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vysoká magnetická anizotropnı́ energie. Tento druh energie je zod-
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Introduction
It is difϐicult to deny that scientiϐic research is often seen as a bridge between satisfying a natural

curiosity about the world and developing new technologies based on currently established knowl-
edge. Oneof the ϐields that hasparticularlybeneϐited fromthis connection is condensedmatterphysics,
where countless number of naturally existing and human-fabricated specimen exist, which display a
variety of fascinating phenomena. The motivation to investigate the properties of different materi-
als and structures is constantly stimulated by novel ϐindings in new and sometimes old, seemingly
perfectly understood, systems.

At present, research efforts cover extremely broad range of topics, but the actual electronic devices
are still relaying on silicon technology. It is a greatly appealing prospect to ϐind alternative materials
that would satistfy the increasing growth of requirements for higher speed, greater efϐiciency and
larger data storage capabilities. Silicon substrates are no longer attractive, mainly due to lowmobility
of charge carriers and their poor compatibility with the elements of the 3d and 5d groups in inte-
grated circuits. Another problem is the expensive fabrication of devices using silicon elements. [1]
The rise in modern magnetic technologies has spurred intense research efforts aimed at improving
our knowledge, especially about magnetic materials. Structures with tailored magnetic properties
have attracted considerable attention because of the potential application in spintronics and high-
density magnetic or magneto-optical data storage devices. [2]

Particularly, the control of magnetism at the atomic scale became desirable due to prospects of
miniaturization of storage devices. [3, 4] The key parameter, relevant for the usability of magnetic
systems as switchable magnets, is magnetic anisotropy energy (MAE).[5] Large value of MAE, charac-
terizing an energetically stable structure, enables manipulation of the magnetic moment by an exter-
nal electric ϐield in ambient conditions. Such functionality is crucial for practical aspects of spintronics
and quantum computation[6]. For room temperature operation, it is also essential to consider ther-
mal ϐluctuations, which cannot overcome the strength of magnetic coupling.

Many commonly investigated nanostructures display MAE in the order of few meV, which is sig-
niϐicantly smaller than thermal energy at room temperature (kBT ≈ 30meV for T = 296 K). [7] There-
fore, it is important to achieve deep understanding of the mechanisms of magnetic coupling in small
magnetic systems. Such knowledge could allow conscious tailoring of magnetic properties in small
scale, and eventually lead to proposals and realisations of magnetic systems with sufϐiciently high
MAE. From general wisdom, it is quite clear that strong magnetic anisotropy may be expected from
atoms characterized by large value of spin and/or orbital momentum, especially in the presence of
robust spin-orbit coupling.

One can imaginemultiple candidates for systems exhibiting large value of MAE. Especially appeal-
ing are magnetic nanostructures, where the reduction of dimensionality introduces conϐinement ef-
fects, which often lead to enhancement of magnetic interactions. Another aspect of this problem is
related to the ϐlexibility of the choice of the atoms forming the magnetic system, which enables opti-
mization of themagnetic properties to a considerable degree. From this point of view, transitionmetal
(TM) clusters provide a solid platform suitable for testing of theoretical ideas, aiming to increase the
value ofMAE. [8] It is important to emphasize, that even the simplest forms of TM clustersmay exhibit
variousmagnetic properties. Some of them show largeMAE value of 40-70meV. [9] Othermay exhibit
even non-magnetic ground state. Given the diversity of possible magnetic conϐigurations appearing
in TM dimers, it is important to develop understanding of the factors that eventually determine value
of MAE.

In simple terms, largemagneticmoment is displayed by the 3d transitionmetal atoms, which often
strongly interact through ferromagnetic coupling. However, these elements typically lack the strong
spin-orbit coupling. Further on in the periodic table, the 4d and 5d elements reside, which, in their
bulk form, are often found in non-magnetic conϐigurations.[10] Nevertheless, reduction of dimension-
ality, realised for instance by formation of small mers based on 4d and 5d elements (such as dimers)
often induces large intrinsic spin-orbit effects. For these reasons, it is far from obviouswhich TM clus-
ters could be best candidates for largeMAE systems. In such case, it is a good practice to turn to exper-
imental data for guidance. Recent investigations of hybrid TM clusters, combining 3d elements with
4d or 5d elements, demonstrated exceptionally robust magnetic anisotropy. In this thesis, following
the reasoning presented so far, IrCo dimers have been chosen as a test subject for ϐirst-principle calcu-
lations of themagnetic ground state. Cobalt and iridium are representatives of elementswith partially
ϐilled 3d and 5d shells, respectively. Therefore, the undertaken study develops deeper understanding
of fundamental mechanisms relevant for appearance of different magnetic conϐigurations in TM clus-
ters, providing at the same time a detailed characterization of a particular system, which can easily be
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realised experimentally.[11, 12]
From practical point, it is important to take into account the impact of the substrate on the mag-

netic state of the considered IrCo dimer. Not only is the substrate coupling a factor that may inϐluence
themagnetic state of the dimer, but also is an inseparable aspect inmany realistic systems, due to con-
straints imposed by the procedures of sample fabrication. In this regard, the basic question iswhether
the support will alter the magnetic state of the dimer and if, perhaps, induced changes could be bene-
ϐicial for achieving higher magnetic anisotropy. Many types of substrates have been considered so far,
including metallic materials (e. g. nickel or copper) and metal oxide layers. [13] High MAE in the sys-
tem is not the only important parameter in order to obtain stable nanomagnetic structures. Another
physical properties, such as the quantum number of the ground state and crystal ϐield symmetry play
an important role in the dynamics of magnetization, especially the magnetic lifetime.

Here, the case of IrCo dimer located over a single vacancy in graphene is investigated. Since the
isolation of single carbon layers and demonstrating their remarkable electronic andmechanical prop-
erties, the possibility of marrying graphene with magnetism has been an intensely explored research
topic, including both experimental and theoretical approaches. Many cases have been considered,
such as edge magnetism or emergence of ϐlat bands and therefore strong many-body interactions in
ABC stacked graphite layers. Despite these efforts, magnetism in graphene is still an elusive phe-
nomenon. Given the results obtained here for IrCo dimer supported by defective graphene, the in-
spection of such structures may be appealing for further discussion about inducing magnetic effects
in thin graphite layers.

The Vienna ab initio calculations, based of spin-polarized density function theory (DFT) imple-
mented in Vienna simulation package, demonstrate the IrCo dimer can be effectively adsorbed onto
the vacancy in graphene. The interplaybetween sp2 hybridizationof carbonatomswith spdhybridiza-
tion in metallic atoms may have multiple consequences on the magnetic properties of the dimer. The
calculations show that, independently on the initial position of the dimer, the IrCo complex becomes
bonded onto the centre of the graphene vacancy. The strong binding of the 3d (cobalt) atom to the
substrate stabilizes an out-of-plane alignment of the dimer, which is very important for achieving a
high magnetic anisotropy. Due to the coupling with carbon atoms, spin and orbital momentum of
the 3d (cobalt) atom are strongly quenched, but simultaneously weakening its binding with the 5d
(iridium) atom. Consequently, iridium recovers its atomic character, which is characterized by larger
spin and orbital anisotropy than would be displayed in the decoupled dimer conϐiguration. The main
conclusion of the presented study is that the IrCo dimer bonded onto a graphene vacancy maintains
a large value of MAE and offers promise for obtaining graphene-based structures exhibiting stable
magnetization.

8



1. Theoretical part

1.1. Theoretical background
The desire to describe the electronic structure of atoms, molecules and solids, have always been

one of the main aspects of solid states physics and quantum chemistry. Unfortunately, the knowledge
of the electronic conϐiguration for new structures is not easy to obtain. The twomain important prop-
erties of electrons in solids are particle/wave-like behaviour and the many-body interactions that are
showing quantum mechanical correlations. Different theories and approximations have been devel-
oped in order to describe the state of electrons in atoms, molecules and solids which would give us
a comprehensive understanding of the mechanisms behind. [14, 15] A concise overview of the his-
torical advancement in understanding of quantum mechanical description of electrons, particularly
electrons in solids, is given in this chapter.

1.1.1. Electronic structure

One of the ϐirst breakthroughs in the developement of the currently well-established concept of
an electron happened in 1926, when the Austrian physicist Erwin Schrödinger described the hypo-
thetical plane waves by the use of de Broglie relations. [16] The outcome of his work led to one of the
most famous equations in physics, that has been given name after its discoverer, the time-dependent
Schrödinger equation :

i} ∂
∂t
ψ(r⃗, t) = Ĥψ(r⃗, t) (1)

Since its proposal, the validity of Schrödinger’s equation has been intensely debated in scientiϐic
community. Even though the time-dependent Schrödinger equation constitutes a foundation of mod-
ern quantum physics, in most cases its use is impractical because of the relativistic formulation that it
contains. Schrödinger himself later postulated the non-relativistic approximation formore accessible
usage. In this new form the equation is being used frequently to this day in quantum chemistry and
theoretical calculations due its computational power.

Thewave functionΨ(r⃗, t) in equation 1 describes the state of the particle inmomentum space and
the Hamiltonian, Ĥ , describes the kinetic and potential energy of the particle. When the Hamiltonian
for a single particle is considered in form:

Ĥ = T̂ + V̂ = − }
2m

∇⃗2 + V (r⃗, t) (2)

then, the equation1 canbeusedand thenon-relativistic time-dependent singleparticle Schrödinger
equation will take a form:

i~ ∂
∂t
ψ(r⃗, t) =

[
− ~
2m

∇⃗2 + V (r⃗, t)

]
ψ(r⃗, t). (3)

The Hamiltonian can be written inN−dimensions, as followed:

Ĥ =

N∑
i=1

p̂i
2

2mi
+ V (r⃗1, r⃗2, ..., r⃗N , t) = −~2

2

N∑
i=1

1

mi
+ V (r⃗1, r⃗2, ..., r⃗N , t). (4)

The corresponding Schrödinger equation then reads:

i~ ∂
∂t
ψ(r⃗1, r⃗2, ..., r⃗N , t) =

[
−~
2

N∑
i=1

1

mi
∇2

i + V (r⃗1, r⃗2, ..., r⃗N , t)

]
ψ(r⃗1, r⃗2, ..., r⃗N , t). (5)

Unfortunately, the equation5doesnot alwayshave a simple solution. It is possible, in certain cases,
to separate the formula into two parts, making it easier to solve. Treating the equation in such a way
will lead to the time-independent Hamiltonian. The solution for such approach describes standing
waves that represent the stationary states in the system (so called orbitals). The time independent
Schrödinger equation can not only simplify the solution but can also be helpful in solving the corre-
sponding time dependent equation.

A useful method for obtaining the desired time independent Schrödinger equation is the mathe-
matical method of variable separation. By applying this approach to the many-body Hamiltonian, the
Schrödinger equation will take the form:
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Eψ(r⃗1, r⃗2, ..., r⃗N ) =

[
−~
2

N∑
i=1

1

mi
∇2

i + V (r⃗1, r⃗2, ..., r⃗i, r⃗j , ...r⃗N )

]
ψ(r⃗1, r⃗2, ..., r⃗N ). (6)

Themain postulate of quantummechanics then states that the state of a particle is fully described
by its time dependent wave function. The next step in fully describing the electron structure is under-
standing of the Copenhagen interpretation of quantum physics. [17] This approach provides that the
physical interpretation of the squared wave function as the probability density, which can be written
as:

|ψ(r⃗1, r⃗2, ..., r⃗N |2dr⃗1dr⃗2...dr⃗N (7)
Looking at the equation 6, one has to notice that the exchange in-between two particles in their

positions should be considered. It is obvious that in the case of total probability density the outcome
does not depend on the position exchange, which can be represented by the following equation:

ψ(r⃗1, r⃗2, ..., r⃗i, r⃗j , ...r⃗N ) = ψ(r⃗1, r⃗2, ..., r⃗i, r⃗j , ...r⃗N ). (8)
Another thing that has to be recognized when calculating the electronic structure for the case of

position exchange is that two possible schemes can happen, depending on the particle properties.
The ϐirst possible scenario can be described by the symmetrical wave function, where there will not
be any observable changes. Such a way corresponds to bosons (particles with integer or zero spin).
The second possible scheme is that due the position exchange, therewill be change of the sign in front
of the wave function, which is usual for the case of fermions (particles with half integer spin). Such
wave function follows the Pauli exclusion principle, stating that in an atom or molecule, no two elec-
trons can have the same four electronic quantum numbers, noted with n, l,m, s. The ϐirst number, n,
describes the electron energy level of an electron and is called the principal quantum number. The
second is called azimuthal quantum number l, or aslo known as the orbital quantum number. The
number representing the speciϐic orbital is the magnetic quantum numberm. Last is the spin projec-
tion quantum number, giving the spin value of the electron within the orbital, noted with s.[18]

• Born - Oppenheimer approximation
Except of position exchange, many other possible processes that can happen in the systems have
to be considered. Important thing that has to be taken in account is also the environment which
is surrounding the space described by the Schrödinger equation and corresponds to the wave
function. All atom andmolecule systems deal with charge particles that are present in the space
surrounding given system .That is why it is necessary to consider such forces when calculat-
ing properties of given structures.[19] By looking at Schrödinger equation for single electron in
Coulomb potential ϐield, the equation then can be written in a form of:

i~
∂

∂t
ψ(r⃗) =

[
− ~2

2m
∇⃗2 − e2

4πϵ0
· 1

|r⃗|

]
ψ(r⃗). (9)

Using the equation 6, general Schrödinger equation for many-body system consisted ofN elec-
trons can be acquired.

