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ABSTRACT
State-space models are immensely useful in various areas of science and engineering.
Their attractiveness results mainly from the fact that they provide a generic tool for
describing a wide range of real-world dynamical systems. However, owing to their gener-
ality, the associated state and parameter inference objectives are analytically intractable
in most practical cases. The present thesis considers two particularly important classes
of nonlinear and non-Gaussian state-space models: conditionally conjugate state-space
models and jump Markov nonlinear models. A key feature of these models lies in that—
despite their intractability—they comprise a tractable substructure. The intractable part
requires us to utilize approximate techniques. Monte Carlo computational methods con-
stitute a theoretically and practically well-established tool to address this problem. The
advantage of these models is that the tractable part can be exploited to increase the
efficiency of Monte Carlo methods by resorting to the Rao-Blackwellization. Specifically,
this thesis proposes two Rao-Blackwellized particle filters for identification of either static
or time-varying parameters in conditionally conjugate state-space models. Furthermore,
this work adopts recent particle Markov chain Monte Carlo methodology to design Rao-
Blackwellized particle Gibbs kernels for state smoothing in jump Markov nonlinear mod-
els. The kernels are then used to facilitate maximum likelihood parameter inference in the
considered models. The resulting experiments demonstrate that the proposed algorithms
outperform related techniques in terms of the estimation precision and computational
time.

KEYWORDS
Sequential Monte Carlo, particle Markov chain Monte Carlo, nonlinear and non-Gaussian
state-space models, conditionally conjugate state-space models, jump Markov nonlinear
models, state and parameter inference, identification of static and time-varying param-
eters



ABSTRAKT
Stavové modely jsou neobyčejně užitečné v mnoha inženýrských a vědeckých oblastech.
Jejich atraktivita vychází především z toho faktu, že poskytují obecný nástroj pro popis
široké škály dynamických systémů reálného světa. Nicméně, z důvodu jejich obec-
nosti, přidružené úlohy inference parametrů a stavů jsou ve většině praktických situacích
nepoddajné. Tato dizertační práce uvažuje dvě zvláště důležité třídy nelineárních a ne-
Gaussovských stavových modelů: podmíněně konjugované stavové modely a Markovsky
přepínající nelineární modely. Hlavní rys těchto modelů spočívá v tom, že—navzdory je-
jich nepoddajnosti—obsahují poddajnou podstrukturu. Nepoddajná část požaduje aby-
chom využily aproximační techniky. Monte Carlo výpočetní metody představují teoreticky
a prakticky dobře etablovaný nástroj pro řešení tohoto problému. Výhoda těchto mod-
elů spočívá v tom, že poddajná část může být využita pro zvýšení efektivity Monte
Carlo metod tím, že se uchýlíme k Rao-Blackwellizaci. Konkrétně, tato doktorská
práce navrhuje dva Rao-Blackwellizované částicové filtry pro identifikaci buďto statick-
ých anebo časově proměnných parametrů v podmíněně konjugovaných stavových mod-
elech. Kromě toho, tato práce adoptuje nedávnou particle Markov chain Monte Carlo
metodologii pro návrh Rao-Blackwellizovaných částicových Gibbsových jader pro vyhla-
zování stavů v Markovsky přepínajících nelineárních modelech. Tyto jádra jsou posléze
použity pro inferenci parametrů metodou maximální věrohodnosti v uvažovaných mod-
elech. Výsledné experimenty demonstrují, že navržené algoritmy překonávají příbuzné
techniky ve smyslu přesnosti odhadu a výpočetního času.
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INTRODUCTION

Context

A state-space model is a generic tool to embody our intuition about time-space de-
pendent and stochastic behaviour of a real-world dynamical system. The necessary
step towards drawing conclusions about such a system is to observe data on it. The
model and data are then used to carry out various statistical inference objectives,
including the estimation of latent states and parameters. However, dynamical sys-
tems are mostly nonlinear and non-Gaussian, which makes the associated inference
objectives analytically intractable and therefore poses a real challenge on the design
of high-fidelity approximation techniques.

Sequential Monte Carlo (SMC) methodology [47] is particularly well suited for
this aim. SMC methods provide approximate solutions based on generating a collec-
tion of random samples. A range of convergence results [217] for these approaches
proves that as the number of samples increases, quantities of interest are approxi-
mated with increasingly high precision. This ability comes naturally with the ques-
tion of high computational complexity. Fortunately, the computational power is still
growing—albeit not as rapidly in the sense of the Moore’s law as before, but rather
in terms of parallel architectures [60]—which makes this question relative, but rel-
evant mainly when the problem is high-dimensional or the computational resources
are limited. However, there exist particularly useful and general classes of nonlinear
and non-Gaussian state-space models that contain analytically tractable substruc-
tures. This feature is commonly utilized in the design of SMC methods in order
to improve their computational efficiency through the Rao-Blackwellization [36]. In
such cases, an algorithm relying on this principle can have the same estimation
precision as an algorithm without this improvement but at a lower computational
cost. The requirement of providing highly reliable approximate solutions to var-
ious inference objectives in state-space models has recently recorded a significant
conceptual shift, namely the particle Markov chain Monte Carlo (MCMC) method-
ology [4]. Particle MCMC algorithms can be seen as exact approximations of the
ideal MCMC procedures. These methods run an SMC method at each iteration in
order to produce a single sample of a quantity of interest, making them highly com-
putationally demanding. Therefore, even a slight improvement in the estimation
accuracy of these methods can have a profound impact on the computational time.

This thesis is about algorithm design. The aim is to develop computationally ef-
ficient Monte Carlo techniques for two generic classes of nonlinear and non-Gaussian
state-space models. The first class is formed by the conditionally conjugate state-
space models. Their characteristic feature lies in that they contain an algebraically
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tractable substructure with respect to the parameters but an intractable substruc-
ture with respect to the unobserved states. These models have been applied to a
broad range of diverse practical problems, including computer code performance tun-
ing [86], flu epidemics tracking [59], vehicle navigation systems [167], target tracking
[158], online recommendation services [226], estimation of the remaining useful life
of batteries [139], learning of cellular dynamics in system biology [155], web activity
modeling [146], optimization of portfolio returns [96], to mention a few. The second
class is given by the jump Markov nonlinear models. Their key aspect is that they
are formed by a finite number of nonlinear and non-Gaussian state-space configura-
tions that switch according to a discrete-valued Markov chain. These configurations
constitute the intractable part of the model, whereas the discrete chain forms the
tractable part. These models have also become substantially popular in various
practical applications, such as learning of consumption growth dynamics [97], traffic
behavior analysis through video surveillance [13], virus-cell fusion identification [79],
molecular bioimaging [197], detection of abrupt changes in financial markets [141],
sensor networks [214], simultaneous localization and tracking [127], terrain-based
navigation [23], estimation of drivers’ behavior [128], etc. The design of precise and
fast computational strategies can provide a substantial increase in efficiency in the
above applications, potentially decreasing the cost of associated hardware tools.

Outline

The present thesis is divided into two parts. The first one is composed of the first
two chapters and provides the reader with an introduction into the basic concepts
and tools used throughout the thesis. The second one is formed by a number of
separate chapters that summarize novel methods and solutions. These chapters are
extended versions of the author’s published papers.

Chapter 1

The purpose of Chapter 1 is to shortly describe the basic Monte Carlo principles
for approximating general and intractable probability distributions, and to review
more advanced methods such as sequential Monte Carlo and particle Markov chain
Monte Carlo in their generic form. A minor contribution of this chapter consists in
presenting a number of simple examples to better describe some of the characteristic
features of the considered methods.
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Chapter 2

Chapter 2 discusses applicability of the generic tools introduced in Chapter 1 to
the state and parameter inference in state-space models. We provide a number of
examples in this context and compare the performance of these methods with some
alternative strategies. Although this chapter is mainly a literature review, it also
proposes some minor methodological developments and adaptations. Specifically, in
Section 2.5, we demonstrate that the two-filter smoothing can be seen as a special
case of backward-filtering forward-smoothing algorithm, a time-reversed version of
the forward-filtering backward-smoothing.

Chapter 3

Chapter 3 proposes a Rao-Blackwellized particle filter for estimation of static pa-
rameters in conditionally conjugate state-space models. The novelty lies in that we
exploit the analytically tractable substructure of these models to design projection-
based updates of the statistics representing posterior distribution of the parameters.
The experiments demonstrate that the method achieves higher estimation accuracy
in less computational time compared to a number of alternative approaches.

Chapter 4

In Chapter 4, we use methodology similar to Chapter 3 in order to propose a Rao-
Blackwellized particle filter for estimation of time-varying parameters in condition-
ally conjugate state-space models. Their algebraically tractable substructure is here
utilized to facilitate application of the alternative stabilized forgetting so that the
method can compensate for the lack of knowledge of the parameter time-evolution
model. We provide experiments revealing that the proposed method improves esti-
mation accuracy at the cost of reduced computational time compared to procedures
that use different forms of forgetting.

Chapter 5

The jump Markov nonlinear models constitute a particularly challenging class of
state-space models that are usually encountered in application areas with abruptly
changing data. Chapter 5 is concerned with exploiting the structural properties of
these models to design—based on particle Markov chain Monte Carlo methodology—
Rao-Blackwellized particle Gibbs kernels for the state smoothing. The experiments
investigate the impact of Rao-Blackwellization in this context and prove that the
proposed kernels provide improved efficiency compared to the related procedures.

15



Chapter 6

Chapter 6 takes advantage of the ideas of Chapter 5 and proposes an algorithm for
maximum likelihood parameter inference in jump Markov nonlinear models. Specifi-
cally, we utilize the Rao-Blackwellized particle Gibbs kernel from Chapter 5 in order
to design a particle stochastic approximation expectation maximization algorithm
for the considered class of models. We show that the proposed method increases
the convergence speed compared to algorithms without Rao-Blackwellization, thus
being less demanding in terms of the computational resources.

Chapter 7

Chapter 7 develops a fully probabilistic design-based transfer learning strategy for
a pair of Kalman filters. The key characteristic of the proposed approach is that it
does not impose any dependence assumptions between the quantities of the involved
filtering algorithms. The results demonstrate that the proposed method can out-
perform strategies that do specify such dependence assumptions. Although it may
appear that this approach is not related to Monte Carlo methods, we argue that
this method is generic—representing a framework for knowledge transfer between a
pair of Bayesian filters—and the present application to the Kalman filtering context
serves only as the first step towards realizing the knowledge transfer between more
advanced state inference techniques, such as Gaussian or particle filters.

Notation

The notation introduced in this section is valid for the first two chapters. The last
five chapters have an independent and separately introduced notation, which is—to
a large extent—similar to the first two chapters.
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Abbreviations

Abbreviation Description
BS Backward simulation
MC Monte Carlo
SMC Sequential Monte Carlo
CSMC Conditional sequential Monte Carlo
MCMC Markov chain Monte Carlo
PMCMC Particle Markov chain Monte Carlo
ESS Effective sample size
RNE Relative numerical efficiency
IS Importance sampling
SIS Sequential importance sampling
SIR Sequential importance resampling
SISR Sequential importance sampling and resampling
ASIR Auxiliary sequential importance resampling
ASISR Auxiliary sequential importance sampling and resampling
SNIS Self-normalized importance sampling
IID Independent and identically distributed
SSM State-space model
RMSE Root-mean-square error
EM Expectation maximization
MCEM Monte Carlo expectation maximization
SAEM Stochastic approximation expectation maximization
LL Local linearization
SLLN Strong law of large numbers
CLT Central limit theorem
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Symbols

Symbol Description
R The set of real numbers
N The set of natural numbers
𝜋 A distribution
𝑋 ∼ 𝜋 A 𝜋-distributed random variable
X A generic space
𝑋1:𝑡 = (𝑋1, . . . , 𝑋𝑡) A sequence of random variables
X𝑡 = 𝑋1:𝑡 A sequence of random variables
𝜋(𝑓) Expectation of a test function 𝑓 under distribution 𝜋

E[𝑋] Expectation of a random variable 𝑋
V[𝑋] Variance of a random variable 𝑋
C[𝑋, 𝑌 ] Covariance of random variables 𝑋 and 𝑌

E𝜋[𝑋] Expectation of a random variable 𝑋 under distribution 𝜋

V𝜋[𝑋] Variance of a random variable 𝑋 under 𝜋
C𝜋[𝑋, 𝑌 ] Covariance of random variables 𝑋 and 𝑌 under 𝜋
𝑎.𝑠.−→ Almost sure convergence
𝑑−→ Convergence in distribution
𝛿𝑋 Dirac delta measure located at 𝑋
𝒩 (𝜇,Σ) Gaussian distribution with mean vector 𝜇 and

covariance matrix Σ
𝒩 (𝑥;𝜇,Σ) Gaussian density function with mean vector 𝜇 and

covariance matrix Σ
𝒢𝑎(𝛼, 𝛽) Gamma distribution with the shape 𝛼 and 𝛽 rate

parameters
𝑈 [𝑎, 𝑏)𝑀 Uniform distribution on half-open interval [𝑎, 𝑏)
⌊𝑥⌋ The largest integer smaller than or equal to 𝑥
𝜋 ≪ 𝑞 𝜋 is absolutely continuous with respect to 𝑞
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1 MONTE CARLO METHODS

1.1 Monte Carlo Sampling

Monte Carlo simulation refers to a process of drawing a set of 𝑁 independent and
identically distributed (IID) random samples, or particles, (𝑋 𝑖)𝑁

𝑖=1, from a target dis-
tribution 𝜋 defined on possibly high-dimensional space X ⊆ R𝑛𝑥 . The samples carry
information about the target distribution that can be used to capture some of its
characteristic features and to perform statistical inference about the quantities of
interest. The Monte Carlo approach is a very popular and highly universal numer-
ical technique which is mostly employed in approximating analytically intractable
probability distributions and associated expectations.

Consider we are able to draw a set of random samples (𝑋 𝑖)𝑁
𝑖=1 from 𝜋, then the

empirical point-mass approximation of 𝜋 can be constructed as

𝜋𝑀𝐶,𝑁(𝑑𝑥) = 1
𝑁

𝑁∑︁

𝑖=1
𝛿𝑋𝑖(𝑑𝑥), (1.1)

where 𝛿𝑋 is the Dirac-delta measure located at 𝑋. The empirical measure (1.1)
is suitable for approximating an intractable (or complicated) expectation of a test
function 𝑓 : X → R with respect to 𝜋,

𝜋(𝑓) =
∫︁
𝑓(𝑥)𝜋(𝑑𝑥), (1.2)

by the empirical expectation

𝜋𝑀𝐶,𝑁(𝑓) = 1
𝑁

𝑁∑︁

𝑖=1
𝑓(𝑋 𝑖), (1.3)

which is obtained by simply inserting (1.1) in (1.2) and utilizing the fact that 𝛿𝑋𝑖 is
one at 𝑋 𝑖 and zero otherwise. The following theorem underlines the key principle
of basic Monte Carlo integration methods.

Theorem 1.1. Let us consider a sequence of IID random samples (𝑋 𝑖)𝑁
𝑖=1 and

a measurable function 𝑓 : X → R such that E[|𝑓(𝑋)|] < ∞, then the empirical
expectation (1.3) converges almost surely to the exact one (1.2) as the number of
samples 𝑁 increases, that is,

𝜋𝑀𝐶,𝑁(𝑓) 𝑎.𝑠.−→ 𝜋(𝑓),

for 𝑁 −→ ∞, with 𝑎.𝑠.−→ denoting almost sure convergence.

Proof. See [20].
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Theorem 1.1 is an application of the strong law of large numbers (SLLN, [20]),
which states that—as the number of samples gets large—the empirical expectation
approaches the true value with probability one. Although it reflects the nature
of Monte Carlo methods, Theorem 1.1 does not say anything about the statistical
properties of the estimator (1.3). We present them in the following definition.

Definition 1.1. Given a sequence of IID random samples (𝑋 𝑖)𝑁
𝑖=1 and a measurable

function 𝑓 : X → R such that E[|𝑓(𝑋)|] < ∞ and E[𝑓(𝑋)2] < ∞, we have

E[𝜋𝑀𝐶,𝑁(𝑓)] = 1
𝑁

𝑁∑︁

𝑖=1
E[𝑓(𝑋 𝑖)] = 𝜋(𝑓), (1.4)

V[𝜋𝑀𝐶,𝑁(𝑓)] = 1
𝑁2

𝑁∑︁

𝑖=1

(︁
E[𝑓(𝑋 𝑖)2] − E[𝑓(𝑋 𝑖)]2

)︁
= 1
𝑁

V[𝑓(𝑋)], (1.5)

where the expectation is taken with respect to 𝜋.

Definition 1.1 describes two properties of approximating integrals (1.2) based on
Monte Carlo averages. The first one (1.4) demonstrates that the estimator (1.3) is
unbiased, meaning that E[𝜋𝑀𝐶,𝑁(𝑓)] = 𝜋(𝑓) for any 𝑁 . The second one (1.5) states
that the variance of (1.3) decreases with the increasing number of samples 𝑁 , which
allows us to make the variance arbitrarily small.

An important question is, what is the behaviour of the error when the estimator
(1.3) approaches the true value of the integral (1.2) or, more precisely, what is the
size and distribution of the error when the number of samples increases? The answer
is provided in the following theorem.

Theorem 1.2. Suppose (𝑋 𝑖)𝑁
𝑖=1 is a sequence of IID random samples and 𝑓 : X → R

is a measurable function such that E[|𝑓(𝑋)|] < ∞ and E[𝑓(𝑋)2] < ∞, then

𝑁
1
2 [𝜋𝑀𝐶,𝑁(𝑓) − 𝜋(𝑓)] 𝑑−→ 𝒩 (0,V[𝑓(𝑋)]),

for 𝑁 −→ ∞, where 𝑑−→ labels the convergence in distribution.

Proof. See [117].

Theorem 1.2 is the standard central limit theorem (CLT, [117]) and says that as
the number of samples 𝑁 increases, the asymptotic behaviour of the error follows
approximately Gaussian distribution with the zero mean and variance V[𝑓(𝑋)]. The
theorem uncovers another key feature of the Monte Carlo approach, which consists
in that the error convergences at 𝒪(𝑁− 1

2 ) rate.
On the one hand, this property is remarkable as the rate does not depend on

the dimension 𝑛𝑥 of the sample space X. Monte Carlo methods are then advertised
as procedures that do not suffer from the curse of dimensionality—no matter the
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dimension they still converge at 𝒪(𝑁− 1
2 ) rate.1 However, sampling from a high

dimensional space X can often be computationally prohibitive. A question of re-
peatability of the random sequences also becomes important when the dimension is
significantly large.

On the other hand, the convergence rate 𝒪(𝑁− 1
2 ) is rather slow, being a price for

the robustness with respect to the high-dimensionality. Consider for instance that
we want to reduce the error by an order of magnitude. Then, the convergence rate
tells us that we need to produce 100 times more samples in order to accomplish this.
Such a simple example demonstrates that the Monte Carlo techniques are compu-
tationally expensive. However, even a slight improvement in estimation accuracy of
these methods can provide tremendous savings of the computational time, which mo-
tivates the development of computationally more efficient strategies. Although there
are alternative families of methods for deterministic numerical integration, such as
Newton-Cotes [176] and Gaussian [201] cubature rules2, they typically outperform
the Monte Carlo approach only when the dimension 𝑛𝑥 is small. For example, the
classical product rectangle rule provides 𝒪(𝑁− 1

𝑛𝑥 ) convergence rate, which scales
painfully in high-dimensional settings.

Theorem 1.2 generally demonstrates two possible ways of reducing the compu-
tational complexity of Monte Carlo methods. The first one is through the variance
term V[𝑓(𝑋)] and the second one is through the exponent 1

2 . The variance can
be influenced by changing the integrand, which is accomplished by the approaches
such as antithetic variables, control variates, stratification, importance sampling,
Rao-Blackwellization [183]. The exponent can be affected by the statistical proper-
ties of the samples. This is made possible by distributing them in a more clever way
in the space X. A possible approach is (randomized) quasi-Monte Carlo method,
which utilizes low-discrepancy point sets generated by means of suitably designed
digital nets and sequences [161, 125]. The Halton sequence, for example, provides
the 𝒪((log𝑁)𝑛𝑥𝑁−1) (absolute) convergence rate (for sufficiently smooth functions).
However, this rate can be dominated by the dimension-dependent (log𝑁)𝑛𝑥 term.

Theorem 1.2 describes the error with a certain probability, offering a possibility
to compute confidence regions

(𝜋𝑀𝐶,𝑁(𝑓) ± 𝑐𝛼𝑁
− 1

2𝜎𝑁),
1Nevertheless, when devising more advanced Monte-Carlo constructions, such as those based

on the importance sampling [135], the high-dimensional problems are usually difficult to address.
2The Newton-Cotes and Gaussian cubature rules space the points with an equal and unequal

distance, respectively. The latter one does so based on the roots of certain polynomials [41].
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where 𝑐𝛼 is the 𝛼/2 quantile of the standard Gaussian distribution and

𝜎2
𝑁 = 1

𝑁

𝑁∑︁

𝑖=1

(︁
𝜋𝑀𝐶,𝑁(𝑓) − 𝑓(𝑋 𝑖)

)︁2

is the empirical variance3 [30]. Thus, we can use Theorem 1.2 to determine the
number of samples𝑁 which is required for a particular experiment. Specifically, if we
want a precision (error) level 𝜖 with a confidence level 𝑐𝛼, then we need 𝑁 = 𝜖−2𝜎2

𝑁𝑐𝛼

samples. Here we see that, as the precision level gets tight, the computational burden
grows fast. For example, the 0.95 confidence interval requires us to set 𝑐𝛼 ≈ 2.

Another key characteristic of basic Monte-Carlo strategies lies in the ℒ𝑝-convergence,
as shown by the following theorem.

Theorem 1.3. Let (𝑋 𝑖)𝑁
𝑖=1 be a sequence of IID random samples and 𝑓 : X → R

be a measurable function satisfying E[|𝑓(𝑋)|𝑝] < ∞, for 𝑝 ≥ 1, then there exists
𝐵𝑀𝐶

𝑝 < ∞ such that

E[|𝜋𝑀𝐶,𝑁(𝑓) − 𝜋(𝑓)|𝑝]
1
𝑝 ≤ 𝑁− 1

2𝐵𝑀𝐶
𝑝 .

Proof. See [40].

Theorem 1.3 is a rephrased version of the Marcinkiewicz–Zygmund inequality
[144] and describes asymptotic behaviour of the 𝑝th absolute central moment. It
states that the bound on the moment scales with 𝑁− 1

2 and is proportional to an
𝑁 -independent constant 𝐵𝑀𝐶

𝑝 which usually grows exponentially with 𝑝 [181].
An important property of Monte-Carlo methods is that the formula for com-

puting the variance (1.5) reveals that the function 𝑓 is required to be only square-
integrable over X. This is a remarkably weak assumption which makes the Monte
Carlo approaches suitable for a broad class of functions. Alternative integration
methods, such as previously mentioned Newton-Cotes and Gaussian cubature rules,
usually require more restrictive assumptions on the smoothness of the integrand.

A rather philosophical question with the Monte Carlo strategies lies in that—
from the implementation point of view—it is usually not the case that standard
computers are able to generate samples that are truly random but rather near ran-
dom. This fact slightly undermines the validity of the theoretical results related to
Monte Carlo methods as they embrace the true randomness [199]. However, empir-
ical evidence demonstrates that the Monte Carlo techniques approximately behave
according to the expectations delineated by the theoretical results, and they have
proved to be immensely useful in a multitude of applications.

3Similarly to Definition 1.1, it can be shown that the estimator 𝜎2
𝑁 is unbiased.
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1.2 Importance Sampling

A fundamental issue with the basic Monte Carlo method is that a substantial amount
of particles of the set (𝑋 𝑖)𝑁

𝑖=1—drawn from a target distribution 𝜋 defined on X ⊆
R𝑛𝑥—can be wasted in those parts of the space where the evaluations of a test
function 𝑓 : X → R contribute poorly to the integral approximation. A similar point
of view is that one can be concerned with a certain measurable subset 𝐴 ⊂ X where
the function evaluations are relevant but the probability 𝜋(𝐴) is low, such as the rare-
event analysis [27]. The time of computing such experiments can be unreasonably
long due to waiting on a sufficient amount of particles being placed in 𝐴 so that
associated quantities converge to more precise estimates. Importance sampling is a
generic approach which deals with these issues by focusing samples on the regions of
X we deem important. This is accomplished by defining a user-selected importance
or proposal distribution 𝑞 which concentrates the samples towards suitable parts of
X. Importance sampling is probably most widely used but also most difficult-to-tune
technique for variance reduction of the basic Monte Carlo approach. The procedure
is at the core of various more advanced, sampling-based, algorithms.

For a proposal distribution 𝑞 satisfying 𝜋 ≪ 𝑞, one can suggest a simple extension
of the target distribution 𝜋 defined by

𝜋𝐼𝑆(𝑑𝑥) := 𝑤(𝑥)𝑞(𝑑𝑥), (1.6)

where we introduce the unnormalized importance weight function 𝑤(𝑥) = 𝜋(𝑑𝑥)
𝑞(𝑑𝑥) .

Given a set of random samples (𝑋 𝑖)𝑛
𝑖=1 drawn from 𝑞, the importance sampling

approximation of 𝜋 can be formed by simply substituting the empirical form of the
proposal distribution, 𝑞𝑁(𝑑𝑥) = 1

𝑁

∑︀𝑁
𝑖=1 𝛿𝑋𝑖(𝑑𝑥), in (1.6), that is,

𝜋𝐼𝑆,𝑁(𝑑𝑥) = 1
𝑁

𝑁∑︁

𝑖=1
𝑤(𝑋 𝑖)𝛿𝑋𝑖(𝑑𝑥). (1.7)

The approximation of the integral 𝜋(𝑓) of a test function 𝑓 : X → R is then obtained
by plugging (1.7) in (1.2), which results in

𝜋𝐼𝑆,𝑁(𝑓) = 1
𝑁

𝑁∑︁

𝑖=1
𝑤(𝑋 𝑖)𝑓(𝑋 𝑖). (1.8)

One can notice that (1.7) and (1.8) are just reweighted versions of (1.1) and (1.3),
respectively. The purpose of the importance weights is to compensate for the dis-
crepancy between 𝜋 and 𝑞. In other words, the individual Dirac-delta measures (or
function evaluations) are weighted according to similarity between the distributions.
The following theorem shows that the estimator (1.8) is strongly consistent.
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Theorem 1.4. For a sequence of IID random samples (𝑋 𝑖)𝑁
𝑖=1 simulated from 𝑞

such that 𝜋 ≪ 𝑞, and a measurable function 𝑓 : X → R satisfying E[|𝑓(𝑋)|] < ∞,
the empirical expectation (1.8) converges almost surely to the exact one (1.2) as the
number of samples 𝑁 tends to infinity, thus,

𝜋𝐼𝑆,𝑁(𝑓) 𝑎.𝑠.−→ 𝜋(𝑓),

for 𝑁 −→ ∞.

Proof. See [20].

In the following definition, we present basic statistical properties of the impor-
tance sampling estimator (1.8).

Definition 1.2. Assume a sequence of IID random samples (𝑋 𝑖)𝑁
𝑖=1 drawn from 𝑞

such that 𝜋 ≪ 𝑞 and a measurable function 𝑓 : X → R for which E[|𝑓(𝑋)|] < ∞ and
E𝑞[𝑓(𝑋)2𝑤(𝑋)2] < ∞, then

E𝑞[𝜋𝐼𝑆,𝑁(𝑓)] = 𝑞(𝑓𝑤) = 𝜋(𝑓), (1.9)

V𝑞[𝜋𝐼𝑆,𝑁(𝑓)] = 1
𝑁

(︁
E𝑞[𝑓(𝑋)2𝑤(𝑋)2] − 𝜋(𝑓)2

)︁
= 1
𝑁

V𝑞[𝑓(𝑋)𝑤(𝑋)]. (1.10)

Definition 1.2 shows that the importance sampling preserves the statistical prop-
erties of the classic Monte Carlo approach. The first part (1.9) demonstrates that
the estimator (1.8) is unbiased for any 𝑁 , whereas the second part (1.10) says that
we can decrease the variance arbitrarily low when increasing 𝑁 . The requirement
E[𝑓(𝑋)2] < ∞ is no longer enough to make the variance finite. In particular, an
additional condition, 𝑤(𝑥) < ∞ for all 𝑥 ∈ X, is required. An important observa-
tion in (1.10) is that only the first term in the middle part of (1.10) depends on
𝑞. Therefore, not only high values of the number of particles 𝑁 but also a proper
choice of the proposal distribution 𝑞 are crucial for decreasing the variance. A simple
application of Jensen’s inequality reveals the lower bound of the first term in the
middle part of (1.10) [3]

E𝑞[𝑓(𝑋)2𝑤(𝑋)2] ≥ E𝑞[|𝑓(𝑋)|𝑤(𝑋)]2 = E[|𝑓(𝑋)|]2, (1.11)

from which it follows that the lower bound is attained when the optimal proposal
distribution satisfies

𝑞⋆(𝑑𝑥) = |𝑓(𝑥)|𝜋(𝑑𝑥)
∫︀ |𝑓(𝑥)|𝜋(𝑑𝑥) . (1.12)

Let us now apply Jensen’s inequality on the first term of E[𝑓(𝑋)]2 − 𝜋(𝑓) as

E[𝑓(𝑋)]2 − 𝜋(𝑓) ≥ E[|𝑓(𝑋)|]2 − 𝜋(𝑓), (1.13)

24



which corresponds to 𝑁V[𝜋𝑀𝐶,𝑁(𝑓)] ≥ 𝑁V𝑞⋆ [𝜋𝐼𝑆,𝑁(𝑓)] and thus implies that the
importance sampling is (almost surely) more efficient than the plain Monte Carlo
approach. The problem with (1.12) is that we are not able to compute the de-
nominator, which prevents us from achieving the optimal performance. On the one
hand, this result tells us that we should choose the proposal distribution close to
|𝑓(𝑥)|𝜋(𝑑𝑥). On the other hand, designing the proposal distribution with a spe-
cific function 𝑓 makes a resulting estimation procedure less general. Therefore, the
common requirement is to choose the proposal close to the situation where the vari-
ance of the importance weights is minimized, 𝑞⋆ = 𝜋. In particular, the proposal
distribution should be easy to sample from.

The next theorem states that the importance sampling estimator (1.8) is asymp-
totically Gaussian.

Theorem 1.5. Let (𝑋 𝑖)𝑁
𝑖=1 be a sequence of IID random samples drawn from 𝑞 such

that 𝜋 ≪ 𝑞, and let 𝑓 : X → R be a measurable function satisfying E[|𝑓(𝑋)|] < ∞
and E𝑞[𝑓(𝑋)2𝑤(𝑋)2] < ∞, then

𝑁
1
2 [𝜋𝐼𝑆,𝑁(𝑓) − 𝜋(𝑓)] 𝑑−→ 𝒩 (0,V𝑞[𝑓(𝑋)𝑤(𝑋)]),

for 𝑁 −→ ∞.

Proof. See [117].

Another important characteristic of the importance sampling is that there exists
the ℒ𝑝 bound on 𝑝th absolute central moment of the estimator (1.8), as presented
in the next theorem.

Theorem 1.6. Consider a sequence (𝑋 𝑖)𝑁
𝑖=1 of IID random samples drawn from 𝑞

fulfilling 𝜋 ≪ 𝑞, and a measurable function 𝑓 : X → R for which E[|𝑓(𝑋)𝑤(𝑋)|𝑝] <
∞, where 𝑝 ≥ 1, then there exists 𝐵𝐼𝑆

𝑝 < ∞ such that

E[|𝜋𝐼𝑆,𝑁(𝑓) − 𝜋(𝑓)|𝑝]
1
𝑝 ≤ 𝑁− 1

2𝐵𝐼𝑆
𝑝 .

Proof. See [40].

1.3 Self-Normalized Importance Sampling

In many applications, we need to draw a set of IID random samples (𝑋 𝑖)𝑁
𝑖=1 from a

target probability distribution

𝜋(𝑑𝑥) = 𝛾(𝑑𝑥)
𝛾(1) (1.14)
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defined on X ⊆ R𝑛𝑥 . It is mostly the case that 𝛾(𝑑𝑥) can be evaluated point-
wise but 𝛾(1) is intractable. Therefore, the standard importance sampling cannot
be used directly to approximate (1.14). The self-normalized importance sampling
is a technique which addresses this problem by applying the standard importance
sampling to both the numerator and denominator of (1.14).

Let us consider we have the standard importance sampling approximation of the
distribution 𝛾 given by

𝛾𝐼𝑆,𝑁(𝑑𝑥) = 1
𝑁

𝑁∑︁

𝑖=1
𝑣(𝑋 𝑖)𝛿𝑋𝑖(𝑑𝑥), (1.15)

where 𝑣(𝑥) = 𝛾(𝑑𝑥)
𝑞(𝑑𝑥) is the unnormalized importance weight function, which implies

𝑣(𝑥) = 𝑤(𝑥)𝛾(1) with 𝑤 being defined in (1.6). Then, the self-normalized importance
sampling approximation of the target distribution (1.14) is obtained by substituting
(1.15) into the numerator and denominator of (1.14), providing us with

𝜋𝑆𝑁𝐼𝑆,𝑁(𝑑𝑥) = 𝛾𝐼𝑆,𝑁(𝑑𝑥)
𝛾𝐼𝑆,𝑁(1) =

𝑁∑︁

𝑖=1
𝑊 𝑖𝛿𝑋𝑖(𝑑𝑥), (1.16)

where
𝑊 𝑖 := 𝑣(𝑋 𝑖)

∑︀𝑁
𝑗=1 𝑣(𝑋𝑗)

(1.17)

is the normalized importance weight function. The representation (𝑋 𝑖,𝑊 𝑖)𝑁
𝑖=1 of

(1.16) is referred to as the weighted particle system. The integral 𝜋(𝑓) of a test
function 𝑓 : X → R is then approximated by inserting (1.16) in (1.2),

𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓) =
𝑁∑︁

𝑖=1
𝑊 𝑖𝑓(𝑋 𝑖). (1.18)

It is noted that the form of (1.17) allows us to use proposal distributions which are
known only up to a constant factor. As the unnormalized importance weights do not
sum up to one, the approximation 𝜋𝐼𝑆,𝑁 is not an empirical probability measure,
even if 𝜋 is a probability measure. This issue is resolved here as the normalized
importance weights (1.17) do sum up to one, and the approximation 𝜋𝑆𝑁𝐼𝑆,𝑁 is thus
an empirical probability measure. The strong consistency of the estimator (1.18) is
presented in the following theorem.

Theorem 1.7. Let (𝑋 𝑖)𝑁
𝑖=1 be a sequence of IID random samples drawn from 𝑞 such

that 𝜋 ≪ 𝑞, and let 𝑓 : X → R be a measurable function fulfilling E[|𝑓(𝑋)|] < ∞,
then the empirical expectation (1.18) converges almost surely to the exact one (1.2)
as the number of samples 𝑁 increases, that is,

𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓) 𝑎.𝑠.−→ 𝜋(𝑓),

for 𝑁 −→ ∞.
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Proof. See [30].

We note here that the proof of Theorem 1.7 relines on 𝛾𝐼𝑆,𝑁(1) 𝑎.𝑠.−→ 𝛾(1), demon-
strating that 𝛾𝐼𝑆,𝑁(1) is a strongly consistent estimator of 𝛾(1), a feature which is
immensely useful in Bayesian inference. An extension of this principle is important
in sequential Monte Carlo methods.

