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Abstract 
Par t ia l ly observable Markov decision processes offer a way to model systems wi th state 

uncertainty. A n agent has l imi ted information (observation) about its current locat ion in 
the system. A finite-state controller that translates this information to actions that the 
agent can perform helps the agent interact w i t h the model and achieve its goals. P A Y N T 
is a tool that constructs a design space that contains a l l possible finite-state controllers of 
a given size for a P O M D P and then tries to find the best F S C among those. In this thesis, 
I introduce a way to restrict the design space to encode only a subset of the controllers so 
that P A Y N T can find the best controller in a much shorter t ime. If the used restriction is 
suitable, the controller quali ty is not affected. I also implement a method that can make 
the synthesis method implemented i n P A Y N T continuously find F S C s of increasing sizes 
and improving qualities by gradually applying restrictions from a predefined set. 

Abstrakt 
Sys t émy se stavovou neu rč i to s t í lze modelovat p o m o c í Markovských rozhodovac ích pro­

cesů s č á s t e č n ý m pozorován ím. Agent, k t e r ý se v t a k o v é m s y s t é m u pohybuje, m á o své 
pozici v r á m c i s y s t é m u pouze omezen é informace (pozorován í ) . Konečně - s t avový kont ro lé r 
u m í p ř i ř a d i t vhodnou akci k a k t u á l n í m u pozorován í . D íky tomu m ů ž e agent se s y s t é m e m 
lépe interagovat a dobrat se svého cíle. N á s t r o j P A Y N T u m í na j í t nej kval i tnějš í kon t ro lé r 
mezi všemi m o ž n ý m i kon t ro lé ry d a n é velikosti pro d a n ý model . V t é t o p rác i p ř e d s t a v í m 
způsob , j a k ý m lze omezit des ignový prostor, ve k t e r é m P A Y N T kon t ro lé ry h ledá , tak, aby 
zakódovával pouze u r č i t ou p o d m n o ž i n u kon t ro lé rů , k t e r á lze vyhodnot i t v m e n š í m čase. 
P o k u d je p o u ž i t a v h o d n á restrikce, kval i ta kon t ro lé rů nen í ov l ivněna . Dá le implementuji 
metodu, k t e r á p o s t u p n ě aplikuje tyto restrikce na des ignový prostor a umožňu je syntetiza-
ční m e t o d ě v P A Y N T u n e p ř e t r ž i t ě hledat kon t ro l é ry větš ích velikostí a lepší kvality. 
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Chapter 1 

Introduction 

Creat ing autonomous systems that could operate without human input has been a long-
term goal of mankind . These systems can range from simple machines designed to perform 
a simple task over and over again to self-driving vehicles that are yet to drive on our roads. 
For the latter, the biggest obstacle is the surrounding environment. W h a t is natural to 
navigate for humans is not as easy for a man-made machine. 

The objective of this thesis is not going to be creating a driver-less car. Examples 
here w i l l be much simpler than that - navigating grids and two-dimensional mazes. The 
challenge, however, w i l l be similar to that of self-driving cars. How to solve a problem when 
we only have l imi ted knowledge about the surroundings? 

"Outcome uncertainty, where the effects of our actions are uncertain, model uncertainty, 
where our model of the problem is uncertain, state uncertainty, where the true state of the 
environment is uncertain, and interaction uncertainty, where the behavior of the other 
agents interacting i n the environment is uncertain." [11] 

This thesis w i l l focus on systems wi th state uncertainty and how it can be modeler using 
Par t ia l ly observable Markov decision processes that define the system's states, the l imited 
information which describes these states, available actions and the results of these actions. 

There are two approaches to controll ing P O M D P s , or rather controll ing agents inter­
acting wi th P O M D P s , the first being belief based - where a belief d is t r ibut ion is kept and 
updated based on taken actions and received observations and these beliefs are then mapped 
to actions for the agent to take [11] - and the second one is using finite-state controllers 
(FSCs) . Finite-state controllers map observations to actions either just based on this in ­
formation alone or by using their own inner state to provide addi t ional information about 
the history of interactions between the agent and the system [12]. 

A n opt imal controller can be synthesized from a design space that encompasses a l l pos­
sible controllers of a set size using the P y t h o n tool P A Y N T (Probabil is t ic p r o g r A m s Y N -
Thesizer) [1, 3]. The design space size, however, grows exponentially w i th the controller's 
memory size. 

Inspired by Scalable P O M D P Decis ion-Making Using Circulant Controlle by W r a y et. 
al . [14] which focused on synthesizing circulant controllers for agents wi th cyclic behavioural 
patterns, I set out to find a way to synthesize only controllers of a certain type using P A Y N T 
while also cut t ing back on synthesis t ime of the growing design spaces. 

To achieve this, I introduce restrictions. A suitable restriction offers a way to only syn­
thesize controllers of a certain type while reducing the synthesis t ime significantly without 
affecting the controller quality. Th is thesis explores different restrictions and compares the 
resulting controllers to those synthesized from unrestricted design spaces. 
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Taking a set of different, gradually less strict restrictions and sequentially applying it to 
the growing design spaces should allow P A Y N T to find controllers of increasing sizes and 
improving qualities. The results of this, incremental, approach are compared to the results 
of iterative synthesis from non-restricted design spaces and to the memory injection strategy 
by Andriushchenko et. a l . introduced in Inductive Synthesis of Fini te-State Controllers for 
P O M D P s [1]. 

The prel iminary experiments using the introduced restrictions show promising results 
in three of the four benchmarks used. 
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Chapter 2 

Preliminaries 

In this chapter I explain the most essential stochastic, probabil i ty driven models i n this 
thesis and using easy to understand examples I explain how they relate to controll ing 
autonomous systems. 

Definitions in this chapter are taken over and adapted from Stochastic M o d e l Checking 
[13] (definition 1), Shepherding Hordes of Markov Chains [15] (definitions 2 and 3), and 
from Finite-state Controllers of P O M D P s v ia Parameter Synthesis [9] (definitions 4 and 5). 

2.1 Markov Chains 

Markov chains ( M C s ) are the most elementary k ind of Markov models and they are es­
sential to comprehending other models that are derived from them. A stochastic model is 
considered markovian if it holds the Markov property - the next state is determined by the 
current state only. 

Markov chains can be divided into two categories - discrete-time Markov chains ( D T M C s ) 
which operate on discrete t ime points and continuous-time Markov chains ( C T M C s ) which 
operate on t ime intervals. For the purposes of this thesis, Markov chains w i l l refer to 
D T M C s . 

Definition 1. A discrete-time Markov Chain M is defined by a tuple M = (S, so, P). S is 
a finite set of states, so is the in i t i a l state, and P : S x S —>• [0,1] is the transition probability 
matrix where X^se5 ^*( s ' s') = ^ ^ o r a l l s G S1 which denotes the probabil i ty that a M C in 
state s can transi t ion into state s' i n one step. 

If a state only has a single possible t ransi t ion and that is back to itself, it is called 
an absorbing state. In such a state, P(s,s) = 1 and P(s,t) = 0 for a l l states t ^ s [4]. 
Absorb ing states can be viewed as end states, once they are reached, no other states can 
be transitioned to. 

A path a; is a non-empty sequence of states sos\S2--- that can be either finite or infinite 
where i G No, Si G S and P ( S J , S J + I ) > 0. The length of this sequence (the number of 
transitions) is the path's length [13]. 

A substantial part of working wi th Markov chains and models derived from M C s revolves 
around reachability, the property that describes whether it is possible to transi t ion from 
state so to state sn, w i th what probability, and i n how many of transitions. A state sn is 
reachable if there exists a path from sq to sn. 
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Example 2 . 1 . 1 . A common example used wi th Markov chains is the K n u t h - Y a o dice, a 
model that sets out to simulate an N-sided dice using a coin flip [10]. W h a t would the 
Markov chain for s imulat ing a three sided dice w i th a fair coin look like? 

Solution. One coin-flip can differentiate between the end states 1 and 2 starting from an 
intermediate state s\. Tossing tails i n the intermediate state S2 determines a transi t ion 
to absorbing state 3. Because the number three is not a power of two, we need a way to 
redistribute the remaining heads toss into a l l of the three possible end states. Tha t is done 
by adding a transi t ion from S2 back to so. 

A graphical representation of this M C where red edges (pointing to so, si, and 1) 
represent heads, blue edges (pointing to S2, 2, and 3) represent tails can be seen i n figure 
2.1. 

0.5 0.5 0.5 

Figure 2.1: Markov chain for s imulat ing a three-sided dice w i th a coin flip. 

0.5 0.5 0 0 
0 0 0 0.5 0.5 0 

0.5 0 0 0 0 0.5 
0 0 0 1 0 0 
0 0 0 0 1 0 

0 0 0 0 1 J 

The M C is formally defined by the set of states S = {sq, si, S2,1, 2, 3} where sq is the 

in i t i a l state and a transi t ion mat r ix P 

The correctness of this M C can be verified by computing the reachability probabilities 
of the states, that is the probabilities of paths of certain lengths ending in those states [4]. 
Table 2.1 shows the reachability probabilities for a l l states in the first 10 steps. B y step 
6, the the reachability probabilit ies of states 1 , 2 , and 3 are equal to « 0.33 which is the 
expected value for a fair three-sided dice. 