Eiψi(r⃗1, r⃗2, ...r⃗N , R⃗1, R⃗2, ...R⃗N ) = Ĥψ(r⃗1, r⃗2, ...r⃗N , R⃗1, R⃗2, ...R⃗N ) (10)

Equation 10 describes a system that has N electrons andM cores. This equation is however,
valid only when one neglets the external magnetic and electric ϐields and their possible effects
on the structure. At ϐirst glance, it can be seen how challenging the ϐinding of the solution for
the described systemmight be [20].
That is why physicists have been trying to come up with new ways on simplifying the equation
and ϐinding easier solution. The ϐirst approximation allowing such smoother computation is
the Born-Oppenheimer approximation. For its simplicity and computational power, it has been
widely used in past years. This approach still plays a key role in electron structure calculations
[21].
The Born-Oppenheimer approximation is based on the fact that the mass of the nucleus is 103
times larger than the mass of electrons. Even if a light nucleus is considered, the mass of proton
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is still 3000 times greater than the mass of an electron. By this knowledge it can be assumed
that electrons are moving particles in the ϐield created by stationary nucleus. Such a creative
thought allowed the possible separation of the movement of electrons and nuclei [22, 23].
This simpliϐied approach allows the negligence of certain members of the Hamiltonian which
eventually means that the description of nuclei system can be neglected as well. The part of
the equation, describing the repel of nuclei, is considered as constant for a given structure. This
leaves only the electronHamiltonian to be calculated. The solution gives the electronwave func-
tion, describing the dynamics of electrons. The most important thing to note is that the move-
ment of electrons is strongly dependent only on the spatial coordination of electrons, which can
be expressed by:

Ĥ = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
k=1

Zk

rik
+

N∑
i=1

N∑
j>1

1

rij
. (11)

It is essential to realise that this approximation fails for systems where the multiple of the po-
tential surface energy are close to each other in energy or crossing each other. The dissocia-
tive adsorption of molecules on metal surfaces is another example of when this approximation
breaks down. The reason behind the failing in the mentioned systems can be found in the part
of the equation describing the electron - electron interactions. This term involves the quantum
effects that are connected to electrons and their quantum behaviour that can be expressed as:

1

2

∑
i ̸=j

e2

|ri − rj |
. (12)

Electrons belong to the group of fermions, and so they have to follow the Pauli repulsion princi-
ple. The Pauli principle demands the electronwave function to be anti-symmetricalwith respect
to the position exchange of any two electrons. It can be written in the form of:

Φ(x1, ..., xi, ..., xj , ..., xN ) = −Φ(x1, ..., xi, ..., xj , ..., xN ). (13)

To meet such requirements the Slater determinants are used as main computational tool. They
meet up with the conditions through an approximate linear combination of Hartree products,
which are the non-interacting electron wave functions. Slater determinants will take a form:

ψ0 ≈ ϕSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣
χ1(x⃗1) χ2(x⃗1) ... χN (x⃗1)
χ1(x⃗2) χ2(x⃗2) ... χN (x⃗2)

...
... . . . ...

χ1(x⃗N ) χ2(x⃗N ) ... χN (x⃗N )

∣∣∣∣∣∣∣∣∣ (14)

where the lines correspond to the electrons and columns give the information about orbital spin.

• Hartree-Fock formalism
The next step in solving the Schrödinger equation occurredwith the concept of determining the
correlation energy. It is undermined by the rule that the many-body wave function needs to
contain 3N variables. It is known that solids are made out of approximatelyN · 1023 electrons
and that is why the solution in this way was practically impossible.
Hartree-Fock approximation was the next step in searching for a better solution. The Hartree-
Fock method gives much more precise results and is most of the time used as a main computa-
tional tool in modern quantum chemistry. Another useful property of this approximation is its
usage for materials that have defects in their lattice or for scenarios with adsorption on surface.
The electron structure of isolators can also be studied thanks to this new approach.
This method uses Slater determinant for the approximation of wave function for the ground
state ofN electrons. Such an approach guarantees the electron description that is following the
Pauli principle[24]. The next step is then to ϐind the best possible approximation of the wave
function, that would lead to the ϐinal Hartree-Fock energy, given by:
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EHF = ⟨ψ0|Ĥ|ψ0⟩ =
∑
a

∫
χ∗
a(1)(−

1

2
∇2 − ZA

riA
)χa(1)dx1 (15)

+
1

2

∑
ab

∫
χ∗
a(1)χa(1)r

−1
12 χ

∗
b(2)χb(2)dx1dx2 (16)

−1

2

∑
ab

∫
χ∗
a(1)χb(1)r

−1
12 χ

∗
b(2)χa(2)dx1dx2. (17)

The ϐirst of the terms, given by the equation 15, describes the kinetic and potential energy for
the attraction to the nuclei of a single electron. The other two terms, 16 and 17, characterize
purely electron presence. The ϐirst one (equation 16) expresses the Coulomb termand the latter
(equation 17) deϐines the exchange term which arises from the antisymmetric nature of the
Slater determinant.
After few simplifying steps, the Hartree-Fock equation can be re-written into its more known
form:

f |χa⟩ = Ea|χa⟩ (18)

The main problem in the Hartree-Fock method is that it completely neglects correlations be-
tween electronswith same spin. The further progress in theoretical calculationswasmadewith
newly proposedway how to get the energy of the system, the density functional theory. [25, 26].

1.1.2. Density functional theory (DFT )

The previous chapter shows how to solve the Schrödinger equation by using different approxima-
tions. All mentioned ways so far have one thing in common. The fundamental property they share is
the wave function which represents the many-body electron system. As soon as the wave function is
known, the energy of the system and other properties can be calculated. This approach works well
for smaller systems, unfortunately even these computations are still very complex and also time de-
manding. Every one of the discussed approximations until now fails when a structure that consists of
more than 100 atoms is investigated.

Density functional theory differs from aforementioned methods because instead of using wave
function it uses electron density as a central variable. The advantage lies in the reduction of dimen-
sions of the given problem. In the case of Hartree-Fock method, the solution is strongly dependant
on 3N spatial variables. In the case of DFT , the density is always only 3 dimensional. Thanks to
this property, density functional theory can be applied on much larger and more complex systems of
atoms [27, 28].

• Thomas Fermi model
The ϐirst peoplewho considered the idea of the energy being explained by electron densitywere
Thomas andFermi in early 1920’s. Theirmodelwasbasedon the assumption that the kinetic en-
ergy of electrons is derivative from the quantum statistical theory which foundations are based
on the uniform electron gas [29, 30].
The problembeing overlooked in this theory is the approach to the electron-nuclei and electron-
electron interactions. In this model, both of the interplays are taken only from the point of clas-
sical physics. This causes the Thomas-FermiModel to break downwhen trying to describe shell
core structures. It also cannot explain the existence of molecules. Nonetheless, this model is
very important in the development of theoretical calculations because of the signiϐicant insight,
that the energy can be calculated only from electron density [31].
The concept was further explained in the years 1964 and 1965. In these years twomain papers
that established the foundations for the density functional theory known todaywere published.
The physicists Hohenberg, Kohn and Sham have shown that the ground energy state is the func-
tional of the density ground state and that both of these cases can be found by the minimisation
of the energy with the respect to density, that is if the functional is known [32].
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In the secondpaper theypublishedapossiblewayof assembling thedensity fromnon-interacting
orbitals - the so called Kohn-Sham wave function, which led to the foundations of the new den-
sity functional theory - that are Kohn-Sham equations [33].

• Hohenberg-Kohn theorems and Kohn-Sham equations
Hohenberg-Kohn formalism is based on two main theorems:

1. Theorem: For any system of interacting particles in an external potential vext(r), the poten-
tial can uniquely be determined except for a constant, by the ground state particle densityn0(r).

2. Theorem: A universal functional for the energy E(n) in the terms of the density n(r) can
be denoted, valid for any external potential vext(r). For any particular vext(r), the exact ground
state energy of the system is the global minimum value of this functional, and the density n(r)
that minimizes the functional is the exact ground state density n0(r).

These theorems are the mathematical proof that the energy ground state is functional of elec-
tron density. Kohn-Sham equations and theorems, allowing to simplify DFT calculations, are
based on the theorem that deϐines the process of calculations.

3. Theorem: For each interacting systemAwithenergy functional, there exists anon-interacting
systemB, described by the Hamiltonian:

Ĥ = T̂B + V̂B (19)

with an appropriate VB , which yields the same ground state density

n(r⃗) = nB(r⃗). (20)

Following the Hohenberg-Kohn theorems the energy is then deϐined as:

E(n) = Ts(n) +

∫
vext(r⃗)n(r⃗)dr⃗ +

1

2

∫
n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′ + Exc(n). (21)

First part in the equation 21 is the kinetic energy, second expression is the energy from the ex-
ternal potential. Third formula represent classical electrostatic energy (Hartree energy) of an
electron. The last part is the already mentioned exchange correlation energy which contains
all the many-body effects in the system. Using the variational principle for minimizing the func-
tional energywith the respect to one particle (normalization process), the following Kohn-Sham
equation is obtained:{

− ~
2m

∇2 + vext(r⃗) + vH(r⃗) + vxc(r⃗)

}
ψi(r⃗) = ϵiψi(r⃗) (22)

where the exchange-correlationpotential vxc is derivative functional fromtheexchange-correlation
potential:

vxc(r⃗) =
δExc [n(r⃗)]

δn(r⃗)
. (23)

The energy ground state is then given:

E =

N∑
i

ϵi + Exc [n(r⃗)]−
∫
vxc(r⃗)n(r⃗)dr⃗ − VH − Vnucl−nucl. (24)

It is important to know that in order to use Kohn-Sham equations, the correct value for Exc

functional has to be known. The exact form of this energy is has not been established. For this
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reason, different approaches are considered in order to get the best possible approximation for
the exchange energy.
The Figure 1 shows all the functionals, fromHartree approximation to the exchange -correlation
functional, that are the best to explain the exchange energy.

Figure 1 Scheme of ”Jacob’s ladder” of exchange-correlation functionals proposed by J. P.
Perwed. Reprinted with permission from [44].

1.1.3. Exchange-Correlation Approximations

The quality and efϐiciency of Kohn-Sham equations dependsmainly on the choice of the functional
exchange correlation energy form.

Theapproximation is the simplestwayhowtoguessunknowndistributionof the exchange-correlation
energy in Kohn-Sham equation. The main principle lies in the assumption that the energyExc can be
locally approximated by the summation of exchange energy Ex and the correlation energy Ec of the
electrons in space of same density.

• Local density approximation (LDA)
Local density approximation is the method for calculating the exchange energy Ex. It takes in
account the electronic distribution of an inϐinite number of electrons, that are moving in an
inϐinite volume in space. This space is deϐined by the uniform distribution of a positive charge.
Such system is well known and is called the uniform electron gas. In the case of molecules, the
exchange functional is same in every point of the space just like it would be in the case of free
electron gas of the same density in the same position [34, 35]. The energy of LDA functional is
then given by:

ELDA
xc [ρ] =

∫
ρ(r⃗)ϵxc[ρ(r⃗)]dr⃗. (25)

The ϵxc is the exchange correlation energy per electron in a uniform electron gas. For this case
the exchange correlation energy is split into a separate parts that are the exchange and corre-
lation energies. The exchange energy for uniform gas was derived by Dirac and takes the form
of:

ELDA
x [ρ] = −3

4

(
3

π

) 1
3
∫
ρ

4
3 (r⃗)dr⃗. (26)

The local spin density approximation (LSDA) is another extension for the LDA calculations
for systems, that involve spin polarization or the so call open-shell systems [36, 37].
LDA is a method relying only on the density in the particular point. With this approach, the
outcomes that are expected to be in a good agreement with real systems are good vibration
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frequencies, the equilibrium of calculated structures and also suitable dipole moments. Theo-
retically, LDA is valid only in systems where the electron density varies slowly. However, in
real life the LDA calculations have shown to provide exact solutions even for highly inhomoge-
neous systems [32].

Numerous other methods have been developed in order to achieve better results for the value of
the exchange correlation energy. Another main group of these approximations is based on the use of
the density gradient as the main foundation for the calculations - so called non local or generalised
gradient approximations [38, 39].

• Generalised gradient approximation (GGA)
Themaindifferencebetween theGGA andLDA is that the energy functional correlation energy
depends on the density, deϐined as δρ(r⃗) in addition to the density deϐined by the equation:

EGGA
xc [ρ] =

∫
Fxc(ρ, δρ)dr⃗. (27)

The Fxc varies for different functionals. Similarly like in the case of LDA, the exchange correla-
tion energy is split into two separate parts, the correlation and exchange energy [40, 41].

• Hybrid functional methods
There also exist the hybridmethods that cover all the truly non-local effects. Thesemechanisms
are based on the adiabatic connection method (ACM)[42]. They all are based on the equation
that is expressing the exchange correlation energy:

Exc =

∫ 1

0

⟨ϕ(λ)|Vxx|ϕ(λ)⟩d(λ) (28)

where λ is the extent of inter electronic interactions ranging from 0 (none) to 1 (exact).

The homogeneous electron gas is a system of N electrons in the volume V with homogeneous
positive background charge. This keeps the system neutral. If we consider takingN as the limit
where: N → ∞ and V → ∞ with the relation that N

V = n = const. then we can get an exact
value for theEx in this model as:

Ex = −3

4

(
3

π

) 1
3
∫
d(r⃗)n

4
3 (r⃗) (29)

Unfortunately the correlation energy can be analytically found only for limit cases of either high
or low densities. Using the Monte-Carlo techniques it has been calculated and parametrized as
the function of n [43].