The basic statistical properties of the self-normalized importance sampling esti-
mator (1.18) are shown in the next definition.

Definition 1.3. Let (𝑋 𝑖)𝑁
𝑖=1 be a sequence of IID random samples drawn from 𝑞

which satisfies 𝜋 ≪ 𝑞, let 𝑓 : X → R be a measurable function such that E[|𝑓(𝑋)|] <
∞ and E𝑞[𝑓(𝑋)2𝑣(𝑋)2] < ∞, and let E𝑞[𝑣(𝑋)2] < ∞, then

E𝑞[𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓)] = 𝜋(𝑓) + 1
𝑁

(︁
𝜋(𝑓)V𝑞[𝑤(𝑋)]

− C𝑞[𝑤(𝑋)𝑓(𝑋), 𝑤(𝑋)]
)︁

+ 𝒪(𝑁−2), (1.19)

V𝑞[𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓)] = 1
𝑁

V𝑞[𝑤(𝑋)𝑓(𝑋)] − 1
𝑁

(︁
2𝜋(𝑓)C𝑞[𝑤(𝑋)𝑓(𝑋), 𝑤(𝑋)]

− 𝜋(𝑓)2V𝑞[𝑤(𝑋)]
)︁

+ 𝒪(𝑁−2), (1.20)

with C𝑞 denoting the covariance with respect to 𝑞.

The estimator (1.16) is given by a ratio of quantities that are computed with the
same set of random samples, making the numerator and denominator dependent.
Therefore, to obtain Definition 1.3, we need to apply the delta method. Definition
1.3 shows that the self-normalized importance sampling estimator (1.16) is biased
for a finite 𝑁 . The dominating term of the bias vanishes linearly with increasing
the number of samples 𝑁 , thus allowing to control its size. The variance decreases
with linear dependence, as in the case of the basic Monte Carlo and importance
sampling approaches. However, the structure of (1.20) reveals an important differ-
ence. Specifically, when the correlation between 𝑤(𝑋)𝑓(𝑋) and 𝑤(𝑋) grows, the
variance (1.20) can outperform the variance of the basic Monte Carlo (1.5) and plain
importance sampling (1.10) estimators [135].

The asymptotic Gaussianity of the self-normalized importance sampling estima-
tor (1.18) is shown below.

Theorem 1.8. Consider a sequence of IID random samples (𝑋 𝑖)𝑁
𝑖=1 drawn from 𝑞

such that 𝜋 ≪ 𝑞, a measurable function 𝑓 : X → R for which E[|𝑓(𝑋)|] < ∞ and
E𝑞[𝑓(𝑋)2𝑣(𝑋)2] < ∞, and E𝑞[𝑣(𝑋)2] < ∞, then

𝑁
1
2 [𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓) − 𝜋(𝑓)] 𝑑−→ 𝒩 (0, 𝜎2(𝑓)),

for 𝑁 −→ ∞. Here,

𝜎2(𝑓) := E
[︁
[𝑓(𝑋) − 𝜋(𝑓)]2𝑤(𝑋)

]︁
.
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Proof. The proof follows from the multivariate central limit theorem [210] and the
delta method [20].

Similarly as before, the self-normalized importance sampling estimator (1.18) al-
lows us to find the associated ℒ𝑝 error bound, as presented in the following theorem.

Theorem 1.9. For a sequence (𝑋 𝑖)𝑁
𝑖=1 of IID random samples drawn from 𝑞 such

that 𝜋 ≪ 𝑞 and a measurable function 𝑓 : X → R with E[|𝑓(𝑋)𝑣(𝑋)|𝑝] < ∞, where
𝑝 ≥ 1, we have 𝐵𝑆𝑁𝐼𝑆

𝑝 < ∞ satisfying

E[|𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓) − 𝜋(𝑓)|𝑝]
1
𝑝 ≤ 𝑁− 1

2𝐵𝑆𝑁𝐼𝑆
𝑝 .

Proof. See [30].

1.3.1 Effective Sample Size

The performance of the self-normalized importance sampling is significantly affected
by our choice of the proposal distribution 𝑞. We discussed previously that one should
choose 𝑞 as close as possible to the target distribution 𝜋. However, the question is
how to assess the difference between 𝜋 and 𝑞, especially when 𝜋 can be evaluated
only up to the constant factor. A possible approach how to deal with this issue is
to apply the relative numerical efficiency (RNE, [73]). This quantity is defined as
the ratio of the variance of the self-normalized importance sampling estimator when
choosing the proposal distribution as the target distribution, 𝑞 = 𝜋, to the variance
of this estimator with an arbitrary distribution 𝑞, that is,

RNE := V[𝜋𝑀𝐶,𝑀(𝑓)]
V𝑞[𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓)] . (1.21)

It can be shown—see, e.g. [119]—that the variance of the self-normalized importance
sampling estimator can be approximated by

V𝑞[𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓)] ≈ V[𝜋𝑀𝐶,𝑁(𝑓)](1 + V𝑞[𝑤(𝑋)]). (1.22)

Consequently, substituting (1.5) in (1.21) and (1.22) leads to

RNE ≈ 𝑁

𝑀

1
1 + V𝑞[𝑤(𝑋)] .

The situation RNE = 1 indicates that the performance of the standard Monte Carlo
method and self-normalized importance sampling is equal. The value of 𝑀 for which
RNE = 1 is therefore of particular interest and defines the effective sample size

𝑁ess := 𝑁

1 + V𝑞[𝑤(𝑋)] , (1.23)
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which is the number of particles required by the plain Monte Carlo sampling in
order to have approximately the same performance as the self-normalized importance
sampling.

The result (1.23) is quite universal in the sense that we do not need to use the
function evaluations but only the importance weights. As discussed in [165], the
effective sample size involving the function evaluations may be more accurate, as
the performance of the importance sampling methods also depends on a concrete
form of 𝑓 . However, specific assumptions about 𝑓 make algorithms based on this
principle less generic. The effective sample size ranges in (0, 𝑁 ]. The bigger the
difference between 𝜋 and 𝑞, the higher the variance term V𝑞[𝑤(𝑋)] and the lower
the effective sample size. The choice 𝑞 = 𝜋 results in 𝑁ess = 𝑁 , thus matching the
performance of the plain Monte Carlo method.

Although the form of (1.23) is suitable for explaining the principle of the effective
sample size, it is not very convenient for practical computations. Let us therefore
express (1.23) in the alternative form

𝑁ess = 𝑁
𝛾(1)
𝜋(𝑣) , (1.24)

which can simply be approximated as

̂︁𝑁ess := 𝑁
𝛾𝐼𝑁,𝑁(1)
𝜋𝐼𝑆,𝑁(𝑣) = 1

∑︀𝑁
𝑖=1(𝑊 𝑖)2 . (1.25)

When using the effective sample size, we need to be aware that (1.22) is derived
based on neglecting higher-order terms of the Taylor series. If the influence of these
terms is substantial, then (1.23) becomes less reliable. The effective sample size
based on discrepancy measures [145] offers an alternative approach.

1.4 Sequential Importance Sampling

A commonly encountered situation in various statistical inference objectives is the
requirement of approximating a joint target probability distribution

𝜋𝑡(𝑑𝑥1:𝑡) = 𝛾𝑡(𝑑𝑥1:𝑡)
𝛾𝑡(1) (1.26)

defined on X𝑡 with X ⊆ R𝑛𝑥 . We assume that 𝛾𝑡(𝑑𝑥1:𝑡) is point-wise known but 𝛾𝑡(1)
is unknown. We can of course approximate this distribution by the self-normalized
importance sampling. However, the problem is that the dimension of X𝑡 grows with
𝑡, and so does the computational complexity of the importance sampling algorithm.
Moreover, applying the importance sampling at a given iteration 𝑡 would require us
to throw away all computations associated with 𝜋𝑡−1 and start those related to 𝜋𝑡
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from the beginning. The sequential importance sampling [88] addresses these issues
by reusing the approximations across the consecutive iterations, thus making the
computational complexity fixed.

The empirical approximation of (1.26) is constructed in the same way as with
the plain self-normalized importance sampling—except it is defined on the extended
space X𝑡—and is given by

𝜋𝑆𝐼𝑆,𝑁
𝑡 (𝑑𝑥1:𝑡) =

𝑁∑︁

𝑖=1
𝑊 𝑖

𝑡 𝛿𝑋𝑖
1:𝑡

(𝑑𝑥1:𝑡),

where
𝑊 𝑖

𝑡 := 𝑣𝑡(𝑋 𝑖
1:𝑡)∑︀𝑁

𝑗=1 𝑣𝑡(𝑋𝑗
1:𝑡)

. (1.27)

The associated approximation of the integral 𝜋(𝑓) of a test function 𝑓 : X𝑡 → R is

𝜋𝑆𝐼𝑆,𝑁
𝑡 (𝑓) =

𝑁∑︁

𝑖=1
𝑊 𝑖

𝑡 𝑓(𝑋 𝑖
1:𝑡). (1.28)

The basic idea of the sequential importance sampling is to find a recursive formu-
lae for time-evolution of the proposal distribution and the unnormalized importance
weights, which can simply be accomplished by

𝑞𝑡(𝑑𝑥1:𝑡) = 𝑚𝑡(𝑑𝑥𝑡|𝑥1:𝑡−1)𝑞𝑡−1(𝑑𝑥1:𝑡−1), (1.29)

with 𝑞1(𝑑𝑥1) = 𝑚1(𝑑𝑥1), and

𝑣𝑡(𝑥1:𝑡) = 𝛾𝑡(𝑑𝑥1:𝑡)
𝑞𝑡(𝑑𝑥1:𝑡)

= 𝛾𝑡−1(𝑑𝑥1:𝑡−1)
𝑞𝑡−1(𝑑𝑥1:𝑡−1)

𝛼𝑡(𝑥1:𝑡) = 𝑣𝑡−1(𝑥1:𝑡−1)𝛼𝑡(𝑥1:𝑡), (1.30)

where
𝛼𝑡(𝑥1:𝑡) := 𝛾𝑡(𝑑𝑥1:𝑡)

𝛾𝑡−1(𝑑𝑥1:𝑡−1)𝑚𝑡(𝑥𝑡|𝑥1:𝑡−1)
(1.31)

defines the incremental importance weight function. Let us consider that we have
the weighted particle system from the previous iteration, (𝑋 𝑖

1:𝑡−1,𝑊
𝑖
𝑡−1)𝑁

𝑖=1. The
recursive step of the sequential importance sampling can be split into two parts. In
the first part, the recursion for evolving the proposal distribution (1.29) suggests to
(i) keep the previous particle trajectory 𝑋 𝑖

1:𝑡−1 intact, (ii) sample the current particle
according to

𝑋 𝑖
𝑡 ∼ 𝑚𝑡(·|𝑋 𝑖

1:𝑡−1), (1.32)

and, (iii) form an updated particle trajectory

𝑋 𝑖
1:𝑡 := (𝑋 𝑖

𝑡 , 𝑋
𝑖
1:𝑡−1).

In the second part, we (i) compute the incremental weights 𝛼𝑡(𝑋 𝑖
1:𝑡), (ii) apply

them together with 𝑊 𝑖
𝑡−1 in the recursive formula for computing the unnormalized
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Algorithm 1 Sequential importance sampling (SIS)
A. Initial step: (𝑡 = 1)

1. Sample 𝑋𝑖
1 ∼ 𝑚1(·).

2. Compute 𝑊 𝑖
1 ∝ 𝑣1(𝑋𝑖

1).
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Sample 𝑋𝑖
𝑡 ∼ 𝑚𝑡(·|𝑋𝑖

1:𝑡−1) and set 𝑋𝑖
1:𝑡 := (𝑋𝑖

𝑡 , 𝑋𝑖
1:𝑡−1).

2. Compute 𝑊 𝑖
𝑡 ∝ 𝑣𝑡(𝑋𝑖

1:𝑡) according to (1.30).

importance weights (1.30), and (iii) use (1.27) to compute the normalized importance
weights 𝑊 𝑖

𝑡 . Note that 𝑊 𝑖
𝑡−1 can be used in place of 𝑣𝑡−1(𝑋 𝑖

1:𝑡−1) as the normalizing
factor of 𝑊 𝑖

𝑡−1 is canceled out in (1.27). These operations produce the current
particle system (𝑋 𝑖

1:𝑡,𝑊
𝑖
𝑡 )𝑁

𝑖=1, thus concluding the recursive step.
The initial step generates the particle system (𝑋 𝑖

1,𝑊
𝑖
1)𝑁

𝑖=1 based on the basic
self-normalized importance sampling. The whole procedure can now be summarized
in Algorithm 1, where we follow the convention that all 𝑖-dependent operations are
performed for 𝑖 = 1, . . . , 𝑁 . Note this procedure generates a set of IID sample
trajectories (𝑋 𝑖

1:𝑡)𝑁
𝑖=1.

The sequential importance sampling is equivalent to the self-normalized impor-
tance sampling on the extended space X𝑡, which makes all the theoretical results
presented in Section 1.3 applicable here as well. However, the recursive nature of
sequential importance sampling can reveal some interesting characteristics of this
approach. The steps B1 and B2 are often referred to as the propagation (or mu-
tation [37]) and weighting (or correction) steps, respectively. In the propagation
step, we investigate the properties of the estimator 𝑞𝑁

𝑡 (𝑓), which can be used to
estimate 𝜋𝑡(𝑓) before proceeding into the weighting step. In the weighting step, we
are—similarly as with the plain self-normalized importance sampling—interested in
the properties of the estimator 𝜋𝑆𝐼𝑆,𝑁

𝑡 (𝑓). The following definition analyzes these
two stages.

Definition 1.4. Consider a collection of IID random samples (𝑋 𝑖
1:𝑡)𝑁

𝑖=1 drawn from
𝑞𝑡 such that 𝜋𝑡 ≪ 𝑞𝑡, and a measurable function 𝑓 : X𝑡 → R satisfying E[|𝑓(𝑋1:𝑡)|] <
∞, E𝑞𝑡 [𝑓(𝑋1:𝑡)2𝑣𝑡(𝑋1:𝑡)2] < ∞, and E𝑞𝑡 [|𝑓(𝑋1:𝑡)|] < ∞, and let E𝑞𝑡 [𝑣𝑡(𝑋1:𝑡)2] < ∞,
then, for the propagation step (B1), it holds that

E𝑞𝑡 [𝑞𝑁
𝑡 (𝑓)] = 𝑞𝑡(𝑓), (1.33)

V𝑞𝑡 [𝑞𝑁
𝑡 (𝑓)] = 1

𝑁

(︁
E𝑞𝑡−1

[︁
V𝑚𝑡 [𝑓(𝑋1:𝑡)|𝑋1:𝑡−1]

]︁
+ V𝑞𝑡−1

[︁
E𝑚𝑡 [𝑓(𝑋1:𝑡)|𝑋1:𝑡−1]

]︁)︁
, (1.34)

and, for the weighting step (B2), we have

E𝑞𝑡 [𝜋𝑆𝐼𝑆,𝑁(𝑓)] := 𝜋𝑡(𝑓) + 1
𝑁

E[(𝑓(𝑋1:𝑡) − 𝜋(𝑓))𝑤𝑡(𝑋1:𝑡)], (1.35)

V𝑞𝑡 [𝜋𝑆𝐼𝑆,𝑁(𝑓)] := 1
𝑁

V𝑞𝑡 [(𝑓(𝑋1:𝑡) − 𝜋(𝑓))𝑤𝑡(𝑋1:𝑡)], (1.36)
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where the equality by definition follows from neglecting the higher order terms, as
they vanish quickly for increasing 𝑁 .

Definition 1.4 demonstrates that the estimator 𝑞𝑁
𝑡 (𝑓) is unbiased for any 𝑁 (as

expected). However, as presented in (1.34)—which follows from applying the law of
total variance—its variance can only increase by executing the propagation steps.
The formulae (1.35) and (1.36) are simply rearranged versions of (1.19) and (1.20),
respectively. The appearance of 𝑤𝑡 in these terms is important for further analysis.
As mentioned in Section 1.3, the importance weight function 𝑤𝑡 satisfies 𝑤𝑡 ∝ 𝑣𝑡.
The unnormalized importance weight function is a density function by definition,
𝑣𝑡 : X𝑡 → R+. Similarly as before—based on the law of total variance—we can find
the recursive formula for computing its variance

V[𝑣𝑡(𝑋1:𝑡)] = V[𝑣𝑡−1(𝑋1:𝑡−1)] + E
[︁
𝑣2

𝑡 (𝑋1:𝑡−1)V[𝑣𝑡(𝑋𝑡|𝑋1:𝑡−1)|𝑋1:𝑡−1]
]︁
. (1.37)

As both terms on the r.h.s. of (1.37) are always positive, the variance of the un-
normalized importance weights 𝑣𝑡 can only increase over the iterations. This phe-
nomenon is commonly referred to as weight degeneracy. We can see from (1.35)
and (1.36) that 𝑤𝑡 ∝ 𝑣𝑡 influences the bias and variance and thus the quality of the
estimator (1.28). We should also consider these comments in the context of (1.19)
and (1.20), which shows that the quality of the estimator can sometimes improve.
However, experimental evidence demonstrates that this happens only rarely (during
the initial iterations of the algorithm in most cases).

An example of the weight degeneracy is presented in the top row of Fig. 1.1
where we see that the weight 𝑊 2

𝑡 converges to one and the remaining weights to
zero. This effect can be measured by the effective sample size discussed in Section
1.3.1, which decreases with 𝑊 2

𝑡 approaching one.
The recursive formula (1.37) renders the need for variance reduction techniques,

although, in the present case, this can only postpone the inflation. As suggested
by (1.36), the natural mechanism to decrease the variance is to have the number of
particles multiple times greater compared to the current iteration, 𝑁 ≫ 𝑡, which
is unrealistic for long sequences. Alternatively, the impact of (1.37) can be coun-
teracted by the choice of the proposal distribution (1.32). The optimal proposal
distribution which minimizes the variance of 𝑣𝑡(𝑥1:𝑡) is defined by

𝑚⋆
𝑡 (𝑑𝑥𝑡|𝑥1:𝑡−1) = 𝛾𝑡(𝑑𝑥𝑡|𝑥1:𝑡−1). (1.38)

Inserting this into (1.31) provides us with

𝛼⋆
𝑡 (𝑥1:𝑡) = 𝛾𝑡(𝑑𝑥1:𝑡−1)

𝛾𝑡−1(𝑑𝑥1:𝑡−1)
,
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Fig. 1.1: An example of weight degeneracy. We consider 𝛾𝑡(𝑥1:𝑡) := 𝛾(𝑥1)∏︀𝑡
𝑖=1 𝛾(𝑥𝑖|𝑥𝑖−1)

where 𝛾(𝑥1) = 𝒩 (𝑥1; 0, 1) and 𝛾(𝑥𝑖|𝑥𝑖−1) = 𝒩 (𝑥𝑖; 0.8𝑥𝑖−1, 1). The normalized weights
𝑊 1:10

𝑡 for 𝑡 = (1, 10, 20, 30, 40) computed by Algorithm 1 with the proposal density
𝑚(𝑥𝑡|𝑥𝑡−1) := 𝒩 (𝑥𝑡; 0.8𝑥𝑡−1, 2) (top) and 𝑚(𝑥𝑡|𝑥𝑡−1) := 𝒩 (𝑥𝑡; 0.8𝑥𝑡−1, 1.05) (bottom).

whose variance is zero conditionally on 𝑋1:𝑡−1, making the variance of (1.30) zero as
well [56]. However, (1.38) cannot be computed under a closed-form solution, expect
simple cases (as it contains the integral with respect to 𝑋𝑡). We show one of such
simple examples in the bottom row of Fig. 1.1. We can observe that there is no
weight converging to one and the effective sample size decreases at a slower rate.
The importance distribution is near-optimal in this example 𝑚(·|𝑥𝑡−1) ≈ 𝛾(·|𝑥𝑡−1).

1.5 Resampling

Resampling is a procedure which computes an approximation 𝜋𝑅,𝑀 of a target dis-
tribution 𝜋 defined on X ⊆ R𝑛𝑥 by using an already existing approximation 𝜋𝑁 of
the same target distribution 𝜋. The method is most often applied after the self-
normalized importance sampling, 𝜋𝑁 := 𝜋𝑆𝑁𝐼𝑆,𝑁 , in order to duplicate the particles
with high weights and discard the ones with low weights. In such a case, it is also
referred to as sampling importance resampling [186]. The resampling operation is
mostly applied in the sequential context to improve performance of an associated
algorithm across multiple iterations.
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Let us consider we have the weighted particle system (𝑋 𝑖,𝑊 𝑖)𝑁
𝑖=1 representing the

self-normalized importance sampling approximation 𝜋𝑆𝑁𝐼𝑆,𝑁 of 𝜋. The resampling
procedure uses the basic Monte Carlo approach discussed in Section 1.1 to obtain the
uniformly-weighted particle system (�̄� 𝑖,𝑀−1)𝑀

𝑖=1 representing 𝜋𝑅,𝑀 . The resampling
can be seen as a process where parent particles (𝑋 𝑖) can have multiple or no offspring
particles (�̄� 𝑖) [4]. The method proceeds in two steps. First, we sample a set of
ancestor indices A := (𝐴1, . . . , 𝐴𝑀) from a discrete probability distribution defined
on (1, . . . , 𝑁)𝑀 ,

A ∼ 𝑟(·|W) :=
𝑀∏︁

𝑖=1
ℱ(𝐴𝑖|W), (1.39)

which is parameterized by the set of normalized importance weights W := (𝑊 1, . . . ,

𝑊𝑁) ∈ [0, 1]𝑁 . Second, we use the ancestor indices to assign parent particles to off-
spring particles as �̄� 𝑖 := 𝑋𝐴𝑖 for 𝑖 = 1, . . . ,𝑀 . However, practical implementation of
the first step often consists of obtaining a set of ancestor counts O := (𝑂1, . . . , 𝑂𝑁),
where 𝑂𝑖 = ∑︀𝑀

𝑗=1 1(𝐴𝑗 = 𝑖) is the number of offspring of 𝑖th particle, from a discrete
probability distribution,

O ∼ 𝑠(·|W), (1.40)

defined on (1, . . . ,𝑀)𝑁 , and applying a deterministic procedure to convert the an-
cestor counts 𝑂𝑖 to the ancestor indices 𝐴𝑖. An important property of (1.40) lies in
that the samples O should satisfy the unbiasedness condition

E[𝑂𝑖|W] = 𝑀𝑊 𝑖, (1.41)

for 𝑖 = 1, . . . , 𝑁 . After finishing the procedure, we can formulate an associated
estimator of a test function 𝑓 : X → R as

𝜋𝑅,𝑀(𝑓) = 1
𝑀

𝑀∑︁

𝑖=1
𝑓(�̄� 𝑖) = 1

𝑀

𝑁∑︁

𝑖=1
𝑂𝑖𝑓(𝑋 𝑖). (1.42)

In the sequential context, the ancestor indices allow us to construct genealogy of the
particle evolution, as will be discussed in Section 1.6. To discuss some of the basic
properties of the resampling procedure, let us present the following definition.

Definition 1.5. Let the assumptions of Definition 1.3 be met and let O satisfy
(1.41), then

E[𝜋𝑅,𝑀(𝑓)] = E𝑞[𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓)], (1.43)
V[𝜋𝑅,𝑀(𝑓)] = V𝑞[𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓)] + E[{𝜋𝑅,𝑀(𝑓) − 𝜋𝑆𝑁𝐼𝑆,𝑁(𝑓)}2], (1.44)

where the expectation and variance are taken w.r.t. the randomness in 𝜋𝑅,𝑀(𝑓).
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Multinomial [84] Sample �̄�1:𝑁 ∼ 𝑈 [0, 1)𝑁 and set 𝑈1:𝑁 := �̄�1:𝑁 ;
Stratified [114] Sample �̄�1:𝑁 ∼ 𝑈 [0, 1)𝑁 and set 𝑈 𝑖 := (𝑖−1)+�̄�𝑖

𝑁 for 𝑖 = 1, . . . , 𝑁 ;
Systematic [32] Sample �̄� ∼ 𝑈 [0, 1) and set 𝑈 𝑖 := (𝑖−1)+�̄�

𝑁 for 𝑖 = 1, . . . , 𝑁 ;
then, find 𝑂𝑖 as the number of times 𝑈 𝑖 ∈

(︀∑︀𝑖−1
𝑗=1 𝑊 𝑖,

∑︀𝑖
𝑗=1 𝑊 𝑖

]︀

for 𝑖 = 1, . . . , 𝑁 .
Residual [219] For 𝑖 = 1, . . . , 𝑁 , set 𝑂𝑖

𝑎 := ⌊𝑀𝑊 𝑖⌋, use modified weights
�̄� 𝑖 ∝ 𝑀𝑊 𝑖 − 𝑂𝑖

𝑎 to obtain 𝑂𝑖
𝑏 for the remaining 𝑀 −∑︀𝑁

𝑖=1 𝑂𝑖
𝑎

particles with one of the above techniques, and set 𝑂𝑖 := 𝑂𝑖
𝑎 + 𝑂𝑖

𝑏.

Tab. 1.1: Popular resampling procedures. Here, 𝑈 [𝑎, 𝑏)𝑀 is uniform distribution on the
𝑀 -fold half-open interval [𝑎, 𝑏)𝑀 and ⌊𝑥⌋ is the largest integer smaller than or equal to 𝑥.

The first result (1.43) reveals that—when (1.41) holds—the resampling intro-
duces no additional bias compared to the self-normalized importance sampling esti-
mator (1.18). The second result (1.44) shows that the resampling procedure can only
increase the variance after the self-normalized importance sampling step. Therefore,
an estimate of 𝜋(𝑓) should be computed before the resampling. Moreover, the result
(1.44) motivates us to perform sampling in (1.40) with variance reduction techniques
and/or only when the effective sample size—discussed in Section 1.3.1—is not large
enough. The variance can be affected by changing the mechanism of generating ran-
dom numbers in the Monte Carlo sampling. We present the most popular resampling
schemes in Tab. 1.1.

All these approaches satisfy (1.41) and can be implemented with 𝒪(𝑁) compu-
tational complexity. For a detailed introduction to the principles underlying these
methods and an experimental comparison, see [90]. The multinomial, stratified,
and residual resampling techniques generate particles (�̄� 𝑖)𝑀

𝑖=1 that are conditionally
IID given (𝑋 𝑖)𝑁

𝑖=1 and provide asymptotic variance which tends to zero for 𝑀 → ∞.
However, a theoretical comparison presented in [52] shows that this is not the case for
the systematic resampling. Additionally, based on comparing the conditional vari-
ances of the considered resampling schemes, it is proved in [52] that the residual and
stratified resampling outperform the multinomial one. A recent review of resampling
strategies beyond those presented in Tab. 1.1 can be found in [126]. The resampling
schemes are generally hard to parallelize as we are required to perform summa-
tion over the importance weights. Recently, two resampling schemes—referred to as
Metropolis and rejection resampling—that do not involve such a requirement, were
proposed in [157].

The variance of the normalized importance weights is non-zero before the re-
sampling step. The application of the plain Monte Carlo approach to sample from
𝜋𝑆𝑁𝐼𝑆,𝑁 facilitates construction of the uniformly-weighted particle system. This is a
key feature as it implies that the variance of the importance weights becomes zero.
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Algorithm 2 The sequential Monte Carlo (SMC) algorithm
A. Initial step: (𝑡 = 1)

1. Sample 𝑋𝑖
1 ∼ 𝑚1(·).

2. Compute 𝑊 𝑖
1 ∝ 𝑣1(𝑋𝑖

1).
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Sample 𝐴𝑖
𝑡−1 ∼ ℱ(·|W𝑡−1).

2. Sample 𝑋𝑖
𝑡 ∼ 𝑚𝑡(·|𝑋

𝐴𝑖
𝑡−1

1:𝑡−1) and set 𝑋𝑖
1:𝑡 := (𝑋𝑖

𝑡 , 𝑋
𝐴𝑖

𝑡−1
1:𝑡−1).

3. Compute 𝑊 𝑖
𝑡 ∝ 𝑣𝑡(𝑋𝑖

1:𝑡) according to (1.49).

As will be presented in Section 1.6, resampling is the solution to weight degeneracy.
However, it introduces a different problem, which lies in that resampling generally
decreases the diversity of the original particle system, as we make multiple copies of
the particles with high weights.

1.6 Sequential Monte Carlo

Sequential Monte Carlo (SMC) methodology [56, 47] is a general tool which uni-
fies various algorithms for approximating a sequence of target distributions (𝜋𝑡)𝑇

𝑡=1

under a single framework, where 𝜋𝑡 is defined on X𝑡 and known only up to the nor-
malizing factor as in (1.26). The sequential Monte Carlo methods are also referred
to as sequential importance (sampling and) resampling. The resampling is of key
importance here, as it allows us to deal with the weight degeneracy problem of the
plain sequential importance sampling.

The SMC approximation of 𝜋𝑡 and the integral 𝜋𝑡(𝑓) of a test function 𝑓 : X𝑡 → R
are obtained in the same way as with the self-normalized importance sampling and
are given by

𝜋𝑁
𝑡 (𝑑𝑥1:𝑡) =

𝑁∑︁

𝑖=1
𝑊 𝑖

𝑡 𝛿𝑋𝑖
1:𝑡

(𝑑𝑥1:𝑡), (1.45)

and
𝜋𝑁

𝑡 (𝑓) =
𝑁∑︁

𝑖=1
𝑊 𝑖

𝑡 𝑓(𝑋 𝑖
1:𝑡). (1.46)

respectively, where 𝑊 𝑖
𝑡 is given by (1.27). Let us remind that (1.45) is fully de-

termined by the weighted particle system (𝑋 𝑖
1:𝑡,𝑊

𝑖
𝑡 )𝑁

𝑖=1, where (𝑋 𝑖
1:𝑡) are termed

particle trajectories that represent a hypothetical evolution of the true trajectory
𝑥1:𝑡, while the weights (𝑊 𝑖

𝑡 ) provide the assessment of how the corresponding particle
trajectories contribute to the resulting approximation.

The fundamental principles of the SMC methodology are rooted in the sequen-
tial importance sampling and resampling discussed in Section 1.4 and Section 1.5,
respectively. Let us consider we have the weighted particle system computed at the
preceding iteration, (𝑋 𝑖

1:𝑡−1,𝑊
𝑖
𝑡−1)𝑁

𝑖=1. The recursive step of an SMC method can

36



be divided into three parts. The first part performs the resampling, which simply
generates a set of ancestor indices (𝐴𝑖

𝑡−1)𝑁
𝑖=1 according to

𝐴𝑖
𝑡−1 ∼ ℱ(·|W𝑡−1), 𝑖 = 1, . . . , 𝑁.

The ancestor indices (𝐴𝑖
𝑡−1)𝑁

𝑖=1 are then used in the sequential importance sampling,
which is given by the remaining two parts. The second part consists of simulating
the particles (𝑋 𝑖

𝑡)𝑁
𝑖=1 from the proposal distribution,

𝑋 𝑖
𝑡 ∼ 𝑚𝑡(·|𝑋

𝐴𝑖
𝑡−1

1:𝑡−1), (1.47)

and extending the previous trajectories based on

𝑋 𝑖
1:𝑡 := (𝑋𝐴𝑖

𝑡−1
1:𝑡−1, 𝑋

𝑖
𝑡). (1.48)

Here, the index 𝐴𝑖
𝑡−1 is used to assign the parent trajectory to the offspring particle

𝑋 𝑖
𝑡 in (1.47) and to extend the parent trajectory to the offspring trajectory 𝑋 𝑖

1:𝑡

in (1.48). The third part computes—based on (1.27)—the normalized importance
weights 𝑊 𝑖

𝑡 for 𝑖 = 1, . . . , 𝑁 , where the unnormalized importance weight function
now satisfies

𝑣𝑡(𝑥1:𝑡) := 𝛾𝑡(𝑑𝑥1:𝑡)
𝛾𝑡−1(𝑑𝑥1:𝑡−1)𝑚𝑡(𝑥𝑡|𝑥1:𝑡−1)

. (1.49)

Note we do not use the recursive formula for computing the weights as in (1.30)
due to the fact that we perform resampling at each iteration. Such an SMC set-
ting is often referred to as sequential importance resampling. The above sequence
of operations leads to the current particle system (𝑋 𝑖

1:𝑡,𝑊
𝑖
𝑡 )𝑁

𝑖=1, which closes the
recursive step.

The initial step is simply formed by the standard self-normalized importance
sampling where we first sample the particles (𝑋 𝑖

1)𝑁
𝑖=1 from the initial proposal dis-

tribution 𝑋 𝑖
1 ∼ 𝑚1(·) and then compute the normalized importance weights 𝑊 𝑖

1 ∝
𝑣1(𝑋 𝑖

1) for 𝑖 = 1, . . . , 𝑁 , where 𝑣1(𝑥1) = 𝛾1(𝑥1)/𝑚1(𝑥1). We summarize this SMC
procedure in Algorithm 2 which can generally be seen as a procedure for propagating
𝜋𝑁

𝑡 in time. The computational complexity of Algorithm 2 scales with 𝒪(𝑇𝑁) op-
erations, where 𝑇 is the total amount of iterations. Note that we implicitly assume
the multinomial resampling scheme in line B1. Naturally, we can replace this line
by the alternative resampling strategies discussed in Section 1.5.

To demonstrate how the resampling addresses the weight degeneracy problem,
we continue with the example in Fig. 1.1 and present normalized importance weights
computed by Algorithm 2 in the top row of Fig. 1.2. We see that there is no weight
converging to one, demonstrating that the resampling counteracts the accumulation
of approximation error over time—the error caused by the weight degeneracy.
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Fig. 1.2: An example of weight degeneracy. We consider 𝛾𝑡(𝑥1:𝑡) := 𝛾(𝑥1)∏︀𝑡
𝑖=1 𝛾(𝑥𝑖|𝑥𝑖−1)

where 𝛾(𝑥1) = 𝒩 (𝑥1; 0, 1) and 𝛾(𝑥𝑖|𝑥𝑖−1) = 𝒩 (𝑥𝑖; 0.8𝑥𝑖−1, 1). The normalized weights
𝑊 1:10

𝑡 for 𝑡 = (1, 10, 20, 30, 40) computed by the sequential importance resampling—
Algorithm 2—(top) and sequential importance sampling and resampling (bottom), with
the proposal density being 𝑚(𝑥𝑡|𝑥𝑡−1) := 𝒩 (𝑥𝑡; 0.8𝑥𝑡−1, 2) in both these cases.

Nevertheless, the resampling procedure introduces a different problem, which we
now describe. The main purpose of the ancestor indices A1:𝑡−1 := 𝐴1:𝑁

1:𝑡−1 is to allow
us to trace the genealogy of the particle trajectories. By keeping the record of these
indices, we can retrospectively determine the index 𝐵𝑖

𝑛 of the 𝑖th ancestor particle at
some past time 𝑛 in the history of the associated particle trajectory 𝑋 𝑖

1:𝑡 according
to

𝐵𝑖
𝑛 := 𝐴

𝐵𝑖
𝑛+1

𝑛 , (1.50)

for 𝑛 = 𝑡 − 1, . . . , 1, starting with 𝐵𝑖
𝑡 = 𝑖. Based on this backward recursion,

one can assemble 𝑖th full particle trajectory as 𝑋 𝑖
1:𝑡 := 𝑋

𝐵𝑖
1:𝑡

1:𝑡 = (𝑋𝐵𝑖
1

1 , . . . , 𝑋
𝐵𝑖

𝑡
𝑡 ).

