
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

ACCELERATIONOFDTLSPROTOCOL INLINUXKER-
NEL
AKCELERACE PROTOKOLU DTLS V JÁDŘE SYSTÉMU LINUX

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR FRANTIŠEK KRENŽELOK
AUTOR PRÁCE

SUPERVISOR Ing. MATĚJ GRÉGR, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Abstract
This thesis offers a overview of the DTLS1.3 protocol, focusing on critical features pertinent
to both userspace applications and kernel-level integration. Key outcomes include the
implementation of DTLS1.3 within GnuTLS and the extension of this protocol to the Linux
kernel’s TLS module. Additionally, the thesis evaluates the utility of this kernel module in
conjunction with emerging technologies such as eBPF and projects like ktls-util.

Abstrakt
Tato práce poskytuje náhled do protokolu DTLS1.3, se zaměřením na klíčovou funkcionalitu
důležitou pro implementaci v rámci kryptografických knihoven a integraci na úrovni systé-
mového jádra. Hlavní výsledky zahrnují implementaci DTLS1.3 v rámci knihovny GnuTLS
a rozšíření tohoto protokolu do linuxového jadra v rámci existujicího modulu TLS. Práce
nadále hodnotí užitečnost tohoto systémového modulu ve spojení s nově vznikajícími tech-
nologiemi, jako je eBPF, a projekty jako je ktls-util.

Keywords
TLS, DTLS, Linux kernel, kTLS, kDTLS, acceleration, security, optimization, GnuTLS,
OpenConnect, DTLS1.3

Klíčová slova
TLS, DTLS, Linux kernel, kTLS, kDTLS, akcelerace, bezpečnost, optimalizace, GnuTLS,
OpenConnect, DTLS1.3

Reference
KRENŽELOK, František. Acceleration of DTLS Protocol in Linux Kernel. Brno, 2024.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Matěj Grégr, Ph.D.

Acceleration of DTLS Protocol in Linux Kernel

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Matěj Grégr Ph.D. The supplementary information was
provided by Mr. Daiki Ueno Ph.D. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this thesis.

. .
František Krenželok

May 9, 2024

Contents

1 Introduction 4

2 DTLS 7
2.1 Overview of (D)TLS . 7

2.1.1 Handshake layer . 7
2.1.2 Record layer . 7
2.1.3 Alert layer . 7
2.1.4 (D)TLS Session . 7
2.1.5 (D)TLS Epoch . 8

2.2 DTLS protocol . 8
2.2.1 ACK message (a) . 9

2.3 DTLS version 1.3 . 9
2.3.1 Demultiplexing Unified Header . 9
2.3.2 Replay protection . 11
2.3.3 Connection ID . 13

3 GnuTLS 14
3.1 DTLS1.3 implementation . 14

3.1.1 DTLS1.3 specific functions . 14
3.1.2 Handshake/Negotiation modifications 15

3.2 GnuTLS kDTLS . 15
3.2.1 Enabling k(D)TLS . 15
3.2.2 Implementation . 16

4 OpenconnectVPN 17
4.0.1 Connection establishment . 17
4.0.2 Implementation . 17

5 DTLS1.3 kernel module implementation 19
5.1 Kernel TLS . 19

5.1.1 kTLS sendfile() . 19
5.1.2 Implementation . 20

5.2 kDTLS . 20
5.2.1 Differences between TCP and UDP in regard to kTLS 20

5.3 Implementation details . 20
5.3.1 DTLS Sliding window . 21
5.3.2 Setup . 24
5.3.3 Record implementation . 24

1

6 Flamegraphs 26
6.0.1 Test subject . 26
6.0.2 Flamegraph generation . 26

7 Performance statistics 30
7.1 Testing setup . 30

7.1.1 Network topology . 31
7.1.2 OpenConnectVPN Benchmarks Using DTLS Protocol 31

8 Future of work 33
8.1 Related work . 33

8.1.1 ktls-utils . 33
8.1.2 Berkeley Packet Filter . 35
8.1.3 Kernel Packet filtering . 35

9 Future 36
9.1 Upstreaming the patches . 36

9.1.1 GnuTLS . 36
9.1.2 kDTLS . 36

10 Conclusion 38

11 Reference 39

Bibliography 40

A Content of Attached DVD 41

B Versions of the used software 42

2

List of Figures

2.1 DTLS Ciphertext Unified Header . 9
2.2 Sliding window . 12
2.3 Connection ID example . 13

5.1 kTLS sendfile() scheme . 20
5.2 Structure of the circular buffer . 22
5.3 Structure of the DTLS sliding window . 22
5.4 Bit-ring . 22
5.5 Bit-ring shift on continuous batch . 23
5.6 Bit-ring shift on exceeded window size . 23
5.7 Bit-ring restore inactive block . 24

6.1 flamegraph — gnutls_recv_int() without kDTLS disabled 27
6.2 flamegraph — gnutls_record_send2() kDTLS disabled 27
6.3 flamegraph — gnutls_record_send2() kDTLS enabled obsolete 28
6.4 flamegraph — gnutls_record_send2() kDTLS enabled 29
6.5 flamegraph — gnutls_recv_int() kDTLS enabled 29

7.1 Network topology for testing . 31
7.2 OpenconnectVPN iperf3 benchmark DTLS1.2 x DTLS1.3 32

8.1 ktls-util setup diagram . 34
8.2 kTLS with BPF . 35

3

Chapter 1

Introduction

(D)TLS, or Datagram Transport Layer Security, is a crucial cryptographic and communica-
tion protocol designed to secure computer networks. Its primary functions are to authenti-
cate the parties engaged in communication, establish a secure channel through a handshake
process, and manage the encryption and decryption of data being exchanged.

Unlike TLS (Transport Layer Security), which is geared towards stream-based appli-
cations like file transfer and messaging, DTLS is specifically tailored for datagram-based
applications. This specialization makes it particularly suitable for applications such as
video and audio streaming or gaming, where data packets are sent independently.

Currently, DTLS is deployed in user-level applications only, not in the Linux kernel.
This is in contrast to TLS, which does have a kernel-based implementation known as kernel
TLS (kTLS). Bringing DTLS into the Linux kernel offers potential advantages. It can lead
to quicker encryption and decryption processes, these tasks can be additionally offloaded
from the CPU to specialized network interface cards (NICs). This offloading is especially
beneficial in reducing CPU load, an advantage that cloud-based streaming service providers
could find particularly valuable.

In terms of its structure, the (D)TLS protocol is divided into two main parts: the
handshake and the record. In the context of integrating DTLS into the Linux kernel,
only the record component will be incorporated. The record is responsible for the actual
encryption and decryption of application data. The kernel implementation will depend
on user-space applications to manage the handshake phase and to supply the necessary
keying material. This division of responsibilities ensures that the kernel handles the most
performance-critical tasks while leaving the initial setup and authentication processes to
the userspace, thereby maintaining the security and efficiency of the system.

The Kernel DTLS (kDTLS) protocol, initially a component of the TLS kernel module,
has not yet been integrated into the mainstream Linux kernel. This thesis investigates the
feasibility of incorporating kDTLS into the existing kTLS module, setting a foundation
for future developments and identifying potential use cases. The study aims to determine
how kDTLS can enhance system performance, specifically through improvements in speed
and latency, and more efficient resource utilization. These enhancements include reduc-
ing power consumption, minimizing context switches, and decreasing memory duplication
across userspace and kernel space, thereby optimizing overall system operations.