1.1.4. Plane waves and pseudopotentials

A set of basewave functions are almost always necessary in order to solve the electron Schrödinger
equation. Essentially, all electron calculation methods today rely on the expansion of the unknown
wave function into set of basis functions. There are many different ways of choosing the correct set of
basis, such as Gaussian functions, localised atomic like orbitals or plane waves [45]. In the last case,
this approach is used inDFT calculations the most. The eigenvalues can be expressed as:

ψnk⃗(r⃗) =
∑
G

cnk⃗(G⃗)×
1√
Ω
ei(k⃗+G⃗)·r⃗ (30)

where cnk⃗ are the expansion coefϐicients of the wave function in a plane wave basis ei(k⃗+G⃗)·r⃗ and
G⃗ are the reciprocal lattice vectors. Bloch wave function is deϐined by the k⃗ and the pre-factor 1√

Ω
preserves the normalization of the wave function.
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Most physical properties of solids are mostly dependent on the structure of valence electrons
rather than the structure of electrons located in the inner orbitals. Meanwhile, the deep inner elec-
trons described by the planewave basis sets needs a great amount of basis functions for corresonding
description. Regardless, the fact that the inner electrons are not as important when it comes to the
information about the physical properties of the structure, the computational time that is needed for
the calculations is larger than for those in valence orbitals. For this reason, another approximation,
that replaces the strong ion potential with weaker pseudopotential, is needed [46].

The pseudopotential (PS)method is based on two main assumptions. First lies in the fact that in
almost any system it is possible to identify a set of the so-called core orbitals. Second part is connected
to the valence orbitals. The valence orbitals show oscillating behaviour which is caused mainly due
to Pauli exclusion principle. In pseudopotential approximation the original atoms that form a given
chemical system are modiϐied by removing core energy levels and enforcing the Pauli exclusion prin-
ciple via repulsive pseudopotential. Such approach allows to get rid of the distortions of the atomic
valence orbitals and allows efϐicient application of plane wave basis set expansion. A schematic rep-
resentation of pseudopotential formalism is represented in Figure 2.

Figure 2 Scheme of pseudopotential and corresponding pseudo wavefunction. A nodeless
pseudo wave function Φps (red line)matches with all electron wavefunction Φae

(blue line) at cut-off radius rc. This introduces amuch softer pseudopotentialV ps

compared to all electron potential V ae ~−Z/r . Reprinted with permission from
[47].

The most common form of a pseudopotential is then given by:

Vps =
∑
lm

|Ylm⟩Vl(r)⟨Ylm| (31)

where Ylm are the spherical harmonics.

1.1.5. The projector augmented wave (PAW)method

In the past decades, the electron structure calculations have contributed to our understanding
of solids and their properties. Most calculations use the local density approximation that the density
functional theorybeneϐits from. Asmentionedbefore, theDFTcandescribe the ground state of thenon
interacting electrons, which can be recognised in the effective potential. Many different approaches
exist to solve the one particle Schrödinger equation. They can be separated into three main groups.

The ϐirst group is formed of the linear methods, which are based on two main pillars, the aug-
mented plane wave method(created by Andersen) and the Korring-Kohn-Rostock methods. The sec-
ond group are pseudopotentials methods, that stand on the norm-conserving ab initio pseudopoten-
tials developed by Hamann, Schluter and Chiang. The third class of methods are using the Gaussians
basis sets for the array and are predominantly used in chemistry [48].

16



When pseudopotential method is combined with plane wave basis set, such arrangement shows a
huge advantage in the calculations when compared to other methods. This consolidation allows us to
simplify the computations due to lower performance is needed.

The wave functions describing the structure state differ depending on which part of the space
they describe. Wave functions characterizing the space close to the core are oscillating due the strong
core potential. At the other hand wave functions that represent the space closer to the bonds are
smooth. These different states of wave functions cause themain problemwhen it comes to describing
the electron structure. PAW approach treats this problem in such a way that the wave functions are
separated into two parts. First part is concerning the core sphere where are partial wave expansions
and the second part contains an envelope of wave functions that is deϐining the space outside the core
sphere.

Bloch then transformed these ideas into pseudo-Hilbert space to reduce the problemwith oscilla-
tion and formulated the projector augmented wave method [49, 50].

The foundation of this method lies in fast transfer of pseudo-wave functions |ϕ̃i⟩ with the linear
transformation τ into the true all-electron wave functions |ϕi⟩.

|ϕi⟩ = τ |ϕ̃i⟩ (32)
It is alsonecessary tomodify thenodal structure of the all-electronwave function in the core region

which is smooth beyond rc. Transformed Kohn-Sham equations can be then expressed as:

τ †Hτ |ϕ̃i⟩ = τ †τ |ϕ̃i⟩ϵi, (33)
where | describes the Hermitian adjoint. The transform operator is deϐined as:

τ = 1 +
∑
R

τ̃R. (34)

It has to be ensured that outside the augmentation region, each pseudopotential wave function
can be expressed into pseudopotential partial waves, which can be done by:

ψ̃ =
∑
i

|ϕ̃i⟩ci, (35)

where ci is a constant. Then it can be assumed that each arbitrary pseudopotential wave function
can be expressed by using pseudopotential partial waves as:

ψ̃(r) =
∑
i∈R

ϕ̃(r)⟨p̃i|ψ̃⟩ (36)

where the set of projector functions |p̃i⟩must satisfy the completeness condition:∑
i

|ϕ̃i⟩⟨p̃i| = 1. (37)

So that the one-center expansion ∑
i |ϕ̃i⟩⟨p̃|ψ̃⟩ of PS wave functions is identical to the PS wave

function |ψ̃⟩ itself. Which implies that the expression can be written with the Dirac delta function, δij ,
as:

⟨p̃i|ϕ̃j⟩ = δij . (38)
In conclusion, the linear transformation can take form of:

τ − 1 +
∑
i

(
|ϕi⟩ − |ϕ̃i⟩

)
⟨p̃i|. (39)

This transformation then describes the the valence wave functions and ϐictitious pseudo-wave
functions canbeestablished. Theall-electronwave function can thenbeobtained frompseudo-potential
wave function by:

|ψ⟩ = |ψ̃⟩+
∑
i

(
|ϕi⟩ − |ϕ̃i⟩

)
⟨p̃i|ψ̃⟩. (40)

It can be seen that only three unknown variables determine the transformation. The all-electron
partial waves, obtained by radially integrating the Schrödinger equation of the atomic energy for a set
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of energies and orthogonalization to the core states. Then one pseudo-potential partial wave function,
that collides with corresponding all-electron partial wave outside the augmentation region for each
all-electron partial wave. And at the end for each projection function and for every pseudo-potential
partial wave that is localized outside the augmentation region and that subjects to the equation num-
ber 38.

Pseudowave functions are then variation of quantum in PAWmethods and can be expressed with
the plane waves in the form of:

˜ψi,k(r) =
∑
G

Ci,k+G ei(k+g)r. (41)

Outside the core region are the pseudo-potential wave functions with good agreement with the
all-electron wave functions, but the deviation near the nuclei is signiϐicant. Which is the reason that
the partial waves were introduced.

1.1.6. Relativistic density functional theory

After the discovery and successful adaptation of the non-relativistic DFT in theoretical calcula-
tions, new problems have raised. It was proven that relativistic effects could play an important role in
studied structures and without including them into the calculations the results could show different
behaviour of the systems fromwhat is being observed in realistic systems. That iswhy a further devel-
opment of the traditional DFTwas necessary in order to fully understand the behaviour of structures.
The relativistic effects inϐluence the electronic and magnetic behaviour and many other properties of
structures.

Principles of relativistic quantum theory
The foundations of relativistic density functional theory (RDFT) were ϐirst written by Rajagopal

and Callaway who formulated the relativistic generalization of Hohenberg-Kohn theorem. It has been
done shortly after the succesfull usage of DFT, however the RDFT was used years later. In the case of
non-relativistic density functional theory the variable playing the key role is the ground density state.
In the case of relativistic density functional theory, the main variable is the ground state four current
density jµ. The jµ is the variable that determines the many-particle ground state ϕ [51].

The ground state of many-body problem and consequently the ground energy state Etot can be
understood as the unique functional jµ. Further minimization of the functional Etot with the respect
to jµ sets up a way of establishing correct ground state four current. Once this result is obtained, it
can be inserted into the Etot and the correct ground state is acquired. In other words, ϐirst the the
solution of ϐinding energy for many-body system is gathered and is further transformed into ϐind-
ing adequate functional Etot(j). In order to get such suitable functionals, it has been shown that the
orbital-dependent treatment of kinetic energy is mandatory for the reproduction of many fundamen-
tal quantummechanical properties. One way of achieving such situation is to consider new, auxiliary,
non-interacting system, which ground state four current is same like for the cause of our interacting
system. [52] And so new possible ways of separating the total energy of interacting system into four
main components are achieved. The kinetic energy TS , the coupling to external ϐields energyEext, di-
rect (Hartree) energyEh and the exchange correlation energy functionalExc(j)which contain all the
complicated many-body properties then can be gathered. Following steps require the minimization
ofEtot with the respect to the single-particle states of auxiliary system. Such treatment will then give
the single particle equations of RDFT, that were ϐirst written by Rajagopal and MacDonald and Vosko
[53, 29].

The biggest difference between DFT and relativistic DFT is in the presence of inϐinite zero point
energies and ultraviolet divergences. For example the ϐinite vacuum correlations like vacuum polar-
isation and Casimir energy are shown in both fundamental quantities, the four current and the total
energy. Such problems have to be treated with suitable re-normalization processes, that fully rely on
the re-normalization vacuum Greens functions of quantum electrodynamics (QED).

• Relativistic Optimized Potential Method
It is important to realise that the power of RDFT lies in the fact that the relativistic local density
approximation (RLDA) xc-functional depends mainly on the density, more than on full four
current. This property allows to ϐind new direct treatment for magnetization effects such as the
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spin-degree of freedom. MacDonald and Vosko as well as Ramana and Rajagopal ϐirst proposed
the formalism, where the spatial coordinates of jµ are replaced by themagnetization densitym.
However this, so-called collinear, treatment is imperfect. The orientation in the collinear treat-
ment is limited only along one direction. The problem rises from the fact that this approach fails
in the case of systems where the imperfect treatment of the electronic self-interaction happens.
This problem can be solved by the use of new density functionals, where the Exc is allowed to
be orbital-dependent, which spreads the idea behind the kinetic energy TS to the xc-functional.
Such solution is called the optimized potential method (OPM) and uses density functionals of
corresponding xc-potentials. This technique has attracted considerable interest after it was
shown that the OPM allows an exact treatment of the exchange in RDFT [54, 55].

Relativistic Hohenberg-Kohn theorem
TheBorn-Oppenheimer approximation is used for the caseof determining the grounddensity state

and the properties of systems at their ground state. [56] The electrons are communicating with each
other via phonons and they lie in the ϐield of an external static potential, in the four vector form V µ.
Such system is then described by the Lagrangian:

L = Le + Lγ + Lint + Lext (42)
where the Le denotes the Langragian of noninteracting fermions,

Le(x) =
1

4
{
[
ˆ̄ψ(x),

(
ic∂̄ −mc2

)
ψ̂(x)

]
+

[
ˆ̄ψ(x)

(
−ic∂̄ −mc2

)
, ψ̂(x)

]
} (43)

and where the Lγ is the Lagrangian of noninteracting photons:

Lγ(x) = − 1

16ϕ
F̂µν(x)F̂

µν(x)− λ

8ϕ
(∂µÂ

µ(x))2 (44)

and Lint and Lext provide the interaction between fermions and photons as well as between the
fermions and the external potential:

Lint(x) = −eĵµ(x)Âµ(x) (45)

Lext(x) = −eĵµ(x)V̂µ(x) (46)
The operators ψ̂(x) and Âµ(x) are the fermion and photon ϐield operators, F̂µν(x) is the electro-

magnetic ϐield tensor and ĵµ(x) is the fermionic current density. [57]

Relativistic Kohn-Sham equations
Just like for the DFT, the relativistic Kohn-Sham equations are needed when describing how to

bring together the density from the non-interacting system. The relativistic variant of these equations
and theoremsguarantee the formal existenceof adensity functional descriptionof relativistic systems.
Unfortunately, it does not give any information about how to construct the crucial functional Etot [j].
[58]

Explicit approximations to Etot [j] can be derived by the usage of variety of methods. The most
important approach starts with a study of the homogeneous electron gas. For such described system
the energy functional is known in the form of a simple function of the gas density. This functional can
then be extended in a systematic procedure by inclusion of inhomogeneity corrections which depend
on the gradients of the density. If this approach is utilized for the complete energy functional one ends
up with relativistic (extended) Thomas–Fermi models.[59]

As in the non-relativistic context, however, these models have found very limited use due to the
fact that they omit important quantummechanical properties, because they neither reproduce atomic
shell structure nor do they lead to molecular binding.
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1.2. Magnetism
Magnetism and magnetic properties of magnets have attracted much attention already in the an-

cient Greece and China due the ability of pulling iron based materials towards themselves in long dis-
tances [60]. Today it is well known that magnetism is related to many-body phenomena. The origin
of which can be explained with non-relativistic quantum physics.

Magnetic properties of materials are derived from their magnetic states. The magnetic state of a
system has atomic origin and is mainly given by the state of electrons. From magnetic point of view,
every atom can be characterized by its magnetic moment µ⃗. There are three main contribution to
the total magnetic moment of an atom. The ϐirst one is the orbital movement of electrons around the
nucleus of the atom along given path (orbital). Second contribution comes from the inner magnetic
moment - the spin of electron. The last part is from the external magnetic ϐield that is affecting the
movement of electrons around the nucleus.