We demonstrate particle trajectories that are generated in this way on an example
presented in Fig. 1.3. We observe that, as the iterations increase, the trajectories are
progressively more similar in the initial time range. Eventually, in the final frame, we
can even notice that the trajectories are the same for the first 14 iterations. What we
see in the present example is a direct consequence of the resampling operation, which
inevitably causes the loss of the particle diversity by eliminating the trajectories with
the low weights and duplicating those with the high weights. This phenomenon is
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Fig. 1.3: An example of path degeneracy. We consider 𝛾𝑡(𝑥1:𝑡) := 𝛾(𝑥1)∏︀𝑡
𝑖=1 𝛾(𝑥𝑖|𝑥𝑖−1)

where 𝛾(𝑥1) = 𝒩 (𝑥1; 0, 1) and 𝛾(𝑥𝑖|𝑥𝑖−1) = 𝒩 (𝑥𝑖; 0.8𝑥𝑖−1, 1). The particle trajectories
( ), 𝑥1:𝑁

1:𝑡 , and the associated trajectory estimate ( ), for 𝑡 = (10, 20, 30, 40) and 𝑁 =
20, computed by Algorithm 2 with the proposal density 𝑚(𝑥𝑡|𝑥𝑡−1) := 𝒩 (𝑥𝑡; 0.8𝑥𝑡−1, 4).

commonly referred to as path degeneracy [6] or sample impoverishment.
Alternative formulation of the SMC algorithm performs resampling only when

the approximate value of the effective sample size (1.25) drops below a certain
threshold 𝑁th. Such an SMC setup is commonly known as sequential importance
sampling and resampling and can be adopted as a first step towards reducing the
impact of the particle path degeneracy problem. We can see in the bottom row of
Fig. 1.2 that the effective sample size of the sequential importance sampling and
resampling drops to lower values. This is caused by the fact that the threshold
value is 𝑁th = 𝑁/2, allowing the effective sample size to go to lower values. We can
observe that the more uniform the weights the lower the variance and the higher
the effective sample size, which is in agreement with (1.23).

Algorithm 2 requires us to select the sequence of importance distributions (𝑚𝑡)𝑇
𝑡=1.

The choice of these distributions follows the same guideline as discussed in Section
1.4, thus we should select the sequence to be as close as possible to the optimal
one (𝑚⋆

𝑡 )𝑇
𝑡=1. The main idea here is that the optimal proposal distribution is sup-

posed to decrease the number of times the resampling step is triggered by decreasing
the variance of the importance weights. If it is not possible to apply the optimal
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proposal distribution—which, indeed, is the most common case—one is advised to
design an approximate proposal [173, 32]. Although adopting an approximate opti-
mal proposal can lead to an increase in the diversity of the particle trajectories, the
improvement brought by this strategy is rather weak, as will be demonstrated in
Chapter 2. Another way of counteracting the path degeneracy is to utilize MCMC
moves to diversify the particle trajectories [78]. There exists various types of the
transition kernels to achieve this [42]. An alternative approach is to run an ensemble
of SMC methods [98]. However, the most important role in counteracting the path
degeneracy is played by backward simulation [80] and particle Markov chain Monte
Carlo methods [4], which we discuss later on in this chapter.

For a latter reference, we present the density of all variables generated by the
SMC algorithm

𝜓(x1:𝑇 , a1:𝑇 −1) =
{︃

𝑁∏︁

𝑖=1
𝑚1(𝑥𝑖

1)
}︃

𝑇∏︁

𝑡=2

{︃
𝑟(a𝑡−1|w𝑡−1)

𝑁∏︁

𝑖=1
𝑚𝑡(𝑥𝑖

𝑡|𝑥
𝑎𝑖

𝑡−1
1:𝑡−1)

}︃
, (1.51)

where we use x𝑡 := 𝑥1:𝑁
𝑡 = (𝑥1

𝑡 , . . . , 𝑥
𝑁
𝑡 ) and w𝑡 = (𝑤1

𝑡 , . . . , 𝑤
𝑁
𝑡 ). Here, we recall that

𝑟 is the ancestor sampling distribution appearing in (1.39). The density (1.51) is of
key importance when devising more advanced Monte Carlo-based strategies, such
as particle Markov chain Monte Carlo [4] and SMC2 [39].

The SMC methods—despite resetting the weights by resampling—perform a con-
ditional self-normalized importance sampling step at each iteration by drawing the
samples in (1.47) and computing (1.49). When the dimension of the marginal space
X is high, poor performance should be expected as we face the problem of importance
sampling in high-dimensions. The quality of approximation of the target distribu-
tion decreases with increasing the dimension of X, even when compensated for by
an exponentially increasing number of particles [19]. The distinguishing feature of
SMC methods—attractive mainly in the field of Bayesian statistics—lies in that
they provide unbiased estimate of the normalizing factor 𝛾𝑡(1), [154].

1.7 Backward Simulation

Backward simulation [80] is a principled approach for sampling from a target prob-
ability distribution 𝜋𝑇 defined on X𝑇 , where X ⊆ R𝑛𝑥 . We assume that 𝜋𝑇 is known
only up to the normalization factor, as in (1.26). The target distribution can be
approximated by the SMC approach discussed in Section 1.6. However, as demon-
strated in Fig. 1.3, the resulting approximation suffers from the path degeneracy
problem. The particle trajectories of such an approximation are strongly dependent
for 𝑡 ≪ 𝑇 . A backward simulator first runs the forward SMC algorithm to store the
particle systems (X1:𝑡,W𝑡) for 𝑡 = 1, . . . , 𝑇 and then removes the dependency by
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sampling from these particle systems in a backward sweep for 𝑡 = 𝑇, . . . , 1. Indeed,
the backward simulator can be seen as an algorithm which applies an additional
resampling sweep in the time-reverse direction. Thus, contrary to the forward SMC
method, the backward simulator is an offline procedure.

The backward simulator is designed on the basis of factorizing the target distri-
bution according to

𝜋𝑇 (𝑑𝑥1:𝑇 ) = 𝑘𝑇 (𝑑𝑥1:𝑡|𝑥𝑡+1:𝑇 )𝜋𝑇 (𝑑𝑥𝑡+1:𝑇 ), (1.52)

where the backward transition kernel 𝑘𝑇 can be written as [218, 133]

𝑘𝑇 (𝑑𝑥1:𝑡|𝑥𝑡+1:𝑇 ) ∝ 𝛾𝑇 (𝑥1:𝑇 )
𝛾𝑡(𝑥1:𝑡)

𝜋𝑡(𝑑𝑥1:𝑡). (1.53)

We describe the recursive step of the backward simulator in two parts. Assume that
we have the partial backward trajectories from the previous iteration (taking the
time reverse perspective), �̃�1:𝑀

𝑡+1:𝑇 , where 𝑀 denotes the number of backward trajec-
tories. Furthermore, consider that we have the weighted particle systems (X1:𝑡,W𝑡)𝑇

𝑡=1

computed by the forward SMC procedure in Algorithm 2. In the first part, we use
the forward empirical approximation 𝜋𝑁

𝑡 —the current particle system (X1:𝑡,W𝑡)—
to approximate the backward transition kernel (1.53) with

𝑘𝑁
𝑇 (𝑑𝑥1:𝑡|�̃�𝑡+1:𝑇 ) =

𝑁∑︁

𝑖=1
𝑊 𝑖

𝑡|𝑇 𝛿𝑋𝑖
1:𝑡

(𝑑𝑥1:𝑡), (1.54)

where
𝑊 𝑖

𝑡|𝑇 ∝ 𝑊 𝑖
𝑡

𝛾𝑇 (𝑋 𝑖
1:𝑡, �̃�𝑡+1:𝑇 )

𝛾𝑡(𝑋 𝑖
1:𝑡)

. (1.55)

The computation of this kernel is performed by just evaluating the weights (1.55)
conditionally on �̃�𝑗

𝑡+1:𝑇 = �̃�𝑗
𝑡+1:𝑇 for 𝑗 = 1, . . . ,𝑀 and 𝑖 = 1, . . . , 𝑁 . To simplify the

subsequent assertion, we introduce W𝑗
𝑡|𝑇 := 𝑊 1:𝑁,𝑗

𝑡|𝑇 to denote a set of the backward
weights. In the second part, we utilize the approximate kernel (1.54) to extend the
backward particle trajectories, �̃�1:𝑀

𝑡+1:𝑇 . This is done by first sampling the index 𝐵𝑗
𝑡

based on the set of weights W𝑗
𝑡|𝑇 according to

𝐵𝑗
𝑡 ∼ ℱ(·|W𝑗

𝑡|𝑇 ).

Consequently, we apply the index𝐵𝑗
𝑡 to select from only the (fully diversified) current

set of particles, (𝑋 𝑖
𝑡)𝑁

𝑖=1, while discarding the (poorly diversified) set of partial for-
ward trajectories, (𝑋 𝑖

1:𝑡−1)𝑁
𝑖=1. Finally, we keep the future backward trajectory �̃�𝑗

𝑡+1:𝑇

intact—as the factorization (1.52) suggests—and concatenate it with the selected
particle,

�̃�𝑗
𝑡:𝑇 := (𝑋𝐵𝑗

𝑡
𝑡 , �̃�𝑗

𝑡+1:𝑇 ).
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Algorithm 3 The backward simulator
A. Initial step: (𝑡 = 𝑇 )

1. Sample 𝐵𝑗
𝑡 ∼ ℱ(·|W𝑇 ) and set �̃�𝑗

𝑇 := 𝑋
𝐵𝑗

𝑡
𝑡 .

B. Recursive step: (𝑡 = 𝑇 − 1, . . . , 1)
1. Compute W𝑗

𝑡|𝑇 according to (1.55).
2. Sample 𝐵𝑗

𝑡 ∼ ℱ(·|W𝑗
𝑡|𝑇 ) and set �̃�𝑗

𝑡:𝑇 := (𝑋𝐵𝑗
𝑡

𝑡 , �̃�𝑗
𝑡+1:𝑇 ).

These operations are repeated for each 𝑗 = 1, . . . ,𝑀 . The recursive step of the
backward simulator is now completed. Note that the use of the current particles is
of key importance here as they have unreduced diversity. However, since we use the
full trajectories X1:𝑡 to compute the backward transition kernel before the sampling
of the indices B𝑡, the method is still affected by the path degeneracy problem into
a certain degree [134].

The initial step simply selects �̃�𝑗
𝑇 := 𝑋

𝐵𝑗
𝑇

𝑇 with 𝐵𝑗
𝑡 ∼ ℱ(·|W𝑇 ) for 𝑗 = 1, . . . ,𝑀 ;

where W𝑇 is taken from the forward SMC-based approximation 𝜋𝑁
𝑇 at the final time

step 𝑡 = 𝑇 . We summarize the backward sampling procedure in Algorithm 3, where
all 𝑗-dependent operations are performed for 𝑗 = 1, . . . ,𝑀 .

Algorithm 3 generates a uniformly-weighted particle system (�̃�𝑗
1:𝑇 ,𝑀

−1)𝑀
𝑗=1 con-

taining a set of conditionally IID samples from the target distribution 𝜋𝑇 . This
particle system can be used to form the associated empirical approximation

𝜋𝐵𝑆,𝑀
𝑇 (𝑑𝑥1:𝑇 ) = 1

𝑀

𝑀∑︁

𝑗=1
𝛿�̃�𝑗

1:𝑇
(𝑑𝑥1:𝑇 ). (1.56)

The computational complexity of Algorithm 3 for producing 𝑀 trajectories of the
length 𝑇 scales with 𝒪(𝑇𝑁𝑀) operations.

1.8 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) simulation [3] refers to a mechanism suitable for
generating a set of 𝑅 random samples (𝑋[𝑘])𝑅

𝑘=1 from a target distribution 𝜋 defined
on X ⊆ R𝑛𝑥 , with 𝜋 being known only up to the normalizing factor, as in (1.14). The
samples are not independent—as in the case of basic Monte Carlo simulation—but
constitute a Markov chain. If the target distribution 𝜋 coincides with the stationary
distribution of the chain, then after reaching the stationary regime, the samples are
approximately distributed according to 𝜋 and can be used to address associated
inference objectives. The primary aim in designing MCMC methods is to make the
time before entering the stationary regime—commonly referred to as the transient
phase—as short as possible.
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Algorithm 4 The Markov chain Monte Carlo sampler
A. Initial step: (𝑘 = 1)

* Sample 𝑋[1] ∼ 𝜇(·).
B. Recursive step: (𝑘 = 2, . . . , 𝑅)

* Sample 𝑋[𝑘] ∼ 𝒦(𝑋[𝑘 − 1], ·).

The stochastic behaviour of a time-homogeneous Markov chain (𝑋[𝑘])𝑅
𝑘=1 is fully

determined by the pair of distributions (𝜇,𝒦) where 𝜇 is the initial probability dis-
tribution on X, and 𝒦 constitutes the Markov transition kernel which is a probability
distribution 𝒦(𝑥, ·) for 𝑥 ∈ X and a measurable function 𝒦(·, 𝐴) for 𝐴 ⊆ X. A sim-
ple procedure for simulating the Markov chain according to (𝜇,𝒦) is presented in
Algorithm 4, which can be seen as a generic Markov chain Monte Carlo sampler.
We start by simulating the first sample 𝑋[1] in the initial step, and then continue by
using the sample from previous iteration 𝑋[𝑘− 1] to generate a new one 𝑋[𝑘] in the
recursive step. The samples can then be used to compute the empirical expectation
of a test function 𝑓 : X → R under 𝜋 as

𝜋𝑀𝐶𝑀𝐶,𝑅(𝑓) = 1
𝑅

𝑅∑︁

𝑘=1
𝑓(𝑋[𝑘]). (1.57)

Whenever we devise a particular MCMC algorithm, we practically design a specific
transition kernel 𝒦. To develop an algorithm which produces Markov chains that
are suitable for estimating 𝜋(𝑓) by the empirical average (1.57), we have to fulfill
certain conditions. The following theorem defines such assumptions and underlines
the basic principle of the MCMC methodology.

Theorem 1.10. If (𝑋[𝑘])𝑅
𝑘=1 is a 𝜋-irreducible, aperiodic, Markov chain with invari-

ant distribution 𝜋, and 𝑓 : X → R is a measurable function such that E[|𝑓(𝑋)|] < ∞;
then, for 𝜋-almost every initial state 𝑋[1], the empirical expectation (1.57) converges
almost surely to the exact one (1.2) as the number of samples 𝑅 increases,

𝜋𝑀𝐶𝑀𝐶,𝑅(𝑓) 𝑎.𝑠.−→ 𝜋(𝑓),

for 𝑅 −→ ∞.

Proof. See [30] Section 14.2.6.

The transition kernel should generally be chosen to capture important features
of 𝜋 and to be easy to sample from. More precise requirements are stated by The-
orem 1.10 which constitutes the strong law of large numbers for the Markov chains
and states that—as long as we fulfill its requirements—we can design a successful
MCMC algorithm. The first requirement is that 𝒦 should admit 𝜋 as its station-
ary distribution. The stationary distribution characterizes the stable behaviour of
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the chain and, indeed, it is the first step towards constructing standard MCMC
schemes. In the stable regime, for 𝑘 ≥ 𝑛, the consecutive samples 𝑋[𝑘−1] and 𝑋[𝑘]
are approximately distributed according to 𝜋. However, even when 𝒦 admits 𝜋 as
its stationary distribution, there is no guarantee that the chain will converge to the
stationary regime. To ensure this, we also need the chain to be 𝜋-irreducible, that
is, for any initial state 𝑋[1] ∈ X, there exists a positive probability of entering any
set for which 𝜋 has positive probability [205]. Moreover, we require the chain to be
aperiodic, which states that there are no measurable partitions of the space that
can be entered at certain regularly spaced intervals. A stronger version of Theorem
1.10 can be formulated if we additionally assume that the chain is Harris recurrent
[152]. The almost sure convergence then holds irrespective of the initial state.

Under the assumptions detailed in [101], it can be demonstrated that the error
of MCMC methods follows the central limit theorem

𝑅
1
2 [𝜋𝑀𝐶𝑀𝐶,𝑅(𝑓) − 𝜋(𝑓)] 𝑑−→ 𝒩 (0, 𝜎2

𝑀𝐶𝑀𝐶(𝑓)),

for 𝑅 −→ ∞. Here,

𝜎2
𝑀𝐶𝑀𝐶(𝑓) = V𝜋[𝑓(𝑋1)] + 2

∞∑︁

𝑘=1
C𝜋[𝑓(𝑋1), 𝑓(𝑋𝑘)] < ∞.

Thus, the MCMC methods converge under the standard 𝒪(𝑅− 1
2 ) rate.

The MCMC methods can generally be separated into two main classes known
as Metropolis-Hastings and Gibbs samplers. Since we do not use the Metropolis-
Hastings algorithm in this thesis, we leave it from the discussion in this section.

1.8.1 The Gibbs Sampler

To simplify the subsequent description, let us consider that the target distribution
𝜋(𝑑𝑥) admits a probability density function 𝜋 : X → R+ with respect to a dominating
measure which we (abusively) denote by 𝑑𝑥. To facilitate construction of the Gibbs
sampler [72], we need that the quantity of interest can be separated into at least two
components 𝑋 := (𝑍,Θ). The algorithm is then referred to as the two-stage Gibbs
sampler [183]. More generally, we can also have a target density that contains more
than two variables, 𝜋(𝑥1:𝑡); however, for simplicity, we do not consider this case here
and rather refer the reader to [183, 30] for more details. The main motivation for
resorting to Gibbs sampler lies in that, in some situations, it may be more convenient
and more tractable to sample from the conditional densities 𝜋(𝑧|𝜃) and 𝜋(𝜃|𝑧) rather
than directly from the joint density 𝜋(𝑧, 𝜃).

The basic idea of the Gibbs sampler is that, given the previous state 𝑋[𝑘 − 1],
we obtain the current state 𝑋[𝑘] by first drawing Θ[𝑘] ∼ 𝜋(·|𝑍[𝑘 − 1]) and then
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Algorithm 5 The Gibbs sampler
A. Initial step: (𝑘 = 1)

1. Sample Θ[1], 𝑍[1] ∼ 𝜇(·).
B. Recursive step: (𝑘 = 2, . . . , 𝑅)

1. Sample Θ[𝑘] ∼ 𝜋(·|𝑍[𝑘 − 1]).
2. Sample 𝑍[𝑘] ∼ 𝜋(·|Θ[𝑘]).

𝑍[𝑘] ∼ 𝜋(·|Θ[𝑘]). More specifically, conditionally on 𝑍[𝑘 − 1], we sample Θ[𝑘]—
without utilizing the previous state Θ[𝑘 − 1]—and then use this current state to
condition sampling of 𝑍[𝑘]. These two steps define a complete sweep of the Gibbs
sampler and can individually be described by their respective transition kernels,

𝒦𝜃(𝑥, 𝑑𝑥*) = 𝛿𝑧(𝑑𝑧*)𝜋(𝜃*|𝑧)𝑑𝜃*,

𝒦𝑧(𝑥, 𝑑𝑥*) = 𝛿𝜃(𝑑𝜃*)𝜋(𝑧*|𝜃)𝑑𝑧*.

It can be shown, see, e.g., [30] Section 6.2, that each of these kernels admits 𝜋 as its
stationary density. A complete Gibbs transition kernel is given by 𝒦 = 𝒦𝜃𝒦𝑧 and
can be summarized by the recursive step of Algorithm 5.

In the case of using the Gibbs kernel to produce samples from a high-dimensional
target density 𝜋(𝑥1:𝑡) with strongly correlated quantities 𝑋1:𝑡, the performance de-
pends on a particular setting of the updating scheme [184]. If we decide to design the
sweep so that the quantities are updated individually, then the resulting kernel will
suffer from poor mixing and the updates will be negligible. There are generally two
ways how to address this problem known as blocking and collapsing [137]. Blocking
is a strategy which separates the sequence 𝑋1:𝑡 into a number of smaller blocks and
the sweep is designed to sample these blocks separately. Collapsing is a technique
where certain quantities in 𝑋1:𝑡 are marginalized out and the sweep is created to
sample only the remaining quantities in the standard way.

1.9 Particle Markov Chain Monte Carlo

Various statistical inference objectives often lead to the requirement of approximat-
ing a joint target density

𝜋(𝜃, 𝑥1:𝑇 ) = 𝛾(𝜃, 𝑥1:𝑇 )
𝛾(1) , (1.58)

where Θ ∈ Θ ⊆ R𝑛𝜃 and 𝑋𝑡 ∈ X ⊆ R𝑛𝑥 , for 𝑡 = 1, . . . , 𝑇 , are some unknown static
and dynamic quantities of interest, respectively. We consider that 𝛾 : Θ×X𝑇 → R+ is
point-wise known whereas 𝛾(1) :=

∫︀
Θ×X𝑇 𝛾(𝜃, 𝑥1:𝑇 )𝑑𝜃𝑑𝑥1:𝑇 is unknown. The approx-

imation can be performed by applying the MCMC techniques. However, although
these methods converge under rather weak assumptions, their success strongly de-
pends on our ability to design suitable proposal densities. Specifically, as mentioned
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in Section 1.8, their performance can degrade when the joint quantities are sampled
individually and there exists a complex dependence structure among them. This
is even more pronounced if the target density is high-dimensional. The particle
MCMC methodology [4] addresses these issues by utilizing sequential Monte Carlo
methods [56] to construct high-dimensional proposal distributions for MCMC tech-
niques. The particle MCMC approach has recently shown to be the key enabler for
more sophisticated Bayesian inference problems than ever before.

The underlying idea of the particle MCMC methodology is to use exact MCMC
techniques to sample from an extended target density �̃�𝑁 which is defined on the
space of the static quantity and all the quantities generated by the SMC algorithm,
Θ × X := Θ × X𝑁𝑇 × (1, . . . , 𝑁)𝑁(𝑇 −1)+1, that is,

�̃�𝑁(𝜃, 𝑘,x1:𝑇 , a1:𝑇 −1) := 𝜋(𝜃, 𝑥𝑘
1:𝑇 )

𝑁𝑇

𝜓𝜃(x1:𝑇 , a1:𝑇 −1)

𝑚𝜃
1(𝑥

𝑏𝑘
1

1 )∏︀𝑇
𝑡=2 𝑟(𝑏𝑘

𝑡−1|w𝑡−1)𝑚𝜃
𝑡 (𝑥

𝑏𝑘
𝑡

𝑡 |𝑥𝑏𝑘
𝑡−1

1:𝑡−1)
, (1.59)

where 𝜓𝜃 is defined in (1.51). The key feature of (1.59) lies in that it admits (1.58)
as the marginal density. A specific particle MCMC method is designed as a Markov
transition kernel 𝒦 on the extended space Θ × X with (1.59) being the invariant
density. The generic sampler follows exactly the same steps as in Algorithm 4. How-
ever, the produced chain contains only the samples targeting the marginal density,
(Θ[𝑘], 𝑋1:𝑇 [𝑘])𝑅

𝑘=1, whereas the auxiliary variables are discarded at each iteration.
A remarkable feature of the particle MCMC methods is that the associated tran-

sition kernel leaves 𝜋 invariant for a finite number of particles 𝑁 . Thus, the number
of particles 𝑁 does not need to tend to infinity for these methods to converge. They
preserve the convergence properties of the basic MCMC procedures that converge
with the number of iterations 𝑅 going to infinity. The particle MCMC methods
overcome the difficulties related to the particle path degeneracy problem discussed
in Section 1.6. However, they still suffer from this issue in the sense that it affects
their convergence speed. The particle MCMC methods are generally highly com-
putationally demanding, as they require us to run a full forward sweep of an SMC
method to generate only a single particle trajectory at each iteration. If we run such
techniques for 𝑅 iterations, then their computational complexity scales at least with
𝒪(𝑅𝑁𝑇 ) operations. A conceptual simplification provided by the particle MCMC
methods is that the problem of designing proposal distributions for MCMC reduces
to the problem of designing proposal distributions for SMC.

Similarly as in Section 1.8, as we do not use the Metropolis-Hastings algorithm
in this thesis, we leave its particle MCMC version from the discussion.
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Algorithm 6 The conditional sequential Monte Carlo (CSMC) update
A. Initial step: (𝑡 = 1)

1. Sample 𝑋𝑖
1 ∼ 𝑚1(·) for 𝑖 ̸= 𝐵𝐾

1 .
2. Compute 𝑊 𝑖

1 ∝ 𝑣1(𝑋𝑖
1).

B. Recursive step: (𝑡 = 2, . . . , 𝑇 )
1. Sample A−𝐵𝐾

𝑡
𝑡−1 ∼ 𝑟(·|W𝑡−1, 𝐴

𝐵𝐾
𝑡

𝑡−1 = 𝐵𝐾
𝑡−1).

2. Sample 𝑋𝑖
𝑡 ∼ 𝑚𝑡(·|𝑋

𝐴𝑖
𝑡−1

1:𝑡−1) for 𝑖 ̸= 𝐵𝐾
𝑡 and set 𝑋𝑖

1:𝑡 := (𝑋𝑖
𝑡 , 𝑋

𝐴𝑖
𝑡−1

1:𝑡−1).
3. Compute 𝑊 𝑖

𝑡 ∝ 𝑣𝑡(𝑋𝑖
1:𝑡) according to (1.49).

1.9.1 The Particle Gibbs Sampler

A typical way of designing a Gibbs sampler for the target density (1.58) is to sample
from 𝜋(𝜃|𝑥1:𝑇 ) and 𝜋𝜃(𝑥1:𝑇 ). We assume that the first factor 𝜋(𝜃|𝑥1:𝑇 ) is tractable,
which is commonly the case if conjugate models are chosen. However, the second fac-
tor 𝜋𝜃(𝑥1:𝑇 ) is notoriously intractable, except the simplest situations, which prevents
us from completing the Gibbs sweep. To address this problem, we can construct a
Gibbs sampler with the target density (1.59) on the extended space Θ × X. The
resulting algorithm is referred to as the particle Gibbs sampler [4] and its sweep is
given by the three parts

Θ* ∼ �̃�𝑁(·|𝑘, 𝑥𝑘
1:𝑇 , 𝑏

𝑘
1:𝑇 −1) = 𝜋(·|𝑥𝑘

1:𝑇 ), (1.60a)

X*,−𝑏𝑘
1:𝑇

1:𝑇 ,A*,−𝑏𝑘
2:𝑇

1:𝑇 −1 ∼ �̃�𝑁(·|𝜃*, 𝑘, 𝑥𝑘
1:𝑇 , 𝑏

𝑘
1:𝑇 −1), (1.60b)

𝐾* ∼ �̃�𝑁(·|𝜃*,x*,−𝑏𝑘
1:𝑇

1:𝑇 , a*,−𝑏𝑘
2:𝑇

1:𝑇 −1 , 𝑥
𝑘
1:𝑇 , 𝑏

𝑘
1:𝑇 −1), (1.60c)

where X−𝑏𝑘
1:𝑇

1:𝑇 := (X−𝑏𝑘
1

1 , . . . ,X−𝑏𝑘
𝑇

𝑇 ) and X−𝑛
𝑡 = (𝑋1

𝑡 , . . . , 𝑋
𝑛−1
𝑡 , 𝑋𝑛+1

𝑡 , . . . , 𝑋𝑁
𝑡 ). The

same type of notation holds also for the ancestor indices. The first part samples the
parameters based on some previous trajectory. Even when the implementation of
this part is not possible due to intractability of the density in (1.60a), we can use the
Metropolis-Hastings algorithm to obtain the samples. To implement the second part
(1.60b), where the density coincides with the second fraction on the r.h.s. of (1.59),
we need a specific type of the SMC algorithm refereed to as the conditional SMC
(CSMC) update [4]. The key idea behind this approach is to guarantee that a single
particle trajectory 𝑋1:𝑡 with the ancestral lineage 𝐵1:𝑇 survives all the resampling
steps during the full run of the SMC algorithm. The procedure only samples 𝑁 − 1
particle trajectories according to Algorithm 2 but keeps one prespecified trajectory
intact. Thus, conditionally on 𝑋𝐾

1:𝑇 = 𝑥𝑘
1:𝑇 and 𝐵𝐾

1:𝑇 = 𝑏𝑘
1:𝑇 , the method proceeds

as delineated in Algorithm 6. The third part samples an index from a probability
mass function which is conditioned on all random quantities generated by the CSMC
algorithm and the prespecified trajectory. This is equivalent to sampling the index
based on the final set of the normalized importance weights W𝑇 or, in other words,
to sampling from 𝜋𝑁

𝜃 (𝑥1:𝑇 ). The index is then used to prespecify the trajectory
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Algorithm 7 The particle Gibbs sampler
A. Initial step: (𝑖 = 1)

1. Sample Θ[1], 𝑋1:𝑇 [1] ∼ 𝜇(·).
B. Recursive step: (𝑖 = 2, . . . , 𝑅)

1. Sample Θ[𝑖] ∼ 𝜋(·|𝑋1:𝑇 [𝑖 − 1]).
2. Conditionally on 𝑋1:𝑇 [𝑖 − 1], 𝐵1:𝑇 [𝑖 − 1], and Θ[𝑖], run Algorithm 6.
3. Sample 𝐾 with P(𝐾 = 𝑙) := 𝑊 𝑙

𝑇 and set 𝑋1:𝑇 [𝑖] = 𝑋𝐾
1:𝑇 and 𝐵1:𝑇 [𝑖] = 𝐵𝐾

1:𝑇 .

for the next iteration. A simplified listing of the particle Gibbs sampler (1.60) is
presented in Algorithm 7.

Although the basic form of the particle Gibbs sampler presented in Algorithm 7
converges in the sense of Theorem 1.10, it suffers from the previously discussed path
degeneracy problem. The trajectories generated by the CSMC update are in some
sense close to the prespecified trajectory and are highly dependent for 𝑡 ≪ 𝑇 , as
presented in Fig. 1.3. Therefore, we can only sample a new prespecified trajectory
which is to a large extent similar to the previous one. Given the fact the forgetting
properties of the proposal kernel 𝑚𝑡 are satisfactory, the generated trajectories are
independent of the prespecified trajectory with a high probability. This is the key
idea which allows the sampler to work; otherwise, without the forgetting properties,
every new trajectory would be just the same as the previous one and the space would
not be explored. However, the fact the trajectories are similar makes the particle
Gibbs sampler to mix poorly.

A very straightforward remedy to this problem is to simply have the number of
particles 𝑁 significantly greater than 𝑇 . This may increase the number of indepen-
dent trajectories for 𝑡 ≪ 𝑇 and thus improve the mixing properties. Another way to
achieve this is to choose a resampling strategy which decreases the number of times
the particle trajectories are resampled [63]. A more efficient approach was suggested
in [216] and lies in introducing a backward simulation sweep into the CSMC update
in order to sample the ancestral lineage 𝐵𝐾

1:𝑇 rather than tracing it back in the deter-
ministic sense (1.50). This proposal was later improved in [134] so that the ancestor
sampling can be performed in the single forward run of the CSMC update.

1.10 Rao-Blackwellization

A wide range of practical problems often require us to approximate a target density
𝜋(𝑥)—defined on X ⊆ R𝑛𝑥—such that the quantity of interest is composite, 𝑋 =
(𝑈, 𝑉 ), and the factorization

𝜋(𝑢, 𝑣) = 𝜋𝑐(𝑢|𝑣)𝜋𝑚(𝑣), (1.61)
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where the conditional factor 𝜋𝑐 is conditionally tractable given 𝑉 but the marginal
factor 𝜋𝑚 is intractable, exists. We can proceed by approximating the target density
directly with any method presented in the previous sections. However, in this case,
such an approach may prove to be inefficient in terms of the estimation accuracy
and computational complexity. Rao-Blackwellization is a principle which suggests
to apply a Monte Carlo method to approximate only the marginal factor 𝜋𝑚 and
perform the computations associated with the conditional factor 𝜋𝑐 under a closed-
form solution. The accuracy of an estimator under (1.61) can then be lower than or
at least as same as of an estimator based on the joint samples. A simple intuition
behind Rao-Blackwellization is that focusing samples on the subspace V ⊂ X is more
efficient than on the compete space X.

Let us consider we have used one of the previously discussed methods to approx-
imate the marginal factor 𝜋𝑚 by the empirical approximation 𝜋𝑚,𝑁 associated with
the weighted particle system (𝑉 𝑖,𝑊 𝑖)𝑁

𝑖=1. Then, the approximation of the target
density is simply obtained by inserting 𝜋𝑚,𝑁 in (1.61),

𝜋𝑅𝐵,𝑁(𝑢, 𝑑𝑣) = 𝜋𝑐(𝑢|𝑣)𝜋𝑚,𝑁(𝑑𝑣). (1.62)

The weighted particle system of 𝜋𝑅𝐵,𝑁(𝑢, 𝑑𝑣) is then given by (𝑉 𝑖, 𝜋𝑖,𝑐,𝑊 𝑖)𝑁
𝑖=1, where

𝜋𝑖,𝑐 := 𝜋𝑐(·|𝑉 𝑖). The conditional factors (𝜋𝑖,𝑐) are often represented by a set of finite-
dimensional statistics (𝑆𝑖) that can be computed under a closed-form analytical
expression for each 𝑉 𝑖. Therefore, it is more common to use the weighted particle
system defined by (𝑉 𝑖, 𝑆𝑖,𝑊 𝑖)𝑁

𝑖=1 [55, 192], although the appearance of the full
conditional factors (𝜋𝑖,𝑐) in the particle system can be seen, e.g., when dealing
with the discrete-valued substructures [167]. The expected value of a test function
𝑓 : U × V → R under 𝜋𝑐 is tractable conditionally on (𝑉 𝑖). This allows us to express
the estimator with respect to (1.61) as

𝜋𝑅𝐵,𝑁(𝑓) =
𝑁∑︁

𝑖=1
𝑊 𝑖E[𝑓(𝑈, 𝑉 𝑖)|𝑉 𝑖].

To assess the efficiency gain brought by a Rao-Blackwellized estimator 𝜋𝑅𝐵,𝑁(𝑓)
compared to a non-Rao-Blackwellized estimator 𝜋𝑁(𝑓), we consider the variance
decomposition

V[𝜋𝑁(𝑓)] = V[𝜋𝑅𝐵,𝑁(𝑓)] + E[V[𝜋𝑁(𝑓)|𝑉 ]]. (1.63)

This formula can only serve for a basic qualitative comparison between 𝜋𝑅𝐵,𝑁(𝑓)
and 𝜋𝑁(𝑓) as the involved expectations cannot be evaluated except the trivial cases.
Moreover, the comparison would depend on specific Monte Carlo methods adopted.
Since the second term on the r.h.s. of (1.63) is always non-negative, we can state that
𝜋𝑅𝐵,𝑁(𝑓) can only have lower—or at worst the same—variance as 𝜋𝑁(𝑓). However,
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the size of the second term affects the trade-off between estimation accuracy and
computational time. The computational cost at a given number of particles 𝑁 is
usually higher for 𝜋𝑅𝐵,𝑁(𝑓) than for 𝜋𝑁(𝑓), which is caused by the fact we need to
evaluate the statistic 𝑆𝑖 associated with 𝜋𝑐,𝑖 for each 𝑖 = 1, . . . , 𝑁 . On the one hand,
if the second term is low, the variance of 𝜋𝑁(𝑓) and 𝜋𝑅𝐵,𝑁(𝑓) will be approximately
the same, but the cost of computing 𝜋𝑅𝐵,𝑁(𝑓) will be higher at a given 𝑁 . The
Rao-Blackwellization is rather inefficient in such situations. On the other hand, if
the second term is high, the variance of 𝜋𝑁(𝑓) and 𝜋𝑅𝐵,𝑁(𝑓) will be substantially
different, and it could take a high 𝑁—and more computational resources—to match
the variance of 𝜋𝑁(𝑓) with 𝜋𝑅𝐵,𝑁(𝑓). The Rao-Blackwellization is most efficient
in this case. A concrete trade-off commonly depends on a given model and the
uncertainty of associated quantities.