4

Terminology

The following terms, abbreviation, acronyms. . . are frequently used throughout the work.

Abbreviations and Acronyms

(D)TLS denotes common feature of protocols TLS and DTLS

k(D)TLS denotes the common feature of both protocol in the Linux kernel module

sequence number used interchangeably with “record number”.

Technical Terms

kernel core component of an operating system, managing communication between software
and hardware. It handles system resources, manages memory and device operations.
The kernel operates at a high privilege level.

userspace part of the operating system where user applications run, separate from the
kernel space. It interacts with the kernel through system calls. The isolation ensures
system stability. The userspace operates in unprivileged mode.

UDP (User Datagram Protocol) is a datagram-based transport layer communication pro-
tocol. It is unreliable, meaning it does not guarantee the delivery and reordering of
packets, nor does it check for duplicates of packets. It also has some advantages, such
as low latency and high throughput.

TCP (Transmission Control Protocol) is a connection-oriented transport layer communi-
cation protocol. It provides reliable, ordered, and error-checked delivery of a stream
of data between applications running on hosts communicating over an IP network.
Unlike UDP, TCP ensures that data packets are delivered in the correct order and
retries sending packets that are lost during transmission. This reliability comes at
the cost of higher latency and lower throughput compared to UDP.

QUIC a transport layer protocol aimed to replace TLS over TCP for Web usage by in-
creasing performance and achieving lower latency by establishing several multiplexed
UDP connections per session.

ciphertext Ciphertext refers to the result of cryptographic transformation of plaintext us-
ing an encryption algorithm. This transformation ensures that the data is unreadable
to unauthorized parties. Ciphertext can only be understood and reverted to plaintext
if the decryption key is known.

plaintext Plaintext is any readable data used as input for encryption. It represents the
original message or data before any cryptographic operations are applied.

5

Units of measurement

Mb/s (Megabit per second) — also [Mbit/s], used as a measure for network bandwidth,
i.e., how many million bits per second can travel through the given media.

6

Chapter 2

DTLS

(D)TLS is a cryptographic/communication protocol handling computer network security.
The protocol provides means to authenticate the communicating parties with certificates,
establish a secure connection via a (D)TLS handshake, and encrypting the communication.
It consists of two main parts, handshake and record layers.

DTLS is ideal for applications that don’t need reliable transport but require low delays.
It is being deployed in many types of applications such as VoIP (Voice over IP), WebRTC
(Web Real-Time Communication), IOT (Internet of things), Online gaming and Cloud
streaming services.

2.1 Overview of (D)TLS

2.1.1 Handshake layer

The handshake is used to establish the connection by:
a) authenticating communicating parties using certificates.

b) negotiating all the security parameters, such as highest supported (D)TLS Version,
ciphersuite, elyptic-curve groups. [7, Section 4.1.1]

c) deriving a shared master secret by means of asymmetric cryptography to be later
used by the record layer 2.1.2

2.1.2 Record layer

The record handles encryption of the application data by means of symmetric cryptography
with keys derived by handshake. Most data transfer and communication happen with
occasional interruptions by Alerts, or post-handshake messages, after which the execution
is sent back to the Handshake 2.1.1.

2.1.3 Alert layer

The alert layer is used to handle alert messages received from peer.

2.1.4 (D)TLS Session

A (D)TLS session describes an established secure connection between a client and a server.
It is initiated using the (D)TLS handshake 2.1.1, after which data is transmitted using

7

(D)TLS record 2.1.2. Thanks to session resumption, a session can span multiple underlying
network connections. This feature allows for a quicker resumption of the session compared
to establishing a new one by leveraging a Pre-shared Key (PSK) 4 exchanged during the
previous session.

2.1.5 (D)TLS Epoch

In a Transport Layer Security (TLS) session, data transmission is organized into phases
called ’epochs’. Each epoch corresponds to a specific phase in the TLS handshake or data
transfer process, and is characterized by a unique set of cryptographic keys. These keys
are used to ensure the confidentiality and integrity of the data as it is transmitted over a
network. Epochs in TLS help manage the transition between different security contexts
during a session, allowing for changes in encryption and authentication methods as the ses-
sion progresses. Initially, messages may start unencrypted but become increasingly secure
through subsequent epochs as new keys are negotiated and applied. Below is a detailed
table that outlines specific epochs and their associated cryptographic functions in a TLS
session, refer to Table 2.1 below.

Epoch Description
0 Unencrypted DTLS messages including ClientHello, Server-

Hello, and HelloRetryRequest.
1 Used for messages encrypted with keys derived from the

client_early_traffic_secret. Omitted if no early data
is provided by the client.

2 Protects messages using keys from
[sender]_handshake_traffic_secret, covering ini-
tial handshake messages like EncryptedExtensions and
CertificateVerify. Does not include post-handshake mes-
sages.

3 Messages are encrypted with keys from the initial
[sender]_application_traffic_secret_0, including cer-
tain post-handshake messages.

≥ 4 . . . 264 − 1 Messages are secured with keys from
[sender]_application_traffic_secret_N, where N>0.

Table 2.1: Cryptographic Functions of TLS Epochs

2.2 DTLS protocol
DTLS is implemented for applications running on datagram-based transport protocols such
as UDP and STCP. As those transports are unreliable, 1. There is a heavy emphasis on
diverging from the TLS protocol as little as possible, yet DTLS protocol needs to provide
means to:

a) make the Handshake reliable with Acknowledge (ACK) messages 2.2.1.

b) protect against replay attack 2.3.2 using sliding window and sequence number.

8

c) keep the session (connection) alive after alternation of endpoint addresses by using
Connection ID extension 2.3.3

2.2.1 ACK message (a)

The ACK message in DTLS1.3 indicates which handshake records have been received and
processed, utilizing a separate content type (code point 26) to avoid inclusion in the hand-
shake transcript. It consists of a record numbers list, marking received and either processed
or buffered handshake messages in sequence. This mechanism is critical to prevent dead-
locks by ensuring only relevant records are acknowledged. During a handshake, ACKs
are confined to the current flight, reflecting DTLS’s handshake sequential structure. Post-
handshake, ACKs may cover multiple flights, offering flexibility in managing extended com-
munication scenarios.

2.3 DTLS version 1.3
DTLS1.3 comes with many improvements, many of which were adapted from the QUIC
protocol 1. This section describes only the improvements to the record part of the protocol.
For a comprehensive overview of the enhancements of both TLS1.3 and DTLS1.3, see. [9].

2.3.1 Demultiplexing Unified Header

The unified header is variable in length. The content type DTLS version are hidden in the
ciphertext; The DTLS1.3 version is instead distinguished by the first byte of the header as
an identifier, as well as a header structure descriptor; see Figure 2.1. The most significant
3 bits are a fixed value of 001; they indicate the presence of DTLS1.3 unified header. The
following bits represent the presence of the connection ID, the 8 or 16 bit size sequence
number, and the presence of a 16 bit length value in this order. The last 2 bits represent
the least significant bits of the epoch number.

Figure 2.1: DTLS Ciphertext Unified Header

9

Epoch

The Epoch is resolved by comparing the 2 low bits of the current epoch stored locally with
the on-wire bits included in the unified_hdr; see Figure 2.1. If they do not match the
most recent epoch, they are compared with the previous epoch, if it still does not match it
is discarded.