The magnetic moment µ⃗ that is corresponding to one electron is then given as:

µ⃗ = γL⃗ (47)

where the L⃗ is the momentum vector and the γ is a constant known as the gyromagnetic ratio.
The total magnetization can be calculated as sum of all magnetic moments of all atoms divided by

the total volume of material.

M⃗ =

∑n
i=1 µ⃗i

V
(48)

If an external ϐield of the magnetic induction B⃗ is applied on an atom, which direction is different
than the one of the external ϐield, the magnetic moment of an atomwill tilt to the direction of external
ϐield in given angleΘ and starts the precession movement , as shown in the Figure 3.

Figure 3 Scheme of the precession of the electron around the external ϐield direction.
Reprinted with the permission from [60].

A formationof a localmagneticmoment and the interactionswithin the structure are thenecessary
conditions for the existence of a magnetic order in the system.

Atoms consists of one andmore electrons. Electrons occupy different energy levels called orbitals.
When an orbital is ϐilled, the structure shows no total momentum. However in the case of partially
ϐilled electron orbitals, electrons can arrange in such way that to total spin and orbital moment is
nonzero. The spin and orbital moment are bonded through weak bond, which origin lies in the spin-
orbit coupling.

• Spin-orbit coupling interaction
Spin-orbit interactions can be looked at like the perturbation stateswith deϐined angular,L, and
spin S momentum, deϐined by quantum numbers. The angular momentum makes an electron
behave like a circulating electric current. This leads to a magnetic moment with an associated
magnetic ϐield. The magnetic moment from the electron’s spin interacts with the magnetic ϐield
from its orbital motion. Such contact results in a spin-orbit coupling interaction. It is deter-
mined by the charge on the atomic nucleus, which depends on the atomic number Z . For the
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light atoms, the spin-orbit interaction is weak and the individual spins are stronger than the
spin-orbit coupling. The Scheme that is applied for such conϐigurations is known as the Russell-
Sunders coupling. An important rule for ϐinding the lowest-energy conϐigurations for the elec-
trons in a partially ϐilled shell was formulated by the German physicist Friedrich Hund. In the
case of heavy atoms however, the Russell-Saunders coupling scheme fails. In heavy atoms the
spin and orbital angular moments are strongly coupled and the spin-orbit coupling becomes a
strong force affecting the system, which is described by the j − j coupling scheme.[61]

So far the situation described was for the case when magnetic moments in an atom are isolated
and cannot interact with each others. In real situations however, there exists different interactions
between the magnetic moments of atoms themselves and also between the magnetic moments and
electric potentials of the surrounding space. The magnetic interactions support magnetic ordering
in materials. The magnetic interactions compete against thermal ϐluctuations that are the cause of a
chaotic ordering of magnetic moments in systems. Every material exhibits critical (transition) tem-
perature, noted as TC (Curie temperature) and TN (Néel temperature), respectively. Above these
temperatures, the thermal ϐluctuations dominate and the material shows paramagnetic behaviour.
When under the blocking temperature, the magnetic interactions rule over the structure and the sys-
tem exhibits magnetic ordering.

• Crystal ϐield and Jahn-Teller effect
In the casewhen the atoms forma solid, the Coulomb interaction of the electronic charges distri-
bution ρ0(r⃗)with the surrounding charges in the crystalmust be considered. This phenomena is
called the crystal-ϐield interaction. A crystal ϐield is an electric ϐield that originates in neighbour
atoms in the crystal lattice. Neighbouring orbitals are considered as negative point charges,
which size and effect depends on the symmetry of the system. The biggest contribution comes
mainly from p orbitals and d orbitals. Depending on the symmetry of the system, different de-
generated states are possible.[61]
Not only the surrounding of an atom can effect the symmetry of system. Magnetic properties of
elements can cause the changes of the structure energy levels itself. Such scenario can happen
in systemswhere it is energetically preferred to break the symmetry anddeform the structure of
the lattice in order to even the energies of electrons in orbitals. This is known as the Jahn-Taller
effect. This effect is then a geometric distortion of a non-linear system that reduces/disturbs its
symmetry which leads to change of the energy. The deformation can increase or lower energy
of certain orbitals. This effect does not apply for structureswith ϐilled or no electrons in orbitals.
However for the case of partially ϐilled orbitals, Jahn-Taller effect plays a key role because it can
lead to lowering the total energy.

When it comes to transition metal compounds, the spin-orbit interaction effects are much more
weaker in the comparison to its crystal ϐield effect. That causes breaking the symmetry of the charge
density of the transition metal in the presence of neighbours point charge atoms.

1.2.1. Magnetic interactions

Materials with half ϐilled d or f orbitals generally exhibit magnetic order up to room temperatures.
Fundamental property of ferromagnets such as Fe, Co or Ni is their exhibition of spontaneous mag-
netization. However, recent reports have been showing the evidence that also in structures with no
electrons on d and f orbitals, magnetism can occur.

Universally, the Hamiltonian of many-body system is not only time and spatial but also all particle
spin dependent. The complete behaviour of the electrons spin and orbital angular moments, deter-
mined by the orbital movement, is describing the magnetism in the system. The mechanism behind
the arise of feromagnetismwas explained byHeisenbergwith the use of Pauli exclusion principle. The
effective Coulomb repulsion for a pair of electrons with parallel spins is then weaker than the one in
case of electrons with anti-parallel spins - such synergy is known as the exchange interaction.[60]

• Exchange interactions
Exchange interactions play key role in the long distance magnetic ordering. Its origin lies in the
electrostatic interactions of same point charges.
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In quantum mechanics the spin moment is described by the expectation value of the spin op-
erator Sz . The orbital moment can be calculated from the expectation value from angular mo-
mentum operatorLz in the presence of spin-orbital coupling. If these two variables are known,
the magnetic behaviour is then deϐined by the exchange interaction in-between spins. There
are two possible arrangements of the spins in the structure. First of them is parallel, alead-
ing to the manifestation of ferromagnetism, and the second is anti-parallel or so called anti-
ferromagnetism.[60]
There exist different ways and methods on how to investigate the magnetic properties of ma-
terials. For example the X-ray magnetic circular dichroism, which is an experimental method
that can obtain the orbital moments of the system. The ab initio DFT can describe the mag-
netic properties not only for volume materials, the surface of the structures but even for less
dimensional structures - such as the 2D systems.
The orbital exchange interaction is describing the surfacemolecular magnetic interactions. The
exchange integral, that is part of the Heisenberg model can be obtained from ab initio simula-
tions. What must be considered is the total energies in the system, such as:

H = −1

2

∑
ij

J ij s⃗is⃗j (49)

where the J ij is the exchange integral and s is the ith spin vector.
Spin dipole interations
Spin dipole moment is another important aspect used to describe the magnetic structures. Its
origin lays in the spin density, that is mainly being caused by effects of the crystal ϐield and by
spin orbital interactions. In the case of heavy earth elements the spin orbital interactions are
much more stronger than when compared to their crystal ϐield. That is also why the creation of
bands is weaker and the structures behave like free ions.
Another important property after the spin-orbit coupling are the dipole-dipole interactions.
These two phenomenons are conditional for the explanation of the origin of ferromagnetism
in 2D systems, such as ultra-thin ϐilms.[60]

• Dipolar interactions
Magnetic dipolar interactions are consideredwhen two differentmagnetic dipols µ⃗1 and µ⃗2 that
are distant by r are interacting with each others. This effect depends on the distance r and the
different guidelines of the vectors. This interaction is very weak and dominates when temper-
atures are close to a few mili Kelvins. That is why such interaction cannot be responsible for
magnetic ordering in most magnetic materials.

However the problem with explaining the magnetism within the non-relativistic quantum theory
is the undertaking of the free energy of the system that is not dependent on the direction of magne-
tization (the isotropic case). This property is a direct contradiction to the results from experiments,
showing that the magnetizations generally lies in preferable directions with the respect to the crystal
axis and it also depends on the shape of the structure when considering ϐinite samples. Such effects
that have to be taken in account when trying to describe the magnetism of the system are over-all
important parts for the magnetic anisotropy.

1.2.2. Magnetic anisotropy energy

Magnetic anisotropy energy (MAE) is a very important subject that refers to the dependence of the
magnetic properties on the direction in which they are measured. The type of magnetic anisotropy
affects properties such as magnetization and hysteresis curves in magnetic materials. That is one of
the main reasons why the nature of the magnetic anisotropy is an important factor in determining
magnetic materials for a particular application.[62]

Themagnetic anisotropy in thin ϐilms has twomechanisms that are responsible for its occurrence.
First it can be explained as result of the magneto-crystalline anisotropy. Such anisotropy is a result
of the magnetization that aligns itself along a preferred crystallographic directions. The inner free
energy of system is lowest for a spontaneous spin quantization axis, also known as easy axis, com-
pared to the other, hard axis. The energy required to rotate the the spin system of a domain from
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one direction to the other is deϐined by the energy that is needed to overcome the spin-orbit coupling.
Magneto-crystalline anisotropy is intristic to the material.[62]

Figure 4 Magnetic anisotropy energy. (a)Angle between themagnetization direction in the
material and the easy axis that is preferred in materials such as cobalt.(b)Shape
anisotropy constant. Reprinted with permission from [60].

The magneto-crystalline anisotropy however fails to describe samples with no preferred orienta-
tion of its grains like in the case of polycrystalline structures. The secondmechanism that can explain
the MAE is shape anisotropy, shown in the Figure 4. Strain anisotropy and interface anisotropy can
also be signiϐicant in some materials.[62]
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1.3. Graphene
Carbon is one of themost fundamentalmaterials on the planet and the foundation of organic chem-

istry. It is a nonmetallic chemical elementwith the letter C in periodic table. The name is derived from
the Latin carbo, which means charcoal or ember. Carbon can be found in the abundance in the uni-
verse, such as in the stars, suns, comets and in the atmospheres of other planets. Because of its ability
to bond to both electronegative and electronpositive elements, carbon excels above others. No other
material offers such a diversity of systems that show an unlimited number of different structureswith
an equally large variety of physical properties. Thewhole family of structures that are based on carbon
purely are called carbon allotropes. [63]

Themost often appearance of carbon is in the form of nuclide carbon 12C, described by the atomic
number 6. It consists of 4 valence electrons that can bond to itself or to other elements without limits
through single bond (with energy roughly (~350 kJ mol−1)), double (~610 kJ mol−1), or triple (~840
kJmol−1) bonds. [65, 66] The valence state is responsible for threemain types of hybridization that is
sp, sp2 and sp3 depending on the number ofσ bonds in the structure, as shown in the schemediagram:
5

Figure 5 Schematic description of sp, sp2, and sp3 hybridization in carbonwith illustration
of bonding structure. Reprinted with permission from [64].

With the improvement of the knowledge and our understanding in the ϐield of nanotechnology,
there has been discovered many different structures that are purely based on carbon atoms. The
unique and distinctive properties that can be observed in these structures allow us to separate them
into two main classes.[?]

The ϐirst class is based on the dependence of the dominant covalent bonds in the structure, cre-
ated between carbon atoms. This set can be divided into two subgroups. First group are graphene
nanostructures containing only the sp2 hybridization. Second group are carbon nanostructures, that
contain mixed hybridization states (both sp2 and sp3). [68]

Second class is sorting carbon structures accordingly to the geometries. Depending on the sizes of
their dimensions, these allotropes can be divided into 4 main groups:

1. 0D structures – Nanostructures from this group have all their dimensions in the region of
nanometres such as fullerenes and quantum dots.

2. 1D structures – Nanostructures belonging to this group have one dimension greater than 100
nanometres, such as nanotubes or nanostrings.

3. 2D structures – Two dimensions of the structures are greater than 100 nanometres, such as
graphene.
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4. 3D structures – All dimensions are in the region above 100 nanometres, for example nano crys-
tals.

Figure 6 Graph showing classes of carbon nanoallotropes with most known members of
the groups.

The element carbon is widely distributed in the nature in its two main allotropic modiϐications,
diamond (clear electrical insulator and one of the hardest materials on Earth) and graphite (greasy
electrical conducting dark material), in the Figure 7

Figure 7 Alignment of carbon atoms in the diamond (a) and graphite (b) allotropes.

There are many carbon nano allotropes and their derivates, where the main representatives are
shown in the Figure6, that are interesting not only for possible engineering applications in spintronic
but also for bioengineering, drug delivery or in the combination with other chemical compounds in
electronics. [69]

Graphene

Graphene – a two-dimensional (2D) allotrope of carbon atoms – plays an important role since
its discovery in 2004. For the discovery of this two dimensional structure was given a Nobel price for
Physics in 2010 to its discovereres Andre Geim and Konstantin Novoselov. Graphene is the foundation
forunderstanding the electronicproperties in the carbonallotropes. It is a single layerof carbonatoms
arranged in a honeycomb structure made of hexagons. [70]

The structural ϐlexibility of graphene is reϐlected in its electronic properties. The σ bonds between
carbon atoms (separation by 1.42 Aǒ ), that are created due the sp2 hybridization between one s orbital
and two p orbitals, lead to a trigonal planar structure. The σ band is responsible for the robustness
of the lattice structure in all allotropes. Due to the Pauli principle, these bands have a ϐilled shell and
form a deep valence band. The unaffected p orbital, which is perpendicular to the planar structure,
can bind covalently with neighbouring carbon atoms, leading to the formation of a π band. Since each
p orbital has one extra electron, the π band is half ϐilled. [71]
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Half-ϐilled bands in transition elements have played an important role in the physics of strongly
correlated systems. Their strong tight-binding character gives themaproperty that causes theCoulomb
energies to be large which leads to strong collective effects. The magnetism and insulating behaviour
exist due to the correlation gaps. Stacking can change the electronic properties considerably and the
layering structure can be used in order to control the electronic properties.[72, 73]

Figure 8 Scheme of graphene layer.

