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Chapter 1

Goals of the thesis

The aim of the Thesis is to present my work in the field of tomographic methods
in the modern optics. Applications in the classical optics as well in the quan-
tum optics are presented as solution of three topics, namely wavefront-detection
tomography, photon distribution tomography and quantum-polarization state to-
mography. Here, quantum state tomography formalism provides general frame-
work for all problems in the thesis. Brief contemporary state of research in this
fields is described in chapter 2. Chapter 3 includes experimental and numeri-
cal tools for tomography measurements. Especially, experimental devices and
detailed explanation of numerical tomography algorithms are discussed. Using
these fundamentals the particular experiments and tomography protocols devel-
oped during the past five years are described in details.

Tomography of wavefront sensor which enables a measurement of coherence
properties of light beam is a subject of chapter 4. First experimental realization of
the method is described as a successful reconstruction of vortex beam coherence
matrix, together with vortex beam 3D imaging experiments. Maximum likelihood
iterative algorithm developed for a reconstruction of quantum state density ma-
trix was used for a coherence matrix reconstruction, which determines coherence
properties of light beam. In the second part of the chapter, wavefront tomography
with informationally incomplete measurement is described as a successful demon-
stration of Maximul Likelihood-Maximum Entropy method. All experiments in-
volved classical high intensity light and demonstrate application of quantum state
tomography formalism to classical signals.

In chapter 5, application of data pattern tomography protocol is proposed. The
method solve the problem of measurement apparatus calibration by measuring re-
sponses to know input probe states. The costly detector calibration is than by-
passed by using a direct fitting of data in terms of detector responses. Problem
of choosing proper probe states for particular measurement is discussed together
with numerical verification of the protocol on photon number resolving detector.
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CHAPTER 1. GOALS OF THE THESIS

In our contribution, the device is based on time-multiplexing principle.
Chapter 6 reports a tomographic reconstruction of the polarization sector of a

bright polarization squeezed beam starting from a complete set of Stokes measure-
ment. Given the symmetry that underlines the polarization structure of quantum
fields, the unique Wigner distribution is used to represent states. Direct recon-
struction of the distribution by an inverse Radon transform is compared with the
results of a maximum likelihood estimation. A novel maximum likelihood algo-
rithm experimentally proves to provide significantly higher statistical inversion
stability than the standard inverse Radon transform.

The main results of the thesis are reviewed in chapter 7, where we also give
brief outlook of future work. The list of my publications, citations index and
bibliography are given at the end of the thesis.

The main chapters of this thesis containing new scientific results are based on
the following papers:

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sánchez-Soto, Wavefront
sensing reveals optical coherence, Nature Communications 5, (2014)

D. Mogilevtsev, A. Ignatenko, A. Maloshtan, B. Stoklasa, J. Rehacek, Z.
Hradil, Data pattern tomography: reconstruction with an unknown apparatus,
N. J. Phys. 14, (2013)

CH. Müller, B. Stoklasa, A. B. Klimov, Ch. Gabriel, Ch. Peuntinger, J. Re-
hacek, Z. Hradil, L. L. Sanchez-Soto, Ch. Marquardt, G. Leuchs, Quantum polar-
ization tomography of bright squeezed light, N. J. Phys. 14, (2012)

Y. S. Teo, B. Stoklasa, B.G. Englert, J. Rehacek, Z. Hradil, Incomplete quan-
tum state estimation: a comprehensive study, Phys. Rev. A. 85, 042317 (2012)
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Chapter 2

Contemporary state of research

Light is a major carrier of information about the universe around us, from the
smallest to the largest scale. Measuring light properties may be a difficult task,
especially in quantum optics. As a fundamental feature of quantum mechanics,
we cannot see physical object in their full complexity, because of Heisenberg
uncertainty principle. Tomography techniques were developed more than twenty
years ago [1, 2] to overcome these fundamental limitations. Quantum states may
comprise complementary features that cannot be measured simultaneously and
precisely. However, no principal obstacle exists to observing all complementary
aspects in a series of distinct experiments on identically prepared objects [3]. We
can state the main challenge of quantum state tomography as follows: given a
finite set of identical copies of a system in a state represented by the density matrix
ρ , the state must be inferred from the measured relative frequencies fl , which
sample the true probabilities pl of distinct measurement outcomes [4]. With these
limited resources, the choice of optimal measurements and the design of efficient
reconstruction algorithm turn to be decisive [5, 6].

In this thesis, three different properties of light are measured with the help
of tomography concept, particularly coherence properties of light beams, photon
number distribution of light pulses and polarization state of bright squeezed light.
Quantum tomography is a general framework in all cases, that is why the first
section of the chapter is dedicated to a survey of quantum tomography protocols.
While the photon number distribution of light pulses measurement serves as a
background for development of a special tomography protocol in the thesis, chap-
ters dedicated to coherence properties of light beams and polarization properties
of bright squeezed light present the experimental results. Hence, two sections of
this chapter gives the overview of the experimental methods.
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CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

2.1 Quantum tomography protocols
Quantum state preparation is the first important step for any protocol that makes
use of quantum resources. Examples of such protocols are quantum state telepor-
tation and quantum key distribution which require entangled quantum states. In
order to verify the integrity of the quantum state of the source prepared, one car-
ries out quantum state tomography on the source. Measurements are performed on
a collection of quantum systems (electrons, photons, etc.) that are emitted from
the source, that is, a quorum. Then, the quantum state of the source is inferred
from the measurement data obtained from this ensemble. The measurements are
generically described by a set of positive operators Π j that compose a probability
operator measurement (POM). The procedure of state inference is also known as
quantum state estimation. If the size of the ensemble is infinite, the estimation
procedure will yield the unique true quantum state of the source; this is the fre-
quentist’s definition of the true state, which we accept as the best description of
what the source prepares. However, such an ensemble is never achievable in any
laboratory setting, as one can only perform measurements on a finite ensemble of
quantum systems. As a result, the state estimator obtained will be different from
the true state and depends on the details of the estimation procedure. To make sta-
tistical predictions, the corresponding operator ρ̂ describing this estimator must
be a statistical operator, which is positive. This will ensure that the estimated
probability p̂ j = tr

{
ρ̂Π j

}
for an outcome Π j of any set of POM is positive. We

shall denote all estimated quantities with a “hat” symbol.
There are two popular methods for quantum state estimation: Bayesian and

maximum-likelihood (ML). The Bayesian state estimation method [7–9] constructs
a state estimator from an integral average over all possible quantum states. The
likelihood functional, which yields the likelihood of obtaining a particular se-
quence of measurement detection with a given quantum state, serves as a weight
for the average. This approach includes all the neighboring states near the maxi-
mum of the likelihood functional as possible guesses for the unknown ρtrue. These
neighboring states are given especially significant weight when N is small, in
which case the likelihood functional is only broadly peaked at the maximum.
However, the integral average unavoidably depends on how one measures vol-
umes in the state space, and there is no universal and unambiguous method for
that. The ML approach [4, 10–12], on the other hand, simply chooses the esti-
mator as the statistical operator that maximizes the likelihood functional. Rather
than identifying a unique estimator, as the Bayesian approach always does, the
ML method may only yield a convex set of estimators if the estimated probabili-
ties p̂ j are consistent with more than one statistical operator. If the ML estimator
is unique, and the quorum sufficiently large, both approaches give the same esti-
mator since the likelihood functional peaks very strongly at the maximum.
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CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

When the measurement outcomes form an informationally complete set, the
measurement data obtained will contain maximal information about the source.
Thus, a unique state estimator can be inferred with ML. Unfortunately, in tomog-
raphy experiments performed on complex quantum systems with many degrees of
freedom, it is not possible to implement such an informationally complete set of
measurement outcomes. As a result, some information about the source will be
missing and its quantum state cannot be completely characterized. The ML es-
timator obtained from these informationally incomplete data is no longer unique
and there will in general be infinitely many other ML estimators which are con-
sistent with the data. In Ref. [78], an iterative algorithm (MLME) to estimate
unknown quantum states from incomplete measurement data by maximizing the
likelihood and von Neumann entropy functionals is briefly reported. In that Letter,
it is assumed that the measurement detections are perfect with no detection losses,
i.e. ∑ j Π j = 1. The application of this algorithm was illustrated with examples
of homodyne tomography and it is concluded that, together with a more objec-
tive Hilbert space truncation, this approach can serve as a reliable and statistically
meaningful quantum state estimation with incomplete data.

For successful reconstruction of quantum state several technical as well as
mathematical pre-requisites are needed. A well calibrated detection device per-
forming sufficiently accurate measurement of the signal is an indispensable part
of any reconstruction protocol. However, the calibration is a formidable task by
itself, especially if it is to be done with few-photon states. This problem has re-
ceived increased attention recently, particularly, the so-called ”absolute” calibra-
tion was developed, see [14–19]. Mathematically, the problem of characterizing
an unknown measurement device is closely related to the dimensionality of the pa-
rameter space [20]. For a search subspace of the dimension N there are about N2

parameters characterizing a density matrix and therefore N4 elements of a rank-4
tensor are needed for the description of the link between an arbitrary input signal
and measured outcome. A detailed discussion of detector tomography and related
techniques can be found in [21]. High dimensions of the reconstruction spaces are
often required for a faithful characterization of complex quantum systems [22].
Despite recent progress in the field of quantum process estimation [23, 24], the
problem is far from being solved.

2.2 Shack-Hartmann tomography
Three-dimensional objects emit radiation that can be viewed as complex wave-
fronts shaped by diverse features, such as refractive index, density, or temperature
of the emitter. These wavefronts are specified by both their amplitude and phase;
yet, as conventional optical detectors measure only (time-averaged) intensity, in-
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CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

formation on the phase is discarded. This information turns out to be valuable for
a variety of applications, such as optical testing [25], image recovery [26], dis-
placement and position sensing [27], beam control and shaping [28–30], as well
as active and adaptive control of optical systems [31], to mention but a few.

Actually, there exists a diversity of methods for wavefront reconstruction, each
one with its own pros and cons [32]. Such methods can be roughly classified into
three categories: (a) interferometric methods, based on the superposition of two
beams with a well-defined relative phase; (b) methods based on the measurement
of the wavefront slope or wavefront curvature, and (c) methods based on the ac-
quisition of images followed by the application of an iterative phase-retrieval al-
gorithm [33]. Notwithstanding the enormous progress that has already been made,
practical and robust wavefront sensing still stands as an unresolved and demand-
ing problem [34].

The time-honored example of the Shack-Hartmann (SH) wavefront sensor
surely deserves a special mention [35]: its wide dynamical range, high optical
efficiency, white light capability, and ability to use continuous or pulsed sources
make of this setup an excellent solution in numerous applications. The operation
of the SH sensor appeals to the intuition, giving the overall impression that the
underlying theory is obvious [36]. Indeed, it is often understood in an oversim-
plified geometrical-optics framework, which is much the same as assuming full
coherence of the detected signal. By any means, this is not a complete picture:
even in the simplest instance of beam propagation, the coherence features turn out
to be indispensable [37].

It has been recently suggested [38] that SH sensing can be reformulated in a
concise quantum notation. This is more than an academic curiosity, because it
immediately calls for the application of the methods of quantum state reconstruc-
tion [4]. Accordingly, one can verify right away that wavefront sensors may open
the door to an assessment of the mutual coherence function, which conveys full
information on the signal.

2.3 Quantum polarization tomography
Polarization of light is a robust characteristic that can be efficiently manipulated
using modest equipment without introducing more than marginal losses. It is thus
not surprising that this is often the variable of choice to encode quantum informa-
tion, as one can convince oneself by looking at some recent cutting-edge experi-
ments, including quantum key distribution [39], quantum dense coding [40], quan-
tum teleportation [41], rotationally invariant states [42], phase super-resolution [43],
and weak measurements [44].

In the discrete-variable regime of single, or few, photons, one is mostly inter-
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CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

ested into two-mode states, which for all practical purposes can be regarded as a
spin system [45, 46]. As a result, the polarization state can be determined from
correlation functions of different orders [47–57]. Given the small dimensionality
of the Hilbert space involved, the state reconstruction can be readily performed.

In the continuous-variable case, polarization properties are exploited for an ex-
pedient generation, manipulation, and measurement of nonclassical light. Polar-
ization squeezing [58–61], which has been observed in numerous experiments [62–
66], is perhaps the most tantalizing illustration. Full Stokes polarimetry [67] is the
method employed by the majority of the practitioners in this area.

However, the reconstruction in this limit is a touchy business and requires spe-
cial care. The origin of the problem can be traced back to the fact that the char-
acterization of the polarization state by the whole density operator is superfluous,
because it contains much more than polarization information. This redundancy
can easily be handled for low number of photons, but becomes a real hurdle for
highly excited states. An adequate solution has been proposed recently: it suf-
fices with a subset of the density matrix that has been called the “polarization
sector” [68, 69] or the “polarization density operator” [70]. Its knowledge allows
for a complete specification of the state on the Poincaré sphere (actually on a
set of nested spheres that can be appropriately called the Poincaré space). The
technique was devised by Karassiov and coworkers [71–73] and implemented ex-
perimentally in [74].
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Chapter 3

Methods and tools

Different light properties measured by tomographical methods are discussed in
the thesis, namely coherence function of classical light, polarization of bright
squeezed light and photon distribution of light pulses. Each quantity requires
unique measuring schemes and numerical methods for inverting measured data.
Nevertheless, common framework of all problems is a formalism of quantum state
tomography even in the case of classical coherence function, as will be explained.
This formalism and numerical algorithms for quantum tomography are discussed
in the first part of the chapter, description of three measuring schemes follows.

3.1 Formalism and numerical algorithms of quan-
tum state estimation

In a tomography experiment, an ensemble of N copies of quantum systems, identi-
cally prepared, is measured using a POM which consists of positive measurement
outcomes Π j. For simplicity, we first assume that all measurement detections are
perfect and hence ∑ j Π j = 1. The problem of imperfect detections will be dealt
with in Sec. 3.1.2. For each outcome, its number of occurrences is denoted by
n j such that ∑ j n j = N. The likelihood functional L ({n j};ρ), for a particular
sequence of independent detections, is then

L ({n j};ρ) = ∏
j

pn j
j . (3.1)

As a consequence of perfect measurement detections, ∑ j p j = 1. The ML pro-
cedure searches for the estimator ρ̂ML which maximizes L ({n j};ρ). For a D-
dimensional Hilbert space, when a POM comprises D2 or more measurement
outcomes, of which D2 of them are linearly independent, it is informationally
complete. In this case, there exists a unique estimator ρ̂ML for a given set of
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CHAPTER 3. METHODS AND TOOLS

measurement data {n j}. One can also define the outcome frequencies f j = n j/N
out of these measurement data such that ∑ j f j = 1. The corresponding functional
L ({n j};ρ) due to this informationally complete POM will peak at the unique
global maximum ρ̂ML over the space of ρ , whereby ρ̂ML is solely determined by
the frequencies f j and does not depend on the total number N of measured copies.