Sequence number

In Datagram Transport Layer Security (DTLS), the sequence number is used to protect
against replay attacks and ensure data integrity. Each DTLS record contains a sequence
number, which is incremented for each transmitted record. This mechanism helps in ver-
ifying the order and uniqueness of the received records, enhancing security in unreliable,
connectionless communication environments.

AEAD (Authenticated Encryption with Associated Data) is a method that ensures both
the confidentiality and integrity of data. It encrypts data for privacy (encryption)
and authenticates both the encrypted and additional associated data for integrity
and authenticity (authentication)

AES (Advanced Encryption Standard) is a widely-used symmetric encryption algorithm,
notable for its efficiency and security. It encrypts data in fixed-size blocks using sym-
metric keys. AES can operate in various modes, in this context it will be Electronic
Codebook (ECB) 2.3.1

ChaCha20-Poly1305 - This algorithm merges the ChaCha20 stream cipher and Poly1305
MAC, providing efficient encryption and data integrity, suitable for varied data lengths
and secure communications.

ECB (Electronic Codebook) — This is one of the most basic encryption modes. In ECB,
each plaintext block is encrypted separately using the same cryptographic key. Com-
pared to other modes, such as CBC (Cipher Block Chaining), which incorporates the
previous block’s ciphertext as an initialization vector (IV) to enhance security, ECB
is considered less secure. CBC mode requires possession of both the current and pre-
ceding ciphertext block, as the previous block is XOR-ed with the plaintext, thereby
increasing message obfuscation and complicating cryptanalysis. However, CBC and
any other chaining modes of operation are not ideal for UDP connections, where
messages might arrive out of sequence or be missing altogether.

At the start of a new epoch, the epoch’s master secret is used to generate the sn_key
(sequence number key). The sequence number of a message is deciphered by encrypting the
first 16 bytes of the message ciphertext with the sn_key, producing a 16-byte mask. The
first one or two bytes (depending on the number of sequence bytes in the header 2.3.1) of
this mask are XOR-ed with the header’s sequence bytes to extract one or two bytes of the
sequence number. These bytes are then compared to the least significant bits of the next
expected sequence number, incrementally adjusting the compared sequence number until a
match is found.

[8] When the AEAD 2.3.1 is based on AES, then the mask is generated by
computing AES-ECB 2.3.1 on the first 16 bytes of the ciphertext:

10

Mask = AES-ECB(sn_key, Ciphertext[0..15])

When the AEAD is based on ChaCha20, then the mask is generated by treating
the first 4 bytes of the ciphertext as the block counter and the next 12 bytes
as the nonce, passing them to the ChaCha20 block function (Section 2.3 of
[CHACHA]):

Mask = ChaCha20(sn_key, Ciphertext[0..3], Ciphertext[4..15])

The sn_key is computed as follows:

sn_key = HKDF-Expand-Label(Secret, "sn", "", key_length)

2.3.2 Replay protection

Replay attack

A replay attack is a specific type of man-in-the-middle attack in which an attacker intercepts
legitimate network transmissions. During this process, the attacker may capture a single
packet or a series of packets, which are either stored for future use, such as decryption
when the employed ciphers become obsolete, or retransmitted to the intended recipient.
The purpose of the latter is to deceive the receiver into accepting the retransmitted packet
as original and legitimate.

For example, consider a scenario involving a bank transaction where an attacker, posi-
tioned to intercept the data, records a transaction where they are designated as the ben-
eficiary. The attacker could then repeatedly resend this transaction, potentially initiating
multiple unauthorized transfers to benefit themselves.

Another illustrative case of a replay attack occurs when an attacker captures all session
packets from a communication session. The attacker’s goal is to later retransmit these
packets to impersonate a legitimate user, thereby gaining unauthorized network access. This
type of attack takes advantage of security systems that fail to differentiate between original
and retransmitted data, relying on capturing authentication details or session tokens that
are reused in the fraudulent session to deceive security protocols.

To combat replay attacks, various preventive measures can be employed. These include
the use of time-stamping to verify the timeliness of each packet, challenge-response mech-
anisms that require participants to prove their identity in real-time, and finally sequence
enumeration combined with a sliding window technique to check for duplicate packets,
which is the case for DTLS.

11

Sliding window

A bit-mask keeping track of sequence numbers that have been received. The size of the slid-
ing window is for the implementation to decide, but at least a 64bit mask is recommended.
The right-most cell represents the highest sequence number received. When a new packet
arrives, its sequence number is first decrypted and then accepted or discarded based on
the sliding window. If it is smaller than the leftmost value, it is discarded; if it fits into
the window and the cell indicates that it was not yet received, or if it is higher than the
right-most cell value, it is accepted and marked in the bit-mask as received.

Note that if a higher than right-most value is received, the sliding window is shifted to
accommodate the newly received packet. It is unlikely that such a packet would be received
for a large enough window, e.g., 64bit, as most of the implementations shift the window
periodically. But on the rare occasion when this happens, it is better to potentially discard
past messages than to lose newer ones.

Figure 2.2: Sliding window

12

2.3.3 Connection ID

Figure 2.3: Connection ID example

UDP connection is usually identified by the
5-tuple (source IP address, source port, des-
tination IP address, destination port, trans-
port protocol); this falls short on occasions
such as NAT rebinding, in which case the 5-
tuple would be altered, which will inevitably
results in connection failure. In DTLS1.3
this problem is solved by negotiating connec-
tion IDs to identify the session. It is imple-
mented as an optional DTLS extension that
holds the cid the sender wishes the endpoint
to use. The zero-length cid in the exten-
sion indicates that the sender is willing to use
the endpoint’s Connection ID when sending
records, but does not wish to receive its cid
in incoming messages. The negotiation be-
gins with the client attaching the Connection
cid extension to the Client_Hello message.
Upon receiving the message, if the cid size
is nonzero, the server will use this value in
unified_header for outgoing messages af-
ter the handshake is complete. If the server
does not wish to receive a cid in messages
from the client, it will send a zero-size cid in
the extension; if it wishes otherwise, it will
send a cid of its choice. DTLS1.3 supports
renegotiating the CID with a NewConnec-
tionID message that contains a list of CID
values to use and a usage field indicating the
way to use the new CIDs; that is, as a spare
for when the connection parameters change
or immediate, telling the receiver to use
one of the provided CIDs for the following
communication. There is also a possibility
of requesting that the other side send the
NewConnectionID with spare CIDs by send-
ing RequestConnectionId. This is done
in anticipation of changes in the 5-tuple val-
ues.

Implementation must drop the packet if
CID is received, while neither side expects
it.

13

Chapter 3

GnuTLS

A cryptography library, distributed under the GNU Lesser General Public License version
2.11, facilitates secure communication by implementing SSL, TLS, and DTLS protocols
alongside related technologies2. In this work, the library is utilized as the userspace imple-
mentation for the DTLS1.3 handshake, from which record keys are derived. Additionally,
the library supports kTLS3, greatly simplifying the integration of kDTLS. This is due to
the existing functionality for provisioning the keyring material to the kernel and having
custom pull and push function aligning with the kTLS API, for the minor modification
needed to also support the kDTLS see. sections 3.2 and 5.3.
At the time of writing of this work, the library doesn’t support DTLS1.3; therefore, a
implementation was necessary to facilitate the development and testing of kDTLS.