Low energy excitations aremassless, chiral, Dirac fermions. TheDirac fermionsmovewith a speed
vf , which is 300 times smaller than the speed of light c. If subjected tomagnetic ϐields, new interesting
aspects show, such as the anomalous integer quantum Hall effect.

Another interesting feature of Dirac fermions is their insensitivity to external electrostatic poten-
tials thanks to the Klein paradox, that is, the fact that Dirac fermions can be transmitted with proba-
bility 1 through a classically forbidden region.

One of the most unique property of graphene is the fact that the conductive and valence bands are
connected in two points of the reciprocal space, K and K ’. This is due the hexagonal symmetry of
the crystal lattice. Without any doping, the valence band is fully occupied up to these Dirac points,
causing the conductive band to be empty. After applying voltage to the graphene plane the width of
the conductive band can be adjusted from 0 to 0.25 eV.

Graphene structure can be divided into two equivalent triangular sub-lattices, sub-lattice A and B,
as shown in the picture 9.

Figure 9 Schematic of graphene sub-laticcesA andB.

It is well known that the graphite is an ideal diamagnetic material. However when defects are in-
troduced to its crystal lattice, spontaneousmagnetization can be observed. For example in the porous
graphite, where hexagonal holes occur, spontaneous magnetization has been observed in most cases.
Its origin is strongly dependent on the size and arrangement of the holes.

Recent studies and experiments shown that materials on sp based materials could exhibit mag-
netic behaviours. In 1990th it has been proven that such materials show magnetism, however the
contribution from sp bonds is lacking the strength to stabilize magnetism through the structure. That
is why new ways of imprinting magnetism in sp based materials were needed.[66]
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1.4. Inducing magnetism in graphene
The thought of imprintingmagnetic and electronic properties of graphene in order to gain suitable

material for electronic devices was ϐirstly proposed after the use of electrons and ions irradiation of
the carbon materials. Pure graphene is metal and due to the p orbital combination it is believed to be
non magnetic. However when different distortions are introduced to the graphene layer magnetism
can be detected in the structure.

1.4.1. Vacancies in graphene lattice

Vacancy defect removes one pz orbital from the π-system of graphene. Pz orbital is eliminated
together with the knocked-out carbon. The single atom pz vacancies have a particularly profound
effect on the electronic structure of ideal graphene. Elimination of one atom from one of the sublat-
tices introduces a zero-energy state in the complementary sublattice and the quasi-localized states
appear.[68]

In the case of single vacancy, the carbon atoms surrounding the empty space create a weak bond,
caused by the Jahn-Teller effect. That shows a very strong exchange splitting and contributes 1 µB to
the total magnetic moment of the defect. However the magnetic moment is highly unlike to occur at
room temperatures.[74]

Figure 10 Different types of vacancies in graphene. (a) single-vacancy, (b) double-vacancy
and (c) multiple vacancy.

It has been said that the graphene lattice can be viewed as two inequivalent triangular sub-lattices
that have different spin populations of carbon atoms (labelled A and B).When defects are produced in
the A lattice, only the pz orbitals of carbon atoms in the B sub-lattice contribute to the quasi-localized
states, and vice versa. These states extend over several nanometres around the defect and the mag-
netic moments can make a ferromagnetic (FM) coupling.

1.4.2. Substitutional doping by heteroatoms

Vacancies are not the onlyway how to bringmagnetism into the graphene sheet. Doping graphene
by different substitutional atoms has attractedmuch attentions due the possible applications for new
materials for Li-ion batteries, ϐield-effect transistors or for example electrochemical biosensing.

Two types of carriers atoms can bring to the structure, holes or electrons, we talk about either the
p- or n- doped systems. The doping changes the electronic andmagnetic properties such as the width
of the band gapwhich, as can be seen in the Figure 11. Most common dopants are boron for the p-type
and nitrogen as the n-type carrier. Other, often used choices, are the phosphor, sulphur and oxygen.
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Figure 11 Changes in the band gap of graphene layer when doping graphene with n- and p-
dopant, respectively.

Substitutional doping of graphene by nitrogen atoms has particular advantages due the similar
atomic size. The nitrogen onemore electron, compared to the carbon atom, affects the graphene elec-
tric conductivity. There are four possible groups of nitrogen atoms that are considered in the doping
of graphene - graphitic, pyrrolic, pyridinic and adsorbed.[75] First one is the graphitic. In this case the
extra electrons adds up to the π electrons close to the Fermi level of graphene. Stoner magnetism can
occur when the roaming electrons occupy narrow bands at the Fermi level. Pyrrolic doping belongs
to the second groups and it has been shown that for this type of doping, the magnetism decreases.
The last two groups, the pyridinic and adsorbed doping have also a considerably lower effect on in-
printing the ferromagnetism (FM) in the structure. However for all the cases, the concentration of
nitrogen atoms in the structure is a key factor, affecting strongly the manifestation of the magnetism
in graphene layer. [75]

When nitrogen atoms are present around a vacancy in graphene layerit has been observed, that
larger macroscopic magnetic signals can occur as compared to a standalone carbon vacancy. The π
orbitals of the atoms around the border regions of graphene and nitrogen are localized and are re-
sponsible for the magnetism. Nitrogen doped graphene has also shown potential for stabilising sev-
eral atomic species. Such different electronic and magnetic behaviours of nitrogen doped vacancies
under external elements adsorption provides a very valuable method to manipulate the magnetism
of the structure.

1.4.3. Edge conϐinement

A novel approach on how to imprint magnetic properties into the sp based materials is by conϐin-
ing the structure spatially. Three main classes derived from graphene are up to this day recognised:
(a) graphenenanoribbons (GNRs), (b) graphenenanoϐlakes and (c) graphenequantumdots. Themag-
netism in these structures strongly depends on its shape.

The electronic and magnetic properties of graphene nanoϐlakes and graphene quantum dots have
been broadly studied in the past and only graphene nanoribbons are further discussed. Graphene
nanoribbons are graphene layers terminated in one direction with a speciϐic width. The geometric
structures of GNRs are shown in Fig 12

Two types of edges of a graphene nanoribbons plane are recognized when considering the elec-
tronic structure of micro-graphite: a phenanthrene (or armchair) edge and an acene (or zigzag) edge,
Figure 12. Narrow and long graphene nanoribbons with zigzag edges feature a sharp peak in the den-
sity of states at the Fermi energy. Such a peak is not observed in the case of bulk graphite. Unsaturated
valence bonds at the boundaries of graphene ϐlakes are ϐilled with stabilizing elements: these stabi-
lizers are theoretically considered to be hydrogen atoms. Graphite nanoribbons for example have an
extremely high density of states at the Fermi level, which leads to paramagnetism and (for a certain
packing) to antiferromagnetism. [76]

Zigzag-type nanoribbons are always metallic. A speciϐic feature of the zigzag GNRs is the appear-
ance of a pair of almost ϐlat bands on the Fermi energy. These bands create a sharp peak in the density
of states at the Fermi level in the region where the π and π∗ bands of 2D graphite contact each other.
The charge density in the ϐlat band state is strongly localized on the zigzag edge sites. In the case of
the zigzag type strips, a ferrimagnetic structure is possible.[77]

The experimental and theoretical calculations reveal that all such GNRs are semiconductors with
an energy gap. For armchair GNRs, the width of a graphene nanoribbon characterizes the energy
gaps. Similarly, the energy gaps can be ϐitted for zigzag GNRs, using the width of a zigzag nanoribbon
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Figure 12 Edge conϐinement at graphene layer with the zigzag and armchair edge conϐigu-
ration.

in angstroms. Themost important thing is that edge states lead to the appearance ofmagnetic order in
zigzag nanoribbons. Such spin polarization systemhas ferromagnetic FM coupling on the same edges,
while anti-ferromagnetic (AFM) coupling between the two challenge edges.

1.4.4. Functionalization

The doping of atoms into the layer of graphene is not the only way how to create magnetic mo-
ments in the system. It has been observed that by bonding/adsorbing different atoms or whole com-
pounds onto graphene layer, the properties of the structure will rapidly change. The advantage of this
approach are the strong exchange interactions that support the magnetic ordering in the graphene
layer. The self-sustainable magnetism has been observed in the functionalized graphene layers up to
room temperatures, such as theC18 (OH)1.8 F7.2. [79] There are twomain types of functionalization.

Figure 13 Different possible function groups with different bonding to the structure. (A)
Scheme of molecules bonded to the edges of graphenelayer. (B) Scheme of
molecules bonded to only one side and (D) shows bonding to both sides of
graphene plane. (C) Scheme od molecules bonded along the graphene layer
and (E) shows possible novel structures based on graphene functionalization.
Reprinted with permission from [80].

First is the case when strong covalent bond (chemisorpiton) occurs and the second group con-
tains the groups of molecules that are poorly bonded to the graphene surface by weak van der Waals
interactions (physisorption). The covalent functionalization bring with it great changes not only to
the structure but also in the properties of the material. In the case of weak van der Waals forces the
situation is completely different. There are no signiϐicant changes in the graphene layer, but it can
lead to more stable structures.
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2. Computational part

2.1. Computational details
The electronic structure calculations and structural optimizations described here were investi-

gated by employing the Vienna ab initio simulation package (VASP) [82, 83]. The results based on
DFT as implemented in the VASP perform an iterative solution of the Kohn-Sham equations within a
plane-wave basis and by the use of periodic boundary conditions. Different types of basis set contain-
ing plane waves were considered. Main computations discussed further have set maximum kinetic
energy 600 eV. For result precision and fairness, calculations were also done for 400 eV and 500 eV. A
semi-local functional in the generalized gradient approximation and the spin-interpolation proposed
by Vosko et al. are used to describe electronic exchange correlation and spin-polarization.[43] The
use of a semi-local functional is known to be essential for the correct prediction of the ground state
of the ferromagnetic 3d elements. The Brillouin zone was sampled using different sets of Γ-centred
k-point mesh. In the case of maximum kinetic energy 400 eV the 6×6×1 k-point mesh was used, for
500 eV the 9×9×1 and 11×11×1Γ-centred k-pointmesh for the kinetic energy 600 eV, with a Gaussian
smearing of 0.02 eV.

The PAW method is used to describe the electron-ion interactions. The PAW approach produces
the exact all-electronpotentials and chargedensitieswithout elaborating thenon-linear core-corrections,
which is particularly important formagnetic elements.[50] Spin-orbit coupling has been implemented
in VASP by Kresse and Lebacq.[85] Calculations including spin-orbit coupling have been performed in
the non-collinear mode implemented in VASP by Hobbs et al.[83] and Marsman and Hafner.[86] The
Kohn-Sham equations with the relativistic effective potential have been solved self-consistently. Ge-
ometric, electronic and magnetic degrees of freedom were relaxed simultaneously without any con-
straint until the change in total energy between successive iteration steps is smaller than 10−6 eV.
Alternatively, the magnetic force theorem (non-self consistent calculations (nsc)) has been used to
conϐirm/disprove the MAE, obtained from the self consistent calculations.

For each system described in this work, two sets of calculations were performed. First the calcu-
lations have started with a scalar-relativistic (SR) mode. The geometry has been optimized by a static
relaxation using a quasi-Newton method, starting from different initial locations and conϐigurations
of the dimer, until the forces on all atoms were less than 25meV/Aǒ . The energetically most stable and
favourable position of the dimer was found by structures relaxation without symmetry constraints.
In the second step, the conϐigurations resulting from the scalar-relativistic calculations were used to
initialize the calculations including spin-orbit coupling, allowing only for the relaxation of electronic
andmagnetic degrees of freedom. To determine themagnetic anisotropy for each conϐiguration of the
dimer on graphene, a set of self-consistent calculations with different initial orientations of the mag-
netic moments were performed. The magnetic anisotropy energy was calculated as the difference in
the total energies calculated for the easy and hard magnetic axes.

2.2. Structural models
Two structural models were used. First one contains a dimer adsorbed on top of a single va-

cancy graphene (SVGraphene). Secondmodel is created of SVGraphene layer where the carbon atoms
near the vacancy are replaced with the nitrogen atoms, creating the nitrogen doped single vacancy
graphene (N-SVGraphene) sheet.

The SVGraphene-dimer complex is represented by a periodically repeated unit cell containing 47
C atoms in the graphene layer and the dimer is consisted of one Co atom and one Ir atom. For the case
of N-SVGraphene, there is 44 C atoms and 3 N atoms in total and the dimer is again created of one Co
and one Ir atom. The structural models are shown in the Figure 14.
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Figure 14 (a) The model of SVGraphene sheet and (b) the model of the N-SVGraphene layer.

The electronic structure of the graphene layer is modiϐied in both cases. The case of missing car-
bon atom in the graphene layer is well known and the changes in properties of such structure can be
seen in the density of states (DOS). Comparison of the DOS of the free-standing graphene layer where
the states close to the Fermi level show characteristics for the linear dispersion relations - with the
SVGraphene DOS is shown in the Figure 15 (a).

Figure 15 (a) The DOS of pristine graphene and graphenewith one vacancy. (b) Band struc-
ture splitting of graphene with one vacancy. (c) Scheme of band splitting for Vσ
and Vπ states. Reprinted with permission from [87].

