D N N dividerand 1 7:50:28 215 0.007870 0.992130 

T D N N divideblock 2 5:48:42 1000 0.006900 0.993100 
T D N N dividerand 2 0:29:49 86 0.000940 0.999060 

T D N N divideblock 3 1:52:03 367 0.000999 0.999001 
T D N N dividerand 3 0:27:15 81 0.000997 0.999003 

* PC: 16 GB R A M , Intel® CORE™ 4 x i5-4690K CPU @ 3.50GHz, SSD, using M A T L A B 
(used for all following experiments) 
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Figure 5.31 Graphical comparison of trained feed forward time delayed networks. 

5.2.2 Results of TDNNs with tansig transfer function in output layer 

The Chapter shows results when the tansig transfer function is used in both, hidden and 
output layers. The requirement for the performance is higher, because the output of the 
trained A N N is limited to the interval <-l ; 1>. Thus the M S E parameter is logically 
lower and the performance of about 0.001 is easily achievable. Thus the performance 
goal value was set to 10"21. 
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Figure 5.32 Training set for TDNN 1 TS. 
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The training set is almost the same as in the Chapter 5.2.1; it differs in the number of 
samples. Names of these A N N s were changed to be distinguished from the A N N s with 
linear transfer function. Further network names are then supplemented by TS (TanSig). 
The training set T D N N 1 TS is shown in Figure 5.32. 

Following figures show the results of the neural network training while the 
training set T D N N 1 TS was used: 

The TDNN_divideblock_l_TS was trained for approx. 1.5 seconds and the 
performance reached the required value after 29 iterations. The 
TDNN_dividerand_l_TS was trained for approx. 0.45 s and the performance reached 
the value after 27 iterations. The performance is very good nevertheless the same 
situation as in the Chapter 5.2.1 occurs. Only one change in the state is present and the 
A N N reacts on the "static" state. 
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Figure 5.33 Time-series response, epoch 29, TDNN divideblockl TS. 
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Figure 5.34 Time-series response, epoch 27, TDNN'divider'and' 1 TS. 
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The performance of trained network T D N N d i v i d e b l o c k l T S is 6.23-10 , though as 
the result seems to be very good, in validation set and test set, only the one state ("-1") 
of I M U is present. The performance of trained network T D N N d i v i d e r a n d l T S is 
about 9.77-10"22 and the reason is that the A N N recognizes the static state easily. The 
only one state change is present in whole input set. 

Figure 5.35 and Figure 5.36 show the linear regression of the test set of both 
trained networks. Figure 5.37 and Figure 5.38 show the error histogram of the test set of 
both trained networks. 
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Figure 5.37 Error histogram, epoch 
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This Chapter continues with the results of other trained neural networks with the tansig 
transfer function in the output layer. They have the same structure and properties, but 
their input sets differ in the number of changes of the state. 

Figures and graphs are depicted in the same order as for the input set T D N N 1 TS. 
The input set T D N N 2 TS is shown in Figure 5.39. 
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Figure 5.39 Training set for TDNN 2 TS. 

Further figures show the results of the neural network trainings with the input set 

T D N N 2 TS: 
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Figure 5.40 Time-series response, epoch 28, TDNN_divideblock_2_TS. 
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Figure 5.41 Time-series response, epoch 28, TDNN_dividerand_2_TS. 
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Figure 5.42 Training Regression, epoch 28, 
TDNN divideblock 2 TS. 

Figure 5.43 Training Regression, epoch 28, 
TDNN dividerand 2 TS. 
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The TDNN_divideblock_2_TS was trained for 71 seconds, with achieved performance 

of 5.62-10"22. The validation set contains one state change and the test set does not 
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contain any change in state. The TDNN_dividernad_2_TS also reached the required 
performance after 2 minutes with 28 iterations. Thus the very high performance request 
was satisfied after only a few iterations. 

The training set T D N N 3 TS is shown in Figure 5.46. Further figures show the 
results of the A N N training with the input set T D N N 3 TS. 
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Figure 5.46 Training set for TDNN 3 TS. 

The TDNN_divideblock_3_TS was trained for almost 15 minutes, with the achieved 
performance of 0.00187 after 90 iterations. The training process stopped because the 
M u maximum value (see T A B L E 5.1) was reached. 

The TDNN_dividernad_3_TS was trained for approx. 10 minutes and the 
training process stopped after 73 iterations when the M u parameter reached the limit. 
The performance reached the value of 0.00229. 
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Figure 5.47 Time-series response, epoch 90, TDNN_divideblock_3_TS. 
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Figure 5.48 Time-series response, epoch 73, TDNN_dividerand_3_TS. 

The validation set contains a lot of state changes and so does the test set. Thus the 
performance does not reach so good values. Nevertheless, changes in state are 
recognized with the best performance. Those trained networks are the most suitable 
neural networks for this kind of tasks. Because of the walking is dynamic process and 
parameters taken from the sensors may fluctuate or differ in time, the 
TDNN_dividerand_3_TS is used in the I M U by default. There is also possibility to 
change the used A N N to TDNN_divideblock_3_TS. 
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Figure 5.49 Training Regression, epoch 90, 
TDNN divideblock 3 TS. 

Figure 5.50 Training Regression, epoch 73, 
TDNN dividerand 3 TS. 

x10" Error Histogram 

2 5 

2 

to I 15 re -*-« to 
£ 1 

0 5 

I Training 
I Validation 
I Test 
Zero Error 

- 2 - 1 0 1 2 

Errors = Targets - Outputs 

Figure 5.51 Error histogram, epoch 90, 
TDNN divideblock 3 TS. 
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Figure 5.52 Error histogram, epoch 73, 
TDNN dividerand 3 TS. 

TABLE 5.3 Comparison of networks II - training parameters 

Name of ANN Duration [h] Epochs Performance Reliability 
TDNN_divideblock_l_TS 0:01:26 29 6.23-10-22 * 1 
TDNN_dividerand_l_TS 0:00:46 27 9.77-lO"22 * 1 

TDNN_divideblock_2_TS 0:01:11 28 5.62-10-22 * 1 
TDNN_dividerand_2_TS 0:02:00 28 5.99-lO"22 * 1 

T D N N divideblock 3 TS 0:14:36 90 0.00187 0.99813 
T D N N dividerand 3 TS 0:09:46 73 0.00229 0.99771 
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Figure 5.53 Graphical comparison of trained feed forward time delayed networks 

5.3 Additional ANNs 
The first additional neural network was created to demonstrate the results in short 
ranges without walking ( A D D T D N N 1 ) . The structure and functions remain, however 
the input set was changed to data measured during I M U rotations, vibrations, 
oscillations, shifting etc. Output was then set to in case of any movement and 
in case of staying "s t i l l " in hand. 

The second additional neural network was created from data representing only 
transitions between the two states - walk and staying still ( A D D T D N N 2). This is not 
the situation that usually occurs, nevertheless the network has to be trained as precisely 
as possible for state changes. The input set is composed of moving phase (one human 
step) and still phase (duration 1 s) repeated many times. The training set contains 41244 
samples (record time: 491 s). A part of the collected data set is shown in Figure 5.54. 
Both transfer functions inside A D D T D N N 2 were set to hyperbolic tangent sigmoid 
(TanSig). The result of the network training shows that the network is highly adapted 
for frequent state changes (see Figure 5.55). The results of this A N N are similar to the 
TDNN_dividerand_3_TS, however its training set was strictly determined by regular 
state changes. 

TABLE 5.4 Training parameters of the additional networks. 

name of A N N duration [h] epochs performance reliability 
A D D T D N N 1 00:47:15 87 0.01091 0.98909 
A D D T D N N 2 0:10:56 50 0.00333 0.99667 
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Figure 5.54 The data used as a part of the training set for ADD TDNN 2 training. 
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Figure 5.55 Response of the ADD TDNN 2. 

5.4 Other types of ANNs 
In order to complete the comparison, the results from some other types of A N N s are 
shown in this Chapter. The training set for those A N N s was the same as the training set 
for the A D D T D N N 2 (see data example in Figure 5.54). The division of training, test 
and validation data set was random in a ratio of 70:15:15. 

In time delayed A N N s , the same number of history and the same size of the 
hidden layer was set. For the "pattern recognition and classification A N N " the reduction 
to 3 neurons in hidden layer was set (the first case). Due to very high inaccuracy, the 
hidden layer was enlarged back to 15 neurons (the second case). The results are given 
below. Those neural networks are not included in the final data processing software. 
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- N A R X TD A N N (with time delay) - Figure 5.1 shows the principle 

The structure of the N A R X T D A N N shows Figure 5.56. The previous output is 
appended to the input of the next sample as the seventh variable. This type of A N N 
also solves this task very effectively, as it is clear from Figure 5.57. 

Hidden 

w L 
Output 

Figure 5.56 NARX TD ANN structure. 
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Figure 5.57 NARX TD ANN response. 
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Figure 5.58 Training parameters for 
NARX TD ANN. 

Figure 5.59 Training Regression, epoch 42. 
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Figure 5.58 shows the training process parameters and the regression of the trained 
neural network is shown in Figure 5.59. The results seem to be very good. Nevertheless, 
the output after the Kalman filtration is slightly worse than the T D N N dividerand3 
and T D N N dividerand 3 TS output after the Kalman filtration. In addition, the N A R X 
T D A N N training and processing is more time consuming due to its larger input matrix. 

- Feed forward A N N (FF A N N without time delay) 

This type of A N N is not suitable for our dynamic problem because its input set is static. 
It reacts to six input variables that were taken from sensors in a single instance and it is 
not able to recognize the walk and "s t i l l" phase accurately. 

The structure of F F A N N is shown in Figure 5.60 and the time series response is 
shown in Figure 5.61. The training parameters (Figure 5.62) and training regression 
(Figure 5.62) are available below. 

Hidden Output 

• 
Figure 5.60 FF ANN structure (without time delay). 
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Figure 5.61 FF ANN response (without time delay). 
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Figure 5.62 Training parameters for FFANN Figure 5.63 Training Regression, epoch 67. 
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- N A R X A N N (without time delay) 

N A R X A N N without time delay structure is shown in Figure 5.64. The time series 
response (Figure 5.65) shows a very clear decision on the EVIU state, this type of A N N 
may also be used for given task with further processing. The time and memory 
consumption is decreased because of zero history length in the input (time delay), thus 
the training process is not so much time consuming. The issue here is the inaccuracy on 
state changes, in particular cases when the status changes from "s t i l l " to walk. This is a 
very unintended behaviour mentioned previously. Training parameters (Figure 5.66) 
and training regression (Figure 5.67) are present below. 

Figure 5.64 NARX ANN structure (without time delay). 
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Figure 5.65 NARX ANN response (without time delay). 

Algorithms 

Data Division: 

Training: 

Performance: 

Calculations: 

All: R=0.98526 

L 

Random (dividerand] 

Levenberg-Marquardt (trainlm) 

Mean Squared Error (mse) 

MATLAB 

Progress 

1.00e-05 

O.OO 

1.00e+10 

18 

Figure 5.66 Training parameters for FFANN. 
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Figure 5.67 Training Regression, epoch 74. 
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- Pattern recognition and classification A N N - 3 hidden neurons 

Pattern recognition and classification A N N ( P R & C A N N ) works as a classifier and 
divides output into two categories in our case (see Figure 5.68). The Confusion Matrix 
(Figure 5.70), [43], shows the correctly and incorrectly classified outputs considering to 
training set targets. The training parameters are shown in Figure 5.69. Further figures 
represent analogically results of P R & C A N N with 15 neurons in hidden layer instead of 
3 neurons (see Figure 5.72 and Figure 5.71). This type of A N N is not suitable for 
mentioned task as it is clear from the presented results. 

Figure 5.68 PR&C ANN structure (3 hidden neurons). 
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Figure 5.69 Training parameters PR&C ANN. 
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Figure 5.70 Confusion Matrix I. 
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Pattern recognition and classification A N N - 15 hidden neurons 
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Figure 5.71 Training parameters PR&C Figure 5.72 Confusion Matrix II. 

T A B L E 5.5 shows comparative results of all other A N N s presented in Chapter 5.4. 