3.1 DTLS1.3 implementation
This section describes the changes introduced by the provisioned path. (see. attached CD
A.1 for original or Merge Request4 for latest development)

3.1.1 DTLS1.3 specific functions

• uint16_t _dtls13_resolve_epoch();
Resolves the epoch number 2.1 for a DTLS1.3 session. It uses the session state and
2 epoch bits 2.3.1 from the unified header. The 2 bits represent the lowest order bits
of the epoch and are matched against the currently active session epoch to determine
the exact epoch number, which is crucial for session state management.

• int _dtls13_resolve_seq_num();
Determines the sequence number for a given epoch after deciphering the sequence
number bits as described in subsection 2.3.1.

• int _dtls13_encrypt_seq_num();
Encrypts the sequence number for transmission 2.3.1. It takes into account the size
of the sequence number and the ciphertext, using the specified record parameters. It
is also used by _dtls13_resolve_seq_num() for sequence number decryption.

1https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
2https://www.gnutls.org/
3https://fedoraproject.org/wiki/Changes/KTLSSupportForGnuTLS
4https://gitlab.com/gnutls/gnutls/-/merge_requests/1667

14

https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
https://www.gnutls.org/
https://fedoraproject.org/wiki/Changes/KTLSSupportForGnuTLS
https://gitlab.com/gnutls/gnutls/-/merge_requests/1667

• inline unsigned _dtls13_calculate_header_length();
Calculates the length of the DTLS1.3 protocol unified header. This inline function
streamlines the processing of the header based on the header tag.

• int gnutls_dtls13_recv_ack();
Handles the reception of an acknowledgment (ACK) messages 2.2.1 in a DTLS1.3
session. This function is used for confirming the successful receipt of handshake
messages, ensuring reliable data transfer during the DTLS handshake.
Commonly used by the client to receive acknowledgment of successful delivery of its
final handshake messages

• int gnutls_dtls13_send_ack();
Manages the sending of an ACK messages 2.2.1 in a DTLS1.3 session. It ensures
that the other party in the session is informed of the successful reception of messages,
maintaining protocol integrity.
Commonly send by the server to acknowledge the final round of handshake messages
from the client

3.1.2 Handshake/Negotiation modifications

• Use the new TLS1.3 Hello Retry Request message instead of the old DTLS1.2 Hello
Verify Request for DTLS1.3.

• Disable/Enable the appropriate TLS extensions.

• exclude the fragmentation information for the PSK4 and client handshake finished5

messages digest.

• add The ACK 3.1.1 messages to the handshake state machine for both the client and
server.

Encryption/Decryption

• The DTLS1.3 unified header 2.3.1 containing the non-encrypted sequence number
is now being used as the associated data part of the AEAD 2.3.1, for encrypting the
plaintext. This means that in order to decipher the plaintext, the record number
must be resolved first.

3.2 GnuTLS kDTLS

3.2.1 Enabling k(D)TLS

• Load the kernel module 5.3.2

• kTLS is not yet in most distributions by default. It can be enabled by adding ktls
= true in the [global] section6 of the GnuTLS configuration file7

5https://tls13.xargs.org/#client-handshake-finished
6https://www.gnutls.org/manual/html_node/System_002dwide-configuration-of-the-

library.html
7https://fedoraproject.org/wiki/Changes/KTLSSupportForGnuTLS#How_To_Test

15

https://tls13.xargs.org/#client-handshake-finished
https://www.gnutls.org/manual/html_node/System_002dwide-configuration-of-the-library.html
https://www.gnutls.org/manual/html_node/System_002dwide-configuration-of-the-library.html
https://fedoraproject.org/wiki/Changes/KTLSSupportForGnuTLS#How_To_Test

3.2.2 Implementation

• Extended the gnutls_record_get_state() function with a new API function
gnutls_record_get_state_sn() to also retrieve sequence number key alongside other
cryptographic primitives such as Master Secret, IV, which are passed to be to the ker-
nel via the crypto_info structure.

• The setsockopt now check the underlying transport protocol, that is TLS or DTLS
and uses TCP_ULP and UDP_ULP respectively.

16

Chapter 4

OpenconnectVPN

OpenConnect VPN 4 is an SSL VPN client initially created to support Cisco’s AnyConnect
SSL VPN. It has since evolved to support protocols beyond Cisco’s original SSL VPN
specification. OpenConnect is open-source and has been designed to be easy to use and
configure. It has been used in the past for very similar purposes by Fridolín Pokorný and
his work “Linux VPN Performance and Optimization” [6]

In the scope of this work, the library is used for performance testing of the DTLS1.3
implementation.

VPN Virtual private network, used for accessing Local are network by creating an en-
crypted channel between VPN client and server. Nowadays, used also for privacy by
serving as a proxy.

ocserv A openconnect’s VPN server utility.

openconnect A openconnect’s VPN client utility

PSK Pre-Shared Key, used by (D)TLS to establish connection without key-exchange, thus
increasing security and potentially improving on session set-up time as only one round
trip is necessary.

• In band — The PSK is exchanged during an already established (D)TLS con-
nection for future connections, i.e., session resumption.

• Out of band — The PSK is distributed beforehand by any secure means. It is
then used during the initial (D)TLS session handshake.

4.0.1 Connection establishment

The connection is first established using TLS (TCP)1 to perform authentication of the
connecting user, for instance by user:password pair. Once authenticated, the ocserv creates
a PSK 4 and shares it for the negotiation of the actual application connection using DTLS.

4.0.2 Implementation

• The DTLS1.3 doesn’t use connection ID field of a handshake message which the oc-
serv uses for sharing application specific ID, this was anticipated with the introduction

1https://ocserv.openconnect-vpn.net/technical.html

17

https://ocserv.openconnect-vpn.net/technical.html

of TLS1.3 so the ocserv also supports receiving it via a custom TLS extension with the
ID of 48018, The TLS extension was added via the gnutls_session_ext_register()2

which allows adding extension dynamically to the GnuTLS session as a part of open-
connect implementation.

• The ocservs custom transort push and pull functions which are called after the en-
cryption and decryption respectively had to be dissable as they dissalow the use of
k(D)TLS.

• ocserve obsoleted the non zero copy version of the dtls_push so it was updated and
the zero-copy version which directly conflicts with the kDTLS implementation by
using different system calls was dissabled.

2https://www.gnutls.org/manual/gnutls.html#TLS-Hello-Extension-Handling

18

https://www.gnutls.org/manual/gnutls.html#TLS-Hello-Extension-Handling

Chapter 5

DTLS1.3 kernel module
implementation

Kernel Module is an object file containing code that can extend the functionality of the
operating system kernel without the need to reboot the system. These modules can
be dynamically loaded and unloaded at run-time, allowing for flexible modification of
the kernel’s capabilities as needed. Kernel modules are particularly useful for adding
support for new hardware (like device drivers), file systems, or even new networking
protocols.

5.1 Kernel TLS
kTLS1 is a Linux kernel implementation of the TLS record 2.1.2. It relies on a user-space
application to perform the TLS handshake, that is, establish the connection and derive key
material, which is then passed to the kernel using setsockopt(). The application data is
then passed to the kernel unencrypted, via a sendmsg() where is it encrypted, and handed
over to the transport layer for sending. For the receiving part, the data is read from the
socket by the kernel, decrypted, and then received in the userspace via recvmsg() call. The
actual encryption/decryption can be performed either by the CPU itself or, as a means of
offloading the former, by a peripheral such as special network interface cards.