The situation is different when the POM is informationally incomplete. In
this case, there will be infinitely many ML estimators satisfying a smaller set of
linearly independent constraints imposed by the incomplete measurement data.
These ML estimators form a convex set of operators which maximize the convex
functional L ({n j};ρ). Geometrically, L ({n j};ρ) possesses a convex plateau
structure hovering over the space of ρ . The task, now, is to select one of these
estimators for future statistical predictions. To do this, we adopt the well-known
maximum-entropy (ME) principle advocated by Jaynes [75]. That is, we look for
the estimator with the largest von Neumann entropy

S(ρ) =−tr{ρ logρ} (3.2)

among the convex set of ML estimators. This supplementary step introduces a
small and smooth convex hill over the plateau structure so that a unique maximum
can be obtained. The corresponding MLME estimator ρ̂MLME is the least-bias
estimator for the given set of incomplete measurement data; it can be regarded as
the most conservative guess of the unknown quantum state out of the convex set
of ML estimators.

At this point, we would like to comment on the distinction between this MLME
technique and the conventional ME technique [76, 77]. The ME technique takes
the outcome frequencies f j as bona fide estimates for the probabilities p j and tries
to search for the positive operator

ρ̂ME =
e∑ j λ jΠ j

tr
{

e∑ j λ jΠ j
} (3.3)

that maximizes S(ρ), subjected to the probability constraints which are mediated
by the Lagrange multipliers λ j. The fundamental problem with this scheme is that
the f js cannot always be treated as probabilities since there may not be any statis-
tical operator ρ for which f j = tr

{
ρΠ j

}
. This is due to the statistical noise which

is inherent in the outcome frequencies arising from measuring a finite ensemble
of quantum systems. Therefore, in such cases, the ME technique fails as there
simply is no positive operator which is consistent with the measurement data to
begin with. The MLME algorithm, on the other hand, looks for the unique MLME
estimator by confining the search within the plateau region inside the space of sta-
tistical operators. Thus, positivity is ensured. In cases where the f js are probabil-
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CHAPTER 3. METHODS AND TOOLS

ities, both the ME and MLME schemes yield the same estimator by construction
since the estimated probabilities p̂ j = f j correspond to a statistical operator.

3.1.1 Perfect measurements
Assuming that the measurement detections are perfect, the likelihood functional
L ({n j};ρ) in Eq. (3.1) gives a complete statistical description of all possible
sequences of detections for the N measured copies of quantum systems. Equiv-
alently, one can consider the optimization of the normalized log-likelihood func-
tional log(L ({n j};ρ))/N to simplify the subsequent calculations, in view of the
monotonic nature of the logarithmic function. The motivation for introducing the
normalization will become clear soon. The MLME scheme can then be perceived
as a standard constrained optimization problem: maximize log(L ({n j};ρ))/N
subjected to the constraint that S(ρ) takes the maximal value Smax. This is equiva-
lent to maximizing S(ρ) with the constraint that log(L ({n j};ρ))/N is maximal,
as discussed above. The Lagrange functional for this optimization problem is
defined as

I (λ ;ρ) = λ
(
S(ρ)−Smax

)
+

1
N

logL ({n j};ρ) , (3.4)

where λ is the Lagrange multiplier corresponding to the constraint for S(ρ). We
denote the estimator that maximizes I (λ ;ρ) by ρ̂I,λ . Incidently, the functional
I (λ ;ρ) is a sum of two different types of entropy, up to an irrelevant additive con-
stant ∑ j f j log f j: the von Neumann entropy S(ρ) that quantifies the “lack of infor-
mation”, and the negative of the relative entropy S({ f j}|{p j}) = ∑ j f j log( f j/p j)
that quantifies the “gain of information” from the measurement data. The scheme
can now be interpreted as a simultaneous optimization of two complementary as-
pects of information, with an appropriately assigned constant relative weight λ .
In addition, the normalization of logL ({n j};ρ) renders the optimal value of λ to
be independent of N.

When λ = 0, we recover the Lagrange functional for the log-likelihood func-
tional alone. Owing to the informational incompleteness of the measurement
data, there exists a convex plateau structure for the log-likelihood functional. As
λ → ∞, the von Neumann entropy becomes increasingly more significant and the
resulting estimator ρ̂I,λ→∞ approaches the maximally-mixed state 1/D. Naturally,
when λ takes on a very small positive value, the contribution from λS(ρ) be-
comes much smaller than log(L ({n j};ρ))/N and the effect of the von Neumann
entropy functional is only significant over the plateau region in which the likeli-
hood is maximal. Figure 3.1 illustrates all the aforementioned points.

This means that, in general, λ should be chosen so small that S
(
ρ̂I,λ
)

is very
close to the minimum, and below which there are only very slight changes in the
two entropy functionals [78].
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CHAPTER 3. METHODS AND TOOLS

(a) λ = 0 (b) λ → ∞

(c) λ = 10−3

Figure 3.1: Schematic diagrams of I (λ ,ρ) on the space of statistical opera-
tors. The maximally-mixed state resides at the center of the square base which
represents the Hilbert space. At the extremal points of λ , I (λ = 0;ρ) =
log(L ({n j};ρ))/N, with a convex plateau at the maximal value, and I (λ →
∞;ρ) = λS(ρ). Plot (c) shows the functional with an appropriate choice of value
for λ for MLME. An additional hill-like structure resulting from S(ρ) is intro-
duced over the plateau, so that the estimator with the largest entropy can be se-
lected from the convex set of ML estimators within the plateau.

Let us derive the iterative algorithm for maximizing I (λ → 0;ρ) with respect
to ρ . After varying I (λ → 0;ρ), we have

δI (λ → 0;ρ) =−λ tr{δρ logρ}+∑
j

f j

p j
δp j . (3.5)

The variations δp j, or δρ , have to be such that ρ stays positive after these vari-
ations. To choose their appropriate forms, we first parameterize the positive op-
erator ρ = A †A /tr

{
A †A

}
with an auxiliary complex operator A . Under this

parametrization,

δρ =
δA †A +A †δA −ρ tr

{
δA †A +A †δA

}
tr{A †A } . (3.6)
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CHAPTER 3. METHODS AND TOOLS

Substituting δρ in Eq. (3.6) into Eq. (3.5), we have

δI (λ → 0;ρ) = tr
{

δA †A

tr{A †A }R+R
A †δA

tr{A †A }

}
, (3.7)

where
R= R−1−λ

(
logρ− tr{ρ logρ}

)
(3.8)

with
R = ∑

j

f j

p j
Π j . (3.9)

When I (λ → 0;ρ) is maximal, we have δI (λ → 0;ρ) = 0 and the extremal
equations

ρ R=Rρ = 0 (3.10)

are satisfied. Therefore, to solve these extremal equations numerically, we iterate
the equation

ρk+1 =

(
A †

k +δA †
k

)
(Ak +δAk)

tr
{(

A †
k +δA †

k

)
(Ak +δAk)

} (3.11)

starting from some statistical operator ρ1, until k = k′ such that the norm of ρk′Rk′

is less than some pre-chosen value. We then take ρ̂MLME ≡ ρk′ as the MLME
estimator. Maximizing I (λ → 0;ρ) will require δI (λ → 0;ρ) to be positive
whenever I (λ → 0;ρ) is less than the maximal value. A straightforward way to
enforce positivity is to set

δAk ≡
(
δA †

k

)†
≡ εAkRk ∝ ε

∂I (λ ;ρ)

∂Ak
, (3.12)

with ε being a small positive constant. This is the steepest-ascent method. We
have thus established a numerical MLME scheme as a set of iterative equations
(3.11) and (3.12) to search for the MLME estimator using the measurement data
obtained from perfect measurement detections. More compactly, the relevant iter-
ative equations are

ρk+1 =
(1+ εRk)ρk (1+ εRk)

tr{(1+ εRk)ρk (1+ εRk)}
,

Rk = Rk−1−λ (logρk− tr{ρk logρk}) . (3.13)

We note that a more efficient algorithm, using the conjugate-gradient method, can
be derived from this steepest-ascent algorithm, which is the subject of a separate
discussion.
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CHAPTER 3. METHODS AND TOOLS

3.1.2 Imperfect measurements
In actual experiments, the measurement detections will usually be imperfect in the
sense that the detection efficiency η j of a particular measurement outcome Π j is
less than unity. In this case, the overall outcome probabilities

p̃ j ≡ η j p j (3.14)

will not sum to unity. Hence, we have a set of POM with outcomes Π̃ j ≡ η jΠ j
such that G ≡ ∑ j Π̃ j < 1. A consequence of this is that the true total number M
of copies received is not known, since only N < M are detected (N = M when all
η j = 1 as in Sec. 3.1.1).

The likelihood functional that accounts for all M copies of quantum systems
in an experiment with imperfect detections is given by

L̃ ({n j};ρ) =
M!

N!(M−N)!

(
∏

j
p̃n j

j

)
(1−η)M−N , (3.15)

where η = ∑ j p̃ j < 1. The additional combinatorial prefactor arises from the
indistinguishability in the ordering of the detection sequence resulted from losses.
With the help of Stirling’s approximation for the factorials, the variation of the
corresponding log-likelihood functional is given by

δ logL̃ ({n j};ρ) = tr
{(

NR̃−M−N
1−η

G
)
δρ

}
+δM log

(
(1−η)M

M−N

)
,

where R̃ = ∑ j f jΠ̃ j/p̃ j. Adopting the concept of maximum-likelihood, we derive
an expression for M such that logL̃ ({n j};ρ) is maximized for any given ρ . This
implies that the coefficient of the arbitrary δM must vanish and we have M = N/η

as the most-likely value of M. With this, the expression for L̃ ({n j};ρ) reduces
to the simple form

L̃ ({n j};ρ) = ∏
j

(
p j

η

)n j

(3.16)

up to an irrelevant multiplicative factor, with its corresponding logarithmic varia-
tion

δ logL̃ ({n j};ρ) = Ntr
{(

R̃− G
η

)
δρ

}
. (3.17)

The additional term−δρG/η in the argument of the trace accounts for copies that
have escaped detection.

15



CHAPTER 3. METHODS AND TOOLS

Defining I (λ → 0;ρ) for the new POM and its L̃ ({n j};ρ) in Eq. (3.16), one
can derive the iterative equations

ρk+1 =

(
1+ εR̃k

)
ρk
(
1+ εR̃k

)
tr
{(

1+ εR̃k
)

ρk
(
1+ εR̃k

)} ,
R̃k = R̃k−

G
η(k)
−λ (logρk− tr{ρk logρk}) , (3.18)

with η(k) = ∑ j p̃(k)j .
To highlight the importance of a proper treatment of imperfect measurement

detections, we perform a simulation on 103 randomly generated qubit states. Fig-
ure 3.2 compares the performance of the MLME algorithm derived in Sec. 3.1.1,
with which we search for the MLME estimator by assuming that the measured
data {n j} are all we have while ignoring the possible missing data, with that of
the MLME algorithm derived in this section. The trace-class distance

Dtr =
1
2

tr{|ρ̂MLME−ρtrue|} (3.19)

is used as the figure of merit to quantify the distance between ρ̂MLME and ρtrue.
The lesson here is that if one neglects the consequence of imperfect measurements
in performing state reconstruction, the quality of the resulting reconstructed state
estimator will typically be much lower than that obtained from a scheme which
accounts for this imperfection.

3.1.3 Pattern tomography
The idea beyond the quantum state reconstruction using data patterns [79] bears
obvious similarity to the image processing [143]. The density matrix, ρ , of the
signal state is supposed to be represented as a mixture

ρ =
N

∑
j=1

x jσ j, (3.20)

where the coefficients x j are real scalars (not necessarily positive) and σ j are den-
sity matrices describing a set of linearly independent (generally, nonorthogonal)
probe states.

A measurement described by a positive-valued operator measure (POVM), Πl ,
is done on a set of probe states, σ j. Obtained data represents data patterns used
for fitting the data measured for an unknown state to be reconstructed. Conse-
quently, due to the linearity, unknown signal state can be expanded (represented)
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Figure 3.2: A comparison of two different schemes with 103 random qubit true
states distributed uniformly with respect to the Hilbert-Schmidt measure. Fifty ex-
periments were simulated for every true state, with N = 5000 for each experiment,
and the respective average trace-class distances Davg

tr were computed. The entire
simulation was done with a set of randomly generated, informationally incom-
plete POM consisting of two imperfect measurement outcomes. The plot markers
denoted by “+” represent reconstructed states using the algorithm in Eq. (3.13)
while ignoring the imperfection of the measurements, and those denoted by “�”
represent the reconstructed states using the algorithm in Eq. (3.18) that accounts
for this imperfection. The significant improvement in tomographic efficiency with
the latter algorithm is a strong indication of the importance of a proper treatment
of imperfect measurements.

as a mixture of probe states with the same set of coefficients. Responses of the
measurement set-up to the probe states are described by the matrix of probabilities

P̄l j = Tr{Πlσ j}. (3.21)

The result of a practical estimation with a finite number of copies is a matrix of
frequencies – the data pattern matrix Pl j. Now, the response fl to an unknown
signal can be expanded in the responses to probe states

fl = ∑
j

x jPl j (3.22)

and the coefficients x j can be estimated. Those coefficients are then used in the
superposition Eq. (5.1) to yield the estimated state ρ . The quantumness of such
a process is manifested by the positivity constraint imposed on the fitting proce-
dure: The fitting of Eq. (3.22) must yield a set of x j making the reconstruction ρ

obtained from Eq. (5.1) positive semi-definite. Practical feasibility of this scheme
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was demonstrated in Ref. [79]. An essential feature of the fitting procedure is that
one does not need any knowledge about the POVM elements. The knowledge re-
quired for the reconstruction is obtained in the process of building the data pattern
matrix. It is not necessary to perform a complete tomography of the measurement
set-up, since only the probe states contributing significantly to the representation
of a particular signal state are needed. The data pattern procedure can be reformu-
lated as the process of updating information about the measurement set-up until a
sufficiently accurate fit is obtained.