Practically all the methods discussed previously can have their Rao-Blackwellized
variants. For example, applying Rao-Blackwellization in the context of importance
sampling-based methods leads to canceling the conditional factors out in the impor-
tance weights, which in turn provides us with their lower variance. For the backward
simulation, full Rao-Blackwellization requires us to design a Rao-Blackwellized for-
ward and backward samplers separately.

Rao-Blackwellization can be applied even if the conditional factor 𝜋𝑐 is ana-
lytically intractable. In such situations, we use a nested Monte Carlo method to
approximate 𝜋𝑐 conditionally on 𝑉 𝑖 by an empirical approximation 𝜋𝑖,𝑐,𝑀 for all
𝑖 = 1, . . . , 𝑁 . The particle system (𝑉 𝑖, 𝜋𝑖,𝑐,𝑀 ,𝑊 𝑖,𝑣)𝑁

𝑖=1 is then assembled in a way
that each 𝜋𝑖,𝑐,𝑀 is represented by its own, local, particle system (𝑈 𝑖,𝑗,𝑊 𝑖,𝑗,𝑢)𝑀

𝑗=1.
This approach is referred to as exact approximate Rao-Blackwellization [100]. Here,
the exactness means that the method converges for 𝑁 → ∞ and any number of
particles 𝑀 ≥ 1 of the local particle filters. For a fixed 𝑁 and 𝑀 → ∞, the pro-
cedure approaches the performance of a Rao-Blackwellized method designed for a
target distribution with a tractable substructure. However, a question is whether
such an approach computationally outperforms a plain Monte Carlo procedure with
𝑀𝑁 particles.
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2 STATE AND PARAMETER INFERENCE IN
STATE-SPACE MODELS

2.1 State-Space Models

A state-space model or a hidden Markov model [152] is the most widely used tool
for modeling of dynamical systems. This fact follows mainly from its versatility and
ability to cover a broad class of non-linear and non-Gaussian systems. The model
is commonly applied in various areas of science and engineering, including signal
processing, econometrics, bioinformatics, sociology, etc. However, the generality
of state-space models comes at the price of not providing analytically tractable
solutions to the associated inference problems in most practical cases of interest,
which requires us to resort to approximate techniques.

2.1.1 Definition

A state-space model generally characterizes (or interprets) a bivariate, discrete-time,
stochastic process (𝑋𝑡, 𝑌𝑡)𝑇

𝑡=1, where the random variables1 𝑋𝑡 and 𝑌𝑡 take values
in some (perhaps discrete-valued) spaces X ⊆ R𝑛𝑥 and Y ⊆ R𝑛𝑦 , respectively, with
𝑛 ∈ N+ denoting their dimension. We refer to the variables (𝑌𝑡)𝑇

𝑡=1 as observations
and assume that they can be measured on a system under study. The variables
(𝑋𝑡)𝑇

𝑡=1 are usually called as latent (unobserved) states, as they cannot directly be
observed. The state-space model evolves according to the probability distributions
given by

P(𝑋𝑡 ∈ 𝐴|𝑋𝑡−1 = 𝑥𝑡−1,Θ = 𝜃) := 𝐹𝜃(𝑥𝑡−1, 𝐴), (2.1a)
P(𝑌𝑡 ∈ 𝐵|𝑋𝑡 = 𝑥𝑡,Θ = 𝜃) := 𝐺𝜃(𝑥𝑡, 𝐵), (2.1b)

for measurable subsets 𝐴 ⊆ X and 𝐵 ⊆ Y. The states (𝑋𝑡)𝑇
𝑡=1 constitute a homo-

geneous Markov chain of an initial distribution P(𝑋𝑡 ∈ 𝐴|Θ = 𝜃) := 𝜇𝜃(𝐴) and
transition kernel (2.1a). Thus, given the previous state, 𝑥𝑡−1, (2.1a) determines
the probability that the current state moves into the set 𝐴 ⊆ X. The observations
(𝑌𝑡)𝑇

𝑡=1 are conditionally independent given (𝑋𝑡)𝑇
𝑡=1, and they have a marginal dis-

tribution defined by (2.1b). Similarly as before, given the current state, 𝑥𝑡, (2.1b)
describes the probability that the current observation belongs into the set 𝐵 ⊆ Y.
All the above-introduced distributions depend on a fixed parameterization Θ which
takes values in a (mostly real-valued) space Θ ⊆ R𝑛𝜃 and has a prior distribution
P(Θ ∈ 𝐶) := 𝜈(𝐶), for all measurable 𝐶 ⊆ Θ. A time-homogeneous state-space

1All random variables are defined on a common probability space (Ω, ℱ ,P).
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𝑋𝑡−1 𝑋𝑡 𝑋𝑡+1

𝑌𝑡−1 𝑌𝑡 𝑌𝑡+1

Fig. 2.1: Graphical model of a state-space model.

model is thus fully determined by the distributions (𝜇𝜃, 𝐹𝜃, 𝐺𝜃, 𝜈). The dependence
structure of the variables in a state-space model is depicted in the graphical model
in Fig. 2.1, where we leave Θ out as it is connected to all the nodes.

To simplify subsequent presentation, we assume that 𝜇𝜃 and 𝐹𝜃 have probability
density functions 𝜇𝜃 : X → R+ and 𝑓𝜃 : X × X → R+, respectively, both defined with
respect to some dominating measure 𝑑𝑥. Additionally, 𝐺𝜃 also admits a probability
density function 𝑔𝜃 : X × Y → R+ with respect to some dominating measure 𝑑𝑦.
The state-space model is then sometimes referred to as being fully dominated [30].
Moreover, we consider that there exists a dominating measure 𝑑𝜃 such that 𝜈 has a
probability density function 𝜈 : Θ → R+. Note we abusively use the same symbol
for the initial probability distributions and densities.

Given the set of densities (𝜇𝜃, 𝑓𝜃, 𝑔𝜃, 𝜈), the stochastic behavior of a state-space
model over the full time horizon (1, . . . , 𝑇 ), with 𝑇 ∈ N+ being the final time index,
is described by the joint density of the states, observations, and parameters,

𝑝(𝜃, 𝑥1:𝑇 , 𝑦1:𝑇 ) = 𝜈(𝜃)𝑝𝜃(𝑥1:𝑇 , 𝑦1:𝑇 ) = 𝜈(𝜃)𝜇𝜃(𝑥1)
𝑇∏︁

𝑡=2
𝑓𝜃(𝑥𝑡|𝑥𝑡−1)

𝑇∏︁

𝑡=1
𝑔𝜃(𝑦𝑡|𝑥𝑡). (2.2)

We continue by discussing basic concepts for inferring the quantities (Θ, 𝑋1:𝑇 ).

2.1.2 Inference Objectives

The utility of the complete description (2.2) lies in that it facilitates formulation of
practically all inference tasks related to state space models. A particular inference
objective is merely a matter of being interested in certain conditional and marginal
distributions of (2.2). The most complete statistical inference objective is to learn
the model (𝜇𝜃, 𝑓𝜃, 𝑔𝜃, 𝜈) by computing the joint posterior density of the unknown
states 𝑋1:𝑇 and parameters Θ based on a realization of the observation sequence
𝑌1:𝑇 = 𝑦1:𝑇 , that is,

𝑝(𝜃, 𝑥1:𝑇 |𝑦1:𝑇 ) = 𝑝(𝜃, 𝑥1:𝑇 , 𝑦1:𝑇 )
𝑝(𝑦1:𝑇 ) , (2.3)

where 𝑝(𝑦1:𝑇 ) =
∫︀
𝑝(𝜃, 𝑥1:𝑇 , 𝑦1:𝑇 )𝑑𝜃𝑑𝑥1:𝑇 . The density (2.3) is then used to provide

some of the characteristic features of the unknown quantities, such as their mean and
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variance. We divide the most common inference tasks, leading from the factorization
𝑝(𝜃, 𝑥1:𝑇 |𝑦1:𝑇 ) = 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 )𝑝(𝜃|𝑦1:𝑇 ), into the following two major categories: (i)
state and (ii) parameter inference.

2.1.3 State Inference

Various state inference objectives can generally be formulated by the joint density
of the states given the observations,

𝑝𝜃(𝑥𝑖:𝑗|𝑦1:𝑘) = 𝑝𝜃(𝑥𝑖:𝑗, 𝑦1:𝑘)
𝑝𝜃(𝑦1:𝑘) , (2.4)

where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘. A particular inference task is then only a matter of a
proper choice of the indices 𝑖, 𝑗, and 𝑘. The most basic—but most important—
state inference objective is the state filtering, which can be formulated by choosing
𝑖 = 𝑗 = 𝑘 = 𝑡 in (2.4), where 𝑡 = 1, . . . , 𝑇 denotes the current time instance. The
filtering task relies on all the observations gathered to the current time instance and
uses them to compute the posterior density of the current state, 𝑝𝜃(𝑥𝑡|𝑦1:𝑡). The
observation sequence here grows as the time index 𝑡 increases. A related state infer-
ence objective is the state prediction which utilizes observations up to the current
time step to obtain the 𝑙-step-ahead state posterior density—the density of a future
state—𝑝𝜃(𝑥𝑙|𝑦1:𝑡), where 𝑙 > 𝑡. The one-step-ahead state prediction, 𝑙 = 𝑡+ 1, is the
inherent part of the filtering procedure. Another state inference task is the state
smoothing which considers the observation sequence of a certain size and computes
the posterior density of a state sequence which is shorter than—or at most as long
as—the observation sequence, 𝑝𝜃(𝑥𝑖:𝑗|𝑦1:𝑡), where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑡. We distinguish a
number of special cases of the state smoothing that result from a specific choice of
indices in (2.4). For 𝑖 = 1 and 𝑗 = 𝑘 = 𝑡, we have the forward smoothing which
computes the posterior density of the state sequence up to the current time instance
given the corresponding observation sequence, 𝑝𝜃(𝑥1:𝑡|𝑦1:𝑡). As a special case of this
approach, for 𝑖 = 𝑡 − 𝑙 + 1, 𝑗 = 𝑡, and 𝑘 = 𝑡, we obtain the posterior density of
a fixed-lag state sequence, 𝑝𝜃(𝑥𝑡−𝑙+1:𝑡|𝑦1:𝑡), where 𝑙 ≥ 2. This task is often referred
to as the fixed-lag smoothing. So far, we have considered only the instances that
can be performed in a sequential or online manner. The following two inference
objectives are particularly suited for off-line scenarios. For 𝑖 = 𝑗 < 𝑘 = 𝑇 , we com-
pute the posterior density of a past state given all available observations, 𝑝𝜃(𝑥𝑖|𝑦1:𝑇 ),
which is known as the marginal smoothing. For 𝑖 = 1, 𝑗 = 𝑘 = 𝑇 , we compute the
posterior density of all states given all observations, 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ), which is often
known as the joint smoothing [30], constituting the most complete state-inference
task we can perform. Finally, for 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 = 𝑇 , the objective is to compute
the posterior density of a certain state sequence given all available observations,
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Task Indices
Filtering 𝑖 = 𝑗 = 𝑘 = 𝑡

Prediction 𝑖 = 𝑗 > 𝑘 = 𝑡

Joint smoothing 𝑖 = 1, 𝑗 = 𝑘 = 𝑇

Forward smoothing 𝑖 = 1, 𝑗 = 𝑘 = 𝑡

Fixed-lag smoothing 𝑖 = 𝑡 − 𝑙 + 1, 𝑗 = 𝑘 = 𝑡

Marginal smoothing 𝑖 = 𝑗 < 𝑘 = 𝑇

Fixed-interval smoothing 1 ≤ 𝑖 < 𝑗 ≤ 𝑘 = 𝑇

Tab. 2.1: Common state inference tasks formulated by particular choices of the indices 𝑟

and 𝑠 in the joint state posterior distribution (2.4).

𝑝𝜃(𝑥𝑖:𝑗|𝑦1:𝑇 ), which is referred to as the fixed-interval smoothing. We summarize all
these instances in Tab. 2.1. We point out that there is a difference between the inter-
pretation of 𝑝𝜃(𝑥1:𝑡|𝑦1:𝑡) and 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ). While the former can only be computed
in the forward direction, the latter one is also based on the backward computations.

The common problem of all described state inference objectives lies in that (2.4)
is often known only up to the normalizing factor 𝑝𝜃(𝑦1:𝑘). To compute 𝑝𝜃(𝑦1:𝑘), one
needs to deal with a complex high dimensional integral with respect to the latent
state variables, which is notoriously intractable except a restricted amount of cases,
including discrete-valued state-space models, linear Gaussian state-space models,
and solutions based on the Fokker-Plank equation [44].

The state inference is an important intermediate step in addressing parameter
inference objectives. For example, the joint state posterior distribution 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 )
is often required for constructing expectation maximization algorithms and Gibbs
samplers. The density (2.4) is a generic formulation of the Bayesian state inference
objectives. We will adopt this approach throughout the present thesis and will not
consider alternative, non-Bayesian, strategies.

2.1.4 Parameter Inference

The parameter inference in state-space models can be divided into two main method-
ological directions known as frequentist and Bayesian inference. The frequentist and
Bayesian techniques share a mutual problem which consists in that we first need to
deal with the unknown state sequence in order to facilitate parameter inference.
There are generally two strategies how to address this problem [193]. The first one
is data augmentation which treats the states as auxiliary variables that are estimated
along with the parameters. The second one is marginalization where the states are
marginalized out and only the parameters are of interest.
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Frequentist Inference

The main objective of the frequentist or maximum likelihood inference [140] is to
locate the point parameter estimate which maximizes the likelihood of the observed
data sequence,

̂︀𝜃ML = argmax
𝜃∈Θ

𝑝𝜃(𝑦1:𝑇 ). (2.5)

The unknown parameters are seen as a fixed, non-random, quantity 𝜃. Under ap-
propriate regularity conditions, the maximum likelihood approach provides strongly
consistent and asymptotically normal estimators [83]. There are generally two prob-
lems we face with the application of the maximum likelihood estimation in the con-
text of state-space models. First, 𝑝𝜃(𝑦1:𝑇 ) cannot be computed under a close-form
solution unless in a restricted number of models. The reason for this is that the
complex high-dimensional integral needs to be computed in order to obtain 𝑝𝜃(𝑦1:𝑇 ).
Second, it is often the case that the maximization does not admit an explicit so-
lution, although there are, again, certain model classes where a tractable solution
can be found. Moreover, 𝑝𝜃(𝑦1:𝑇 ) can contain several local maxima or the maximum
likelihood estimate does not have to be unique. Indeed, we can encounter situations
where 𝑝𝜃(𝑦1:𝑇 ) has, for instance, two maxima of the same value but different location.
The first problem is usually addressed with approximate state inference techniques.
The second one commonly leads to the application of specific gradient-based search
methods, if 𝑝𝜃(𝑦1:𝑇 ) is sufficiently smooth.

Bayesian Inference

The central aim of Bayesian inference [17] is to compute the posterior distribution of
the unknown parameters based on the observed data sequence, according to Bayes’
rule,

𝑝(𝜃|𝑦1:𝑇 ) = 𝑝(𝜃, 𝑦1:𝑇 )
𝑝(𝑦1:𝑇 ) , (2.6)

where 𝑝(𝜃, 𝑦1:𝑇 ) = 𝑝𝜃(𝑦1:𝑇 )𝜈(𝜃). The unknown parameters are treated as an unob-
served random variable Θ with a prior distribution 𝜈 which represents our beliefs
about the modeled quantity before processing any observations. Thus, Bayesian
inference is a tool for updating prior (subjective) beliefs to posterior beliefs based
on the observed (objective) data. Under appropriate assumptions, the Bayesian
approach offers asymptotically consistent posterior distributions (the posterior con-
centrates around some 𝜃0) [76]. Similarly as before, there are again two main prob-
lems associated with the application of the Bayesian estimation in the context of
state-space models. First, the observed data likelihood, 𝑝𝜃(𝑦1:𝑇 ), is—in the same
manner as with the frequentist inference—intractable due to the necessity of com-
puting the high-dimensional integral. In simple scenarios, it is possible to compute

55



𝑝𝜃(𝑦1:𝑇 ) under a closed-form solution. However, even then, when the prior, 𝜈(𝜃),
is not conjugate to the observed data likelihood, 𝑝𝜃(𝑦1:𝑇 ), the computations asso-
ciated with the posterior density (2.6) are intractable as there is the need to deal
with the integration involved in the marginal likelihood, 𝑝(𝑦1:𝑇 ). Second, even when
𝑝𝜃(𝑦1:𝑇 ) and 𝜈(𝜃) are at least component-wise conjugate as, e.g., in mixture mod-
els, the posterior density (2.6) can have a multimodal shape, raising the question
of how to appropriately pick the point parameter estimate. The first problem can
be approached by resorting to approximate state inference procedures. The second
problem is approached based on the answer to the above question. We can be in-
terested in either the maximum a posteriori estimate or an estimate defined as the
minimizer of a suitably chosen loss function [15]. In both these choices, we first need
to resort to approximations in order to overcome the intractable integration in the
denominator of (2.6).

2.1.5 Examples

In this section, we present a number of simple examples of state-space models that
will be used throughout this chapter. The selection of these models is made so that
we can demonstrate differences between various inference methods for state-space
models. The attention is paid to simplicity so that distinctions among compared
approaches can easily be seen.

Example 2.1 (Linear Gaussian model). The model is defined by

𝑋𝑡 = 0.95𝑋𝑡−1 +𝑊𝑡,

𝑌𝑡 = 𝑋𝑡 + 𝑉𝑡,

where 𝑊𝑡 ∼ 𝒩 (𝜇𝑤, 𝜎
2
𝑤) and 𝑉𝑡 ∼ 𝒩 (𝜇𝑣, 𝜎

2
𝑣) are IID Gaussian random variables with

the mean 𝜇 and variance 𝜎2.

Example 2.2 (Nonlinear Gaussian model). Consider equations in the form [112]

𝑋𝑡 = 𝑋𝑡−1

2 + 25𝑋𝑡−1

1 +𝑋2
𝑡−1

+ 8 cos(1.2𝑡) +𝑊𝑡,

𝑌𝑡 = 𝑋2
𝑡

20 + 𝑉𝑡,

where 𝑊𝑡 ∼ 𝒩 (𝜇𝑤, 𝜎
2
𝑤) and 𝑉𝑡 ∼ 𝒩 (𝜇𝑣, 𝜎

2
𝑣) are IID Gaussian random variables with

the mean 𝜇 and variance 𝜎2.

The filtering and smoothing distributions for the model in Example 2.2 are gen-
erally bi-modal due to the square of the state variable in the observation equation.
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Example 2.3 (Nonlinear and non-Gaussian model). The model is characterized by
the equations [209]

𝑋𝑡 = 1 + sin(0.04𝜋𝑡) + 𝑋𝑡−1

2 +𝑊𝑡,

𝑌𝑡 =

⎧
⎨
⎩

𝑋2
𝑡

10 + 𝑉𝑡, 𝑡 ≤ 𝑡1
𝑋𝑡

2 − 2 + 𝑉𝑡, 𝑡 > 𝑡1
,

where 𝑊𝑡 ∼ 𝒢𝑎(𝛼, 𝛽) is IID Gamma random variable with the shape 𝛼 and 𝛽 rate
parameters, and 𝑉𝑡 ∼ 𝒩 (𝜇, 𝜎2) is IID Gaussian random variable with the mean 𝜇

and variance 𝜎2.

2.2 Forward Filtering

The central aim of the forward filtering is to compute the posterior density of the
current state given the observed data sequence, 𝑝(𝑥𝑡|𝑦1:𝑡). The observations arrive
sequentially in time and are processed in the online manner. Note that, here and
throughout the subsequent sections, we leave the dependence on Θ whenever dealing
with the pure state inference objectives. The filtering density is generally computed
as the marginal of the joint state posterior density, 𝑝(𝑥𝑡|𝑦1:𝑡) =

∫︀
𝑝(𝑥1:𝑡|𝑦1:𝑡)𝑑𝑥1:𝑡−1.

Given the fact that the joint state posterior density is proportional to the joint den-
sity of the states and observations, 𝑝(𝑥1:𝑡|𝑦1:𝑡) ∝ 𝑝(𝑥1:𝑡, 𝑦1:𝑡), c.f. (2.2), the filtering
density becomes, considering the conditional independence assumptions discussed
in Section 2.1.1,

𝑝(𝑥𝑡|𝑦1:𝑡) = 𝑔(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)
𝑝(𝑦𝑡|𝑦1:𝑡−1)

, (2.7a)

where

𝑝(𝑥𝑡|𝑦1:𝑡−1) =
∫︁

X
𝑓(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1, (2.7b)

𝑝(𝑦𝑡|𝑦1:𝑡−1) =
∫︁

X
𝑔(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑑𝑥𝑡. (2.7c)

At the initial time step 𝑡 = 1, we have 𝑝(𝑥1) = 𝜇(𝑥1). Here, (2.7a) and (2.7b)
are often referred to as the data and time step, respectively. They together form a
general recursive approach for computing the filtering density 𝑝(𝑥𝑡|𝑦1:𝑡), and—as a
byproduct—also the one-step-ahead state (2.7b) and observation (2.7c) prediction
densities. The forward filtering plays an important role in almost all more advanced
state inference techniques presented in the sequel.

The only requirement to perform filtering according to (2.7) is to know the ele-
ments of a state-space model, (𝜇, 𝑓, 𝑔). Nevertheless, in nonlinear and non-Gaussian
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state-space models, 𝑝(𝑥𝑡, 𝑦𝑡|𝑦1:𝑡−1) and 𝑝(𝑥𝑡, 𝑥𝑡−1|𝑦1:𝑡−1) usually become highly com-
plicated after a low number of iterations. This makes the posterior density (2.7a)—
and the involved integrals (2.7b) and (2.7c)—analytically intractable. The exact
solution of the filtering recursion (2.7) can be found in a restricted number of in-
stances, such as discrete-valued state-space models and linear Gaussian state-space
models, as noted before. Therefore, in most situations, we need to embrace approx-
imate state inference techniques.

2.2.1 Gaussian Filters

Gaussian filters form a practically important and very often used class of algorithms
for approximate state filtering in nonlinear state-space models. The underlying idea
of these filters is based on the assumed density filtering [147], where we consider
that the filtering density can be approximated by the Gaussian density. The utility
of these filters is maximized when the model behaves—at least approximately—in
the Gaussian way, and the model nonlinearities are not too severe.

Assumed Density Approximation

Let us consider we have an exact density 𝑝 : Z → R+ which we intend to approximate
by a simpler one ̂︀𝑝 : Z → R+. Assumed density framework seeks an optimal ap-
proximate density 𝑝𝑜 : Z → R+ as the minimizer of the Kullback-Leibler divergence
from the exact density 𝑝 to a user-defined feasible density 𝑝 : Z → R+,

𝑝𝑜 := argmin
𝑝∈P

𝒟(𝑝, 𝑝) = argmin
𝑝(𝑧)∈P

∫︁

X
𝑝(𝑧) log

(︃
𝑝(𝑧)
𝑝(𝑧)

)︃
𝑑𝑧, (2.8)

where P is a set of feasible densities. The feasible density is commonly chosen to be
a member of an appropriate parametric family, such as the exponential family [12],

𝑝(𝑧) := exp{⟨𝜂(𝑧), 𝑉 ⟩ − log ℐ(𝑉 )}, (2.9)

which is composed of the inner product ⟨·, ·⟩ between a function 𝜂 defined on Z and
a statistic 𝑉—both being of appropriate dimensions—and the normalizing factor ℐ.
Then, after we set the gradient of 𝒟(𝑝, 𝑝) with respect to the feasible statistic 𝑉 to
zero, we obtain

E[𝜂(𝑍)|𝑉 𝑜] = E[𝜂(𝑍)]. (2.10)

The minimum of the optimization problem (2.8) is attained if the expected value
w.r.t. the optimal density 𝑝𝑜 is equal to the expected value w.r.t. the exact density 𝑝.
In other words, (2.10) implies that we should compute 𝑉 𝑜 so that the above expected
values are the same. However, this cannot be achieved as the intractability of E[𝜂(𝑍)]
is the reason why we resort to the approximate solution in the first place. Therefore,
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we should find an approximate statistic ̂︀𝑉 as the nearest one to optimal statistic
𝑉 𝑜. This statistic is computed after approximating the expected value on the r.h.s.
of (2.10) by an appropriate numerical technique. Then, the statistic ̂︀𝑉 characterizes
the sought approximate density, ̂︀𝑝 ∈ P, which is more crude than the optimal one,
𝑝𝑜, and is the near-optimal solution to the optimization problem (2.8) under the
restriction 𝑝 ∈ P. From (2.10), we see that the assumed density approach allows us
to find an optimal solution for matching the moments of the exact density, but we
cannot expect to fit the entire shape of this density. Hence, this optimal solution is
not ideal but still the best one we can obtain under the parametric family chosen.
This technique is also referred to as the moment matching [21].

Principle

The Gaussian filters are suitable for general state-space models in the functional
form given by

𝑋𝑡 = 𝑎(𝑋𝑡−1,𝑊𝑡), (2.11a)
𝑌𝑡 = 𝑏(𝑋𝑡, 𝑉𝑡), (2.11b)

where 𝑊𝑡 ∈ W ⊆ R𝑛𝑤 and 𝑉𝑡 ∈ V ⊆ R𝑛𝑣 are IID mutually independent noise
variables—often referred to as the state and observation noise variables, respectively—
and 𝑎 : X × W → X and 𝑏 : X × V → Y are measurable functions.

In the state filtering—not necessarily Gaussian filtering—the central objects of
interest are the joint densities 𝑝(𝑥𝑡, 𝑥𝑡−1|𝑦1:𝑡−1) and 𝑝(𝑥𝑡, 𝑦𝑡|𝑦1:𝑡−1). The motivation
here is that they admit all objects appearing in the filtering recursion (2.7) as the
appropriate conditional or marginal densities. As mentioned previously, these terms
usually become highly complicated after a number of iterations. The Gaussian
filters seek the approximation by means of the assumed density framework. The
result of this approach (2.10) states that, as long as we work with densities within
an appropriate parametric family, the optimal solution can be obtained by equating
the expectations of the optimal and exact densities. The parametric family in the
context of the Gaussian filters is—as the name suggests—Gaussian, and we thus need
to match the first and second order exact moments with respect to 𝑝(𝑥𝑡, 𝑥𝑡−1|𝑦1:𝑡−1)
and 𝑝(𝑥𝑡, 𝑦𝑡|𝑦1:𝑡−1).

Let us consider that 𝑝𝑜(𝑥𝑡−1|𝑦1:𝑡−1) = 𝒩 (𝑥𝑡−1;𝑥𝑜
𝑡−1|𝑡−1, 𝑃

𝑜
𝑡−1|𝑡−1) is the optimal fil-

tering density from the previous iteration. The optimization problem (2.8) suggests
that 𝑝(𝑥𝑡, 𝑥𝑡−1|𝑦1:𝑡−1) and 𝑝(𝑥𝑡, 𝑦𝑡|𝑦1:𝑡−1) should optimally be approximated by

𝑝𝑜(𝑥𝑡, 𝑥𝑡−1|𝑦1:𝑡−1) = 𝒩
⎛
⎝
⎡
⎣𝑥𝑡−1

𝑥𝑡

⎤
⎦ ;
⎡
⎣𝑥

𝑜
𝑡−1|𝑡−1

𝑥𝑜
𝑡|𝑡−1

⎤
⎦ ,

⎡
⎣𝑃

𝑜
𝑡−1|𝑡−1 𝑁 𝑜

𝑡|𝑡−1

(𝑁 𝑜
𝑡|𝑡−1)⊤ 𝑃 𝑜

𝑡|𝑡−1

⎤
⎦
⎞
⎠ , (2.12)
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where

𝑥𝑜
𝑡|𝑡−1 =

∫︁
𝑎(𝑥𝑡−1, 𝑤𝑡)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑝(𝑤𝑡)𝑑𝑥𝑡−1𝑑𝑤𝑡,

𝑃 𝑜
𝑡|𝑡−1 =

∫︁
[𝑎(𝑥𝑡−1, 𝑤𝑡) − 𝑥𝑜

𝑡|𝑡−1][𝑎(𝑥𝑡−1, 𝑤𝑡) − 𝑥𝑜
𝑡|𝑡−1]⊤

𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑝(𝑤𝑡)𝑑𝑥𝑡−1𝑑𝑤𝑡,

𝑁 𝑜
𝑡|𝑡−1 =

∫︁
[𝑥𝑡−1 − 𝑥𝑜

𝑡−1|𝑡−1][𝑎(𝑥𝑡−1, 𝑤𝑡) − 𝑥𝑜
𝑡|𝑡−1]⊤𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑝(𝑤𝑡)𝑑𝑥𝑡−1𝑑𝑤𝑡,

and

𝑝𝑜(𝑥𝑡, 𝑦𝑡|𝑦1:𝑡−1) = 𝒩
⎛
⎝
⎡
⎣𝑥𝑡

𝑦𝑡

⎤
⎦ ;
⎡
⎣𝑥

𝑜
𝑡|𝑡−1

𝑦𝑜
𝑡|𝑡−1

⎤
⎦ ,

⎡
⎣ 𝑃 𝑜

𝑡|𝑡−1 𝑀 𝑜
𝑡|𝑡−1

(𝑀 𝑜
𝑡|𝑡−1)⊤ 𝑅𝑜

𝑡|𝑡−1

⎤
⎦
⎞
⎠ ,

where

𝑦𝑜
𝑡|𝑡−1 =

∫︁
𝑏(𝑥𝑡, 𝑣𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑝(𝑣𝑡)𝑑𝑥𝑡𝑑𝑣𝑡,

𝑅𝑜
𝑡|𝑡−1 =

∫︁
[𝑏(𝑥𝑡, 𝑣𝑡) − 𝑦𝑜

𝑡|𝑡−1][𝑏(𝑥𝑡, 𝑣𝑡) − 𝑦𝑜
𝑡|𝑡−1]⊤𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑝(𝑣𝑡)𝑑𝑥𝑡𝑑𝑣𝑡,

𝑀 𝑜
𝑡|𝑡−1 =

∫︁
[𝑥𝑡 − 𝑥𝑜

𝑡|𝑡−1][𝑏(𝑥𝑡, 𝑣𝑡) − 𝑦𝑜
𝑡|𝑡−1]⊤𝑝(𝑥𝑡|𝑦1:𝑡−1)𝑝(𝑣𝑡)𝑑𝑥𝑡𝑑𝑣𝑡,

respectively, from which we see that—according to (2.10)—the optimal moments are
equal to the exact ones. As discussed before, the computation of these moments is
prevented by the problem definition. In this context, the assumed density framework
addresses this issue by first adopting the approximate densities

𝑝(𝑥𝑡, 𝑥𝑡−1|𝑦1:𝑡−1) = 𝒩
⎛
⎝
⎡
⎣𝑥𝑡−1

𝑥𝑡

⎤
⎦ ;
⎡
⎣�̂�𝑡−1|𝑡−1

�̂�𝑡|𝑡−1

⎤
⎦ ,

⎡
⎣𝑃𝑡−1|𝑡−1 �̂�𝑡|𝑡−1

�̂�⊤
𝑡|𝑡−1 �̂�𝑡|𝑡−1

⎤
⎦
⎞
⎠ , (2.15)

where

�̂�𝑡|𝑡−1 =
∫︁
𝑎(𝑥𝑡−1, 𝑤𝑡)𝒩 (𝑥𝑡−1; �̂�𝑡−1|𝑡−1, 𝑃𝑡−1|𝑡−1)𝒩 (𝑤𝑡; 0, 𝑄)𝑑𝑥𝑡−1𝑑𝑤𝑡, (2.16a)

𝑃𝑡|𝑡−1 =
∫︁

[𝑎(𝑥𝑡−1, 𝑤𝑡) − �̂�𝑡|𝑡−1][𝑎(𝑥𝑡−1, 𝑤𝑡) − �̂�𝑡|𝑡−1]⊤

𝒩 (𝑥𝑡−1; �̂�𝑡−1|𝑡−1, 𝑃𝑡−1|𝑡−1)𝒩 (𝑤𝑡; 0, 𝑄)𝑑𝑥𝑡−1𝑑𝑤𝑡, (2.16b)

𝑁 𝑜
𝑡|𝑡−1 =

∫︁
[𝑥𝑡−1 − 𝑥𝑜

𝑡−1|𝑡−1][𝑎(𝑥𝑡−1, 𝑤𝑡) − 𝑥𝑜
𝑡|𝑡−1]⊤

𝒩 (𝑥𝑡−1; �̂�𝑡−1|𝑡−1, 𝑃𝑡−1|𝑡−1)𝒩 (𝑤𝑡; 0, 𝑄)𝑑𝑥𝑡−1𝑑𝑤𝑡 (2.16c)

and

𝑝(𝑥𝑡, 𝑦𝑡|𝑦1:𝑡−1) = 𝒩
⎛
⎝
⎡
⎣𝑥𝑡

𝑦𝑡

⎤
⎦ ;
⎡
⎣�̂�𝑡|𝑡−1

𝑦𝑡|𝑡−1

⎤
⎦ ,

⎡
⎣𝑃𝑡|𝑡−1 �̂�𝑡|𝑡−1

�̂�⊤
𝑡|𝑡−1 �̂�𝑡|𝑡−1

⎤
⎦
⎞
⎠ , (2.17)
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Algorithm 8 The Gaussian filter
A. Initial step: (𝑡 = 1)

1. Set (�̂�1|0, 𝑃1|0) and use it in (2.18) and (2.19) to compute (�̂�1|1, 𝑃1|1).
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Use (�̂�𝑡−1|𝑡−1, 𝑃𝑡−1|𝑡−1) in (2.16a) and (2.16b) to compute (�̂�𝑡|𝑡−1, 𝑃𝑡|𝑡−1).
2. Use (�̂�𝑡|𝑡−1, 𝑃𝑡|𝑡−1) in (2.18) and (2.19) to compute (�̂�𝑡|𝑡, 𝑃𝑡|𝑡).

where

𝑦𝑡|𝑡−1 =
∫︁
𝑏(𝑥𝑡, 𝑣𝑡)𝒩 (𝑥𝑡; �̂�𝑡|𝑡−1, 𝑃𝑡|𝑡−1)𝒩 (𝑣𝑡; 0, 𝑅)𝑑𝑥𝑡𝑑𝑣𝑡, (2.18a)

�̂�𝑡|𝑡−1 =
∫︁

[𝑥𝑡 − �̂�𝑡|𝑡−1][𝑏(𝑥𝑡, 𝑣𝑡) − 𝑦𝑡|𝑡−1]⊤

𝒩 (𝑥𝑡; �̂�𝑡|𝑡−1, 𝑃𝑡|𝑡−1)𝒩 (𝑣𝑡; 0, 𝑅)𝑑𝑥𝑡𝑑𝑣𝑡, (2.18b)

�̂�𝑡|𝑡−1 =
∫︁

[𝑏(𝑥𝑡, 𝑣𝑡) − 𝑦𝑡|𝑡−1][𝑏(𝑥𝑡, 𝑣𝑡) − 𝑦𝑡|𝑡−1]⊤

𝒩 (𝑥𝑡; �̂�𝑡|𝑡−1, 𝑃𝑡|𝑡−1)𝒩 (𝑣𝑡; 0, 𝑅)𝑑𝑥𝑡𝑑𝑣𝑡; (2.18c)

and then approximating these expectations with a suitably chosen method. The
approximate filtering density is simply obtained by writing the conditional density
of (2.17),

𝑝(𝑥𝑡|𝑦1:𝑡) = 𝒩 (𝑥𝑡; �̂�𝑡|𝑡, 𝑃𝑡|𝑡),

where

𝐾 = �̂�𝑡|𝑡−1�̂�
−1
𝑡|𝑡−1, (2.19a)

�̂�𝑡|𝑡 = �̂�𝑡|𝑡−1 +𝐾(𝑦𝑡 − 𝑦𝑡|𝑡−1), (2.19b)
𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 −𝐾�̂�𝑡|𝑡−1𝐾

⊤, (2.19c)

see Lemma A.8 for details. The Gaussian filter is now summarized in Algorithm 8.
A similar approach can also be used to derive Student’s t filter, see Lemma A.9
for the necessary conditional and marginal densities, in order to increase robustness
against the outliers [185].