TABLE 5.5 Training parameters of the other types of ANNs. 

name of A N N duration [h] epochs performance reliability 
N A R X TD A N N 0:30:43 42 0.00472 0.99528 
FF A N N 0:05:45 67 0.28500 0.71500 
N A R X A N N 0:06:23 74 0.02330 0.97670 
PR&C - 3 neurons 0:00:02 112 0.32900 0.67100 
PR&C - 15 neurons 0:00:28 600 0.23000 0.77000 
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6 DATA PROCESSING 

Thanks to the A N N we know the state of the EVIU Provided we trust it, the attitude of 
the EVIU in time can be determined with higher accuracy. Whenever the state defined by 
the A N N is "st i l l" , the accurate (absolute) tilt of the EVIU can be recalculated. The only 
property that still remains to be absolutely determined is heading. 

The determination of heading comes from magnetometer data. The value that has 
to be checked before heading determination is total magnetic field. If the value is too 
low or too high, there are other influences than Earth's magnetic field, and the heading 
cannot be determined by the magnetometer. In that case we have to rely on integrated 
data from gyroscope. 

In the second case, when the value of total magnetic field falls within the given 
range, the heading can be computed. However, it can be done after the acceleration data 
tilt compensation - derotation into the flat level. After the proper magnetometer data 
derotation the heading value can be determined only from x-axis and _y-axis of 
magnetometer data. The absolute attitude of the I M U can be finally determined. 

In the next part, new proposal algorithm for attitude determination is presented. 

6.1 When the state is "still" 
The neural network decides that the EVIU state is "st i l l" . Then, there are more ways, as 
described in theoretical part, how to rotate the EVIU back into flat level (horizontal 
plane). Figure 6.1 clearly shows all three Euler stages of derotation from EVIU (RPY) 
coordinates into inertial, E N U coordinates. 

A t first, the derotation of heading needs to be done by an angle —6. This rotation 
is solved separately after the derotation into flat position. Rotations by angles —V and 
—<P define the tilt of the EVIU in R P Y coordinates and through them the EVIU 
coordinates from R P Y coordinate system into E N U coordinates can be converted. 
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+z. 

i g 

+Y 

Figure 6.1 Derotation from the RPY (body) coordinates to ENU coordinates. 

The Euler angles or direction cosine matrix ( D C M ) method seems to be easy to use. 
Nevertheless, the gimbal lock is the fundamental problem for the INS. For this reason 
the application of quaternions must be implemented. In proposed algorithms, the 
rotation around z-axis is denoted by symbol V, the rotation around y-axis is denoted by 
symbol 6, and the rotation around x-axis is denoted by symbol 4>. 

From accelerometers, after axis alignment, compensation and calibration, the 
accelerations in particular axes are obtained, the vector a = (accx, accy, accz) for each 
time step. In the source code, the calibrated accelerometer output is stored in 
three-dimensional vector a c c with components a c c x , a c c y and a c c z . In each 
cycle the computation of a is performed. It expresses the angle between the 
acceleration vector a c c and last acceleration vector ( a c c X l a s t , a c c Y l a s t , 
a c c Z l a s t ) . The vector of the last acceleration acciast is always (0,0,1) in order to 
get absolute attitude. That means it is set to the value that is present on the 
accelerometer output in case that the I M U is placed horizontally. The angle a is used in 
formulas (6.1.1) - (6.1.4) and it is based on fact that we are able to determine the 
quaternion, in this source code called o r i e n t a t i o n ( Figure 6.2). 

a = acos(accXlast • acc. x + accYlast • acc. y + accZlast • acc. z) 

1 
rotVecX = (accYlast • acc. z — accZlast • acc. y) sin(a) 

1 
rotVecY = —— • (accZlast • acc. x — accXlast • acc. z) 

sin(a) 
1 

rotVecZ = —• • (accXlast • acc. y — accYlast • acc. x) 
sin(a) 

(6.1.1) 

(6.1.2) 

(6.1.3) 

(6.1.4) 
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o r i e n t a t i o n = QQuaternion::fromAxisAndAngle(p, q, r, angle) 
//p = rotVecX; 
//q = rotVecY; 
/ / r = rotVecZ; 
//angle = -al f a * 1 8 0 / M _ P I ) ; 

Figure 6.2 Quaternion orientation determination. 

For further application in formulas, the quaternion o r i e n t a t i o n equals ORI. 

The angle 6 and (p are subsequently determined from the quaternion by formulas 
(6.1.5) and (6.1.6): 

9 = - asin (2 • ORI. x • ORI. z - 2 • ORI. y • ORI. scalar) ( & L 5 ) 

This algorithm derotates the EVIU to the nearest flat level (by the smallest angle). It 
means that there may occur some undesirable rotation around z-axis during this 
derotation. It is defined as z r o t and expressed by (6.1.7). This must be subtracted (the 
EVIU is rotated by the z r o t quaternion in opposite direction) from computed attitude, 
see the part of the source code, Figure 6.3. 

N o w the EVIU's tilt is defined by the quaternion r o t T o F l a t . Then the last 
rotation around the z-axis by the heading angle is performed to the orientation of the 
EVIU into the E N U coordinate system. The acceleration in the E N U coordinates is then 
expressed by the vector accDerot . Once the ORI is defined, the acceleration a c c 
may be rotated by the ORI quaternion conjugation. After that, the full size of 
gravitational acceleration occurs in z-axis and thus the gravitational acceleration (1 g) 
can be subtracted in the z-axis to getting of the EVIU inertial acceleration only. 

(6.1.6) 

where: A = 2- ORI. y • ORI. z + 2- ORI. x • ORI. scalar 

B = 1 - 2 • ORI. x • ORI. x - 2 • ORI. y • ORI. y 

(6.1.7) 

where: A = 2- ORI. y • ORI. x + 2- ORI. z • ORI. scalar 

5 = 1 - 2 - ORI. z • ORI. z - 2 • ORI. y • ORI. y 
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// a t t i t u d e from accelerometer 
f l o a t a l f a , c o s A l f a ; 
f l o a t rotVecX, rotVecY, rotVecZ; 
f l o a t accXlast=0, accYlast=0, a c c Z l a s t = l ; 

a c c . n o r m a l i z e ( ) ; 
c o s A l f a = a c c X l a s t * a c c . x ( ) + a c c Y l a s t * a c c . y ( ) + a c c Z l a s t * a c c . z ( ) ; 
a l f a = a c o s ( c o s A l f a ) ; 

r o t V e c X = l / s i n ( a l f a ) * ( ( a c c Y l a s t * a c c . z ( ) - a c c Z l a s t * a c c • y ( ) ) ) ; 
r o t V e c Y = l / s i n ( a l f a ) * ( ( a c c Z l a s t * a c c . x ( ) - a c c X l a s t * a c c • z() ) ) ; 
r o t V e c Z = l / s i n ( a l f a ) * ( ( a c c X l a s t * a c c . y ( ) - a c c Y l a s t * a c c • x() ) ) ; 

// remove p a r a s i t e 
o r i e n t a t i o n = QQuaternion::fromAxisAndAngle(0,0,-1, z r o t ) * o r i e n t a t i o n ; 
r o t T o F l a t = o r i e n t a t i o n ; 
o r i e n t a t i o n = QQua t e r n i o n : : f r o m A x i s A n o A n g l e ( 0 , 0 , 1 , h e a d i n g ) * o r i e n t a t i o n ; 

// d e r o t a t i o n 
QVector3D accDerot = o r i e n t a t i o n . r o t a t e d V e c t o r ( a c c ) r 
QVector3D magFlat = r o t T o F l a t . r o t a t e d V e c t o r ( m a g ) ; 

Figure 6.3 A part of c-code for derotation. 

A s it was written above, when the EVIU is still, we can compute the heading from the 
magnetometer. When the measured data are rotated to flat level ( m a g F l a t , Figure 
6.3) and the result of absolute magnetic field meets the conditions (the outcome has to 
be found within the interval (44985.24; 52808.76) nT, this is ± 8 % from the standard 
environment where the measurements were performed, obtained as an average value 
from long-term measurement). 

The computation of the heading from magnetometer in 2D is shown in relation 
(6.1.8); the vector m a g F l a t is used. Because of the data measured by magnetometer 
are transformed into flat level, the determination of the heading (8) in 2D is correct. In 
the other case, when the magnetometer data are not derotated into the flat level, another 
formula for the determination of the declination in 3D has to be used [44], 

S = - — atari (ma9platx\ when maqFlat. y > 0 
2 KmagFlat.yJ a J 

S = 3 • - — atari (ma9Flatx\ when maqFlat. y < 0 
2 KmagFlat.yJ a J 

(6.1.8) 

8 = n when magFlat. y = 0 and magFlat. x < 0 

5 = 0 when magFlat. y = 0 and magFlat. x > 0 

This gives us the heading (azimuth), the direction of the EVIU x-axis due to the magnetic 
north (inertial x-axis). To be correct, the geodetic declination must be added to get the 
heading regarding to the geographic north. O f course, it has to be adjusted for different 
locations by different values, which are determined in map charts [45]. For Brno, 
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Kohoutovice, the geodetic declination reaches 4 . 1 6 ° [47]. This is positive, east 
declination and thus the value has to be subtracted from the calculated true azimuth. 

6.2 When the state is "walking" 
The neural network decides that the I M U state is "walking". The accelerometer 
measures the gravitational acceleration mixed with inertial acceleration that it needs to 
be separated. A t first, the transfer from R P Y to E N U coordinates is performed. This is 
quite difficult since the gyroscope has almost full confidence. Then the full size of 
gravitational acceleration occurs in z-axis again and 1 g can be subtracted to get the 
inertial acceleration only. 

A s already mentioned, the accelerometer data cannot be used for the attitude 
determination and only the data that was measured by the gyroscope have to be use. 
There is no other way than the application of the mathematical integration, due to there 
the gradually increasing inaccuracy appears. This is caused by the need of the 
integration of the rotation rates from the sensor to find out deltas (differences) of 
particular angles. However the inaccuracy here leads to really huge error while the 
velocity and position is calculated (another two mathematical integrations of computed 
accelerations in time). 

Figure 6.4 shows how the quaternion deltaFrame is defined and how the 
quaternion orientation is rotated by deltaFrame to find out the new orientation. 

// a t t i t u d e from gyro 
QQuaternion deltaFrame; 
f l o a t qO=l, ql=0, q2=0, q3=0, gy, gz, gx; 

gx=gyr.x()/18 0*M P I ; 
gy=gyr.y()/18 0*M P I ; 
gz=gyr.z()/18 0*M P I ; 

f l o a t q D o t l , qDot2 , qDot3,qDot4; 
qDotl = 0.5 * (-ql * gx - q2 * gy - q3 * gz) ; 
qDot2 = 0.5 * (qO * gx + q2 * gz - q3 * gy); 
qDot3 = 0.5 * (qO * gy - q l * gz + q3 * gx); 
qDot4 = 0.5 * (qO * gz + q l * gy - q2 * gx); 

qO += qDo t l * frameTime; 
q l += qDot2 * frameTime; 
q2 += qDot3 * frameTime; 
q3 += qDot4 * frameTime; 
deltaFrame = QQuaternion(qO,ql,q2,q3); 

o r i e n t a t i o n = o r i e n t a t i o n * deltaFrame; / / s u c c e s s i v e a t t i t u d e determ. 
headG = headingFromQuat(orientation) *180/M P I ; //heading a f t e r the mov. 
o r i e n t a t i o n = QQuaternion::fromAxisAndAngle(0,0 , - 1 , h e a d G ) * o r i e n t a t i o n ; 

Figure 6.4 Single step of successive attitude determination. 

The matrix dcm (direct cosine matrix, D C M ) is created from recalculated quaternion 
orientation (after the deltaFrame application), as seen in equation (6.2.1). 
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dcm(l,l) = 2 • OR/, scalar2 -1 + 2- ORI. x2 

dcm(l, 2) = 2 • ORI. x • ORI. y + 2 • ORI. z • ORI. scalar 

dcm(l, 3) = 2 • ORI. x • ORI. z-2- ORI. y • ORI. scalar 

dcm(2,1) = 2 • ORI. x • ORI. y - 2 • ORI. z • ORI. scalar 

dcm(2,2) = 2 • ORI. scalar2 - 1 + 2 • ORI. y2 (6.2.1) 

dcm(2,3) = 2 • ORI. y2 + 2 • ORI. x • ORI. scalar 

dcm(3,1) = 2 • ORI. x • ORI. z + 2- ORI. y • ORI. scalar 

dcm(3,2) = 2 • ORI. y2 -2- ORI. x • ORI. scalar 

dcm(3,3) = 2 • ORI. scalar2 - 1 + 2 • ORI. z2 

A l l over, the angles 6 and cp are determined from quaternion by formulas (6.1.5) and 
(6.1.6) where is applied: 

A = 2- ORI. x • ORI. z + 2- ORI. y • ORI. scalar (6-2-2) 

5 = 1 - 2 - ORI.x2 - 2 • ORI.y2 

The rotation around the z-axis, zrotation, is computed by equation (6.2.3). The rotation 
around the z-axis is then performed. The acceleration in the E N U coordinate frame is 
then expressed by the accDerot vector. 

