
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

CONTROLLINGAUTONOMOUSSYSTEMSBASEDON
PARTIALLYOBSERVABLEMARKOVDECISIONPRO-
CESSES
ŘÍZENÍAUTONOMNÍCHSYSTÉMŮZALOŽENÉNAMARKOVSKÝCHMODELECHSČÁSTEČNÝM

POZOROVÁNÍM

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR JULIE GYSELOVÁ
AUTOR PRÁCE

SUPERVISOR doc. RNDr. MILAN ČEŠKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Gyselová Julie
Programme: Information Technology
Title: Controlling Autonomous Systems Based on Partially Observable Markov

Decision Processes
Category: Formal Verification
Assignment:

1. Study the existing methods for controlling partially observable Markov decision
processes. Focus on methods using finite-state controllers.

2. Evaluate these method in the context of controlling autonomous systems.
3. Design improvements and extensions of these methods allowing efficient optimal synthesis

for various classes of the controllers.
4. Implement these improvements and extensions on top of the tool PAYNT for synthesis of

probabilistic programs.
5. Perform a detailed experimental evaluation of the proposed methods on a suitable

benchmark.
Recommended literature:

Kochenderfer, M.J., Wheeler, T.A., and Wray K.H, Algorithms for Decision Making, MIT
Press 2022.
Andriushchenko, R., Češka, M., Junges, S., Katoen, J.P. and Stupinský, Š. PAYNT: A Tool
for Inductive Synthesis of Probabilistic Programs. In CAV 2021.
Junges, S., N. Jansen, R. Wimmer, T. Quatmann, L. Winterer, J. P. Katoen, and B. Becker.
Finite-state controllers of POMDPs using parameter synthesis. In UAI 2018.
Kumar, A. and Zilberstein, S. History-based controller design and optimization for partially
observable MDPs. In ICAPS 2015.
Wray, K.H. and Czuprynski, K., Scalable POMDP Decision-Making Using Circulant
Controllers.In ICRA 2021.

Requirements for the first semester:
Items 1, 2 and partially item 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Češka Milan, doc. RNDr., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: July 29, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24626/2021/xgysel00 Page 1/1

Abstract
Partially observable Markov decision processes offer a way to model systems with state

uncertainty. An agent has limited information (observation) about its current location in
the system. A finite-state controller that translates this information to actions that the
agent can perform helps the agent interact with the model and achieve its goals. PAYNT
is a tool that constructs a design space that contains all possible finite-state controllers of
a given size for a POMDP and then tries to find the best FSC among those. In this thesis,
I introduce a way to restrict the design space to encode only a subset of the controllers so
that PAYNT can find the best controller in a much shorter time. If the used restriction is
suitable, the controller quality is not affected. I also implement a method that can make
the synthesis method implemented in PAYNT continuously find FSCs of increasing sizes
and improving qualities by gradually applying restrictions from a predefined set.

Abstrakt
Systémy se stavovou neurčitostí lze modelovat pomocí Markovských rozhodovacích pro-

cesů s částečným pozorováním. Agent, který se v takovém systému pohybuje, má o své
pozici v rámci systému pouze omezené informace (pozorování). Konečně-stavový kontroler
umí přiřadit vhodnou akci k aktuálnímu pozorování. Díky tomu může agent se systémem
lépe interagovat a dobrat se svého cíle. Nástroj PAYNT umí najít nejkvalitnější kontroler
mezi všemi možnými kontrolery dané velikosti pro daný model. V této práci představím
způsob, jakým lze omezit designový prostor, ve kterém PAYNT kontrolery hledá, tak, aby
zakódovával pouze určitou podmnožinu kontrolerů, která lze vyhodnotit v menším čase.
Pokud je použita vhodná restrikce, kvalita kontrolerů není ovlivněna. Dále implementuji
metodu, která postupně aplikuje tyto restrikce na designový prostor a umožňuje syntetiza-
ční metodě v PAYNTu nepřetržitě hledat kontrolery větších velikostí a lepší kvality.

Keywords
Partially observable Markov decision processes, finite-state controller synthesis

Klíčová slova
Markovské rozhodovací procesy s částečným pozorováním, syntéza konečně-stavových kon-
trolerů

Reference
GYSELOVÁ, Julie. Controlling Autonomous Systems Based on Partially Observable Markov
Decision Processes. Brno, 2022. Bachelor’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor doc. RNDr. Milan Češka, Ph.D.

Controlling Autonomous Systems Based on Par-
tially Observable Markov Decision Processes

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of doc. RNDr. Milan Češka, Ph.D. Supplementary information was
provided by Ing. Roman Andriushchenko. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Julie Gyselová
July 29, 2022

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Markov Chains . 5

2.1.1 Families of Markov Chains . 7
2.2 Markov Decision Processes . 8
2.3 Partially Observable Markov Decision Processes 9

3 Existing Methods for Controlling POMDPs 11
3.1 Belief-Based . 11
3.2 Finite-State Controller Synthesis . 13

3.2.1 Finite-state Controllers . 13
3.2.2 Controller Synthesis . 15

4 PAYNT – Probabilistic progrAm sYNThesizer 19
4.1 PAYNT for probabilistic programs . 19
4.2 PAYNT for POMDPs . 19

4.2.1 Design Space . 20
4.2.2 Iterative Strategy . 20
4.2.3 Memory Injection Strategy . 20

5 Contributions to PAYNT 21
5.1 Graphical FSC Representation . 21

5.1.1 Implementation . 21
5.2 Limiting Design Space . 22

5.2.1 Implementation . 22
5.2.2 Restrictions . 23

5.3 Incremental Memory Setting . 26
5.3.1 Implementation . 26

6 Evaluation 27
6.1 Benchmarks and Experiment Conditions . 27

6.1.1 Grid . 27
6.1.2 Maze . 28

6.2 Evaluations . 30
6.2.1 Limiting Design Space . 30
6.2.2 Incremental Memory Setting . 34

6.3 Experiment Conclusions . 39

1

7 Conclusion 40

Bibliography 41

A Graphical FSC Representation 43

B Contents of the included storage media 45

C Manual 46

2

Chapter 1

Introduction

Creating autonomous systems that could operate without human input has been a long-
term goal of mankind. These systems can range from simple machines designed to perform
a simple task over and over again to self-driving vehicles that are yet to drive on our roads.
For the latter, the biggest obstacle is the surrounding environment. What is natural to
navigate for humans is not as easy for a man-made machine.

The objective of this thesis is not going to be creating a driver-less car. Examples
here will be much simpler than that – navigating grids and two-dimensional mazes. The
challenge, however, will be similar to that of self-driving cars. How to solve a problem when
we only have limited knowledge about the surroundings?

“Outcome uncertainty, where the effects of our actions are uncertain, model uncertainty,
where our model of the problem is uncertain, state uncertainty, where the true state of the
environment is uncertain, and interaction uncertainty, where the behavior of the other
agents interacting in the environment is uncertain.” [11]

This thesis will focus on systems with state uncertainty and how it can be modeler using
Partially observable Markov decision processes that define the system’s states, the limited
information which describes these states, available actions and the results of these actions.

There are two approaches to controlling POMDPs, or rather controlling agents inter-
acting with POMDPs, the first being belief based – where a belief distribution is kept and
updated based on taken actions and received observations and these beliefs are then mapped
to actions for the agent to take [11] – and the second one is using finite-state controllers
(FSCs). Finite-state controllers map observations to actions either just based on this in-
formation alone or by using their own inner state to provide additional information about
the history of interactions between the agent and the system [12].

An optimal controller can be synthesized from a design space that encompasses all pos-
sible controllers of a set size using the Python tool PAYNT (Probabilistic progrAm sYN-
Thesizer) [1, 3]. The design space size, however, grows exponentially with the controller’s
memory size.

Inspired by Scalable POMDP Decision-Making Using Circulant Controlle by Wray et.
al. [14] which focused on synthesizing circulant controllers for agents with cyclic behavioural
patterns, I set out to find a way to synthesize only controllers of a certain type using PAYNT
while also cutting back on synthesis time of the growing design spaces.

To achieve this, I introduce restrictions. A suitable restriction offers a way to only syn-
thesize controllers of a certain type while reducing the synthesis time significantly without
affecting the controller quality. This thesis explores different restrictions and compares the
resulting controllers to those synthesized from unrestricted design spaces.

3

Taking a set of different, gradually less strict restrictions and sequentially applying it to
the growing design spaces should allow PAYNT to find controllers of increasing sizes and
improving qualities. The results of this, incremental, approach are compared to the results
of iterative synthesis from non-restricted design spaces and to the memory injection strategy
by Andriushchenko et. al. introduced in Inductive Synthesis of Finite-State Controllers for
POMDPs [1].

The preliminary experiments using the introduced restrictions show promising results
in three of the four benchmarks used.

4

Chapter 2

Preliminaries

In this chapter I explain the most essential stochastic, probability driven models in this
thesis and using easy to understand examples I explain how they relate to controlling
autonomous systems.

Definitions in this chapter are taken over and adapted from Stochastic Model Checking
[13] (definition 1), Shepherding Hordes of Markov Chains [15] (definitions 2 and 3), and
from Finite-state Controllers of POMDPs via Parameter Synthesis [9] (definitions 4 and 5).

2.1 Markov Chains
Markov chains (MCs) are the most elementary kind of Markov models and they are es-
sential to comprehending other models that are derived from them. A stochastic model is
considered markovian if it holds the Markov property – the next state is determined by the
current state only.

Markov chains can be divided into two categories – discrete-time Markov chains (DTMCs)
which operate on discrete time points and continuous-time Markov chains (CTMCs) which
operate on time intervals. For the purposes of this thesis, Markov chains will refer to
DTMCs.

Definition 1. A discrete-time Markov Chain 𝑀 is defined by a tuple 𝑀 = (𝑆, 𝑠0, 𝑃). 𝑆 is
a finite set of states, 𝑠0 is the initial state, and 𝑃 : 𝑆×𝑆 → [0, 1] is the transition probability
matrix where

∑︀
𝑠∈𝑆 𝑃 (𝑠, 𝑠

′) = 1 for all 𝑠 ∈ 𝑆 which denotes the probability that a MC in
state 𝑠 can transition into state 𝑠′ in one step.