Cubature Rules and Different Forms of Gaussian Filters

Algorithm 8 is generic and can assume different forms based on the character of
the integrated functions. For example, when 𝑎(𝑋,𝑊 ) = 𝐴𝑋 + 𝑊 and 𝑏(𝑋, 𝑉 ) =
𝐶𝑋 +𝑉 , we recover the basic Kalman filter. In such a case, we propagate the exact
moments and—if the noise variables 𝑊 and 𝑉 are Gaussian—the optimum of (2.8)
is zero. In a different scenario, if we choose to expand the nonlinear functions 𝑎 and
𝑏 into the Taylor series of a certain order, then we obtain the extended Kalman filter
of the corresponding order. The design of extended Kalman filters usually requires
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some effort when computing associated partial derivatives. This has motivated the
development of derivative-free algorithms.

A possible approach is to approximate the integrals (2.16) and (2.18) by a set of
Monte-Carlo or quasi-Monte Carlo samples [120, 87]. In the Monte Carlo case, as
presented in Theorem 1.1, when the number of particles tends to infinity, we attain
the exact values of the intractable moments. Consequently, we obtain the optimal
approximation (2.12) and thus diminish the error arising from approximating the
moment integrals. However, even then, this optimal solution of the optimization
problem (2.8) makes the Kullback-Leibler divergence nonzero, which is caused by
the Gaussian assumptions on the feasible density. This is the key example, showing
two sources of errors, which justifies the assumed density construction presented
above, a feature which is commonly missing (or not made obvious) in the literature.

The derivative-free integration methods can also be constructed based on polyno-
mial interpolation. The divided difference Kalman filter [162] and central difference
Kalman filter [92] are typical representatives.

Importantly, (2.16) and (2.18) form a specific class of Gaussian integrals for
which there exists a variety of quadrature rules that are commonly referred to as
the Gaussian quadrature rules [201]. These are constructed so that they are exact
for monomials of a certain degree. For instance, the Gauss-Hermite quadrature rule
approximates the integrals based on evaluation points generated as the roots of 𝑁th-
order Hermite polynomial. The rule is exact for monomials up to order 2𝑁−1. The
advantage is that the roots can simply be computed as the eigenvalues of a certain
tridiagonal matrix [81]. The application of this type of quadrature rule in Algorithm
8 results in the Gauss-Hermit Kalman filter [92, 9], which has the computational
complexity scaling with 𝒪(𝑁) operations. The main disadvantage of this approach
is that the Gauss-Hermit cubature rules are constructed as the product rules. The
computational complexity then scales exponentially with the dimension 𝑛 according
to 𝒪(𝑁𝑛), which can be extremely demanding in high-dimensional scenarios. The
distinguishing feature of both the Gaussian density and the integration domain in
(2.16) and (2.18) is their symmetry. Therefore, we can exploit a special class of
quadrature rules which are referred to as fully symmetric quadrature rules [41]. The
key idea here is to generate the evaluation points based on the fully symmetric gener-
ators. The evaluation points are computed as the zeros of an orthogonal polynomial
of degree 𝑘+1 for 𝑘 ∈ N+. These rules are exact for monomials of degree 2𝑘+1. The
minimal number of evaluation points, and thus the computational complexity, of the
fully symmetric cubature rules scales according to 𝒪((2𝑛)𝑘/𝑘!), see [150] for details.
To obtain the evaluation points, we are required to solve a system of nonlinear
equations, which can be difficult when requiring high precision and usually restricts
us up to degree 11. Adopting this principle with degree 3 in Algorithm 8 leads to
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the cubature Kalman filter [225]. A different way of deriving the cubature Kalman
filter is to transform the integrals into the spherical-radial coordinate system [10].
This principle has been utilized in [95] to generalize the cubature Kalman filter for
monomials of an arbitrary degree. An interesting connection is that the unscented
Kalman filter [102] can be seen as a generalization of the degree 3 cubature Kalman
filter [225].

Recently, there has been an increased interest in approximating integrals based
on Gaussian process quadrature rules that take advantage of the Gaussian processes
[179] to interpret the integration as Bayesian estimation problem, rather than see-
ing it from the classical—frequentist—view point of the basic Gaussian quadrature
rules. The Gaussian process quadrature rules provide us with a tool for representing
our beliefs about the result of the integration operation. For the relation between
these more advanced and classical quadrature rules, see [191]. The main disadvan-
tage of the Gaussian process quadrature rules is that they normally require us to
compute the inverse of a matrix with the dimension given by the number of function
evaluations 𝑁 , which scales painfully with 𝒪(𝑁3) operations (per single dimension).
Therefore, the use of product rules in this context is rather unthinkable. This has
recently stimulated a substantial research effort towards finding efficient ways for
spreading the points throughout the space. The methods can be preferred in the
sense that they can be applied to a broader class of integrated functions compared
to Gaussian quadrature rules.

Although there is a large body of work on various forms of integration in the
context of Gaussian filtering, the weak Gaussian assumptions can prove to be inap-
propriate in some practical situations. The well-known disadvantage of the Gaussian
filters is that they experience difficulties with approximating complex densities.

To see this statement on a specific case, we apply the extended Kalman filter [2],
unscented Kalman filter [102], and Gauss-Hermite Kalman filter [92] to Examples
2.1-2.3 and present the resulting state estimation performance in the first, second,
and third row of Fig. 2.2, respectively. The initial statistics of all the compared
filters are �̂�1|0 = 0 and 𝑃1|0 = 5. The number of sigma points of the Gauss-Hermite
Kalman filter is 20, and the scaling parameter (𝜅, see [102]) of the unscented Kalman
filter is 2.

2.2.2 Particle Filters

Various particle filtering algorithms can be seen as special cases of the generic SMC
procedure presented in Algorithm 2. In this section, we briefly discuss some of its
features in the context of state-space models.
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Fig. 2.2: The true state trajectory ( ) and its estimate ( ) versus the number of
observations for the extended Kalman filter [2] (first row), unscented Kalman filter [102]
(second row), Gauss-Hermite Kalman filter [92] (third row), and bootstrap particle fil-
ter [57] (fourth row). The columns correspond to the models given in Example 2.1 with
(𝜇𝑤, 𝜎2

𝑤, 𝜇𝑣, 𝜎2
𝑣) = (1, 1, 1, 1) (first column), Example 2.2 with (𝜇𝑤, 𝜎2

𝑤, 𝜇𝑣, 𝜎2
𝑣) = (1, 1, 1, 1)

(middle column), and Example 2.3 with (𝛼, 𝛽, 𝜇𝑣, 𝜎2
𝑣) = (1, 1, 1, 1) (last column). The

initial state is distributed according to 𝜇(𝑥1) = 𝒩 (𝑥1; 0, 5) in all the cases.
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The Particle Filter

The standard particle filter is simply obtained from the generic SMC framework
of Section 1.6 by setting 𝜋𝑡(𝑥1:𝑡) := 𝑝(𝑥1:𝑡|𝑦1:𝑡) and 𝛾𝑡(𝑥1:𝑡) := 𝑝(𝑥1:𝑡, 𝑦1:𝑡) for 𝑡 =
1, . . . , 𝑇 . Then, under the conditional independence assumptions of the state-space
models, the unnormalized importance weight function (1.49) becomes

𝑣𝑡(𝑥𝑡−1:𝑡) := 𝑔(𝑦𝑡|𝑥𝑡)𝑓(𝑥𝑡|𝑥𝑡−1)
𝑚𝑡(𝑥𝑡|𝑥𝑡−1)

,

for 𝑡 = 2, . . . , 𝑇 , and
𝑣1(𝑥1) := 𝑔(𝑦1|𝑥1)𝜈(𝑥1)

𝑚1(𝑥1)
,

for 𝑡 = 1. The procedure follows exactly the steps of Algorithm 2. We will refer
to this type of particle filter as the sequential importance resampling (SIR) filter
[56]. This method approximates the sequence of target densities, (𝑝(𝑥1:𝑡|𝑦1:𝑡))𝑇

𝑡=1, by
the corresponding sequence of empirical measures, (𝑝𝑁(𝑑𝑥1:𝑡|𝑦1:𝑡))𝑇

𝑡=1, represented
by the weighted particle systems, (𝑊 1:𝑁

𝑡 , 𝑋1:𝑁
1:𝑡 )𝑇

𝑡=1. Thus, the SIR filter addresses
the forward smoothing task. However, as discussed in Section 1.6, the path degen-
eracy problem makes the approximation 𝑝𝑁(𝑑𝑥1:𝑡|𝑦1:𝑡) unreliable as the number of
unique particles of the marginals 𝑝𝑁(𝑑𝑥𝑚|𝑦1:𝑡) is low for 𝑚 ≪ 𝑡. Moreover, imple-
menting the algorithm in this way imposes ever increasing memory requirements.
The approximation of the filtering density (2.7a) is given by the marginal mea-
sure 𝑝𝑁(𝑑𝑥𝑡|𝑦1:𝑡), which is simply obtained by discarding the past state trajectories,
𝑋1:𝑁

1:𝑡−1. This avoids the need for increasing memory. The key feature, however, is
that the diversity of the current set of particles 𝑋1:𝑁

𝑡 is unreduced, thus providing
reliable estimates of the associated quantities of interest.

Algorithm 2 performs the resampling operation at each iteration. Alternatively,
triggering the resampling only when the effective sample size decreases below certain
value can lead to a particle filter which suffers less from the path degeneracy problem.
The effective sample size, see Section 1.3.1, achieves values close to 𝑁 when the
variance of the importance weights is low, motivating the use of variance reduction
techniques. Similarly as before, we will refer to this type of particle filter as the
sequential importance sampling and resampling (SISR) filter.

To use these particle filters, we have to specify—in addition to state-space model
densities (𝜇, 𝑓, 𝑔)—the sequence of the proposal densities (𝑚𝑡)𝑇

𝑡=1. The choice of the
proposal density can have a significant impact on the variance of the importance
weights, as discussed in Section 1.4. The optimal proposal density [57], which min-
imizes the variance of the importance weights in the context of state-space models,
is written as

𝑚𝑡(𝑥𝑡|𝑥𝑡−1) := 𝑔(𝑦𝑡|𝑥𝑡)𝑓(𝑥𝑡|𝑥𝑡−1)
𝑝(𝑦𝑡|𝑥𝑡−1)

. (2.20)
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This proposal allows the sampling mechanism to take advantage of information pro-
vided by the current observation 𝑌𝑡 and the associated model 𝑔, which can provide
us with samples 𝑋1:𝑁

𝑡 that are distributed in more interesting parts of X. For the
optimal proposal density, the unnormalized importance function becomes 𝑝(𝑦𝑡|𝑥𝑡−1),
which is advantageously independent of 𝑥𝑡. Unfortunately, (2.20) is intractable in
most practical situations and the approximations are needed. A popular but sub-
optimal choice of the proposal density, which leads to higher variance of the impor-
tance weights, is to simply use the state transition model 𝑚𝑡(·|𝑥𝑡−1) := 𝑓(·|𝑥𝑡−1).
The associated particle filter is then commonly referred to as the bootstrap particle
filter [84]. When the observations are not too informative, this choice can lead to
satisfactory results. This sampling mechanism is most commonly applied for its sim-
plicity, especially in scenarios where 𝑓 is intractable or hard to evaluate. Even this
sub-optimal choice can provide better performance than the standard procedures
based on Gaussian filters, especially when the nonlinearities are severe and/or the
state space model is non-Gaussian.

To demonstrate this assertion, we implement the bootstrap particle filter [84] in
the context of Examples 2.1-2.3, with the number of particles being set to 𝑁 = 100.
The results are presented in the last row of Fig. 2.2.

The Auxiliary Particle Filter

The auxiliary particle filter is another instance of the generic SMC framework of
Section 1.6. The key idea behind this type of particle filter is to take advantage of
the current observation 𝑌𝑡 to reweight particles before entering the resampling step.
The particles that are consistent with this additional observation information have
an increased chance to proceed to the next iteration, potentially also increasing
the diversity of the particle system and thus counteracting the path degeneracy
problem. The original formulation of the auxiliary particle filter involves defining a
specific target density on an extended space and utilizing auxiliary variables [173].
However, it was later demonstrated in [99] that this method can be seen as a specific
example of the generic SMC procedure when using 𝜋𝑡(𝑥1:𝑡) := 𝑝(𝑥1:𝑡|𝑦1:𝑡+1) and
𝛾𝑡(𝑥1:𝑡) := 𝑝(𝑥1:𝑡, 𝑦1:𝑡+1) for 𝑡 = 1, . . . , 𝑇 ; with the auxiliary variables playing the role
of the ancestor indices. In this case, the unnormalized importance weight function
(1.49) is defined by

𝑣𝑡(𝑥𝑡−1:𝑡) := 𝑔(𝑦𝑡|𝑥𝑡)𝑓(𝑥𝑡|𝑥𝑡−1)𝑝(𝑦𝑡+1|𝑥𝑡)
𝑝(𝑦𝑡|𝑥𝑡−1)𝑚𝑡(𝑥𝑡|𝑥𝑡−1)

,

for 𝑡 = 2, . . . , 𝑇 , and

𝑣1(𝑥1) := 𝑔(𝑦1|𝑥1)𝜈(𝑥1)𝑝(𝑦2|𝑥1)
𝑝(𝑦𝑡)𝑚1(𝑥1)

,
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Fig. 2.3: The true state trajectory ( ), its estimate ( ), and particle trajectories ( )
of the SIR, SISR, ASIR, and ASISR filters for sub-optimal (S) and optimal (O) proposal
densities. The optimal density is approximated by local linearization (LL) [54], extended
Kalman filter (EKF), and unscented Kalman filter (UKF) [209]. We consider Example
2.2 with (𝜇𝑤, 𝜎2

𝑤, 𝜇𝑣, 𝜎2
𝑣) = (1, 1, 1, 1) and 𝜇(·) = 𝒩 (·; 0, 1). The particle filters run with

𝑁 = 400 and 𝑁th = 𝑁/3.
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for 𝑡 = 1. To facilitate practical implementation, the computation of these weights
is usually split into two stages so that only 𝑌𝑡 is used during one iteration of the
algorithm, see, e.g., [172] for details. Note that for 𝑝(𝑦𝑡|𝑥𝑡−1) := 1, we recover the
standard particle filter. The auxiliary particle filter can be implemented in the SIR
and SISR settings, which are here referred to as ASIR and ASISR, respectively. The
proposal density is chosen in the same way as discussed with the standard particle fil-
ter. For the optimal proposal density, the unnormalized importance weights become
equal, and the filter is then commonly referred to as being fully adapted [173].

The interpretation of the auxiliary particle filter as a special case of the generic
SMC procedure allows us to apply a wide range of theoretical results given in [154].
Empirical evidence often suggests that the auxiliary particle filter outperforms the
particle filter. However, this is not always the case, as it is obvious from the com-
parison of the asymptotic variances of the associated estimators [99].

We present Fig. 2.3 to investigate the impact of the above discussed particle
filter implementations and various approximations of the optimal proposal density
on the path degeneracy. We can observe that the ASIR with the optimal proposal
density approximated by the local linearization approach is less affected by the path
degeneracy problem. However, the improvement is rather weak.

2.3 Forward-Filtering Backward-Smoothing

The purpose of the forward-filtering backward-smoothing is to compute the joint
state posterior density, 𝑝(𝑥1:𝑇 |𝑦1:𝑇 ). In other words, the aim is to use all avail-
able information not to only estimate the current state—as in the case of the state
filtering—but also the past states. The fact that we use additional information
makes resulting state trajectory estimates more precise, hence the name smoothing.
In other words, every past state, 𝑋𝑡, where 1 ≤ 𝑡 < 𝑇 , benefits from the future
observations and therefore has increased precision compared to the case of using
only the information up to the current time step 𝑡. This obviously does not hold for
the final state, 𝑋𝑇 , as it cannot benefit from any future observations.

The joint state posterior density 𝑝(𝑥1:𝑇 |𝑦1:𝑇 ) can be computed based on the
backward recursion given by

𝑝(𝑥𝑡:𝑇 |𝑦1:𝑇 ) = 𝑝(𝑥𝑡|𝑥𝑡+1, 𝑦1:𝑡)𝑝(𝑥𝑡+1:𝑇 |𝑦1:𝑇 ), (2.21)

where we apply 𝑝(𝑥𝑡|𝑥𝑡+1, 𝑦1:𝑡) = 𝑝(𝑥𝑡|𝑥𝑡+1, 𝑦1:𝑇 ). That is, 𝑦𝑡+1:𝑇 does not provide any
further information about 𝑋𝑡 when 𝑥𝑡+1 is given. This results from the application
of the Markov property of the transition kernel 𝑓 . Here,

𝑝(𝑥𝑡|𝑥𝑡+1, 𝑦1:𝑡) = 𝑓(𝑥𝑡+1|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡)∫︀
X 𝑓(𝑥𝑡+1|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡)𝑑𝑥𝑡

(2.22)
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is the backward transition kernel, which is generally time inhomogeneous. We see
from (2.22) that—to facilitate computation of (2.21)—we need the sequence of the
state filtering densities (𝑝(𝑥𝑡|𝑦1:𝑡))𝑇

𝑡=1 and the forward transition kernel 𝑓 . Therefore,
we first need to run the forward filtering recursion (2.7). The backward recursion
(2.21) is then initialized with the filtering density from the final iteration, 𝑝(𝑥𝑇 |𝑦1:𝑇 ).
The computational procedures based on this principle are then commonly associ-
ated with the name forward-filtering backward-smoothing. Obviously, the backward
smoothing recursion is computationally more expensive than the filtering one. An
important implication of the backward smoothing is that it facilitates a more precise
estimation of the initial state 𝑋1.

The recursion for computing the marginal smoothing destiny 𝑝(𝑥𝑡|𝑦1:𝑇 ) can sim-
ply be obtained from (2.21) by marginalizing over 𝑋𝑡+1:𝑇 ,

𝑝(𝑥𝑡|𝑦1:𝑇 ) =
∫︁

X
𝑝(𝑥𝑡|𝑥𝑡+1, 𝑦1:𝑡)𝑝(𝑥𝑡+1|𝑦1:𝑇 )𝑑𝑥𝑡+1. (2.23)

Note we can also define the fixed-interval smoothing density in a similar way.
The backward transition kernel (2.22) is generally intractable. Hence, we review

some approximation strategies for computing (2.21) and (2.23).

2.3.1 Gaussian Smoothers

The Gaussian forward-filter backward-smoother [188] aims at computing the marginal
smoothing density (2.23) for general nonlinear and non-Gaussian state-space models
given by the functional form (2.11). Similarly to the Gaussian filtering, the underly-
ing idea of this approach lies in the assumed density framework discussed in Section
2.2.1, with all advantages and disadvantages mentioned there.

The key object in devising the smoother is the joint marginal smoothing density

𝑝(𝑥𝑡, 𝑥𝑡+1|𝑦1:𝑇 ) = 𝑝(𝑥𝑡|𝑥𝑡+1, 𝑦1:𝑡)𝑝(𝑥𝑡+1|𝑦1:𝑇 ), (2.24)

whose integral over 𝑋𝑡+1 is (2.23). The complexity of this joint density grows as we
proceed backwards in time whenever dealing with state-space models outside the
linear Gaussian or discrete-valued structures. The main reason is that the back-
ward transition kernel (2.22) is intractable. We therefore use the assumed density
approach to find its approximation.

Consider we have a sequence of filtering densities (𝒩 (𝑥𝑡; �̂�𝑡|𝑡, 𝑃𝑡|𝑡))𝑇
𝑡=1 computed

by one of the previously discussed Gaussian filters. The construction of the back-
ward transition kernel (2.22) generally follows from the joint density 𝑝(𝑥𝑡, 𝑥𝑡+1|𝑦1:𝑡) =
𝑓(𝑥𝑡+1|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡). If we simply substitute the Gaussian filtering densities in this
formula, we do not obtain any tractable solution due to the incompatibility of
𝑓(𝑥𝑡+1|𝑥𝑡) and 𝑝(𝑥𝑡|𝑦1:𝑡). The assumed density framework suggests to approximate
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Algorithm 9 The Gaussian smoother
A. Initial step: (𝑡 = 𝑇 )

* Set (�̃�𝑇 , 𝑃𝑇 ) to (�̂�𝑇 |𝑇 , 𝑃𝑇 |𝑇 ).
B. Recursive step: (𝑡 = 𝑇 − 1, . . . , 1)

* Use (�̂�𝑡|𝑡, 𝑃𝑡|𝑡) and (�̃�𝑡+1, 𝑃𝑡+1) in (2.16) and (2.27) to compute (�̃�𝑡, 𝑃𝑡).

the exact density 𝑝(𝑥𝑡, 𝑥𝑡+1|𝑦1:𝑡) by the optimal approximate density (2.12). How-
ever, as discussed before, the moments of this optimal solution are given by the
exact moments, and we therefore adopt the coarser approximation (2.15). The con-
ditional density of (2.15) corresponds to the sought Gaussian approximation of the
backward transition kernel (2.22),

𝑝(𝑥𝑡|𝑥𝑡+1, 𝑦1:𝑡) = 𝒩 (𝑥𝑡;𝜇𝑡,Σ𝑡), (2.25)

where

𝐿 = �̂�𝑡+1|𝑡𝑃
−1
𝑡+1|𝑡, (2.26a)

𝜇𝑡 = �̂�𝑡|𝑡 + 𝐿(𝑥𝑡+1 − �̂�𝑡+1|𝑡), (2.26b)
Σ𝑡 = 𝑃𝑡|𝑡 − 𝐿𝑃𝑡+1|𝑡𝐿

⊤, (2.26c)

which follows from applying Lemma A.8. We continue by assuming 𝑝(𝑥𝑡+1|𝑦1:𝑇 ) =
𝒩 (𝑥𝑡+1; �̃�𝑡+1, 𝑃𝑡+1), then after substituting this density along with (2.25) into (2.24),
we obtain

𝑝(𝑥𝑡, 𝑥𝑡+1|𝑦1:𝑇 ) = 𝒩
⎛
⎝
⎡
⎣𝑥𝑡+1

𝑥𝑡

⎤
⎦ ;
⎡
⎣�̃�𝑡+1

𝜇𝑡

⎤
⎦ ,

⎡
⎣ 𝑃𝑡+1 𝑃𝑡+1𝐿

⊤

𝐿𝑃𝑡+1 𝐿𝑃𝑡+1𝐿
⊤ + Σ𝑡

⎤
⎦
⎞
⎠ .

Finally, after using Lemma A.8, the marginal smoothing density becomes

𝑝(𝑥𝑡|𝑦1:𝑇 ) = 𝒩 (𝑥𝑡; �̃�𝑡, 𝑃𝑡),

with

𝐿 = �̂�𝑡+1|𝑡𝑃
−1
𝑡+1|𝑡, (2.27a)

�̃�𝑡 = �̂�𝑡|𝑡 + 𝐿(�̃�𝑡+1 − �̂�𝑡+1|𝑡), (2.27b)
𝑃𝑡 = 𝑃𝑡|𝑡 + 𝐿(𝑃𝑡+1 − 𝑃𝑡+1|𝑡)𝐿⊤. (2.27c)

We can now summarize this Gaussian smoother in Algorithm 9.
As in the case of Gaussian filtering, various forms of this algorithm are obtained

depending on a concrete approximation of the integrals (2.16), see the discussion on
various forms of the cubature rules in Section 2.2.1. In particular, if the model (2.11)
is linear and Gaussian, we recover the standard Rauch-Tung-Striebel smoother [180].

In the first row of Fig. 2.4, we apply the Gauss-Hermite smoother [188] to Ex-
amples 2.1-2.3, with the number of sigma points and initial statistics of the forward
filtering sweep, (�̂�1|0, 𝑃1|0), being set to 20 and (0, 5), respectively.
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Fig. 2.4: The true state trajectory ( ) and its estimate ( ) versus the number of
observations for the Gauss-Hermite smoother [188] (first row), forward-filter backward-
simulator [80] (second row), two-filter particle smoother [26] (third row), and particle
Gibbs with ancestor sampling kernel-based smoother [132] (fourth row). The columns
correspond to the models given in Example 2.1 with (𝜇𝑤, 𝜎2

𝑤, 𝜇𝑣, 𝜎2
𝑣) = (1, 1, 1, 1) (first

column), Example 2.2 with (𝜇𝑤, 𝜎2
𝑤, 𝜇𝑣, 𝜎2

𝑣) = (1, 1, 1, 1) (middle column), and Example
2.3 with (𝛼, 𝛽, 𝜇𝑣, 𝜎2

𝑣) = (1, 1, 1, 1) (last column). The initial state is distributed according
to 𝜇(𝑥1) = 𝒩 (𝑥1; 0, 5) in all the cases.
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2.3.2 Particle Smoothers

The forward-filter backward-simulator [80] is a particular instance of the generic
backward simulation approach presented in Section 1.7 with 𝜋𝑇 (𝑥1:𝑇 ) := 𝑝(𝑥1:𝑇 |𝑦1:𝑇 )
and 𝛾𝑇 (𝑥1:𝑇 ) := 𝑝(𝑥1:𝑇 , 𝑦1:𝑇 ). Consider that we have already applied one of the par-
ticle filters discussed in Section 2.2.2 to produce the sequence of the forward filtering
distributions, (𝑝𝑁(𝑑𝑥𝑡|𝑦1:𝑡))𝑇

𝑡=1. The forward-filter backward-simulator utilizes these
distributions to approximate the backward transition kernel (2.22) by

𝑝𝑁(𝑑𝑥𝑡|�̃�𝑡+1, 𝑦1:𝑡) =
𝑁∑︁

𝑖=1
𝑊 𝑖

𝑡|𝑇 𝛿𝑋𝑖
𝑡
(𝑑𝑥𝑡), (2.28)

where
𝑊 𝑖

𝑡|𝑇 ∝ 𝑊 𝑖
𝑡 𝑓(�̃�𝑡+1|𝑋 𝑖

𝑡).

The backward-simulator then samples from this approximate backward transition
kernel in the same way as presented in Algorithm 3.

This method realizes sampling according to the recursion 2.21, thus targeting the
joint state posterior density 𝑝(𝑥1:𝑇 |𝑦1:𝑇 ). To approximate the marginal smoothing
density (2.23) or the joint marginal smoothing density (2.24), we only need to discard
the superfluous particles from the empirical distribution (1.56).

Note that the backward kernel does not depend on the full trajectory 𝑋1:𝑡. There-
fore, we can use only the filtering distributions that are represented by the weighted
particle systems (W𝑡,X𝑡)𝑇

𝑡=1 with unreduced particle diversity. The Markov prop-
erty of 𝑓 is thus of key importance here since the backward sampling based on
(2.28) overcomes the difficulties associated with the path degeneracy problem. As
discussed in Section 1.7, this does not hold for the general backward transition kernel
(1.55) which requires the full trajectories, making the kernel poorly approximated.
Consequently, applying the Rao-Blackwellization in the context of the backward
simulation can be difficult.

The backward simulator preserves the 𝒪(𝑇𝑀𝑁) computational complexity of
the generic procedure in Algorithm 3. However, in the context of state-space mod-
els, the rejection sampling-based implementation can be used to reduce the com-
putational requirements to scale with 𝒪(𝑇𝑁) operations [53]. In particular, when
restricting to situations where we compute expectations of a test function with a
certain convenient structure, such as the smoothed additive functionals [30], the
implementation can be made in the purely online manner [48]. The computational
complexity of this forward-only implementation scales with the original 𝒪(𝑇𝑀𝑁)
operations. It was proposed in [164], that this can also be improved in the sense
of the rejection sampling as presented in [53], thus leading to the 𝒪(𝑇𝑁) compu-
tational burden. These improvements are commonly used to perform the online
maximum likelihood parameter inference in state-space models.
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The accuracy of the approximate joint state posterior distribution (1.56) strongly
depends on the quality of the approximate backward transition kernel (2.28). We
can compute a precise approximation of this kernel if we choose a high number of
forward particles 𝑁 . Then, empirical evidence often suggests that it is enough to use
a number of backward particles 𝑀 which is markedly lower than 𝑁 , to have reason-
able approximations of desired quantities. The forward-filter backward-simulator
provides strongly consistent and asymptotically Gaussian [49, 53] estimates when
both 𝑀 and 𝑁 tend to infinity.

The second row of Fig. 2.4 demonstrates the forward-filter backward-simulator
[80] on Examples 2.1-2.3. The forward filtering sweep is implemented in the boot-
strap proposal setting. The number of forward and backward particles is set to
𝑁 = 100 and 𝑀 = 10, respectively.

2.4 Backward Information Filtering

The goal of the backward information filtering [148] is to compute the joint density
of the observation sequence—from the current to the final time step—given the
current state, 𝑝(𝑦𝑡:𝑇 |𝑥𝑡). The time-reverse character of the backward information
filtering predetermines its applicability to offline scenarios only. Expect the basic
settings, such as linear Gaussian state-space models, the backward information filter
is rather intricate to implement.

The backward information filtering density is generally computed as the marginal
of the joint density of the states and observations from 𝑇 to 𝑡, which factorizes in the
same way as in (2.2), that is, 𝑝(𝑦𝑡:𝑇 |𝑥𝑡) ∝ ∫︀

𝑝(𝑦𝑡:𝑇 , 𝑥𝑡:𝑇 )𝑑𝑥𝑡+1:𝑇 . Consequently, un-
der the conditional independence assumptions of state-space models, the backward
information filtering recursion is

𝑝(𝑦𝑡:𝑇 |𝑥𝑡) = 𝑔(𝑦𝑡|𝑥𝑡)𝑝(𝑦𝑡+1:𝑇 |𝑥𝑡), (2.29a)

𝑝(𝑦𝑡+1:𝑇 |𝑥𝑡) =
∫︁

X
𝑓(𝑥𝑡+1|𝑥𝑡)𝑝(𝑦𝑡+1:𝑇 |𝑥𝑡+1)𝑑𝑥𝑡+1. (2.29b)

Analogously to the forward filtering, (2.29a) and (2.29b) are referred to as the data
and time step, respectively. At the initial step 𝑡 = 𝑇 , we start the computation
of the recursion (2.29) with 𝑝(𝑦𝑇 |𝑥𝑇 ) = 𝑔(𝑦𝑇 |𝑥𝑇 ). Note that the backward filtering
recursion does not require knowledge of the initial density 𝜇.

For analytically tractable cases, 𝑝(𝑦𝑡:𝑇 |𝑥𝑡) can be computed under a closed-form
solution. However, for general nonlinear and non-Gaussian state-space models, we
commonly need to resort to approximate techniques, such as the Gaussian or SMC-
based methods. In these situations, the main difficulty with implementing the back-
ward information filter consists in that 𝑝(𝑦𝑡:𝑇 |𝑥𝑡) is not a bounded function with
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respect to 𝑥𝑡, and therefore its integral may not be finite. In other words, 𝑝(𝑦𝑡:𝑇 |𝑥𝑡)
is not a probability density function over 𝑥𝑡. This has led to the formulation of the
generalized backward information filter [26]. To ensure that 𝑝(𝑦𝑡:𝑇 |𝑥𝑡) is integrable
with respect to 𝑥𝑡, the generalized filter introduces an artificial prior density 𝜉𝑡(𝑥𝑡)
to enable formulation of an auxiliary backward filtering and prediction densities,
𝑝(𝑥𝑡|𝑦𝑡:𝑇 ) ∝ 𝑝(𝑦𝑡:𝑇 |𝑥𝑡)𝜉𝑡(𝑥𝑡) and 𝑝(𝑥𝑡|𝑦𝑡+1:𝑇 ) ∝ 𝑝(𝑦𝑡+1:𝑇 |𝑥𝑡)𝜉𝑡(𝑥𝑡), respectively, which
are properly normalized and thus allow us to apply the approximate techniques. The
auxiliary densities can then be used to form the generalized backward information
filtering recursion as

𝑝(𝑥𝑡|𝑦𝑡:𝑇 ) ∝ 𝑔(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦𝑡+1:𝑇 ), (2.30a)

𝑝(𝑥𝑡|𝑦𝑡+1:𝑇 ) =
∫︁

X
𝑝(𝑥𝑡+1|𝑦𝑡+1:𝑇 )𝑓(𝑥𝑡+1|𝑥𝑡)𝜉𝑡(𝑥𝑡)

𝜉𝑡+1(𝑥𝑡+1)
𝑑𝑥𝑡+1. (2.30b)

For a detailed discussion on the selection of the artificial prior density, see [26].
The backward information filter is most often utilized as a part of more advanced

state inference techniques, rather than a purely standalone procedure. The methods
of this type are exclusively related to the two-filter smoothing [69, 24, 113], including
the two-filter smoother itself, Rao-Blackwellized forward-filter backward-simulator
[131], particle Gibbs with ancestor sampling [132], etc.

For details regarding implementation of the generalized backward information
filter in the context of the Gaussian and particle approximations, see [25, 26, 131].
The particle-based implementation of the generalized backward information filter
approximates a sequence of the artificial backward filtering densities (𝑝(𝑥𝑡:𝑇 |𝑦𝑡:𝑇 ))𝑇

𝑡=1

by the corresponding sequence of empirical measures (𝑝𝑁(𝑑𝑥𝑡:𝑇 |𝑦𝑡:𝑇 ))𝑇
𝑡=1. For how

to select the optimal proposal density, which minimizes the variance of the unnor-
malized importance weights in the context of the particle-based implementation of
the generalized backward information filter, see [26]. The auxiliary backward infor-
mation particle filter is formulated in [66]. An experimental evaluation presented in
[25] demonstrates that the particle implementation of the generalized backward in-
formation filter can provide improved estimation accuracy over the forward particle
filter with the optimal proposal density approximated by the unscented transform.