( A B \ 
zrotation = atan.2 T ^ T . T^T (6.2.3) 

\COS{U) COSya) J 

where: A = 2- ORI. y • ORI. x + 2 • ORI. z • ORI. scalar 

5 = 1 - 2 - ORI.z2 - 2 • ORI.y2 

The same result of the I M U orientation from the D C M can be obtained while the vector 
multiplication of the dcm with measured acceleration vector is used. Nevertheless, the 
problem with the gimbal lock effect persists. 

The heading is computed by the same way as in the case when the I M U is "st i l l" . 
In this case, when the I M U state is "walking" there is not parasitic rotation present. On 
the other hand, the heading is computed only from the integrated data (that was 
measured by the gyroscope) as well as the tilt and this leads to growing inaccuracy in 
time, as mentioned above. We can improve the accuracy by replacing heading 
calculated from the gyroscope by absolute heading from the magnetometer. 
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6.3 Problems 
Because of data history is needed in process, the type of the A N N cannot be from group 
of the classification A N N s . It results in a fact that the continuous output is in the range 
from -1 to +1 (in classification A N N the output is exactly -1 or +1, see Chapter 5.4). To 
distinguish of two states (walking and staying still) a decision border has to be defined. 

Also, the neural network output is filtered by a K F and due to this filtering, some 
delay in network decision on state occurs. The movement is then evaluated later and the 
orientation is determined in a bad way. 

To avoid this, two additional steps are performed: 

1. Auxil iary condition has to be met to classify the EVIU state as "st i l l" , see (6.3.1), 
where 5 a Cc is the actual deviation in [g] of the measured acceleration and (6.3.2) 
where 8gyr is defined by maximum value of rotation rate. This condition block is 
called SillyStatus filter and it returns "0" when any of the values was out of the 
required range in the last N samples, otherwise it returns "1" . Tolerance of 
acceleration deviation 8ACC was set to 0.01 g and the rotation rate tolerance was set 
to 2 °/s. Figure 7.3 shows the Tracker setting dialog for these values. 

2. The second step is to delay the data processing by N samples in order to be able to 
"see the future". Whenever the state changes to "walking", the walk processing 
algorithm runs using N samples in advance and thus the K F delay and A N N delay 
are eliminated. This ensures that the orientation quaternion is not absolutely 
computed from accelerometer while the EVIU is already moving. 

Another issue is heading computation when the EVIU's x-axis points upwards or 
downwards. When such a situation occurs, the heading is not defined and the 
orientation (particularly the rotation around E N U z-axis) is computed fully from 
rotation rate sensor, regardless of whether the EVIU is "s t i l l " or not. 

6.4 Filtering 
In my thesis, Kalman filter is used in several cases. A t first, Kalman filter affects the 
output of the artificial neural network; the other K F is used for the rotation rate and 
acceleration evaluation. A l l of them use the linearization of the system model. 

It is also suitable to filtering of the measured magnetic field. The short-term 
deviations are smoothened and the heading determination is then more stable. We do 
not apply the filter on the determined heading values since the heading values are 
always found in <-TC; TC> interval. 

6.4.1 K F applied on A N N outputs 

The maximum deviations of the A N N outputs (zk) from optimum output values (-1, +1) 
typically reach up to approx. 0.5 and here the Kalman filtering seems to be very 
desirable. The Kalman gain is computed based on the theory according to (6.4.1). Then 
the a priori state estimation is performed (6.4.2) and the a posteriori error covariance 
matrix estimation (a measure of the estimated accuracy of the state estimate) is 

(6.3.1) 

Sgyr = max(gyrx, gyry, gyrz) (6.3.2) 
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corrected (6.4.3). The predicted value of estimated state vector (6.4.4) and the predicted 
value of estimation covariance (6.4.5) is computed. 

S = HPj7HT + R 

PkHT _ PkHT (6-4-D 

S ~ HPIH7 + R 

x k = A x , . , (6-4-2) 

Pk = AkP^Al + Qk_t (6-4-3) 

xk = xk + Kk(zk -H(xk,0)) (6-4-4) 

Pk = Pk~ - KkHPk = (1 - KkH)Pk (64.5) 

Because of the course of the function (continuous A N N output) is relatively simple, 
linear Kalman filter is used and its entities A (the state-transition model), H (the 
observation model), Po (input a priori estimate covariance), Pk (a priori estimate 
covariance), Q (the covariance of the process noise) and R (the covariance of the 
observation noise) are set experimentally in order (6.4.6): 

A = [l] 

H = [l] 

Q = [0.5] 
(6.4.6) 

Po = [0.1] 

P * = F P (k - i ) F R + Q 

R = [5] 

Sensitivity matrix H was set to one, thus (6.4.7) applies. Corrected value of estimated 
state vector is then computed according to (6.4.8). The predicted measurement value is 
based on weighted arithmetic mean of previous state vectors summed with integrated 
value of measurement. The error covariance is updated (6.4.9), based on (6.4.5), and the 
algorithm repeats. 

Pk 
K k = p J T R ^ 4 - 7 ) 

Xk = Xl+ Kk(zk - Xl) (6.4.8) 

Pk= (1 - Kk)P~k (6.4.9) 

Thus, the output of the A N N in this work is filtered by the L K F to avoid oscillations 
around the decision boundary which eliminates the hopping between and 
status of the I M U . In addition, because of the output of the A N N is not exactly or 

the filter modifies the raw A N N outputs to get closer to expected values. B y this 
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way the L K F output is prepared for the hard limit filter application. The improvement of 
the A N N output values after the L K F in time is shown in Figure 6.5. 

1.5 

3 1 

o. 
3 0.5 o 

-0.5 

-1 

ANN result improvement 

• J 

M U 

0.5 

Ö 
•TDNN output 
•output after KF 

- M U 

1.5 
samples 

2.5 
• 10" 

Figure 6.5 Improved output of the artificial neural network (filtered by LKF). 

6.4.2 Kalman filtering of sensor data 

Because of the quaternion orientation is computed only from the accelerometer data 
when the state is "st i l l" , the acceleration data may not be filtered before the orientation 
determination and hence before the transformation from the R P Y coordinates to E N U 
coordinates. After that derotation, the acceleration data should be filtered by L K F and 
used for further evaluation of the velocity and consequently of the position ( Figure 
6.6). 

1D Kalman Filter 

l oo 110 120 130 140 150 160 

100 110 120 130 140 150 160 

100 110 120 130 140 
Time [s] 

Figure 6.6 Kalman filter applied on the acceleration data. 

ISO 160 
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The quaternion orientation is computed from the rotation rate sensor when the state is 
"walk", but that sensor is not used when the state is "st i l l" . Thus, the filtration of the 
rotation rates must be performed very sensitively. The filter contains two groups of 
coefficients; the first of them is used when the state is "s t i l l" and the second one when 
the state is "walk". Then the deviations are suppressed highly when the I M U remains 
stationary and they are satisfactorily filtered when the I M U "walks". The situation is 
clear from Figure 6.7. 

1D Kaiman filtering of gyr.z 

x 
TO 
N 

•*-» 

re 

o 
or •100 

110 120 130 140 
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150 160 170 

Figure 6.7 Kalman filter applied on the rotation rate sensor data. 

The data from magnetometer is also filtered to ensure as high smoothness of the 
particular magnetic strengths in time as possible. The filtration of the heading is 
inconvenient due to the interval of values (<-7i; %> or <0; 2n>) depending on relation for 
the heading determination. It ensures a smoother graph of the heading in time, in other 
words, the direction of found North does not vary in short-term conditions from the 
EVIU's R P Y coordinates point of view. 

6.4.3 Kalman filtering of velocity and position 

The filtration of the velocity and position is not necessary because the derotated 
accelerometer data are already filtered and thus any further filtering even after 
integration is redundant and undesirable. 

6.4.4 Additional filtration methods 

Moving Average Filter 

In principal, a new value is averaged with given count of previous values k and resulting 
value is used. Then, the smoother curve of signal is obtained. The size of the filtration 
window indicates the degree of smoothness; with higher A: the line is smoother, 
however, the resulting time-delay rises. 

Simple L o w Pass Filter 

The smoother curve is in this case obtained as well . The weight of a new sample relative 
to the previous is determined and the result value is affected by the weighted previous 
sample. The implementation has various forms, see (6.4.10) - (6.4.11): 

x result 

X. result 

= a • xk_1 + (1 — a) • xk 

= x f c _ ! + (1 - a ) • ( x f c - x k _ i ) 

(6.4.10) 

(6.4.11) 
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x. result xk-l + 
(xk — Xk-i) (6.4.12) 

a 
The smoothness of resulting curve depends on cr, in case of multiplication a e < 0 ; l > , 
in case of division a e<l ;oo>. This filtering brings the same disadvantage, with higher 
crthe time-delay rises. 

Thresholding 

The output values are compared with a pre-set threshold value. In case of hard 
thresholding the measured value is set to zero when the output is less than the pre-set 
threshold value. In case of the soft thresholding, the pre-set threshold value is subtracted 
from every sample. That means the signal is shifted by the pre-set threshold value. 

When data from accelerometer is processed, the thresholding might not be used. 
Nevertheless, this filtration is suitable in the soft calibration process. 

6.4.5 Additional filters implementation 

Gyroscope raw output 

The data from gyroscope was received for 30 minutes when the E M U laid on a table in a 
room. Figure 6.8 shows particular rotations in time. The bias offset (the mean value) 
and standard deviation along particular axes are shown in T A B L E 6.1. 

Gyroscope - bias offset and drift in 30 minutes 
0.04 I 

Raw rotation along x axis 
Raw rotation along y axis 
Raw rotation along z axis 

800 1000 1200 1400 1600 1800 
time [s] 

Figure 6.8 Raw particular rotations in time when IMU is still - 30 minutes. 

From the measured data we can deduce that the offset error (the shift of zero level) is 
quite small and it may be filtered by the moving average filter when the EVIU is still. 
The dynamic error that is caused by a signal fluctuation (drift) affects the result 
orientation significantly. The tilt angle increases due to the drift though the EVIU is still, 
and this effect, in this case, deeply applies when the EVIU is moving and the orientation 
of the EVIU is computed from the rotation rates. 

TABLE 6.1 Bias offset and standard deviation of raw rotations when the IMU is still. 

x-axis j-axis z-axis 

bias offset [°] 1.910- lO"2 1.31M0-2 1.25M0-2 

standard deviation [°] 2.198- 10"3 3.105-10"3 1.36M0-3 

Thus the low-pass filter according to (6.4.10) formula was chosen to filter the rotation 
rates during the walk with smaller alpha coefficient - it brings quite small time delay 
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after the filtration. To be accurate, the thresholding is used to decide whether the I M U is 
still or not when the U O G (use only gyro) mode is turned on. Then, a differs due to 
defined state of the I M U . When the I M U is still, alpha is set to almost one. The time 
delay then causes negligible errors. 

Acceleration raw output 

The measured acceleration (after the hard offset compensation and axes scaling) 
achieves the absolute value of 1 g (the gravitational acceleration) while no other forces 
(movements) are present. When the I M U is turned on, the necessary condition for the 
correct measurement is that the I M U has to stay still at least for 2 seconds. Because of 
the motion brings almost always attitude changes, there is no way how to filter the 
acceleration sensor drift in time. 

Despite of that, this system allows to estimate the velocity and position based on 
the artificial neural network output and whenever the I M U state is „still" the velocity is 
set to zero and thus the position is not changing. Then drifts do not apply. The impact of 
the accelerometer drift is shown in Figure 6.9. The error rises significantly during the 
time due to the integrations (actual velocity and position is computed based on 
equations (6.4.1) - (6.4.3)). In our system we suppose that the state changes frequently 
(the figure shows 23 minutes of the measurement while the I M U was laying on a table). 