The remaining probabi l i ty values that are "stored" i n states so or states s i and S2 w i l l 
continually keep getting redistributed to states 1 ,2 , and 3 in subsequent steps. 

A n example of a path i n this M C would be u = {so, S2, so> si> 1} and that would be the 
result of tails once and then heads three times i n a row. 

G 



State/Step 0 1 2 3 4 5 6 7 8 9 10 

so 1 0 0.25 0 0.063 0 0.016 0 0.004 0 0.001 
s i 0 0.5 0 0.125 0 0.031 0 0.008 0 0.002 0 

S 2 0 0.5 0 0.125 0 0.031 0 0.008 0 0.002 0 
1 0 0 0.25 0.250 0.313 0.313 0.328 0.328 0.332 0.332 0.333 
2 0 0 0.25 0.250 0.313 0.313 0.328 0.328 0.332 0.332 0.333 
3 0 0 0.25 0.250 0.313 0.313 0.328 0.328 0.332 0.332 0.333 

Table 2.1: Table reachability probabilities i n each state i n the span of 10 steps. 

2.1.1 Fami l ies of M a r k o v C h a i n s 

W i t h parameters, a family of Markov chains can compactly describe many different real­
isations, Markov chains defined over the same set of states but w i th different topologies. 
W h i l e this is interesting on its own, families of Markov chains become most relevant when 
discussing finite-state controllers and their synthesis. 

Definition 2. A family of Markov chains is defined as a tuple 2) = (S, so, K, *p) where S is 
a finite set of states, so G S is the in i t i a l state, K is a finite set of parameters such that the 
domain of each parameter k G K is C S, and : S —> Distr(K) is a family of t ransi t ion 
probabil i ty matrices. 

Definition 3. A realisation of a family of Markov chains T> is a function r : K —>• S where 
VTc G K : r(k) G T^. A realisation r yields a M C Dr = (S, so, ^J(r)), where *}3(r) is the 
transi t ion probabil i ty mat r ix i n which each k G K i n is replaced by r(k). Let Bp denote 
the set of a l l realisations for T>. 

Markov chains that belong to the same family have the same set of states, the same 
in i t i a l state, but different t ransi t ion matrices and topologies. Different realisations of one 
family can have different reachable states. 

Example 2.1.2. Figure 2.2 depicts a family of M C s T> defined by the set of states S = 
{so, s\, S2}, i n i t i a l state so, set of parameters K = {a, b], parameter domains Ta = {so, si} 
and T;, = {si,S2}, and transi t ion probabil i ty mat r ix ^J(O) = l / 2 s i + l / 2 a , ^P(l) = l / 2 a + 
1/26, and ^3(2) = l/2s\ + 1/26. (Transit ion probabilities are omit ted for the sake of 
readability.) 

W h a t would two possible realisations of this family look like? 

Figure 2.2: Fami ly of Markov chains T>. 

Solution. Real isat ion r\\ r\(a) = so, r\(b) = S2 is depicted i n figure 2.3. A l l states reachable 
in this realisation, no state is absorbing. 
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0.5 0.5 
0.5 0.5 

0.5 0.5 

Figure 2.3: Graph ica l representation of realisation r\ of the family of M C s T>. 

Realisat ion V2- 7*2(0) = s\, r2(b) = s\ is depicted i n figure 2.4. State S2 unreachable 
from the in i t i a l state, s\ is an absorbing state which is always reached after the first step. 

Figure 2.4: Graph ica l representation of realisation r2 of the family of M C s T>. 

2.2 Markov Decision Processes 

Markov Decision Processes ( M D P s ) are the first extension over Markov chains. M D P s add 
an action between the state and the available transitions. Act ions are performed by an 
agent, a real or imaginary entity that can interact w i t h the modeled system. The outcome 
of each action is given by a probabil i ty dis t r ibut ion over a subset of states. 

Definition 4 . Markov decision processes are a tuple M = (S, sq, Act, V) where S is a finite 
set of states, so G S is the in i t i a l state, Act is a finite set of actions, and V : S x Act x 5 ^ 
[0,1] is its t ransi t ion function where J2s'es ^ H 5 ' a' s') = 1 a P P n e s to a l l a £ Act and s,s' € S 
if act ion a is available in s (otherwise the sum is equal to 0). 

In Markov decision processes, we differentiate between two types of choices - probabilis­
tic, and non-deterministic. Probabi l i s t ic choices are the outcomes of the executed actions 
and they are determined by the t ransi t ion function and, if the result of the transi t ion 
function is a dis t r ibut ion over more than one state, a random number generator. Non-
deterministic choices are the actions a £ Act. These are decided by an outside entity, e.g. 
a controller, which is sometimes also called a scheduler or policy. 

There are several ways a controller could decide which action should the agent take. 
Ei ther the controller is deterministic and the sequence of actions w i l l always be the same, 
or it can be randomised and the sequence of actions can differ between runs. 

Once the act ion is decided, the M D P behaves just like a simple Markov chain. If the 
actions are known before the run, a M D P can be transformed to a M C . 

Example 2.2.1. The M D P M w i l l represent a baby w i t h two states - hungry, which is 
the in i t i a l state, and sated - and two actions - feed and ignore. W h e n a caretaker feeds 
a hungry baby there is a 20% chance that the baby w i l l stay hungry and an 80% chance 
that it gets sated, i f they ignore the hungry baby, it stays hungry. If the caretaker feeds a 
sated baby, it w i l l stay sated. Ignoring a sated baby has a 20% chance that the baby gets 
hungry. 1 

Solution. In each state an agent, the caretaker, is able to perform one of the two actions 
- feed the baby or ignore the baby. Depending on the current state of the M D P and the 

l rThis example was inspired by a problem described in the book Algorithms for Decision Making [11]. 

1 
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caretaker's action (the deterministic choice) and a random chance (the non-deterministic 
choice) the process either changes it 's state from hungry to sated, the other way around, or 
it stays in its current state. The M D P M is depicted i n figure 2.5. 

ignore 

0.2 

ignore 

0.8 

Figure 2.5: The M D P M representing the baby i n example 2.2.1 

Choosing actions reduces the M D P to a pla in Markov chain. Figure 2.6 depicts a M C 
derived from the M D P i n Example 2.2.1 given that the agent chooses to alternate between 
the actions feed and ignore. Blue edges (pointing to states hungry® and sated\) represent 
transitions after ignoring the baby, red (pointing to states sated®, hungryi, and sated2) 
after feeding it . Note that there is no path i n this M C where two edges of the same color 
could be taken consecutively. 

Figure 2.6: The M C derived from the M D P M i n example 2.2.1 

2.3 Partially Observable Markov Decision Processes 

Partially observable Markov decision processes ( P O M D P s ) offer a way of modeling systems 
wi th state uncertainty. In such systems the agent that interacts w i t h it has only l imited 
information about the state it currently is i n . The l imi ted information about the state is 
called an observation. 

Compared to M D P s , i n P O M D P s the agent chooses to perform an action without having 
full knowledge of the surrounding environment. Tools that assist agents i n choosing actions 
w i l l be discussed further i n the thesis. 

Definition 5. Pa r t i a l ly observable Markov decision processes ( P O M D P s ) are defined as a 
tuple M = (M,Z,0) where M = (S, s0, Act,V) is the underlying M D P , Z is a finite set 
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of observations, and O : S —>• Z is the observation function that assigns observations to 
actions. 

In P O M D P s , one observation, which can but does not have to be unique i n the model, 
is assigned to each state. A n observation that is assigned to more than one state is called 
potentially imperfect [11]. 

Example 2.3.1. Let ' s take the M D P from the previous example 2.2.1 and transform it to 
a P O M D P by assigning each state an observation - if the baby is hungry, we observe that 
it 's crying, i f it 's i n the sated state, we see it smiling. 

Solution. Th i s P O M D P is very straightforward - each state is uniquely defined by its 
observation and the caretaker - agent - can take appropriate actions to get the baby to its 
desired state. 

Example 2.3.2. B u t what happens i f two more states are added between hungry and 
sated? The new states are almost hungry and almost sated and if the baby is in these states 
it is neither crying nor smiling, the observation is neutral. 

Solution. Figure 2.7 depicts the underlying M D P . In the hungry and sated states, it is 
perfectly clear which action should the caretaker take. A hungry baby must be fed while a 
sated baby can be ignored. The caretaker, however, cannot dist inguish between the almost 
hungry and almost sated states and therefore cannot determine what action should be taken 
based on the observation alone. This is state uncertainty [11]. 