If a state only has a single possible transition and that is back to itself, it is called
an absorbing state. In such a state, 𝑃 (𝑠, 𝑠) = 1 and 𝑃 (𝑠, 𝑡) = 0 for all states 𝑡 ̸= 𝑠 [4].
Absorbing states can be viewed as end states, once they are reached, no other states can
be transitioned to.

A path 𝜔 is a non-empty sequence of states 𝑠0𝑠1𝑠2... that can be either finite or infinite
where 𝑖 ∈ N0, 𝑠𝑖 ∈ 𝑆 and 𝑃 (𝑠𝑖, 𝑠𝑖+1) > 0. The length of this sequence (the number of
transitions) is the path’s length [13].

A substantial part of working with Markov chains and models derived from MCs revolves
around reachability, the property that describes whether it is possible to transition from
state 𝑠0 to state 𝑠𝑛, with what probability, and in how many of transitions. A state 𝑠𝑛 is
reachable if there exists a path from 𝑠0 to 𝑠𝑛.

5

Example 2.1.1. A common example used with Markov chains is the Knuth-Yao dice, a
model that sets out to simulate an N-sided dice using a coin flip [10]. What would the
Markov chain for simulating a three sided dice with a fair coin look like?

Solution. One coin-flip can differentiate between the end states 1 and 2 starting from an
intermediate state 𝑠1. Tossing tails in the intermediate state 𝑠2 determines a transition
to absorbing state 3. Because the number three is not a power of two, we need a way to
redistribute the remaining heads toss into all of the three possible end states. That is done
by adding a transition from 𝑠2 back to 𝑠0.

A graphical representation of this MC where red edges (pointing to 𝑠0, 𝑠1, and 1)
represent heads, blue edges (pointing to 𝑠2, 2, and 3) represent tails can be seen in figure
2.1.

𝑠0

𝑠1 𝑠2

1 2 3

0.5 0.5

0.5 0.5 0.5

0.5

1 1 1

Figure 2.1: Markov chain for simulating a three-sided dice with a coin flip.

The MC is formally defined by the set of states 𝑆 = {𝑠0, 𝑠1, 𝑠2,1,2,3} where 𝑠0 is the

initial state and a transition matrix 𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0.5 0.5 0 0 0
0 0 0 0.5 0.5 0
0.5 0 0 0 0 0.5
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠.

The correctness of this MC can be verified by computing the reachability probabilities
of the states, that is the probabilities of paths of certain lengths ending in those states [4].
Table 2.1 shows the reachability probabilities for all states in the first 10 steps. By step
6, the the reachability probabilities of states 1, 2, and 3 are equal to ≈ 0.33 which is the
expected value for a fair three-sided dice.

The remaining probability values that are “stored” in states 𝑠0 or states 𝑠1 and 𝑠2 will
continually keep getting redistributed to states 1, 2, and 3 in subsequent steps.

An example of a path in this MC would be 𝜔 = {𝑠0, 𝑠2, 𝑠0, 𝑠1,1} and that would be the
result of tails once and then heads three times in a row.

6

State/Step 0 1 2 3 4 5 6 7 8 9 10
𝑠0 1 0 0.25 0 0.063 0 0.016 0 0.004 0 0.001
𝑠1 0 0.5 0 0.125 0 0.031 0 0.008 0 0.002 0
𝑠2 0 0.5 0 0.125 0 0.031 0 0.008 0 0.002 0
1 0 0 0.25 0.250 0.313 0.313 0.328 0.328 0.332 0.332 0.333
2 0 0 0.25 0.250 0.313 0.313 0.328 0.328 0.332 0.332 0.333
3 0 0 0.25 0.250 0.313 0.313 0.328 0.328 0.332 0.332 0.333

Table 2.1: Table reachability probabilities in each state in the span of 10 steps.

2.1.1 Families of Markov Chains

With parameters, a family of Markov chains can compactly describe many different real-
isations, Markov chains defined over the same set of states but with different topologies.
While this is interesting on its own, families of Markov chains become most relevant when
discussing finite-state controllers and their synthesis.

Definition 2. A family of Markov chains is defined as a tuple D = (𝑆, 𝑠0,𝐾,P) where S is
a finite set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝐾 is a finite set of parameters such that the
domain of each parameter 𝑘 ∈ 𝐾 is 𝑇𝑘 ⊆ 𝑆, and P : 𝑆 → 𝐷𝑖𝑠𝑡𝑟(𝐾) is a family of transition
probability matrices.

Definition 3. A realisation of a family of Markov chains D is a function 𝑟 : 𝐾 → 𝑆 where
∀𝑘 ∈ 𝐾 : 𝑟(𝑘) ∈ 𝑇𝑘. A realisation 𝑟 yields a MC 𝐷𝑟 = (𝑆, 𝑠0,P(𝑟)), where P(𝑟) is the
transition probability matrix in which each 𝑘 ∈ 𝐾 in P is replaced by 𝑟(𝑘). Let 𝑅D denote
the set of all realisations for D.

Markov chains that belong to the same family have the same set of states, the same
initial state, but different transition matrices and topologies. Different realisations of one
family can have different reachable states.

Example 2.1.2. Figure 2.2 depicts a family of MCs D defined by the set of states 𝑆 =
{𝑠0, 𝑠1, 𝑠2}, initial state 𝑠0, set of parameters 𝐾 = {𝑎, 𝑏}, parameter domains 𝑇𝑎 = {𝑠0, 𝑠1}
and 𝑇𝑏 = {𝑠1, 𝑠2}, and transition probability matrix P(0) = 1/2𝑠1 + 1/2𝑎, P(1) = 1/2𝑎 +
1/2𝑏, and P(2) = 1/2𝑠1 + 1/2𝑏. (Transition probabilities are omitted for the sake of
readability.)

What would two possible realisations of this family look like?

𝑠0 𝑠1 𝑠2
𝑎

𝑎 𝑏

𝑏

Figure 2.2: Family of Markov chains D.

Solution. Realisation 𝑟1: 𝑟1(𝑎) = 𝑠0, 𝑟1(𝑏) = 𝑠2 is depicted in figure 2.3. All states reachable
in this realisation, no state is absorbing.

7

𝑠0 𝑠1 𝑠2

0.5

0.5

0.5

0.5

0.5 0.5

Figure 2.3: Graphical representation of realisation 𝑟1 of the family of MCs D.

Realisation 𝑟2: 𝑟2(𝑎) = 𝑠1, 𝑟2(𝑏) = 𝑠1 is depicted in figure 2.4. State 𝑠2 unreachable
from the initial state, 𝑠1 is an absorbing state which is always reached after the first step.

𝑠0 𝑠1 𝑠21 0.5

1

Figure 2.4: Graphical representation of realisation 𝑟2 of the family of MCs D.

2.2 Markov Decision Processes
Markov Decision Processes (MDPs) are the first extension over Markov chains. MDPs add
an action between the state and the available transitions. Actions are performed by an
agent, a real or imaginary entity that can interact with the modeled system. The outcome
of each action is given by a probability distribution over a subset of states.

Definition 4. Markov decision processes are a tuple 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) where 𝑆 is a finite
set of states, 𝑠0 ∈ 𝑆 is the initial state, 𝐴𝑐𝑡 is a finite set of actions, and 𝒫 : 𝑆×𝐴𝑐𝑡×𝑆 →
[0, 1] is its transition function where

∑︀
𝑠′∈𝑆 𝒫(𝑠, 𝑎, 𝑠′) = 1 applies to all 𝑎 ∈ 𝐴𝑐𝑡 and 𝑠, 𝑠′ ∈ 𝑆

if action 𝑎 is available in 𝑠 (otherwise the sum is equal to 0).

In Markov decision processes, we differentiate between two types of choices – probabilis-
tic, and non-deterministic. Probabilistic choices are the outcomes of the executed actions
and they are determined by the transition function and, if the result of the transition
function is a distribution over more than one state, a random number generator. Non-
deterministic choices are the actions 𝑎 ∈ 𝐴𝑐𝑡. These are decided by an outside entity, e.g.
a controller, which is sometimes also called a scheduler or policy.

There are several ways a controller could decide which action should the agent take.
Either the controller is deterministic and the sequence of actions will always be the same,
or it can be randomised and the sequence of actions can differ between runs.

Once the action is decided, the MDP behaves just like a simple Markov chain. If the
actions are known before the run, a MDP can be transformed to a MC.

Example 2.2.1. The MDP 𝑀 will represent a baby with two states – hungry, which is
the initial state, and sated – and two actions – feed and ignore. When a caretaker feeds
a hungry baby there is a 20% chance that the baby will stay hungry and an 80% chance
that it gets sated, if they ignore the hungry baby, it stays hungry. If the caretaker feeds a
sated baby, it will stay sated. Ignoring a sated baby has a 20% chance that the baby gets
hungry. 1

Solution. In each state an agent, the caretaker, is able to perform one of the two actions
– 𝑓𝑒𝑒𝑑 the baby or 𝑖𝑔𝑛𝑜𝑟𝑒 the baby. Depending on the current state of the MDP and the

1This example was inspired by a problem described in the book Algorithms for Decision Making [11].

8

caretaker’s action (the deterministic choice) and a random chance (the non-deterministic
choice) the process either changes it’s state from hungry to sated, the other way around, or
it stays in its current state. The MDP 𝑀 is depicted in figure 2.5.

hungry sated

feed feed

ignore ignore

0.8

0.2

0.2

1

1

0.8

Figure 2.5: The MDP 𝑀 representing the baby in example 2.2.1

Choosing actions reduces the MDP to a plain Markov chain. Figure 2.6 depicts a MC
derived from the MDP in Example 2.2.1 given that the agent chooses to alternate between
the actions 𝑓𝑒𝑒𝑑 and 𝑖𝑔𝑛𝑜𝑟𝑒. Blue edges (pointing to states ℎ𝑢𝑛𝑔𝑟𝑦0 and 𝑠𝑎𝑡𝑒𝑑1) represent
transitions after ignoring the baby, red (pointing to states 𝑠𝑎𝑡𝑒𝑑0, ℎ𝑢𝑛𝑔𝑟𝑦1, and 𝑠𝑎𝑡𝑒𝑑2)
after feeding it. Note that there is no path in this MC where two edges of the same color
could be taken consecutively.

hungry0

hungry1

sated0 sated1 sated20.8 0.8
1

0.8

0.2

0.2

1

0.2

Figure 2.6: The MC derived from the MDP 𝑀 in example 2.2.1

2.3 Partially Observable Markov Decision Processes
Partially observable Markov decision processes (POMDPs) offer a way of modeling systems
with state uncertainty. In such systems the agent that interacts with it has only limited
information about the state it currently is in. The limited information about the state is
called an observation.