3.2 SH tomography
This section introduces an alternative theory for wavefront detection, based on the
principles of quantum state tomography. We confine ourselves to the example of
the Shack-Hartmann (SH) wavefront sensor. The operation of wavefront sensor is
most often understood in an oversimplified geometrical-optics framework, which
is much the same as assuming full coherence of the signal. Unfortunately, this
naive picture breaks down when the light is partially coherent, because the very
notion of a single wavefront becomes somewhat ambiguous: the signal has to
be conceived as a statistical mixture of many wavefronts [134]. To circumvent
this difficulty, we observe that these sensors provide a simultaneous detection
of position and angular spectrum (i.e., directions) of the incident radiation. In
other words, the SH is a pertinent example of a simultaneous unsharp position
and momentum measurement, a question of fundamental importance in quantum
theory and about which much has been discussed [82–84]. We will point out that
common wavefront sensors can be utilized for measuring mutual coherence and
hence 3D imaging of partially coherent fields provided quantum state reconstruc-
tion techniques are adopted for data processing.

3.2.1 SH wavefront sensing
The working principle of the SH wavefront sensor can be elaborated with refer-
ence to Fig. 3.3. An incoming light field is divided into a number of sub-apertures
by a microlens array that creates focal spots, registered in a CCD camera. The de-
viation of the spot pattern from a reference measurement allows the local direction
angles to be derived, which in turn enables the reconstruction of the wavefront. In
addition, the intensity distribution within the detector plane can be obtained by
integration and interpolation between the foci.

Rephrasing the SH operation in a quantum parlance will prove pivotal for
the remaining discussion. Let ρ be the coherence matrix of the field to be an-
alyzed. Using an obvious Dirac notation, we can write G(x′,x′′) = 〈x′|ρ|x′′〉 =

18



CHAPTER 3. METHODS AND TOOLS

Figure 3.3: The principle of the SH wavefront sensor. A microlens array (MA)
subdivides the wavefront (W ) into multiple beams that are focused in a CCD cam-
era. Local slope of the wavefront over each microlens aperture determines the
location of the spot on the CCD. Red arrows represent normals to the wavefront.

Tr(ρ|x′〉〈x′′|), where |x〉 is a vector describing a point-like source located at x
and Tr is the matrix trace. Thereby, the mutual coherence function G(x′,x′′) ap-
pears as the position representation of the coherence matrix. As a special case,
the intensity distribution across a transversal plane becomes I(x) = Tr(ρ|x〉〈x|).
Moreover, a coherent beam of complex amplitude U(x), can be assigned to a ket
|U〉, such that U(x) = 〈x|U〉.

To simplify, we restrict the discussion to one dimension, denoted by x. If the
setup is illuminated with a coherent signal U(x), and the ith microlens is ∆xi apart
from the SH axis, this microlens feels the field U(x−∆xi) = 〈x|exp(−i∆xi P)|U〉,
where P is the momentum operator. This field is truncated and filtered by the
aperture (or pupil) function A(x)= 〈x|A〉 and Fourier transformed by the microlens
prior to being detected by the CCD camera. All this can be accounted for in the
form

U ′(∆p j) = 〈A|exp(−i∆p j X)exp(−i∆xi P)|U〉 , (3.23)

where X is the position operator and we have assumed that the jth pixel is an-
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gularly displaced from the axis by ∆p j. The intensity measured at the jth pixel
behind the ith lens is then governed by a Born-like rule

I(∆xi,∆p j) = Tr(ρ|πi j〉〈πi j|) , (3.24)

with |πi j〉 = exp(i∆xi P)exp(i∆p j X)|A〉. As a result, each pixel performs a pro-
jection on the position- and momentum-displaced aperture state.

Some special cases of those aperture states are particularly appealing. For
pointlike microlenses, A(x)→ δ (x) and |πi j〉 → |x = ∆xi〉 (i.e., a position eigen-
state): they produce broad diffraction patterns and information about the transver-
sal momentum is lost. Conversely, for very large microlenses, A(x) → 1 and
|πi j〉 → |p = ∆p j〉 (i.e., a momentum eigenstate): they provide a sharp momen-
tum measurement with the corresponding loss of position sensitivity. A most
interesting situation is when one uses a Gaussian approximation [38]; now A(x) =
exp(−x2/2), which implies |πi j〉 → |αi j〉, that is, a coherent state of amplitude
αi j = ∆xi + i∆p j. This means that the measurement in this case projects the sig-
nal on a set of coherent states and hence yields a direct sampling of the Husimi
distribution [85] Q(α) = 〈α|ρ|α〉.

This quantum analogy provides quite a convenient description of the signal:
different choices of CCD pixels and/or microlenses can be interpreted as particular
phase-space operations [86].

3.2.2 SH tomography
Unlike the Gaussian profiles discussed before, in a realistic setup the microlens
apertures do not overlap. If we introduce the operators Πi j = |πi j〉〈πi j|, the mea-
surements describing two pixels belonging to distinct apertures are compatible
whenever [Πi j,Πi′ j] = 0, i 6= i′, which renders the scheme informationally incom-
plete [87]. Signal components passing through distinct apertures are never recom-
bined and the mutual coherence of those components cannot be determined.

Put differently, the method cannot discriminate signals comprised of sharply-
localized non-overlapping components. Nevertheless, these problematic modes
do not set any practical restriction. As a matter of fact, spatially bounded modes
(i.e., with vanishing amplitude outside a finite area) have unbounded Fourier spec-
trum and so, an unlimited range of transversal momenta. Such modes cannot thus
be prepared with finite resources and they must be excluded from our consider-
ations: for all practical purposes, the SH performs an informationally complete
measurement and any practically realizable signal can be characterized with the
present approach.

To proceed further in this matter, we expand the signal as a finite superpo-
sition of a suitable spatially-unbounded computational basis (depending on the
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actual experiment, one should use plane waves, Laguerre-Gauss beams, etc). If
that basis is labeled by |k〉 (k = 1, . . . ,d, with d being the dimension), the complex
amplitudes are 〈x|k〉 = ψk(x). Therefore, the coherence matrix ρ and the mea-
surement operators Πi j are given by d× d non-negative matrices. A convenient
representation of Πi j can be obtained directly from Eq. (3.24), viz,(

Πi j
)

mn = ψn,i(∆p j)ψ
∗
m,i(∆p j), (3.25)

where ψm,i(x) is the complex amplitude at the CCD plane of the ith lens generated
by the incident mth basis mode ψm.

This idea can be illustrated with the simple yet relevant example of square
microlenses: A(x) = rect(x). We decompose the signal in a discrete set of plane
waves ψk(x) = exp(−ipkx), parametrized by the transverse momenta pk. This is
just the Fraunhofer diffraction on a slit, and the measurement matrix is(

Πi j
)

mn = sinc(∆p j + pm)sinc(∆p j + pn)ei(pm−pn)∆xi . (3.26)

The smallest possible search space consists of two plane waves (which is equiva-
lent to a single-qubit tomography). By considering different pixels j belonging to
the same aperture i, linear combinations of only three out of the four Pauli matri-
ces can be generated from Eq. (3.26). For example, a lens placed on the SH axis
(∆xi = 0) fails to generate σy and at least one more lens with a different ∆xi needs
to be added to the setup to make the tomography complete.

This argument can be easily extended: the larger the search space, the more
microlenses must be used. In this example, the maximum number of independent
measurements generated by the SH detection is (2M + 1)d− 3M, for M lenses.
A d-dimensional signal —a spatial qudit— can be characterized with about M ∼
d/2 microlenses. This should be compared to the d quadratures required for the
homodyne reconstruction of a photonic qudit [88, 89].

3.3 Polarization sqeezed light tomography
In this section we present a comprehensive treatment of polarization tomography.
As with any reliable quantum tomographical scheme, we need to supply three key
ingredients [90]: the availability of a tomographically complete measurement, a
suitable representation of the quantum states, and a robust algorithm for inverting
the experimental data. In this respect, we use a standard Stokes scheme that im-
plements the first ingredient in a very simple way; for the second, we resort to the
well-known SU(2) Wigner distribution [91–98], and finally, we prove that the in-
version of the data in terms of that Wigner function is an inverse three-dimensional
(3D) Radon transform.
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3.3.1 Polarization structure of quantum fields
A satisfactory description of the polarization structure of quantum fields and the
corresponding observables that specify this structure is of paramount importance
for our purposes.

We restrict our attention to the case of a monochromatic plane wave (the for-
malism can be easily extended to more involved multimode wavefronts [100,
101]), which we assume to propagate in the z direction, so its electric field lies
in the xy plane. Under these conditions, we are dealing with a two-mode field that
can be fully characterized by two complex amplitude operators. They are denoted
by âH and âV , where the subscripts H and V indicate horizontally and vertically
polarized modes, respectively. The commutation relations of these operators are

[âk, â
†
` ] = δk` , k, ` ∈ {H,V} . (3.27)

The description is greatly simplified if we use the Schwinger representation [102,
103]

Ĵ1 =
1
2(â

†
H âV + â†

V âH) , Ĵ2 =
i
2(âH â†

V − â†
H âV ) , Ĵ3 =

1
2(â

†
H âH− â†

V âV ) ,
(3.28)

together with the total number

N̂ = â†
H âH + â†

V âV . (3.29)

These operators coincide, up to a factor 1/2, with the Stokes operators [104],
whose average values are precisely the classical Stokes parameters [105]. Using
equation (3.27), one immediately notices that Ĵ = (Ĵ1, Ĵ2, Ĵ3) satisfy the commu-
tation relations of the su(2) algebra

[Ĵk, Ĵ`] = iεk`m Ĵm , (3.30)

where εk`m is the Levi-Civita fully antisymmetric tensor. This noncommutabil-
ity precludes the simultaneous exact measurement of the physical quantities they
represent. Among other consequences, this implies that no field state (apart from
the vacuum) can have sharp nonfluctuating values of all the operators Ĵ simulta-
neously. This is expressed by the uncertainty relation

∆
2Ĵ = ∆

2Ĵ1 +∆
2Ĵ2 +∆

2Ĵ3 ≥ 〈N̂〉/2 , (3.31)

where the variances are given by ∆2Ĵi = 〈Ĵ2
i 〉− 〈Ĵi〉2. In other words, the electric

vector of a monochromatic quantum field never traces out a definite ellipse.
In classical optics, the total intensity is a well-defined quantity and the Poincaré

sphere appears thus as a smooth surface with radius equal to that intensity. In
quantum optics we have

Ĵ2
1 + Ĵ2

2 + Ĵ2
3 =

(
N̂
2

)(
N̂
2
+ 11
)
, (3.32)
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and, as fluctuations in the number of photons are unavoidable (leaving aside
photon-number states), we are forced to talk of a three-dimensional Poincaré
space (with axis J1, J2 and J3) that can be envisioned as foliated in a set of nested
spheres with radii proportional to the different photon numbers that contribute
significantly to the state.

The Hilbert space H of these two-mode fields has a convenient orthonormal
basis in the form of Fock states for both polarization modes, namely |nH ,nV 〉.
However, since

[N̂, Ĵ] = 0 , (3.33)

each subspace with a fixed number of photons N must be handled separately. In
other words, in the previous onion-like picture of the Poincaré space, each shell
has to be addressed independently. This can be emphasized if instead of the Fock
basis, we employ the relabeling

|J,m〉 ≡ |nH = J+m,nV = J−m〉 , (3.34)

According to (3.32), we have that J = N/2 and this basis can be also seen as the
common eigenstates of {Ĵ2, Ĵ3}. In this way, for each fixed J (i.e., fixed number
of photons N), m runs from −J to J and these states span a (2J +1)-dimensional
subspace wherein Ĵ acts in the usual way (in units h̄ = 1)

Ĵ±|J,m〉=
√

J(J+1)−m(m±1)|J,m±1〉 ,
(3.35)

Ĵ3|J,m〉= m|J,m〉 ,

with Ĵ± = Ĵ1± Ĵ2.
It is clear from all this previous discussion that the moments of any energy-

preserving observable (such as Ĵ) do not depend on the coherences between dif-
ferent subspaces. The only accessible information from any state described by the
density matrix ρ̂ is thus its polarization sector, which is specified by the block-
diagonal form

ρ̂pol =
⊕

J

ρ̂
(J) (3.36)

where ρ̂(J) is the reduced density matrix in the J subspace. Any ρ̂ and its asso-
ciated block-diagonal form ρ̂pol cannot be distinguished in polarization measure-
ments (and, accordingly, we drop henceforth the subscript pol). This is consistent
with the fact that polarization and intensity are, in principle, independent con-
cepts: in classical optics the form of the ellipse described by the electric field
(polarization) does not depend on its size (intensity).
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3.3.2 Polarization squeezing and the dark plane
The variances of the angular-momentum operators (3.28) are not independent, for
they are constrained by

∆
2Ĵk ∆

2Ĵ` ≥ εk`m |〈Ĵm〉|2 . (3.37)

It is always possible to find pairs of maximally conjugate operators for this un-
certainty relation. This is equivalent to establishing a basis in which only one
of the operators (3.28) has a nonzero expectation value, say 〈Ĵk〉= 〈Ĵ`〉= 0 and
〈Ĵm〉 6= 0. The only nontrivial Heisenberg inequality reads thus

∆
2Ĵk ∆

2Ĵ` ≥ |〈Ĵm〉|2 . (3.38)

Polarization squeezing can then be sensibly defined as [58–61]:

∆
2Ĵk < |〈Ĵm〉|< ∆

2Ĵ` . (3.39)

The choice of the conjugate operators {Ĵk, Ĵ`} is by not means unique: there exists
an infinite set {Ĵ⊥(θ), Ĵ⊥(θ +π/2)} that are perpendicular to the state classical
excitation Ĵm, for which 〈Ĵ⊥(θ)〉 = 0 for all θ . All these pairs exist in the Jk–
J` plane, which is called the “dark plane” because it is the plane of zero mean
intensity. We can express a generic Ĵ⊥(θ) as Ĵ⊥(θ) = Ĵk cosθ + Ĵ` sinθ , θ being
an angle defined relative to Ĵk. Condition (3.39) is then equivalent to

∆
2Ĵ⊥(θsq)<

1
2 |〈N̂〉|< ∆2Ĵ⊥(θsq +π/2), (3.40)

where Ĵ⊥(θsq) is the squeezed parameter and Ĵ⊥(θsq +π/2) the antisqueezed pa-
rameter.