Figure 2.7: The underlying M D P representing the four-state baby. 
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Chapter 3 

Exist ing Methods for Controlling 
P O M D P s 

This chapter discusses the two main approaches to state uncertainty i n par t ia l ly observable 
Markov decision processes - the belief-based approach and controller synthesis. 

Definitions i n this chapter are taken over and adapted from Algor i thms for Decision 
M a k i n g [11] (definition 6), History-based controller design and opt imizat ion for par t ia l ly 
observable M D P s [12] (definition 7), and from Shepherding Hordes of Markov Chains [15] 
(definitions 8, 9, 10, and 11) 

3.1 Belief-Based 

In each step the agent takes, a belief is calculated based on past actions and observations. 
Th is belief is represented by a probabil i ty dis t r ibut ion over the underlying states of the 
P O M D P - the probabil i ty that the agent is currently in that state of the model [11]. 

The initial belief is the assumption made at the beginning. It can either be very generic 
(e.g. evenly distr ibuted between a l l possible states) or, i f there is addi t ional information 
available at the start, it can be more specific to a subset of the states. However, making 
the in i t i a l belief too specific to a certain area of the P O M D P brings a considerable risk - i f 
the in i t i a l belief is wrong, the decisions, and as a result the whole path w i l l be skewed [11]. 

After every action taken by the agent - based on the observation it receives and the 
belief dis t r ibut ion - the belief is updated using one of the various methods such as the 
discrete state filter. 

Discrete State filter 

If the number of states and observations in a P O M D P is finite, we can use the discrete state 
filter, a recursive bayesian estimation method, for calculat ing the belief dis t r ibut ion using 
the current observation and the action that was taken [11]. 

Definition 6. In a P O M D P where S is the set of states, Act is the set of actions, and Z is 
the set of observations, then B w i l l be the belief space where there is a belief b{s) > 0 for 
al l s £ S. The sum of a l l b(s) G B is 1. 

0(o\a, s') is the probabil i ty of observing observation o G Z after taking action a G Act 
and transit ioning to state s' G S. T(s'\s,a) is the probabil i ty that the model transitioned 
to state s' G S after taking action a G Act in state s G S . 
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The new belief b'(s') can be the calculated as follows: 

b'(s') = P(s'\b,a,o) (3.1) 

oc P(o\b,a,s')P(s'\b,a) (3.2) 

= 0(o\a,s')P(s'\b,a) (3.3) 

= 0(o\a, s') P(s'\a, b, s)P(s\b, a) (3.4) 
s 

= 0(o\a,s')^2T(s'\s,a)b(s) (3.5) 
s 

The more accurate the observations and transi t ion model are, the more successful the 
belief update is [11]. 

Example 3.1.1. Let ' s go back to the four-state baby P O M D P from example 2.3.2 wi th 
states S = {h, ah, as, s}1, actions Act = {feed, ignore}, and observations Z = {crying, 
neutral, smiling}. W h a t would be the belief space after the first two steps given that the 
in i t i a l belief space is an equal distr ibution? 

Solution. Us ing formula 3.5 we can calculate a l l potential belief spaces for each state, action, 
and observation. 

States h and s are not imperfect and can be transit ioned to as a result of both actions. 
Therefore, regardless of the action the caretaker takes, the probabil i ty of observing the 
observations these states are associated wi th (h - crying, s - smiling) is equal to 1 and 
the probabil i ty of observing the other two observations is 0. States ah and as are asso­
ciated wi th the same observation (neutral) and can be transit ioned to w i t h bo th actions, 
therefore 0(neutral\a, ah) = 0(neutral\a, as) = 0.5 for Va G Act and 0 for the other two 
observations. 

We start w i th an equal dis t r ibut ion, therefore b{h) = b{ah) = b(as) = b(s) = 0.25. 
Table 3.1 depicts the potential belief updates for a l l states, actions, and observations 

after the first step. 

A c t i o n feed ignore 

State / Observation neutral crying smil ing neutral crying smil ing 

b'{h) 0 0 0.05 1 0 0 0 0 0.50 1 0 0 
b'(ah) 0.10 0.44 0 0 0 0 0.13 0.83 0 0 0 0 
b'(as) 0.13 0.56 0 0 0 0 0.03 0.17 0 0 0 0 
b'(s) 0 0 0 0 0.05 1 0 0 0 0 0.25 1 

Table 3.1: Potent ia l belief updates before (left) and after normalizat ion (right). 

Table 3.1 depicts the potential belief updates for a l l states, actions, and observations 
after the second step given that the agent chose to feed the baby and received a neutral 
observation after that. 

1h = hungry, ah = almost hungry, as = almost sated, s = sated 
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A c t i o n feed ignore 

State / Observation neutral crying smil ing neutral crying smiling 

b'(h) 0 0 0 0 0 0 0 0 0.44 1 0 0 
b'(ah) 0 0 0 0 0 0 0.28 1 0 0 0 0 
V(as) 0.22 1 0 0 0 0 0 0 0 0 0 0 
V(s) 0 0 0 0 0 0 0 0 0 0 0.11 1 

Table 3.2: : Potent ia l belief updates before (left) and after normalizat ion - b{ah) = 0.44, 
b(as) = 0.56 

Table 3.3 depicts the potential belief updates for a l l states, actions, and observations 
after the seconds step i f the first action taken by the agent was ignore. 

action feed ignore 

state / observation neutral crying smil ing neutral crying smiling 

V(h) 0 0 0 0 0 0 0 0 0.83 1 0 0 
b'(ah) 0 0 0 0 0 0 0.08 1 0 0 0 0 
b'(as) 0.42 1 0 0 0 0 0 0 0 0 0 0 
V(s) 0 0 0 0 0 0 0 0 0 0 0.03 1 

Table 3.3: : Potent ia l belief updates before (left) and after normalizat ion - b{ah) = 0.83, 
b(as) = 0.17 

In this example, we see that it takes two steps at most for the belief state to be equal 
to 1 for a part icular state. 

3.2 Finite-State Controller Synthesis 

Unlike the belief-based approaches, which need to calculate the new belief state after every 
step that the agent takes, using a controller reduces the complexity of determining the 
next action dur ing the run to what essentially is just a table lookup. The process of pro-
grammatical ly finding a finite-state controller for a part icular P O M D P is called controller 
synthesis. 

3.2.1 F in i te - s ta te C o n t r o l l e r s 

Definition 7. A finite-state controller ( F S C ) for a P O M D P M = ( M , Z, O) (as established 
in definition 5) is a tuple F = (iV, 0, tp) where iV is a finite set of nodes, function <fi : N —>• Act 
assigns an action to each node, and function tp : N x Z —>• N maps the current node and 
an observation to the next node. 

This thesis w i l l only consider deterministic finite-state controllers where the current 
node and the received observation determine the one next node. Stochastic F S C s which 
define the next node as a dis t r ibut ion over a subset of nodes w i l l not be considered or 
discussed. 

The process of controll ing a agent's interactions wi th a P O M D P using a F S C (also 
depicted by figure 3.1) has three basic phases that continuously repeat: 
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1. The agent receives an observation z £ Z from a P O M D P A4 and relays this informa­
t ion to the controller F. 

2. The controller transitions to a new node n«+i based on the current node rii and the 
observation z it received. The new node nj+i determines the act ion a. 

3. Agent performs the action which causes the P O M D P to transi t ion to the next state 
wi th the next observation. 

Figure 3.1: The process of controll ing a P O M D P wi th a F S C . 

Example 3.2.1. P O M D P M. is defined by a set of states S = {so, s i , S 2 , S 3 } where in 
each state there are two possible actions (ao and a\) which both cause a transi t ion to 
one different state. Finite-state controller F has two nodes N = { n o , n i } , node-to-action 

mapping 4>(no) = ao, 4){ni) = a i> a n d ip(no 1) = < 1 ' 0 defines the controller transitions 
[n0 i f zi 

based on the received observation, so and no are the start ing state and node. F S C F controls 
the P O M D P M. and both are depicted in figure 3.2. How does the path an agent takes in 
this P O M D P change based on how observations zo and z\ are assigned to states so, s i , S2, 
and S 3 ? 

Figure 3.2: Finite-state controller F (left), P O M D P M (right) 

Solution. Depending on the observation assignment to the states, the agent navigating 
P O M D P A4 controlled by the F S C F w i l l behave i n one of the following ways: 

1. If O(so) = 0 ( 5 3 ) = 0 and O ( s i ) = 0(s2) = 1 results i n the agent traveling i n an anti­
clockwise circle S 0 S 1 S 2 S 3 S 0 . . . ; i f O(so) = 0 ( 5 3 ) = 1 and O ( s i ) = 0(s2) = 0 the agent 
w i l l travel i n a clock wise circle S 0 S 3 S 2 S 1 S 0 . . . . In both cases, the controller alternates 
between both nodes. 
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2. If O ( s r j ) = 0 ( 5 3 ) = 0 or O ( s r j ) = O ( s i ) = 1 - the agent w i l l oscillate between the two 
states (so and S3 or sn and s i ) w i th the F S C ending up in node nn for observation z\ 
or n\ or observation ZQ, observations in the remaining two states are not important 
as the agent w i l l never visit them. 