Compared to MDPs, in POMDPs the agent chooses to perform an action without having
full knowledge of the surrounding environment. Tools that assist agents in choosing actions
will be discussed further in the thesis.

Definition 5. Partially observable Markov decision processes (POMDPs) are defined as a
tuple ℳ = (𝑀,𝑍,𝑂) where 𝑀 = (𝑆, 𝑠0, 𝐴𝑐𝑡,𝒫) is the underlying MDP, 𝑍 is a finite set

9

of observations, and 𝑂 : 𝑆 → 𝑍 is the observation function that assigns observations to
actions.

In POMDPs, one observation, which can but does not have to be unique in the model,
is assigned to each state. An observation that is assigned to more than one state is called
potentially imperfect [11].

Example 2.3.1. Let’s take the MDP from the previous example 2.2.1 and transform it to
a POMDP by assigning each state an observation – if the baby is hungry, we observe that
it’s crying, if it’s in the sated state, we see it smiling.

Solution. This POMDP is very straightforward – each state is uniquely defined by its
observation and the caretaker – agent – can take appropriate actions to get the baby to its
desired state.

Example 2.3.2. But what happens if two more states are added between hungry and
sated? The new states are almost hungry and almost sated and if the baby is in these states
it is neither crying nor smiling, the observation is neutral.

Solution. Figure 2.7 depicts the underlying MDP. In the hungry and sated states, it is
perfectly clear which action should the caretaker take. A hungry baby must be fed while a
sated baby can be ignored. The caretaker, however, cannot distinguish between the almost
hungry and almost sated states and therefore cannot determine what action should be taken
based on the observation alone. This is state uncertainty [11].

hungry almost
hungry

almost
sated sated

feed feed feed feed

ignore ignore ignore ignore

0.2 0.8 1 1 1

1 1 1 0.2 0.8

Figure 2.7: The underlying MDP representing the four-state baby.

10

Chapter 3

Existing Methods for Controlling
POMDPs

This chapter discusses the two main approaches to state uncertainty in partially observable
Markov decision processes – the belief-based approach and controller synthesis.

Definitions in this chapter are taken over and adapted from Algorithms for Decision
Making [11] (definition 6), History-based controller design and optimization for partially
observable MDPs [12] (definition 7), and from Shepherding Hordes of Markov Chains [15]
(definitions 8, 9, 10, and 11)

3.1 Belief-Based
In each step the agent takes, a belief is calculated based on past actions and observations.
This belief is represented by a probability distribution over the underlying states of the
POMDP – the probability that the agent is currently in that state of the model [11].

The initial belief is the assumption made at the beginning. It can either be very generic
(e.g. evenly distributed between all possible states) or, if there is additional information
available at the start, it can be more specific to a subset of the states. However, making
the initial belief too specific to a certain area of the POMDP brings a considerable risk – if
the initial belief is wrong, the decisions, and as a result the whole path will be skewed [11].

After every action taken by the agent – based on the observation it receives and the
belief distribution – the belief is updated using one of the various methods such as the
discrete state filter.

Discrete State filter

If the number of states and observations in a POMDP is finite, we can use the discrete state
filter, a recursive bayesian estimation method, for calculating the belief distribution using
the current observation and the action that was taken [11].

Definition 6. In a POMDP where 𝑆 is the set of states, 𝐴𝑐𝑡 is the set of actions, and 𝑍 is
the set of observations, then 𝐵 will be the belief space where there is a belief 𝑏(𝑠) ≥ 0 for
all 𝑠 ∈ 𝑆. The sum of all 𝑏(𝑠) ∈ 𝐵 is 1.

𝑂(𝑜|𝑎, 𝑠′) is the probability of observing observation 𝑜 ∈ 𝑍 after taking action 𝑎 ∈ 𝐴𝑐𝑡
and transitioning to state 𝑠′ ∈ 𝑆. 𝑇 (𝑠′|𝑠, 𝑎) is the probability that the model transitioned
to state 𝑠′ ∈ 𝑆 after taking action 𝑎 ∈ 𝐴𝑐𝑡 in state 𝑠 ∈ 𝑆.

11

The new belief 𝑏′(𝑠′) can be the calculated as follows:

𝑏′(𝑠′) = 𝑃 (𝑠′|𝑏, 𝑎, 𝑜) (3.1)
∝ 𝑃 (𝑜|𝑏, 𝑎, 𝑠′)𝑃 (𝑠′|𝑏, 𝑎) (3.2)
= 𝑂(𝑜|𝑎, 𝑠′)𝑃 (𝑠′|𝑏, 𝑎) (3.3)

= 𝑂(𝑜|𝑎, 𝑠′)
∑︁
𝑠

𝑃 (𝑠′|𝑎, 𝑏, 𝑠)𝑃 (𝑠|𝑏, 𝑎) (3.4)

= 𝑂(𝑜|𝑎, 𝑠′)
∑︁
𝑠

𝑇 (𝑠′|𝑠, 𝑎)𝑏(𝑠) (3.5)

The more accurate the observations and transition model are, the more successful the
belief update is [11].

Example 3.1.1. Let’s go back to the four-state baby POMDP from example 2.3.2 with
states 𝑆 = {ℎ, 𝑎ℎ, 𝑎𝑠, 𝑠}1, actions 𝐴𝑐𝑡 = {𝑓𝑒𝑒𝑑, 𝑖𝑔𝑛𝑜𝑟𝑒}, and observations 𝑍 = {𝑐𝑟𝑦𝑖𝑛𝑔,
𝑛𝑒𝑢𝑡𝑟𝑎𝑙, 𝑠𝑚𝑖𝑙𝑖𝑛𝑔}. What would be the belief space after the first two steps given that the
initial belief space is an equal distribution?

Solution. Using formula 3.5 we can calculate all potential belief spaces for each state, action,
and observation.

States ℎ and 𝑠 are not imperfect and can be transitioned to as a result of both actions.
Therefore, regardless of the action the caretaker takes, the probability of observing the
observations these states are associated with (ℎ – 𝑐𝑟𝑦𝑖𝑛𝑔, 𝑠 – 𝑠𝑚𝑖𝑙𝑖𝑛𝑔) is equal to 1 and
the probability of observing the other two observations is 0. States 𝑎ℎ and 𝑎𝑠 are asso-
ciated with the same observation (𝑛𝑒𝑢𝑡𝑟𝑎𝑙) and can be transitioned to with both actions,
therefore 𝑂(𝑛𝑒𝑢𝑡𝑟𝑎𝑙|𝑎, 𝑎ℎ) = 𝑂(𝑛𝑒𝑢𝑡𝑟𝑎𝑙|𝑎, 𝑎𝑠) = 0.5 for ∀𝑎 ∈ 𝐴𝑐𝑡 and 0 for the other two
observations.

We start with an equal distribution, therefore 𝑏(ℎ) = 𝑏(𝑎ℎ) = 𝑏(𝑎𝑠) = 𝑏(𝑠) = 0.25.
Table 3.1 depicts the potential belief updates for all states, actions, and observations

after the first step.

Action feed ignore
State / Observation neutral crying smiling neutral crying smiling

𝑏′(ℎ) 0 0 0.05 1 0 0 0 0 0.50 1 0 0
𝑏′(𝑎ℎ) 0.10 0.44 0 0 0 0 0.13 0.83 0 0 0 0
𝑏′(𝑎𝑠) 0.13 0.56 0 0 0 0 0.03 0.17 0 0 0 0
𝑏′(𝑠) 0 0 0 0 0.05 1 0 0 0 0 0.25 1

Table 3.1: Potential belief updates before (left) and after normalization (right).

Table 3.1 depicts the potential belief updates for all states, actions, and observations
after the second step given that the agent chose to feed the baby and received a 𝑛𝑒𝑢𝑡𝑟𝑎𝑙
observation after that.

1ℎ = hungry, 𝑎ℎ = almost hungry, 𝑎𝑠 = almost sated, 𝑠 = sated

12

Action feed ignore
State / Observation neutral crying smiling neutral crying smiling

𝑏′(ℎ) 0 0 0 0 0 0 0 0 0.44 1 0 0
𝑏′(𝑎ℎ) 0 0 0 0 0 0 0.28 1 0 0 0 0
𝑏′(𝑎𝑠) 0.22 1 0 0 0 0 0 0 0 0 0 0
𝑏′(𝑠) 0 0 0 0 0 0 0 0 0 0 0.11 1

Table 3.2: : Potential belief updates before (left) and after normalization – 𝑏(𝑎ℎ) = 0.44,
𝑏(𝑎𝑠) = 0.56

Table 3.3 depicts the potential belief updates for all states, actions, and observations
after the seconds step if the first action taken by the agent was 𝑖𝑔𝑛𝑜𝑟𝑒.

action feed ignore
state / observation neutral crying smiling neutral crying smiling

𝑏′(ℎ) 0 0 0 0 0 0 0 0 0.83 1 0 0
𝑏′(𝑎ℎ) 0 0 0 0 0 0 0.08 1 0 0 0 0
𝑏′(𝑎𝑠) 0.42 1 0 0 0 0 0 0 0 0 0 0
𝑏′(𝑠) 0 0 0 0 0 0 0 0 0 0 0.03 1

Table 3.3: : Potential belief updates before (left) and after normalization – 𝑏(𝑎ℎ) = 0.83,
𝑏(𝑎𝑠) = 0.17

In this example, we see that it takes two steps at most for the belief state to be equal
to 1 for a particular state.

3.2 Finite-State Controller Synthesis
Unlike the belief-based approaches, which need to calculate the new belief state after every
step that the agent takes, using a controller reduces the complexity of determining the
next action during the run to what essentially is just a table lookup. The process of pro-
grammatically finding a finite-state controller for a particular POMDP is called controller
synthesis.

3.2.1 Finite-state Controllers

Definition 7. A finite-state controller (FSC) for a POMDP ℳ = (𝑀,𝑍,𝑂) (as established
in definition 5) is a tuple 𝐹 = (𝑁,𝜑, 𝜓) where𝑁 is a finite set of nodes, function 𝜑 : 𝑁 → 𝐴𝑐𝑡
assigns an action to each node, and function 𝜓 : 𝑁 × 𝑍 → 𝑁 maps the current node and
an observation to the next node.