The missing carbon atom causes the rise of a localized state Vπ in the midgap surrounding, when
compared to the energy of pure graphene which is zero in the region. Due the crystal ϐield and Jahn-
Teller distortion the localized state is split into Vσ1, Vσ2 and Vσ3 states, as can be seen in the Figure 15
(b).

In the case of N-SVGraphene the comparison for DOS of SVGraphene from the calculationswith the
DOS of N-SVGraphene is presented in the Figure 16. The electron doping coming from the N atoms
causes the Diract point in the graphene band structure to shift slightly above the Fermi level and a
small energy gap appears at the high symmetric k-point.

The nitrogen atoms contribute to the localized state Vπ via the p orbitals, Figure 17. Obtained
results are found to be in a good agreement with available experimental and theoretical ϐindings. [88]
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Figure 16 DOS comparison for the SVGraphene andN-SVGraphene sheet. Dashed line shows
the Fermi level.

Figure 17 Total and local DOS for N-SVGraphene and the nitrogen atoms. Dashed line shows
the Fermi level.

The energy that deϐines the interaction energy of the dimer with the graphene defective sheet is
deϐined as the total energy of the IrCo/SVGraphene complex, EIrCo−graph, minus the energy of the
clean graphene layer,Egraph, and the total ground state energy of the dimer in the gas-phase,EIrCo:

Eint = EIrCo−graph − Egraph − EIrCo (50)
Dimer, with an initial geometry determined for free cluster in earlier calculations, was placed on

top of the graphene layer around created vacancy. Two possible conϐigurations are further discussed:
an upright dimer with either the 3d or 5d atom bonded to the graphene and the N-doped vacancy,
respectively.
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2.3. Scalar - Relativistic calculations
2.3.1. Graphene layer with CoIr dimer bonded to the single vacancy graphene layer

Co down
The initial positions and ϐinal relaxed structure of the dimer adsorbed on the graphene in the case

of the Co atom bound to the C atoms in graphene layer are shown in Figure 18. The dimer binds in an
upright conϐiguration through the Co atom in the centre of a vacancy.

Figure 18 CoIr dimer with Co atom bound to the defective graphene sheet. The initial posi-
tions are shown in the panel (a) and the ϐinal position after relaxation is shown in
the panel (b).

The calculations for the free dimer show a spinmoment of 3.68 µB , with a bond length of 2.08 Aǒ in
the gas-phase. On graphene, the Co-Ir distance is 2.24 Aǒ , which is slightly larger than the dimer length
in the gas-phase. The relaxed C-C distance in a pristine graphene layer is 1.41Aǒ , which is in a very good
agreement with the one from the SR calculations, which varies from 1.40-1.42 Aǒ , depending on the
position of the C atom in the structure. The shorter distances are showing carbon atoms surrounding
the vacancy. Thedistance between theC atoms that are bonded to theCo atom is of 1.78Aǒ . TheCo atom
lies above the average level of the buckled C layer. The higher positioned Ir atom is 3.52 Aǒ above the
graphene layer. Calculated distances are somewhat in agreement with other theoretical calculations
[89].

The binding energy of graphenewith the dimer in this conϐiguration is 5.72 eV/dimer. The system
is characterised by the total magnetic moment of 1.6 µB . The spin moment of Ir atom is 1.59 µB and
Co atomshowsonly 0.03µB . The C atoms that are directly connected to the Co atomare showing small
magnetic moments (0.01 µB). However the further from the vacancy, the lower the changes are and
the magnetic moments on the furthest positioned C atoms in the graphene layer remain unchanged,
when compared to the pristine case.

The effect of binding the dimer onto the graphene layer on the electronic andmagnetic properties
of thewhole systemcanbe seen in the overlaps of their electronic density of stateswith the eigenstates
of the graphene layer.[91]. Figure 19 shows the spin-polarized DOS of the adsorbed CoIr dimer in
comparison with the SVGraphene. In the DOS of the SVGraphene the pronounced Vπ states can be
seen. For this case these states are slightly shifted towards lower energies.

The local DOS of the 3d and 5d atoms are presented as well. The totat local DOS of Ir atom con-
tributes to the total DOS, mainly for lower energies. The total local DOS of Co atom has minor contri-
bution, compared to the one of Ir atom. The most pronounced input strengthens the region for lower
energies aroundFermi level. A sharp relatively largepeakappears at theFermi level, suggestinghigher
magnetic behaviour. The contribution to this state comes mainly from the Ir atom.
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Figure 19 Spin-polarized scalar-relativistic total and local DOS for CoIr dimer and total sin-
gle vacancy graphene DOS. Dashed line shows the Fermi level.

In addition, a ϐlat (parallel) adsorption conϐigurations were also examined for the CoIr dimer. The
relaxation processes led to a similar conϐiguration where the dimer was positioned in the middle of
the vacancy. The dimer remained connected with the graphene layer through the Co atomwith the Ir
atom holding a certain angle with the graphene plane. However these conϐigurations were energeti-
cally disfavoured and not considered in further studies in this thesis.

Ir down
Second conϐiguration considered in the calculations for the dimer was the case of Ir atom bound

to the graphene layer (the Co and Ir atoms were switched in the primary set-up). The initial positions
and conclusive relaxed structure can be seen in the Figure 20. The position for the dimer was again
preferred in the centre of the vacancy in an upright conϐiguration. The Ir atom remained bonded to
the C atoms in the graphene plane and Co atom stayed in perpendicular position, with small rotation
from the dimer axes.

Scalar-relativistic calculations show the Ir-Co distance to be 2.38 Aǒ , which is again slightly larger
than the dimer length in gas-phase as well as in the case for the CoIr dimer discussed above. The C
atoms surrounding the vacancy migrated closer to the centre of the position of missing atom, which
corresponds with previous theoretical and experimental investigations. The distance between the
graphene layer and the Ir atom is 1.92 Aǒ , making the Ir atom stand again above the level of C atoms.
The higher positioned Co atom in the dimer, is 3.85 Aǒ above the graphene layer. The distances for this
conϐiguration are larger than for the previous case.

The binding energy of graphene with the dimer being 6.88 eV/dimer, which is bigger than for
the previous setup. The magnetic behaviour of this conϐiguration is showing higher total magnetic
moment, that is 1.83 µB , where the Ir atom contributes with 0.08 µB and Co atom with 1.97 µB . C
atoms that are directly connected to the Ir atom show double magnetic spin moment of 0.02 µB than
for the previous case, however situation remains same for the further C atoms from the vacancy and
the graphene layer magnetic state remains unchanged as well.
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Figure 20 IrCo dimer with Ir atom bound to the graphene sheet. The initial positions are
shown in the panel (a) and the ϐinal position after relaxation is shown in the panel
(b).

The Figure 21 presents the total and local DOS for the IrCo dimer with comparison to the SV-
Graphene layer. There is an important contribution to the total DOS from Co atom, which lies on the
Fermi level in the formof a sharp peak. The region around the Fermi level shows two signiϐicant peaks.
All these states come from the Co atom. Just like for previous formation, the total DOS is strong for
lower energies. In total, the DOS contribution is lower for this conϐiguration with the respect to the
previous case.

Figure 21 Spin-polarized scalar-relativistic total and local DOS for IrCo dimer and total sin-
gle vacancy graphene DOS. Dashed line shows the Fermi level.

A parallel adsorption conϐigurationswere examined aswell. The Co atommigrated above the level
of Ir atom, showing that the upright conϐiguration is again preferred. However the relaxations led to
conϐigurations energetically less stable than all previous cases and were not further studied.

For transition metal homoatomic dimers, it have been already demonstrated that the nature of
the eigenstates in the vicinity of the Fermi level can explain the change inmagnetic properties and the
variation of theMAE. [81]. Previous results also show the eigenvalue spectra of IrCo dimers supported
by graphene layer. [91] In this work the authors shown that the large MAE in the system is caused by
the difference in single occupied δ∗d level which is split under the SOC.
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2.3.2. N doped graphene layer with IrCo dimer to the graphene layer

The same process was used in the calculations for the IrCo dimer adsorbed on nitrogen doped SV-
Graphene.Two main conϐigurations of the dimer are further considered. First one is the case for Co
atom bound to the nitrogen atoms surrounding the vacancy. The second is for the Ir atom bound to
the nitrogen doped vacancy.

Co down
The initial positions and relaxed structureof theCoIr dimerpositionedperpendicular to the graphene

layer with the Co atom bonded to the N atoms in graphene are shown in Figure 22. For this con-
ϐiguration the dimer relaxed in all cases to the centre of the vacancy and remained in the upright
conϐiguration. The binding energy for the dimer on N-SVGraphene is 4.12 eV/dimer. This energy is
slightly smaller than the one for undoped SVGraphene layer with CoIr and IrCo dimer, respectively.
The distance between atoms of the dimer when adsorbed on the N-SVGraphene layer is 2.12 Aǒ , which
is similar with the length of the dimer in the gas-phase.

Figure 22 IrCo dimer with Ir atom bound to the N doped graphene sheet. The initial posi-
tions are shown in the panel (a) and the ϐinal position after relaxation is shown in
the panel (b).

The relaxed C-C distance in the N doped graphene layer is around 1.45 Aǒ , which is in a very good
agreement with the calculated distance for the single vacancy graphene and pristine graphene layer.
The length between doped N atomswith the C atoms in plane is 1.34 Aǒ . In this case the nitrogen atoms
surrounding the vacancy, did not migrate to its centre and moved out of it. The distances for the N
atoms bonded to the Co atom are 2.1 Aǒ . Such length is showing higher positioned Co atom than for the
undoped cases. For both examples, the Co atom is above the average level of graphene plane. The Ir
atom is 3.8 Aǒ above the graphene plane in this conϐiguration.

Themagnetic behaviour of the structure is described by themagnetic moment of 1.07 µB with the
contribution from Co atom of the size 0.38 µB and 0.72 µB from Ir atom. The magnetic moments of N
atoms are almost 0 and the same values are exhibited by the C atoms in graphene layer.

The effect of the support on the electronic andmagnetic properties of the system are different due
doped nitrogen atoms in the graphene single vacancy. The Figure 23 shows the spin-polarized DOS of
theN-SVGraphene and the adsorbed CoIr dimer on top. The total and local DOS of the 3d and 5d atoms
are presented as well. The effect of nitrogen contribution to the total DOS is lowered when the dimer
is present in the structure. However the conϐiguration of CoIr dimer on theN-SVGraphene layer shows
occurrence of well pronounced states in the region of Fermi level. The contribution for total DOS is
similar for both of the transition metal atoms. In the energy region from -1 to 0 eV the dominance of
Ir atom is shown. The DOS results are supporting the calculated magnetic moments for the structure.
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Figure 23 Spin-polarized scalar-relativistic total and local DOS for CoIr dimer and total sin-
gle vacancy graphene DOS. Dashed line shows the Fermi level.

Flat adsorption of different dimer positionswere inspected aswell. After the relaxation processes,
the ϐinal conϐiguration led to the same situation as the one for upright calculations. The ground ener-
gies of these systems were disfavoured and the systems were not considered in further steps.

Ir down
For the second conϐiguration, the initial positions and relaxed structure of the dimer with the Ir

atom bound to the N atoms in SVGraphene are shown in Figure 24. As can be seen from the Figure
24, the preferred position of the dimer is again for all cases in the middle of the vacancy. The binding
energy for the N-SVGraphene with the dimer is 3.59 eV/dimer. This energy is similar to the previous
case.

Scalar-relativistic calculations show that the length of the dimer is 2.19 Aǒ , which is again, very
similar to the length in the gas-phase. The distance of N atoms bound to the edges of the vacancy
migrated away from its centre, causing the length of the C-N to be 1.37 Aǒ . The bond length between
the C atoms remained unchanged to the one of pure graphene layer. Ir atom is positioned 2.02 Aǒ above
the level of graphene and the distance of the Co atom from its substrate is 2.19 Aǒ . The distances for
this conϐigurations are the shortest out of all described conϐigurations.

The system exhibits magnetic moment of -1.59 µB , where the Ir atom shows magnetic moment
-1.87 µB . The contribution of the Co atom to the total magnetic moment is 0.16 µB , which is minor,
when compared to the input of Ir. C atoms that are connected to theN atoms show in this conϐiguration
slightly higher magnetic moments, that are 0.03 µB . However the rest of the C atoms in the system
have magnetic moments close to zero and the magnetic state remains unchanged as well.

37



Figure 24 IrCo dimer with Ir atom bound to the N doped graphene sheet. The initial posi-
tions are shown in the panel (a) and the ϐinal position after relaxation is shown in
the panel (b).

The Figure 25 shows the spin-polarized DOS of the nitrogen doped single vacancy graphene and
the total and local DOS of the adsorbed IrCo dimer. The results are showing very different proper-
ties than for the previous case. The contribution of the Co atom rules over the smaller one of the Ir
atom. However, there is a signiϐicant peak on the Fermi level, which is suggesting the great magnetic
response of the system, which is further discussed in the spin-orbital section.

Figure 25 Spin-polarized scalar-relativistic total and local DOS for IrCo dimer and total sin-
gle vacancy graphene DOS. Dashed line shows the Fermi level.

In this case, the parallel adsorption of the dimer was also considered. The relaxation calculations
led to complicated results, with different ϐinal positions, that were mostly physically impossible. That
is why these systems were not studied further.
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2.4. Spin-Orbital coupling and relativistic calculations
Calculations inluding the SOC have been performed for the stable ground-state conϐiguration with

different initial orientations of the magnetic moments. The alignments of the orientation were ei-
ther with the dimer axis and so perpendicular to the defective graphene layer (along z direction) or
perpendicular to the dimer and parallel to the defected graphene sheet (x and y directions).