3. If O(s0) = 1 and O ( s i ) = 0(s2) = 0 or i f O(s0) = 0 and 0(s2) = 0(s3) = 1 (the 
observation i n the fourth state is not important) - after the first step away from SQ, 

the agent alternates between the other two states each step. 

4. If O(s0) = O ( s i ) = 0(s2) = 0 and 0 ( s 3 ) = 1 or i f O(s0) = 0(s2) = 0(s3) = 1 and 
0(s2) = 0 - in this case the agent takes two steps before it starts alternating between 
states S3 and s i or states S3 and s2. 

History-Based Controllers 

History-based controllers add more meaning to their controller nodes other than just the 
corresponding action [12]. F S C s wi th memory nodes a type of such controllers [1]. 

3.2.2 Controller Synthesis 

If a finite-state controller can be modeled as a Markov chain, then a number of F S C s wi th 
the same set of nodes can be modeled as a family of M C s . In this section I present two of 
the existing synthesis methods for finite-state controllers. 

Abstract ion Refinement 

Abstraction refinement ( A R ) is a method for evaluating large families of M C s and finding 
realisations that satisfy a certain specification introduced by Češka et. a l in Shepherding 
Hordes of Markov Chains [15]. The specification (</?) i n question is a quantitative property 
(e.g. reachability probabil i ty or expected reward acquired by vis i t ing certain states) usually 
accompanied by a threshold (A). 

To determine which realisations of a M C family satisfy the specification and to avoid 
having to examine each realisation separately (which is ineffective), the A R approach first 
transforms the M C family into what is called an all-in-one MDP and then abstracts that 
into a more compact model called quotient MDP. A model checker such as S torm (further 
described in A Storm is Coming : A M o d e r n Probabi l i s t ic M o d e l Checker [6]) is then used 
to evaluate the quotient M D P by obtaining the values of pm%n and pmax, under- and over-
approximations of the model checking results, and comparing them to the threshold. Based 
on this information it can be determined whether a l l of the realisations encompassed i n this 
quotient M D P satisfy tp, violate tp, or whether the family needs to be split into subfamilies 
which are then reexamined separately. 

Definition 8. The all-in-one MDP of a Markov chain family 2) = (S, SQ, K, *p) is defined 
as M s = (S®,s®,Act®,V®) where S® = S x ll{J{s®} is the set of states, Act® = 
{ar\r £ 1Z®} is the set of actions, and V®(SQ, ar)((so, r)) = 1 and V®((s, r ) , ar)((s', r)) = 
fP(r)(s)(s') is the transi t ion function. 

Depicted i n figure 3.3 is an example of a Markov chain family w i th one parameter a 
wi th the domain Ta = {si,s2} and transi t ion probabilities -P(srj) = a > P(si) = 0.5so + 0.5a, 
- P ( s 2 ) = si- (Transit ion probabilities are not included for the sake of readability.) Th is 
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family of M C s w i l l be used as the basis for the subsequent demonstrations of the all-in-one 
and quotient M D P s . 

Figure 3.3: A M C family w i th parameter o. 

Figure 3.4 depicts the all-in-one M D P constructed from realisations r i ( a ) = s\ and 
T2(a) = S2- The action taken in the in i t i a l state Sq decides i n which realisation the model 
operates thereafter and the states are labeled i n such a way that it is possible to determine 
the corresponding realisation. M o d e l checking this M D P yields information about a l l its 
states and therefore about a l l the realisations it encompasses, but for bigger M C families 
the all-in-one M D P can be too large to examine. 

Figure 3.4: A n all-in-one M D P that encompasses realisations r\ and ri-

A quotient MDP is a more compact model that is created by abstracting the realisation 
part from the state labels i n the all-in-one M D P and therefore forgetting i n which realisation 
it operates. M o d e l checking this M D P also yields information about a l l is states and the 
realisations it encompasses. 

Definition 9. Forgetting is an equivalence relation ~ / C S® x S® that satisfies (s,r) ~/ 
(s',r') •£=>• s = s' and Sq ~ J (sQ ) , r )Vr G 1Z. Forgett ing induces the quotient MDP 
M® = (S® [$UAd?,V%), where V®([s]^,ar)([s']^) = <P(r)( S )( S ' ) . 

Figure 3.5: A n abstraction over the all-in-one M D P depicted i n 3.4 creates a quotiend M D P . 

Definition 10. Spl i t t ing - 2) is a family of M C s , 1Z C VP is a set of realisations. For 
k G K and predicate over S, spl i t t ing partit ions 1Z into 

TZT = {r G TZ\Ak(r(k))} and K± = {r G TZ\k(r(k))}. 
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Definition 11. Restr ic t ing - = (5®, [sl\^, Acts ,V^) is the quotient M D P and TZ C 
7 £ s a set of realisations. The restriction of w i th regards to V? is the M D P M^[7£] = 

[ s g ^ A c * 0 ^ ] , ^ ) where A c t 0 [ft] = { a r | r G ft}. 

B y spl i t t ing the set of realisations into two subsets and then restricting the quotient 
M D P using the subsets, we acquire two new quotient M D P s . Figure 3.6 depicts a smaller 
quotient M D P created by restricting the quotient M D P from figure 3.5 wi th the subset 
{ n } c f t s . 

Figure 3.6: Restr icted quotient M D P . 

Threshold synthesis, as described i n Shepherding Hordes of Markov Chains [15], is the 
part of the A R method that is tasked wi th par t i t ioning realisations of a M C family into 
two subsets - one i n which a l l realisations satisfy ip and one i n which a l l realisations violate 
it. 

The process starts w i th U, a set of sets of realisations that have not been examined 
yet, and the in i t i a l quotient M D P M ® . In the first step of the synthesis loop a set of 
realisations ft is selected from U and the quotient M D P is restricted w i t h regards to ft. 
Next a model checker is used to obtain the under- and over-approximations pm%n and pmax 
of the probabilit ies or rewards for the given specification ip. Based on these, the algori thm 
can decide i n which category the set of realisations belongs. 

If Pmax < A, then a l l realisations satisfy ip, i f pm%n > A, then no realisation i n the set 
satisfies ip, and i f pm%n < A < pmax then it cannot be decided and the TZ needs to be split 
and the new sets of realisations are added to U. 

The algori thm repeats un t i l U is empty. 

Optimum synthesis is a similar a lgor i thm that is used to find the one realisation that best 
satisfies the specification. L ike threshold synthesis it starts w i th a set of sets of realizations 
U, a quotient M D P M ® , and a variable max that holds the current op t imal value. 

Aga in , the synthesis process takes the sets of realisations from U and uses them to 
restrict the quotient M D P which is then examined by the model checker to determine 
values pmin, Pmax and the corresponding scheduler. 

If Pmax < max then the realisation is disregarded as there have already been more 
opt imal schedulers. Otherwise, it checks i f the synthesized scheduler is consistent, i n that 
case it updates the values of max and marks this scheduler as op t imal for the t ime being. If 
the scheduler is not consistent the a lgori thm further checks if pm%n > max and i f that is the 
case, the value of max is s t i l l updated to pm%n- In any way, i f the scheduler is determined 
not consistent, the realisation TZ is split according to an appropriate predicate and both 
sets are added to U [15]. 

Counterexample-Guided Inductive Synthesis 

Counterexample-guided inductive synthesis ( C E G I S ) , introduced in Inductive Synthesis for 
Probabi l is t ic Programs Reaches New Horizons by Andriushchenko et. a l . [2], is a different 

17 



method for examining families of Markov chains and finding realisations that satisfy a given 
specification. 

There are two figurative parts to this method - a learner and an oracle. The learner 
maintains Q, a set of realisations of the family of M C s that are to be checked. A t the start 
of the process, the learner selects a realisation r £ Q and passes it to the oracle. The oracle 
verifies the realisation wi th respect to the specification <p and determines whether r \= ip. 

Counterexamples are derived from realisations that have been verified, and rejected. 
Based on these, other realisations i n Q that would also violate the specification are rejected 
by the learner and do not need to be verified by the model checker. 

Figure 3.7 depicts the synthesis process and the figurative communications between the 
learner and the oracle. 

Figure 3.7: Graph ica l representation of the C E G I S synthesis method 
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Chapter 4 

P A Y N T — Probabilistic progrAm 
sYNThesizer 

P A Y N T , the Probabi l is t ic p r o g r A m sYNThes ize r , is a P y t h o n program by Andriushchenko 
et a l . introduced in P A Y N T : A Tool for Inductive Synthesis of Probabi l i s t ic Programs [3] 
and its purpose originally, as the name suggests, was to synthesize solutions to probabilist ic 
programs. 