This thesis will only consider deterministic finite-state controllers where the current
node and the received observation determine the one next node. Stochastic FSCs which
define the next node as a distribution over a subset of nodes will not be considered or
discussed.

The process of controlling a agent’s interactions with a POMDP using a FSC (also
depicted by figure 3.1) has three basic phases that continuously repeat:

13

1. The agent receives an observation 𝑧 ∈ 𝑍 from a POMDP ℳ and relays this informa-
tion to the controller 𝐹 .

2. The controller transitions to a new node 𝑛𝑖+1 based on the current node 𝑛𝑖 and the
observation 𝑧 it received. The new node 𝑛𝑖+1 determines the action 𝑎.

3. Agent performs the action which causes the POMDP to transition to the next state
with the next observation.

POMDP agent FSC
observation observation

action action

Figure 3.1: The process of controlling a POMDP with a FSC.

Example 3.2.1. POMDP ℳ is defined by a set of states 𝑆 = {𝑠0, 𝑠1, 𝑠2, 𝑠3} where in
each state there are two possible actions (𝑎0 and 𝑎1) which both cause a transition to
one different state. Finite-state controller 𝐹 has two nodes 𝑁 = {𝑛0, 𝑛1}, node-to-action

mapping 𝜑(𝑛0) = 𝑎0, 𝜑(𝑛1) = 𝑎1, and 𝜓(𝑛0,1) =
{︃
𝑛1 if 𝑧0
𝑛0 if 𝑧1

defines the controller transitions

based on the received observation. 𝑠0 and 𝑛0 are the starting state and node. FSC 𝐹 controls
the POMDP ℳ and both are depicted in figure 3.2. How does the path an agent takes in
this POMDP change based on how observations 𝑧0 and 𝑧1 are assigned to states 𝑠0, 𝑠1, 𝑠2,
and 𝑠3?

𝑛0 𝑛1

𝑧0

𝑧1

𝑧1 𝑧0

𝑠0

𝑠1

𝑠2

𝑠3

𝑎0 𝑎0 𝑎0 𝑎0

𝑎1

𝑎1

𝑎1

𝑎1

Figure 3.2: Finite-state controller 𝐹 (left), POMDP ℳ (right)

Solution. Depending on the observation assignment to the states, the agent navigating
POMDP ℳ controlled by the FSC 𝐹 will behave in one of the following ways:

1. If 𝑂(𝑠0) = 𝑂(𝑠3) = 0 and 𝑂(𝑠1) = 𝑂(𝑠2) = 1 results in the agent traveling in an anti-
clockwise circle 𝑠0𝑠1𝑠2𝑠3𝑠0...; if 𝑂(𝑠0) = 𝑂(𝑠3) = 1 and 𝑂(𝑠1) = 𝑂(𝑠2) = 0 the agent
will travel in a clock wise circle 𝑠0𝑠3𝑠2𝑠1𝑠0.... In both cases, the controller alternates
between both nodes.

14

2. If 𝑂(𝑠0) = 𝑂(𝑠3) = 0 or 𝑂(𝑠0) = 𝑂(𝑠1) = 1 – the agent will oscillate between the two
states (𝑠0 and 𝑠3 or 𝑠0 and 𝑠1) with the FSC ending up in node 𝑛0 for observation 𝑧1
or 𝑛1 or observation 𝑧0, observations in the remaining two states are not important
as the agent will never visit them.

3. If 𝑂(𝑠0) = 1 and 𝑂(𝑠1) = 𝑂(𝑠2) = 0 or if 𝑂(𝑠0) = 0 and 𝑂(𝑠2) = 𝑂(𝑠3) = 1 (the
observation in the fourth state is not important) – after the first step away from 𝑠0,
the agent alternates between the other two states each step.

4. If 𝑂(𝑠0) = 𝑂(𝑠1) = 𝑂(𝑠2) = 0 and 𝑂(𝑠3) = 1 or if 𝑂(𝑠0) = 𝑂(𝑠2) = 𝑂(𝑠3) = 1 and
𝑂(𝑠2) = 0 – in this case the agent takes two steps before it starts alternating between
states 𝑠3 and 𝑠1 or states 𝑠3 and 𝑠2.

History-Based Controllers

History-based controllers add more meaning to their controller nodes other than just the
corresponding action [12]. FSCs with memory nodes a type of such controllers [1].

3.2.2 Controller Synthesis

If a finite-state controller can be modeled as a Markov chain, then a number of FSCs with
the same set of nodes can be modeled as a family of MCs. In this section I present two of
the existing synthesis methods for finite-state controllers.

Abstraction Refinement

Abstraction refinement (AR) is a method for evaluating large families of MCs and finding
realisations that satisfy a certain specification introduced by Češka et. al in Shepherding
Hordes of Markov Chains [15]. The specification (𝜙) in question is a quantitative property
(e.g. reachability probability or expected reward acquired by visiting certain states) usually
accompanied by a threshold (𝜆).

To determine which realisations of a MC family satisfy the specification and to avoid
having to examine each realisation separately (which is ineffective), the AR approach first
transforms the MC family into what is called an all-in-one MDP and then abstracts that
into a more compact model called quotient MDP. A model checker such as Storm (further
described in A Storm is Coming: A Modern Probabilistic Model Checker [6]) is then used
to evaluate the quotient MDP by obtaining the values of 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥, under- and over-
approximations of the model checking results, and comparing them to the threshold. Based
on this information it can be determined whether all of the realisations encompassed in this
quotient MDP satisfy 𝜙, violate 𝜙, or whether the family needs to be split into subfamilies
which are then reexamined separately.

Definition 8. The all-in-one MDP of a Markov chain family D = (𝑆, 𝑠0,𝐾,P) is defined
as 𝑀D = (𝑆D, 𝑠D0 , 𝐴𝑐𝑡

D,𝒫D) where 𝑆D = 𝑆 × ℛ
⋃︀
{𝑠D0 } is the set of states, 𝐴𝑐𝑡D =

{𝑎𝑟|𝑟 ∈ ℛD} is the set of actions, and 𝒫D(𝑠D0 , 𝑎
𝑟)((𝑠0, 𝑟)) = 1 and 𝒫D((𝑠, 𝑟), 𝑎𝑟)((𝑠′, 𝑟)) =

P(𝑟)(𝑠)(𝑠′) is the transition function.

Depicted in figure 3.3 is an example of a Markov chain family with one parameter 𝑎
with the domain 𝑇𝑎 = {𝑠1, 𝑠2} and transition probabilities 𝑃 (𝑠0) = 𝑎, 𝑃 (𝑠1) = 0.5𝑠0+0.5𝑎,
𝑃 (𝑠2) = 𝑠1. (Transition probabilities are not included for the sake of readability.) This

15

family of MCs will be used as the basis for the subsequent demonstrations of the all-in-one
and quotient MDPs.

𝑠0 𝑠1 𝑠2𝑎 𝑎

Figure 3.3: A MC family with parameter 𝑎.

Figure 3.4 depicts the all-in-one MDP constructed from realisations 𝑟1(𝑎) = 𝑠1 and
𝑟2(𝑎) = 𝑠2. The action taken in the initial state 𝑠D0 decides in which realisation the model
operates thereafter and the states are labeled in such a way that it is possible to determine
the corresponding realisation. Model checking this MDP yields information about all its
states and therefore about all the realisations it encompasses, but for bigger MC families
the all-in-one MDP can be too large to examine.

𝑠D0

(𝑠0, 𝑟1) (𝑠1, 𝑟1) (𝑠2, 𝑟1)

(𝑠0, 𝑟2) (𝑠1, 𝑟2) (𝑠2, 𝑟2)

𝑎𝑟1 𝑎𝑟1
𝑎𝑟1

𝑎𝑟2 𝑎𝑟2

𝑎𝑟2

Figure 3.4: An all-in-one MDP that encompasses realisations 𝑟1 and 𝑟2.

A quotient MDP is a more compact model that is created by abstracting the realisation
part from the state labels in the all-in-one MDP and therefore forgetting in which realisation
it operates. Model checking this MDP also yields information about all is states and the
realisations it encompasses.

Definition 9. Forgetting is an equivalence relation ∼𝑓⊆ 𝑆D × 𝑆D that satisfies (𝑠, 𝑟) ∼𝑓

(𝑠′, 𝑟′) ⇐⇒ 𝑠 = 𝑠′ and 𝑠D0 ∼𝑓 (𝑠D0 , 𝑟)∀𝑟 ∈ ℛ. Forgetting induces the quotient MDP
𝑀D

∼ = (𝑆D
∼ , [𝑠

D
0]∼, 𝐴𝑐𝑡

D,𝒫D
∼), where 𝒫D

∼ ([𝑠]∼, 𝑎𝑟)([𝑠
′]∼) = P(𝑟)(𝑠)(𝑠′).

𝑠D0 ([𝑠0]∼) [𝑠1]∼ [𝑠2]∼𝑎𝑟1

𝑎𝑟1𝑎𝑟1
𝑎𝑟2

𝑎𝑟2𝑎𝑟2

Figure 3.5: An abstraction over the all-in-one MDP depicted in 3.4 creates a quotiend MDP.

Definition 10. Splitting – D is a family of MCs, ℛ ⊆ ℛD is a set of realisations. For
𝑘 ∈ 𝐾 and predicate 𝐴𝑘 over 𝑆, splitting partitions ℛ into

ℛ⊤ = {𝑟 ∈ ℛ|𝐴𝑘(𝑟(𝑘))} and ℛ⊥ = {𝑟 ∈ ℛ|𝑘(𝑟(𝑘))}.

16

Definition 11. Restricting – 𝑀D
∼ = (𝑆D

∼ , [𝑠
d
0]∼, 𝐴𝑐𝑡

F,𝒫D
∼) is the quotient MDP and ℛ ⊆

ℛD a set of realisations. The restriction of 𝑀D
∼ with regards to ℛD is the MDP 𝑀R

∼ [ℛ] =
(𝑆D

∼ , [𝑠
d
0]∼, 𝐴𝑐𝑡

D[ℛ],𝒫D
∼) where 𝐴𝑐𝑡D[ℛ] = {𝑎𝑟|𝑟 ∈ ℛ}.

By splitting the set of realisations into two subsets and then restricting the quotient
MDP using the subsets, we acquire two new quotient MDPs. Figure 3.6 depicts a smaller
quotient MDP created by restricting the quotient MDP from figure 3.5 with the subset
{𝑟1} ⊂ ℛD.