2.5 Backward-Filtering Forward-Smoothing

The backward-filtering forward-smoothing is an alternative approach for computing
the joint state posterior density, 𝑝(𝑥1:𝑇 |𝑦1:𝑇 ). The name suggests that this approach
is a time-reversed version of the forward-filtering backward-smoothing.
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The joint state posterior density 𝑝(𝑥1:𝑇 |𝑦1:𝑇 ) is computed with a forward recursion
given by

𝑝(𝑥1:𝑡|𝑦1:𝑇 ) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡:𝑇 )𝑝(𝑥1:𝑡−1|𝑦1:𝑇 ), (2.31)

where we use 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦1:𝑇 ) = 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡:𝑇 ). Thus, based on the Markov property
of the transition kernel 𝑓 , 𝑦1:𝑡−1 provide no further information about 𝑋𝑡 given 𝑥𝑡−1.
We refer to 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡:𝑇 ) as the forward transition kernel, for which it holds that

𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡:𝑇 ) = 𝑝(𝑦𝑡:𝑇 |𝑥𝑡)𝑓(𝑥𝑡|𝑥𝑡−1)∫︀
X 𝑝(𝑦𝑡:𝑇 |𝑥𝑡)𝑓(𝑥𝑡|𝑥𝑡−1)𝑑𝑥𝑡

. (2.32)

The presence of 𝑦𝑡:𝑇 makes this kernel time inhomogeneous. We see from (2.32) that
the sequence of backward information filtering densities (𝑝(𝑦𝑡:𝑇 |𝑥𝑡))𝑇

𝑡=1 is required
to enable the computation of (2.31). Hence, it is necessary to first apply the back-
ward information filtering recursion (2.29). The initial step of (2.31) then computes
𝑝(𝑥1|𝑦1:𝑇 ) ∝ 𝑝(𝑦1:𝑇 |𝑥1)𝜇(𝑥1), where 𝑝(𝑦1:𝑇 |𝑥1) is the backward information filtering
density from the final step (taking the time reverse perspective). The fact that we
first apply the backward filtering recursion (2.29) and then the forward smoothing
recursion (2.31) justifies the name backward-filtering forward-smoothing.

To compute the marginal smoothing density 𝑝(𝑥𝑡|𝑦1:𝑇 ), we need to marginalize
(2.31) over 𝑋1:𝑡−1, which yields

𝑝(𝑥𝑡|𝑦1:𝑇 ) =
∫︁

X
𝑝(𝑥𝑡|𝑥𝑡−1, 𝑦𝑡:𝑇 )𝑝(𝑥𝑡−1|𝑦1:𝑇 )𝑑𝑥𝑡−1. (2.33)

A more commonly used—and equivalent—form of (2.33) is given by

𝑝(𝑥𝑡|𝑦1:𝑇 ) = 𝑝(𝑦𝑡:𝑇 |𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)
𝑝(𝑦𝑡:𝑇 |𝑦1:𝑡−1)

, (2.34)

where we see that one needs to compute 𝑝(𝑦𝑡:𝑇 |𝑥𝑡) with the backward information
filtering recursion (2.29) and 𝑝(𝑥𝑡|𝑦1:𝑡−1) with the forward filtering recursion (2.7).
Hence, the computational strategies following this idea are commonly known under
the name two-filter smoothing. Interestingly, the above construction of (2.34) reveals
that the two-filter smoothing is a special case of the backward-filtering forward-
smoothing. The consequence of marginalization (2.33) is that it is no longer impor-
tant whether we start computations in the forward or backward direction.

2.5.1 Two-Filter Gaussian Smoothers

Although a rigorous derivation of the Gaussian two-filter smoothers was provided
in [25], it seems that these algorithms have not yet been as widely deployed as the
forward-filters backward-smoothers. The main reason possibly lies in that the Gaus-
sian forward-filtering backward-smoothing is (i) more easy to implement (no need to
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design a rescaled backward recursion in the generalized backward information filter)
and (ii) computationally less demanding, especially when the state dimension is high
(this can be recognized from computations of the mean and information matrix as-
sociated with the marginal smoothing density of the Gaussian two-filter smoother).
However, the Gaussian two-filter approach has an important methodological posi-
tion in devising more sophisticated methods, mainly the design of Rao-Blackwellized
techniques in the context of MCMC [55], backward simulation [131], and particle
MCMC [218]. The precision and computational complexity scale according to spe-
cific cubature rules adopted for approximating the associated integrals. Practically
all the methods discussed in Section 2.2.1 can be used.

2.5.2 Two-Filter Particle Smoothers

The two-filter particle smoother has recorded a fair portion of popularity over the
last years. Similarly as with the forward-backward approach, the two-filter smoother
also overcomes the path degeneracy problem. The computational complexity of the
algorithm scales with 𝒪(𝑁𝑀𝑇 ) operations, where 𝑁 and 𝑀 is the number of par-
ticles associated with the forward and backward filter, respectively. However, under
restrictive assumptions on the state-space model, an implementation of the two-
filter smoother with improved 𝒪(𝑁𝑇 ) computational complexity can be designed
[66], where 𝑁 is the number of particles for both the forward and backward filters.
This improved implementation offers a substantial improvement in the trade-off be-
tween the estimation accuracy and computational budged. Moreover, [66] suggests
an approach to overcome difficulties arising in situations when 𝑓 is degenerate, that
is, 𝑓(𝑥𝑡|𝑥𝑡−1) is zero for a range of values of 𝑥𝑡 and 𝑥𝑡−1. The advantage of the
two-filter over the forward-backward particle smoother is that the sampling in the
forward and backward filters can be performed in parallel. Similarly as with the
forward-filter backward-simulator, the particle implementation of the generalized
two-filter smoother offers strongly consistent and asymptotically Gaussian estima-
tors [159], and unbiased estimates of the marginal likelihood [170].

The third row of Fig. 2.4 shows the two-filter particle smoother [26] on Examples
2.1-2.3. The forward and backward filters are applied with the bootstrap proposal
density, having the number of particles 𝑁 = 100 and 𝑀 = 10, respectively. The
computation of the artificial prior density 𝜉𝑡(𝑥𝑡) is based on the unscented Kalman
filter [102] where the initial statistics are �̂�1|0 = 0 and 𝑃1|0 = 5, and the scaling
parameter (𝜅, see [102]) is 2. We can see that implementing 𝜉𝑡(𝑥𝑡) in this way
causes the performance of the two-filter particle smoother to be worse compared to
the forward-filter backward simulator. For alternative choices of 𝜉𝑡(𝑥𝑡), see [26].
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2.6 Particle MCMC Smoothing

A particle MCMC smoother can be seen as a Markov transition kernel 𝒦 defined on
X𝑇 which leaves the joint state posterior density 𝑝(𝑥1:𝑇 |𝑦1:𝑇 ) invariant. Such a kernel
can be assembled based on the CSMC method presented in Algorithm 6. The sam-
pling from a Markov kernel constructed in this way is performed as follows: Consider
we have a state trajectory from the previous iteration 𝑥1:𝑇 [𝑘−1], and we utilize it to
condition Algorithm 6 for 𝑡 = 1, . . . , 𝑇 . After finishing the computation of the last
time step, we sample 𝑥1:𝑇 [𝑘] := 𝑥𝑘

1:𝑇 by drawing 𝑘 ∼ W𝑇 . The sampled state tra-
jectory is then used to condition Algorithm 6 in the next iteration. Repeating this
procedure for 𝑅 iterations generates the Markov chain (𝑥1:𝑇 [𝑘])𝑅

𝑘=1 which enables
the estimation of quantities of interest that are associated with 𝑝(𝑥1:𝑇 |𝑦1:𝑇 ). As dis-
cussed in Sections 1.6 and 1.9.1, the CSMC method suffers from the path degeneracy
problem, which negatively influences the mixing properties of the kernel.

The implementation details follow the same guidelines as in Section 2.2.2, in-
cluding design of the auxiliary particle filter-based proposal density which might
potentially improve the mixing properties of the kernel. However, as presented in
Fig. 2.3, one can expect this modification to not have any significant impact in this
respect. A substantial improvement on this issue is obtained by implementing the
kernel based on the backward simulation [216] or the ancestor sampling [132].

In the last row of Fig. 2.4, we present the particle MCMC smoother with the
particle Gibbs with ancestor sampling kernel [132] on Examples 2.1-2.3, where the
number of particles and iterations are set to 𝑁 = 10 and 𝑅 = 100, respectively.

2.7 Frequentist Parameter Estimation

2.7.1 The EM Algorithm

The expectation maximization (EM) algorithm [51] is a widely applicable tool for
addressing the maximum likelihood parameter inference problem (2.5) in incomplete
data models, including state-space models. The EM procedure belongs to the class
of data augmentation strategies—where the likelihood 𝑝𝜃(𝑦1:𝑇 ) is augmented by the
latent state sequence, 𝑝𝜃(𝑦1:𝑇 , 𝑥1:𝑇 )—and is generally implementable in either online
or offline manner. The characteristic feature of this method is that it allows us
to split the maximum likelihood problem into two separated and presumably more
easily tractable steps known as the expectation and maximization.
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Principle

The nature of the EM algorithm follows from establishing the relation between the
complete 𝑝𝜃(𝑥1:𝑇 , 𝑦1:𝑇 ) and incomplete 𝑝𝜃(𝑦1:𝑇 ) data likelihood according to

𝑙(𝜃) = log 𝑝𝜃(𝑥1:𝑇 , 𝑦1:𝑇 ) − log 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ), (2.35)

which simply results from the logarithm of Bayes’ rule. Here, we use the short-
hand notation 𝑙(𝜃) := log 𝑝𝜃(𝑦1:𝑇 ). Note that maximizing the log-likelihood 𝑙(𝜃) is
equivalent to maximizing the likelihood 𝑝𝜃(𝑦1:𝑇 ) due to the fact that 𝑝𝜃(𝑦1:𝑇 ) is al-
ways non-negative. The complete data likelihood is constructed by augmenting the
observed data sequence with auxiliary latent variables that are—in the context of
state-space modes—given by the latent state sequence. The complete data likelihood
is here understood as an idealized version of the incomplete data likelihood. The key
motivation for the initial design step (2.35) lies in that it is often more convenient
to deal with the complete rather than incomplete data likelihood. We continue by
taking the expected value of (2.35) with respect to the joint state posterior density
𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 ) evaluated at 𝜃[𝑘 − 1] ∈ Θ,

𝑙(𝜃) = 𝒬𝑘(𝜃) + ℋ𝑘(𝜃), (2.36)

where we introduce

𝒬𝑘(𝜃) := E𝜃[𝑘−1][log 𝑝𝜃(𝑋1:𝑇 , 𝑦1:𝑇 )], (2.37)
ℋ𝑘(𝜃) := −E𝜃[𝑘−1][log 𝑝𝜃(𝑋1:𝑇 |𝑦1:𝑇 )]. (2.38)

This step follows from the fact that the unobserved state sequence is unknown, and
we therefore apply marginalization with respect to 𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 ). The expected
value of the complete data log-likelihood (2.37) is often referred to as the intermedi-
ate quantity and plays the key role in the algorithm workflow, which we show next.
The expected value of the logarithm of the joint state posterior density (2.38) is
the entropy of this density. Note that—despite the marginalization—the formula
(2.36) preserves the value of the incomplete data likelihood but provides its different
interpretation. The purpose of the EM algorithm is to locate 𝜃 which maximizes
𝑙(𝜃). Let us therefore investigate the difference between two consecutive values of
(2.36) evaluated at 𝜃[𝑘] and 𝜃[𝑘 − 1],

𝑙(𝜃[𝑘])− 𝑙(𝜃[𝑘−1]) =
(︁
𝒬𝑘(𝜃[𝑘])−𝒬𝑘(𝜃[𝑘−1])

)︁
+
(︁
ℋ𝑘(𝜃[𝑘])−ℋ𝑘(𝜃[𝑘−1])

)︁
. (2.39)

The second term on the r.h.s of (2.39) is equivalent to 𝒟(𝑝𝜃[𝑘−1]||𝑝𝜃[𝑘])—the Kullback-
Leibler divergence from 𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 ) to 𝑝𝜃[𝑘](𝑥1:𝑇 |𝑦1:𝑇 )—which is always non-
negative. With this in mind, the first term on the r.h.s. of (2.39) reveals the essential
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Algorithm 10 Expectation maximization (EM)
A. Initial step: (𝑘 = 0)

1. Set 𝜃[0] ∈ Θ, and 𝒬0(𝜃) := 0.
B. Recursive step: (𝑘 = 1, . . . , 𝑅)

1. Compute 𝒬𝑘(𝜃) according to (2.37).
2. Compute 𝜃[𝑘] = argmax𝜃∈Θ 𝒬𝑘(𝜃).

idea of the EM algorithm: if we choose a new estimate 𝜃[𝑘] such that the value of
the intermediate quantity is greater than or equal to its previous value, 𝒬𝑘(𝜃[𝑘]) ≥
𝒬𝑘(𝜃[𝑘−1]), then the incomplete data log-likelihood is also greater than or equal to
its previous value, 𝑙(𝜃[𝑘]) ≥ 𝑙(𝜃[𝑘−1]). This allows us to formulate the fundamental
inequality of the EM algorithm [30]

𝑙(𝜃[𝑘]) − 𝑙(𝜃[𝑘 − 1]) ≥ 𝒬𝑘(𝜃[𝑘]) − 𝒬𝑘(𝜃[𝑘 − 1]). (2.40)

Therefore, we can maximize 𝑝𝜃(𝑦1:𝑇 ) by iteratively maximizing 𝒬𝑘(𝜃). In other
words, we can iteratively refine 𝜃 until reaching a stationary point of the likelihood
𝑝𝜃(𝑦1:𝑇 ) by following the above prescription. Consequently, this allows us to assemble
the EM algorithm as a procedure divided into two parts: (i) the expectation (E)
step which computes the intermediate quantity (2.37) and (ii) the maximization (M)
step which maximizes this intermediate quantity. We summarize this method in
Algorithm 10. The inequality (2.40) implies that the sequence (𝑙(𝜃[𝑘]))𝑅

𝑘=1 produced
by this procedure is monotonically increasing.

Properties

The EM algorithm is useful mainly in situations where the maximization of 𝒬𝑘(𝜃) is
easier than direct maximization of 𝑝𝜃(𝑦1:𝑇 ). Under regularity assumptions delineated
in [223], the sequence of the parameter estimates (𝜃[𝑘])𝑅

𝑘=0 produced by the EM al-
gorithm converges towards a stationary point of the likelihood 𝑝𝜃(𝑦1:𝑇 ) for 𝑅 → ∞.
However, it is important to note that the EM algorithm is a local deterministic
optimization procedure which may converge towards a local maximum or saddle
point. As explained above, the sequence of log-likelihood evaluations (𝑙(𝜃[𝑘]))𝑅

𝑘=0 is
non-decreasing, and the EM algorithm therefore embodies a monotone optimization
procedure. The effectiveness of the EM algorithm is conditioned on our ability to
properly choose the auxiliary variables. In the context of state-space models, the
choice is commonly undertaken such that the auxiliary variables are the latent states,
but an alternative choice given by the latent disturbances [208] is also possible. Con-
trary to gradient-based techniques, we do not need to compute the gradient of the
likelihood function to apply the EM algorithm, and there is thus no need to impose
any direct assumptions on the smoothness of 𝑝𝜃(𝑦1:𝑇 ). Another advantage of the EM
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algorithm lies in that it is numerically robust [124], overcomes difficulties with pa-
rameterization choices (as there are no parameters to tune, which is also the reason
why the EM methods converge slower compared to gradient-based techniques), and
offers the possibility to estimate initial conditions. In the case of linear Gaussian
state-space models, the method is robust to high-dimensional state spaces [77]. The
convergence rate of the EM algorithm is rather slow [223]. However, this has not
prevented the method from being applied in a wide-range of practical cases. An
often encounter situation is that the M-step facilitates computations under a closed
form. Indeed, the complete data likelihood is commonly expressed by a probability
density function belonging to the exponential family [12]. Such densities ensure the
intermediate quantity to be concave w.r.t. the argument 𝜃, which is especially conve-
nient as the EM algorithm is then guaranteed to converge to the global maximizer of
the likelihood. Moreover, the EM algorithm enables us to simply involve constraints
on estimated parameters.

Related Methods

The EM algorithm for linear Gaussian state-space models, where both the steps
can be computed under an explicit solution, is presented in [196, 224, 77]. This
fundamental setup of the EM algorithm have found numerous applications in more
advanced versions of this method, including learning of jump Markov linear models
[202]. A substantial attention has also been focused on approximating the integral
in the E-step based on Gaussian filters [75, 82, 71]. The consequence of applying
Gaussian filters in this context carries over all their advantages and disadvantages,
mainly the fact that when the nonlinearities become severe the algorithms usually
provide a poor estimation performance [118]. Although there is a large body of work
related to the EM algorithm, here we only refer to the basic scenarios—connected
to the tractable and assumed Gaussian density settings—and leave more advanced
algorithm constructions for the following sections. These are primarily related to
situations with nonlinear and non-Gaussian state-space models, where the interme-
diate quantity (2.37) is intractable.

2.7.2 The Monte Carlo EM Algorithm

The Monte Carlo EM (MCEM) algorithm [151, 215] is a simulation-based version
of the basic EM procedure which is suitable in situations where it is not feasible to
compute the E-step under a closed-form solution. The MCEM method approaches
this problem by approximating the E-step based on Monte Carlo sample averages.
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Algorithm 11 Monte Carlo expectation maximization (MCEM)
A. Initial step: (𝑘 = 0)

1. Set 𝜃[0] ∈ Θ.
B. Recursive step: (𝑘 = 1, . . . , 𝑅)

1. Sample (𝑋𝑖
1:𝑇 [𝑘])𝑁

𝑖=1 ∼ 𝑝𝜃[𝑘−1](·|𝑦1:𝑇 ).
2. Compute 𝒬𝑁

𝑘 (𝜃) according to (2.41).
3. Compute 𝜃[𝑘] = argmax𝜃∈Θ 𝒬𝑁

𝑘 (𝜃).

Principle

The basic idea of the MCEM algorithm is to first simulate a set of IID sample
trajectories (𝑋 𝑖

1:𝑇 [𝑘])𝑁
𝑖=1 from the joint state posterior distribution 𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 )

parameterized by the previous estimate 𝜃[𝑘 − 1] at each iteration 𝑘, and then use
the samples to approximate the intermediate quantity (2.37). This approximation is
simply obtained by substituting the empirical approximation 𝑝𝑁

𝜃[𝑘−1](𝑑𝑥1:𝑇 |𝑦1:𝑇 ) into
(2.37), that is,

𝒬𝑁
𝑘 (𝜃) := 1

𝑁

𝑁∑︁

𝑖=1
log 𝑝𝜃(𝑋 𝑖

1:𝑇 [𝑘], 𝑦1:𝑇 ). (2.41)

The rest of the procedure follows basically the same steps as in the fundamental EM
algorithm. We present this procedure in Algorithm 11.

Properties

The MCEM algorithm is a stochastic optimization procedure which offers (a very
basic) ability to escape local maxima or saddle points. Contrary to the basic EM al-
gorithm, since we approximate 𝒬𝑘(𝜃) by 𝒬𝑁

𝑘 (𝜃), it is no longer possible to guarantee
that the log-likelihood increases monotonically. To ensure that the method behaves
in the convergent manner—thus approaches a stationary point of the likelihood—we
need the number of particles 𝑁 to increase with the number of iterations 𝑅. (In
practical situations, it is often enough to use a low number of particles 𝑁 to drive the
parameter estimates towards important parts of the likelihood function and then in-
crease this number in later iterations of the optimization process.) Indeed, empirical
examples commonly indicate that the estimates produced by the MCEM algorithm
suffer from a substantial bias and variance that diminish only when increasing the
number of particles 𝑁 . Therefore, under the conditions delineated in [68], including
the requirement that the complete data likelihood belongs to the exponential family
[12], the method requires both the number of particles 𝑁 and iterations 𝑅 to tent to
infinity to converge. This approach is thus double asymptotic, which is its main dis-
advantage. Moreover, as can be seen in Algorithm 11, the simulated trajectories are
wastefully discarded at every iteration, implying a high computational complexity.
This can be particularly inefficient in situations where we decide to sample from a
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Markov kernel which leaves the joint state posterior density 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ) invariant.
In this case, at each iteration, we need to wait to go over the transient phase of the
chain to obtain samples approximately distributed according to 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ). This
design step also implies that there would be two nested layers of iterations, and the
computational cost would be substantially high. Moreover, the dependent samples
complicate theoretical analysis of such algorithms.

Related Methods

There exists a number of different methods to sample from the joint state posterior
density 𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 ). A possible way is to use the generic particle smoothing EM
(PSEM) framework [194]. This approach considers that the sampling can be made
by various different forms of particle smoothers, including those discussed in Section
2.3.2, such as forward-filter backward-smoother [54, 194], forward-filter backward-
simulator [80], generalized SMC two-filter smoother [25, 66], and fixed-lag smoother
[163]. Nevertheless, as noted before, the PSEM approach does not reuse the samples
over the iterations and thus requires a notably higher amount of particles at each
iteration to obtain reliable estimates of the intermediate quantity.

2.7.3 The Stochastic Approximation EM Algorithm

The main difficulty with the MCEM algorithm is the requirement that both the
number of particles at each iteration and the number of iterations itself have to tend
to infinity for the algorithm to converge. The stochastic approximation EM (SAEM)
algorithm [50, 207] overcomes this problem by implementing the E-step based on
the stochastic approximation [182] which reuses the samples over the iterations and
therefore avoids the need for the number of particles to tend to infinity. This is an
important methodological concept which states that we can estimate the parameters
even by iterating over imprecisely approximated intermediate quantities.

Principle

The underlying idea of the SAEM algorithm is to reuse the a set of IID sample trajec-
tories (𝑋 𝑖

1:𝑇 [𝑘])𝑁
𝑖=1—drawn from the joint state posterior distribution 𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 )

evaluated at the previous estimate 𝜃[𝑘 − 1]—over multiple iterations. This can be
accomplished by averaging (2.41) according to

𝒬𝑁
𝑘 (𝜃) := 1

𝑘

1
𝑁

𝑘∑︁

𝑖=1

𝑁∑︁

𝑗=1
log 𝑝𝜃(𝑋𝑗

1:𝑇 [𝑖], 𝑦1:𝑇 ). (2.42)
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Algorithm 12 Stochastic approximation expectation maximization (SAEM)
A. Initial step: (𝑘 = 0)

1. Set 𝑥1:𝑇 [0] ∈ X𝑇 , 𝜃[0] ∈ Θ, and ̂︀𝒬0(𝜃) := 0.
B. Recursive step: (𝑘 = 1, . . . , 𝑅)

1. Sample (𝑋𝑖
1:𝑇 [𝑘])𝑁

𝑖=1 ∼ 𝑝𝜃[𝑘−1](·|𝑦1:𝑇 ).
2. Compute ̂︀𝒬𝑘(𝜃) according to (2.44).
3. Compute 𝜃[𝑘] = argmax𝜃∈Θ

̂︀𝒬𝑘(𝜃).

A simple rearrangement of (2.42) leads to

𝒬𝑁
𝑘 (𝜃) = 1

𝑘

1
𝑁

𝑁∑︁

𝑗=1
log 𝑝𝜃(𝑋𝑗

1:𝑇 [𝑘], 𝑦1:𝑇 ) +
(︂

1 − 1
𝑘

)︂ 1
𝑘 − 1

1
𝑁

𝑘−1∑︁

𝑖=1

𝑁∑︁

𝑗=1
log 𝑝𝜃(𝑋𝑗

1:𝑇 [𝑖], 𝑦1:𝑇 )

:= 𝛼𝑘
1
𝑁

𝑁∑︁

𝑗=1
log 𝑝𝜃(𝑋𝑗

1:𝑇 [𝑘], 𝑦1:𝑇 ) + (1 − 𝛼𝑘)𝒬𝑁
𝑘−1(𝜃), (2.43)

where we define 𝛼𝑘 := 1
𝑘
. The step-size sequence (𝛼𝑘)𝑘≥1 can follow different sched-

ules. The common requirement is that 𝛼𝑘 satisfies the constraints 𝛼𝑘 ∈ [0, 1] and
∞∑︁

𝑘=1
𝛼𝑘 = ∞,

∞∑︁

𝑘=1
𝛼2

𝑘 < ∞.

In usual situations, we select the step size as 𝛼𝑘 = 𝑐𝑘−𝜆 with 𝜆 ∈ (0.5, 1] and 𝑐 > R+.
It is also possible that we approximate the intermediate quantity with only 𝑁 = 1.
In such a case, (2.43) becomes

̂︀𝒬𝑘(𝜃) = (1 − 𝛼𝑘) ̂︀𝒬𝑘−1(𝜃) + 𝛼𝑘 log 𝑝𝜃(𝑋1:𝑇 [𝑘], 𝑦1:𝑇 ). (2.44)

From (2.43), we see that all simulated trajectories are reused across the iterations,
but the older ones are continuously discounted by the forgetting factor related to the
step size. Similarly as before, this alternative approach for computing the interme-
diate quantity is the only modification to the basic structure of the EM algorithm,
which allows us to summarize the method in Algorithm 12.

The problem we encounter in numerous practical applications is that we are
unable to directly sample from the joint state smoothing density 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ). A
possible solution to this issue is that one can couple the SAEM algorithm with the
MCMC framework [121]. The idea behind this approach is to draw the samples
from a Markov kernel 𝒦𝜃[𝑘−1] defined on X𝑇 which admits the joint state smoothing
density 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ) as its unique stationary density. The step B1 in Algorithm 12
is then replaced by: Sample 𝑋1:𝑇 [𝑘] ∼ 𝒦𝜃[𝑘−1](·|𝑋1:𝑇 [𝑘 − 1]).

Properties

The SAEM approach is another instance of a stochastic optimization procedure.
Under regularity assumptions presented in [121], including uniform ergodicity of the
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transition kernel 𝒦𝜃[𝑘−1] and the complete data likelihood 𝑝𝜃(𝑥1:𝑇 , 𝑦1:𝑇 ) belonging to
the exponential family, the sequence of the maximum likelihood estimates, (𝜃[𝑘])𝑅

𝑘=0,
produced by the MCMC version of the SAEM algorithm, converges to a maximizer
of 𝑝𝜃(𝑦1:𝑇 ) for 𝑅 → ∞. From (2.44), the choice of the step size 𝛼𝑘 significantly affects
the reusability of the previously sampled trajectories. On the one hand, for 𝛼𝑘 close
to one, there is almost no reuse of the previously sampled trajectories, and we mostly
rely on new information coming from the second term on the r.h.s. of (2.44). On the
other hand, for 𝛼𝑘 close to zero, we largely reuse the previously sampled trajectories,
and there is only a diminishing amount of new information coming from the second
term on the r.h.s. of (2.44). The former case is often used during the initial iterations
to allow the algorithm to quickly attain the important areas of the likelihood surface.
The latter case is desirable after a high amount of the iterations—when the algorithm
already learned the important information—and there is no longer a need for any
significant improvements of the estimated parameters. The values between these two
extreme cases affect the convergence speed and variance of the sequence of iterates
(𝜃[𝑘])𝑅

𝑘=0. For the previously mentioned step size, 𝛼𝑘 = 𝑐𝑘−𝜆, choosing 𝜆 towards
0.5 speeds up the convergence but increases the variance, while setting 𝜆 towards
1 makes the convergence slower but also decreases the variance. The choice of the
step size also influences the ability of this algorithm to escape local stationary points
of the likelihood surface. The fact the SAEM algorithm accumulates the sample
trajectories over the iterations substantially reduces its computational requirements
compared to the basic MCEM approach. Regarding the use of MCMC kernels: As
discussed previously, if a transition kernel were used in the MCEM algorithm, there
would be the need to reach the stationary regime of the produced Markov chain at
each iteration. Here, however, the transition kernel 𝒦𝜃[𝑘−1] generates the Markov
chain over the iterations 𝑘 = 1, . . . , 𝑅. In other words, this does not require the
chain to reach the stationary regime at every single iteration but rather over the
natural course of multiple iterations, which substantially saves the computational
time.

Related Methods

A wide range of various implementations of the SAEM algorithm can be formulated.
The main difference among such methods commonly lies in the way we produce the
sample trajectories from the joint state posterior density in the step B1 of Algorithm
12. A possible approach is to utilize the particle smoothing methods discussed in
the case of the MCEM algorithm in Section 2.7.2. Another way is to design a
particle MCMC smoother producing the sample trajectories from a particle MCMC
kernel which leaves 𝑝𝜃(𝑥1:𝑇 |𝑦1:𝑇 ) invariant. Concretely, one can resort to a particle
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independent Metropolis-Hastings [7] or particle Gibbs with ancestor sampling [130,
132], the latter of which has been demonstrated to provide a remarkably efficient
trade-off between the estimation precision and computational cost.

2.8 Bayesian Parameter Estimation

2.8.1 The Gibbs Sampler

The Gibbs sampler [72] has become a standard tool for addressing the Bayesian
parameter inference problem (2.6) in state-space models [33]. The algorithm can be
categorized as an offline data augmentation strategy, where the posterior density of
the parameters 𝑝(𝜃|𝑦1:𝑇 ) is augmented by the latent state sequence, 𝑝(𝜃|𝑦1:𝑇 , 𝑥1:𝑇 ).
The main motivation for this augmentation is that the latter is often tractable in
the state-space model setting, while the former is not.

Principle

The basic ideas of this approach remain the same as with the generic Gibbs sampler
presented in Section 1.8.1. Here, we briefly comment on specific instances of this
method when dealing with tractable and intractable state-space models. In this con-
text, the sampler targets the joint density of the states and parameters conditioned
on the observed data sequence, 𝑝(𝑥1:𝑇 , 𝜃|𝑦1:𝑇 ). The algorithm alternately samples,
for 𝑘 = 1, . . . , 𝑅, from the conditional factors

Θ[𝑘] ∼ 𝑝(𝜃|𝑥1:𝑇 [𝑘 − 1], 𝑦1:𝑇 ), (2.45a)
𝑋1:𝑇 [𝑘] ∼ 𝑝Θ[𝑘](𝑥1:𝑇 |𝑦1:𝑇 ). (2.45b)

This procedure generates the Markov chain (Θ[𝑘], 𝑋1:𝑇 [𝑘])𝑅
𝑘=1 which—if the assump-

tions of Theorem 1.10 are satisfied—can be used to estimate expectations under the
target density, or, its marginal 𝑝(𝜃|𝑦1:𝑇 ) by simply discarding the state trajectories.

Properties

To sample from the second factor (2.45b), we need to address the previously dis-
cussed joint smoothing problem. A possible way is to sample the states individu-
ally from 𝑝𝜃(𝑥𝑡|𝑥−𝑡, 𝑦1:𝑇 ), where 𝑥−𝑡 := (𝑥1, . . . , 𝑥𝑡−1, 𝑥𝑡+1, . . . , 𝑥𝑇 ), by utilizing the
Metropolis-Hastings algorithm [74]. As mentioned before, such an approach may
suffer from poor mixing when the individual state components are strongly cor-
related. An improved performance can be obtained when sampling the full state
trajectory 𝑋1:𝑇 at once. This strategy may substantially improve mixing properties
of the algorithm. Compared to the Metropolis-Hastings algorithm, the advantage
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lies in that there is no need to design a proposal density with the Gibbs sampler.
Under the assumptions given in [183], the Gibbs sampler converges in the sense of
(also the stronger version of) Theorem 1.10.

Related Methods

The sampling from the second factor (2.45b) can be performed by one of the particle
smoothing methods discussed in Section 2.3.2. However, the most often encountered
case is to use the forward-filter backward-simulator [80]. Concretely, we are required
to first run a forward filtering algorithm and then use its output to run a backward
sampling algorithm. A specific implementation of this strategy differs according to
the character of a state-space model under study. For linear Gaussian state-space
models, the forward filtering algorithm is embodied by the Kalman filter [103], and
the backward transition kernel (2.22) can then be computed under a closed-form
solution. This kernel is then used to produce the sample trajectories [70, 33]. For
nonlinear non-Gaussian state-space models, we proceed by considering severity of
nonlinearities. If the nonlinearities are mild, we can design the forward filtering
procedure by means of the Gaussian filters, such as the previously mentioned un-
scented, cubature, or Gauss-Hermite Kalman filters. The backward transition kernel
is then approximated based on the Gaussian approximation (2.25), see also [190].
In certain situations, closed-form updating formulas associated with the Gaussian
assumed density methods may suffer from numerical problems that are related to
computations of the involved matrix inversions. To address this problem, a numer-
ically robust implementation of the Gibbs sampler can be found in [221]. However,
perhaps a still open question is whether the Gibbs sampler converges when apply-
ing these Gaussian-based approximate techniques. If the nonlinearities are severe,
the forward filtering algorithm is assembled by means of the particle filter, and the
backward transition kernel is approximated by the corresponding sequence of par-
ticle systems (2.28). A recent strategy to address the problem of sampling from
the second factor is to use the particle Gibbs kernel which leaves 𝑝Θ[𝑘](𝑥1:𝑇 |𝑦1:𝑇 )
invariant, resulting in the particle Gibbs sampler, as discussed in Section 1.9.1. The
particle Gibbs sampler converges for any number of particles 𝑁 ≥ 2 and the number
of iterations 𝑅 → ∞ [4].

The often encountered situation is that the complete data likelihood 𝑝𝜃(𝑥1:𝑇 , 𝑦1:𝑇 )
belongs to the exponential family [12]. If we choose the conjugate prior 𝑝(𝜃), then
the first factor (2.45a) admits a closed-form solution and can be computed by means
of finite dimensional sufficient statistics. Otherwise, one can utilize the Metropolis-
Hastings algorithm to produce the Markov chain (Θ[𝑘])𝑅

𝑘=1 which admits the first
factor (2.45a) as its stationary density [74].
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3 A PROJECTION-BASED PARTICLE FILTER
TO ESTIMATE STATIC PARAMETERS
IN CONDITIONALLY CONJUGATE
STATE-SPACE MODELS

Particle filters constitute today a well-established class of techniques for state fil-
tering in non-linear state-space models. However, online estimation of static pa-
rameters under the same framework represents a difficult problem. The solution
can be found to some extent within a category of state-space models allowing us to
perform parameter estimation in an analytically tractable manner, while still con-
sidering non-linearities in data evolution equations. Nevertheless, the well-known
particle path degeneracy problem complicates the computation of the statistics that
are required to estimate the parameters. The present chapter proposes a simple and
efficient method which is experimentally shown to suffer less from this issue.

3.1 Introduction

3.1.1 Context

A state-space model (SSM, [30]) embodies a popular statistical tool for describing
dynamical systems in diverse application areas such as signal processing, economet-
rics, and bioinformatics. This model is especially useful for defining the relation
between observed data, latent (unobserved) data, and unknown static parameters.
The estimation of the states and parameters based on the observations is the pri-
mary task in the aforementioned application areas. A rather general class of state-
space models is formed when they contain a tractable substructure characterizing
the parameters and an intractable substructure describing nonlinear, and possibly
non-Gaussian, data (observed and unobserved). Such models are herein referred
to as the conditionally conjugate SSMs (CCSSMs). Their key feature is that the
tractable substructure facilitates recursive updates of statistics related to the poste-
rior distribution of the parameters, but the intractable substructure requires us to
use approximate inference to make the parameter estimation feasible. This chapter
considers particle filters (PFs, [56]) to perform the approximate inference.