4.1 P A Y N T for probabilistic programs 

Probabilistic programs provide a formal way to describe systems that deal w i th some k ind 
of uncertainty [5]. A sketch models a family of probabil i ty programs using the P R I S M 
language. A m o n g these programs, P A Y N T searches for the one that best satisfies the 
given specification (usually reachability property or expected reward) and synthesis problem 
(minimizat ion or maximizat ion) . 

Sketches define a l l states, transitions and actions of the program. They also contain 
undefined parameters called holes. " F i l l i n g " the holes w i th options from specified domains 
creates realisations that can be verified against the specification using the model checking 
tool S to rm [6]. 

The challenge here is to evaluate a l l possible realisations i n a t imely manner. Because 
number of realisations grows exponentially w i th the number of holes, the simple synthesis 
method one-by-one quickly becomes too slow. For these purposes, P A Y N T implements the 
synthesis methods from the previous chapter 3 - A R and C E G I S , and their combination 
called H y b r i d . 

4.2 P A Y N T for P O M D P s 

For Inductive Synthesis of Fini te-State Controllers for P O M D P s [1], P A Y N T was adapted 
to be able to synthesize deterministic finite-state controllers for P O M D P s . 

In this case, there are no holes in the input sketch, instead it represents the P O M D P 
for which P A Y N T is t ry ing to find the opt imal controller. The sketch defines a l l states, 
actions, t ransi t ion functions, and observations of the P O M D P . 

There are two figurative parts to the controller synthesis process: the outer stage -
where the design space of a set memory size is created - and the inner stage - where the 
design space is explored [1]. 
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The design space represents a l l possible F S C s that P A Y N T has to consider. Memory 
size defines how many different memory values should the final F S C have. In the in i t i a l 
design space, a l l actions and observations are available in a l l memory value nodes. 

For design space exploration i n the inner stage, P A Y N T again uses one of the imple­
mented synthesis methods (e.g. A R ) to find the op t imal controller i n the design space. 

4.2.1 Design Space 

In the program, the design space is represented by a list of Holes, P y t h o n classes, w i th 
properties such as name, options, and option_labels. 

Hole names are strings that encode the memory values of the F S C s , as well as the 
observations that are received by the agent from the P O M D P . They have a set structure 
of "T( [0] , M)", where T defines the hole type - either A for action, M for memory, or AM 
for the combination of both action and memory - 0 stands for the observation which is 
represented by a string, and M is the numerical memory value of the node. 

The Hole options instance at tr ibute is a list of integers that represent a certain possi­
bi l i ty of what could happen next i f the received observation is as defined i n the hole name. 
Depending on the hole type, that could be the action that should be taken, a memory 
update, or a combination of both. 

The hole option_labels at tr ibute provides further information about the options that 
are human readable. Each hole option has a option label that describes it. 

4.2.2 Iterative Strategy 

P A Y N T can continuously increase the memory size and search for finite-state controllers 
in an increasingly larger design space.By keeping the current op t imum values this strategy 
ensures that only F S C s that improve this op t imum are accepted i n the synthesis process. 
This strategy w i l l be referred to as the iterative approach. 

W i t h this strategy, P A Y N T is guaranteed to find the best available F S C for each memory 
size, however as it increases, the design space also grows i n size and the synthesis takes 
longer. 

4.2.3 Memory Injection Strategy 

Andriushchenko et a l . i n [1] introduce a strategy for finding compact F S C s by using infor­
mat ion from the previous inner state loop for adding memory values to selected observations 
and then removing symmetries to reduce the design space size and remove F S C s w i t h the 
same value. 

In this thesis, this strategy w i l l be referred to as the memory injection or just injection 
approach. 
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Chapter 5 

Contributions to P A Y N T 

In this chapter, I describe my contributions to P A Y N T - their objective, design and imple­
mentation. 

5.1 Graphical F S C Representation 

So far, the finite-state controller output by P A Y N T was always i n a text format. Whi l e 
this format is human readable, it is difficult to get an understanding of how the controller 
is shaped or how the transitions between nodes work. Therefore, my first contr ibut ion to 
P A Y N T was to figure out a way to programmatical ly output a graphical representation of 
the synthesised controllers (or generally any design spaces). 

5.1.1 Implementation 

For visual iz ing the controllers, I chose to use P y G r a p h v i z [8], an open-source P y t h o n inter­
face for drawing graphs bu i ld on the Graphviz [7] visual izat ion software. 

In the code, the design space is stored i n a list of Holes, nodes i n the controllers. The 
class variable Hole.name encodes the current memory value and incoming observation, 
Hole.options holds a list of integers that identify the node that could be transitioned to, 
and Hole. option_labels provides further information about the next node and possibly 
the action that the agent is supposed to take. 

For determining the memory value from the Hole .name, I implemented a short function 
that uses a regular expression to match the memory value inside the hole name: 

def get_current_memory(name): 
return int(re.findall(r"[AM] { 1 , 2 } \(\[.*\],(\d+)\)", name) [0]) 

A similar function matches the observation inside the hole name: 

def get_current_observation(name): 
return re.findall(r"[AM] { 1 , 2 } \ ( \[(.*)],\d+\)", name) 

Because i n some cases the observation is an empty str ing and the list returned by 
the f i n d a l l () function would be empty, I cannot return the first element like i n the 
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get_current_memory() function. Instead, I chose to return the list itself and let it be 
addressed in a way that is appropriate for the context i n which this function was called. 

Next are the hole options. In case of pure action or memory type holes, the hole options 
do not need any special treatment and can be used as they are. B u t i n case of the hole type 
which combines action and memory together, the hole options do not match the memory 
value and instead the memory value needs to be parsed from the corresponding option label. 
Th is was implemented i n the following function: 

def parse_am_labels(hole): 
options = [] 
for option i n hole.options: 

opt = re.findall(r"{.*}\+(\d+)", hole.option_labels [option]) [0 ] 
options.append(int(opt)) 

max = None i f not options else sorted(list(set(options))) [ - 1 ] 
return (options, max) 

In the end, I transform the parsed data into a nested dict ionary in this format - the 
memory values, nodes, are the keys in this dictionary: 

{ 

start_node: { 
end_nodel 
end_node2 

}. 
end_node2: [. 

} 

This allows to then iterate over this dict ionary and add nodes and edges to the P y -
Graphviz AGraph object using methods AGraph.add_nodes_from and add_edge. 

The final graph is then output i n the form of a P N G image to a specified file. For 
examples of these images, see appendix A . 

5.2 Limi t ing Design Space 

W i t h no addi t ional logic, the design space from which P A Y N T synthesizes the opt imal finite-
state controller contains a l l possible combinations of memory values, observations, actions 
and transitions. W h e n the memory size is increased, the design space size also increases 
and so does the synthesis durat ion. If only certain transitions were allowed, it could reduce 
the synthesis t ime and allow finding controllers w i th memory sizes that otherwise might 
have been unobtainable in a reasonable time. 

5.2.1 Implementation 

For restricting the design space, I implemented the set_memory function which takes the 
design space, memory size, a condition function, and further function arguments to control 
the behaviour of the function - rewrite and r e s t r i c t . The condit ion function can be any 

: [observationl, observations], 
: [observation] 
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function that takes three numerical arguments that represent the current memory value, 
the next memory value, and the m a x i m u m (max) memory value and returns a boolean. 

This function iterates over a l l of the holes i n the design space and extracts the current 
memory value from the hole name using the get _ current _memory function described in 
section 5.1. Then, new options are constructed based on the current memory, memory size 
and the condit ion function: 

new_options = [next for next i n hole.options 
i f not condition(current, next, mem_size-l)] i f r e s t r i c t 
else [next for next i n range(mem_size) i f 
condition(current, next, mem_size-l) 

The r e s t r i c t parameter controls whether the new options come from a generated range 
of numbers that are selected i f the condit ion evaluates true ( r e s t r i c t == False) or if the 
new options are based on the existing options while removing those that pass the condit ion 
function ( r e s t r i c t == True). 

If the hole is of type memory, the new options are added to (if rewrite == False) or 
replace the hole options. For mixed type holes, the new options which represent memory 
values need to be mapped to observation labels and the hole options then are extended or 
replaced wi th matching indexes of these observation labels. 

The restrictions do not take actions or observations into account. 

5.2.2 Restrictions 

Because the number of possible restriction conditions is next to infinite, I have had to decide 
which restriction conditions to explore i n this thesis. O r rather which formats of design 
spaces should P A Y N T examine to synthesize the opt imal F S C . For that, I have set myself 
the following conditions: 

1. A l l nodes of the design space must be reachable from the in i t i a l node 0. Restr ic t ing 
the design space to be equal to a design space achievable w i th a smaller memory size 
is not desirable. 

2. A val id F S C wi th at least one reachable absorbing state must be synthesizable from 
the restricted design space. 

3. Transitions are only allowed between memory states equal, differing by one, or from 
smallest to largest and vice versa. Th is condit ion is due to personal choice of the 
F S C s I wanted to focus on. 

Using different condit ion functions and parameters, the set_memory function is able to 
shape the design space to one of the following forms. 