In the experiments presented in this paper, a focal role will be played by the
example in which the horizontal and vertical modes have the same amplitude but
are phase shifted by π/2: 〈âH〉 = i〈âV 〉 = iα/

√
2, α being a real number. This

light is circularly polarized and fulfills 〈Ĵ1〉 = 〈Ĵ3〉 = 0, 〈Ĵ2〉 = α2. It is advan-
tageous to work in the circular polarization basis, whose right (+) and left (−)
amplitudes are given in terms of the linear ones by

â± =
1√
2
(âH± i âV ) . (3.41)

In this manner, 〈â+〉 = α and 〈â−〉 = 0. The operators in the J1–J3 plane cor-
respond to the quadrature operators of the dark left-polarized mode. In fact, ex-
pressing the fluctuations of Ĵ in terms of the noise of the circularly polarized
modes δ â± and assuming |〈δ â±〉| � α we find [106]

δ Ĵ⊥(θ) = αδ X̂−(θ) = α[δ X̂H(θ)+δ X̂V (θ +π/2)] , (3.42)
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where X̂i = (âie−iθ + â†
i eiθ )/

√
2 are the rotated quadratures for the ith amplitude.

On the other hand, we have that

δ N̂ = α(δ â++δ â†
+) = α δ X̂+ , (3.43)

and the intensity exhibits no dependence on the dark mode. In consequence, the
condition (3.40) can be recast for this example as

∆
2Ĵ⊥(θ)< |〈α〉|2 ⇔ ∆

2X̂−(θ)< 1 , (3.44)

that is, polarization squeezing is equivalent to vacuum squeezing in the orthogonal
polarization mode.

In the dark-plane measurements, the beam is divided equally between two
photodetectors. Such measurements are then identical to balanced homodyne de-
tection: the classical excitation is a local oscillator for the orthogonally polarized
dark mode. The phase between these modes is varied by rotating the measurement
through the dark plane, allowing a full characterization of the noise properties.
This is a unique feature of polarization measurements and has been used in many
experiments [107–111].

3.3.3 Polarization Wigner function
The structure discussed so far highlights that SU(2) is the symmetry group for
polarization. To provide an appropriate phase-space description of states, we take
advantage of the pioneering work of Stratonovich [91] and Berezin [92], who
introduced quasi-probability distribution functions on the sphere satisfying all
the proper requirements. This construction was later generalized by others [93–
98] and has proved to be very useful in visualizing properties of spinlike sys-
tems [112–116]

To gain physical insights into this approach, let us start by representing the
density matrix with respect to the polarization basis. Instead of using directly the
states {|J,m〉}, it is more convenient to write such an expansion as

ρ̂
(J) =

2J

∑
K=0

K

∑
q=−K

ρ
(J)
Kq T̂ (J)

Kq , (3.45)

where the irreducible tensor operators T (J)
Kq are [117]

T̂ (J)
Kq =

√
2K +1
2J+1

J

∑
m,m′=−J

CJm′
Jm,Kq |J,m′〉〈J,m| , (3.46)
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with CJm′
Jm,Kq being the Clebsch-Gordan coefficients that couple a spin J and a spin

K (0≤ K ≤ 2J) to a total spin J. These tensor operators have the right trans-
formation properties under rotations and they indeed constitute the most suitable
orthonormal basis

Tr[T̂ (J)
Kq T̂ (J′)†

K′q′ ] = δJJ′δKK′δqq′ . (3.47)

Although at first sight they might look a little bit intimidating, they are nothing
but the multipoles used in atomic physics [118]: one can check that

T̂ (J)
00 =

1√
2J+1

1̂1 T̂ (J)
1q =

√
3

(2J+1)(J+1)J
Ĵq q =±,z , (3.48)

and similarly the T̂ (J)
Kq can be related to the Kth power of the generators (3.28).

Accordingly, the expansion coefficients

ρ
(J)
Kq = Tr[ρ̂(J)T (J)†

Kq ] (3.49)

are known as state multipoles.
The Wigner function associated with the state (3.45) is

W (J)(θ ,φ) = Tr[ρ̂(J)
∆̂
(J)(θ ,φ)] , (3.50)

where ∆̂(J)(θ ,φ) is the Wigner kernel

∆̂
(J)(θ ,φ) =

√
4π

2J+1

2J

∑
K=0

K

∑
q=−K

Y ∗Kq(θ ,φ) T̂ (J)
Kq , (3.51)

and YKq(θ ,φ) are the spherical harmonics. This kernel is unitary and satisfies the
normalization conditions

Tr[∆̂( j)(θ ,φ)] = 1 ,
2J+1

4π

∫
S 2

dΩ ∆̂
( j)(θ ,φ) = 1̂1 . (3.52)

The integral extends over the unit sphere S 2 and dΩ is the invariant measure
therein, namely, dΩ = sinθ dθdφ .

From (3.50) and the properties of the irreducible tensors, one can immediately
express the Wigner function in the very suggestive form

W (J)(θ ,φ) =
2J

∑
K=0

K

∑
q=−K

ρ
(J)
Kq Y ∗Kq(θ ,φ) , (3.53)

which clearly shows that determining this Wigner function is tantamount to the
knowledge of all the state multipoles. (i.e., all the moments of the Stokes param-
eters).
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One can obtain the marginal of W (J)(θ ,φ) once summed over all the values of
J

W (θ ,φ) = ∑
J

2J+1
4π

W (J)(ϑ ,ϕ) , (3.54)

where the factor has been introduced to ensure the proper normalization.
In the above-mentioned example of a strong circularly polarized state, we can

consider that the sphere can locally be replaced by its tangent plane since J '
α2. Using simple geometrical relations between the coordinates (θ ,φ) and the
Cartesian coordinates (q, p) in that tangent plane, we get

W (θ ,φ)' α W (q, p) , (3.55)

which confirms that the dark plane is equivalent to the standard phase space for
continuous variables.

In the limit of large photon numbers the representation (3.50) is not very use-
ful. In such a case, a remarkably effective approximation is given by [119]

∆̂
(J)(θ ,φ)' (−1)J exp(−iπn · Ĵ) ,

where n=(cosθ sinφ ,sinθ sinφ ,cosθ) is the unitary vector in the direction (θ ,φ).

3.3.4 Tomograms and tomographic inversion
A general polarimetric apparatus consists of a half-wave plate, with axis at angle
α , followed by a quarter-wave plate at angle β . For fixed values of the angles
(α,β ) of the wave plates, the selected direction in the Stokes space is

θ = π/2−2β , φ = 2β −4α . (3.56)

The polarization transformations performed by the wave plates can be represented
by Ĵ2, which generates rotations about the direction of propagation, and Ĵ3, which
generates phase shifts between the modes. Their joint action is given by the oper-
ator

D̂(θ ,φ) = eiθ Ĵ2 eiφ Ĵ3 , (3.57)

which describes displacements over the sphere. After that, a polarizing beam
splitter projects onto the basis |J,m〉.

In physical terms, the wave plates transform the input polarization allowing
the measurement of different Stokes parameters by the projection onto the basis
|J,m〉. This can be modeled by

Π̂
(J)
m = |J,m〉〈J,m| , (3.58)
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so that w(J)
m = Tr[ρ̂Π̂

(J)
m ] is the probability of detecting nH = J+m photons in the

horizontal mode and simultaneously nV = J−m photons in the vertical one. Of
course, when the total number of photons is not measured and only the difference
m is observed, it reduces to

Πm =
∞

∑
J=|m|

|J,m〉〈J,m| . (3.59)

The experimental histograms recorded for each direction (θ ,φ) correspond to
the tomographic probabilities

w(J)
m (θ ,φ) = Tr[ρ̂ Π̂

(J)
m (θ ,φ)] = Tr[ρ̂ D̂(θ ,φ)Π̂

(J)
m D̂†(θ ,φ)] . (3.60)

The reconstruction in each (2J + 1)-dimensional invariant subspace can now be
carried out exactly since it is essentially equivalent to a spin J [120–123]. One
can proceed in a variety of ways, but perhaps the simplest one is to look for an
integral representation of the tomograms (3.60); as soon as one realizes that

Π̂
(J)
m (θ ,φ) =

1
2π

∫ 2π

0
dω exp[iω(Ĵ ·n−m)] , (3.61)

the tomograms read as

w(J)
m (θ ,φ) =

1
2π

∫ 2π

0
dω Tr[ρ̂(J) exp(iω Ĵ ·n)]e−iωm , (3.62)

that is, they appear as the Fourier transform of the characteristic function for the
observable Ĵ ·n. After some direct manipulations, we find that

ρ̂
(J) =

1
4π

J

∑
m=−J

∫
S2

dn′ w(J)
m (n′)K (Ĵ ·n′−m) , (3.63)

where dn′ indicates integration over the unit sphere and the kernel K (x) is

K (x) =
2J+1
4π2

∫ 2π

0
dω sin2

(
ω

2

)
e−iωx . (3.64)

Although (3.63) is a formal solution, it is handier to map this density matrix onto
the corresponding Wigner function, for which we need to compute Tr[K (J ·n′−
m) ∆̂(J)(θ ,φ)]. When J is large enough, we can replace the Wigner kernel by its
approximate expression (3.56), getting

Tr[K (J ·n′−m) ∆̂
(J)(θ ,φ)] = (−1)J 2J+1

4π2

∫ 2π

0
dω sin2

(
ω

2

)
e−imω

χJ(ω
′) ,

(3.65)
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where χJ(ω
′) is the character of the (2J + 1)-dimensional representation of the

SU(2) group [117] and ω ′ is given by

cos
(

ω ′

2

)
= n ·n′ sin

(
ω

2

)
. (3.66)

For J � 1, m can be taken as a continuous variable. Replacing the sum by an
integral, integrating by parts and taking into account that for localized states n ·
n′ ' 1, the Wigner function simplifies to

W (J,θ ,φ) =
2J+1
4π2

∫
∞

−∞

dm
∫
S2

dn′
d2w(J)

m (n)
dm2 δ (m− J n ·n′) , (3.67)

where we have included J as an argument to stress that it must be treated as con-
tinuous. The reconstruction in this limit turns out to be equivalent to an inverse
Radon transform of the measured tomograms.

3.4 Time-multiplexed detection tomography
Time-multiplexed detection (TMD) tomography [124] is a useful device for pho-
ton number distribution measurement. For experiments of this type, photon pulses,
of a particular quantum state, containing more than one photon are sent through
a series of beam splitters, each associated with a certain transmission probability.
The word “beam splitter”, used in this context, represents a class of possible ap-
paratuses for splitting photon pulses, which includes conventional beam splitters,
optical fibers, etc. Behind each of the output ports of such a series is a single-
photon detector that either registers a click from an incoming split photon pulse,
with some detection efficiency, or does nothing. Thus, each output port has a
certain overall efficiency η̃ j which is related to the relevant transmission proba-
bilities and detection efficiency (See Fig. 3.4). As a consequence of this, the POM
outcomes

Π j = ∑
n
|n〉c jn〈n| (3.68)

will be a mixture of Fock states, with the coefficients c jn related to η j [125]. If
there are Nports output ports, where all η js are different, there will be 2Nports distinct
POM outcomes due to the binary nature of the single-photon detectors. In addi-
tion, ∑

2Nports
j=1 Π j = 1 since the 2Nports binary sequences of detection configurations

constitute all possible events. These POM outcomes commute and a measurement
of these outcomes only gives information about the diagonal entries of the statis-
tical operator of the true state in the Fock basis. In order to obtain information
about the off-diagonal entries, one can, for instance, displace the current set of
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Figure 3.4: A schematic diagram representing the time-multiplexed setup with
K + 1 output ports. The Tjs are the respective transmission probabilities for the
jth beam splitter. The overall efficiency for, say, the kth port is given by η̃k =
ηk(1−Tk +TK+1δk,K+1)∏

k−1
j=1 Tj.

2Nports POM outcomes in phase space with some complex value αk away from the
origin using the displacement operator

D(αk) = eαkA†−α∗k A , (3.69)

where A is the standard photon annihilation operator. Then, the new set of out-
comes

Π j(αk) =
1

N
D(αk)Π jD

†(αk) , (3.70)

with N being the total number of such displaced set of 2Nports outcomes, do not
commute with the undisplaced set. These displaced outcomes are suitable for a
measurement that is designed to obtain information about the unknown true state
by sampling over multiple αks. Experimentally, these displaced POM outcomes
can be realized with unbalanced homodyne detection [126].
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Chapter 4

Wavefront sensing reveals optical
coherence

Wavefront sensing is a set of techniques providing efficient means to ascertain
the shape of an optical wavefront or its deviation from an ideal reference. Due to
its wide dynamical range and high optical efficiency, the Shack-Hartmann (SH)
is nowadays the most widely used of these sensors. In sec.3.2, we show that
it actually performs a simultaneous measurement of position and angular spec-
trum of the incident radiation and, therefore, when combined with tomographic
techniques previously developed for quantum information processing, the Shack-
Hartmann can be instrumental in reconstructing the complete coherence properties
of the signal. We confirm these predictions with an experimental characterization
of partially coherent vortex beams, a case that cannot be treated with the standard
tools. This seems to indicate that classical methods employed hitherto do not fully
exploit the potential of the registered data.

In this chapter, we report the first experimental measurement of the coherence
properties of an optical beam with a SH sensor. To that end, we have prepared
several coherent and incoherent superpositions of vortex beams. Our strategy
can efficiently disclose that information, whereas the common SH operation fails
in the task. We start with the experimental setup description which is common
for all experiments presented in the chapter. After successful demonstration of
coherence matrix reconstruction, we illustrate the utility of the SH tomography
with an experimental demonstration of 3D imaging (or digital propagation) of
partially coherent fields. Last section of the chapter is dedicated to applications of
the MLME (sec. 3.1) algorithm to wavefront tomography.
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Figure 4.1: Experimental layout for preparing and detecting partially coher-
ent vortex beams. Two independent laser sources, He-Ne at 633 nm (He-Ne) and
a laser diode at 635 nm (LD), are coupled into single-mode fibers (SMF) by fiber
couplers (FC). After collimation (CO) , they are transformed into vortex beams by
two different techniques. The first beam, representing a coherent superposition of
two vortex modes, is prepared by a digital hologram imprinted in a spatial light
modulator (SLM). Unwanted diffraction orders are filtered by an aperture stop
(AS), placed in a 4 f system. The second beam is modulated by a vortex phase
mask (PM) and represents a single vortex mode with opposite phase respect to the
first beam. Both beams are incoherently mixed in a beam splitter (BS) and finally
detected in a SH sensor (SH).