Acceleration drift impact in approx. 23 minutes 

.5000 ' 1 

0 200 400 600 800 1000 1200 1400 
time [s] 

Figure 6.9 Acceleration drift impact. 
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7 STRAPDOWN NAVIGATION IMPLEMENTATION 

Once the EVIU coordinate system is transformed into the E N U coordinates, the inertial 
velocity and position of the device can be computed. 

7.1 Basics of strapdown algorithm 
The basic formulas of strapdown algorithm are shown in relations (7.1.1), (7.1.2) and 
(7.1.3). Since the acceleration is measured discontinuously, we use deltas in equations 
to express the velocity and the trajectory in time. 

Va = V ° l - 1 ^ + V k (7.1.1) 

vk = v(k-l) + a c c ' At (7.1.2) 

1 
Sk = S(fc-i) + v k • At + - • a • At2 (7-1.3) 

A very important correction step now is to set the derotated acceleration vector to (0, 0, 
1) in E N U coordinates and inertial velocity vector to (0, 0, 0) when the state is "st i l l" . If 
we do not process it we obtain an acceleration value very close to zero, but the velocity 
value would change more significantly. During the "s t i l l " period, the position of the 
EVIU would change, which is unacceptable, moreover when the state changes to 
"walking", evaluation of velocity and position would be affected by this inaccuracy. 
Next part describes the developed software for strapdown navigation. Once the 
application receives data from the I M U , the steps described further may be performed. 

7.2 Software for Inertial Measurement Unit - Tracker 
A s a suitable environment Qt has been chosen. Qt is the leading independent technology 
for cross-platform development. A n application for data processing and visualization 
was created including visualization. Besides the main.cpp file, further C++ source files 
have been developed: 

M a i n source codes for processing: pplotgroup.cpp 
putils.cpp 

receiver, cpp F F ^ 
calibrator.cpp User interface source codes: 
derotator.cpp , ,• , 

F F cubedialog.cpp 
integrator, cpp . . , 
_, , & „ F F customtab.cpp 
rilehandler.cpp , r , . F F pack! ormater. cpp 
brain, cpp 

F F settings, cpp 
A N N source codes: vizualizer.cpp 

genericnetwork. cpp 
mod.cpp Visuals source codes: 

Utils source codes: , . . calstatus.cpp 
brain.cpp glcubevidget.cpp 

73 



N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS 

qcustomplot.cpp 
tcompass.cpp 

Next Chapters contain a description of main source files of the application. 

7.2.1 Receiver 

When data is sent from Arduino U N O and serial link is opened the data is available for 
processing in Qt. There are two possible ways how to transmit the data, the first is via 
U S B cable and the second is wireless, v ia Bluetooth. Received data are converted to the 
appropriate physical units, depending on the sensitivity (how the output registers were 
set, see page 102, A P P E N D I X C), as further lines show. 

//Sensor U n i t s C o n v e r s i o n Con s t a n t s 
magLSB Gaus = l/6.842e3; //+- 4 gauss 
gyrMDPŠ LSB = 17.5e-3; //+- 500 °/s 
accMg LSB = 0.061e-3; //+- 2 g 2 g 

// C a p t u r e d d a t a c o n v e r s i o n (to a p p r o p r i a t e u n i t s ) 
/ / C o n v e r s i o n o f a c c e l e r o m e t e r d a t a t o a c c e l e r a t i o n i n [g] 
a c c . s e t X ( r a w D a t a [ 6 ] * a c c M g _ L S B ) ; 
a c c . s e t Y ( r a w D a t a [ 7 ] * a c c M g _ L S B ) ; 
a c c . s e t Z ( r a w D a t a [ 8 ] * a c c M g _ L S B ) ; 
// C o n v e r s i o n o f gyro d a t a t o r o t a t i o n r a t e i n [deg/s] 
g y r . s e t X ( r a w D a t a [ 3 ] * g y r M D P S _ L S B ) ; 
gyr.setY(rawData[4]*gyrMDPS_LSB) ; 
gy r . s e t Z ( r a w D a t a [ 5 ] * g y r M D P S _ L S B ) ; 
// C o n v e r s i o n o f magnetometer d a t a t o ma g n e t i c f i e l d i n [gauss] 
// x - a x i s i s r e p r e s e n t e d by y - a x i s 
// y - a x i s i s r e p r e s e n t e d by x - a x i s i n t h e o p p o s i t e d i r e c t i o n 
mag.setX(rawData[1]*magLSB Gaus); 
mag.setY(-rawData[0]*magLSB Gaus); 
mag.setZ(rawData[2]*magLSB Gaus); 

To align the coordinate frames of sensors, magnetometer coordinate axes had to be 
swapped - this is clear from the last part of c-code above. The offsets and the scale 
factors of sensor axes were computed from experimentally found out (measured) data. 

In addition, the expected measured acceleration is 1 g in the appropriate axis 
while the I M U is still and the axis points exactly downwards. In practise the value is 
little bit different from the 1 g and it differs for each of the axes as shows the c-code 
part below. Those differences have to be compensated and the measured values are thus 
shifted and scaled. 
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//Hardware c o n s t a n t s o f a c c e l e r o m e t e r 
a c c M i n = QVector3D(-1.0055485, -0.9946478, -0.9949894); 
accMax = QVector3D( 1.0008940, 1.0017908, 1.0239429); 

/ / O f f s e t 
a c c . s e t X ( a c c . x ( ) - ( ( a c c M a x . x ( ) + a c c M i n . x ( ) ) / 2 ) ) ; 
a c c . s e t Y ( a c c . y ( ) - ( ( a c c M a x . y ( ) + a c c M i n . y ( ) ) / 2 ) ) ; 
a c c . s e t Z ( a c c . z ( ) - ( ( a c c M a x . z ( ) + a c c M i n . z ( ) ) / 2 ) ) ; 

/ / S c a l e 
a c c . s e t X ( a c c . x ( ) / ( ( a c c M a x . x ( ) - a c c M i n . x ( ) ) / 2 ) ) ; 
a c c . s e t Y ( a c c . y ( ) / ( ( a c c M a x . y ( ) - a c c M i n . y ( ) ) / 2 ) ) ; 
a c c . s e t Z ( a c c . z ( ) / ( (a c c M a x . z ( ) - a c c M i n . z ( ) )/2) ) ; 

Figure 7.1 shows the converted raw data - acceleration in [g], rotation rate in [deg/s] 
and the magnetic strength in [gauss]. The blue colour represents the data measured in 
x-axis, the green colour represents the data measured in ^-axis and the red one 
represents the data measured in z-axis. 

Numbers on the right side represent last measured value in appropriate axis. The 
motion that is captured in this figure represents walking. A s you can see from the 
depicted accelerations and rotation rates, four steps in approximately same direction 
were performed during this experiment. 
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Figure 7.1 Raw data. 

7.2.2 Calibrator 

This part calibrates received data for the environment where the measurement is 
performed. The adjustable values for magnetometer calibration are local magnetic 
strength, linear Kalman filter constants for magnetometer data filtration and the length 
of history (the previous sensor data that are available in each time-step). The process of 
active calibration takes about two seconds. 
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//Mag o f f s e t 
mag.setX(mag.x )-((magMax.x()+magMin x() ) /2 ) ) ; 
mag.setY(mag.y )-((magMax.y()+magMin y ( ) ) / 2 ) ) ; 
mag.setz(mag.z )-((magMax.z()+magMin z() ) / 2 ) ) ; 

//Mag s c a l e 
mag.setX(mag.x )/((magMax.x()-magMin x() ) /2 ) ) ; 
mag.setY(mag.y()/((magMax.y()-magMin y ( ) ) / 2 ) ) ; 
mag.setZ(mag.z )/((magMax.z()-magMin z() ) / 2 ) ) ; 

/ / M a g n e t i c l o c a l f i e l d s t r e n g t h 
mag = MagLocal * mag; 

//KF f o r mag 
mag = kalMag->getrValue(mag); 

Always when the I M U is "st i l l" , the gyro data offset is found out and this offset is 
subtracted (passive calibration). The subtraction of the last detected offset value is 
applied also during the "walking". We assume that no movement occurs when the 
calibration is running, thus the acceleration and the magnetic field may be averaged to 
get the first orientation quaternion. In addition, the mode ( s t a t e ) is defined at the end 
of the calibration. 

Figure 7.1 and Figure 7.2 show the same data sample, before and after the 
calibration. The significant difference can be found in the graph for the magnetic 
strength. N o w the values are converted into [mGauss] and the total magnetic field 
corresponds to the place where the measurement was performed (see A P P E N D I X B). 
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Figure 7.2 Calibrated data. 

The active calibration may be also called during the measurement by the user. It 
requires keeping the I M U still for at least two seconds. The calibration resets the 
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position to (0, 0, 0), resets the velocity to (0, 0, 0) and at the end of the calibration the 
orientation quaternion is recomputed based on the averaged accelerations. 

7.2.3 Derotator 

The derotation algorithms were described in Chapter 0. Based on the settings, in 
addition, the derotator may use "Use Only Gyro" (UOG) mode or SillyStatus mode. 
When the U O G mode is activated, the measured acceleration vector is derotated into 
E N U coordinate system by the quaternion deltas that are fully defined by the data from 
the calibrated and compensated rotation rate sensor. The data processing is then similar 
as in Chapter 6.2: When the state is "walking". 

The SillyStatus mode works as a hardlimit filter and it defines the state of the 
I M U based only on the filter output. Providing the data deviations from reference are 
lower than user-defined decision values, the state of the I M U is "st i l l" . In that case, we 
expect that the absolute acceleration equals 1 g (the deflection is set in [g]). We also 
expect that the I M U does not rotate, thus the expected value from gyroscope is zero in 
each axis (the deflection is set in degrees). This situation may occur also incidentally, 
thus the still limit defines the minimal number of the successive samples that match 
given conditions, before the state is changed to "st i l l" . The tolerance of acceleration 
deflection ("Acc limit"), the tolerance of rotation rate deflection ("Gyro limit") and 
("Still limit") for SillyStatus mode are set in the setting dialog window. 

There are several artificial neural networks that may decide on the actual state of 
the TMU. Thus the "Select NN" allows to define the A N N that is used. The activation of 
the A N N processing is given by checking the "Neural network" checkbox. Constants 
for A N N Kalman filter ( "KF for NN") and 'NN status boundary" can be set by the user 
before or during the measurement in the setting dialog window. The boundary value 
defines the border between the final "s t i l l" decision and final "walking" decision. The 
A N N output after the Kalman filtration is compared to the given value. We expect the 
A N N output values between -1 and 1. We can also use the combination of the 
SillyStatus mode and A N N implementation. The A N N then defines the "s t i l l" and 
"walking" phases. Nevertheless, the quaternion orientation is recomputed and corrected 
only in case that the SillyStatus filter decides that the I M U is "s t i l l " and the A N N 
detects the "s t i l l " state too. 
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Figure 7.3 Setting dialog window for Tracker. 

The heading value is computed from the magnetometer regardless of the defined state. 
In cases when the heading cannot be determined from the magnetometer neither from 
the gyroscope (the x-axis points upwards or downwards or the tilt is in given range from 
those directions), the heading is not further computed and the orientation quaternion is 
updated only by the deltaFrame quaternion using the gyroscope. 
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Figure 7.4 Derotated data. 

Figure 7.4 shows the data of the same measurement (see Figure 7.1 and Figure 7.2) 
after the derotation. The acceleration presented in the figure is in E N U coordinate 
system and because of the subtraction of gravitational force from the z-axis, the 
acceleration is "fully linear". It is also converted from [g] to [ms"2]. 
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The bottom graph shows evaluated Euler angles (cp, 6, y/) of the I M U in the E N U 
coordinates. The red curve represents the y/ angle, which is equivalent to the heading. 
A l l angles are defined in (—180; 180) interval range in [deg]. The Kalman filtration of 
magnetic strength data has an impact on the evaluated heading value. This graph shows 
the situation when the magnetic strength was not filtered by a K F . Thus there are cases 
when the heading value hops by few degrees, e.g. at time about 782 s, 786 s and 787 s. 

7.2.4 Integrator 

The integrator evaluates the final output values, the velocity and position in time. It 
operates depending on the state; appropriate computations are further performed. The 
consequence of defined mode in each possible state is clearly shown in T A B L E 7.1. 
When the heading value from magnetometer cannot be determined, the velocity and 
position is computed by the same way as in U O G mode. 