5.1.1 kTLS sendfile()

When encryption or decryption is performed, the data have to go to userspace which in-
creases memory consumption and CPU usage. You can see this in the picture 5.1a. First the
data is read from the disk to a user space buffer, and then it is encrypted and saved to yet
another buffer from which it is then send to a socket. kTLS overcomes this with sendfile
and splice functions that can be used to send data directly from the disk through the kTLS
module to a socket without ever entering the userspace. Thus, saving us from 2 content
switches and 2 data copies. We can see this in the picture 5.1b. The GnuTLS negotiates
a connection and provides all the cryptographic keyring material needed for encryption to
the kTLS. Data goes directly from Disk to kTLS where it is encrypted and sent to a socket.

1https://www.kernel.org/doc/html/latest/networking/tls.html

19

https://www.kernel.org/doc/html/latest/networking/tls.html

(a) Non kTLS (b) kTLS

Figure 5.1: kTLS sendfile() scheme

5.1.2 Implementation

kTLS uses the function pointer dispatch to associate the system socket calls sendmsg()
and sendpage() with their corresponding custom versions prefixed with tls_. The custom
software versions, tls_sw_sendmsg() and tls_sw_sendpage(), are in charge of retrieving
the data to be sent either from the userspace or the kernel, applying a BPF evaluation
8.1.2, encrypting the data, and both employ the tcp_sendpage function to transfer the
encrypted data to the transport layer of the networking stack.

5.2 kDTLS
This is not a first attempt of implementing DTLS into the kernel, a thesis focused on
enhancing the VPN connections using the kernel crypto was conducted by Fridolín Pokorný
[6] resulted in the creation of the TLS kernel module which the DTLS support that didn’t
make it into the mainline kernel. Since then, the Linux kTLS module has undergone
significant evolution. The current work represents a new attempt to implement DTLS in
the kTLS module.

5.2.1 Differences between TCP and UDP in regard to kTLS

Sending

There are no notable dissimilarities as the underlying transport protocol handles the specifics
of each of the protocols.

Receiving

As opposed to TCP, UDP does not guarantee reliable data delivery nor packet order in
which the packets arrive. This eliminates the need for packet buffering, as the packets can
be independently both decrypted and provided to the userspace.

5.3 Implementation details
The patch modifies the following Linux kernel files

• Header files tls.h and uapi/linux/tls.h.

20

• Source files under the net/tls directory.

The protocol is implemented as part of the existing kernel TLS module(tls.ko) as most
of the cryptography related code is the same, the changes are mostly in the handling of the
underlying transport protocol.

As there is no UDP_ULP (UDP Upper Layer Protocol) equivalent to TCP_ULP (used by
kTLS) in the kernel, a patch [1] from a series of patches designed to implement the QUIC
protocol within the kernel was applied.

Although the UDP is connectionless meaning that it does not bind the socket to one
connection with specific destination using the connect() system function as is the usual
case for TCP, It is still possible to use the connect() which comes in handy in this situation
as all the necessary information for the transmission is set directly to the socket, so there
is no need to resolve it while manipulating the application data in the kernel. To support a
connection-less kDTLS socket, a lookup table of connections indexed by routing data and
their corresponding cryptographic primitives would be required, thus introducing additional
overhead.

5.3.1 DTLS Sliding window

To monitor the sequence numbers of received packets 2.3.2, a circular buffer2, implemented
as a binary ring array 5.2, was employed. This structure is particularly memory-efficient
since the memory it occupies is exactly equivalent to the size of the sliding window 2.3.2,
measured in bits. In terms of performance optimization, the buffer uses a pointer to monitor
segments that become invalid when the buffer rotates 5.5. Should an attempt be made to
access these invalidated segments, the system automatically clears and re-validates the
entire affected section 5.4. If a message with a sequence number exceeding the window size
is received, the ring is shifted to accommodate the change. You can see this in the figure
5.6.

To monitor the sequence numbers of received packets, a circular buffer3, implemented
as a binary ring array, is employed (see Figure 5.2). This structure is particularly memory-
efficient since the memory it occupies is directly proportional to the size of the sliding
window (discussed in Subsection 2.3.2), and is measured in bits.

In terms of performance optimization, the buffer utilizes a pointer to track segments that
become invalid as the buffer rotates (illustrated in Figure 5.5). Should there be an attempt
to access these invalidated segments, the system automatically clears and re-validates the
entire affected section, as shown in Figure 5.4.

Furthermore, if a message with a sequence number that exceeds the current window
size is received, the buffer is dynamically shifted to accommodate the new sequence num-
ber, ensuring continuous data integrity and flow. This adjustment process is depicted in
Figure 5.6. The actual implementation may rotate the window more than is shown in the
figure to account for the likelihood of receiving even higher sequence numbers in subsequent
messages.

The sliding window structure 5.3, situated within the tls_sw_context_rx, employs the
ring structure 5.2. It aligns the most recently received sequence number(start_sn) with
the initial element of the bit ring.

2https://en.wikipedia.org/wiki/Circular_buffer
3https://en.wikipedia.org/wiki/Circular_buffer

21

https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Circular_buffer

typedef struct bit_ring_s {
u64 size; //bit size
u64 start; // position of the first bit
u64 inactive; // position after whcich data is not valid
bit_ring_segment_t *data;

} bit_ring_t;

Figure 5.2: Structure of the circular buffer

struct dtls_sliding_window {
u64 window_size;
u64 start_sn;
bit_ring_t ring;

};

Figure 5.3: Structure of the DTLS sliding window

With the proposed changes, when a sequence number not complying to the sliding
window is received, the recvmsg() 5.3.3 system call return EAGAIN telling the caller to call
the recvmsg() function again.

(a) Initial state (b) Messages {7, 8, 11, 12, . . . } received

Figure 5.4: Bit-ring

22

(a) continuous batch (b) Shift on continuous batch

Figure 5.5: Bit-ring shift on continuous batch

(a) SN exceeding window size (b) Shifting

(c) Result

Figure 5.6: Bit-ring shift on exceeded window size

23

(a) Access to inactive block (b) Inactive block restored

Figure 5.7: Bit-ring restore inactive block

5.3.2 Setup

Enabling kDTLS

The module has to be first loaded using either modprobe tls or insmod <module_path>/tls.ko.
The setsockopt function4 is used to enable kDTLS on the socket in a manner similar to

that of kTLS.

setsockopt(sd, SOL_UDP, UDP_ULP, "dtls", sizeof("dtls");

Providing cryptographic primitives

Changes were made to the tls12_crypto_info... structures to accommodate the DTLS1.3
record header encryption?? by adding a sn_key (sequence number key) item.

The API for providing the cryptographic primitives to the kernel remains the same as
for the kTLS.

int setsockopt(int sock, int level, int option,
const void* info, size_t info_len);

5.3.3 Record implementation

recvmsg()

The dtls_sw_recvmsg() function was introduced, its only dissimilarity to the udp_recvmsg()
is that it calls the tls_decrypt_sw() function once there is a message. The encrypted mes-
sages are provided to the decrypt function via the struct tls_decrypt_arg. For the scope
of this work, kDTLS is supported in zero-copy mode only. The kTLS module uses strparser5

to handle a queue of messages, which is of no use for DTLS, but as it is used throughout
the kTLS implementation, the DTLS implementation uses one struct strp_msg per con-
nection which holds the full_len of the message and an offset.