Forward 

The Forward restriction produces the smallest possible design space that can s t i l l result 
in a val id controller. It is constructed by first clearing, emptying the design space using 
a condit ion function that always evaluates to False and allowing rewrite and then adding 
holes that pass the condit ion function forward. The conditions allows transitions from 
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nodes wi th memory values Xi to nodes wi th memory values Xj+i or from x m a x to xm 

A graphical representation of the nodes and available transitions is shown i n figure 5.1. 

def forward(self, current, next, max): 
return current + 1 == next or (current == max and next == max) 

Figure 5.1: Restr ic t ion Forward 

One step 

The restriction One step builds on the design space previously constructed using the For­
ward restriction. Us ing the set_memory function wi th the following condit ion backward 
it adds transitions from nodes wi th memory values Xi to nodes w i t h memory values 
or from XQ to XQ. The resulting design space can be seen in figure 5.2. 

def backward(self, current, next, _ ) : 
return current - 1 == next or (current == 0 and next == 0) 

-&XXXXXX) 
Figure 5.2: Restr ic t ion One step 

Backward 

To create the restriction Backward, the condit ion function self _loops is used to remove 
transitions from the first and last nodes to themselves on a design space already restricted 
by the One step restriction. 

def self_loops(self, current, next, _ ) : 
return current == next 

A graphical representation of the resulting design space can be seen i n figure 5.3. 

Figure 5.3: Restr ic t ion Backward 
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Simple circle 

The restricted design space Simple circle is constructed using the simple_circle con­
di t ion function which only allows transitions from nodes wi th memory values X{ to or 
from x m a x to XQ. Figure 5.4 depicts a schema of the resulting design space. 

def simple_circle(self, current, next, max): 
return (current + 1 == next) or (current == max and next == 0) 

©—0 
Figure 5.4: Restr ic t ion Simple circle 

Circle both ways 

The Circle both ways restriction builds on a Simple circle design space and adds transi­
tions from nodes wi th memory values Xi to x%-\ and from XQ to x m a x using the function 

simple_circle_backward. See figure 5.5 for a graphical schema of the resulting design 
space. 

def simple_circle_backward(self, current, next, max): 
return (current - 1 == next) or (current == 0 and next == max) 

Figure 5.5: Rest r ic t ion Circ le both ways 

Circle both ways with loops 

Restr ic t ion Circle both ways with loops results in the biggest design space and it is con­
structed s imilar ly to how Backwards is constructed from One step. O n l y this time, instead 
of using the self _loops function to remove transitions from nodes wi th memory values 
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XQ to XQ and from x m a x to x m a x , it is used to add them. The design space that results from 
this restriction is depicted in figure 5.6. 

Figure 5.6: Rest r ic t ion Circ le both ways wi th loops 

5.3 Incremental Memory Setting 

The next step was to use the newly implemented way of restricting the design space to t ry 
to continuously synthesize F S C s from an increasingly larger design space. This includes 
using different restrictions as well as increasing the memory size. 

5.3.1 Implementation 

A new SynthesizerPOMDPIncremental class inherits from SynthesizerPOMDP. It uses Syn-
t h e s i z e r P O M D P s in i t ia l iza t ion method and then sets three addi t ional instance attributes 
- memory_size to set the in i t i a l memory size, max_size to set the m a x i m u m memory size 
that P A Y N T should attempt to synthesize F S C s wi th , and reset_optimum to allow or 
prohibit resetting Sketch.specification.optimality.optimum to None. If this variable 
is not reset to None, it allows the synthesis loop to reject controllers that fall bellow this 
value faster. 

In the run method of the Syn thes ize rPOMDPIncrementa l class, the memory_size and 
max_size attributes w i l l be used i n the synthesis loop. P A Y N T w i l l synthesize finite-state 
controllers un t i l the gradually incremented memory_size at tr ibute is equal to max_size. If 
the parameter max_size is set lower than the min_size parameter, the synthesis w i l l run 
i n an infinite loop. 

For each memory size, the new memory size has to be set using the PomdpManager of 
the quotient at tr ibute of the sketch and the memory then has to be unfolded - the design 
space is reset. 

For each memory size, P A Y N T then runs a sequence of restrictions, after each of those, it 
evaluates the design space size and (if it 's greater than zero) P A Y N T attempts to synthesise 
a finite-state controller. W i t h the A R method of synthesis, the synthesizer only returns a 
F S C i f it 's able to find one wi th a better opt imal i ty value than previously. 
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Chapter 6 

Evaluation 

In this chapter I w i l l evaluate the incremental memory setting approach against the baseline 
- iterative approach - and the memory injection approach; and I w i l l compare these methods 
wi th regards to synthesis t ime, memory sizes, and calculated optimums. 

6.1 Benchmarks and Experiment Conditions 

The methods w i l l be evaluated against two types of examples - G r i d and Maze - and their 
variations G r i d Avoid , G r i d Center, and Maze Long . 

A l l experiments run consecutively on an Acer TravelMate X laptop wi th an Inte l® 
C o r e ™ i5-8250U C P U @ 1.60GHz x 8 processor. For each benchmark, each approach was 
run for 30 minutes using the A R synthesis method. 

6.1.1 G r i d 

The G r i d is a simple example where a robot - agent - navigates i n a 4x4 grid. The robot 
is able to move i n directions north, east, south, and west. In case the robot is standing on 
the border of the grid and wants to take an action which would essentially lead out of the 
grid, the robot's action fails and it stays i n the current field. The objective for the robot is 
to navigate to a set target field while avoiding potential bad fields. 

The agent is placed in a random field i n the grid w i th the target and bad fields not being 
among the options. 

Each action the robot takes has a 90% chance of being successful. In the remaining 
10%, the robot does not move and stays i n its current field. 

G r i d Avoid 

G r i d Avo id , as depicted i n figure 6.1a, has the target field T on coordinates (x = 0, y = 3) 
and a bad field B on coordinates (x = 1, y = 1) which the robot must t ry to avoid. 

In each field, the robot receives robot receives one of four observations (0 - the in i t i a l 
field, 1 - any field inside the grid, 2 - the target field, and 3 - the bad field). 

The robot receives a perfect observation on this field w i t h the value of 3. 
The quali ty of the controller is measured by the probabi l i ty of the robot reaching the 

target field and not reaching the bad field. 
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G r i d Center 

The G r i d Center variat ion of the example (shown in figure 6.1b) moves the target field T 
to coordinates (x = 2, y = 2). 

W h a t makes this challenge more difficult is that the robot now must take a l l of the four 
available actions north, east, south, and west to get to the target state. A s opposed to the 
previous benchmarks where actions south and east were sufficient. 

The quali ty of the controller is again measured by the probabil i ty of the robot reaching 
one of the end fields T and B. 

B 

T 

-> X 

T 

B 

(a) Grid Avoid (b) Grid Center 

Figure 6.1: Schemas of the G r i d benchmarks wi th descriptive axes. T - target field, B 
bad field 

6.1.2 M a z e 

The Maze is a simple example used by Andriushchenko et a l . i n [1]. 
It again uses a robot that can go up, down, left, and right as its agent. Th is robot is not 

completely reliable, it is only successful i n 80% of cases. For each action the robot tries to 
perform, there is a 16% chance that it ends up going i n one of the perpendicular directions 
(8% chance for each of them) and a 4% chance that it w i l l actually go i n the exact opposite 
direction to where it intended to go. 

Regardless of the success of the robot's action, i f the nature of the field does not allow 
the robot to move i n that direction, the robot does not move at a l l and remains i n its 
original field. 

The observation i n each field is consistent w i th the possible ways a robot could move 
from that field - e.g. a fields that allows the agent to move up and down but not left or 
right receive the same observation, it our case represented by the number 4. In this maze, 
there are seven different observations that the robot could receive. Figure 6.2 depicts the 
Maze and its fields w i th their corresponding observations. 

The quali ty of the controller is measured by how many steps the robot needs to get to 
the target state T. Init ially, robot is placed randomly in one of the fourteen fields. 
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(a) Maze schema showcasing the target 
state T and bad states B. 

V 

(b) Maze schema showcasing the differ­
ent observations received in each field 

Figure 6.2: Two schemas of the Maze example wi th descriptive axes. 

For observation 0, 2, 3, and 5, the act ion that needs to be taken for the robot to get to 
the Target field in the least amount of steps is very clear - observation 0 means that the 
robot w i l l want to go right, observation 3 means the robot must t ry to go left. In observation 
4 and 1, however, depending on the part icular field, there are two correct actions. 

Maze Long 

Maze L o n g is a variant of the example described in the previous section. It extends the 
maze to both sides and increases the number of fields w i th the cr i t ica l observations 1 and 4 
and also makes the observation 2 no longer automatical ly associated wi th the action down. 
A schema of this example is depicted i n figure 6.3. 

The agent is, too, in i t ia l ly placed in a random field and its objective is to get to the 
target field i n as l i t t le steps as possible. 