TABLE 7.1 Consequences of defined state in particular modes. 

mode state consequence 
UOG ANY orientation of the IMU is defined by the calibrated gyroscope data only 

SillyStatus 
STILL orientation of the IMU is recalculated from the accelerometer data only 

SillyStatus 
OTHER the UOG mode data processing applies 

ANN 
STILL global acceleration is set to (0, 0, 1), actual velocity is set to (0, 0, 0) 

ANN 
WALK the UOG mode data processing applies 

ANN&SillyStatus 
STILL orientation of the IMU is recalculated from the accelerometer data only 

global acceleration is set to (0, 0, 1), actual velocity is set to (0, 0, 0) ANN&SillyStatus 
WALK the UOG mode data processing applies 

Then, (6.4.2) and (6.4.3) formulas are used to get the velocity and position in inertial 3D 
E N U coordinate frame. In the presented experiment four human steps can be clearly 
recognized, see Figure 7.5. They may be detected from the velocity curves or from the 
position defined below. Between steps, the acceleration, respectively velocity, drops to 
zero. O f course, during human steps the algorithm thoroughly evaluates the measured 
data. 
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Figure 7.5 Integrated data. 

7.2.5 Custom graphs 

The software allows to set a number of the custom plots in which the graphs of chosen 
variables are shown in one window. For example, as Figure 7.6 shows, the calibrated 
acceleration and artificial neural network output. In the "State and Neural Network 
output" window you see three curves. The red one represents the SillyStatus filter 
output ("still" state is defined when the output value is "1"). The green one represents 
the A N N output and the blue one the A N N output after K F . In those A N N outputs, 
"s t i l l" state is defined when the output value is lower than the "AW status boundary" 
value. 
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Figure 7.6 Example of Custom plot data 
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The next table shows all values that may be plotted in the application. 

TABLE 7.2 Variables available in custom plot view. 

Raw Acc. Raw accelerometer data Cal. Acc. Calibrated accelerometer data 

Raw Gyro Raw gyroscope data Cal. Gyro Calibrated gyroscope data 

Raw Mag. Raw magnetometer data Cal. Mag. Calibrated magnetometer data 

ENUACC Linear acceleration in ENU 
coordinate frame ENU KF ACC Linear acceleration in ENU 

coordinate frame after KF 

Euler angles Euler angles of actual 
orientation Neural output ANN output, ANN output after KF, 

combined state (with SillyStatus) 

Velocity Velocity in ENU coordinate 
frame Position Position in ENU coordinate frame 

7.2.6 FileHandler 

A s it is indicated in the name, this part allows to record data to plain text format and 
also load the data from such a format. The user may configure data format to be saved. 
It seems to be suitable to choose the set that is measured by I M U (raw rotation rates, 
raw accelerations, raw magnetometer, and time) because of the further data processing 
(e.g. possibility of calibration) in Tracker software. The list of all variables (output 
variables) that can be saved are shown in Figure 7.7. The linear acceleration in E N U 
coordinates ( E N U acc) may be further processed in M A T L A B ™ , for example. The 
"Disconnect timer" defines the period [ms]; when the timer is switched on, after 
expiration of the pre-set period the connection with the I M U is closed. 

Enabled: Disabled: 
Raw Gyro Cal. Acc. 
Raw Acc. Cal Gyro 
Raw Mag. Cal. Mag. Raw Mag. Cal. Mag. 
FrameTime < ECI Acc FrameTime ECI Acc 
ElapTime > ECI KF Acc 

Euler angles 
velocity 
Position 
Neural output 

Save Button 

Figure 7.7 A dialog window for recording and replaying the data. 

When the saved data is red, the custom speed of reading may be set. The reading may 
be paused or stopped. 

7.2.7 Graphical representations in software 

In the bottom of the application window, there are labels and buttons that allow the 
control of the software ( Figure 7.8). A t first, the port can be set in case we process the 
I M U data real-time. There is the possibility to reconnect and disconnect the I M U and 
also to freeze the view. The File Writer and File Reader allow to define the read/write 
data format. The path may be also defined by the user. The custom speed defines the 
speed of data flow in graphs. The menu on the right allows to restart the evaluation 
process, load the calibration process, hide graphs during the measurement, show the 

81 



N E U R A L NETWORKS IN INERTIAL N A V I G A T I O N SYSTEMS 

setting dialog window, pop-up the file writer and file reader to a separate dialog window 
and show the 3D Cube V i e w window. 

File Writer File Reader 
Ci^JEerE/Lenicka/tJe. ereni/sns _park2.t(t 

Patti ~| Custom speed 115 | | Path | 

Restart 30 View 

Calibrate Settings 

Hide Popup file 

Figure 7.8 The software controls. 

Information about the heading is represented by an arrow in the rectangle that points 
upwards while the EVIU (body frame) x-axis points to the north. In addition, the 
information about state is represented by the green/yellow/red background of the 
rectangle. The number of samples corresponding to the last defined state is shown under 
this rectangle. The visual output is shown in Figure 7.9. n i 

Still for 129 
samples. 

Moving for 174 
samples, 

Not Defined 

TT 
X axis is vertical. 

Using only Gyro. [652] 

Figure 7.9 Visual information about the heading and the state 

The next visual result is the cube in 3D that represents the EVIU body (see Figure 
7.10). The window that allows to track the EVIU also contains information about the 
number of samples per second (SPS), current position and velocity, and the actual 
orientation quaternion value. The user may set the view zoom or lock the cube on 
(0, 0, 0) position (the centre of the screen). Then only the orientation of the cube in 
E N U coordinates is shown in time. The user may also call the calibration or reset the 
view (zoom and viewport adjustments) from this screen. 

SPS: 83 

Position: 
-0.75 
0.165 
-0.114 

Velocity 
-0.501 
0.813 
-0.161 

Quaternion: 
0.996 

-0.087 
-0.014 
-0.026 

View distance: 

1200,0 i | 
I I Lod< Position 

Auto View 
| Reset View|  
| Reset All 
| Calibrate"] 

Close 

Figure 7.10 Cube view 
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8 VERIFICATION BY MEASUREMENT 

To verify achieved improvements, five situations were performed. The first two 
measurements contain data when the I M U stays still on the table and in the hand. Next 
measurement contains data when the I M U is held in the hand and the still phase 
alternates with step phase. This is called Step and Stop. Last two measurement contain 
data when the I M U is held in the hand in the still phase to calibration for three seconds 
and follows with discontinuous or fluent walking. 

Results are presented in this way: 

The first two measurements were performed while the EVIU stood still. The expected 
A N N output is thus always "s t i l l " and the results of the inertial accelerations in E N U 
coordinates or the A N N outputs are not presented. For comparison, the velocity and the 
position for each measurement was evaluated by three methods: 

- evaluation based only on the calibrated and compensated inertial sensor data 
( U O G mode) 

- evaluation based on the SillyStatus filter that decides whether the EVIU is still or 
not 

- evaluation based on the A N N decision whether the EVIU is still or walking 
supported by SillyStatus 

The results of the measurements containing any walking are also evaluated by these 
three methods. The A N N output and results using SillyStatus mode are shown in 
graphs. Furthermore, the velocity and position in E N U coordinate system is depicted. 

8.1 Case I: IMU stayed still on the table 
The velocity and the position in time is shown in tables below. The values were taken 
after 5, 10, 30, 60 and 120 seconds of the measurement. The initial velocity is v = (0, 0, 
0) ms"1 and initial position is s = (0, 0, 0) m. T A B L E 8.1 shows the results when the 
U O G mode was activated. T A B L E 8.2 shows the results when the SillyStatus filter was 
used only and T A B L E 8.3 shows the results with application of A N N with SillyStatus. 
Because of the zero values of the velocity and thus position in time, the absolute values 
are presented in the third table only. From these results the fact that SillyStatus filter 
works properly is clear. The U O G mode results verify that the inertial sensors were 
correctly calibrated. The A N N operates with 100 % of reliability. 

Figure 8.1 shows the U O G mode curve depicted by the red colour, the 
SillyStatus mode curve depicted by the blue colour and the A N N aided result curve 
depicted by the green one. The result of the U O G mode is in meters, the result of the 
SillyStatus mode and A N N mode are in millimetres (the second axis on the right hand 
side). The setting dialog window in Figure 7.3 shows the values of the parameters that 
were used while the data was processed in SillyStatus mode and which parameters were 
set while the data was processed with the A N N : 

- The " A c c limit" value was set to 0.01. 

- The "Gyro limit" value was set to 2. 

- The "still l imit" value was set to 4. 
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- The " N N status boundary" value was set to -0.99. 

- K F for A N N constants: P = 1; Q = 0.5; R = 2. 

TABLE 8.1 Velocity and position, UOG mode still on the table. 

Time [s] 5 10 30 60 120 

v in A--axis [m/s] -0.012 -0.077 -1.504 -5.812 -24.846 

v in ><-axis [m/s] -0.005 -0.083 -2.259 -10.911 -48.498 

v in z-axis [m/s] -0.147 -0.351 -1.412 -3.126 -7.882 

A v [m/s] 0.1475737 0.368808 3.059222 12.75152 55.05911 

s in x-axis [m] -0.012 -0.177 -12.372 -120.881 -936 

s in ><-axis [m] -0.004 -0.14 -17.331 -202.286 >999 

s in z-axis [m] -0.213 -1.208 -18.86 -86.95 -403.975 

A s [m] 0.21337526 1.2288991 28.445202 251.1815 >999 

TABLE 8.2 Velocity and position, SillyStatus filter used only still on the table. 

Time [s] 5 10 30 60 120 

v in x-axis [m/s] 0 0 0 0 0 

v in ><-axis [m/s] 0 0 0 0 0 

v in z-axis [m/s] 0 0 0 0 0 

A v [m/s] 0 0 0 0 0 

s in x-axis [m] 0 0 0 0.001 0.001 

s in ><-axis [m] 0 0 0 0 0 

s in z-axis [m] 0 0 0 -0.001 -0.001 

A s [m] 0 0 0 0.0014142 0.0014142 

TABLE 8.3 Velocity and position, ANN applied still on the table. 

Time [s] 5 10 30 60 120 

A v [m/s] 0 0 0 0 0 

A s [m] 0 0 0 0 0 
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Figure 8.1 Evaluated trajectory in time, the UOG in fmj (lefty-axis) and others in [mm] (righty-axis), 
still on the table. 

8.2 Case II: IMU stayed still held in the hand 
The results in this case are presented similarly to the results in Chapter 8.1. The 
SillyStatus filter does not work with satisfactory accuracy. Contrariwise the A N N 
catches the still states very successfully. After 2 minutes of the measurement, the  
position is evaluated with the error about 0.17 m in x-axis, 0.13 m in y-axis and 0.08 m  
in z-axis. The absolute error in positioning with A N N is then about 0.23 m. 

The U O G mode results confirm the theory of inertial sensors and show that I M U 
cannot be used for positioning without auxiliary system. 

Figure 8.2 shows the U O G mode curve depicted by the red colour, the SillyStatus 
mode curve depicted by the blue colour and the A N N aided result curve depicted by the 
green one. The result of the U O G mode is in meters, the result of the SillyStatus mode 
and the A N N mode has the second axis on the right hand side in meters. The setting 
dialog window in Figure 7.3 shows the values of the parameters that were used while 
the data was processed in SillyStatus mode and which parameters were set while the 
data was processed with the A N N : 

- The " A c c limit" value was set to 0.01 

- The "Gyro limit" value was set to 2. 

- The "still l imit" value was set to 4. 

- The " N N status boundary" value was set to -0.99. 

- K F for A N N constants: P = 1; Q = 0.5; R = 2. 
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TABLE 8.4 Velocity and position, UOG mode still in the hand. 

Time [s] 5 10 30 60 120 

v in x-axis [m/s] 0.046 0.358 3.264 10.72 45.923 

v in y-axis [m/s] 0.038 0.197 2.161 9.677 34.569 

v in z-axis [m/s] -0.094 -0.382 -1.48 -3.301 -8.518 

A v [m/s] 0.111337 0.559372 4.184975 14.81416 58.10761 

s in x-axis [m] 0.036 0.959 32.02 239.678 >999 

s in y-axis [m] 0.027 0.569 22.346 187.27 >999 

s in z-axis [m] -0.08 -1.313 -20.272 -92.479 -443.554 

A s [m] 0.0917878 1.7226175 43.995205 317.91188 >999 

TABLE 8.5 Velocity and position, SillyStatus filter used only still in the hand. 