𝑠D0 ([𝑠0]∼) [𝑠1]∼ [𝑠2]∼𝑎𝑟1

𝑎𝑟1𝑎𝑟1

Figure 3.6: Restricted quotient MDP.

Threshold synthesis, as described in Shepherding Hordes of Markov Chains [15], is the
part of the AR method that is tasked with partitioning realisations of a MC family into
two subsets – one in which all realisations satisfy 𝜙 and one in which all realisations violate
it.

The process starts with 𝑈 , a set of sets of realisations that have not been examined
yet, and the initial quotient MDP 𝑀D

∼ . In the first step of the synthesis loop a set of
realisations ℛ is selected from 𝑈 and the quotient MDP is restricted with regards to ℛ.
Next a model checker is used to obtain the under- and over-approximations 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥

of the probabilities or rewards for the given specification 𝜙. Based on these, the algorithm
can decide in which category the set of realisations belongs.

If 𝑝𝑚𝑎𝑥 ≤ 𝜆, then all realisations satisfy 𝜙, if 𝑝𝑚𝑖𝑛 > 𝜆, then no realisation in the set
satisfies 𝜙, and if 𝑝𝑚𝑖𝑛 ≤ 𝜆 < 𝑝𝑚𝑎𝑥 then it cannot be decided and the ℛ needs to be split
and the new sets of realisations are added to 𝑈 .

The algorithm repeats until 𝑈 is empty.

Optimum synthesis is a similar algorithm that is used to find the one realisation that best
satisfies the specification. Like threshold synthesis it starts with a set of sets of realizations
𝑈 , a quotient MDP 𝑀D

∼ , and a variable 𝑚𝑎𝑥 that holds the current optimal value.
Again, the synthesis process takes the sets of realisations from 𝑈 and uses them to

restrict the quotient MDP 𝑀D
∼ which is then examined by the model checker to determine

values 𝑝𝑚𝑖𝑛, 𝑝𝑚𝑎𝑥 and the corresponding scheduler.
If 𝑝𝑚𝑎𝑥 < 𝑚𝑎𝑥 then the realisation is disregarded as there have already been more

optimal schedulers. Otherwise, it checks if the synthesized scheduler is consistent, in that
case it updates the values of 𝑚𝑎𝑥 and marks this scheduler as optimal for the time being. If
the scheduler is not consistent the algorithm further checks if 𝑝𝑚𝑖𝑛 > 𝑚𝑎𝑥 and if that is the
case, the value of 𝑚𝑎𝑥 is still updated to 𝑝𝑚𝑖𝑛. In any way, if the scheduler is determined
not consistent, the realisation ℛ is split according to an appropriate predicate and both
sets are added to 𝑈 [15].

Counterexample-Guided Inductive Synthesis

Counterexample-guided inductive synthesis (CEGIS), introduced in Inductive Synthesis for
Probabilistic Programs Reaches New Horizons by Andriushchenko et. al. [2], is a different

17

method for examining families of Markov chains and finding realisations that satisfy a given
specification.

There are two figurative parts to this method – a learner and an oracle. The learner
maintains 𝒬, a set of realisations of the family of MCs that are to be checked. At the start
of the process, the learner selects a realisation 𝑟 ∈ 𝒬 and passes it to the oracle. The oracle
verifies the realisation with respect to the specification 𝜙 and determines whether 𝑟 |= 𝜙.

Counterexamples are derived from realisations that have been verified, and rejected.
Based on these, other realisations in 𝒬 that would also violate the specification are rejected
by the learner and do not need to be verified by the model checker.

Figure 3.7 depicts the synthesis process and the figurative communications between the
learner and the oracle.

learner oracle 𝑟 |= 𝜙

ℛ′ ℛ′

𝑟 𝑟

𝒬 ⊆ ℛ

Figure 3.7: Graphical representation of the CEGIS synthesis method

18

Chapter 4

PAYNT – Probabilistic progrAm
sYNThesizer

PAYNT, the Probabilistic progrAm sYNThesizer, is a Python program by Andriushchenko
et al. introduced in PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs [3]
and its purpose originally, as the name suggests, was to synthesize solutions to probabilistic
programs.

4.1 PAYNT for probabilistic programs
Probabilistic programs provide a formal way to describe systems that deal with some kind
of uncertainty [5]. A sketch models a family of probability programs using the PRISM
language. Among these programs, PAYNT searches for the one that best satisfies the
given specification (usually reachability property or expected reward) and synthesis problem
(minimization or maximization).

Sketches define all states, transitions and actions of the program. They also contain
undefined parameters called holes. “Filling” the holes with options from specified domains
creates realisations that can be verified against the specification using the model checking
tool Storm [6].

The challenge here is to evaluate all possible realisations in a timely manner. Because
number of realisations grows exponentially with the number of holes, the simple synthesis
method one-by-one quickly becomes too slow. For these purposes, PAYNT implements the
synthesis methods from the previous chapter 3 – AR and CEGIS, and their combination
called Hybrid.

4.2 PAYNT for POMDPs
For Inductive Synthesis of Finite-State Controllers for POMDPs [1], PAYNT was adapted
to be able to synthesize deterministic finite-state controllers for POMDPs.

In this case, there are no holes in the input sketch, instead it represents the POMDP
for which PAYNT is trying to find the optimal controller. The sketch defines all states,
actions, transition functions, and observations of the POMDP.

There are two figurative parts to the controller synthesis process: the outer stage –
where the design space of a set memory size is created – and the inner stage – where the
design space is explored [1].

19

The design space represents all possible FSCs that PAYNT has to consider. Memory
size defines how many different memory values should the final FSC have. In the initial
design space, all actions and observations are available in all memory value nodes.

For design space exploration in the inner stage, PAYNT again uses one of the imple-
mented synthesis methods (e.g. AR) to find the optimal controller in the design space.

4.2.1 Design Space

In the program, the design space is represented by a list of Holes, Python classes, with
properties such as name, options, and option_labels.

Hole names are strings that encode the memory values of the FSCs, as well as the
observations that are received by the agent from the POMDP. They have a set structure
of "T([O], M)", where T defines the hole type – either A for action, M for memory, or AM
for the combination of both action and memory – O stands for the observation which is
represented by a string, and M is the numerical memory value of the node.

The Hole options instance attribute is a list of integers that represent a certain possi-
bility of what could happen next if the received observation is as defined in the hole name.
Depending on the hole type, that could be the action that should be taken, a memory
update, or a combination of both.

The hole option_labels attribute provides further information about the options that
are human readable. Each hole option has a option_label that describes it.

4.2.2 Iterative Strategy

PAYNT can continuously increase the memory size and search for finite-state controllers
in an increasingly larger design space.By keeping the current optimum values this strategy
ensures that only FSCs that improve this optimum are accepted in the synthesis process.
This strategy will be referred to as the iterative approach.

With this strategy, PAYNT is guaranteed to find the best available FSC for each memory
size, however as it increases, the design space also grows in size and the synthesis takes
longer.

4.2.3 Memory Injection Strategy

Andriushchenko et al. in [1] introduce a strategy for finding compact FSCs by using infor-
mation from the previous inner state loop for adding memory values to selected observations
and then removing symmetries to reduce the design space size and remove FSCs with the
same value.

In this thesis, this strategy will be referred to as the memory injection or just injection
approach.

20

Chapter 5

Contributions to PAYNT

In this chapter, I describe my contributions to PAYNT – their objective, design and imple-
mentation.

5.1 Graphical FSC Representation
So far, the finite-state controller output by PAYNT was always in a text format. While
this format is human readable, it is difficult to get an understanding of how the controller
is shaped or how the transitions between nodes work. Therefore, my first contribution to
PAYNT was to figure out a way to programmatically output a graphical representation of
the synthesised controllers (or generally any design spaces).

5.1.1 Implementation

For visualizing the controllers, I chose to use PyGraphviz [8], an open-source Python inter-
face for drawing graphs build on the Graphviz [7] visualization software.

In the code, the design space is stored in a list of Holes, nodes in the controllers. The
class variable Hole.name encodes the current memory value and incoming observation,
Hole.options holds a list of integers that identify the node that could be transitioned to,
and Hole.option_labels provides further information about the next node and possibly
the action that the agent is supposed to take.

For determining the memory value from the Hole.name, I implemented a short function
that uses a regular expression to match the memory value inside the hole name:

def get_current_memory(name):
return int(re.findall(r"[AM]{1,2}\(\[.*\],(\d+)\)", name)[0])

A similar function matches the observation inside the hole name:

def get_current_observation(name):
return re.findall(r"[AM]{1,2}\(\[(.*)],\d+\)", name)

Because in some cases the observation is an empty string and the list returned by
the findall() function would be empty, I cannot return the first element like in the

21

get_current_memory() function. Instead, I chose to return the list itself and let it be
addressed in a way that is appropriate for the context in which this function was called.

Next are the hole options. In case of pure action or memory type holes, the hole options
do not need any special treatment and can be used as they are. But in case of the hole type
which combines action and memory together, the hole options do not match the memory
value and instead the memory value needs to be parsed from the corresponding option label.
This was implemented in the following function:

def parse_am_labels(hole):
options = []
for option in hole.options:

opt = re.findall(r"{.*}\+(\d+)", hole.option_labels[option])[0]
options.append(int(opt))

max = None if not options else sorted(list(set(options)))[-1]
return (options, max)

In the end, I transform the parsed data into a nested dictionary in this format – the
memory values, nodes, are the keys in this dictionary:

{
start_node: {

end_node1: [observation1, observation3],
end_node2: [observation2]

},
end_node2: [...],
...

}

This allows to then iterate over this dictionary and add nodes and edges to the Py-
Graphviz AGraph object using methods AGraph.add_nodes_from and add_edge.

The final graph is then output in the form of a PNG image to a specified file. For
examples of these images, see appendix A.

5.2 Limiting Design Space
With no additional logic, the design space from which PAYNT synthesizes the optimal finite-
state controller contains all possible combinations of memory values, observations, actions
and transitions. When the memory size is increased, the design space size also increases
and so does the synthesis duration. If only certain transitions were allowed, it could reduce
the synthesis time and allow finding controllers with memory sizes that otherwise might
have been unobtainable in a reasonable time.