B B T B B 

0 — 1 6 7 
y 

(a) Maze Long schema showcasing the target state T and bad states B. 
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y 

(b) Maze Long schema showcasing the different observations in each field. 

Figure 6.3: Two schemas of the Maze L o n g example w i th descriptive axes. 

6.2 Evaluations 

6.2.1 Limiting Design Space 

In this section I explore the results of controller synthesis for two different benchmarks -
G r i d Avo id and Maze - w i th and without restrictions. 

G r i d Avoid 

Let 's take the G r i d Avo id example as the benchmark and compare the results of synthesis 
between the full design spaces and design spaces restricted using different conditions. 

A s described i n section 6.1.1, this benchmark measures the opt imal i ty of the controllers 
by the probabil i ty that the robot w i l l be able to get to the target state T while not landing 
on the bad state B. The higher and closer to 1 is the Optimum value, the better is the 
controller. 

Table 6.1 shows the op t imum values of controllers acquired by exploring variously re­
stricted design spaces wi th memory sizes 3-5 and how long P A Y N T took to synthesize those 
controllers. 

In this example, P A Y N T is able to find a controller in each of the various design spaces. 
However, the controller quali ty can be vastly different depending on the applied restriction. 
Some restrictions (e.g. Simple circle) are able to find controllers of the same quali ty as the 
unrestricted design space and do that i n a fraction of the time, while other restrictions (e.g. 
Forward) produce controllers of inferior quality. 

The restriction predicates Circ le both ways and Circ le both ways wi th loops restrict to 
unnecessarily large design spaces, Simple circle is sufficient enough in this case. 
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Restr ic t ion Memory size O p t i m u m Synthesis durat ion [s] 

None 3.0 0.892274 0.353155 
Backward 3.0 0.846731 0.027576 
Circle both ways 3.0 0.892273 0.151318 
Circle both ways wi th loops 1 3.0 0.892274 0.369734 
Forward 3.0 0.385714 0.003453 
One step 3.0 0.880092 0.100280 
Simple circle 3.0 0.892274 0.034246 

None 4.0 0.911625 12.525107 
Backward 4.0 0.880092 0.059986 
Circle both ways 4.0 0.911625 0.917087 
Circle both ways w i t h loops 4.0 0.911625 3.379023 
Forward 4.0 0.531429 0.004257 
One step 4.0 0.902882 0.485129 
Simple circle 4.0 0.911625 0.105396 

None 5.0 0.920518 561.828769 
Backward 5.0 0.902882 0.621761 
Circle both ways 5.0 0.920518 4.734108 
Circle both ways w i t h loops 5.0 0.920518 29.257244 
Forward 5.0 0.666857 0.048645 
One step 5.0 0.915777 1.683551 
Simple circle 5.0 0.920518 0.276828 

Table 6.1: Results of F S C synthesis for the G r i d Avo id example using different design space 
restrictions. 

Figure 6.4 depicts the baseline F S C (6.4a) and the inferior F S C synthesized using the 
Forward restriction (6.4b) on design space wi th memory size 3 wi th their nodes and actions. 
The figures do not depict observations because actions upon receiving observations other 
than 1 do not need to be considered. 

south 

east \_yeast 7 

(a) F S C synthesized from a non- (b) F S C synthesized from a design space 
restricted design space restricted using the Forwards predicate 

Figure 6.4: F S C controllers w i t h memory size 3 synthesized for the G r i d Avo id benchmark 

Figure 6.5 depicts the paths of two robots controlled by different F S C s start ing i n the 
field w i th coordinates (0,3). 

1It is important to note that by its nature, this predicate does not restrict the design space for memory 
size 3. 
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The red robot, controlled by F S C depicted i n 6.4a takes a path OJ = (0, 3), (0, 2), (1, 2), 
(2, 2), (2,1), (3,1), (3,1), (3, 0), given that it does not "s l ip" at any point i n t ime and al l 
its actions are successful. 

The path taken by the blue robot controlled by the F S C depicted i n 6.4b is OJ = (0, 3), 
(1,3), (2,3), (2,2), (1,2), (0,2), (0,2),.. . W i t h that in i t i a l state, this controller is not able 
to navigate its robot to the target field. In fact, a robot controlled by this F S C w i l l not 
reach the target field T if the start ing field is on wi th coordinate x = 0. Th is is why it has 
a low opt imal i ty value of 0.385714. 

x 
y 

B 

Figure 6.5: P a t h of the robots controlled by F S C depicted i n 6.4a (red) and F S C depicted 
i n 6.4b (blue) 

Finite-state controllers depicted i n figure 6.6 are the results of synthesis from a non-
restricted design space wi th memory size 4 (6.6a) and a design space wi th the same memory 
size restricted using the Simple circle restriction (6.6b). These controllers have the same 
opt imum value of 0.911625. 

(a) F S C synthesized from a non- (b) F S C synthesized from a design space 
restricted design space restricted using the Simple circle predi­

cate 

Figure 6.6: F S C controllers w i t h memory size 4 synthesized for the G r i d Avo id benchmark 

Gray edges i n 6.6a represent transitions upon receiving observations 0, 2, or 3. Obser­
vation 0 - outside of gr id - is never received and observations 2, and 3 are not followed 
up by any action. S t i l l , these transitions are a part of the controller, even i f they do not 
influence the robot i n any way on its path, and they have to be accounted for in the design 
space. 
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The time it takes P A Y N T to synthesize a controller depends directly on the design space 
size. B y applying a suitable restriction - i n this case Simple circle is the best possible one, 
the opt imal controller can be found 10 times faster (for memory size 3), 119 times faster 
(memory size 4), or even 2030 times faster (memory size 5). 

Maze 

The restrictions are less successful in the Maze example. Table 6.2 compares the synthesis 
results of synthesis applying different restrictions to the design spaces wi th memory sizes 
3 and 4. In this example, the controllers w i th the lower op t imum values are the ones wi th 
the better quality. 

Restr ic t ion Memory size O p t i m u m Synthesis durat ion [s] 

None 3.0 7.372105 16.960565 
Backward 3.0 18.130855 1.271142 
Circle both ways 3.0 16.277350 14.701138 
Circle both ways wi th loops 3.0 7.372105 17.415230 
Forward 3.0 71.266286 0.098195 
One step 3.0 7.508047 4.559242 
Simple circle 3.0 31.513882 0.663473 

None 4.0 - -

Backward 4.0 8.045141 0.702702 
Circle both ways 4.0 7.552089 14.782590 
Circle both ways wi th loops 4.0 7.372105 610.167898 
Forward 4.0 67.010889 1.619117 
One step 4.0 7.372105 62.611899 
Simple circle 4.0 15.754049 2.317472 

Table 6.2: Results of F S C synthesis for the Maze example using different design space 
restrictions 

In this case, the F S C s synthesized by applying restrictions Circle both ways with loops 
(for memory size 3) and One step (for memory size 4) are the only controllers on-par w i th 
the best found F S C which was synthesized from the unrestricted design space wi th memory 
size 3. 

However, just as w i th the previous benchmark, the Circle both ways with loops restriction 
does not restrict the design space for memory size 3 at a l l . Furthermore, synthesis from the 
memory size 4 design space that had the restriction One step applied takes 3.7 times longer 
than synthesis of the unrestricted design space wi th memory size 3 and this (restricted) 
larger memory design space does not produce controller of a better quality. 

Because synthesis from the unrestricted design space wi th memory size 4 d id not finish 
in the available time, it cannot be concluded whether if would produce a better quali ty 
controller or not. This leads to the following: either 7.372105 is the best opt imal i ty value 
we can expect a finite-state controller to have in this benchmark regardless of the memory 
size or the suitable restriction is not among the restrictions that were explored. 
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6.2.2 Incremental Memory Setting 

The following sections show the results of controller synthesis for different examples using 
the three approaches - iterative, incremental, and memory injection. 

Please note, that due to the nature of the benchmarks and the approaches, lines in 
graphs may overlap i n places where the op t imum value stagnates. 

Maze 

The Maze benchmark measures the opt imal i ty value of controllers by the abi l i ty of agents 
to get from a random in i t i a l field to the target field i n as l i t t le steps as possible. 

In section 6.2.1, it was established that P A Y N T is not able to synthesize finite-state 
controllers w i th better opt imal i ty value than 7.372105 i n the set t ime regardless of the 
memory size or if the design space was restricted i n any way. B y their nature, the iterative 
and incremental approaches cannot synthesize better controllers either. 

Figure 6.7 shows how the controllers synthesized using the three different approaches 
compare i n their opt imal i ty value w i t h regards to used memory sizes. Overal l , the results 
for this benchmark are quite unremarkable. 