4https://linux.die.net/man/2/setsockopt
5https://www.kernel.org/doc/Documentation/networking/strparser.txt

24

https://linux.die.net/man/2/setsockopt
https://www.kernel.org/doc/Documentation/networking/strparser.txt

sendmsg()

Contradictory to recvmsg(), sendmsg does not handle any queue of messages, thus the
only required changes are the AAD and header fabrication, subsequent sequence number
encryption, and changing of the underlying transport protocol for sending the data.

sendfile()

The sendfile() call calls the sendpage() loads the data directly from the file descriptor
and calls the same underlying function for encryption as does the sendmsg. This has a big
impact on the performance as the data is moved inside the kernel only, never entering the
userspace.

DTLS1.3 header and AAD

In the context of DTLS1.3, the header is utilized as the AAD (Associated Data) as described
in 2.3.1.

The header construction occurs within the dtls_make_aad() function to be used as
AAD, the header is additionally copied to a designated header portion of the msg_en struc-
ture. After the data encryption process, the record sequence number in the header is
encrypted using the dtls_encrypt_seq_num() function.

The crypto_info structure for each cipher suite had to be modified to accommodate
the record sequence number encryption by adding a sn_key (sequence number key) item.

For the receiving part, the header is handled in tls_decrypt_sg() and the record
number is resolved using the dtls_resovle_seq_num()

25

Chapter 6

Flamegraphs

Flame graphs1 are a graphical representation of stack-traced data obtained from a profiled
application or system. The data are displayed in vertical columns, resembling flames; hence
the name. There is also an inverted version of this graph, known as Iciclegraph. Those
graphs help to easily track the code path and also to identify the number of CPU cycles.

6.0.1 Test subject

The examples were taken on a server that echoes the client’s messages. The client sends
1000 times the message 13 bytes of text ”Hello world!”, so that enough samples are
captured so that all the transport functions are clearly visible and span a great portions of
the flamegraph. So that we get a nice call stack for the receive and send functions.

6.0.2 Flamegraph generation

• diagnostic data used to generate the flamegraphs were obtained using pref(1)2.

$ perf record -a -g --call-graph dwarf -- ./server

• recorded data is then processed according to the guide3

Note, the perf.data generated by step one has to be present in the FlameGraph folder
obtained below.

git clone https://github.com/brendangregg/FlameGraph
cd FlameGraph
perf record -F 99 -a -g -- sleep 60
perf script | ./stackcollapse-perf.pl > out.perf-folded
./flamegraph.pl out.perf-folded > perf.svg
firefox perf.svg # or chrome, etc.

If expected function are missing the FlameGraph, increasing the -F num will result in more
captured samples per second

1https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
2https://man7.org/linux/man-pages/man1/perf.1.html
3https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

26

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://man7.org/linux/man-pages/man1/perf.1.html
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

The flamegraphs produced do not present a timeline, but instead display an approximate
count of cycles spent within each function. If a function is invoked from another, the cycles
are also accumulated in the calling function, and this accumulation continues recursively
up the call stack. This method effectively illustrates the call hierarchy, as demonstrated in
the case of the receive and send functions, both with and without kernel DTLS (kDTLS)
enabled.

For full interactive .svd flame-graphs, see. Non-kDTLS4 kDTLS5

Figure 6.1: flamegraph — gnutls_recv_int() without kDTLS disabled

Figure 6.2: flamegraph — gnutls_record_send2() kDTLS disabled

An example of utilizing flamegraphs to detect bottlenecks can be seen during the de-
velopment of this work’kernel module. Initially, the sequence number encryption function
called crypto_alloc_cipher(”aes“, CRYPTO_ALG_TYPE_CIPHER, CRYPTO_ALG_ASYNC)

4non-kDTLS: https://www.fkrenzel.cz/thesis/flamegraphs/flamegraph-recvmsg-GnuTLS.svg
5kDTLS: https://www.fkrenzel.cz/thesis/flamegraphs/flamegraph-recvmsg-kDTLS.svg

27

https://www.fkrenzel.cz/thesis/flamegraphs/flamegraph-recvmsg-GnuTLS.svg
https://www.fkrenzel.cz/thesis/flamegraphs/flamegraph-recvmsg-kDTLS.svg

each time it was invoked; this occurred every time a message was sent or received, as illus-
trated in Figure 6.3.This was very taxing on the performance and fortunately was identified
with the help of a flamegraph.

In the optimized version of the module, shown in Figure 6.4,the proportion of time
spent in tls_tx_record which manages the transition of encrypted data has significantly
decreased. Additionally, tls_push_record, which is responsible for encrypting both the
application data and the sequence number, shows a marked improvement. Notably,
dtls_encrypt_seq_num does not appear at all in the flamegraph of the optimized version,
indicating that it was not captured within the selected sampling rate of the perf command.
A similar issue was also traced in the GnuTLS implementation.

The flamegraph come in handy in situations when an application is hard to debug using
conventional tools such as GDB6 due to security reasons. This was the case for openconnect
so flamegraphs were frequently used during the development.

Figure 6.3: flamegraph — gnutls_record_send2() kDTLS enabled obsolete

6https://sourceware.org/gdb/

28

https://sourceware.org/gdb/

Figure 6.4: flamegraph — gnutls_record_send2() kDTLS enabled

Figure 6.5: flamegraph — gnutls_recv_int() kDTLS enabled

29

Chapter 7

Performance statistics

7.1 Testing setup
Server

Specification Details
Processor Up to 7th Gen Intel Core i7
Memory 16GB DDR4 2133 MHz
Storage NVMe SSD
Ports RJ45 [1 Gb/s]
Operating System Fedora 39 (server)

Table 7.1: Lenovo ThinkPad T470s Specifications

Client

Specification Details
Processor Intel Core i7 (11th Gen)
Memory 32GB LPDDR4x 4266MHz
Ethernet RJ45 via thunderbolt [1 Gb/s]
Operating System Fedora 39 (Workstation)

Table 7.2: ThinkPad X1 Nano Gen 2 Specifications

30

Router

Specification Details
Model MikroTik CRS326-24G-2S+RM
Switch Chip Model 98DX3236
CPU ARMv7 800MHz
Size of RAM 512 MB
Firmware version 6.48.3
10/100/1000 Ethernet Ports 24

Table 7.3: MikroTik CRS326-24G-2S+RM Specifications

7.1.1 Network topology

Figure 7.1: Network topology for testing

7.1.2 OpenConnectVPN Benchmarks Using DTLS Protocol

To evaluate the performance of the OpenConnectVPN connections across different DTLS
protocols, the iperf31 tool was used. iperf3 is a widely recognized network testing tool that
measures bandwidth and the quality of a network link.

The benchmarking process lasted for 10 minutes, during which a TCP throughput test
was conducted to measure the bandwidth of the connection. TCP was chosen for this
test due to its prevalent use in VPN environments, where reliability and data integrity are
crucial.

DTLS1.2 DTLS1.3
total bytes [GB] 1.86 1.52

transmit rate [Mbits/s] 53.3 43.5

Table 7.4: OpenconnectVPN benchmark results

The observed slowness in DTLS1.3, compared to DTLS1.2, is primarily attributed to
the implementation rather than the DTLS1.3 protocol itself. Flamegraphs were utilized
to identify bottlenecks, which have been addressed, but further refinements may still be
necessary.