A number of PF-based methods for estimating static parameters in the consid-
ered class of models have been developed in the last years [200, 62, 34]. These algo-
rithms utilize the tractable substructure to compute a set of the posterior statistics
based on the observations and latent state trajectories simulated by a PF. However,
the trajectories are known to suffer from the particle path degeneracy [6], if they are
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constructed in a single forward pass of a PF. This issue also affects the computation
of the posterior statistics, and methods relying on such a principle therefore usually
deliver poor performance.

So far, we have only referred to methods that are most relevant to the algorithm
proposed in the present chapter. For a thorough overview of PF-based parameter
estimation, we refer the reader to a series of recent survey papers [104, 93, 65]. Im-
portantly, there has recently been an increased interest in designing methods based
on particle smoothing [133] or particle Markov chain Monte Carlo [4], which are
efficient in dealing with the degeneracy issue. However, these procedures are offline,
processing repeatedly a fixed batch of data, and since this chapter is concerned with
the online estimation, such algorithms are not of a particular interest herein.

3.1.2 Contributions

The main contribution of the present chapter consists in designing an algorithm
for estimating parameters in the CCSSMs. The proposed approach shares the sim-
ilarities with the aforementioned methods in the sense that it also computes the
posterior statistics. The design of the method includes two ideas. First, we take
advantage of the tractable substructure to integrate out the parameters and thus
utilize the Rao-Blackwellization [36]. Second, based on the Kullback-Leibler di-
vergence (KLD, [123]) principle, we formulate an update-project-update cycle to
compute the posterior statistics. It is shown that the parameter estimation is then
less degenerate.

3.2 Background

3.2.1 Problem Formulation

Let us consider a discrete-time SSM in the form

𝑝𝜃(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = 𝑔𝜃(𝑦𝑡|𝑥𝑡)𝑓𝜃(𝑥𝑡|𝑥𝑡−1), (3.1)

where 𝑥𝑡 ∈ X ⊆ R𝑛𝑥 and 𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 label the state and observation variables,
respectively. The model is characterized by the probability densities 𝑔𝜃(·) and 𝑓𝜃(·),
with 𝜃 ∈ Θ ⊆ R𝑛𝜃 denoting some unknown static parameters. At the initial time
step, the state and parameter variables are distributed according to 𝑥1 ∼ 𝑝𝜃(𝑥1)
and 𝜃 ∼ 𝑝0(𝜃). We restrict ourselves to SSMs that allow us to express (3.1) by the
exponential family (EF, [12]) density

𝑝𝜃(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = exp{⟨𝜂(𝜃), 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)⟩
− 𝜁(𝜃) + log ℎ(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)}, (3.2)

88



Algorithm 13 Particle Filter (PF)
A. Initial step: (𝑡 = 1)

1. Sample 𝑥𝑖
1 ∼ 𝑞1(·).

2. Compute 𝑤𝑖
1 ∝ 𝑊1(𝑥𝑖

1).
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Sample 𝑎𝑖
𝑡 with P(𝑎𝑖

𝑡 = 𝑗) = 𝑤𝑗
𝑡−1.

2. Sample 𝑥𝑖
𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖

𝑡
1:𝑡−1) and set 𝑥𝑖

1:𝑡 := (𝑥𝑖
𝑡, 𝑥

𝑎𝑖
𝑡

1:𝑡−1).
3. Compute 𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑥𝑖
1:𝑡) according to (3.6).

where 𝜂 and 𝜁 are respectively the matrix and scalar-valued functions defined on
Θ, 𝑠𝑡 and ℎ constitute respectively the matrix and scalar-valued functions defined
on X2 × Y, and ⟨·, ·⟩ represents the inner product. The SSM delineated by (3.2)
is herein referred to as the CCSSM. The name follows from the fact that (3.2) is
analytically tractable with respect to the parameters but intractable with respect
to the presumably nonlinear functions 𝑠𝑡 and ℎ. More specifically, the model (3.2)
facilitates analytical computation of the posterior density of the parameters, if we
choose the conjugate prior density according to

𝑝(𝜃|𝜈𝑡−1, 𝑉𝑡−1) = exp{⟨𝜂(𝜃), 𝑉𝑡−1⟩ − 𝜈𝑡−1𝜁(𝜃)
− log ℐ(𝜈𝑡−1, 𝑉𝑡−1)}, (3.3)

where 𝑉𝑡−1 denotes the extended information matrix, 𝜈𝑡−1 labels the number of
degrees of freedom, and ℐ defines the normalizing constant. The posterior density
𝑝(𝜃|𝜈𝑡, 𝑉𝑡) then reproduces the form of (3.3), and its statistics can be updated under
the closed-form formulae

𝑉𝑡 = 𝑉𝑡−1 + 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡), (3.4a)
𝜈𝑡 = 𝜈𝑡−1 + 1. (3.4b)

The model (3.2) is also known as the conditionally conjugate latent process model
[212, 187]. The generic form (3.2) acknowledges standard probability densities such
as Poisson, Gaussian, exponential, etc.

The objective of this chapter is to design an online method for computing the
posterior density 𝑝(𝑥𝑡, 𝜃|𝑦1:𝑡) while assuming (3.2), where 𝑦1:𝑡 := (𝑦1, . . . , 𝑦𝑡). Never-
theless, the nonlinear functions 𝑠𝑡 and ℎ prevent us from computing the posterior
analytically. To resolve this problem, we need to resort to approximate techniques.
For the ability to deal with almost any nonlinear non-Gaussian SSM, we choose PFs
to handle the approximate inference.

3.2.2 Particle Filters

A PF is a sequential Monte Carlo algorithm [56] suitable for sequentially approxi-
mating probability densities of the form 𝑝(𝑥1:𝑡|𝑦1:𝑡). At each time step 𝑡, the method
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produces approximation given by the empirical measure

𝑝𝑁(𝑑𝑥1:𝑡|𝑦1:𝑡) =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝛿𝑥𝑖
1:𝑡

(𝑑𝑥1:𝑡), (3.5)

which is represented by the weighted particle system (𝑥𝑖
1:𝑡, 𝑤

𝑖
𝑡)𝑁

𝑖=1, where 𝑥𝑖
1:𝑡 denotes

a particle trajectory, 𝑤𝑖
𝑡 labels a normalized importance weight which assesses the

significance of the associated trajectory, and 𝛿𝑥 is the Dirac measure located at 𝑥. A
common particle filtering procedure, which is known as the sequential importance
resampling [56], is summarized in Algorithm 13, where all operations are performed
for 𝑖 = 1, . . . , 𝑁 .

The initial step of Algorithm 13 is made of standard importance sampling. Thus,
we first draw the particles from an initial proposal density 𝑞1 in line A1 and then
calculate the normalized importance weights using 𝑊1(𝑥1) := 𝑝(𝑥1, 𝑦1)/𝑞1(𝑥1) in
line A2.

The recursive step of Algorithm 13 is a combination of sequential importance
sampling and resampling. Assume we have the previously generated particle sys-
tem (𝑥𝑖

1:𝑡−1, 𝑤
𝑖
𝑡−1)𝑁

𝑖=1. The recursion starts with the resampling procedure, which is
equivalent to drawing ancestor indices 𝑎𝑡 ∈ (1, . . . , 𝑁) in line B1. The indices are
then applied in the sequential importance sampling approach given by lines B2 and
B3. First, the particles are generated from the proposal density 𝑞𝑡 and used to ex-
tended a previous trajectory to a current one. The indices here determine the parent
trajectory 𝑥1:𝑡−1 for the offspring particle 𝑥𝑡 and offspring trajectory 𝑥1:𝑡. Second,
the normalized importance weights are computed with

𝑊𝑡(𝑥1:𝑡) := 𝑝(𝑦𝑡, 𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1)
𝑞𝑡(𝑥𝑡|𝑥1:𝑡−1)

. (3.6)

After performing the sequence of operations B1-B3, we acquire a newly generated
particle system (𝑥𝑖

1:𝑡, 𝑤
𝑖
𝑡)𝑁

𝑖=1. For a detailed introduction to particle filtering, see [57].

3.2.3 Projection-Based Approximation of Probability
Densities

The projection-based approach for approximating probability densities [107] is use-
ful in situations where we have a complex density 𝑝(𝜃) which needs to be replaced
by a more simple, approximate, one ̂︀𝑝(𝜃). Contrary to the particle filtering, the
projection-based approach is an instance of deterministic approximate inference.
The approximate density ̂︀𝑝(𝜃) is sought as the minimizer of the KLD between the
complex density 𝑝(𝜃) and a feasible density 𝑝(𝜃) ∈ P, that is, we solve the optimiza-
tion problem

̂︀𝑝 := argmin
𝑝∈P

𝑑(𝑝, 𝑝) = argmin
𝑝(𝜃)∈P

∫︁

Θ
𝑝(𝜃) log

(︃
𝑝(𝜃)
𝑝(𝜃)

)︃
𝑑𝜃, (3.7)

90



where P is a designer-selected set of feasible densities.
Let us consider a specific instance of the discussed approach, which will be needed

later on in this chapter. Suppose the density we intend to approximate is given by
the mixture form

𝑝(𝜃) := 𝑝(𝜃|𝜈, 𝑉 ) =
𝑁∑︁

𝑖=1
𝑤𝑖𝑝(𝜃|𝜈𝑖, 𝑉 𝑖),

and the feasible density is chosen as a member of the EF, having the same functional
form as (3.3), 𝑝(𝜃) := 𝑝(𝜃|𝜈, 𝑉 ). If we set the gradient of 𝑑(𝑝, 𝑝) with respect to the
feasible statistics 𝜈 and 𝑉 to zero, we find out that the KLD is minimized by equating
the expectations

E[𝜂(𝜃)|̂︀𝜈, ̂︀𝑉 ] =
𝑁∑︁

𝑖=1
𝑤𝑖E[𝜂(𝜃)|𝜈𝑖, 𝑉 𝑖], (3.8a)

E[𝜁(𝜃)|̂︀𝜈, ̂︀𝑉 ] =
𝑁∑︁

𝑖=1
𝑤𝑖E[𝜁(𝜃)|𝜈𝑖, 𝑉 𝑖]. (3.8b)

The approximate density ̂︀𝑝(𝜃) := 𝑝(𝜃|̂︀𝜈, ̂︀𝑉 ) containing the statistics computed from
the above expectations is the optimal solution of the problem (3.7). In this particular
case of choosing 𝑝(𝜃) as a member of the EF, the approach is also known as the
moment matching [21], a basic principle being at the core of expectation propagation
algorithms [153].

3.3 A Projection-Based Rao-Blackwellized
Particle Filter

The proposed method is based on factorizing the joint posterior density of the states
and parameters according to

𝑝(𝑥1:𝑡, 𝜃|𝑦1:𝑡) = 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡)𝑝(𝑥1:𝑡|𝑦1:𝑡). (3.9)

The factorization (3.9) is advantageous since the considered class of models contains
the algebraic substructure related to the parameters. The substructure allows us
to perform two design steps. First, we integrate out the parameters and apply the
PF framework to approximate only the marginal factor 𝑝(𝑥1:𝑡|𝑦1:𝑡), rather than the
full posterior. Second, we compute the conditional factor 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡) analytically
based on the recursive formulae (3.4) supplied with the observations and samples
produced by the PF. These two steps characterize construction of an RBPF, see
[55, 192, 166] for a different application context. The motivation behind integrating
out a part of latent variables is to design estimators with the variance which is lower
than—or at least the same as—we would obtain without the integration [36].
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The RBPF approximates (3.9) by

𝑝𝑁(𝑑𝑥1:𝑡, 𝜃|𝑦1:𝑡) =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝑝(𝜃|𝜈𝑖
𝑡 , 𝑉

𝑖
𝑡 )𝛿𝑥𝑖

1:𝑡
(𝑑𝑥1:𝑡), (3.10)

which can be obtained by simply inserting (3.5) into (3.9). The algorithmic construc-
tion of the RBPF follows basically the same steps as delineated in Algorithm 13.
The extra steps consist of computing (i) the statistics representing the conditional
factor 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡) := 𝑝(𝜃|𝜈𝑡, 𝑉𝑡) according to

𝑝(𝜃|𝜈𝑖
𝑡 , 𝑉

𝑖
𝑡 ) ∝ 𝑝𝜃(𝑦𝑡, 𝑥

𝑖
𝑡|𝑥

𝑎𝑖
𝑡

𝑡−1)𝑝(𝜃|𝜈𝑎𝑖
𝑡

𝑡−1, 𝑉
𝑎𝑖

𝑡
𝑡−1), (3.11a)

and (ii) the marginal density 𝑝(𝑦𝑡, 𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1) := 𝑝(𝑦𝑡, 𝑥𝑡|𝜈𝑡−1, 𝑉𝑡−1) in the nu-
merator of (3.6),

𝑝(𝑦𝑡, 𝑥
𝑖
𝑡|𝜈

𝑎𝑖
𝑡

𝑡−1,𝑉
𝑎𝑖

𝑡
𝑡−1) =

∫︁

Θ
𝑝𝜃(𝑦𝑡, 𝑥

𝑖
𝑡|𝑥

𝑎𝑖
𝑡

𝑡−1)𝑝(𝜃|𝜈𝑎𝑖
𝑡

𝑡−1,𝑉
𝑎𝑖

𝑡
𝑡−1)𝑑𝜃. (3.11b)

The approximation of 𝑝(𝑥𝑡, 𝜃|𝑦1:𝑡) is then obtained by simply discarding the past
trajectories (𝑥𝑖

1:𝑡−1) in (3.10). Then, the procedure becomes recursive, while the
information from the trajectories will be kept in the finite dimensional sufficient
statistics (𝑉 𝑖

𝑡 ). A number of methods that update the statistics based on (3.11a)
has been proposed [200, 62, 34]. However, as widely discussed in [6, 38, 5], such
methods are known to suffer from the particle path degeneracy [94]. Thus, successful
resampling steps decrease the number of unique particle trajectories in the subset
(𝑥𝑖

1:𝑘) of (𝑥𝑖
1:𝑡) for some 𝑘 < 𝑡. This issue spoils the computation of the statistics,

and the parameter estimates then usually experience high variance over multiple
simulation runs.

The present chapter proposes to counteract this problem by first formulating the
marginal density of (3.10) given by

𝑝𝑁(𝜃|𝑦1:𝑡) =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝑝(𝜃|𝜈𝑖
𝑡 , 𝑉

𝑖
𝑡 ), (3.12)

and then use it in the next time step to replace the prior in (3.11a), thus, using
𝑝𝑁(𝜃|𝑦1:𝑡−1). However, such an approach would lead to an exponentially increasing
number of the components of the mixture density (3.12). Therefore, at each time
step, we find the approximation 𝑝(𝜃|̂︀𝜈𝑡, ̂︀𝑉𝑡) of (3.12) by applying the previously pre-
sented projection-based approach. Consequently, we utilize the approximate density
with the statistics computed from (3.8) to replace the prior, that is,

𝑝(𝜃|𝜈𝑖
𝑡 , 𝑉

𝑖
𝑡 ) ∝ 𝑝𝜃(𝑦𝑡, 𝑥

𝑖
𝑡|𝑥

𝑎𝑖
𝑡

𝑡−1)𝑝(𝜃|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1), (3.13a)

which also implies

𝑝(𝑦𝑡, 𝑥
𝑖
𝑡|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1) =

∫︁

Θ
𝑝𝜃(𝑦𝑡, 𝑥

𝑖
𝑡|𝑥

𝑎𝑖
𝑡

𝑡−1)𝑝(𝜃|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1)𝑑𝜃. (3.13b)
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Algorithm 14 Projection-Based RBPF (PBRBPF)
A. Initial step: (𝑡 = 1)

1. Set ̂︀𝜈0 and ̂︀𝑉0.
2. Sample 𝑥𝑖

1 ∼ 𝑞1(·).
3. Compute 𝑤𝑖

1 ∝ 𝑊1(𝑥𝑖
1).

B. Recursive step: (𝑡 = 2, . . . , 𝑇 )
1. Sample 𝑎𝑖

𝑡 with P(𝑎𝑖
𝑡 = 𝑗) = 𝑤𝑗

𝑡−1.
2. Sample 𝑥𝑖

𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖
𝑡

1:𝑡−1).
3. Compute 𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑥𝑖
1:𝑡) according to (3.6).

C. Common step: (𝑡 ≥ 1)
1. Compute 𝜈𝑖

𝑡 = ̂︀𝜈𝑡−1 + 1 and 𝑉 𝑖
𝑡 = ̂︀𝑉𝑡−1 + 𝑠𝑡(𝑥𝑎𝑖

𝑡
𝑡−1, 𝑥𝑖

𝑡, 𝑦𝑡).
2. Compute ̂︀𝜈𝑡 and ̂︀𝑉𝑡 as the solution of (3.8).

Let us now summarize the proposed method in Algorithm 14, where we use the
convention 𝑠1(𝑥0, 𝑥1, 𝑦1) := 𝑠1(𝑥1, 𝑦1). Specifically, lines C1-C2-C1 define the update-
project-update cycle, which effectively avoids the resampling of the statistics—c.f.
(3.11) and (3.13)—and it is empirically shown that it reduces the variance of the
estimated parameters over multiple simulation runs. Contrary to standard RBPFs,
there is no need to enlarge the particle system (𝑥𝑖

𝑡, 𝑤
𝑖
𝑡) by the set of statistics (𝜈𝑖

𝑡 , 𝑉
𝑖

𝑡 )
as the method only keeps the approximate statistics ̂︀𝜈𝑡 and ̂︀𝑉𝑡 between the iterations,
thus having lower memory requirements.

3.4 Estimating Gaussian Noise Parameters

This section shows how to use the proposed method for estimating parameters of
additive Gaussian noise variables in an SSM given by

⎡
⎣𝑥𝑡

𝑦𝑡

⎤
⎦

⏟  ⏞  
𝜉𝑡

=
⎡
⎣𝑎(𝑥𝑡−1)
𝑏(𝑥𝑡)

⎤
⎦

⏟  ⏞  
Φ(𝑥𝑡−1:𝑡)

+
⎡
⎣𝑣𝑡

𝑤𝑡

⎤
⎦

⏟  ⏞  
𝑒𝑡

, (3.14)

where 𝜉𝑡, Φ(𝑥𝑡−1:𝑡), and 𝑒𝑡 embody vectors composed of the state and observation
variables, nonlinear state transition and observation functions, and state and obser-
vation noise variables, respectively. Furthermore, 𝑒𝑡 is an independent and identi-
cally distributed (IID) Gaussian noise variable 𝑒𝑡

𝐼𝐼𝐷∼ 𝒩 (𝜇,Σ) with the mean vector
𝜇 and covariance matrix Σ. The objective is to estimate 𝜃 = (𝜇,Σ).

The probability density describing the above SSM is expressed by the Gaussian
density in the form

𝑝𝜃(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = 𝒩 (·; Φ(𝑥𝑡−1:𝑡) + 𝜇,Σ), (3.15)

which is a direct consequence of applying the change of variables formula [21] to
the density 𝒩 (𝑒𝑡;𝜇,Σ). The natural choice of the conjugate prior for estimating the
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unknown mean and covariance of a Gaussian density is the Gauss-inverse-Wishart
(GiW) density

𝑝(𝜃|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1) = 𝒩 𝑖𝒲(·; ̂︀𝜈𝑡−1, ̂︀𝑅𝑡−1, ̂︀𝜇𝑡−1, ̂︀Λ𝑡−1). (3.16)

For a later reference (see, Lemma 3.4), we introduce the following lemma, which
determines the functions (𝜂, 𝜁, 𝑠, ℎ) of (3.2) for the specific case (3.15). However,
we do not present the direct relation between the extended information matrix 𝑉

of (3.3) and the statistics (𝑅, 𝜇,Λ) of (3.16) as it would not lead to any conceptual
shift at this moment.

Lemma 3.1. Let us consider the density (3.2) is given by (3.15); then, the functions
(𝜂, 𝜁, 𝑠, ℎ) yield

𝜂(𝜃) =
⎡
⎣ Σ−1 Σ−1𝜇

𝜇⊤Σ−1 𝜇⊤Σ−1𝜇

⎤
⎦ , 𝜁(𝜃) = 1

2 log |Σ|. (3.17a)

𝑠𝑡(𝑥𝑡−1:𝑡, 𝑦𝑡) =
⎡
⎣𝑒𝑡

1

⎤
⎦
⎡
⎣𝑒𝑡

1

⎤
⎦

⊤

, ℎ(𝑥𝑡−1:𝑡, 𝑦𝑡) = (2𝜋)− 𝑛𝑒
2 . (3.17b)

Proof. The results follow from simple rearrangements and the fact that the trace
operator in the exponent of (3.15) is invariant under the cyclic permutations.

To make the elements of Algorithm 14 concrete for the considered problem, we
introduce the following three lemmas that respectively specify the computations
required in lines (A3, B3), C1, and C2.

Lemma 3.2. Let the densities (3.2) and (3.3) be defined by (3.15) and (3.16),
respectively; then, the marginal density (3.13b) becomes the Student’s t density given
by 𝑝(𝑦𝑡, 𝑥𝑡|̂︀𝜈𝑡−1, ̂︀𝑉𝑡−1) = St(𝜉𝑡; �̄�, Λ̄, 𝜈), where

�̄� = Φ(𝑥𝑡−1:𝑡) + ̂︀𝜇𝑡−1, (3.18a)

Λ̄ = 1+̂︀𝑅𝑡−1
̂︀𝜈𝑡−1−𝑛𝑒+1

̂︀Λ𝑡−1, (3.18b)

𝜈 = ̂︀𝜈𝑡−1 − 𝑛𝑒 + 1, (3.18c)

denote the mean value, scale matrix, and number of degrees of freedom, respectively,
and 𝑛𝑒 = 𝑛𝑥 + 𝑛𝑦.

Proof. The result is derived in Lemma A.10.
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Lemma 3.3. Let the densities (3.2) and (3.3) be defined by (3.15) and (3.16),
respectively; then, the posterior density (3.13a) is 𝑝(𝜃|𝜈𝑡, 𝑉𝑡) = 𝒢𝑖𝒲(·; 𝜈𝑡, 𝑅𝑡, 𝜇𝑡,Λ𝑡),
with the statistics being updated as

𝜈𝑡 = ̂︀𝜈𝑡−1 + 1, (3.19a)
𝑅𝑡 = ̂︀𝑅𝑡−1( ̂︀𝑅𝑡−1 + 1)−1, (3.19b)
𝜇𝑡 = ̂︀𝜇𝑡−1 +𝑅𝑡𝜖𝑡, (3.19c)
Λ𝑡 = ̂︀Λ𝑡−1 + 𝜖𝑡𝜖

⊤
𝑡 ( ̂︀𝑅𝑡−1 + 1)−1, (3.19d)

where 𝜖𝑡 = 𝜉𝑡 − Φ(𝑥𝑡−1:𝑡) − ̂︀𝜇𝑡−1.

Proof. For a detailed derivation of these equations, see Lemma A.10.

Lemma 3.4. Assume the components of the mixture density (3.12) are given by
𝑝(𝜃|𝜈𝑡, 𝑉𝑡) = 𝒢𝑖𝒲(·; 𝜈𝑡, 𝑅𝑡, 𝜇𝑡,Λ𝑡); then, the approximate density is 𝑝(𝜃|̂︀𝜈𝑡, ̂︀𝑉𝑡) =
𝒢𝑖𝒲(·; ̂︀𝜈𝑡, ̂︀𝑅𝑡, ̂︀𝜇𝑡, ̂︀Λ𝑡), and its statistics are computed according to

̂︀Λ𝑡 = Ω−1
𝑡 ̂︀𝜈𝑡, (3.20a)

̂︀𝜇𝑡 = Ω−1
𝑡

(︁ 𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝜈
𝑖
𝑡(Λ𝑖

𝑡)−1𝜇𝑖
𝑡

)︁
, (3.20b)

̂︀𝑅𝑡 =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡

(︁
𝑅𝑖

𝑡 + 1
𝑛𝑒

(𝜇𝑖
𝑡 − ̂︀𝜇𝑡)⊤𝜈𝑖

𝑡(Λ𝑖
𝑡)−1(𝜇𝑖

𝑡 − ̂︀𝜇𝑡)
)︁
, (3.20c)

find ̂︀𝜈𝑡 as the solution of log ̂︀𝜈𝑡

2 −
𝑛𝑒∑︁

𝑘=1
Ψ(̂︀𝜈𝑡+1−𝑘

2 ) = Ξ𝑡, (3.20d)

introducing the intermediate quantities

Ω𝑡 =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝜈
𝑖
𝑡(Λ𝑖

𝑡)−1,

Ξ𝑡 =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡

(︁
log |Λ𝑖

𝑡| −
𝑛𝑒∑︁

𝑘=1
Ψ(𝜈𝑖

𝑡+1−𝑘

2 )
)︁

+ log
⃒⃒
⃒Ω𝑡

2

⃒⃒
⃒,

where | · | denotes the matrix determinant, and Ψ(·) is the digamma function.

Proof. To obtain the approximate statistics (3.20), one first needs to derive the
expected values of the unique entries in (3.17a), which yields

E[Σ−1|𝜈, 𝑉 ] = 𝜈Λ̃−1, (3.21a)
E[Σ−1𝜇|𝜈, 𝑉 ] = 𝜈Λ̃−1�̃�, (3.21b)

E[𝜇⊤Σ−1𝜇|𝜈, 𝑉 ] = �̃�𝑛𝑒 + �̃�⊤𝜈Λ̃−1�̃�, (3.21c)

E[log |Σ||𝜈, 𝑉 ] = log |Λ̃| − 𝑛𝑒log 2 −
𝑛𝑒∑︁

𝑘=1
Ψ(𝜈+1−𝑘

2 ). (3.21d)

These expectations are proven in Propositions A.1 and A.2. After substituting (3.21)
for the corresponding terms on the both sides of (3.8), we obtain (3.20).
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The presence of Ψ(·) in (3.20d) prevents us from finding an explicit expression
for computing ̂︀𝜈𝑡. However, since (3.20d) is a convex function of ̂︀𝜈𝑡, the standard
Newton-Raphson (NR) method is sufficient for finding the root. If 𝑣𝑡 and 𝑤𝑡 are
mutually independent, we can choose the prior (3.16) as the product of two GiW
densities with the statistics (𝜈𝑤, 𝑅𝑤, 𝜇𝑤,Λ𝑤) and (𝜈𝑣, 𝑅𝑣, 𝜇𝑣,Λ𝑣). The posterior and
approximate versions of these statistics are then computed in the same way as with
(3.19) and (3.20), respectively. Moreover, (3.11b) factorizes into the product of two
Student’s t densities St(𝑥𝑡; �̄�𝑤, Λ̄𝑤, 𝜈𝑤) and St(𝑦𝑡; �̄�𝑣, Λ̄𝑣, 𝜈𝑣), where the statistics are
also computed as in (3.18). See also [167] for similar computations.

3.5 Experiments and Results

The present section demonstrates the performance of the proposed PBRBPF com-
pared to a number of selected particle-based approaches for the parameter estimation
in non-linear state-space models. We evaluate the estimation precision of the states
and parameters by computing the root-mean-squared error (RMSE) and root-mean-
norm-squared error (RMNSE) according to

RMSE =
(︁

1
𝑇

∑︀𝑇
𝑡=1 (𝑥𝑀

𝑡|𝑡 − 𝑥𝑁
𝑡|𝑡 )2

)︁1/2
, (3.22)

RMNSE =
(︁

1
𝑇

∑︀𝑇
𝑡=1 ||𝜃𝑀

𝑡|𝑡 − 𝜃𝑁
𝑡|𝑡||2

)︁1/2
, (3.23)

with 𝑇 denoting the amount of data samples and || · || labeling the Euclidean norm.
Furthermore, 𝑥𝑁

𝑡|𝑡 and 𝜃𝑁
𝑡|𝑡 are the state and parameter estimates, respectively, ob-

tained by the compared algorithm, and 𝑥𝑀
𝑡|𝑡 and 𝜃𝑀

𝑡|𝑡 are the corresponding ‘ground
truth’ estimates computed by a more precise, offline, estimation method.

We compare the following methods: (i) the Rao-Blackwellized particle filter with
linear computational complexity (RBPF𝑁) [200]; (ii) the Rao-Blackwellized parti-
cle filter with quadratic computational complexity (RBPF𝑁2), also known as the
Rao-Blackwellized marginal particle filter [134]; (iii) the projection-based RBPF
(PBRBPF) proposed in Algorithm 14; (iv) the particle-based EM algorithm with
linear computational complexity (PFEM𝑁), the so-called path-based implementa-
tion [29]; (v) the particle-based EM algorithm with quadratic computational com-
plexity (PFEM𝑁2) [48], the so-called forward-only implementation; (vi) the state
augmentation particle filter with linear computational complexity (SAPF𝑁), known
as the Liu and West filter [136]; and (vii) the state augmentation particle filter with
quadratic computational complexity (SAPF𝑁2), referred to as the nested particle
filter [43].
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3.5.1 Simulation Settings

The methods are compared on the standard benchmark SSM given by

𝑥𝑡 = 0.5𝑥𝑡−1 + 25 𝑥𝑡−1

1 + 𝑥𝑡−1
+ 8 cos(1.2𝑡) + 𝑤𝑡, (3.24)

𝑦𝑡 = 0.05𝑥2
𝑡 + 𝑣𝑡, (3.25)

where the variables 𝑤𝑡
𝐼𝐼𝐷∼ 𝒩 (·;𝜇𝑤, 𝜎

2
𝑤) and 𝑣𝑡

𝐼𝐼𝐷∼ 𝒩 (·;𝜇𝑣, 𝜎
2
𝑣) are assumed to be

mutually independent. We aim to estimate 𝜇𝑤, 𝜎2
𝑤, 𝜇𝑣, and 𝜎2

𝑣 , whose true values
are 1, 2, 1, and 2, respectively. The initial state variable is distributed according
to 𝑥1 ∼ 𝒩 (·; 0, 1). The amount of observations is 𝑇 = 2 · 104, and the number
of particles is 𝑁 = 500. The simulation is repeated 20 times with different ob-
servation sequences. For both noise variables, the initial statistics (𝜈0, 𝑅0, 𝜇0,Λ0)
for the RBPF𝑁 , RBPF𝑁2, and PBRBPF algorithms are uniformly sampled from
the respective intervals ([8, 12], [2, 4], [−2, 2], [15, 25]). The NR procedure of the
PBRBPF method is implemented with 10 iterations. The initial parameter esti-
mates of 𝜃 = (𝜇𝑤, 𝜇𝑣, 𝜎

2
𝑤, 𝜎

2
𝑣) for the PFEM𝑁 , PFEM𝑁2, SAPF𝑁 , and SAPF𝑁2

techniques are uniformly sampled from the respective intervals ([−2, 2], [−2, 2], [0, 4],
[0, 4]). The step size of the PFEM𝑁 and PFEM𝑁2 procedures satisfies 𝑡−0.8. The
parameter estimates of these EM approaches remain unchanged during the first
25 time steps. The SAPF𝑁 and SAPF𝑁2 algorithms are implemented with the
kernel density-based proposal for parameter sampling [136]. All the compared algo-
rithms are implemented in their bootstrap proposal setting (including the SAPF𝑁
algorithm). To compute the reference estimates in (3.22) and (3.23), we apply the
particle Gibbs with ancestor sampling algorithm [132] with 𝑀 = 32 particles and
200 iterations.

3.5.2 Results

The time evolution of the parameter estimates over the independent simulation runs
is displayed in Figs. 3.1-3.3. The results indicate that the proposed PBRBPF al-
gorithm outperforms the RBPF𝑁 method due to its lower bias and variance of the
parameter estimates over the multiple simulation runs. From this observation, we
can state that the proposed approach is less affected by the particle path degen-
eracy problem. The average time required to process all the observations with the
PBRBPF and RBPF𝑁 algorithms was approximately 4.44 and 4.53 seconds, respec-
tively. The PBRBPF algorithm delivers slightly higher variance than the RBPF𝑁2

procedure. Nevertheless, the bias provided by the PBRBPF algorithm is lower than
the one of the RBPF𝑁2 technique. Given the fact that the RBPF𝑁2 approach
is computationally highly demanding, we can expect that a small increase in the

97



number of particles of the PBRBPF method can easily compensate for this slightly
higher variance. The PFEM𝑁 algorithm is more competitive to the PBRBPF ap-
proach, albeit it still provides a higher bias and variance for most of the estimated
parameters. The PFEM𝑁2 algorithm has very similar, and sometimes even lower,
variance than the PBRBPF method. However, the bias provided by the PFEM𝑁2

technique is higher. The bias and variance offered by the SAPF𝑁 and SAPF𝑁2 al-
gorithms is significantly worse compared to the remaining methods. We provide an
explanation for this in the next section. Fig. 3.4 presents the trade-off between the
estimation precision and computational time of the compared algorithms, demon-
strating that the proposed PBRBPF algorithm achieves higher estimation accuracy
compared to the remaining methods.

3.6 Discussion

The RBPF𝑁 approach possesses no strategy for counteracting the particle path de-
generacy problem, expect relaying on suitable forgetting properties of the state-space
model when computing the sufficient statistics. The RBPF𝑁2 method, however, is
completely free of this problem, as it is based on the marginal particle filter-like ap-
proach [116] for computing the statistics associated with the posterior distribution
of the parameters. Nevertheless, this approach still suffers from the error accumula-
tion caused by computing the approximations similar to those presented in Lemma
3.4. The proposed PBRBPF method can be seen as sort of compromise between the
RBPF𝑁 and RBPF𝑁2 procedures.

The PFEM𝑁 and PFEM𝑁2 algorithms can generally be seen as specific instances
of particle-based methods that compute the smoothed additive functionals [30]. The
convergence results presented in [175, 48] demonstrate that the asymptotic bias and
variance of the path-based approximation of the smoothed additive functionals—as
applied in the PFEM𝑁 method—satisfy the linear and quadratic growth with the
iterations 𝑡, respectively. Similarly, it is shown in [48] that the asymptotic bias of the
forward-only approximation of the smoothed additive functionals—as implemented
in the PFEM𝑁2 approach—grows linearly, as in the case of the PFEM𝑁 procedure.
However, the asymptotic variance of the PFEM𝑁2 algorithm grows also only linearly
with 𝑡. See [104] for an empirical study on this matter. Indeed, a closer look at Fig.
3.2 reveals that the bias provided by the PFEM𝑁 and PFEM𝑁2 techniques is very
similar, while the variance of the PFEM𝑁2 algorithm is markedly lower compared to
the PFEM𝑁 counterpart. To the best of the author’s knowledge, theoretical results
of this type for the RBPF𝑁 and RBPF𝑁2 are still missing.