4.1 Partially-coherent beam preparation and detec-
tion.

Two independent vortex beams were created in the setup of Fig. 4.1 with two
laser sources of nearly the same wavelength: a He-Ne (633 nm) and a diode laser
(635 nm). The output beams were spatially filtered by coupling them into single-
mode fibers. The power ratio between the modes was controlled by changing the
coupling efficiency. The resulting modes were transformed into vortex beams by
different methods.

The state |V−3− i
2V−6〉 was realized using a digital hologram prepared with an

amplitude spatial light modulator (OPTO SLM), with a resolution of 1024×768
pixels. The hologram was then illuminated by a reference plane wave produced
by placing the output of a single-mode fiber at the focal plane of a collimating
lens. The diffraction spectrum involves several orders, of which only one contains
useful information. To filter out the unwanted orders, a 4 f optical processor, with
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a 0.3 mm circular aperture stop placed at the rear focal plane of the second lens,
was used. The resulting coherent vortex beam is then realized at the focal plane
of the third lens. The second beam |V3〉 was obtained trough a plane-wave phase
profile modulation by a special vortex phase mask (RPC Photonics). Finally, the
field in Eq. (5) was prepared by mixing the two vortex modes in a beam splitter.

During the state preparation, special care was taken to reduce any deviation
between the true and target states. This involved minimizing aberrations as well
as imperfections of the spatial light modulator, resulting in distortions of the trans-
mitted wavefront.

The SH measurement involved a Flexible Optical array of 128 microlenses
arranged in a hexagonal pattern. Each microlens has a focal length of 17.9 mm
and a hexagonal aperture of 0.3 mm. The signal at the focal plane of the array
is detected by a uEye CCD camera with a resolution of 640×480 pixels, each
pixel being 9.9 µm×9.9 µm in size. Because of microlens array imperfections,
CCD-microlens misalignment, and aberrations of the 4 f processor (aberrations of
the collimating optics are negligible), calibration of the detector must be carried
out. The holographic part of the setup provided this calibration wave. SH data
from the calibration wave and the partially coherent beam are shown in Fig. 4.2.
The beam axis position in the microlens array coordinates was adjusted with a
Gaussian mode. The detection noise is mainly due to the background light, which
is filtered out prior to reconstruction.

4.2 Experimental SH tomography of partially-coherent
vortex beams

We have validated our method with vortex beams [127, 128]. Consider the one-
parameter family of modes specified by the orbital angular momentum `, V` =
〈r,ϕ|V`〉 ∝ ei`ϕ , where (r,ϕ) are cylindrical coordinates. In our experiment, the
partially coherent signal

ρtrue = |V−3− i
2V−6〉〈V−3− i

2V−6|+ 1
2 |V3〉〈V3| (4.1)

was created; that is, modes V−3 and V−6 are coherently superposed, while V3 is
incoherently mixed. Figure 4.1 sketches the experimental layout used to gener-
ate (4.1).

The reconstruction was done in the 7-dimensional space spanned by the V`

modes with ` ∈ {−9,−6,−3,0,+3,+6,+9}. The resulting matrix elements are
plotted in Fig. 4.3. All in all, 49 real parameters had to be reconstructed. The data
come from CCD areas belonging to 7 microlenses around the beam axis; each one
of them comprise 11×11 pixels, which means 847 data samples altogether. An it-
erative maximum-likelihood algorithm [129,130] (details in sec.3.1), was applied
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Figure 4.2: Experimental CCD signal. Rescaled 8-bit data corresponding to 7
microlenses placed in a hexagonal geometry, 81× 81-pixels region, is displayed
in both panels. a) Data of the plane wave used for calibration; b) data of the
partially coherent vortex beam in Eq. (5). Green squares enclose the data used for
the reconstruction. The intensity from the central microlens vanishes due to the
presence of a phase singularity.

to estimate the true coherence matrix of the signal, whose results are summarized
in Fig. 4.3. The main features of ρtrue are nicely displayed, which is also confirmed
by the high fidelity of the reconstructed state F(ρtrue,ρ) = Tr[

√√
ρρtrue

√
ρ] =

0.98. The off-diagonal elements detect the coherence between modes, whereas
the diagonal ones give the amplitude ratios between them. The reconstruction er-
rors are mainly due to the difference between the true and the actually generated
state.

To our best knowledge, this is the first experimental measurement of the coher-
ence properties with a wavefront sensor. The procedure outperforms the standard
SH operation, both in terms of dynamical range and resolution, even for fully
coherent beams. For example, the high-order vortex beams with strongly helical
wavefronts are very difficult to analyze with the standard wavefront sensors, while
they pose no difficulty for our proposed approach.

The errors of the SH tomography can be quantified by evaluating the covari-
ances of the parameters of the reconstructed coherence matrix ρ . In the absence
of systematic errors, the Cramér-Rao lower bound [131, 132] can be employed to
that end. In practice, a simpler approach based on the singular spectrum analy-
sis [133] works pretty well. Let us decompose the d×d coherence matrix ρ (d is
just the dimension of the search space) and the measurement operators Πi j in an
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Figure 4.3: Vortex-beam coherence-matrix reconstruction. Real ℜ and imagi-
nary ℑ parts of the coherence matrix for the true state ρtrue (upper panel) and for
the reconstructed ρ (lower panel). The reconstruction space is spanned by vortex
modes with ` ∈ {−9,−6,−3,0,+3,+6,+9}. The nonzero values of ℑρ−6,−3 and
ℑρ−3,−6 describe coherences between the modes |V−6〉 and |V−3〉 and the phase
shift π between them. The very small values of ρ3,−6, ρ3,−3, ρ−6,3 and ρ−3,3
comes from the incoherent mixing of |V3〉 and |V−3− i

2V−6〉. The fidelity of the
reconstructed coherence matrix is F = 0.98.

orthonormal matrix basis Γk (k = 1, . . . ,d2) [Tr(ΓkΓl) = δkl], namely

ρ = ∑rkΓk, Πi j = ∑
k

pi j
k Γk, (4.2)

so that the Born rule (3.24) can be recast as a system of linear equations

Ii j = ∑
k

pi j
k rk . (4.3)

Upon using a single index α to label all possible microlens/CCD-pixel combina-
tions α ≡ {i, j}, Eq. (4.3) can be concisely expressed in the matrix form

I = Pr , (4.4)
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Figure 4.4: Dynamical range of the SH reconstruction. The singular spectrum
{Skk} of the data in Fig. 4 (here, sorted and normalized to the largest singular
value) quantifies the sensitivity of the tomography setup to the normal modes of
the problem (see Methods). The relative strengths of the singular values corre-
spond to the relative measuring accuracy of those modes. The dynamical range
(or field of view) can be defined as the set of normal modes with singular values
exceeding a given threshold.

where I is the vector of measured data, r is the vector of coherence-matrix param-
eters and Pαk = pα

k is the tomography matrix.
Obviously, for ill-conditioned measurements, the reconstruction errors will be

larger and vice versa. By applying a singular value decomposition to the measure-
ment matrix P = USV†, Eq. (4.4) takes the diagonal form

I′ = Sr′ , (4.5)

where r′ = V†r and I′ = U†I are the normal modes of the problem and the corre-
sponding transformed data, respectively. The singular values Skk are the eigenval-
ues associated with the normal modes, so the relative sensitivity of the tomography
to different normal modes is given by the relative sizes of the corresponding singu-
lar values. With the help of Eqs. (4.4) and (4.5), the errors are readily propagated
form the detection I to the reconstruction r.

Drawing an analogy between Eq. (4.5) and the filtering by a linear spatially
invariant system, the singular spectrum Skk and the sum of the singular values
∑k Skk are the discrete analogs of the modulation transfer function and the max-
imum of the point spread function, respectively. Hence we define the dynamical
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range (or field of view) of the SH tomography as the set of normal modes with
singular values exceeding a given threshold. The sum of the singular values then
describes the overall performance of the SH tomography setup. When some of the
singular values are zero, the tomography is not informationally complete and the
search space must be readjusted.

For the data in Fig. 4.3, the singular spectrum is shown in Fig. 4.4. Depending
on the threshold, around 20 out of the total of 49 modes spanning the space of 7×7
coherence matrices can be discriminated. The modes outside this field of view are
mainly those with significant intensity contributions out of the rectangular regions
of the CCD sensor. Further improvements can be expected by exploiting the full
CCD area and/or using a CCD camera with more resolution, at the expense of
more computational resources for data post-processing.
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Figure 4.5: Influence of the spatial coherence on the far-field intensity dis-
tribution. We have considered different mixtures of the modes |V4〉, |V−4〉, and
|V0〉 and calculated the associated intensity distribution as a Fraunhofer diffraction
pattern. (a) fully coherent superposition |V4+V−4+0.4V0〉〈V4+V−4+0.4V0|; (b)
incoherent mixture |V4〉〈V4|+ |V−4〉〈V−4|+0.4|V0〉〈V0|; and (c) partially coherent
mixture |V4 +V−4〉〈V4 +V−4|+0.4|V0〉〈V0|.

4.3 3D Imaging
Once the feasibility of the SH tomography has been proven, we illustrate its utility
with an experimental demonstration of 3D imaging (or digital propagation) of par-
tially coherent fields. As it is well known [134], the knowledge of the transverse
intensity distribution at an input plane is, in general, not sufficient for calculating
the transverse profile at other output plane. Propagation requires the explicit form
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of the mutual coherence function Gin at the input to determine Iout:

Iout(x) =
∫∫

∞

−∞

h(x,x′)h∗(x,x′′)Gin(x′,x′′)dx′dx′′ . (4.6)

Here x′ (x′′) and x are the coordinates parametrizing the input and output planes,
respectively, and h(x,x′) the response function accounting for propagation. The
dependence of the far-field intensity on the beam coherence properties is evi-
denced in Fig. 4.5 for coherent, partially coherent and incoherent superpositions
of vortex beams.

Once the coherence matrix is reconstructed, the forward/backward spatial prop-
agation can be obtained using tools of diffraction theory and, consequently, the
full 3D spatial intensity distribution can be computed. In particular, the inten-
sity profile at the focal plane of an imaging system can be predicted from the SH
measurements. This has been experimentally confirmed, as sketched in Fig. 4.6.
We prepared the partially coherent vortex beam |V4 +V−4〉〈V4 +V−4|+ k|V0〉〈V0|,
where k was a parameter governing the degree of spatial coherence. To this end, a
coherent mixture |V4+V−4〉〈V4+V−4| was realized by the digital-holography part
of the setup, whereas the zero-order vortex beam |V0〉 was prepared by remov-
ing the spiral phase mask. The output diameter of the beam was set to 4.9 mm.
The reconstructed coherence function (upper left) was digitally propagated to the
focal plane of a lens and the intensity distribution at this plane was calculated (up-
per right) and compared with the actual CCD scan in the same plane (lower right).
Excellent agreement between the predicted and measured distributions was found.

The measurement was done in three steps. First, the SH sensor (see Fig. 4.1)
was replaced by a lens of 500 mm focal length and the far-field intensity was de-
tected at its rear focal plane with a CCD camera (Olympus F-View II, 1376×1032
pixels, 6.45 µm×6.45 µm each). Second, the same vortex superposition was
subject to the SH tomography using the SH sensor (Flexible Optical) and the re-
construction of the coherence matrix in the 7-dimensional subspace spaned by the
vortices V` with `∈{−6,−4,−2,0,+2,+4,+6}. Once ρ is reconstructed, the far-
field intensity was computed using Eq. (4.6), where the focusing is described by
the Fraunhofer diffraction response function. The predicted intensity was found
to be in an excellent agreement with the direct sampling by the Olympus CCD
camera. Finally, the Flexible Optical SH sensor was replaced by a HASO3 SH
detector. The intensity and wavefront of the prepared vortex beam was measured
and the far-field intensity was computed by resorting to the transport of intensity
equation [135, 136] performed by the HASO software. Resampling was done to
match the resolution of the HASO output to the resolution of the Olympus CCD
camera.

We emphasize that the standard SH operation fails in this kind of applica-
tion [137]. To quantify the result, we compute the normalized correlation coef-
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Figure 4.6: Digital 3D imaging. The prediction of the far-field intensity distri-
bution is compared with a direct intensity measurement. The partially coherent
vortex beam |V4 +V−4〉〈V4 +V−4|+ k|V0〉〈V0| was generated (with a beam diam-
eter of 4.9 mm) with a fixed parameter k (unknown prior to the reconstruction).
. Upper, middle and lower pannels correspond to the SH tomography, standard
SH measurement and direct intensity measurement, respectively. Upper left: Real
and imaginary parts of the reconstructed ρ in the 7-dimensional space spanned by
the vortices V` with ` ∈ {−6,−4,−2,0,2,4,6}. Upper right: Calculated far-field
intensity distribution Iρ based on the reconstructed ρ propagated to the focal plane
of the lens ( f = 500 mm). Middle left: Intensity distribution (in arbitrary units)
and wavefront as measured by the standard SH sensor. Middle right: Calculated
far-field intensity distribution Istd using the standard SH wavefront reconstruction
and the transport of intensity equation included in the sensor (HASOTM). Bottom
left: Schematic picture of the direct intensity measurement at the lens focal plane.
Bottom right: The result of the direct intensity measurement ICCD at the focal
plane with a CCD camera.
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ficient [C(Ia, Ib) = ∑i, j IaIb/
√

∑i, j I2
a

√
∑i, j I2

b ] of the measured intensity with the
prediction: the result, C(Istd, ICCD) = 0.47, confirms the inability of the standard
SH to cope with the coherence properties of the signal. This has to be compared
with the result for the SH tomography: C(Iρ , ICCD) = 0.89, which supports its
advantages.

Even in the case of fully coherent signal, complex amplitude of vortex beam
is difficult to reconstruct with the standard SH reconstruction. Another experi-
ment with the 3D imaging of vortex beam was carried out to prove the ability of
proposed technique to deal with such kind of signals. Consider the one-parameter
family of Laguerre-Gaussian (LG) modes with no radial nodes specified by the
orbital angular momentum quantum number l, 〈s,ϕ|LGl〉 ∝ sleilϕe−s2

.
The preparation was targeted at creating a superposition of moderately-high-

order LG modes: ρ true ≈ |LG4 +LG8〉〈LG4 +LG8|. The proposed reconstruction
method was used to reconstruct the coherence matrix in the chosen 11-dimensional
space spanned by the 11 lowest-order LG modes. In total there was 121 real pa-
rameters to reconstruct.

Figure 4.7: 3D imaging of a coherent vortex beam superposition. Predicted (top)
and measured (bottom) intensity distributions are shown at the SH sensor (left),
and 17cm (middle) and 62cm (right) further down the beam.