1https://iperf.fr/iperf-doc.php

31

https://iperf.fr/iperf-doc.php

Figure 7.2: OpenconnectVPN iperf3 benchmark DTLS1.2 x DTLS1.3

kDTLS Performance Analysis

The integration of kDTLS support into Openconnect encountered several technical chal-
lenges, leading to the decision to exclude it from this project due to the absence of likely
performance gains. The DTLS1.3 protocol does not offer substantial performance enhance-
ments compared to its predecessors. Furthermore, the TLS1.3 kTLS implementation, which
closely resembles the DTLS1.3 protocol, up until recently underperformed relative to the
older TLS1.2 implementation. This underperformance is attributed to the inherent char-
acteristics of the protocol [5]. Additionaly the overhead introduced by the (D)TLS session
setup specificaly the provisioning of keys and allocation all the neccesary resources in the
kernel has to be taken in to consideration as kTLS module doesn’t support key update
meaning that it doesn’t support chaning the keys on a already established connection,
which significantly reduces the lifespan of the session. This is the reason kDTLS is used by
default by most libraries 2

Splice()

Potential enhancements could be realized through the splice() system call, which facil-
itates direct data movement between file descriptors, thus reducing the overhead of data
copying between kernel and user space. This operation is often utilized by pipes, which
are communication channels that allow data to pass from one process to another sequen-
tially. However, a significant limitation arises with the TUN/TAP device used by Open-
connectVPN, which does not support these splice() operations [6].

2https://pagure.io/fesco/issue/2871#comment-824428

32

https://pagure.io/fesco/issue/2871#comment-824428

Chapter 8

Future of work

8.1 Related work

8.1.1 ktls-utils

The proof-of-concept utility ktls-util1 aims to establish a TLS connection on a socket created
in the Linux kernel space. As implementing the TLS handshake into the kernel itself
is considered by many an inadequate approach as described in Subsection 8.1.1; it will
be carried out in the user space, as is the case for the standard kTLS userspace socket;
however, this raises the question of how to provide the userspace with access to the kernel
socket.

The ktls-util resolves this by launching a separate user-space process, referred to as
“user agent”, which will be responsible for negotiating and setting the keyring material
onto the kernel socket.

First, a connection must be established between the host and the peer, then the user
agent creates a socket using the newly introduced address family type AF_TLSH and lis-
tens for incoming connections from the kernel using the system socket function listen().
The kernel then provides a TCP socket to the userspace process through the listening
socket via a new call tls_client_hello(*socket, *done); the *done stands for a func-
tion pointer to a function that is to be executed once the keyring material is negotiated
using gnutls_handshake()and is set onto the kernel socket using the standard kTLS API.
Once this is done, the userspace lets go of the kernel socket and a TLS session on a kernel
socket is successfully established.

You can see the process in figure 8.1

In-kernel TLS handshake

At the time of writing this thesis, the Linux kernel crypto is not suitable for TLS handshake,
as many required cryptographic functions are obsolete and would require updating and
extensive testing.

The TLS handshake constitutes a significant portion of the TLS code, and its introduc-
tion will lead to an increase in maintenance. There are also many corner cases that would
need to be handled, this would add to code complexity, thus reducing readability.

Another pain point would be the patching of the kernel, userspace library is much easier
to fix and redistribute/update.

1https://github.com/oracle/ktls-utils

33

https://github.com/oracle/ktls-utils

There is also demand for socket in kernel space to support the (D)TLS. This problem
alongside a solution was presented at 2022 Linux Storage, Filesystem, Memory-management
and BPF Summit by Chuck Lever and Hannes Reinecke [3]. The software solution for the
problem is known as the ktls-util2, which creates a listening daemon on in the userspace
waiting for a handshake request from the kernel space. the request contains a reference to
the socket as well as a pointer to a callback function done which is to be executed after the
handshake was complete, and the socket is free from userspace. 3

Figure 8.1: ktls-util setup diagram
2https://github.com/lxin/tls_hs/
3https://lwn.net/Articles/896746/

34

https://github.com/lxin/tls_hs/
https://lwn.net/Articles/896746/

8.1.2 Berkeley Packet Filter

Linux kernel version 4.20 received patches to support the combination of two until then
mutually exclusive features, namely kTLS and BFP (Berkeley Packet Filter). This allows
packet inspection and filtering ahead of the data encryption, thus saving significant re-
sources as opposed to userspace TLS implementations where the data is encrypted and
then sent to the kernel for BPF processing.

Figure 8.2: kTLS with BPF

8.1.3 Kernel Packet filtering

The combination of Kernel TLS socket 8.1.1 and the BPF 8.1.2 would allow for a VPN DTLS
connection running purely in kernel with the possibility to append the VPN specific data to
the packets directly in the kernel and would also allow for a deep packet inspection [2] i.e.,
application layer filtering, so the packet wouldn’t need to enter userspace for the inspection.
This approach bears resemblance to WireGuard VPN4, which employs a dedicated Linux
kernel module for similar functionalities. However, our proposed method would leverage
BPF to link a userspace program directly to the kernel, specifically interfacing with the
k(D)TLS module, thereby obviating the need for a separate kernel module.

4https://www.wireguard.com/

35

https://www.wireguard.com/

Chapter 9

Future

The GnuTLS implementation is set to be upstreamed following its revision. The opencon-
nect VPN DTLS1.3 support will follow suit if a performance improvement is accomplished
by further optimizing the GnuTLS implementation. Meanwhile, it would be beneficial to
identify a more suitable use case for kDTLS than OpenconnectVPN. As streaming ser-
vices transition to the QUIC protocol, the Internet of Things (IoT) could be a promising
candidate. This potential lies not in performance enhancement, but in reducing power
consumption. Richard W.M. Jones conducted an unpublished test on kTLS using nbdkit1,
a toolkit that allows users to create custom Network Block Device (NBD) servers. This
test revealed that kernel TLS improves power efficiency by enabling sleep mode when the
server is inactive. Other improvement of DTLS1.3 compared to its predecessor, increase
the potential use case of the DTLS1.3 in the world of IOT.

9.1 Upstreaming the patches
Although functioning as expected, the patches lack many features required for smooth
operation. Additionally, The patches did not undergo the comprehensive review process
required to meet established security standards. see. the outline of the specific deficiencies
and additional requirements for the GnuTLS and Kernel patches below:

9.1.1 GnuTLS

The GnuTLS patch falls short of full compliance with the established protocol definitions,
omitting some components deemed irrelevant for the objectives of this project:

• Connection ID is not implemented.

• Comprehensive interoperability CI tests with at least one other library implementing
DTLS1.3 are essential to ensure compatibility across different systems.

9.1.2 kDTLS

The primary objective of the Kernel patch is to assess the feasibility of protocol implemen-
tation within the kernel environment to aid in future development, so the following items
have to be resolved before targeting upstream:

1https://libguestfs.org/nbdkit.1.html

36

https://libguestfs.org/nbdkit.1.html

• recvmsg()5.3.3 currently doesn’t support the dynamic sequence number length2.3.1,
meaning the 16bit length is expected, and the decryption fails otherwise.

• Connection ID is not implemented.

• Currently, only zero-copy for recvmsg()5.3.3 is supported, which might result in
failure on some systems or in specific scenarios.

• The renegotiation of keys is not supported (this also applies for kTLS) which make
kTLS unusable for applications where either a long-lasting connection is expected or
one that exceeds the number of messages that are considered safe for a given cipher.