2.4.1. Graphene layer with IrCo dimer bonded to the graphene layer

The MAE for the energetically most favourable conϐigurations of the dimer/defective graphene
complex is deϐined as the difference between the total energies calculated for easy andhard axis orien-
tations of the magnetization. The values of MAE obtained in calculations with different cut-off energy
for the dimer adsorbed on the SVGraphene are summarized in the Figure 26.

For the dimer with Ir atom bound to the SVGraphene layer, the MAE is weak and remains almost
unchanged, regardless of the value cut-off energies and k-point mesh setup. However the situation is
different for the case when the Co atom in the dimer is bound to the SVGraphene. The value of MAE is
large for this conϐiguration. Further is discussed only the setup of 600 eV energy cut-off with 11×11×1
k-point mesh.

Figure 26 Overviewof the calculated values ofMAE for different energy cut-off and different
k-point mesh setup. The ϐirst number tells the cut-off energy and second the k-
point mesh choice.

Co down
The scalar-relativistic calculations for the CoIr dimer in the gas-phase predict a spinmagnetic mo-

ment of 3.68 µB , with the Ir atom contributing with 2.07 µB and Co atom 1.61 µB . On the defective
graphene the spin moment of the entire dimer-substrate complex with Co binding to the C atoms
around vacancy differs.

The Table 1 presents the spin and orbitalmoments and anisotropies togetherwith theMAE for the
CoIr dimer in the scalar-relativistic (SR) and in the SOC calculations. For the SR calculations it can be
seen that the total spin magnetic moment is reduced. Calculations including SOC strongly affect the
magnetic moments of both atoms.

Calculations predict an easy magnetization direction perpendicular to the substrate and parallel
to the dimer axis. From the Table 1, it can be seen that the rotation of the magnetization from easy
to hard direction leads to a transition from a high moment (mL = 1.7 µB) to a lowmoment (mL = 0.7
µB), which is conϐirmed by the strong orbital anisotropy.
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Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Co down 1.59 1.44 1.70 3.14 1.29 0.70 1.99 0.15 1.00 40.03

Table 1 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the CoIr
dimer on the SVGraphene layer. All magnetic moments are given in µB . The mag-
netic anisotropy energy is given in meV.

Details of the local spin andorbitalmoments for thedimer atomsadsorbedon thedefective graphene
layer are shown in the Figure 27. The relativistic computations shown the spin and orbital moments
different than those characterizing the free dimer. The orbital moment of Co atom in particular is
nearly completely quenched by the interaction with the substrate. The Ir atom for the perpendicular
magnetization shows enhanced both spin and orbital moment.

Figure 27 Magnetic structure of CoIr dimer supported on a graphene layer in the stable up-
right conϐiguration. The different magnetization direction is displayed. The pan-
els (a), (b), (c) demonstrate magnetisation along x, y, z directions, respectively.
Themagnetic anisotropy energy is listed underneath. Red (blue) arrows show the
spin (orbital) magnetic moments. The numbers give the total spin (upper num-
ber), and orbital (lower number) magnetic moments in µB . Top view is shown in
the inset in panel (c). The length of the arrows corresponding to the orbital mo-
mentumwasmultiplied by a factor of 10 for better visibility of vector orientation.

The MAE is 40.03 meV/dimer, which is in good agreement with previous theoretical works [87].
The orbital anisotropy, which is dominated by the contribution from Ir atom is the main factor deter-
mining the MAE of the CoIr dimer.
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Figure 28 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for CoIr dimer adsorbed on the SV-
Graphene layer, calculated including SOC for different magnetization directions.
For the magnetization parallel to the support and perpendicular to the dimer
(along the x and y axis) the DOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure 29 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the CoIr dimer adsorbed on the defective graphene layer,
for magnetization perpendicular to the support (z- direction, dash lines) and for
magnetization parallel to the support (along the x-direction, full lines). Dashed
perpendicular line shows the Fermi level.

It has been demonstrated that the nature of the eigenstates in the local area of the Fermi level
can explain the different values of the MAE [9]. Also, it has been shown that the same argument can
be used in order to explain the effects of the interaction with the substrate and so be responsible for
the variations of the MAE [89]. It is argued that a weak force is created by forming chemical bonds
between the d orbital states of the transitionmetal atom and the sp2 hybrid states of the C atoms. The
eigenstates of the 3d and 5d atoms undergo a bonding/anti-bonding splitting which leads to their
broadening due to the hybridization with the substrate orbitals.[89]

To understand the forces for the development of the MAE in the system the total DOS and mainly
partial d-bandDOSof the transitionmetal atoms, close to the Fermi level and is plotted for thedifferent
direction ofmagnetization. The relativistic total and site-decomposedDOS of the adsorbed CoIr dimer
are shown in the Figure 28 in the left column. The right column shows the partial d-states DOS (PDOS)
calculated for magnetization along the x, y and z direction.

The decomposed partial d-states DOS on the dimer are split into three groups, δd (dxy , dx2−y2),
πd(dxz , dyz and σd(dz2). For the CoIr dimer adsorbed on the SVGraphene the most important point is
the change in the occurrence of the δd partial DOS upon a change in the magnetization direction; for
better comparison the x and z directions are presented in the Figure 29. This input comesmainly from
the Ir atom. For the magnetization parallel to the graphene layer the partial DOS shows a peak at the
Fermi level, coming from the σd contribution, which is for the perpendicular magnetization shifted
towards the lower energies. For the perpendicular magnetization the SOC splitting gives rise in the
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δd, while theπd andσd states remain almost unaffectedby the change in thedirectionofmagnetization.

Ir down
In the case of Ir atom bound to the SVGraphene, the SR calculations for the whole complex reveal

same spinmagnetic moment, like for the case of Co atom bound to the defective graphene, that is 1.59
µB . The Table 2 shows the spin and orbital moments and anisotropies for the IrCo dimer as well as
the MAE calculated for this system.

The calculations show that the easy magnetization direction is perpendicular to the graphene and
parallel to the dimer axis. In comparison with previous conϐiguration, there is a substantial change in
the value of the orbital moment, which is almost 6 times lower for the perpendicular magnetization
direction. The rotation of the magnetization from easy to hard axis changes very little the moments,
which is also supported by both the spin (δmS = 0) and orbital (δmL = 0.03) anisotropy.

Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Ir down 1.59 1.83 0.27 2.10 1.83 0.24 2.07 0.00 0.03 0.69

Table 2 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the IrCo
dimer on the SVGraphene layer. All magnetic moments are given in µB . The mag-
netic anisotropy energy is given in meV.

To further investigate the magnetic properties of the system, the local spin and orbital moments
for the transition metal atoms adsorbed on the SVGraphene are displayed in the Figure 30. The cal-
culations including the spin-orbit coupling demonstrate large spin moments on the Co atom. As can
be seen from the Figure, the contribution from Ir atom is very small. The spin moment of Ir atom is
nearly completely quenched and the orbital moment is almost equal to zero. Unlike the previous case
however, the alighment of the spin and orbital moments are non-collinear, which can explain the very
small value of magnetic anisotropy. The MAE is only 0.69 meV/dimer for this conϐiguration.

In order to probe the MAE value further, the total, local and partial DOS of the dimer adsorbed on
the SVGraphene layer are shown in the Figure 31. The relativistic total and local DOS of the dimer and
its atoms are presented in the left column. The partial d-states DOS for the different magnetization
orientation are displayed in the right column of the Figure. Small peak appears at the Fermi level, that
is caused by the σd states. The Co atom contributes most to the total DOS of the dimer.

To compare the changes of inputs caused by the different magnetization direction, the results for
x and z computations are shown in the Figure 32. When the magnetization is perpendicular to the
substrate, the partial DOS shows that the SOC splitting adds to the δd and σd states. However, the
changes in thedensity of states are very small, which aswell explains thenegligibleMAE in this system.
The πd states remain unchanged.
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Figure 30 Magnetic structure of IrCo dimer supported on a graphene layer in the stable up-
right conϐiguration. The different magnetization direction is displayed. The pan-
els (a), (b), (c) demonstrate magnetisation along x, y, z directions, respectively.
Themagnetic anisotropy energy is listed underneath. Red (blue) arrows show the
spin (orbital) magnetic moments. The numbers give the total spin (upper num-
ber), and orbital (lower number) magnetic moments in µB . Top view is shown in
the inset in panel (c). The length of the arrows corresponding to the orbital mo-
mentumwasmultiplied by a factor of 10 for better visibility of vector orientation.
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Figure 31 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for CoIr dimer adsorbed on the SV-
Graphene layer, calculated including SOC for different magnetization directions.
For the magnetization parallel to the support and perpendicular to the dimer
(along the x and y axis) the DOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure 32 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the IrCo dimer adsorbed on the defective graphene layer,
for magnetization perpendicular to the support (z- direction, dash lines) and for
magnetization parallel to the support (along the x-direction, full lines). Dashed
perpendicular line shows the Fermi level.
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2.4.2. N doped graphene layer with IrCo dimer to the graphene layer

For the system with nitrogenized single vacancy in the graphene layer same process was applied.
The calculations for the given conϐiguration were run for multiple energy cut-off and k-point mesh
as well as the force theorem was applied in order to conϐirm the computational results. In addition,
calculations with 500 eV cut-off energy and 9×9×1 k-point mesh were run in order to compare with
results published in [87], where a double nitrogen doped vacancy in graphene layer was considered.

The values of MAE acquired from the relativistic calculations are presented in the Figure 33. The
computations with nitrogen doped single vacancy show similar values of the MAE, which are either
around 40 meV for the case of Ir atom bound to the N-SVGraphene, or around 10 meV for Co atom
bound to the substrate. However for the Ir bound to the graphene layer the situation varies rapidly.
The calculations show that theMAE for the setup 6_11 is around 300meV. However the force theorem,
where the systemaligns accordingly to thepreferable themagnetization, shows that theMAE is similar
to the rest of measurements. That can be explained with the fact that the the magnetization direction
causes changes in the whole complex and leads to de-magnetization of the system (6_ 11). The setup
of 600 eV energy cut-off with 11×11×1 k-point mesh is further discussed.

Figure 33 Overviewof the calculated values ofMAE for different energy cut-off and different
k-point mesh setup.

Co down
The scalar-relativistic calculations for the dimer/N-SVGraphene complex show a spin moment of

1.59 µB . In comparison with the free standing dimer, the total magnetic moment is twice lower. The
SR and SOC calculation results are summed up in Table 3. It presents the spin and orbital moments
and spin and orbital anisotropies and the MAE for this system. For the relativistic calculations, the
magnetic moments of both atoms are again strongly affected.

Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Co down 1.59 1.36 0.91 2.28 0.71 0.12 0.83 0.66 0.79 8.58

Table 3 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the CoIr
dimer on the N-SVGraphene layer layer. All magnetic moments are given in µB .
The magnetic anisotropy energy is given in meV.
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The calculations predict an easy magnetization direction perpendicular to the substrate and par-
allel to the dimer axis. The Table 3 reveals that the rotation of the magnetization from easy to hard
direction leads to a transition fromahigh spin and orbitalmoment (1.59µB and1.36µB , respectively)
to a lowmoments (0.71 µB and 0.12 µB , respectively), which is also conϐirmed by the strong spin and
orbital anisotropy, δmS = 0.66 µB and δmL = 0.79 µB , respectively.

Details of the local spin and orbital moment for the dimer atoms adsorbed on the N-SVGraphene
are shown in the Figure 34. The calculations including spin-orbit coupling reveal that unlike the un-
doped case, the contribution from the atoms is somewhat similar for the spin moments. However the
orbital moment of Co atom is again nearly completely quenched by the interaction with the substrate.
The Ir atom exhibits large spin and orbital moments for the perpendicular magnetization.

The different magnetization directions show collinear alignment of the magnetic moments. The
MAE for this conϐiguration is 8.58meV.When comparedwith the results from [90], they obtainedMAE
8 times larger. Calculations for the same setup, used in the article, however with only single vacancy,
predict MAE of 20 meV. The double vacancy seems to be responsible for higher magnetic response of
the system.

Further investigation of the magnetic properties of the CoIr/N-SVGraphene complex are done by
the total, local DOS of the dimer and the partial d-band DOS of the transition metal atoms. The Figure
35 shows that the most pronounced contribution to the total DOS comes from the Ir atom, especially
in the region of the Fermi level. Signiϐicant peak appears at the Fermi level for all the directions of
magnetization.
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Figure 34 Magnetic structure of CoIr dimer supported on the N doped graphene layer in the
stable upright conϐiguration. The different magnetization direction is displayed.
The panels (a), (b), (c) demonstratemagnetisation along x, y, z directions, respec-
tively. The magnetic anisotropy energy is listed underneath. Red (blue) arrows
show the spin (orbital) magnetic moments. The numbers give the total spin (up-
per number), and orbital (lower number) magnetic moments in µB . Top view is
shown in the inset in panel (c). The length of the arrows corresponding to the
orbital momentum was multiplied by a factor of 10 for better visibility of vector
orientation.
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Figure 35 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for CoIr dimer adsorbed on the N-
SVGraphene layer, calculated including SOC for different magnetization direc-
tions. For the magnetization parallel to the support and perpendicular to the
dimer (along the x and y axis) theDOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure 36 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the CoIr dimer adsorbed on the N-SVGraphene layer, for
magnetizationperpendicular to the support (z- direction, dash lines) and formag-
netization parallel to the support (along the x-direction, full lines). Dashed per-
pendicular line shows the Fermi level.