The analysis was done in three steps. First, the coherence matrix ρ rec of the
measured signal was reconstructed. Second, the intensity distribution was calcu-
lated from ρ rec and compared to the CCD scan. Third, ρrec was numerically prop-
agated 62cm from the SH plane and the corresponding intensity was compared to

40



CHAPTER 4. WAVEFRONT TOMOGRAPHY

the experimentally measured intensity at the same plane. Figure 5.1 shows a very
good agreement between the reconstructed and measured images across the 62cm
range. Non-symmetric intensity distribution is successfully reconstructed and its
rotation during the beam spreading is revealed as well.

4.4 Incomplete SH tomography
Finally, we make use of the MLME algorithm to reconstruct states of classical
light beams that are measured using the Shack-Hartmann (SH) wave front sensor.
Since coherence operator ρcoh possesses all the properties of a statistical operator,
the MLME technique can be used to estimate the true coherence operator ρ true

coh of
a partially coherent beam.

The aforementioned set-up is used for generating and analyzing low-order
Laguerre-Gaussian (LG) modes. The LG modes can serve as important resources
in quantum information processing [138]. In this experiment, only LG modes with
no radial nodes are considered. Such modes form a one-parameter orthonormal
basis, where the modes are specified by the orbital angular momentum quantum
number l. In polar coordinates, the relevant part of the complex amplitude of a
LG mode, for a fixed l, is given by

〈s,ϕ|LGl〉 ∝ sleilϕe−s2
. (4.7)

Nonzero values of l give rise to helical wave fronts, for which each photon carries
an orbital angular momentum of lh̄.

For the source of light beams, we would like to prepare the state ρ true
coh = ρ

sup
coh =

|ψsup〉〈ψsup|, where

|ψsup〉= (|LG0〉− |LG1〉i−|LG2〉)
1√
3
, (4.8)

using the OPTO SLM. In the presence of experimental imperfections, however,
the true state ρ true

coh prepared this way will not be exactly the same as ρ
sup
coh . After

measuring this beam with the SH sensor, the data are processed using the MLME
algorithm in Eq. (3.18) to obtain the estimator ρ̂MLME

coh for ρ true
coh , since G < 1. To

quantify the quality of ρ̂MLME
coh , we investigate the fidelity between ρ̂MLME

coh and
ρ

sup
coh . Figure 4.8 shows the CCD image for the state ρ true

coh . Each aperture gives rise
to a bright spot in the CCD image. To maximize the signal-to-noise ratio, only
the pixel with the highest intensity within each spot is selected as a measurement
datum. The set of intensities, corresponding to maximum-intensity pixels, con-
stitute the measurement data to be used for state reconstruction. In our case, the
corresponding POM consists of 35 linearly independent outcomes described by
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Figure 4.8: CCD image for the state ρ true
coh . The relevant part of the SH readout

used for the beam reconstruction is shown. Contributions from the individual SH
apertures are indicated by bright spots, with each spot made up of multiple pixels.
Note that the two void regions correspond to the phase singularities of the state
ρ

sup
coh . This hints that ρ true

coh ≈ ρ
sup
coh .

Figure 4.9: MLME state estimation from informationally incomplete data for
Dsub = 9. The real (left) and imaginary (right) parts of the reconstructed coher-
ence operator ρ̂MLME

coh are shown. The reconstruction subspace is spanned by the
modes LGl , with l = 0,1, . . . ,8. In this case, 56 out of 91 independent outcomes,
required for complete characterization of ρ true

coh , are not accessible, yet the MLME
estimator ρ̂MLME

coh is close to ρ
sup
coh , with a fidelity of 92%.

Eq. (3.25). This measurement is, therefore, informationally complete for Dsub≤ 5.
In cases where state reconstruction on informationally complete subspaces gives
unsatisfactory results, the MLME approach can be used on the informationally
incomplete data to give reasonable estimators on a larger subspace, as illustrated
in Fig. 4.9.

So far, the procedure of state-space truncation is performed in the basis of the
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Figure 4.10: Average fidelities, computed over 50 random choices of computa-
tional bases, of the estimators for different dimensions Dsub of the reconstruction
subspace. The unfilled (filled) circular plot markers correspond to informationally
complete (incomplete) tomography, respectively.

LGl modes. In this basis, when ρ true
coh is known to be quite close to ρ

sup
coh , the trun-

cation of modes of higher orders will not result in a great loss of reconstruction
information, as implied by the structure of ρ

sup
coh in Eq. (4.8). The situation will be

very different when there is no such prior knowledge about ρ true
coh , except for the

fact that the possible values of l lie in a certain range. In this situation, there is
no appropriate strategy to choose a computational basis in which the state-space
truncation can be done effectively and justifiably. More generally, estimating the
unknown state ρ true

coh on a truncated subspace will, as a rule, result in missing im-
portant reconstruction information and this will lead to strongly biased estimators.
A remedy for this problem is to perform state reconstruction on a sufficiently large
subspace that is compatible with the knowledge about the range of values of l.

To emphasize this point, we simulate the following scenario:

• The set of measurement data, obtained from the CCD image shown in
Fig. 4.8, is distributed to 50 parties. The possible values of l for the true
state ρ true

coh are known to lie in the range l ∈ [0,7].

• Each party selects a computational basis and estimates the state of the beam
for Dsub = 3,4, . . . ,8 using either the ML (for Dsub ≤ 5) or the MLME al-
gorithm (for Dsub > 5).
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• The reconstructed estimators for the six values of Dsub are reported by each
party and the average fidelity of the estimators for every value of Dsub are
calculated.

A typical outcome of this scenario is shown in Fig. 4.10. As can be seen, perform-
ing state-space truncations in order to reconstruct ρ true

coh with an informationally
complete set of data generally leads to low fidelities in the estimators. Increasing
the number of degrees of freedom and using the MLME algorithm to cope with
the completeness issue seems to be a much better strategy.

4.5 Discussion
We have demonstrated a nontrivial coherence measurement with a SH sensor. This
goes further the standard analysis and constitutes a substantial leap ahead that
might trigger potential applications in many areas. Such a breakthrough would
not have been possible without reinterpreting the SH operation as a simultaneous
unsharp measurement of position and momentum. This immediately allows one
to set a fundamental limit in the experimental accuracy [139].

Moreover, although the SH has been the thread for our discussion, it is not
difficult to extend the treatment to other wavefront sensors. For example, let us
consider the recent results for temperature deviations of the cosmic microwave
background [140]. The anisotropy is mapped as spots on the sphere, representing
the distribution of directions of the incoming radiation. To get access to the posi-
tion distribution, the detector has to be moved and, in principle, such a scanning
brings information about the position and direction simultaneously: the position
of the measured signal prior to detection is delimited by the scanning aperture,
whereas the direction the signal comes from is revealed by the detector placed at
the focal plane. When the aperture moves, it scans the field repeatedly at different
positions. This could be an excellent chance to investigate the coherence prop-
erties of the relict radiation. To our best knowledge, this question has not been
posed yet. Quantum tomography is especially germane for this task.

Let us stress that classical estimation theory has been already applied to the
raw SH image data, offering an improved accuracy, but at greater computational
cost [141, 142]. However, the protocol used here can be implemented in a very
easy, compact way, without any numerical burden.

Finally, the iterative algorithms for informationally incomplete estimation re-
spectively for perfect and imperfect measurements was applied to wavefront to-
mography of Laguerre-Gaussian beams. We learned that one should better not
restrict the state reconstruction to a subspace in which the relevant measurements
are informationally complete. Doing so can result in reconstruction artifacts that
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originate in the state-space truncation and may result in inaccurate estimators for
the unknown true state. Instead, one should perform the reconstruction on a larger
subspace, with additional unsampled degrees of freedom, that is compatible with
any prior information about a given unknown state. Such a more objective way of
state estimation results in a much better tomographic quality of the reconstructed
estimator.
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Chapter 5

Data pattern tomography:
Reconstruction with unknown
apparatus

This chapter is motivated by a simple question: Is it really necessary to know all
the measurement device before the reconstruction starts? Intuitively, it is clear
that since the supposedly signal state is localized in some region of the search
subspace, one can be satisfied with device features associated with probing only
this region. Then it is sufficient calibrating the device only in this region. The
question is how to distinguish these features having no a-priori information about
the signal state and relying only on results of measurements performed on the
signal state.

Surprisingly, there is a simple way how to do this. It will be shown that the cal-
ibration can be incorporated in the reconstruction process. Information about the
device can be updated on the basis of the reconstruction results obtained in each
step of the estimation procedure. In this sense this proposal reminds adaptive al-
gorithms known as ”neural networks,” when self-learning is an important part of
the reconstruction protocol. Here we will discuss such an adaptive reconstruction
scheme based on the recently formulated pattern tomography [79]. This scheme
makes use of fitting measurement data obtained for an unknown signal state on
the set of data obtained for known probe states. It does require neither calibration
of the measurement nor any assumptions about the search subspace, which is nat-
urally defined by the choice of probe states. Such a reconstruction procedure was
shown to be analogous to the classical image processing [143]. Here we elaborate
further this idea into a versatile and economical tool that provides means to make
quantum state estimation tomography without knowledge about the measurement
apparatus using limited quasi-classical resources.

First we demonstrate how a general quantum state can be represented as a

46



CHAPTER 5. DATA PATTERN TOMOGRAPHY

mixture of quasi-classical coherent and thermal states with positive and negative
weights. We describe the procedure of constructing such a representation with
a minimal number of appropriately chosen known quasi-classical states. Particu-
larly, it will be shown that the single-photon state can be represented with arbitrary
accuracy with just two thermal states.

Then, we develop an estimation procedure implementing adaptive choice of
probe states for improved fit and more precise estimation. New probe states are
selected using available data patterns in adaptive fashion. We also demonstrate
that the proposed data pattern reconstruction is experimentally feasible and par-
ticularly well suited for inference of photon-number distributions.

5.1 Representation by mixtures of classical states
The key point in our discussion is a possibility to represent an arbitrary quan-
tum state as a mixture of appropriately chosen states with positive and negative
weights. The density matrix, ρ , of the signal state is supposed to be represented
as a mixture

ρ =
N

∑
j=1

x jσ j, (5.1)

where the coefficients x j are real scalars (not necessarily positive) and σ j are den-
sity matrices describing a set of linearly independent (generally, nonorthogonal)
probe states. For the concreteness, let us assume Gaussian probe states, namely,
coherent or thermal states.

Discrete representation (5.1) represents a generalization of the concept of P-
representation [144] and can be sufficiently accurate depending on the number of
terms in the sum. Notice that for calculating averages with arbitrary precision,
one can approximate even highly singular P-function by an infinitely differen-
tiable function [146]. Then, the sufficiently dense discretization can be adopted
for required approximation of the state analogously to Refs. [147]. Coherent state
projectors used for P-representation can be replaced by continuous representation
of arbitrary Gaussian operators [148].

Here we suggest to use appropriately chosen non-orthogonal basis uncon-
nected with the quasi-probability discretization. Moreover, that basis of Gaussian
density matrices might be very different from the set obtained as the result of the
discretization (here it is useful to mention a curious example of representing a
thermal squeezed state with few coherent projectors localized in two circles on
the phase plane [149]).
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Figure 5.1: Examples of representing quantum states by thermal and phase-
averaged coherent basis states (5.3). Panels (a,b) represent coefficients x j and
matrix elements of the two-photon Fock state approximated by N = 5 thermal
states (distance (5.2) is about 0.0015); panels (c,d) represent the single-photon
state with N = 8 phase-averaged coherent states, d = 2.96 ∗ 10−5 . Panels (e,f)
represent coefficients x j and matrix elements of the approximated three-photon
Fock state for N = 8 phase-averaged coherent basis states, d = 0.0157. Note that
the panels (b),(d), and (f) are zoomed in on the very small deviations from the
state being represented.

5.1.1 Representing phase-averaged states
Let us start with a simple case of states, which are diagonal in the Fock-state
representation. Despite its simplicity, this case is highly relevant for the quantum
state diagnostics with conventional single-photon detectors. In particular, such
representation can be applied for inferring photon-number distributions of a signal
state using on/off TMD detection schemes [150–152]. This will be considered in
the next section.

First of all, we notice that weak phase-averaged quantum states can be effi-
ciently represented as a mixture of just a few thermal states. Indeed, a single-
photon Fock state can be represented as a difference of two weak thermal states.
For example, subtracting a vacuum state from a thermal state with 〈n〉 << 1, up
to the normalization factor one gets

ρ ≈ ∑
n=0
〈n〉n|n+1〉〈n+1|,

where the vector |n〉 denotes the Fock state with n photons. Similarly, one can
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represent Fock states with larger number of photons. In Figs. (5.1)(a,b) an illus-
tration is shown of the two-photon Fock state representation with just five weak
thermal states. Here we use the distance

d =
√

∑
k,l=0
|ρest

kl −ρ true
kl |2 (5.2)

for characterizing the quality of the representation, where ρest is the approximated
density matrix and ρ true is the true one; elements ρkl are taken in the Fock-state
basis.

Thermal states are not the only choice for experimentally feasible representa-
tion of diagonal states. Phase-averaged coherent states

σ j = ∑
k=0

|α j|2k

k!
e−|α j|2|k〉〈k|. (5.3)

can be used as well, as has been already demonstrated with Fig. (5.1). Again,
a small number of phase-averaged coherent states is sufficient for obtaining a
reasonably accurate representation of weak diagonal states. In difference with
the thermal-state representation, state with larger average numbers of photons can
be used.

Simulation in this subsection were made using the standard procedures of least
square fitting. Notice that even for a comparatively small number of terms in
the representation (' 10) problems of bad conditioning might arise making the
straightforward least square procedure problematic (the same kind of problems
are plaguing attempts to implement a direct matrix inversion for the reconstruc-
tion, see, for example, [150]). However, imposing linear constraints, such as re-
quirement of positivity of the diagonal elements of the density matrix in the Fock
state basis and unit trace of them stabilizes the least square fit.