37

Chapter 10

Conclusion

This thesis conducts an in-depth analysis of the DTLS1.3 protocol, emphasizing its essential
components for both userspace and Linux kernel implementations.

A significant outcome of this work is the creation of a GnuTLS DTLS1.3 implemen-
tation that supplies cryptographic materials to the kernel TLS module. This was done in
preparation for the integration of DTLS into the module, enhancing the existing kernel TLS
(kTLS) framework. The integration of DTLS into the kTLS module allows userspace ap-
plications dependent on datagram-based connections, such as UDP, to potentially achieve
enhanced performance and greater power efficiency.

Upon evaluating the potential impact of the kernel module on OpenConnectVPN, the
specific use of TUN/TAP devices in OpenConnect presents a limitation. This configuration
prohibits bypassing the data transition to userspace, which would otherwise minimize the
use of data buffers and the frequency of context switches. However, the Internet of Things
(IoT) sector presents a more favorable scenario. IoT systems, already leveraging DTLS1.3
features, stand to gain additional improvements from the kDTLS module, speed, latency,
power efficiency and overall device performance.

38

Chapter 11

Reference

The following is a compilation of invaluable resources that have significantly contributed to
the successful completion of this work.

• Sockets in the Linux Kernel by Rami Rosen [10] — In depth learning resource for
Linux kernel sockets.

• Addition of BPF to kTLS by Daniel Borkmann and John Fastabend [2].

• TLS 1.3 Rx improvements in Linux 5.20 by Jakub Kicinski [5]

• Virtualization [4] — Tutorial series on how to set up QEMU VM (virtual machine).
In the context of this work. it was used for setting up the kernel module development
environment.

• Linux kernel module development blog post — This guide was created directly as a
result of this work, intended for newcomers to get them running on kernel development
with a safe and efficient setup.

39

Bibliography

[1] Abouchaev, A. [net-next v4 3/6] net: Add UDP ULP operations, initialization and
handling prototype functions. 8. September 2022. Available at: https://
lore.kernel.org/linux-kernel/20220909001238.3965798-4-adel.abushaev@gmail.com/.
Email message to netdev@vger.kernel.org.

[2] Borkmann, D. and Fastabend, J. Combining kTLS and BPF for Introspection and
Policy Enforcement. Cilium.io, 2021. Available at:
http://vger.kernel.org/lpc_net2018_talks/ktls_bpf_paper.pdf. Whitepaper.

[3] Corbet, J. Extending in-kernel TLS support online. 2022. Available at:
https://lwn.net/Articles/896746/. Accessed: 2024-05-06.

[4] Dhar, A.; Prokop, J. and Dirschel, N. Virtualization — Seting up virtual
machines using qemu online. 2024. Available at:
https://developer.fedoraproject.org/tools/virtualization/installing-qemu-on-
fedora-linux.html. Accessed: May 7, 2024.

[5] Kicinski, J. TLS 1.3 Rx improvements in Linux 5.20 online. July 2022. Available
at: https://people.kernel.org/kuba/tls-1-3-rx-improvements-in-linux-5-20.
Accessed: May 7, 2024.

[6] Pokorný, F. Linux VPN Performance and Optimization. 2016. Master’s theses.
Vysoké učení technické v Brně, Fakulta informačních technologií. Available at:
https://www.vut.cz/en/students/final-thesis/detail/96283. Adviser: Kašpárek,
Tomáš; Referee: Michal, Bohumil.

[7] Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3 RFC 8446.
RFC Editor, august 2018. Available at: https://doi.org/10.17487/RFC8446.

[8] Rescorla, E.; Tschofenig, H. and Modadugu, N. The Datagram Transport
Layer Security (DTLS) Protocol Version 1.3 RFC 9147. RFC Editor, april 2022.
Available at: https://doi.org/10.17487/RFC9147.

[9] Restuccia, G.; Tschofenig, H. and Baccelli, E. Low-Power IoT Communication
Security: On the Performance of DTLS and TLS 1.3. CoRR, 2020, abs/2011.12035.
Available at: https://arxiv.org/abs/2011.12035.

[10] Rosen, R. Sockets in the kernel. In:. Haifa Linux Club, August 2009. Linux Kernel
Networking – advanced topics. Available at: http://www.haifux.org/lectures/217/.

40

https://lore.kernel.org/linux-kernel/20220909001238.3965798-4-adel.abushaev@gmail.com/
https://lore.kernel.org/linux-kernel/20220909001238.3965798-4-adel.abushaev@gmail.com/
http://vger.kernel.org/lpc_net2018_talks/ktls_bpf_paper.pdf
https://lwn.net/Articles/896746/
https://developer.fedoraproject.org/tools/virtualization/installing-qemu-on-fedora-linux.html
https://developer.fedoraproject.org/tools/virtualization/installing-qemu-on-fedora-linux.html
https://people.kernel.org/kuba/tls-1-3-rx-improvements-in-linux-5-20
https://www.vut.cz/en/students/final-thesis/detail/96283
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC9147
https://arxiv.org/abs/2011.12035
http://www.haifux.org/lectures/217/

Appendix A

Content of Attached DVD

Patches are either distributed as a one file with suffix -all or a series in which they were
committed during development in a git_history branch.

Folder/File Content
gnutls-dtls1_3/ Patches for GnuTLS cryptographic library.
kernel-dtls1_3/ Patches for the kernel implementation.
openconnect-dtls1_3/ Patches for openconnect (client) and ocserv (server).
examples/ Code examples used for testing
latex/ Sources for this text
xkrenz00.pdf This text

Table A.1: Content of the attached CD

41

Appendix B

Versions of the used software

Name Version Upstream Git commit number
Openconnect 9.12 d2025f9d49637065aaa15f506b022c45765cf6b7
Ocserv 1.2.5 72b8e19cac44bf1ca0246791967cdc6a012d6d55
GnuTLS 3.8.3 a3c19bcaf679ed7e0fcb71edd89387b889be533a
Wolfssl 5.6.3 c23559a91c55902deefe6f1a5b72c623250b96c9
Fedora Linux kernel-ark 6.7.0 9bacdd8996c77c42ca004440be610692275ff9d0
Iperf3 3.16

Table B.1: Versions of the used software

42

	Introduction
	DTLS
	Overview of (D)TLS
	Handshake layer
	Record layer
	Alert layer
	(D)TLS Session
	(D)TLS Epoch

	DTLS protocol
	ACK message (a)

	DTLS version 1.3
	Demultiplexing Unified Header
	Replay protection
	Connection ID

	GnuTLS
	DTLS1.3 implementation
	DTLS1.3 specific functions
	Handshake/Negotiation modifications

	GnuTLS kDTLS
	Enabling k(D)TLS
	Implementation

	OpenconnectVPN
	Connection establishment
	Implementation

	DTLS1.3 kernel module implementation
	Kernel TLS
	kTLS sendfile()
	Implementation

	kDTLS
	Differences between TCP and UDP in regard to kTLS

	Implementation details
	DTLS Sliding window
	Setup
	Record implementation

	Flamegraphs
	Test subject
	Flamegraph generation

	Performance statistics
	Testing setup
	Network topology
	OpenConnectVPN Benchmarks Using DTLS Protocol

	Future of work
	Related work
	ktls-utils
	Berkeley Packet Filter
	Kernel Packet filtering

	Future
	Upstreaming the patches
	GnuTLS
	kDTLS

	Conclusion
	Reference
	Bibliography
	Content of Attached DVD
	Versions of the used software