5.2.1 Implementation

For restricting the design space, I implemented the set_memory function which takes the
design space, memory size, a condition function, and further function arguments to control
the behaviour of the function – rewrite and restrict. The condition function can be any

22

function that takes three numerical arguments that represent the current memory value,
the next memory value, and the maximum (max) memory value and returns a boolean.

This function iterates over all of the holes in the design space and extracts the current
memory value from the hole name using the get_current_memory function described in
section 5.1. Then, new options are constructed based on the current memory, memory size
and the condition function:

new_options = [next for next in hole.options
if not condition(current, next, mem_size-1)] if restrict
else [next for next in range(mem_size) if
condition(current, next, mem_size-1)

The restrict parameter controls whether the new options come from a generated range
of numbers that are selected if the condition evaluates true (restrict == False) or if the
new options are based on the existing options while removing those that pass the condition
function (restrict == True).

If the hole is of type memory, the new options are added to (if rewrite == False) or
replace the hole options. For mixed type holes, the new options which represent memory
values need to be mapped to observation labels and the hole options then are extended or
replaced with matching indexes of these observation labels.

The restrictions do not take actions or observations into account.

5.2.2 Restrictions

Because the number of possible restriction conditions is next to infinite, I have had to decide
which restriction conditions to explore in this thesis. Or rather which formats of design
spaces should PAYNT examine to synthesize the optimal FSC. For that, I have set myself
the following conditions:

1. All nodes of the design space must be reachable from the initial node 0. Restricting
the design space to be equal to a design space achievable with a smaller memory size
is not desirable.

2. A valid FSC with at least one reachable absorbing state must be synthesizable from
the restricted design space.

3. Transitions are only allowed between memory states equal, differing by one, or from
smallest to largest and vice versa. This condition is due to personal choice of the
FSCs I wanted to focus on.

Using different condition functions and parameters, the set_memory function is able to
shape the design space to one of the following forms.

Forward

The Forward restriction produces the smallest possible design space that can still result
in a valid controller. It is constructed by first clearing, emptying the design space using
a condition function that always evaluates to False and allowing rewrite and then adding
holes that pass the condition function __forward. The conditions allows transitions from

23

nodes with memory values 𝑥𝑖 to nodes with memory values 𝑥𝑖+1 or from 𝑥𝑚𝑎𝑥 to 𝑥𝑚𝑎𝑥.
A graphical representation of the nodes and available transitions is shown in figure 5.1.

def __forward(self, current, next, max):
return current + 1 == next or (current == max and next == max)

0 1 2 3

Figure 5.1: Restriction Forward

One step

The restriction One step builds on the design space previously constructed using the For-
ward restriction. Using the set_memory function with the following condition __backward
it adds transitions from nodes with memory values 𝑥𝑖 to nodes with memory values 𝑥𝑖−1

or from 𝑥0 to 𝑥0. The resulting design space can be seen in figure 5.2.

def __backward(self, current, next, _):
return current - 1 == next or (current == 0 and next == 0)

0 1 2 3

Figure 5.2: Restriction One step

Backward

To create the restriction Backward, the condition function __self_loops is used to remove
transitions from the first and last nodes to themselves on a design space already restricted
by the One step restriction.

def __self_loops(self, current, next, _):
return current == next

A graphical representation of the resulting design space can be seen in figure 5.3.

0 1 2 3

Figure 5.3: Restriction Backward

24

Simple circle

The restricted design space Simple circle is constructed using the __simple_circle con-
dition function which only allows transitions from nodes with memory values 𝑥𝑖 to 𝑥𝑖+1 or
from 𝑥𝑚𝑎𝑥 to 𝑥0. Figure 5.4 depicts a schema of the resulting design space.

def __simple_circle(self, current, next, max):
return (current + 1 == next) or (current == max and next == 0)

0 1

23

Figure 5.4: Restriction Simple circle

Circle both ways

The Circle both ways restriction builds on a Simple circle design space and adds transi-
tions from nodes with memory values 𝑥𝑖 to 𝑥𝑖−1 and from 𝑥0 to 𝑥𝑚𝑎𝑥 using the function
__simple_circle_backward. See figure 5.5 for a graphical schema of the resulting design
space.

def __simple_circle_backward(self, current, next, max):
return (current - 1 == next) or (current == 0 and next == max)

0 1

23

Figure 5.5: Restriction Circle both ways

Circle both ways with loops

Restriction Circle both ways with loops results in the biggest design space and it is con-
structed similarly to how Backwards is constructed from One step. Only this time, instead
of using the __self_loops function to remove transitions from nodes with memory values

25

𝑥0 to 𝑥0 and from 𝑥𝑚𝑎𝑥 to 𝑥𝑚𝑎𝑥, it is used to add them. The design space that results from
this restriction is depicted in figure 5.6.

0 1

23

Figure 5.6: Restriction Circle both ways with loops

5.3 Incremental Memory Setting
The next step was to use the newly implemented way of restricting the design space to try
to continuously synthesize FSCs from an increasingly larger design space. This includes
using different restrictions as well as increasing the memory size.

5.3.1 Implementation

A new SynthesizerPOMDPIncremental class inherits from SynthesizerPOMDP. It uses Syn-
thesizerPOMDPs initialization method and then sets three additional instance attributes
– memory_size to set the initial memory size, max_size to set the maximum memory size
that PAYNT should attempt to synthesize FSCs with, and reset_optimum to allow or
prohibit resetting Sketch.specification.optimality.optimum to None. If this variable
is not reset to None, it allows the synthesis loop to reject controllers that fall bellow this
value faster.

In the run method of the SynthesizerPOMDPIncremental class, the memory_size and
max_size attributes will be used in the synthesis loop. PAYNT will synthesize finite-state
controllers until the gradually incremented memory_size attribute is equal to max_size. If
the parameter max_size is set lower than the min_size parameter, the synthesis will run
in an infinite loop.

For each memory size, the new memory size has to be set using the PomdpManager of
the quotient attribute of the sketch and the memory then has to be unfolded – the design
space is reset.

For each memory size, PAYNT then runs a sequence of restrictions, after each of those, it
evaluates the design space size and (if it’s greater than zero) PAYNT attempts to synthesise
a finite-state controller. With the AR method of synthesis, the synthesizer only returns a
FSC if it’s able to find one with a better optimality value than previously.

26

Chapter 6

Evaluation

In this chapter I will evaluate the incremental memory setting approach against the baseline
– iterative approach – and the memory injection approach; and I will compare these methods
with regards to synthesis time, memory sizes, and calculated optimums.

6.1 Benchmarks and Experiment Conditions
The methods will be evaluated against two types of examples – Grid and Maze – and their
variations Grid Avoid, Grid Center, and Maze Long.

All experiments run consecutively on an Acer TravelMate X laptop with an Intel®
Core™ i5-8250U CPU @ 1.60GHz × 8 processor. For each benchmark, each approach was
run for 30 minutes using the AR synthesis method.

6.1.1 Grid

The Grid is a simple example where a robot – agent – navigates in a 4x4 grid. The robot
is able to move in directions north, east, south, and west. In case the robot is standing on
the border of the grid and wants to take an action which would essentially lead out of the
grid, the robot’s action fails and it stays in the current field. The objective for the robot is
to navigate to a set target field while avoiding potential bad fields.

The agent is placed in a random field in the grid with the target and bad fields not being
among the options.

Each action the robot takes has a 90% chance of being successful. In the remaining
10%, the robot does not move and stays in its current field.

Grid Avoid

Grid Avoid, as depicted in figure 6.1a, has the target field 𝑇 on coordinates (𝑥 = 0, 𝑦 = 3)
and a bad field 𝐵 on coordinates (𝑥 = 1, 𝑦 = 1) which the robot must try to avoid.

In each field, the robot receives robot receives one of four observations (0 – the initial
field, 1 – any field inside the grid, 2 – the target field, and 3 – the bad field).

The robot receives a perfect observation on this field with the value of 3.
The quality of the controller is measured by the probability of the robot reaching the

target field and not reaching the bad field.

27

Grid Center

The Grid Center variation of the example (shown in figure 6.1b) moves the target field 𝑇
to coordinates (𝑥 = 2, 𝑦 = 2).

What makes this challenge more difficult is that the robot now must take all of the four
available actions north, east, south, and west to get to the target state. As opposed to the
previous benchmarks where actions south and east were sufficient.

The quality of the controller is again measured by the probability of the robot reaching
one of the end fields 𝑇 and 𝐵.

𝐵

𝑇

3

2

1

0

0 1 2 3𝑥
𝑦

(a) Grid Avoid

𝑇

𝐵

3

2

1

0

0 1 2 3𝑥
𝑦

(b) Grid Center

Figure 6.1: Schemas of the Grid benchmarks with descriptive axes. 𝑇 – target field, 𝐵 –
bad field

6.1.2 Maze

The Maze is a simple example used by Andriushchenko et al. in [1].
It again uses a robot that can go up, down, left, and right as its agent. This robot is not

completely reliable, it is only successful in 80% of cases. For each action the robot tries to
perform, there is a 16% chance that it ends up going in one of the perpendicular directions
(8% chance for each of them) and a 4% chance that it will actually go in the exact opposite
direction to where it intended to go.

Regardless of the success of the robot’s action, if the nature of the field does not allow
the robot to move in that direction, the robot does not move at all and remains in its
original field.

The observation in each field is consistent with the possible ways a robot could move
from that field – e.g. a fields that allows the agent to move up and down but not left or
right receive the same observation, it our case represented by the number 4. In this maze,
there are seven different observations that the robot could receive. Figure 6.2 depicts the
Maze and its fields with their corresponding observations.

The quality of the controller is measured by how many steps the robot needs to get to
the target state 𝑇 . Initially, robot is placed randomly in one of the fourteen fields.

28

𝐵 𝑇 𝐵

3

2

1

0

0 1 2 3 4𝑥
𝑦

(a) Maze schema showcasing the target
state 𝑇 and bad states 𝐵.

0 1 2 1 3

4 4 4

4 4 4

5 6 5

3

2

1

0

0 1 2 3 4𝑥
𝑦

(b) Maze schema showcasing the differ-
ent observations received in each field

Figure 6.2: Two schemas of the Maze example with descriptive axes.

For observation 0, 2, 3, and 5, the action that needs to be taken for the robot to get to
the Target field in the least amount of steps is very clear – observation 0 means that the
robot will want to go right, observation 3 means the robot must try to go left. In observation
4 and 1, however, depending on the particular field, there are two correct actions.