The comparison of the partial d-band DOS, displayed in the Figure 36, shows that the main input
to the DOS states comes from the d orbitals of the dimer atoms. The high peak, appearing at the
Fermi level is caused by the δd states. From the Figure, it is observed that the δd states change in
the occurrence upon the change in the magnetization direction. The πd and σd states remain mostly
unchanged. Another important difference is the downshift of some peaks, mainly of the δd states.
This transition shows the change in the occupations and accordingly the change of spin state. That is
another reason for the relatively large MAE calculated for this system.
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Ir down
The situation of the Ir atom bound to the N-SVGraphene is themost elusive out of all the described

results. The SR calculations predict a magnetic moment of 1.59 µB . However the relativistic calcula-
tions show increase of the magnetic moment, shown in the Table 4. The structure exhibits great spin
and orbital moments.

The easy magnetization direction is predicted to be perpendicular to the N-SVGraphene layer and
parallel to the dimer axis. The Table shows that the rotation of the magnetization from easy to hard
direction leads to a transition from a high moment to a low moment, which corresponds with the
strong spin and orbital anisotropies, that are for this case higher than 1 µB .

Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Ir down 1.59 1.64 1.20 2.84 0.30 0.07 0.37 1.34 1.13 293.04

Table 4 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the IrCo
dimer on the N-SVGraphene layer. All magnetic moments are given in µB . The
magnetic anisotropy energy is given in meV.

Figure 37 Magnetic structure of IrCo dimer supported on the N-SVGraphene layer in the
stable upright conϐiguration. The different magnetization direction is displayed.
The panels (a), (b), (c) demonstratemagnetisation along x, y, z directions, respec-
tively. The magnetic anisotropy energy is listed underneath. Red (blue) arrows
show the spin (orbital) magnetic moments. The numbers give the total spin (up-
per number), and orbital (lower number) magnetic moments in µB . Top view is
shown in the inset in panel (c). The length of the arrows corresponding to the
orbital momentum was multiplied by a factor of 10 for better visibility of vector
orientation.
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Figure 38 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for IrCo dimer adsorbed on the N-
SVGraphene layer, calculated including SOC for different magnetization direc-
tions. For the magnetization parallel to the support and perpendicular to the
dimer (along the x and y axis) theDOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure 39 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the CoIr dimer adsorbed on the N-SVGraphene layer, for
magnetizationperpendicular to the support (z- direction, dash lines) and formag-
netization parallel to the support (along the x-direction, full lines). Dashed per-
pendicular line shows the Fermi level.
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The contribution from the dimer atoms as well as their spin and orbital moments are presented in
the Figure 37. As can be seen in the Figure 37, the main contribution to themagnetic moments comes
from the Co atom. The spin and orbital moments of the Ir atom are almost completely quenched
and are of insigniϐicant value when compared to these of the Co atom. Another interesting situation
occurs for the magnetization direction being perpendicular to the substrate. The spin and magnetic
moments of the atoms are non-collinear, unlike for the parallel magnetization direction. Regardless
that, the calculations for this system predict giant magnetic anisotropy (MAE = 293.04 meV).

The Figure 38 shows the total and local DOS states for the atoms of the dimer. Signiϐicant peak
appears at the Fermi level for the y andmainly z magnetization direction. Like for the spin and orbital
moments, the Ir atom contributes for themost part to the total DOS.When looking at the Figure 39 the
changes in the occurrence of the d-states partial DOS upon a change in the magnetization direction
are quite complex. It can be seen that the whole plot of the DOS along the x direction is completely
shifted with respect to the DOS for z direction. The most pronounced changes are occurring at the
Fermi level, caused by mostly the δd but also in some extent σd states. The shift also happens for the
πd states, however this is observed at the lower energies. These rapid changes that are predicted upon
the reorientationof themagneticmoments could alsobe responsible for the giantmagnetic anisotropy
energy of the system.

However, the structures until now acquired an intrinsic magnetic moment that arises due the 2D
conϐinement effects. The strong spin-orbit coupling for the 3d and 5d atoms togetherwith the binding
to the substrate led to a high magnetic anisotropy energy. However in this case, the spin-orbit cou-
pling inϐluences the structural stability aswell. Similar results have already been observed in previous
works [92, 93, 94]. Former investigations of structures based on 5d atoms show, that the change in
the magnetization direction can lead to a complete change of the magnetic state [95]. That is why in
this case the calculated giant magnetic anisotropy energy is in fact a de-magnetization energy.
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Conclusion
In this thesis the ab initio DFT calucutation were used to determine the magnetic properties of

dimer, consisted of heavy 5d and strongly magnetic 3d atom, bonded onto free-standing defective
graphene layer. Density functional calculations have been performed in the scalar-relativistic limit,
self-consistent (including spin-orbit coupling) limit as well as the force theorem (non-self-consistent)
calculations were used for different setup. The values of MAE in such conϐigurations have been es-
tablished, taking into account different initial conϐigurations of the dimer. The interesting result of
the studies show that the magnetic anisotropy energy remains similar for most of the variations in
the computational setup. It has been demonstrated that for the dimer supported on the defective
graphene, the strong binding of the TM atoms to the substrate stabilizes an out-of plane alignment for
all cases.

In the ϐirst part of the calculations, the dimer/SVGraphene with Co atom bound to the substrate,
complex showed consistent values of MAE of the order of 50 meV. The large values of MAE can be
understood on a microscopic level, by considering the impact of the substrate (defective graphene)
on the orbital/spin momentum and spin-orbit coupling of Ir and Co atoms forming the dimer. The
spin and orbital moments of the Co atom are strongly quenched due to binding to the graphene layer.
However, the adsorption is weakened by the binding within the dimer, which makes the Ir atom to
behave like a free atom, leading to the strong anisotropy of the spin and orbitalmoment on the Ir atom.
When the dimer position is switched and the Ir atom is bound to the SVGraphene layer, the system
exhibits steady MAE of the value around 2 meV. This small number is explained by the non-collinear
alignment of the spin and orbital moments of the dimer atoms as well as the almost non-existent spin
and orbital anisotropies.

The second part involves the dimer to be adsorbed on the N-SVGraphene layer. For the case with
Co atom bound to the substrate, the values of MAE differs more for different calculation setup. The
MAE is in the order of 10 - 30meV. This is explained by collinear alignment of the spin and orbital mo-
ments, together with the spin and orbital anisotropies. The important point also lies in the illustrated
partial local densities of states for d orbitals of the dimer atoms. The σd state is more pronounced for
the perpendicularmagnetization direction. The variations of the values ofMAE are also explained as a
consequence of a discreet-like electronic density of states around the Fermi level. The more interest-
ing results are for the Ir atom bound to the N-SVGraphene. The values differ by the order of hundreds
of meV. This shows that the understanding of the magnetic anisotropy energy is more complex. The
differences are caused by the fact, that the system in this conϐiguration undergoes a structural sta-
bility. The change in the magnetization direction completely changes the magnetic state and causes
de-magnetization of the system.

The results of theoretical studies described here are important for the understanding of magnetic
properties of small system (TM dimers) interacting with monolayers of graphene substrates. They
are relevant for design of structures displaying large MAE values and therefore appealing from the
point of view of practical aspects requiring the possibility to manipulate the magnetic state at room
temperature. Also, demonstration of a stable conϐiguration of IrCo dimer attached to the graphene
via vacancy may be stimulating for consideration of novel modulation techniques of 2D materials,
introducing methods of inducing magnetic properties in intrinsically non-magnetic structures.

Nevertheless, further study is still needed. The free standing graphene, as a weakly reactive sub-
strate, is still hard to obtain for further manipulation. The next step in the research of these systems
should consider possible strong interaction between the dimer/graphene complex and metallic sub-
strate.
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Supplementary information
Co down

Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Co down 1.59 1.46 1.7 3.15 1.3 0.7 2 0.15 0.99 51.41

Table S1 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the CoIr
dimer on the SVGraphene layer. All magnetic moments are given in µB . The mag-
netic anisotropy energy is given in meV.

Figure S1 Magnetic structure of CoIr dimer supported on a graphene layer in the stable up-
right conϐiguration. The different magnetization direction is displayed. The pan-
els (a), (b), (c) demonstrate magnetisation along x, y, z directions, respectively.
Themagnetic anisotropy energy is listed underneath. Red (blue) arrows show the
spin (orbital) magnetic moments. The numbers give the total spin (upper num-
ber), and orbital (lower number) magnetic moments in µB . Top view is shown in
the inset in panel (c). The length of the arrows corresponding to the orbital mo-
mentumwasmultiplied by a factor of 10 for better visibility of vector orientation.
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Figure S2 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for CoIr dimer adsorbed on the SV-
Graphene layer, calculated including SOC for different magnetization directions.
For the magnetization parallel to the support and perpendicular to the dimer
(along the x and y axis) the DOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure S3 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the CoIr dimer adsorbed on the defective graphene layer,
for magnetization perpendicular to the support (z- direction, dash lines) and for
magnetization parallel to the support (along the x-direction, full lines). Dashed
perpendicular line shows the Fermi level.
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Ir down

Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Co down 1.59 1.83 0.27 2.1 1.83 0.276 2.11 0 0 2.26

Table S2 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the CoIr
dimer on the SVGraphene layer. All magnetic moments are given in µB . The mag-
netic anisotropy energy is given in meV.

Figure S4 Magnetic structure of IrCo dimer supported on a graphene layer in the stable up-
right conϐiguration. The different magnetization direction is displayed. The pan-
els (a), (b), (c) demonstrate magnetisation along x, y, z directions, respectively.
Themagnetic anisotropy energy is listed underneath. Red (blue) arrows show the
spin (orbital) magnetic moments. The numbers give the total spin (upper num-
ber), and orbital (lower number) magnetic moments in µB . Top view is shown in
the inset in panel (c). The length of the arrows corresponding to the orbital mo-
mentumwasmultiplied by a factor of 10 for better visibility of vector orientation.
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Figure S5 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for IrCo dimer adsorbed on the SV-
Graphene layer, calculated including SOC for different magnetization directions.
For the magnetization parallel to the support and perpendicular to the dimer
(along the x and y axis) the DOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure S6 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the IrCo dimer adsorbed on the defective graphene layer,
for magnetization perpendicular to the support (z- direction, dash lines) and for
magnetization parallel to the support (along the x-direction, full lines). Dashed
perpendicular line shows the Fermi level.
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Co down

Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Co down 1.59 1.36 0.91 2.27 0.70 0.12 0.82 0.45 0.79 11.03

Table S3 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the CoIr
dimer on the N-SVGraphene layer. All magnetic moments are given in µB . The
magnetic anisotropy energy is given in meV.

Figure S7 Magnetic structure of CoIr dimer supported on the N-SVGraphene layer in the
stable upright conϐiguration. The different magnetization direction is displayed.
The panels (a), (b), (c) demonstratemagnetisation along x, y, z directions, respec-
tively. The magnetic anisotropy energy is listed underneath. Red (blue) arrows
show the spin (orbital) magnetic moments. The numbers give the total spin (up-
per number), and orbital (lower number) magnetic moments in µB . Top view is
shown in the inset in panel (c). The length of the arrows corresponding to the
orbital momentum was multiplied by a factor of 10 for better visibility of vector
orientation.
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Figure S8 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for CoIr dimer adsorbed on the N-
SVGraphene layer, calculated including SOC for different magnetization direc-
tions. For the magnetization parallel to the support and perpendicular to the
dimer (along the x and y axis) theDOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure S9 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the CoIr dimer adsorbed on the N-SVGraphene layer, for
magnetizationperpendicular to the support (z- direction, dash lines) and formag-
netization parallel to the support (along the x-direction, full lines). Dashed per-
pendicular line shows the Fermi level.
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Ir down

Structure SR Perpendicular SOC In-plane SOC Anisotropies MAE

mS mS mL mtot mS mL mtot δmS δmL

Co down 1.59 1.66 1.22 2.86 1.60 0.12 1.72 0.06 1.10 33.11

Table S4 The spin (mS) and orbital (mL) moments and the spin (δmS) and orbital (δmL)
anisotropies, together with the calculatedmagnetic anisotropy energy of the IrCo
dimer on the N-SVGraphene layer. All magnetic moments are given in µB . The
magnetic anisotropy energy is given in meV.

Figure S10 Magnetic structure of IrCo dimer supported on the N-SVGraphene layer in the
stable upright conϐiguration. The different magnetization direction is displayed.
The panels (a), (b), (c) demonstratemagnetisation along x, y, z directions, respec-
tively. The magnetic anisotropy energy is listed underneath. Red (blue) arrows
show the spin (orbital) magnetic moments. The numbers give the total spin (up-
per number), and orbital (lower number) magnetic moments in µB . Top view is
shown in the inset in panel (c). The length of the arrows corresponding to the
orbital momentum was multiplied by a factor of 10 for better visibility of vector
orientation.
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Figure S11 The Figure shows the total, side decomposed (panel (a), (b), (c)) and partial
d-band (panel (d), (e), (f)) electronic DOS for IrCo dimer adsorbed on the N-
SVGraphene layer, calculated including SOC for different magnetization direc-
tions. For the magnetization parallel to the support and perpendicular to the
dimer (along the x and y axis) theDOS are shown in the panels (a), (d), and (b),(e).
For themagnetization perpendicular to the support and parallel to the dimer axis
(along the z axis) are in the panels (c), (f). Dashed line shows the Fermi level.
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Figure S12 Comparison of the total, site decomposed (panel (a)) and partial d-band (panel
(b)) electronic DOS for the IrCo dimer adsorbed on the N-SVGraphene layer, for
magnetizationperpendicular to the support (z- direction, dash lines) and formag-
netization parallel to the support (along the x-direction, full lines). Dashed per-
pendicular line shows the Fermi level.
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