Time [s] 5 10 30 60 120 

v in x-axis [m/s] 0 -0.006 -0.012 -0.01 0 

v in y-axis [m/s] 0 -0.005 -0.005 -0.01 0 

v in z-axis [m/s] 0 -0.008 -0.004 -0.006 0 

A v [m/s] 0 0.01118 0.013601 0.015362 0 

s in x-axis [m] 0.001 -0.015 -0.203 -0.506 -2.042 

s in y-axis [m] 0.001 -0.004 -0.149 -0.421 -1.495 

s in z-axis [m] -0.002 -0.017 -0.162 -0.308 -0.892 

A s [m] 0.002449 0.023022 0.299423 0.726733 2.683366 

TABLE 8.6 Velocity and position, ANN applied still in the hand. 

Time [s] 5 10 30 60 120 

v in x-axis [m/s] 0 0 0 -0.004 0 

v in y-axis [m/s] 0 0 0 -0.005 0 

v in z-axis [m/s] 0 -0.001 0 -0.001 0 

A v [m/s] 0 0.001 0 0.006481 0 

s in x-axis [m] 0 -0.001 -0.004 -0.013 -0.169 

s in y-axis [m] 0 0 -0.005 -0.014 -0.128 

s in z-axis [m] -0.001 -0.001 -0.009 -0.017 -0.077 

A s [m] 0.001 0.001414 0.011045 0.025573 0.225553 
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Figure 8.2 Evaluated trajectory in time, the UOG in fmj (lefty-axis) and others in fmj (righty-axis) 
still in the hand. 

8.3 Case III: IMU held in the hand during Step and Stop motion 
A s it was described above, the Step and Stop measurement contain both, steps and still 
phases. The measurement was performed in Brno, Cerna pole. The true shape of the 
trajectory is a square with a side length of about a = 4 m (A => B => C => D). This 
trajectory repeats for 5 minutes. The detailed trajectory in selected coordinates is shown 
in Figure 8.3. These data are summarized in T A B L E 8.7 Positions of Step and Stop 
measurement. 

The direction to the North (x-axis of the I M U ) is positive. The direction to the 
East (y-axis of the EVIU) is negative. That is reason why the minus is present in 
calculations when the distance in y-axis is computed. 

North A=a x ,a y A=[0;0;0] C = [1.464;-5.464; 0] 

B = [3.464; -2; 0] D = [-2; -3.464; 0] 

Figure 8.3 Detailed positions of Step and Stop measurement. 
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TABLE 8.7 Positions of Step and Stop measurement. 

square part length sum [m] Position vector [m] azimuth [°] 
1. A=>B 4 A = ( 0.000; 0.000; 0.000) 30 
2. B=>C 8 B = (3.464; 2.000; 0.000) 120 
3. C=>D 12 C = ( 1.464; 5.464; 0.000) 210 
4. D=>A 16 D = (-2.000; 3.464; 0.000) 300 

The first three steps are presented in following figures. In this example you can observe 
the rising inaccuracy in time. The SillyStatus state (red coloured) and neural network 
output (raw output is green coloured, output after Kalman filtration is blue coloured) is 
shown in Figure 8.4. The x-axis of all graphs represents time in [s]. 

In Figure 8.5 the velocity in E N U coordinate system in U O G mode is shown. 
The corresponding position in time is depicted in Figure 8.8. Again, the velocity in 
E N U coordinates in shown Figure 8.6, however the estimation in time is adjusted by 
SillyStatus filter. The corresponding position in time to this result is depicted in Figure 
8.9. The last one mode is shown in Figure 8.7. This is the velocity in E N U coordinates 
estimated when the A N N is applied. The corresponding position in time is depicted in 
Figure 8.10. The data was processed with the A N N : 

- The " A c c limit" value was set to 0.01. 

- The "Gyro limit" value was set to 2. 

- The "still l imit" value was set to 4. 

- The " N N status boundary" value was set to -0.99. 

- K F for A N N constants: P = 1; Q = 0.5; R = 2. 

State and Neural Network output 

lj p m m r L - p [ x m i p | f l i p n 

-i,5 r 
~3 L . 1 . , 1 , . 1 . . 1 . , 1 . . 1 , ^ _ 

780 731,5 733 734,5 736 787,5 
Figure 8.4 SillyStatus state (red) and ANN output state in time fsj. 

T A B L E 8.8 shows the estimated outputs in all three modes, U O G mode, SillyStatus 
mode and the mode with our A N N in process. The expected values, i f could be defined, 
are shown in the last column. The first part shows the results after three steps. The 
second part shows the results after 20 steps (approx. 60 seconds of measurement, the 
position in this time is the same as the initial position, the A point, see Figure 8.3). The 
third part shows the results after 40 steps (approx. 120 seconds of measurement, the 
position in this time is the same as the initial position, the A point, see Figure 8.3). 
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Figure 8.5 ENU velocity estimated in UOG mode, x-axis represents meas. time in [sj. 
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Figure 8.6 ENU velocity estimated with SillyStatus filter in process, x-axis represents meas. 
time in fsj. 

Velocity [rn/s] 
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Figure 8.7 ENU velocity estimated with ANN in process, x-axis represents meas. time in [sj. 

The heading value represents negative value of azimuth of the FMU's x-axis in E N U 
coordinate system (deviation of north from the x-axis). The table also contains 
acceleration (a), velocity (v) and position (p) information. In addition, the distance 
from estimated position to reference (0, 0, 0) in horizontal plane ( |P2D I) a n d in 3D 
(IP3DI) is stated. The | s 2 D | value is the length of the trajectory, the sum of lengths of 
the particular trajectories. The step length (laVg) is then calculated as the average length 
of human steps performed during the measuring period. Those values are calculated 
using equations (8.3.1) - (8.3.4). 
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Figure 8.8 ENU position estimated in UOG mode, x-axis represents meas. time in [sj. 
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Position [m] 

Figure 8.9 ENU position estimated with SillyStatus filter in process, x-axis represents meas. 
time in fsj. 
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Figure 8.10 ENU position estimated with ANN in process, x-axis represents meas. time in fsj. 

Inaccuracies arise when rotations by 90 degrees occurs. The applied A N N is not trained 

to rotations around z-axis without human steps. The graph of distances from the (0, 0, 0) 

position in E N U coordinate system is shown in Figure 8.11. Figure 8.12 shows the 

reconstructed 2D trajectory (East-North view) and Figure 8.13 shows the reconstructed 

3D trajectory (East-North-Up view) of this measurement using the inertial measurement 

system only. Graphs show 60 seconds of measurement. 

TABLE 8.8 Estimated outputs of the system in particular modes. 
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step length lavq [m] 2.94 1.61 0.74 0.80 
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mode UOG SillyStatus ANN applied expected 
heading a0 [°] 18.05 30.53 30.58 30 

tilt, x-axis cp0 [°] 5.23 2.68 2.89 NA 

tilt^-axis e0 [°] 11.18 8.97 9.21 NA 

a2x [ms2] -0.339 -0.022 -0.042 0.00 
o 
ND 

a 2 y [ms2] -0.547 -0.193 -0.140 0.00 

p a2z [ms2] -0.869 -0.64 0.025 0.00 

& [ms1] -13.24 14.01 0.006 0.00 & 
i72 y [ms1] -3.67 5.930 -0.006 0.00 

OH v2z [ms1] -3.62 -5.933 0.002 0.00 

o P2x [m] -307.6 6.95 0.13 0.00 
CS Ply [m] -227.1 6.33 -0.015 0.00 

P2z [m] -105.9 -5.06 0.18 0.00 

IP2DI [m] 382.4 9.40 0.13 0.00 

\P3D\ [m] 396.7 10.68 0.18 0.00 

|S2DI [m] NA 25.71 16.10 16.00 

step length lavq [m] NA 1.29 0.81 0.80 

mode UOG SillyStatus ANN applied expected 
heading a0 [°] 37.82 32.24 61.62 60 

tilt, x-axis cpo [°] 7.99 8.49 8.64 NA 

tilt^-axis 60 [°] 12.41 9.52 9.73 NA 

«3x [ms2] 0.029 -0.098 0.00 0.00 
m a3y [ms2] -0.087 0.400 0.00 0.00 

a 3 z [ms2] -0.176 0.285 0.00 0.00 
S 
Q. v3x [ms1] -25.40 1.99 0.00 0.00 

' S
T

E
PS

 (
aj

 

i? 3 y [ms1] -11.41 0.07 0.00 0.00 

' S
T

E
PS

 (
aj

 

i73z [ms1] -7.44 -0.56 0.00 0.00 

' S
T

E
PS

 (
aj

 

Pix [m] NA 19.55 0,09 0.00 

TE
R

 4
0 

Pay [m] -961 8.84 0.19 0.00 

TE
R

 4
0 

P-iz [m] -442 -11.45 0,31 0.00 

IP2DI [m] NA 21.46 0.21 0.00 

IPSDI [m] NA 24.32 0,37 0.00 

|S2DI [m] NA 57.05 30.12 32.0 

step length lavq [m] NA 1.43 0.75 0.80 

IP2DI = ^|P3x2 + P 3 y 2 

IPSDI = JP3X 2 +P3y2 +P3Z 2 

| S 2 D | = j s x

2 + s y

2 

Z„„„ = 2Dl 
a v a number of steps 

(8.3.1) 

(8.3.2) 

(8.3.3) 

(8.3.4) 
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Particular distances from [0,0,0] position 
5 
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3 
E 
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- E A S T 
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- U P fj 

- E A S T 
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- U P 

0 10 20 30 40 50 60 
time [s] 

Figure 8.11 Particular distances from (0,0,0) position in ENU coordinates. 

Trajectory in ENU coordinates 2D 

5r 

.1 I 1 1 • • 

- 2 - 1 0 1 2 

> 
EAST Figure 8.12 Trajectory in ENU coordinates in 2D [mj. 

Trajectory in ENU coordinates 3D 

EAST 
Figure 8.13 Trajectory in ENU coordinates in 3D fmj. 
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8.4 Case IV: IMU held in the hand during discontinuous walking 
The source of this measurement is walking interrupted by staying. Following graphs 
show parts with more frequent status changes only, because the improvement caused by 
the LNS is based on the presence of still phases. 

Next figures capture the velocity (Figure 8.14) and position (Figure 8.15) of the 
two steps in the North direction and short still phase repeated three times. The blue 
curve represents the x-axis, the green one y-axis the red one z-axis. After the walking 
part shown in graphs, proposed A N N caught the still phase clearly, nevertheless it does 
not improve the positioning during the walking. The position after six steps was 5.28 m 
in the North direction; 0.3 m in the West direction and 0.8 m in the Down direction. 
Velodty [m/s] 

601,5 603 604 r5 606 607,5 609 

Figure 8.14 ENU velocity estimated with ANN in process fms'1] in time fsj - interrupted walking. 

Position [m] 

601,5 603 601,5 606 607,5 609 

Figure 8.15 ENU position estimated with ANN in process fmj in timefsj - interrupted walking. 

Whole measurement trajectory is shown in Figure 8.16. The movement in the North 
direction consists of double steps (repeated five times) and the movement in the South 
direction, after the rotation by 180 degrees, consists of continuous three steps and still 
phase, repeated three times. The start position was defined as (0;0;0) m and expected 
final position was (1;0;0) m. 

The resulted final position was (2.6;-1.55;-2.0) m. The length of the measurement 
was 50 seconds. The error rises significantly with the length of the continuous walking. 
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Trajectory in ENU coordinates 3D 

NORTH 
0 .2 

EAST 

Figure 8.16 Trajectory in ENU coordinates, 3D in fmj - interrupted walking. 

8.5 Case V: IMU held in the hand during fluent walking 
A s it is clear from the principle of the A N N implementation, the improvement is not 
achieved when the walking is present only. This case explains it illustratively. Further 
figures show linear acceleration in E N U coordinate frame (Figure 8.17), computed 
position (Figure 8.18), and decision on the state of the EVIU (Figure 8.19). A t the 
beginning (up to 191.2 s) the still phase is present and successfully determined by the 
A N N . After that the motion continues with fluent walking - the A N N indicate it 
successfully and of course further positioning process is not improved by the A N N . 

ENU Acceleration [rn/ŝ Z] 

Figure 8.17 Linear acceleration in ENU coordinates in [ms~2] in time [s], continuous walking. 

Figure 8.18 Position in ENU coordinates in fmj in time fsj, continuous walking. 