Maze Long

Maze Long is a variant of the example described in the previous section. It extends the
maze to both sides and increases the number of fields with the critical observations 1 and 4
and also makes the observation 2 no longer automatically associated with the action down.
A schema of this example is depicted in figure 6.3.

The agent is, too, initially placed in a random field and its objective is to get to the
target field in as little steps as possible.

𝐵 𝐵 𝑇 𝐵 𝐵

3

2

1

0

0 1 2 3 4 5 6 7 8𝑥
𝑦

(a) Maze Long schema showcasing the target state 𝑇 and bad states 𝐵.

29

0 1 2 1 2 1 2 1 3

4 4 4 4 4

4 4 4 4 4

5 5 6 5 5

3

2

1

0

0 1 2 3 4 5 6 7 8𝑥
𝑦

(b) Maze Long schema showcasing the different observations in each field.

Figure 6.3: Two schemas of the Maze Long example with descriptive axes.

6.2 Evaluations

6.2.1 Limiting Design Space

In this section I explore the results of controller synthesis for two different benchmarks –
Grid Avoid and Maze – with and without restrictions.

Grid Avoid

Let’s take the Grid Avoid example as the benchmark and compare the results of synthesis
between the full design spaces and design spaces restricted using different conditions.

As described in section 6.1.1, this benchmark measures the optimality of the controllers
by the probability that the robot will be able to get to the target state 𝑇 while not landing
on the bad state 𝐵. The higher and closer to 1 is the Optimum value, the better is the
controller.

Table 6.1 shows the optimum values of controllers acquired by exploring variously re-
stricted design spaces with memory sizes 3-5 and how long PAYNT took to synthesize those
controllers.

In this example, PAYNT is able to find a controller in each of the various design spaces.
However, the controller quality can be vastly different depending on the applied restriction.
Some restrictions (e.g. Simple circle) are able to find controllers of the same quality as the
unrestricted design space and do that in a fraction of the time, while other restrictions (e.g.
Forward) produce controllers of inferior quality.

The restriction predicates Circle both ways and Circle both ways with loops restrict to
unnecessarily large design spaces, Simple circle is sufficient enough in this case.

30

Restriction Memory size Optimum Synthesis duration [s]
None 3.0 0.892274 0.353155
Backward 3.0 0.846731 0.027576
Circle both ways 3.0 0.892273 0.151318
Circle both ways with loops 1 3.0 0.892274 0.369734
Forward 3.0 0.385714 0.003453
One step 3.0 0.880092 0.100280
Simple circle 3.0 0.892274 0.034246
None 4.0 0.911625 12.525107
Backward 4.0 0.880092 0.059986
Circle both ways 4.0 0.911625 0.917087
Circle both ways with loops 4.0 0.911625 3.379023
Forward 4.0 0.531429 0.004257
One step 4.0 0.902882 0.485129
Simple circle 4.0 0.911625 0.105396
None 5.0 0.920518 561.828769
Backward 5.0 0.902882 0.621761
Circle both ways 5.0 0.920518 4.734108
Circle both ways with loops 5.0 0.920518 29.257244
Forward 5.0 0.666857 0.048645
One step 5.0 0.915777 1.683551
Simple circle 5.0 0.920518 0.276828

Table 6.1: Results of FSC synthesis for the Grid Avoid example using different design space
restrictions.

Figure 6.4 depicts the baseline FSC (6.4a) and the inferior FSC synthesized using the
Forward restriction (6.4b) on design space with memory size 3 with their nodes and actions.
The figures do not depict observations because actions upon receiving observations other
than 1 do not need to be considered.

0

1

2

south
east

east
(a) FSC synthesized from a non-
restricted design space

0 1 2
east east

south

(b) FSC synthesized from a design space
restricted using the Forwards predicate

Figure 6.4: FSC controllers with memory size 3 synthesized for the Grid Avoid benchmark

Figure 6.5 depicts the paths of two robots controlled by different FSCs starting in the
field with coordinates (0, 3).

1It is important to note that by its nature, this predicate does not restrict the design space for memory
size 3.

31

The red robot, controlled by FSC depicted in 6.4a takes a path 𝜔 = (0, 3), (0, 2), (1, 2),
(2, 2), (2, 1), (3, 1), (3, 1), (3, 0), given that it does not “slip” at any point in time and all
its actions are successful.

The path taken by the blue robot controlled by the FSC depicted in 6.4b is 𝜔 = (0, 3),
(1, 3), (2, 3), (2, 2), (1, 2), (0, 2), (0, 2),... With that initial state, this controller is not able
to navigate its robot to the target field. In fact, a robot controlled by this FSC will not
reach the target field 𝑇 if the starting field is on with coordinate 𝑥 = 0. This is why it has
a low optimality value of 0.385714.

𝐵

𝑇

3

2

1

0

0 1 2 3𝑥
𝑦

Figure 6.5: Path of the robots controlled by FSC depicted in 6.4a (red) and FSC depicted
in 6.4b (blue)

Finite-state controllers depicted in figure 6.6 are the results of synthesis from a non-
restricted design space with memory size 4 (6.6a) and a design space with the same memory
size restricted using the Simple circle restriction (6.6b). These controllers have the same
optimum value of 0.911625.

0 1

23

east

south

east

east

(a) FSC synthesized from a non-
restricted design space

0 1

23

south

east

east

east

(b) FSC synthesized from a design space
restricted using the Simple circle predi-
cate

Figure 6.6: FSC controllers with memory size 4 synthesized for the Grid Avoid benchmark

Gray edges in 6.6a represent transitions upon receiving observations 0, 2, or 3. Obser-
vation 0 – outside of grid – is never received and observations 2, and 3 are not followed
up by any action. Still, these transitions are a part of the controller, even if they do not
influence the robot in any way on its path, and they have to be accounted for in the design
space.

32

The time it takes PAYNT to synthesize a controller depends directly on the design space
size. By applying a suitable restriction – in this case Simple circle is the best possible one,
the optimal controller can be found 10 times faster (for memory size 3), 119 times faster
(memory size 4), or even 2030 times faster (memory size 5).

Maze

The restrictions are less successful in the Maze example. Table 6.2 compares the synthesis
results of synthesis applying different restrictions to the design spaces with memory sizes
3 and 4. In this example, the controllers with the lower optimum values are the ones with
the better quality.

Restriction Memory size Optimum Synthesis duration [s]
None 3.0 7.372105 16.960565
Backward 3.0 18.130855 1.271142
Circle both ways 3.0 16.277350 14.701138
Circle both ways with loops 3.0 7.372105 17.415230
Forward 3.0 71.266286 0.098195
One step 3.0 7.508047 4.559242
Simple circle 3.0 31.513882 0.663473
None 4.0 – –
Backward 4.0 8.045141 0.702702
Circle both ways 4.0 7.552089 14.782590
Circle both ways with loops 4.0 7.372105 610.167898
Forward 4.0 67.010889 1.619117
One step 4.0 7.372105 62.611899
Simple circle 4.0 15.754049 2.317472

Table 6.2: Results of FSC synthesis for the Maze example using different design space
restrictions

In this case, the FSCs synthesized by applying restrictions Circle both ways with loops
(for memory size 3) and One step (for memory size 4) are the only controllers on-par with
the best found FSC which was synthesized from the unrestricted design space with memory
size 3.

However, just as with the previous benchmark, the Circle both ways with loops restriction
does not restrict the design space for memory size 3 at all. Furthermore, synthesis from the
memory size 4 design space that had the restriction One step applied takes 3.7 times longer
than synthesis of the unrestricted design space with memory size 3 and this (restricted)
larger memory design space does not produce controller of a better quality.

Because synthesis from the unrestricted design space with memory size 4 did not finish
in the available time, it cannot be concluded whether if would produce a better quality
controller or not. This leads to the following: either 7.372105 is the best optimality value
we can expect a finite-state controller to have in this benchmark regardless of the memory
size or the suitable restriction is not among the restrictions that were explored.

33

6.2.2 Incremental Memory Setting

The following sections show the results of controller synthesis for different examples using
the three approaches – iterative, incremental, and memory injection.

Please note, that due to the nature of the benchmarks and the approaches, lines in
graphs may overlap in places where the optimum value stagnates.

Maze

The Maze benchmark measures the optimality value of controllers by the ability of agents
to get from a random initial field to the target field in as little steps as possible.

In section 6.2.1, it was established that PAYNT is not able to synthesize finite-state
controllers with better optimality value than 7.372105 in the set time regardless of the
memory size or if the design space was restricted in any way. By their nature, the iterative
and incremental approaches cannot synthesize better controllers either.

Figure 6.7 shows how the controllers synthesized using the three different approaches
compare in their optimality value with regards to used memory sizes. Overall, the results
for this benchmark are quite unremarkable.

Figure 6.7: Graph comparing memory size and optimality value on the Maze benchmark.

34

Figure 6.8: Graph comparing optimality value and time the Maze benchmark

Maze Long

Next, these approaches are evaluated on the Maze Long benchmark (described in section
6.1.2). The optimality values of the controllers found using the three different approaches
with respect to available memory sizes are shown in figure 6.9. Figure 6.10 shows the results
of all of the three approaches focusing on the optimality value of the found FSCs and total
elapsed time.

Figure 6.9: Graph comparing memory size and optimality value on the Maze Long bench-
mark.

The iterative approach is not able to synthesize controllers in design spaces with memory
sizes 3 and above in the available time. The incremental approach does is able to find
controllers of memory size 4 which is of better quality than the ones found by the iterative
approach. The Memory injection approach finds controllers with memory sizes up to 10 but

35

their optimality values are worse than of those found using the iterative and incremental
approaches in the same time.

Figure 6.10: Graph comparing optimality value and time on the Maze Long benchmark.

Given that the longest straight path the robot could take in this maze is 9 steps long,
the best found controller with optimality value 18.772289 is still far from that and is only
a slight improvement from the 19.138456 found by the iterative approach.

Grid Avoid

Figure 6.11 shows the results of the three approaches and compares them with regards to
optimality value and memory size. As established in section 6.2.1, restriction Simple circle
seems to be able to restrict the design space in such a way that the controllers synthesized
from it have the same quality as those synthesized from non-restricted design spaces. In
this example, adding memory improves the quality of the controllers.