5.1.2 Designing an iterative approximation
For representations discussed in the previous subsection, a predefined small set
of phase-averaged or thermal states was used. However, choice of this set is not
a trivial task. For the given number of probe states, the quality of representation
depends rather strongly on the choice of amplitudes or temperatures (see Fig.5.2).
For choosing them we have developed a simple and rather general iterative ap-
proach. First of all, we specify a set of available probe states. For phase-averaged
signal states considered in this section this set is represented by sequence of coher-
ent state amplitudes or average numbers of thermal photons. For example, it can
be an equidistant grid with the distance between neighboring points correspond-
ing to the average photon number difference difference between the corresponding
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Figure 5.2: Illustration of dependence of the two-photon Fock state representation
quality (i.e. parameter d of Eq.(5.2) on the distance between neighbor phase-
averaged coherent probe states on the grid, δ . Total 8 probe states were used.
Inset demonstrates the performance of the simple iterative fit procedure. There it
is shown the dependence of d for the two-photon signal state on the total number
of phase-averaged coherent probe states, N. The distance δ = 0.1. )

states much less than the unity (since we are interested here in the reconstruction
of signal states with few photons on average). In Fig.5.2 one can see an exam-
ple of how the quality of the two-photon Fock signal state representation with
phase-averaged coherent states depends on the choice of the grid, described by
the distance between neighboring points, δ . As it should be expected, when δ

remains much less than unity, the representation is good (however, the quality
can be changed by orders of magnitude by adding just one state). When the step
approaches unity, the representation deteriorates.

Then, we specify the starting point (for example, the vacuum). We have con-
sidered two possible ways to develop a fit. The first one is the simplest: we add
consecutive points on the grid and see how the fit improves checking residuals.
The result of this procedure is shown in the inset of Fig.5.2, where the quality of
representation is depicted as a function of the number of probes It it can be seen
that just a few of them are sufficient to represent accurately a probe state with
no more than a few photons on average. However, one should also notice that the
quality of the representation changes in a rather non-monotonous way with adding
more probe states (actually, by orders of magnitude). This points to the conclusion
that it might be better to modify the iterative procedure as to look for better choice
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of probe states rather than increase their number. The procedure can be imag-
ined as follows: firstly, one specifies the number of states on a grid to be used for
representation and chooses them within some interval of amplitudes/temperatures
(generally, corresponding to probe states with no more than few photons), then
tries to replace one of the state with the another state on the grid to achieve better
fit.
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Figure 5.3: Reconstruction of the single-photon Fock state by an iterative pro-
cedure described in the text. Phase-averaged coherent probe states are used. (a)
Reconstructed photon-number distributions for N = 8 probe states (grey bars) and
N = 3 probe states (black bars). Panels (b,c) show coefficients x j and amplitudes
of the probe states for N = 8 (b) and N = 3 (c). Panel (d) shows Kullback-Leibler
divergence Eq. (5.5) for different number of probe states N. In total, 30 detec-
tor efficiencies were used for the reconstruction equidistantly distributed in the
interval [0.1,0.9] and 105 copies were measured for each of those settings. The
estimation was performed using standard OCTAVE and Mathematica packages
for the linearly constrained least squares estimation.

5.2 Reconstruction of a photon-number distribution
Consider now the reconstruction of a photon-number distribution using the data-
pattern scheme. As will be shown in sec.3.1.3, the proposed scheme is feasible,
efficient, fast, and allows to avoid a meticulous and difficult procedure of calibrat-
ing the detection device at the single-photon level. The photon-number inference
is performed using a measurement sensitive to the diagonal elements of the den-
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Figure 5.4: Reconstruction of the single-photon Fock state by an iterative pro-
cedure using thermal probe states and using POVM elements for the loop TMD
detector scheme. Light grey bars correspond to N = 9, dark-grey bars correspond
to N = 5 thermal probe states. The loop on/off detector scheme with 16 POVM
elements is considered [153]; 105 measurements were taken for each POVM el-
ement; for the reconstruction an equidistant set of 〈n〉 was taken, difference be-
tween the neighboring points is δ = 0.03. The inset shows the behavior of the
Kullback-Leibler divergence (5.5) in dependence of N.

sity matrix expressed in the Fock-state basis:

p j = ∑
n

Π jnρnn. (5.4)

A well-known example of such a measurements (5.4) is the already well-established
on/off detection and its modifications [150–152]. Simulated data pattern recon-
structions with the simplest version of the on/off detection device are presented
in Fig. 5.3. Absorbers are placed before the single-photon detector to change the
quantum efficiency of the detection. The data is comprised by the number of
clicks detected for each efficiency setting for a sequence of identical copies of the
signal state.

An example of the data pattern reconstruction from simulated data using the
iterative procedure from the subsection 5.1.2 is shown in Fig. 5.3. The suggested
operational procedure is the following: At first the responses to the signal state
are recorded. Then patterns generated by a set of probe states are recorded and
the reconstruction of the signal is done. The quality of the fit is characterized by
introducing a cost function characterizing a difference between measurement out-
comes and probabilities predicted by the estimation. In the next iteration, more
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probe states are used and new fit is analyzed. The choice of new probe states goes
as it was described in the previous section: one is either adds more states from a
pre-defined set found sufficient for representation of a wide range of signal states
(for example, a new row or column from the set defined on a square lattice), or
uses results of the previous step to find the best probe states to be added (some-
what similarly to as was done in the adaptive procedure described in the previous
section; the important difference that we want incorporating all the previously
measured probe states into the fit). The procedure stops when the fit does not
change significantly upon adding more probe states.

Phase-averaged coherent states were considered as probes. The values of the
probe-state amplitudes are taken from the predefined equidistant lattice with a
period much smaller than unity (which can be considered rather general rule for
the case, since we are interested in the reconstruction of few-photon signals); δ =
0.02 for the example. The vacuum state was chosen as a starting points, on each
subsequent step of the procedure the next probe state on the grid was added. The
Kullback-Leibler divergence

Kd = ∑
j

f j log
{

f j

p j

}
(5.5)

is used as a cost function quantifying the quality of the fitting procedure. Here
f j are the measured frequencies for the signal state, and p j are the probabilities
predicted from the reconstructed state. Notice that the photon-number distribution
of a single photon state can be reconstructed with just a few semi-classical probe
states. Also notice that the information about the actual detector efficiencies was
not used in the estimation process. It can be seen that adding more responses from
additional probe states would typically improve the fit (Fig.5.3(d)), although some
oscillations of the quality with adding new terms might also occur.

Possible non-monotonous character of the quality of the fit can be well illus-
trated with reconstruction based on thermal probe states. Results for the single-
photon state estimation with thermal probe states and a realistic fiber-loop TMD
detector (see sec.3.4) are shown in Fig. 5.4 [153, 154]. In the loop detector, the
signal travels several times round the fiber loop. Each time a portion of the signal
is split off at a fiber beam splitter and gets detected at the single-photon detec-
tor with on/off result. For M passes, 2M different outcomes are thus registered.
One can see in Fig.5.4 that for a single-photon state, quite a precise fit is achieved
with just two thermal probe states. With adding more probe states the quality
first drops down and improves gradually with adding more probe states. Still, the
procedure is efficient in comparison with the full calibration of the measurement
set-up, since just a few probe states are needed here.
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5.3 Discussion
We have presented the data pattern approach to quantum tomography. It appears
that this technique may become an efficient and feasible tool in experimental
quantum-state reconstruction, the most prominent feature being the ability to per-
form reconstruction without ever knowing the exact properties of the measurement
apparatus. The knowledge required for the precise estimation of a particular sig-
nal state can be obtained a-posteriori, after the measurement on the signal state
is done. Characterizing the quality of the estimation by means of the Kullback-
Leibler divergence, one can decide, which additional probe states might be help-
ful for further improvement of the reconstruction. This strategy was demonstrated
with simulated estimations of the diagonal elements of the density matrix in Fock
basis for light pulses using TMD detection . We have explicitly demonstrated that
coherent and thermal probe states provide adequate quantum resources even for
the reconstruction of highly non-classical signal states with few photons. This
is a considerable advantage for the experimenters, since calibrating measurement
set-ups for such weak signals can be rather a challenging task.
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Chapter 6

Quantum polarization tomography
of bright squeezed light

In this chapter, we perform a full tomography reconstruction of the polarization
sector of bright polarization squeezed beam starting from a complete set of Stokes
measurements, based on theoretical foundations from the section 3.3. The recon-
struction is accomplished in three different ways: by the direct inversion of the
Radon transform, by a novel maximum-likelihood estimation and, finally, by a
Gaussian approximation. We find that the maximum likelihood reconstruction
provides significantly higher statistical inversion stability, which allows to get re-
construction of the same quality but from far smaller data set.

6.1 Experimental setup
To validate our approach, we perform the tomography of a polarization squeezed
state, generated in a polarization-maintaining optical fibre through the nonlinear
Kerr effect [99]. The setup is shown in figure 1. The light source is a shot-
noise limited ORIGAMI laser from Onefive GmbH emitting 220 fs pulses at a
repetition rate of 80 MHz and centered at 1560 nm. The light is fed into a 13 m-
long polarization-maintaining birefringent fibre (3M FS-PM-7811, 5.6 µm mode-
field diameter) so that quadrature squeezed states are simultaneously and indepen-
dently generated in both polarization modes. The strong birefringence of the fibre
(beat length 1.67 mm) causes a delay between the emerging quadrature-squeezed
pulses. We precompensate for this delay in an unbalanced Michelson-like inter-
ferometer placed before the fibre. A small part (0.1 %) of the fibre output serves
as the input to a control loop to maintain the relative phase between the exiting
pulses locked to π/2, so the light is circularly polarized.

The quantum state is detected with a Stokes measurement, as sketched in the
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previous section. The two detectors (InGaAS PIN photodiodes, custom-made by
Laser Components GmbH with 98 % quantum efficiency at DC) are balanced
and have a sub-shot noise resolution at a frequency range between 5 MHz and
30 MHz. Each detector has two separate outputs: DC, providing the average
values of the photocurrents, and AC, providing the photocurrents amplified in
radio-frequency (RF) spectral range. The RF currents of the photodetectors are
mixed with an electronic local oscillator at 12 MHz, amplified (FEMTO DHPVA-
100), and digitized by an analog/digital exit converter (Gage CompuScope 1610)
at 10 Megasamples per second with a 16-bit resolution and 10 times oversampling.

The measurements are performed at a pulse energy of 93 pJ. In the dark plane
a total squeezing of about 3.8 dB is observed. In the orthogonal quadrature, the
noise was enhanced by several tens of dB due to Guided Acoustic Wave Brillouin
Scattering (GAWBS) [155–157]. In the direction of the classical excitation, the
state is expected to be shot-noise limited, since the Kerr effect only influences the
phase and does not contribute to the photon number.

To perform the reconstruction, histograms of the Stokes variables are recorded
for different angles (θ ,φ). This is done by rotating the wave plates with motor-
ized stages (OWIS DMT 40-D20-HSM) and scanning one eighth of the Poincaré
sphere in 8100 steps, a measurement that took over eight hours. The unmeasured
octants were deduced from symmetry. For each setting of the wave plates, the
photocurrent noise of both detectors was simultaneously sampled 0.5×106 times.
Noise statistics of the detectors difference current were acquired in histograms
with 751 bins. Additionally, the optical intensity was recorded.

In figure 2 we show typical histograms at different angles on the Poincaré
sphere. As the widths largely vary from squeezing to antisqueezing ranges, there
are two plots in which the amplitude scale differs in more than one order of mag-
nitude. The histograms labeled 1, 2 and 3 are measured in the dark plane. To-
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Figure 6.1: Setup for efficient polarization squeezing generation and the corre-
sponding Stokes measurement apparatus.
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Figure 6.2: Measured histograms of the difference current of the two detectors for
various measurement directions on the Poincaré sphere.. Note the different scales
on both plots. Histograms 1, 2, and 3 are in the dark plane, while histogram 4 is
at the classical mean value. The histograms corresponding to electronic and shot
noise are also shown.

mogram 1 denotes the angle of maximum squeezing, while 3 corresponds to the
antisqueezing. Tomogram 4 is at the classical mean value, where the measured
noise is almost shot-noise limited. Due to the high number of samples, the mea-
sured histograms are smooth and, at the same time, the number of bins makes it
possible to resolve the large dynamical range of amplitudes, so no data interpo-
lation was needed. We also plot histograms showing the electronic noise and the
shot noise.

For all these histograms we have performed a Gaussianity check, using the
Kolmogorov-Smirnov and the χ2 tests, as well as the Kullback-Leibler divergence
[158]. We can conclude that all the histogramas are Gaussian within confidence
levels ranging from 95 % to 98 %.
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Figure 6.3: (Right) Isocontour surface of the level 1/e (from the maximum) of
the Wigner function W (J,θ ,φ) for the polarization squeezed state generated in
the setup of figure 1. (Left) Sections of the Wigner function through the three
coordinate planes. In blue we show the isotropic section for a coherent state,
which we use as unit for all the plots.

6.2 Experimental reconstruction

6.2.1 Inverse Radon reconstruction
As clearly expressed in (3.67), for high photon numbers the tomography turns
out to be equivalent to an inverse Radon transform of the measured histograms.
In practice, this one-step 3D reconstruction is very demanding in computational
resources. Therefore, we divide the process into two steps: first, a set of 2D pro-
jections is reconstructed from the recorded histograms; subsequently, the Wigner
function is slice-wise generated from those projections (to which we apply a Ham-
ming filter to smooth the noise). The symmetry of the state is used as a prior
information to reduce the range of measured angles to an octant. This minimizes
the systematic errors stemming from imperfections of the polarization optics.

In figure 3 (right panel) we show the final result of the inverse Radon trans-
form for our polarization squeezed state. More concretely, we plot an isocontour
surface of W (J,θ ,φ) = constant (with the constant being 1/e from the maximum)
in the Poincaré space having J1, J2, and J3 as orthogonal axes. As coordinate units
we use the shot noise set by a coherent state. The ellipsoidal shape of the state is
clearly visible. The center of the ellipsoid is far away from the origin, since we
have 10× 1011 photons per measurement time (using 1.9 MHz resolution band-
width). The antisqueezed direction of the ellipsoid is dominated by excess noise
stemming largely from GAWBS, as we have already mentioned.

In the left panel of figure 3 we sketch density plots of the projections on the
coordinate planes of the previous Wigner function (including the particular case
of a coherent state). The contours agree with the 3.8 ± 0.3 dB squeezing that was
directly measured from the variances. The projections on the planes J1-J2 and
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J2-J3 show an additional spreading of the state in the J2 direction caused by the
imperfect polarization contrast in the measurement setup that mixes some of the
antisqueezing on the J2 direction.

This Radon reconstruction requires a large set of measured data to get a rea-
sonably accurate representation of the state. There are two main reasons for this:
integrals are approximated by finite sums (in our case, we used 751 bins in 91
steps) and the kernel (3.64) is singular, so some ad hoc filtering of the raw data is
needed. Acquiring such large data sets may be unwise, for it demands long mea-
surement times. Ensuring the proper stability of the setup is thus essential and
might be difficult depending on the quantum state measured.