State and Neural Network output 

4 ,5 - • 

192 133,5 195 196,5- 198 199 r 5 

Figure 8.19 Combined Si llyStatus state and ANN decision on the IMU state (green) in time. 
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9 CONCLUSIONS 

In proposed dissertation thesis, the processing of inertial navigation sensor data is 
presented. A s the new approach method I decided to estimate the state of the E M U by an 
artificial neural network without any support of auxiliary or global positioning system. 
It ensures that the data from the inertial sensors are processed typically (with the 
integration disadvantages) only for a vital period. The orientation of the I M U is fully 
deriváte from inertial sensors. 

The correction of the EVIU orientation is performed during data processing when 
the A N N decides that the EVIU is still. That leads to more accurate positioning based on 
D R , regardless of the environment (indoor, outdoor, underground, etc.). A s the EVIU 
hardware, Arduino U N O was chosen in combination with ST Nucleo expansion board, 
which contains all used inertial sensors. 

Special positioning system software called Tracker was developed in C++ 
programming language using Qt framework. It also offers graphical environment for the 
user. It process the data from the EVIU and presents various intermediate and final 
results. The system also allows to record data into a file in adjustable format -
raw/calibrated/derotated sensor data, Euler angles, heading, velocity and position in all 

available modes. A window with 3D EVIU model is also available. 

Proposed A N N was designed in M A T L A B ™ software and estimates the state of 
the EVIU based on the previous 40 values from inertial sensors, the type of the A N N is 
time-delayed feed-forward. It does not take the data from magnetometer into account, 
because of the magnetic field typically extremely fluctuates. The output of the A N N 
defines the state of the EVIU - „walking" or „staying still", which is applied in data 
processing to improve positioning. 

Such a system works very precisely in case that the EVIU stays still on the table or 
stays still in the hand. In those cases, the error in positioning reached about 
2 millimetres in the case the EVIU was lying on the table and about 20 centimetres in 
case the EVIU was held in the hand, after 2 minutes of acquisition. 

The very interesting results were achieved when the EVIU was held in the hand 
and the user performed a walk that often changes with still phases. Such a motion can 
be seen for example in a museum or in an art gallery. In these cases proposed system 
achieves very small positioning errors compared to the systems based purely on D R 
method. A s shown in Chapter 8.3 the INS achieved the error of only 2 meters after 2 
minutes of measurement in 2D (horizontal positioning). The error in vertical z-axis 
reached up to 5 meters and that was caused by subtraction of the inaccurately 
determined earth's gravitational acceleration constant. 

In situations when the A N N decides that the EVIU is still, the system is 
recalibrated and the cumulative error caused by integration is reset. Thus the position 
during discontinuous walking is effectively estimated with low error. When the walking 
motion is present during the measurement only, this method fails and the INS works as 
a simple D R system (however, in a real world a man must stop anytime). 
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In this dissertation thesis, proposed method based on A N N state recognition has 
been successfully validated by experiments focused on pedestrian movements. Anyway, 
more applications can be found in a human life in which this method could improve 
positioning, for example in specific professions, military applications or different types 
of vehicles. It opens new opportunities in future research for specific applications where 
the suitable artificial neural network structure have to be investigated and properly 
trained or modified with wider classification group (more types of movements). 
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APPENDIX A COORDINATE TRANSFORMATIONS 

A.l Representation of transformed vectors 
a vector v in X Y Z coordinates: 

(A.1) 

the same vector v in U V W coordinates: 

(A.2) 

then, in any Cartesian system apply: 

f^UVW 
— ^XYZ 

Vz_ 

(A.3) 

cfE

Y

D then denotes the coordinate transformation matrix from vehicle body-fixed 
roll-pitch-yaw (RPY) frame coordinates to earth-fixed north-east-down (NED) 
coordinates. 

A.2 Unit coordinate vectors 
The components of a vector in either coordinate system can be expressed in terms of the 
vector components along unit vectors parallel to the respective coordinate axes: 

v = v -1 + v -1 + v -1 
x x y y z z 

=v 1 +v 1 +v 1 
u u v v w w 

(A.4) 

A.3 Direction cosines 
The respective components can be also represented as a dot products, in matrix form: 

T 

V y 

^x 1« 

V X 

i T i 
X w 

i T i 
y w 

v., 
def 
_ f^UVW 
- ^XYZ v., (A.5) 
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dot product of unit vector satisfy the cosine rule: vTw = |v| • |w| • cos(0ah), where 9ab is 
the angle between vectors v and w. The coordinate transformation matrix can be then 
written as: 

C WW 
XYZ 

cos ( O 
K) 

c o s f c ) 

cos 

cos 
K) 
K) 

<™>(0 
cos 

cos 

cos (A.6) 

The angles determination do not depend on the order of the direction vectors (9ab= 
Oba), the inverse transformation matrix is simply transposition of the forward 
coordinate transformation matrix: 

XYZ 
UVW 

J " 

(A.7) 

A.4 RPY/ENU and RPY/NED transformations 
The resulting unit vectors of the roll, pitch and yaw axes in E N U coordinates are 
defined as: 

sin(7)cos(P) 

cos(7)cos(P) 

sin(P) 
(A.8) 

cos(i?) cos(7) + sin(/?) sin(T) sin(P) 

- cos(7?) sin(T) + sin(/?) cos(7) sin(P) 

-sin(/?)cos(P) 
(A.9) 

- sin(/?) cos(7) + cos(7?) sin(T) sin(P) 

sin(/?) sin(T) + cos(7?) cos(7) sin(P) 

- cos(7?) cos(.P) 
(A. 10) 

The unit vectors of the east, north and up axes in R P Y coordinates are defined as 

sin(T)cos(F) 

1 w = cos(R) cos(7) + sm(R) sin(Y) sin(P) 

- sm(R) cos(7) + cos(7?) sin(T) sin(P) 
( A l l ) 
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cos(7)cos(i 5) 

- cos(R) sin(7) + sm(R) cos(7) sin(P) 

sm(R) sin(7) + cos(R) cos(7) sm(P) 
(A. 12) 

s i n ^ ) 

-sin(7?)cos(F) 

cos(R) cos(.P) 
(A. 13) 

The rotation from R P Y coordinates to N E D coordinates is determined by: 

r' 
cos(i//) 

sin(i//) 

0 

-sin(i//) 

cos(i//) 

0 

cos(6>) 

0 

-sin(6>) 

0 sin(<9) 

1 0 

0 cos(6>) 

0 

cos(#>) 

sin(<p) 

0 

-sin(<p) 

cos(<p) 
(A. 14) 

cos(i//) • cos(6>) - sin(i//) • cos(p) + cos^/) • sin(6>) • sin(<p) 

sin(i//) • cos(6>) cos(y/) • cos(p) + sin(i//) • sin(6>) • sin(<p) 

- sin(6>) cos(6>) • sin(<p) 

sin(i//) • sin(<p) + cos(i//) • sin(i9) • cos(<p) 

- cos(y/) • sin(<p) + sin(i//) • sin(6>) • cos(<p) 

cos(6>) • cos(#>) 

The rotation from R P Y coordinates to E N U coordinates is determined by: 

(A. 15) 

sin(i//) • 005(6*) cos(i//) • cos(<p) + sin(i//) • sin(6>) • sin(<p) - cos(//) • sin(<p) + sin(i//) • sin(6>) • cos(#>) 

cos(//) • 005(6*) - sin(i//) • cos(<p) + cos(//) • sin(6>) • sin(<p) sin(i//) • sin(<p) + cos(//) • sin(6>) • cos(<p) 

sin(6>) - cos(6>) • sin(<p) - cos(6>) • cos(<p) (A. 16) 

A.5 ENU/ECEF and NED/ECEF transformations 
The unit vectors in local north, east and down directions, as expressed in E C E F 
Cartesian coordinates are defined as: 

cos (# ) s in (^ e o d e t ; c ) 

- s in (# ) s in (^ e o d e t ; c ) 
C 0 S ( ^ e 0 de t / C ) 

(A. 17) 

sinO?)" 

cosO?) 

0 
(A. 18) 

cos(#)cos (^ e o d e t ; c ) 

-sin(6>)cos(^ e o d e t ; c ) 

- s i n ( ^ e 0 d e t / C ) 
(A. 19) 
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A n d the unit vectors in the E C E F X , Y and Z directions, as expressed in N E D 
coordinates are defined as: 

-cos(0)s in({i g e o d e t r c ) 

- sin(0) 

cos (0)cos(0 g e o d e t i c ) 
(A. 20) 

s in (0 ) s i n (0 g e o d e t i c ) 

cos(Ô) 

s i n ( 6 » ) c o s ( ^ e o d e t ; c ) 
(A.21) 

c o s ( ^ e o d e U c ) 

0 

- s i n ( ^ e o d e t ; c ) 

The rotation from N E D coordinates to E C E F coordinates is determined by: 

(A.22) 

C NED 
ECEF' 

-cos(6>)sm$ g e o d e t / c ) -sin(0) - c o s ( 6 » ) c o s ^ e o d c f c ) 

- s rn((9)s in(^ e o d e ü c ) cos(#) - s i n ( 0 c o s ^ e o d e t / c ) 

c o s $ g e o d c f c ) 0 - s m ^ g e o d e f c ) 

The rotation from E N U coordinates to E C E F coordinates is determined by: 

(A.23) 

C ENU 
ECEF' 

-sin(6>) -cos@)sm@geüdc{lc) cos (60cos$ g e o d e U c ) 

cos(6>) -sm(0)sm(0geodctic) srn(6>)cos^ e o d c f e.) 
0 c o s ^ e o d c t ; c ) s i n ^ e o d e f c ) 

The rotation from E C E F coordinates to N E D coordinates is determined by: 

rECEF 
'-NED ' 

- cos(<9) sm(0geodetic) - sin(6>) sm($geodeiic) c o s $ g e o d e t , 

cos((9) 0 -srn(#) 

_-cos(#)cos(j/i g e o d e t 

The rotation from E C E F coordinates to E N U 

,) - s rn ( (9 )cos^ e o d c t i ,) - s in(0 g e o d e t / C )_ 

coordinates is determined by 

r ECEF 
ENU ' 

cos(<9) 0 -srn(6>) 

-cos(6>)sin^ e i x l c t ; c ) - s i n ( ( 9 ) s i n ^ e o d c f c ) c o s $ g e o d e t ; c ) 

cos(#)cos(^ g e o d c f e.) sin(#)cos(0 g e o d c t / c) s rn(^ g e o d e t / c ) 

(A.24) 

(A.25) 

(A.26) 
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A.6 Composition of coordinate transformations 
When A , B and C represent different coordinate frames, next composition rule 
applies: 

rB r A _ r A (A.27) 

APPENDIX B MEASUREMENT CONDITIONS 

B.l Geographic coordinates 
Stamicova, Brno - Kohoutovice, Czech Republic: 

Latitude: 4 9 ° 1 1 ' 4 2 " N 
Longitude: 16°36'28" E 
Elevation above sea level: 361m 

Coordinates of the place in decimal degrees: 

Latitude: 49.1952200 N 
Longitude: 16.6079600 E 

Tomanova, Brno - Cerna pole, Czech Republic: 

Latitude: 49°12 '24"N 
Longitude: 16°37'04 " E 
Elevation above sea level: 239 m 

Coordinates of the place in decimal degrees: 

Latitude: 49.2078766 N 
Longitude: 16.6193204 E 

Volejnikova, Brno - Cerna pole, Czech Republic: 

Latitude: 49°12 '31"N 
Longitude: 16°37'19" E 
Elevation above sea level: 233 m 

Coordinates of the place in decimal degrees: 

Latitude: 49.2085308 N 
Longitude: 16.6219269 E 

Technická, Brno - Královo Pole, Czech Republic: 

Latitude: 49°13 '37"N 
Longitude: 16°34'29" E 
Elevation above sea level: 287 m 

Coordinates of the place in decimal degrees: 

Latitude: 49.2271495 N 
Longitude: 16.5726303 E 
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B.2 Temperature stability 
Accel erometer and gyroscope sensor included in chip L S M 6 D S 0 are sensitive to 
temperature changes. Due to this fact, the additional temperature calibration have to be 
performed assuming that the temperature changes occurs during the measurement. 

The gyroscope reaction is captured in Figure B . l . The temperature dropped by 5 
degrees after about 550 seconds of measurement. The _y-axis of the graph represents 
rotation rate in [deg/s], x-axis represents the time [s]. The P M U stood still on the table 
during this measurement. 