While the iterative strategy runs out of time by memory size 5, the incremental can
continue to find controllers even past that point as the restrictions reduce the design space
sizes and therefore the synthesis times as well. The memory injection strategy, however,
does not seem to be able to find FSCs with improved optimality values after adding more
than 4 memory values.

36

Figure 6.11: Graph comparing memory size and optimality value on the Grid Avoid bench-
mark.

Figure 6.12: Graph comparing optimality value and time the Grid Avoid benchmark.

Had there been another restriction – design space – that PAYNT would need to explore,
the incremental approach would likely not be able to find the controllers quicker than the
iterative approach.

Grid Center

The Grid Center benchmark is similar to Grid Avoid both in design and in results. Figure
6.13 shows the results of each of the approaches – the optimality values and memory sizes.
Figure 6.14 showcases the relation between elapsed time and best achieved optimums.

37

Figure 6.13: Graph comparing memory size and optimality value on the Grid Center bench-
mark.

Just like in the Grid Avoid benchmark, the iterative and incremental approaches are
able to find controllers of the same quality in design spaces with memory sizes up to 5.
Then, however, the iterative approach runs out of time while the incremental approach is
able to continue and synthesize FSCs with memory sizes 6, 7, and 8 which each have a
better optimality value than the previous one.

In this benchmark, the memory injection approach is able to find FSCs with the same
quality as those found using the iterative and incremental approaches with memory sizes
2, 3, and 4. After that, it is not able to improve the controllers.

Compared to the Grid Avoid benchmark, in Grid Center the controller quality improves
slower and more gradually over time in all three approaches.

Figure 6.14: Graph comparing optimality value and time on the Grid Center benchmark.

38

6.3 Experiment Conclusions
Because this thesis only deals with preliminary experiments on the matter of design space
restrictions, it is no surprise the results are mixed – in some cases, the experiment outcomes
were quite unremarkable, in other cases the results look promising.

The least remarkable results were in the Maze benchmark. None of the tested ap-
proaches could synthesize a controller with better optimality value than 7.372105 in the
given time regardless of memory size or the used restriction. However, given that the short-
est possible path between the fields most distant from the target field is 7, the optimality
value 7.372105 likely cannot be improved upon.

The Maze Long benchmark, where the shortest path from fields most distant from the
target was 10 and the best found controller had the optimality value of ≈ 18 suggests that
there is room for improvement. In this example, the controllers indeed seem to be improving
in quality with added memory.

In the Grid Avoid and Grid Center examples, the results show an improving tendency
in FSCs the larger the memory size is. Simple Circle seems to be a suitable restriction than
can help finding these controller quicker.

Overall design spaces with larger memory sized appear to result in better FSCs in
examples where there are multiple states with imperfect observations (e.g. observation 1 in
Grid, observations 4 and 2 in Maze Long) which require the agent to take different actions.
An imperfect observation by itself does not imply the need for the controller to have a
bigger memory size. If in the system there is only one action the agent should take upon
receiving the imperfect observation, there is no need to try to distinguish these states using
memory values.

39

Chapter 7

Conclusion

In this thesis, I explored systems with state uncertainty modeled using partially observable
Markov decision processes, what are their properties and how can an agent interact with
them. Out of the two discussed methods for controlling agents with regards to POMDPs,
the focus was mainly on finite-state controllers and their synthesis.

PAYNT is a tool which can find the optimal FSC in a design space that encompasses
all possible FSCs of a certain size for the given POMDP. However, with increasing size of
the design space, the synthesis time also increases and soon the results are unobtainable in
a rational time.

Preliminary experiments on restrictions have shown that they are able to cut down the
time necessary for finding the optimal finite-state controller. Whether the controller’s qual-
ity was affected, however, depended on the restriction and the benchmark. E.g. the Simple
circle restriction was ideal for the Grid Avoid benchmark, while the Forward restriction was
not.

The incremental memory setting approach was also evaluated on the four benchmarks
and it has proved to be comparable to the iterative and memory injection methods in some
benchmarks (Grid Avoid, Grid Center) with regards to the quality of controllers found in
the total elapsed time. A different set of restrictions could likely achieve better results.

Because larger memory size can vastly improve the quality of the controllers for POMDP
which require different action in states with the same observations, future work related
to this topic could explore different restriction or smarter ways of applying them in the
incremental memory setting approach.

40

Bibliography

[1] Andriushchenko, R., Ceska, M., Junges, S. and Katoen, J.-P. Inductive
Synthesis of Finite-State Controllers for POMDPs. 2022. Available at:
https://arxiv.org/pdf/2203.10803.pdf.

[2] Andriushchenko, R., Češka, M., Junges, S. and Katoen, J.-P. Inductive
Synthesis for Probabilistic Programs Reaches New Horizons. In: Groote, J. F.
and Larsen, K. G., ed. Tools and Algorithms for the Construction and Analysis of
Systems. Springer International Publishing, 2021, p. 191–209. ISBN
978-3-030-72016-2.

[3] Andriushchenko, R., Češka, M., Junges, S., Katoen, J.-P. and Stupinský
Šimon. PAYNT: A Tool for Inductive Synthesis of Probabilistic Programs.
In: Computer Aided Verification. CAV 2021. Lecture Notes in Computer Science
[online]. Silva A., Leino K.R.M. (eds). Springer, Cham, 2021. ISBN
978-3-030-81685-8. Available at:
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_40.

[4] Baier, C. and Katoen, J.-P. Principles of model checking. MIT press, 2008.

[5] Češka, M., Hensel, C., Junges, S. and Katoen, J.-P. Counterexample-Driven
Synthesis for Probabilistic Program Sketches. In: Beek, M. H. ter, McIver, A.
and Oliveira, J. N., ed. Formal Methods – The Next 30 Years. Cham: Springer
International Publishing, 2019, p. 101–120. ISBN 978-3-030-30942-8.

[6] Dehnert, C., Junges, S., Katoen, J.-P. and Volk, M. A Storm is Coming: A
Modern Probabilistic Model Checker. In: Majumdar, R. and Kunčak, V.,
ed. Computer Aided Verification. Cham: Springer International Publishing, 2017,
p. 592–600. ISBN 978-3-319-63390-9.

[7] Graphviz [online]. [cit. 2022-05-10]. Available at: https://graphviz.org/.

[8] PyGraphviz [online]. [cit. 2022-05-10]. Available at: https://pygraphviz.github.io/.

[9] Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Leonore Winterer,
J.-P. K. et al. Finite-state Controllers of POMDPs via Parameter Synthesis. In: UAI
2018. 2018.

[10] Knuth, D. and Yao, A. Algorithms and Complexity: New Directions and Recent
Results. Academic Press, 1976.

[11] Kochenderfer, M., Wheeler, T. and Wray, K. Algorithms for Decision Making.
1st ed. MIT Press, 2022. ISBN 9780262047012. Available at:
https://algorithmsbook.com.

41

https://arxiv.org/pdf/2203.10803.pdf
https://link.springer.com/chapter/10.1007/978-3-030-81685-8_40
https://graphviz.org/
https://pygraphviz.github.io/
https://algorithmsbook.com

[12] Kumar, A. and Zilberstein, S. History-based controller design and optimization
for partially observable MDPs. In: Proceedings of the International Conference on
Automated Planning and Scheduling. 2015, vol. 25, no. 1.

[13] Kwiatkowska, M., Norman, G. and Parker, D. Stochastic Model Checking. 2007.
Available at: https://www.prismmodelchecker.org/papers/sfm07.pdf.

[14] Wray, K. H. and Czuprynski, K. Scalable POMDP Decision-Making Using
Circulant Controllers. In: ICRA 2021. 2021.

[15] Češka, M., Jansen, N., Junges, S. and Katoen, J.-P. Shepherding Hordes of
Markov Chains. In: Vojnar, T. and Zhang, L., ed. Tools and Algorithms for the
Construction and Analysis of Systems. Cham: Springer International Publishing,
2019, p. 172–190. ISBN 978-3-030-17465-1.

42

https://www.prismmodelchecker.org/papers/sfm07.pdf

Appendix A

Graphical FSC Representation

Figure A.1: Output of non-restricted design space of memory size 4, with observations

43

Figure A.2: Output of design space of memory size 4 restricted with Simple Circle, with
observations

Figure A.3: Output of design space of memory size 4 restricted with One step, without
observations

44

Appendix B

Contents of the included storage
media

The included storage media contains the following files:

.
synthesis.zip
xgysel00.pdf
xgysel00_print.pdf
xgysel00.zip

45

Appendix C

Manual

PAYNT is tool that can automatically synthesize finite-state controllers for POMDPs. This
fork modifies PAYNT to be able to restrict design spaces and only synthesize controllers of
certain types.

Installation

To install the program, first unzip the synthesis.zip file and then from the synthesis
folder run the installation script:

./install.sh

Running PAYNT

To run the program you use the script ./scripts/run.sh which runs all three of the
approaches on the four interesting benchmarks.

Before you run the program, make sure the folder workspace/log/ exists and that you
have the Python environment loaded (source env/bin/activate).

Options

Options:
--project TEXT root [required]
--sketch TEXT name of the sketch file
--properties TEXT name of the properties file
--fsc-synthesis enable incremental synthesis of FSCs for

a POMDP
--pomdp-memory-size INTEGER implicit memory size for POMDP FSCs
--incremental INTEGER... enable incremental synthesis of FSC for

a POMDP within a memory size with applied
restrictions

--strategy [full|iterative|injection]
define strategy

--reset-optimum reset the optimality property after each
synthesis loop

--help Show this message and exit.

46

	Introduction
	Preliminaries
	Markov Chains
	Families of Markov Chains

	Markov Decision Processes
	Partially Observable Markov Decision Processes

	Existing Methods for Controlling POMDPs
	Belief-Based
	Finite-State Controller Synthesis
	Finite-state Controllers
	Controller Synthesis

	PAYNT – Probabilistic progrAm sYNThesizer
	PAYNT for probabilistic programs
	PAYNT for POMDPs
	Design Space
	Iterative Strategy
	Memory Injection Strategy

	Contributions to PAYNT
	Graphical FSC Representation
	Implementation

	Limiting Design Space
	Implementation
	Restrictions

	Incremental Memory Setting
	Implementation

	Evaluation
	Benchmarks and Experiment Conditions
	Grid
	Maze

	Evaluations
	Limiting Design Space
	Incremental Memory Setting

	Experiment Conclusions

	Conclusion
	Bibliography
	Graphical FSC Representation
	Contents of the included storage media
	Manual