6.2.2 Maximum-Likelihood reconstruction
This limitation may be circumvented by adopting a statistically-motivated method,
such as the maximum likelihood (ML) [159]. In our case, the relation between the
Wigner function W and the tomograms w can be written as a system of linear
equations

w j = ∑
j

c jk Wk, (6.1)

where the subscripts in Wk and w j is a shorthand notation for the respectives coor-
dinates. The coefficients c jk can be interpreted as the overlap of the jth projector
with the kth volume element of the Wigner function and can be readily determined
from equations (3.53) and (3.60). The most likely Wigner function is then found
by minimizing the Kullback-Leibler divergence between the normalized vectors
of the computed tomograms w j and recorded ones w̄ j. Technically, this can be
achieved by the iterative expectation-maximization algorithm [160–162]

W (n+1)
k =W (n)

k
∑ j w j

(∑ j w̄ j)(∑ j c jk)
∑

j

w̄ j

w j
c jk , (6.2)

which converges monotonously to the ML estimate from any strictly positive ini-
tial vector W (0)

k .
The significantly greater stability of the statistical inversion allows us to get

reconstructions of the same quality but from far smaller data sets. This is illus-
trated in figure 4, where we draw a comparison between Radon and ML methods,
although in the latter case using only nine different settings of the angles (θ ,φ),
which amounts to reducing the measurements by two orders of magnitude. In
other words, the measuring time is shortened from eight hours to less than five
minutes! This result indicates that the experimental characterization of consider-
ably more complicated quantum states with less symmetries should still be within
the reach of the present measurement setup.
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Figure 6.4: Sections of the isocontour of the Wigner function in figure 3 through
the coordinate axes, for the three different reconstruction techniques used. In grey,
direct Radon transform, in green ML method with nine settings for the angles of
the wave plates and in dotted lines the results of a Gaussian ML approximation.

6.2.3 Dark plane reconstruction
As we have discussed in section 3.3.2, the dark plane is of special interest. The
theory shows that the reconstruction therein can be obtained in two different ways:
either by reconstructing the dark mode directly from the histograms or by calcu-
lating projection of the 3D Wigner function along the J2 direction. The two results
are compared in figure 6.5 and good agreement within the experimental uncertain-
ties is found. Since the Radon transform should provide a plausible explanation
for all the measured histograms, such a comparison may serve as an independent
test of the quality of the 3D tomography.

Finally, the high confidence levels of the Gaussianity tests seems to call for a
Gaussian ML reconstruction. The Gaussianity is used as a prior information about
the signal, which helps to reduce drastically the number of free parameters. In this
case, the Wigner function is represented by the 3×3 covariance matrix G:

W (n) ∝ exp
(
−1

2
nG−1n

)
, (6.3)

and the calculated variances σ j = n jGn j are matched (in the ML sense) to the ac-
tually measured variances [163]. Since G must be positive semidefinite, only six
real parameters describe the measured system and the problem is highly overdeter-
mined, in consequence, the Gaussian state can be obtained from a few histograms.
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Figure 6.5: Dark plane reconstructions. Left panel: Reconstruction obtained by
integrating the Wigner function shown in figure. 3 in the J2 direction. Right panel:
ML reconstruction from dark-plane histograms. Only nine settings of angles θ

and φ were used for the ML tomography.

In principle, by comparing Gaussian reconstructions based on different subsets of
measured data, various imperfections of the setup, such as instabilities and biases,
can be detected.

The matrix G turns out to be

G =

 3.0920×102 −1.1931 −2.0160
−1.1931 4.4485×10−1 −1.2926×10−2

−2.0160 −1.2926×10−2 1.1511

 , (6.4)

which once diagonalized gives the principal variances 0.43962, 1.13853, and
309.22177 (in shot-noise units). This agrees well with the standard and ML re-
constructions, as can be also appreciated in figure 4. The Gaussian reconstruction
was done without assuming a particular orientation or symmetry of the state with
respect to the Stokes coordinates. The covariance matrix suggests that the mis-
alignment of the principal axis is less than 0.5 degrees within the measurement
errors, in accordance with the definition of angles adopted in the experiment.

This Gaussian approach allows for a simple estimate of the errors: just take
the pseudoinversion of the measurement matrix as a linear model and use the
standard theory of error propagation. The errors to be propagated are actually the
errors in the estimated variances for each tomogram, which are found from the χ2

distribution. In addition, we can assume that the variances of different tomograms
are uncorrelated.

Taking a 97.5 % confidence interval (which corresponds to three standard de-
viations), the principal variances can be written as

0.440±0.002, 1.139±0.001, 309.2±0.3 . (6.5)

Note that the relative errors in the two larger variances are roughly the same (∼
0.1 %), while for the smallest variance is four times larger. This is a consequence
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of the experimental setup: the smallest variance is directly revealed only in one of
the recorded projections used for the reconstruction.

6.3 Discussion
In summary, we have presented a complete programme for the full polarization to-
mography of quantum states. Using the SU(2) Wigner function, we have provided
an exact inversion formula in terms of the histograms of a standard Stokes mea-
surement and derived a simplified version for very localized, high intensity states
which turns out to be an inverse Radon transform. As a test of the theory, the re-
construction of an intense polarization squeezed state has been performed. A ML
reconstruction algorithm has also been presented and has been compared to the
direct method, thereby yielding an excellent agreement. Of course, the technique
can be readily used for any other polarization state.
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Chapter 7

Conclusions

In this thesis I have presented my research in the field of tomographic methods
for various topics of modern optic. Both experimental and theoretical results are
demonstrated and applications in quantum as well as classical optical signals are
considered. After brief state of art survey describing the context of each presented
application, particular tomography methods are discussed in detail.

In chapter 4, Shack-Hartmann wavefront sensor tomography is experimen-
tally demonstrated. The possibility of characterization partially coherent optical
fields with common wavefront sensor has been demonstrated. This goes further
the standard analysis and constitutes a substantial leap ahead that might trigger
potential applications in many areas. Applying quantum tomography to Shack-
Hartmann data, the coherence matrix carrying complete information about the
coherence properties and 3D intensity distribution of the signal can be recon-
structed. This idea was illustrated with the experimental 3D imaging of optical
vortices. To our best knowledge, this is the first experimental measurement of the
coherence properties with a wavefront sensor. We emphasize that the standard
Shack-Hartmann operation fails in this kind of application. The high-order vortex
beams with strongly helical wavefronts are very difficult to analyze with the stan-
dard wavefront sensors, while they pose no difficulty for our proposed approach.
Finally, reconstruction of coherence matrix from informationally incomplete mea-
surement was carried out. Here, the Maximum Likelihood-Maximum entropy al-
gorithm was performed and a good agreement with the results of informationally
complete version of the measurement was obtained.

Chapter 5 is dedicated to data pattern tomography of photon distributions. The
most relevant feature of the approach is the ability to perform an efficient recon-
struction without ever knowing the exact properties of the measurement setup.
The knowledge required for the precise estimation of a particular signal state can
be obtained a posteriori, after the measurement on the signal state. This is a signifi-
cant advantage for the experimentalists, since calibrating the measurement setups
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can be a rather challenging task. Iterative procedure for obtaining information
about the measurement which is sufficient for an estimation of a particular signal
state was developed. The method can decide which probe states might be helpful
in further improving of the reconstruction. The strategy was numerically verified
by photon number distribution tomography of light pulses. We have explicitly
demonstrated that coherent and thermal probe states provide adequate quantum
resources for the reconstruction of highly non-classical states with few photons.

Finally, in chapter 6, tomography of bright squeezed light generated via the op-
tical Kerr effect is described. Using Stokes measurements and high intensity states
approximations, the tomographic reconstruction of the state is equivalent to an in-
verse Radon transformation of the measured Stokes tomograms. Reconstruction
of the state Wigner function by direct inverse Radon transform was compared to
results of a novel Maximum-Likelihood algorithm. For inverse Radon reconstruc-
tion, the complete set of 902 different measurements angles was used, whereas
the maximum likelihood reconstruction only included 92 different measurement
angles. The significantly greater statistical inversion stability of the maximum
likelihood technique allows us to get reconstruction of the same quality but from
far smaller data sets. This corresponds to a reduction of the measurement time
by two orders of magnitude and hence allows for a much faster characterization
of the polarization state. Furthermore, the artifacts present in the inverse Radon
reconstruction are completely suppressed.
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Stručné shrnutı́ v češtině

Práce ”Tomografické metody v modernı́ optice” se zabývá několika technikami
tomografických měřenı́ a tomografických protokolů v kvantové i klasické optice,
zejména pak tomografiı́ částečně koherentnı́ch optických svazků, tomografiı́ po-
larizačnı́ho stavu neklasického světla a tomografiı́ fotonových distribucı́. Společný
rámec všech pužitých metod je tvořen formalizmem kvantové tomografie.

V prvnı́ části práce je popsán nejvýznamnějšı́ prezentovaný výsledek, vůbec
prvnı́ experimentálnı́ realizace detekce částečně koherentnı́ho optického pole po-
mocı́ Shack-Hartmannova detektoru, která byla provedena v laboratořı́ch Uni-
verzity Palackého. Tento experiment ukázal, že nová tomografická metoda zpra-
covánı́ dat tohoto široce použı́vaného detektoru podstatně rozšiřuje jeho možnosti,
konkrétně o detekci koherenčnı́ matice obsahujı́cı́ veškeré informace o světelném
svazku. Tato vlastnost byla experimentálně demonstrována při predikci rozloženı́
intenzity optického svazku v dalekém poli, kde uvedená metoda správně predikuje
toto rozloženı́ v konfrontaci z přı́mým měřenı́m. V experimentu použité vı́rové
optické svazky jsou velice zajı́mavou optickou strukturou pro optické mikroma-
nipulace a přenos informace optickou cestou. Disertace dále obsahuje popis ex-
perimentu, kde je realizována Shack-Hartmannova tomografie s neúplnou sadou
měřenı́ pro detekci Laguerre-Gauss svazků. Na tento problém byla aplikována
metoda Maximum Likelihood-Maximum Entropy s velmi uspokojivými výsledky.

V následujı́cı́ kapitole je rozpracována aplikace tomografické metody ”Data
Patterns”. Tato metoda řešı́ problém kalibrace měřı́cı́ho aparátu a je tedy vhodná
při komplikovaných měřenı́ch s mnoha volnými parametry. Pro numerickou sim-
ulaci byla vybrána tomografie fotonových rozdělenı́ při malém střednı́m počtu
fotonů, jako měřı́cı́ zařı́zenı́ pak Time-Multiplexing-Device. Práce obsahuje prak-
tický numerický protokol výběru parametrů metody a prokazuje využitelnost tech-
niky Data Patterns na problém neklasických stavů světla s malým střednı́m počtem
fotonů.

V poslednı́ kapitole je popsán výsledek, který se podařilo dosáhnout společně
s kolegy z Max-Planck Institute Erlangen, kde se experimentálně provádı́ měřenı́
neklasického stlačeného světla a jeho polarizačnı́ch vlastnostı́. Námi aplikovaná
metoda Maximum Likelihood na změřená tomografická data pomohla zkrátit dobu
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měřenı́ z několika hodin na několik minut, což má velké důsledky pro stabilitu
celého experimentu. Bylo třeba naprogramovat speciálnı́ software provádějı́cı́ 3D
rekonstrukci polarizačnı́ Wignerovy funkce, kde hlavnı́m problémem bylo velké
množstvı́ zpracovávaných dat.

Disertačnı́ práce se zakládá na čtyřech článcı́ch z impaktovaných vědeckých
časopisů, které jsem publikoval za spolupráce kolegů z katedry optiky UPOL,
Max-Planck Institute Erlangen, Universidad Comlutense Madrid, Centre for Quan-
tum Technologies Singapore a Institute of Physics Minsk. Jedná se o práce

B. Stoklasa, L. Motka, J. Rehacek, Z. Hradil, L. L. Sánchez-Soto, Wavefront
sensing reveals optical coherence, Nature Communications 5, (2014)

D. Mogilevtsev, A. Ignatenko, A. Maloshtan, B. Stoklasa, J. Rehacek, Z.
Hradil, Data pattern tomography: reconstruction with an unknown apparatus,
N. J. Phys. 14, (2013)

CH. Müller, B. Stoklasa, A. B. Klimov, Ch. Gabriel, Ch. Peuntinger, J. Re-
hacek, Z. Hradil, L. L. Sanchez-Soto, Ch. Marquardt, G. Leuchs, Quantum polar-
ization tomography of bright squeezed light, N. J. Phys. 14, (2012)
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[38] Z. Hradil, J. Řeháček, and L. L. Sánchez-Soto, Phys. Rev. Lett. 105, 010401
(2010).

[39] Muller A, Breguet J and Gisin N, Europhys. Lett. 23 383–388 (1993)

[40] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A, Phys. Rev. Lett. 76
4656–4659 (1996)

[41] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A,
Nature 390 575–579 (1997)
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[89] D. Sych, J. Řeháček, Z. Hradil, G. Leuchs, and L. L. Sánchez-Soto, Phys.
Rev. A 86, 052123 (2012).
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1. Název práce: Tomografické metody v modernı́ optice

2. Název v angličtině: Tomographic methods in modern optics

3. Souběžný název:

4. Anotace:
V disertačnı́ práci jsou popsány aplikace kvantové tomografie v modernı́
optice. Obsahem jsou jak experimentálnı́ výsledky, tak rozpracovánı́ to-
mografických algoritmů. V prvnı́m přı́padě se jedná jednak o tomografii
koherenčnı́ funkce světelných svazků s využitı́m detekce vlnoplochy a jed-
nak o tomografii stlačeného polarizačnı́ho stavu světla. V druhém přı́padě
je popsán tomografický algoritmus ”Data patterns” na přı́kladu tomografie
fotonového rozdělenı́ optických pulsů. Algoritmus MLME pro informačně
nekompletnı́ měřenı́ je prezentován i experimentálně a je aplikován na to-
mografie vlnoplochy.

5. Klı́čová slova: kvantová tomografie, tomografické algoritmy, polarizace
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6. Anotace v angličtině:
In the thesis, different applications of quantum tomography are presented.
Both experimental results and tomographic protocols are discussed. Experi-
mental part includes a coherence function tomography of light beams using
wavefront detection and polarization squeezed light tomography. Tomo-
graphic protocols involved ”Data pattern” approach illustrated a by photon
distribution tomography. Protocol MLME for informationally incomplete
measurement is also experimentally applicated to wavefront tomography.
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