0 150 300 450 600 750 900 

Figure B.l Change in the measured rotation rate [deg/s] when the temperature drops down (in 550 s) 
in time fsj. 

B.3 Calibration parameters 
//Tomanova, exapmle 
magMin = QVector3D(-0.650, -0.640, 0.220); 
magMax = QVector3D( 0.325, 0.320, 1.150); 

/ / L o c a l m a g n e t i c f i e l d 
MagLocal = 415.230; //Stamicova [mGauss]; 
MagLocal = 4 8 9.151; //Tomanova [mGauss]; 
MagLocal = 439.696; / / V o l e j n i k o v a [mGauss]; 
MagLocal = 429.190; / / T e c h n i c k a [mGauss]; 

/ / L o c a l d e c l i n a t i o n 
M a g D e c l i n a t i o n = 4.21; //Stamicova [deg]; 
M a g D e c l i n a t i o n = 4.21; //Tomanova [mGauss]; 
M a g D e c l i n a t i o n = 4.21; / / V o l e j n i k o v a [mGauss]; 
M a g D e c l i n a t i o n = 4.20; / / T e c h n i c k a [mGauss]; 

APPENDIX C HARDWARE SETTING 

C.l Hardware description 
MinPMU-9 v2 Gyro, Accelerometer, and Compass 

L3GD20 - M E M S chip containing and 3-axis gyroscope 

The range of maximum and minimum value of measured signals is user-defined: 

- Gyroscope available scales: ±250, ±500, ±2000 deg/s 
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LSM303DLHC - M E M S chip containing 3-axis magnetometer and accelerometer 

The range of maximum and minimum value of measured signals is user-defined: 

- Accelerometer available scales: ±2, ±4, ±8 , ±16 g 

- Magnetometer available scales: ±1.3 , ±1.9, ±2.5, ±4.0, ±4.7, 

±5.6, ±8.1 gauss 

Sensors work within the temperature range of -40 °C to 85 °C. 

The ĽVIU logs measured data to its own memory and sends data to P C via serial link 
after the measurement. The transmission is performed after "send" button is pressed. 
The sample rate of logging data reaches 22 sps (using this construction). 

Motion M E M S and environmental sensor expansion board X - N U C L E O - I K S 0 1 A l 

LSM6DS0 - M E M S chip containing and 3-axis gyroscope and accelerometer 

The range of maximum and minimum value of measured signals is user-defined: 

- Gyroscope available scales: ±245, ±500, ±2000 deg/s 

- Accelerometer available scales: ±2, ±4, ±8 g 

LIS3MDL - M E M S chip containing 3-axis magnetometer 
- Magnetometer available scales: ±4, ±8 , ±12, ±16 gauss 

LPS25HB* - barometer M E M S pressure sensor 
- Barometer absolute digital output: 260 - 1260 hPa 

HTS221 - capacitive digital relative humidity and temperature sensor 

The expansion board is compatible with Arduino Uno. Measured data are sent by B T or 
by U S B cable to a P C . Processing is available real time or there is ability to save 
measured data for further processing based on the user defined settings in the software 
Tracker. The I M U transmits data to P C via Bluetooth or U S B cable during the 
measurement. The sample rate of incoming data can reach 160 sps. 

C.2 Sensor settings 
X - N U C L E O - I K S 0 1 A 1 board sensors are set:  

Angular rate sensor control register  

CTRL REG1 G 
B00010000 

ODR G [2:0] 100 ODR = 238 Hz; cutoff (LPF1) = 76 Hz CTRL REG1 G 
B00010000 FS G [1:0] 01 gyro scale ±500 deg/s CTRL REG1 G 
B00010000 BW_G [1:0] 10 cutoff (LPF2) = 63 Hz - not used 

CTRL REG2 G INTSEL [1:0] 00 default 
B00010001 OUTSEL [1:0] 00 default 

CTRL REG3 G 
B 00010010 

LP mode 0 low-power disable CTRL REG3 G 
B 00010010 HP EN 0 HPF disabled CTRL REG3 G 
B 00010010 

HPCFG [3:0] 0000 high-pass filter cutoff = 15 Hz 

Linear acceleration sensor control register 
CTRL REG5 XL DEC_[0:1] 00 no decimation on OUT REG and FIFO 

B00011111 Zen XL Yen XL Xen XL x, y, z axis enable 
ODR XL [2:0] 000 ODR = 238 Hz (same as gyro ODR) 

CTRL REG6 XL FS_XL [1:0] 00 accelerometer full-scale ±2 g 
B00100000 BW SCAL ODR 0 bandwidth determined by ODR selection 

BW_XL [1:0] 00 anti-aliasing filter bandwidth = 408 Hz 
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CTRL REG7 XL 
B00100001 

HR 1 High resolution mode enabled 
CTRL REG7 XL 

B00100001 
DCF[1:0] 01 LP cutoff freq. = ODR/100 Hz CTRL REG7 XL 

B00100001 FDS 0 internal filter bypassed 
CTRL REG7 XL 

B00100001 
HPIS1 0 filter bypassed 

Magnetic field sensor control register 

CTRL REG1 
B00010000 

TEMP EN 0 temperature sensor disabled 

CTRL REG1 
B00010000 

OM[1:0] 10 high-performance mode CTRL REG1 
B00010000 DO[2:0] 111 ODR = 80 Hz CTRL REG1 
B00010000 

FAST ODR 0 fast ODR disabled 

CTRL REG1 
B00010000 

ST 0 self-test disabled 

CTRL REG2 
B00010001 

FS[1:0] 00 magnetometer full-scale ±4 gauss CTRL REG2 
B00010001 REBOOT 0 normal mode reboot memory CTRL REG2 
B00010001 

SOFT RST 0 default 

CTRL REG3 
B00010010 

LP 0 default CTRL REG3 
B00010010 SIM 0 4-wire interface CTRL REG3 
B00010010 

MD[1:0] 01 Single-conversion mode 
CTRL REG4 
B00010011 

OMZ[1:0] 10 high-performance mode CTRL REG4 
B00010011 BLE 0 data LSb at lower address 
CTRL REG5 
B00010100 

FAST READ 0 FAST READ disabled CTRL REG5 
B00010100 BDU 1 continuous update 

C.3 I2C Communication 
B| 5ms -5.4000ms 

Figure C.2 Four Arduino communication cycles, consequently. TX, SDA, SCL. 

E|500|is -6. 8600ms •stou B 

Figure C.3 Detail ofRS232 Communication cycle, consequently. TX, SDA, SCL. 
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iniOOus -3.27B0ms rjStop jj 1/ 1 0100% 

Figure C.4 Detail of PC communication cycle, consequently. TX, SDA, SCL. 

Figure C.5 Transmission of one byte via PC. SDA, SCL 

APPENDIX D FIRMWARE 

ftinclude <Wire.h> 

v o i d r e a d F r o m ( i n t a d d r e s s , b y t e sub, i n t count) 
{ 

i f (count > 1) sub += B10000000; 

W i r e . b e g i n T r a n s m i s s i o n ( a d d r e s s ) ; 
W i r e . w r i t e ( s u b ) ; 
W i r e . e n d T r a n s m i s s i o n ( ) ; 

W i r e . r e q u e s t F r o m ( a d d r e s s , c o u n t ) ; 
} 

v o i d w r i t e T o ( i n t a d d r e s s , b y t e sub, b y t e data) 
{ 

W i r e . b e g i n T r a n s m i s s i o n ( a d d r e s s ) ; 
W i r e . w r i t e ( s u b ) ; 
W i r e . w r i t e ( d a t a ) ; 
W i r e . e n d T r a n s m i s s i o n ( ) ; 
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v o i d setupMag() 
{ 

w r i t e T o ( 3 0 , B00100000, 
w r i t e T o ( 3 0 , B00100001, 
w r i t e T o ( 3 0 , B00100010, 
w r i t e T o ( 3 0 , B00100011, 
w r i t e T o ( 3 0 , B00100100, 

B01011100); // CTRL_REG1 20h 
BO0000000); // CTRL_REG2 21h 
B00000001); // CTRL_REG3 22h 
BO0001000); // CTRL_REG4 2 3h 
B01000000); // CTRL REG5 24h 

v o i d setupAG() 
{ 

w r i t e T o ( 1 0 7 , 
w r i t e T o ( 1 0 7 , 
w r i t e T o ( 1 0 7 , 
w r i t e T o ( 1 0 7 , 
w r i t e T o ( 1 0 7 , 
w r i t e T o ( 1 0 7 , 

B00010000, 
B00010001, 
B00010010, 
B00011111, 
B00100000, 
B00100001, 

B10001010) 
B00000000) 
B00000000) 
B00111000) 
B00000000) 
B10100000) 

// CTRL_REG1_G lOh 
// CTRL_REG2_G l l h 
// CTRL_REG3_G 12h 
// CTRL_REG5_XL l F h 
// CTRL_REG6_XL 2 Oh 
// CTRL REG7 XL 2 l h 

v o i d s e t u p ( ) 
{ 

W i r e . b e g i n ( ) ; 
S e r i a l . b e g i n ( 1 1 5 2 0 0 ) ; 

s e t u p M a g ( ) ; 
s e t u p A G ( ) ; 

} 

v o i d l o o p () 
{ 

readFrom(30, B00101000, 6 ) ; 
w h i l e ( W i r e . a v a i l a b l e ( ) ) 
{ 

s h o r t c = W i r e . r e a d ( ) ; 
c += ( W i r e . r e a d ( ) « 8 ) ; 
S e r i a l . p r i n t ( c , DEC); 
S e r i a l . p r i n t ( " " ) ; 

} 

readFrom(107, B00011000, 6 ) ; 
w h i l e ( W i r e . a v a i l a b l e ( ) ) 
{ 

s h o r t c = W i r e . r e a d ( ) ; 
c += ( W i r e . r e a d ( ) « 8 ) ; 
S e r i a l . p r i n t ( c , DEC); 
S e r i a l . p r i n t ( " " ) ; 

} 

readFrom(107, B00101000, 6 ) ; 
w h i l e ( W i r e . a v a i l a b l e ( ) ) 
{ 

s h o r t c = W i r e . r e a d ( ) ; 
c += ( W i r e . r e a d ( ) « 8 ) ; 
S e r i a l . p r i n t (c, DEC); 
S e r i a l . p r i n t ( " " ) ; 

} 

S e r i a l . p r i n t ( " \ n " ) ; 
d e l a y ( 7 ) ; 

} 
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APPENDIX E DATA PROCESSING 

Further figures show all successive phases of processing that are graphically available in 
our app Tracker during the processing of the incoming sensor signal. 

Raw Acceleration [gj 

-0,3 b , ; i ; , i ; , i , ; i ; ; i , ; L_ 

192 193,5 195 196,5 198 139,5 

Figure E.6 Raw acceleration fgj in time fsj. 

Calibrated Acceleration [g] 

192 193,5 195 196,5 19S 199,5 

Figure E. 7 Calibrated acceleration fgj in time fsj. 

ENU Acceleration [rn/s A2] 

--
ii 

192 193,5 195 196,5 19S 199,5 

Figure E.8 ENU (linear) acceleration [m -s~2J in time fsj. 

-9 -

192 193,5 195 196,5 198 199,5 

Figure E.9 ENU (linear) acceleration after KF [m-s~2] in time [sj. 
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Raw Rotat ion rate [deg/s] 

135 

192 193,5 195 

Figure E.10 Raw rotation rate fdeg-s'1] in time fsj. 

Calibrated Rotation rats [deg/s] 

135 h 

192 193,5 195 196,5 

Figure E.ll Calibrated rotation rate [deg -s'1] in time fsj. 

Raw Magnetic field [Gauss] 

0,4 

199,5 

199,5 

192 193,5 195 

Figure E.12 Raw magnetic field [gauss] in time fsj 

Calibrated Magnetic field [mGauss] 

196,5 199,5 

-300 

1̂50 

192 193,5 195 196,5 

Figure E. 13 Calibrated magnetic field [gauss] in time fsj. 
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132 193,5 195 

Figure E. 14 Euler angles fdegj in time fsj. 

Velocity [m/s] 

Figure E. 15 Velocity [m-s'1] in time fsj. 

Figure E.16 Position fmj in time [sj. 

State and Neural Network output 

4,5 

3 

1,5 

-1,5 

-4,5 
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Figure E.17 State and artificial neural network output in time [sj. 

193 199,5 
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