M a z e 

7.550 

7.525 

7.500 

| 7.475 

g. 7.450 

7.425 

7.400 

7375 

A p p r o a c h 

- Incremental 

Injection 

Iterative 

8 10 
M e m o r y s i z e 

12 ID 

Figure 6.7: G r a p h comparing memory size and opt imal i ty value on the Maze benchmark. 
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M a z e 

O.Ol 0.1 1 10 100 1000 
T i m e [s] 

Figure 6.8: G r a p h comparing opt imal i ty value and time the Maze benchmark 

Maze Long 

Next , these approaches are evaluated on the Maze L o n g benchmark (described i n section 
6.1.2). The opt imal i ty values of the controllers found using the three different approaches 
wi th respect to available memory sizes are shown i n figure 6.9. Figure 6.10 shows the results 
of a l l of the three approaches focusing on the opt imal i ty value of the found F S C s and total 
elapsed time. 

M a z e long 

2 4 6 8 10 
M e m o r y s i ze 

Figure 6.9: G r a p h comparing memory size and opt imal i ty value on the Maze L o n g bench­
mark. 

The iterative approach is not able to synthesize controllers i n design spaces wi th memory 
sizes 3 and above i n the available t ime. The incremental approach does is able to find 
controllers of memory size 4 which is of better quali ty than the ones found by the iterative 
approach. The Memory injection approach finds controllers w i th memory sizes up to 10 but 
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their opt imal i ty values are worse than of those found using the iterative and incremental 
approaches i n the same time. 

M a z e long 

0.1 1 10 100 1000 
T i m e [s] 

Figure 6.10: G r a p h comparing opt imal i ty value and t ime on the Maze L o n g benchmark. 

Given that the longest straight path the robot could take i n this maze is 9 steps long, 
the best found controller w i th opt imal i ty value 18.772289 is s t i l l far from that and is only 
a slight improvement from the 19.138456 found by the iterative approach. 

G r i d Avoid 

Figure 6.11 shows the results of the three approaches and compares them wi th regards to 
opt imal i ty value and memory size. A s established i n section 6.2.1, restriction Simple circle 
seems to be able to restrict the design space i n such a way that the controllers synthesized 
from it have the same quali ty as those synthesized from non-restricted design spaces. In 
this example, adding memory improves the quali ty of the controllers. 

W h i l e the iterative strategy runs out of t ime by memory size 5, the incremental can 
continue to find controllers even past that point as the restrictions reduce the design space 
sizes and therefore the synthesis times as well . The memory injection strategy, however, 
does not seem to be able to find F S C s wi th improved opt imal i ty values after adding more 
than 4 memory values. 
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Figure 6.11: G r a p h comparing memory size and opt imal i ty value on the G r i d Avo id bench­
mark. 

G r i d a v o i d 
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T i m e [s] 

Figure 6.12: G r a p h comparing opt imal i ty value and time the G r i d Avo id benchmark. 

H a d there been another restriction - design space - that P A Y N T would need to explore, 
the incremental approach would l ikely not be able to find the controllers quicker than the 
iterative approach. 

G r i d Center 

The G r i d Center benchmark is s imilar to G r i d Avo id both i n design and i n results. Figure 
6.13 shows the results of each of the approaches - the opt imal i ty values and memory sizes. 
Figure 6.14 showcases the relation between elapsed t ime and best achieved optimums. 
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G r i d c e n t e r 
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Figure 6.13: G r a p h comparing memory size and opt imal i ty value on the G r i d Center bench­
mark. 

Just like i n the G r i d Avo id benchmark, the iterative and incremental approaches are 
able to find controllers of the same quali ty i n design spaces wi th memory sizes up to 5. 
Then , however, the iterative approach runs out of t ime while the incremental approach is 
able to continue and synthesize F S C s wi th memory sizes 6, 7, and 8 which each have a 
better opt imal i ty value than the previous one. 

In this benchmark, the memory injection approach is able to find F S C s wi th the same 
quali ty as those found using the iterative and incremental approaches wi th memory sizes 
2, 3, and 4. After that, it is not able to improve the controllers. 

Compared to the G r i d Avo id benchmark, in G r i d Center the controller quali ty improves 
slower and more gradually over t ime i n a l l three approaches. 

G r i d c e n t e r 

0.2 
0.001 0.01 0.1 1 10 100 1000 

T i m e [s] 

Figure 6.14: G r a p h comparing opt imal i ty value and time on the G r i d Center benchmark. 
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6.3 Experiment Conclusions 

Because this thesis only deals w i th prel iminary experiments on the matter of design space 
restrictions, it is no surprise the results are mixed - in some cases, the experiment outcomes 
were quite unremarkable, i n other cases the results look promising. 

The least remarkable results were i n the Maze benchmark. None of the tested ap­
proaches could synthesize a controller w i th better opt imal i ty value than 7.372105 in the 
given t ime regardless of memory size or the used restriction. However, given that the short­
est possible path between the fields most distant from the target field is 7, the opt imal i ty 
value 7.372105 l ikely cannot be improved upon. 

The Maze L o n g benchmark, where the shortest path from fields most distant from the 
target was 10 and the best found controller had the opt imal i ty value of « 18 suggests that 
there is room for improvement. In this example, the controllers indeed seem to be improving 
i n quali ty w i th added memory. 

In the G r i d Avo id and G r i d Center examples, the results show an improving tendency 
in F S C s the larger the memory size is. Simple Circ le seems to be a suitable restriction than 
can help finding these controller quicker. 

Overal l design spaces wi th larger memory sized appear to result i n better F S C s in 
examples where there are mult iple states wi th imperfect observations (e.g. observation 1 in 
G r i d , observations 4 and 2 in Maze Long) which require the agent to take different actions. 
A n imperfect observation by itself does not imply the need for the controller to have a 
bigger memory size. If i n the system there is only one action the agent should take upon 
receiving the imperfect observation, there is no need to t ry to dist inguish these states using 
memory values. 
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Chapter 7 

Conclusion 

In this thesis, I explored systems wi th state uncertainty modeled using par t ia l ly observable 
Markov decision processes, what are their properties and how can an agent interact w i th 
them. Out of the two discussed methods for controll ing agents w i t h regards to P O M D P s , 
the focus was mainly on finite-state controllers and their synthesis. 

P A Y N T is a tool which can find the op t imal F S C i n a design space that encompasses 
al l possible F S C s of a certain size for the given P O M D P . However, w i th increasing size of 
the design space, the synthesis t ime also increases and soon the results are unobtainable in 
a rat ional t ime. 

Pre l iminary experiments on restrictions have shown that they are able to cut down the 
t ime necessary for finding the op t imal finite-state controller. Whether the controller's qual­
i ty was affected, however, depended on the restriction and the benchmark. E . g . the Simple 
circle restriction was ideal for the G r i d Avo id benchmark, while the Forward restriction was 
not. 

The incremental memory setting approach was also evaluated on the four benchmarks 
and it has proved to be comparable to the iterative and memory injection methods i n some 
benchmarks ( G r i d Avoid , G r i d Center) w i th regards to the quali ty of controllers found in 
the to ta l elapsed time. A different set of restrictions could l ikely achieve better results. 

Because larger memory size can vastly improve the quali ty of the controllers for P O M D P 
which require different action i n states wi th the same observations, future work related 
to this topic could explore different restriction or smarter ways of applying them i n the 
incremental memory setting approach. 
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Appendix A 

Graphical F S C Representation 



Figure A . 2 : Output of design space of memory size 4 restricted wi th Simple Circ le , w i th 
observations 

Figure A . 3 : Output of design space of memory size 4 restricted wi th One step, without 
observations 
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Appendix B 

Contents of the included stora 
media 

The included storage media contains the following files: 

— synthesis.zip 
— xgyselOO.pdf 
— xgyselOO_print.pdf 
— xgyselOO.zip 
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Appendix C 

Manual 

P A Y N T is tool that can automatical ly synthesize finite-state controllers for P O M D P s . This 
fork modifies P A Y N T to be able to restrict design spaces and only synthesize controllers of 
certain types. 

Installation 

To instal l the program, first unzip the synthesis.zip file and then from the synthesis 
folder run the instal lat ion script: 

. / i n s t a l l . s h 

Running P A Y N T 

To run the program you use the script ./scripts/run.sh which runs a l l three of the 
approaches on the four interesting benchmarks. 

Before you run the program, make sure the folder workspace/log/ exists and that you 
have the P y t h o n environment loaded (source env/bin/activate). 

Options 

Options: 
— p r o j e c t TEXT 
— s k e t c h TEXT 
—pr o p e r t i e s TEXT 
— f sc-synthesis 

root [required] 
name of the sketch f i l e 
name of the properties f i l e 
enable incremental synthesis of FSCs for 
a POMDP 
implicit memory size for POMDP FSCs 
enable incremental synthesis of FSC for 
a POMDP within a memory size with applied 
r e s t r i c t i o n s 

—pomdp-memory-size INTEGER 
—incremental INTEGER... 

— s t r a t e g y [ f u l l | i t e r a t i v e | i n j e c t i o n ] 

— h e l p 

—reset-optimum 
define strategy 
reset the optimality property after each 
synthesis loop 
Show th i s message and exit. 

46 