Although the performance of the SAPF𝑁 and SAPF𝑁2 algorithms is unsatisfac-
tory with the given number of particles, their main advantage lies in that they can
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be applied to state-space models without any specific structure. The poor output
of the SAPF𝑁 approach is caused by the well-known problem with the particle de-
pletion. The empirical evidence often indicates that the SAPF𝑁 method can offer
a substantially improved performance when 𝑁 ≫ 𝑇 . This requirement is, however,
inappropriate for purely online scenarios. The SAPF𝑁2 approach utilizes two nested
layers of particle filters: an upper layer for drawing 𝑁 parameter samples, and a
lower layer formed by 𝑁 local particle filters that are computed conditionally on each
parameter sampled in the upper layer. The weights in the upper layer are computed
based on the empirical approximation of the predictive likelihood 𝑝(𝑦𝑡|𝜃, 𝑦1:𝑡−1). In
the present simulation scenario, with the given number of particles, this approx-
imation suffers from a substantial bias and variance, and it therefore makes the
estimation precision of the SAPF𝑁2 approach rather poor.
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Fig. 3.4: The state RMSE (3.22) and the parameter RMNSE (3.23) versus the computa-
tional time (in seconds). The compared algorithm are RBPF𝑁 ( ), PBRBPF ( ),
RBPF𝑁2 ( ), PFEM𝑁 ( ), PFEM𝑁2 ( ), SAPF𝑁 ( ), and SAPF𝑁2 ( ).
The number of particles 𝑁 takes values in (32, 64, 128, 256, 512). The results are averaged
over 20 independent simulation runs, with the solid line being the median.
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4 A PARTICLE FILTER TO ESTIMATE
TIME-VARYING PARAMETERS IN
CONDITIONALLY CONJUGATE
STATE-SPACE MODELS

The identification of slowly-varying parameters in dynamical systems constitutes
a practically important task in a wide range of applications. The present chapter
addresses this problem based on the Bayesian learning and sequential Monte Carlo
(SMC) methodology. The proposed approach utilizes an algebraic structure of a
specific class of nonlinear and non-Gaussian state-space models in order to enable
Rao-Blackwellization of the parameters, thus involving a finite-dimensional sufficient
statistic for each particle trajectory into the resulting algorithm. However, relying
on basic SMC methods, such techniques are known to suffer from the particle path
degeneracy problem. We propose to use alternative stabilized forgetting, which not
only allows us to deal with the slowly-varying parameters but also to counteract the
degeneracy problem. An experimental study proves the efficiency of the introduced
Rao-Blackwellized particle filter compared to some related approaches.

4.1 Introduction

4.1.1 Context

The task of online SMC parameter estimation in non-linear state-space models has
attracted substantial attention in the last years. Considerable effort has been de-
voted to maximum likelihood methods, where the aim is to maximize the likelihood
𝑝𝜃(𝑦1:𝑡) of observed data sequence 𝑦1:𝑡 := (𝑦1, . . . , 𝑦𝑡) with respect to some fixed
parameterization 𝜃. An algorithmic solution in such cases commonly relies on the
computation of expected values of smoothed additive functionals [30], which requires
the complete data likelihood 𝑝𝜃(𝑥1:𝑡, 𝑦1:𝑡) to belong to the exponential family [12],
where 𝑥1:𝑡 denotes an unobserved state sequence. The main stream of research in
this respect includes the gradient ascent [175] and expectation maximization (EM)
methods [28]. However, these SMC-based approaches suffer from the particle path
degeneracy problem [6, 94]. Recently, it was recognized in [48] that the forward
smoothing algorithm can overcome this issue at the cost of 𝒪(𝑁2) operations, where
𝑁 stands for the number of particles. The results of [164] show that the forward
smoothing can actually be performed with 𝒪(𝑁) operations by adapting the accept-
reject backward sampling of [53].
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Bayesian methods interpret unknown parameters as random variables and pro-
vide their full description in terms of the posterior density 𝑝(𝜃|𝑦1:𝑡). From this
perspective, the earliest SMC approaches apply a particle filter to an augmented
state variable �̄�𝑡 = (𝑥𝑡, 𝜃) while considering a constant model of parameter varia-
tions 𝜃𝑡 = 𝜃𝑡−1. Since the model of constant parameter variations lacks any forgetting
properties [30], the diversity of the particle population representing 𝜃 decreases with
successful resampling steps. The problem is commonly treated by introducing a
jittering noise into the model of parameter evolutions [84]. However, a straightfor-
ward application of jittering can make the posterior density 𝑝(𝜃|𝑦1:𝑡) unnecessarily
diffused. This was addressed in [115] by systematically decreasing the noise vari-
ance and later improved by alleviating the artificial variance inflation in [136]. But
the simple addition of a jittering noise with a decreasing variance is not always
efficient, as it may be difficult to guess a compromise between the number of parti-
cles being used and the rate at which the variance should decrease. The advantage
of state augmentation techniques is that they can be applied to models without a
specific structure. Considering a model with parameters respecting some structure
in such a manner that the density 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡) is algebraically tractable, the paper
[200] proposes to integrate out the parameters and to run a particle filter only for
the marginal density 𝑝(𝑥1:𝑡|𝑦1:𝑡). For each particle trajectory, sampled from this
marginal, the density 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡) is evaluated in terms of updating the sufficient
statistics, which then serves for the parameter estimation. However, this online ap-
proach, too, suffers from the particle path degeneracy problem, resulting in a poor
approximation of the posterior 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡). The related paper [167] imposes ex-
ponential forgetting [122] into this algorithm in order to facilitate the estimation of
time-varying parameters and counteract the degenerate behavior.

4.1.2 Contributions

This chapter proposes a sequential Monte Carlo-based algorithm which exploits the
algebraically tractable substructure of a special class of nonlinear state-space models,
here referred to as conditionally conjugate state-space models. A characteristic fea-
ture of these models consists in that they facilitate the computation of 𝑝(𝜃|𝑥1:𝑡, 𝑦1:𝑡)
under a close-form solution. The algorithm is—in its basic structure—similar to the
one proposed in [200] but offers an ability to trace time-varying parameters. How-
ever, compared to the similar work [167], we accomplish this by utilizing a different
forgetting strategy which is known as the alternative stabilized forgetting [108]. We
demonstrate that the proposed algorithm outperforms this previous approach in
terms of estimation accuracy and computational time.
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4.2 Background

4.2.1 Problem Formulation

In this chapter, we are concerned with discrete-time state-space models (SSMs) given
by the joint probability density

𝑝𝜃𝑡(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = 𝑔𝜃𝑡(𝑦𝑡|𝑥𝑡)𝑓𝜃𝑡(𝑥𝑡|𝑥𝑡−1), (4.1)

where 𝑥𝑡 ∈ X ⊆ R𝑛𝑥 and 𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 denote the state and observation variables,
respectively. Furthermore, 𝑔𝜃𝑡 and 𝑓𝜃𝑡 constitute observation and state-transition
models, with 𝜃𝑡 ∈ Θ ⊆ R𝑛𝜃 being some unknown time-varying parameters. The
initial step assumes that the state and parameter variables are distributed as 𝑥1 ∼
𝑝𝜃1(𝑥1) and 𝜃1 ∼ 𝑝(𝜃1). We are particularly interested in a specific class of SSMs
which allows us to express (4.1) by the exponential family [12] density

𝑝𝜃𝑡(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = exp{⟨𝜂(𝜃𝑡), 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)⟩
− 𝜁(𝜃𝑡) + log ℎ(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡)}, (4.2)

where (𝜂, 𝜁) and (𝑠𝑡, ℎ) are functions of appropriate dimensions, defined on Θ and
X2 × Y, respectively, and ⟨·, ·⟩ is the inner product. Due to the fact that (4.2) is
analytically intractable with respect to the nonlinear functions (𝑠𝑡, ℎ) but tractable
with respect to the parameter functions (𝜂, 𝜁), we refer to (4.2) as the conditionally
conjugate state-space model (CCSSM), alternatively known as the conditionally
conjugate latent process model [212, 187]. The key characteristic of (4.2) consists
in that, if we choose the conjugate prior density

𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1) = exp{⟨𝜂(𝜃𝑡), 𝑉𝑡|𝑡−1⟩ − 𝜈𝑡|𝑡−1𝜁(𝜃𝑡)
− log ℐ(𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1)}; (4.3)

then, we can compute the posterior density, 𝑝(𝜃𝑡|𝑥1:𝑡, 𝑦1:𝑡) := 𝑝(𝜃𝑡|𝜈𝑡|𝑡, 𝑉𝑡|𝑡), analyt-
ically. In (4.3), 𝑉𝑡|𝑡−1 is the extended information matrix, 𝜈𝑡|𝑡−1 is the number of
degrees of freedom, and ℐ denotes the normalizing constant. Under this choice, the
posterior density 𝑝(𝜃𝑡|𝜈𝑡|𝑡, 𝑉𝑡|𝑡) reproduces the form of (4.3), with the statistics being
updated according to the closed-form formulae

𝑉𝑡|𝑡 = 𝑉𝑡|𝑡−1 + 𝑠𝑡(𝑥𝑡−1, 𝑥𝑡, 𝑦𝑡), (4.4a)
𝜈𝑡|𝑡 = 𝜈𝑡|𝑡−1 + 1. (4.4b)

Fundamental probability densities, including Poisson, Gaussian, and exponential,
fit into the generic form delineated by (4.2).

The objective of this chapter consists in designing an online algorithm for com-
puting the joint posterior density 𝑝(𝑥𝑡, 𝜃𝑡|𝑦1:𝑡) while assuming the model (4.2). There
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are, however, two main obstacles in achieving this goal: (i) the nonlinear functions
(𝑠𝑡, ℎ) prevent us from computing the joint posterior density analytically, and (ii)
the parameter time-evolution model 𝑝(𝜃𝑡|𝜃𝑡−1) is unknown. To deal with the first
problem, we apply the particle filters, as they constitute a theoretically [217] and
practically [57] well-established tool for approximating highly nonlinear probability
densities. To resolve the second one, we incorporate—for the first time—the con-
cept of alternative stabilized forgetting [108] into the context of particle filter-based
estimation of slowly-varying parameters.

4.2.2 Sequential Monte Carlo Methods

The SMC methodology [47] embodies a versatile approach for approximating a flow
of densities (𝜋𝑡)𝑇

𝑡=1 defined on a sequence of spaces of increasing dimensions (X𝑡)𝑇
𝑡=1.

These densities are assumed to be known only up to the normalization constant,
𝜋𝑡(𝑥1:𝑡) ∝ 𝛾𝑡(𝑥1:𝑡). At the previous time instance, 𝑡 − 1, an SMC algorithm targets
𝜋𝑡−1 by a weighted particle system (𝑥𝑖

1:𝑡−1, 𝑤
𝑖
𝑡−1)𝑁

𝑖=1, where 𝑤𝑖
𝑡−1 is a non-negative im-

portance weight and 𝑥𝑖
1:𝑡−1 is an associated particle trajectory. The weighted particle

system is propagated to time 𝑡 by combining the sequential importance sampling and
resampling techniques. Specifically, when a certain condition is fulfilled (e.g., the
effective sample size [30] is below a specified threshold), resampling is performed
by drawing ancestor indexes as 𝑎𝑖

𝑡 ∼ P(𝑎𝑖
𝑡 = 𝑗) = 𝑤𝑗

𝑡−1. After that, the weights
𝑤1:𝑁

𝑡−1 are set to 1/𝑁 . If the condition is not fulfilled, we assign 𝑎𝑖
𝑡 = 𝑖 and keep

the weights unmodified. Subsequently, based on sampling from a proposal density
𝑥𝑖

𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖
𝑡

1:𝑡−1), the previous particle trajectories are extended, 𝑥𝑖
1:𝑡 := (𝑥𝑖

𝑡, 𝑥
𝑎𝑖

𝑡
1:𝑡−1).

The iteration is completed by updating the importance weights

𝑤𝑖
𝑡 ∝ 𝑊𝑡(𝑥𝑖

1:𝑡)𝑤𝑖
𝑡−1, (4.5)

where
𝑊𝑡(𝑥1:𝑡) := 𝛾𝑡(𝑥1:𝑡)

𝛾𝑡−1(𝑥1:𝑡−1)𝑞𝑡(𝑥𝑡|𝑥1:𝑡−1)
. (4.6)

These operations facilitate the sequential construction of an empirical distribution
approximating 𝜋𝑡, that is,

𝜋𝑁
𝑡 (𝑑𝑥1:𝑡) =

𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝛿𝑥𝑖
1:𝑡

(𝑑𝑥1:𝑡),

where 𝛿𝑥 stands for the Dirac delta measure located at 𝑥. The algorithm starts by
sampling from the initial proposal density 𝑥𝑖

1 ∼ 𝑞1(𝑥1) and calculating the weights
according to 𝑤𝑖

1 ∝ 𝛾1(𝑥𝑖
1)/𝑞1(𝑥𝑖

1). Considering the filtering context, we choose 𝜋𝑡(𝑥1:𝑡)
and 𝛾𝑡(𝑥1:𝑡) to represent the joint state posterior density of the states 𝑝(𝑥1:𝑡|𝑦1:𝑡) and
the complete data density 𝑝(𝑥1:𝑡, 𝑦1:𝑡), respectively. For a more thorough description
of SMC methods, see [56].
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4.2.3 Decision-Making Approximation of Probability
Densities

Let us assume that there exists an exact density 𝑝(𝜃) which is supposed to contain
all available information about our model. The objective consists in finding its
approximation ̂︀𝑝(𝜃). Addressing this task in terms of a statistical decision-making
problem [46], we define parameter space to coincide with the original parameter
space Θ, and also determine decision space as a set of feasible densities P. To assess
a loss incurred by taking a particular decision 𝑝(𝜃) ∈ P, with the value of 𝜃 being
materialized, we introduce a loss function 𝑙(𝜃, 𝑝(𝜃)) : Θ × P → R≥0, representing
a mapping from the product space Θ × P to the set of non-negative reals R≥0.
However, the latent nature of the parameters requires us to integrate over their
possible values and thus introduce the expected loss. The expectation shall be
taken with respect to the exact density E[𝑙(𝜃, 𝑝(𝜃))] =

∫︀
𝑝(𝜃)𝑙(𝜃, 𝑝(𝜃))𝑑𝜃 in order

to be honest in terms of reporting our beliefs. The rationale behind this idea is
that the expected loss should attain its minimum only if the decision stands for the
exact density 𝑝(𝜃) = 𝑝(𝜃). Additionally, we require the loss function to depend on
𝑝(𝜃) only through its realized value 𝑙(𝜃, 𝑝(·)) = 𝑙(𝜃, 𝑝(𝜃)). As demonstrated in [16],
the logarithmic loss 𝑙(𝜃, 𝑝(𝜃)) = − ln 𝑝(𝜃) preserves these properties. The above
construction of the expected loss yields the Kerridge inaccuracy [111],

𝑑𝐾(𝑝, 𝑝) = −E[ln 𝑝(𝜃)] =
∫︁

Θ
𝑝(𝜃) ln 𝑝(𝜃)𝑑𝜃. (4.7)

Our intuition about the exact density is reflected by the expectation that 𝑝(𝜃) can
represent a finite number of user-designed possibilities 𝑝𝑗(𝜃), where 𝑗 = 0, . . . ,𝑀 .
Therefore, considering 𝑝(𝜃) random and taking the expected value of (4.7) over the
law P(𝑝 = 𝑝𝑗) = 𝜆𝑗, we obtain

E[𝑑𝐾(𝑝, 𝑝)] = −
𝑀∑︁

𝑗=0
𝜆𝑗E𝑗[ln 𝑝(𝜃)] = −

𝑀∑︁

𝑗=0
𝜆𝑗

∫︁

Θ
𝑝𝑗(𝜃) ln 𝑝(𝜃)𝑑𝜃. (4.8)

Now, given the above construction, the aim is to minimize the loss (4.8) with
respect to 𝑝. The resulting minimizer ̂︀𝑝 is an approximation computed as a compro-
mise among a number of possible densities 𝑝𝑗. We want to approximate the exact
density 𝑝(𝜃) by a density which belongs to the exponential family, and therefore, we
define 𝑝(𝜃) := 𝑝(𝜃|𝜈, 𝑉 ). Consequently, we need to solve the optimization problem

̂︀𝜈, ̂︀𝑉 ∈ argmin
𝜈,𝑉

𝑑𝐾

(︁ 𝑀∑︁

𝑗=0
𝜆𝑗𝑝𝑗(𝜃), exp{⟨𝜂(𝜃), 𝑉 ⟩ − 𝜈𝜁(𝜃) − ln ℐ(𝜈, 𝑉 )}

)︁
.

A solution for the approximate statistics ̂︀𝜈 and ̂︀𝑉 is obtained, respectively, from the
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formulae

E[𝜂(𝜃)|̂︀𝜈, ̂︀𝑉 ] =
𝑀∑︁

𝑗=0
𝜆𝑗E𝑗[𝜂(𝜃)], (4.9a)

E[𝜁(𝜃)|̂︀𝜈, ̂︀𝑉 ] =
𝑀∑︁

𝑗=0
𝜆𝑗E𝑗[𝜁(𝜃)], (4.9b)

which result from taking the partial derivatives of 𝑑𝐾 with respect to the statistics
(𝜈, 𝑉 ) and equating them to zero. Note the densities 𝑝𝑗 have not yet been specified
into any family.

4.3 A Rao-Blackwellized Particle Filter with
Alternative Stabilized Forgetting

The design of the method is based on factorizing the joint posterior density of the
parameters and states according to

𝑝(𝜃𝑡, 𝑥1:𝑡|𝑦1:𝑡) = 𝑝(𝜃𝑡|𝑥1:𝑡, 𝑦1:𝑡)𝑝(𝑥1:𝑡|𝑦1:𝑡). (4.10)

The above rearrangement is convenient in situations where the parameters of a
state-space model admit algebraically tractable substructures, which is exactly the
case of the model class considered here. The conditional factor 𝑝(𝜃𝑡|𝑥1:𝑡, 𝑦1:𝑡) can
then be evaluated under a closed-form solution. However, due to the presence of the
nonlinear functions in (4.2), the marginal factor 𝑝(𝑥1:𝑡|𝑦1:𝑡) is intractable—possibly
describing a highly non-linear dynamic—and we therefore seek a proper approxi-
mation. The factorization (4.10) is the common setup for a specific class of SMC
methods referred to as Rao-Blackwellized particle filters [55], where we split the
model into algebraically tractable and intractable part.

4.3.1 The Basic Structure

The tractable part—the conditional factor in (4.10)—can simply be computed based
on the law of conditional probability

𝑝(𝜃𝑡|𝜈𝑡|𝑡, 𝑉𝑡|𝑡) ∝ 𝑝𝜃𝑡(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1)𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1), (4.11)

where we apply the definition 𝑝(𝜃𝑡|𝑥1:𝑡, 𝑦1:𝑡) := 𝑝(𝜃𝑡|𝜈𝑡|𝑡, 𝑉𝑡|𝑡) due to our restriction on
the specific model class. Here, ∝ denotes the equality up to proportionality factor
which is given by the joint predictive density of the states and observations,

𝑝(𝑦𝑡, 𝑥𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1) =
∫︁

Θ
𝑝𝜃𝑡(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1)𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1)𝑑𝜃𝑡. (4.12)
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The predictive density of the parameters, containing the unknown parameter time-
evolution model, 𝑝(𝜃𝑡|𝜃𝑡−1), is expressed as

𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1) =
∫︁

Θ
𝑝(𝜃𝑡|𝜃𝑡−1)𝑝(𝜃𝑡−1|𝜈𝑡−1|𝑡−1, 𝑉𝑡−1|𝑡−1)𝑑𝜃𝑡−1. (4.13)

If we choose the state-space model and prior density in (4.11) according to (4.2)
and (4.3), then the computations associated with (4.11) reduce to only updating
the statistics (4.4). The formulae (4.11) and (4.13) are usually referred to as the
data and time step, respectively.

The intractable part—the marginal factor in (4.10)—is approximated by the
SMC framework discussed in the previous section. This only requires us to specify
𝜋𝑡(𝑥1:𝑡) := 𝑝(𝑥1:𝑡|𝑦1:𝑡), from which it follows that 𝛾(𝑥1:𝑡) := 𝑝(𝑥1:𝑡, 𝑦1:𝑡). Then, in the
present context, the weight function (4.6) becomes

𝑊𝑡(𝑥1:𝑡) := 𝑝(𝑦𝑡, 𝑥𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1)
𝑞𝑡(𝑥𝑡|𝑥1:𝑡−1)

, (4.14)

where the marginal density in the numerator is given by (4.12). From (4.14) and
(4.5), we see that the basic flow of the SMC algorithm requires us to compute the
predictive density and involved statistics for 𝑖 = 1, . . . , 𝑁 . These requirements are
the only additional steps to the basic structure of the SMC method presented in
Section 4.2.2. The rest of the operations of this algorithm remains unchanged.

Remark 4.1. In the case of computing the static parameters, we choose 𝑝(𝜃𝑡|𝜃𝑡−1) :=
𝛿𝜃𝑡−1(𝜃𝑡), which simplifies (4.13) to 𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1) = 𝑝(𝜃𝑡|𝜈𝑡−1|𝑡−1, 𝑉𝑡−1|𝑡−1), and
the statistics are then simply constant in the time step, 𝜈𝑡|𝑡−1 = 𝜈𝑡−1|𝑡−1 and 𝑉𝑡|𝑡−1 =
𝑉𝑡−1|𝑡−1. Such an approach coincides with that of [200], which was further elaborated
in [34] and subjected to a recent examination within [38]. The reason for this con-
sists in that standard SMC methods provide a poor approximation of the joint state
posterior density 𝑝(𝑥1:𝑡|𝑦1:𝑡), which is the consequence of the problem known as the
particle path degeneracy [94]. Specifically, successive resampling steps decrease the
diversity of the particle system so that 𝑝(𝑥1:𝑚|𝑦1:𝑡) is—for a large enough difference
𝑛 − 𝑚—approximated by only a single particle [6]. Since the computation of suffi-
cient statistics in the above mentioned approach relies on 𝑝(𝑥1:𝑡|𝑦1:𝑡), the estimates
of 𝜃𝑡 usually experience considerable variance over multiple simulation runs.

4.3.2 Alternative Stabilized Forgetting

In the case of estimating time-varying parameters, the lack of knowledge of the pa-
rameter time-evolution model during the design of estimation techniques is more the
rule than the exception. This fact renders the computation of the predictive density
(4.13) problematic. A pragmatic approach consists in choosing the time-evolution
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model to be the identity kernel 𝑝(𝜃𝑡|𝜃𝑡−1) := 𝛿𝜃𝑡−1(𝜃𝑡), ignoring the slowly-varying
character of the parameters. However, such a choice makes the algorithm insensitive
to the parameter changes. Instead of having the time-evolution model at disposal,
we propose to use alternative stabilized forgetting [108], which addresses the absence
of the model in terms of finding a compromise between possible candidates of the
predictive density (4.13).

In the alternative stabilized forgetting, we have two possible representations of
the predictive density. The first one is based on the time-evolution model of constant
parameters 𝑝(𝜃𝑡|𝜃𝑡−1) := 𝛿𝜃𝑡−1(𝜃𝑡), i.e., it constitutes the posterior density from the
previous time step, 𝑝0(𝜃𝑡) := 𝑝(𝜃𝑡|𝜈𝑡−1|𝑡−1, 𝑉𝑡−1|𝑡−1). The second one embodies the
alternative to the case of constant parameters and represents our knowledge about
their assumed changes, e.g., the worst case scenario. The alternative predictive
density is supposed to be in the exponential family, 𝑝1(𝜃𝑡) := 𝑝(𝜃𝑡|𝜈𝐴, 𝑉𝐴), and can
be either time-variant or invariant. Here, we choose the invariant case for simplicity.
These densities constitute two hypotheses about the exact predictive density. We
assign a probability to each one of these, reflecting our beliefs in the possibility that
they represent the exact predictive density. The probability 𝜆 is associated with the
hypothesis that the parameters do not change and the complementary probability
1 − 𝜆 with the alternative hypothesis. The probability 𝜆 is called the forgetting
factor [122]. Consequently, we have the mixture density

𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1) := 𝜆𝑝(𝜃𝑡|𝜈𝑡−1|𝑡−1, 𝑉𝑡−1|𝑡−1) + (1 − 𝜆)𝑝(𝜃𝑡|𝜈𝐴, 𝑉𝐴). (4.15)

The statistics (𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1) cannot be computed exactly in the case of (4.15). There-
fore, we apply the framework from Section 4.2.3, where we make the choice 𝑝(𝜃𝑡) :=
𝑝(𝜃𝑡|𝜈𝑡|𝑡−1, 𝑉𝑡|𝑡−1), leading to

E[𝜂(𝜃𝑡)|̂︀𝜈𝑖
𝑡|𝑡−1,

̂︀𝑉 𝑖
𝑡|𝑡−1] = 𝜆E[𝜂(𝜃𝑡)|𝜈𝑖

𝑡−1|𝑡−1, 𝑉
𝑖

𝑡−1|𝑡−1] + (1 − 𝜆)E[𝜂(𝜃𝑡)|𝜈𝐴, 𝑉𝐴], (4.16a)
E[𝜁(𝜃𝑡)|̂︀𝜈𝑖

𝑡|𝑡−1,
̂︀𝑉 𝑖

𝑡|𝑡−1] = 𝜆E[𝜁(𝜃𝑡)|𝜈𝑖
𝑡−1|𝑡−1, 𝑉

𝑖
𝑡−1|𝑡−1] + (1 − 𝜆)E[𝜁(𝜃𝑡)|𝜈𝐴, 𝑉𝐴], (4.16b)

thus being a result which follows from (4.9) for𝑀 = 2. The statistics (̂︀𝜈𝑖
𝑡|𝑡−1,

̂︀𝑉 𝑖
𝑡|𝑡−1)—

computed as the solution of (4.16)—can now be used in (4.4) for 𝑖 = 1, . . . , 𝑁 .
The resulting method is summarized in Algorithm 15, where all 𝑖-dependent

operations are performed for 𝑖 = 1, . . . , 𝑁 . Additionally, we use the convention that
𝑠1(𝑥0, 𝑥1, 𝑦1) := 𝑠1(𝑥1, 𝑦1).

Remark 4.2. As discussed in Remark 4.1, choosing the parameter time-evolution
as the identity kernel 𝑝(𝜃𝑡|𝜃𝑡−1) := 𝛿𝜃𝑡−1(𝜃𝑡) makes the resulting algorithmic solution
too sensitive to the particle path degeneracy. An additional benefit in utilizing the
alternative stabilized forgetting consists in that it counteracts the particle path de-
generacy problem, as will be demonstrated in the experimental part of this chapter.
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Algorithm 15 RBPF with Alternative Stabilized Forgetting (RBPFASF)
A. Initial step: (𝑡 = 1)

1. Set (̂︀𝜈𝑖
1|0, ̂︀𝑉 𝑖

1|0, 𝜈𝐴, 𝑉𝐴), and 𝜆.
2. Sample 𝑥𝑖

1 ∼ 𝑞1(·).
3. Compute 𝑤𝑖

1 ∝ 𝑊1(𝑥𝑖
1).

B. Recursive step: (𝑡 = 2, . . . , 𝑇 )
1. If 𝑁eff ≤ 𝑁th, sample 𝑎𝑖

𝑡 with P(𝑎𝑖
𝑡 = 𝑗) = 𝑤𝑗

𝑡−1 and set �̄�𝑖
𝑡−1 = 1/𝑁 .

Else, set 𝑎𝑖
𝑡 = 𝑖 and �̄�𝑖

𝑡−1 = 𝑤𝑖
𝑡−1.

2. Sample 𝑥𝑖
𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖

𝑡
1:𝑡−1).

3. Compute 𝑤𝑖
𝑡 ∝ 𝑊𝑡(𝑥𝑖

1:𝑡)�̄�𝑖
𝑡−1 using (4.14).

C. Common step: (𝑡 ≥ 1)
1. Compute 𝜈𝑖

𝑡|𝑡 = ̂︀𝜈𝑎𝑖
𝑡

𝑡|𝑡−1 + 1 and 𝑉 𝑖
𝑡 = ̂︀𝑉 𝑎𝑖

𝑡

𝑡|𝑡−1 + 𝑠𝑡(𝑥𝑎𝑖
𝑡

𝑡−1, 𝑥𝑖
𝑡, 𝑦𝑡).

2. Use (𝜈𝑖
𝑡|𝑡, 𝑉 𝑖

𝑡|𝑡), (𝜈𝐴, 𝑉𝐴), and 𝜆 in (4.16) to compute (̂︀𝜈𝑖
𝑡+1|𝑡,

̂︀𝑉 𝑖
𝑡+1|𝑡).

The rationale behind this idea is that the alternative stabilized forgetting discounts
the past values in the statistics (𝜈, 𝑉 ) so that their computation is based on a more
recent and more satisfactorily approximated part of 𝑝(𝑥1:𝑡|𝑦1:𝑡). Different forgetting
strategies were adopted, e.g., in [29] and [167], which we discus later on in this
chapter.

4.4 Estimating Time-Varying Gaussian Noise
Parameters

This section specifies the generic structure of Algorithm 15 to the case of estimating
time-varying parameters of a nonlinear state-space model with additive Gaussian
noise variables. The resulting algorithm can therefore be understood as an adaptive
Rao-Blackwellized particle filter. We consider a state-space model given in the form

⎡
⎣𝑥𝑡

𝑦𝑡

⎤
⎦ =

⎡
⎣𝑎(𝑥𝑡−1)
𝑏(𝑥𝑡)

⎤
⎦+

⎡
⎣𝑣𝑡

𝑤𝑡

⎤
⎦ ⇔ 𝜉𝑡 = Φ(𝑥𝑡−1:𝑡) + 𝑒𝑡, (4.17)

where the vectors 𝜉𝑡, Φ(𝑥𝑡−1:𝑡), and 𝑒𝑡 contain the state and observation variables,
nonlinear state-transition and observation functions, and state and observation noise
variables, respectively. The composite noise vector 𝑒𝑡 is a Gaussian, independent and
identically distributed (IID), random variable 𝑒𝑡

𝐼𝐼𝐷∼ 𝒩 (𝜇𝑡,Σ𝑡) with the mean vector
𝜇𝑡 and covariance matrix Σ𝑡. Our aim is to estimate the parameters 𝜃𝑡 = (𝜇𝑡,Σ𝑡).

In the context of model (4.17), the densities (4.2) and (4.3) are given by

𝑝𝜃𝑡(𝑦𝑡, 𝑥𝑡|𝑥𝑡−1) = 𝒩 (·; Φ(𝑥𝑡−1:𝑡) + 𝜇𝑡,Σ𝑡), (4.18)
𝑝(𝜃𝑡|̂︀𝜈𝑡|𝑡−1, ̂︀𝑉𝑡|𝑡−1) = 𝒩 𝑖𝒲(·; ̂︀𝜈𝑡|𝑡−1, ̂︀𝑅𝑡|𝑡−1, ̂︀𝜇𝑡|𝑡−1, ̂︀Λ𝑡|𝑡−1), (4.19)

where—as discussed previously—we use the notation for the approximate statistics
as they replace the original statistics in the step C2 in Algorithm 15. The first
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density results from a direct application of the change of variables formula [21] to
the density of the noise term, 𝒩 (𝑒𝑡;𝜇,Σ). The second density—the Gauss-inverse-
Wishart (GiW) density—is the conjugate prior for the case of estimating the mean
and covariance of the Gaussian density.

To establish the link between (4.18) and (4.2), and to prepare grounds for the
subsequent developments, we present the following lemma. For the relation between
the extended information matrix 𝑉 of (4.3) and the statistics (𝑅, 𝜇,Λ) of (4.19) we
refer the reader to Lemma A.7.

Lemma 4.1. For the CCSSM (4.2) defined by (4.18), the functions (𝜂, 𝜁, 𝑠, ℎ) are
expressed according to

𝜂(𝜃𝑡) =
⎡
⎣ Σ−1

𝑡 Σ−1
𝑡 𝜇𝑡

𝜇⊤
𝑡 Σ−1

𝑡 𝜇⊤
𝑡 Σ−1

𝑡 𝜇𝑡

⎤
⎦ , 𝜁(𝜃𝑡) = 1

2 log |Σ𝑡|. (4.20a)

𝑠𝑡(𝑥𝑡−1:𝑡, 𝑦𝑡) =
⎡
⎣𝑒𝑡

1

⎤
⎦
⎡
⎣𝑒𝑡

1

⎤
⎦

⊤

, ℎ(𝑥𝑡−1:𝑡, 𝑦𝑡) = (2𝜋)− 𝑛𝑒
2 . (4.20b)

Proof. The result can simply be obtained by utilizing the fact that the trace operator
in the exponent of (4.18) is invariant under the cyclic permutations.

The formulae that specify the updating of the statistics in step C1 of Algorithm
15 are presented in the next lemma.

Lemma 4.2. Let the densities (4.2) and (4.3) be given by (4.18) and (4.19), respec-
tively; then, the posterior density (4.11) becomes 𝑝(𝜃𝑡|𝜈𝑡|𝑡, 𝑉𝑡|𝑡) = 𝒢𝑖𝒲(·; 𝜈𝑡|𝑡, 𝑅𝑡|𝑡, 𝜇𝑡|𝑡,

Λ𝑡|𝑡), where the statistics are computed according to

𝜈𝑡|𝑡 = ̂︀𝜈𝑡|𝑡−1 + 1, (4.21a)
𝑅𝑡|𝑡 = ̂︀𝑅𝑡|𝑡−1( ̂︀𝑅𝑡|𝑡−1 + 1)−1, (4.21b)
𝜇𝑡|𝑡 = ̂︀𝜇𝑡|𝑡−1 +𝑅𝑡|𝑡𝜖𝑡, (4.21c)
Λ𝑡|𝑡 = ̂︀Λ𝑡|𝑡−1 + 𝜖𝑡𝜖

⊤
𝑡 ( ̂︀𝑅𝑡|𝑡−1 + 1)−1, (4.21d)

where 𝜖𝑡 = 𝜉𝑡 − Φ(𝑥𝑡−1:𝑡) − ̂︀𝜇𝑡|𝑡−1.

Proof. The formulae are derived in Lemma A.10.

Similarly, the formulae implementing the alternative stabilized forgetting in step
C2 of Algorithm 15 are introduced in the following lemma.

Lemma 4.3. Let us consider the components of the mixture density (4.15) are
defined by

𝑝(𝜃𝑡|𝜈𝑡−1|𝑡−1, 𝑉𝑡−1|𝑡−1) = 𝒢𝑖𝒲(·; 𝜈𝑡−1|𝑡−1, 𝑅𝑡−1|𝑡−1, 𝜇𝑡−1|𝑡−1,Λ𝑡−1|𝑡−1),
𝑝(𝜃𝑡|𝜈𝐴, 𝑉𝐴) = 𝒢𝑖𝒲(·; 𝜈𝐴, 𝑅𝐴, 𝜇𝐴,Λ𝐴);
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then, the alternative stabilized forgetting at the current time step is performed by
computing the approximate statistics (̂︀𝜈, ̂︀𝑉 ) based on (4.16), which results in

̂︀Λ = Ω−1̂︀𝜈, (4.22a)
̂︀𝜇 = Ω−1

(︁
𝜆𝜈Λ−1𝜇+ (1 − 𝜆)𝜈𝐴Λ−1

𝐴 𝜇𝐴

)︁
, (4.22b)

̂︀𝑅 = 𝜆
(︁
𝑅𝐴 + 1

𝑛𝑒
(𝜇𝐴 − ̂︀𝜇)⊤𝜈𝐴Λ−1

𝐴 (𝜇𝐴 − ̂︀𝜇)
)︁

+ (1 − 𝜆)
(︁
𝑅 + 1

𝑛𝑒
(𝜇− ̂︀𝜇)⊤𝜈Λ−1(𝜇− ̂︀𝜇)

)︁
, (4.22c)

find ̂︀𝜈 as the solution of log ̂︀𝜈2 −
𝑛𝑒∑︁

𝑘=1
Ψ(̂︀𝜈+1−𝑘

2 ) = Ξ, (4.22d)

where we define the quantities

Ω = 𝜆𝜈Λ−1 + (1 − 𝜆)𝜈𝐴Λ−1
𝐴 ,

Ξ = 𝜆
(︁

log |Λ| −
𝑛𝑒∑︁

𝑘=1
Ψ(𝜈+1−𝑘

2 )
)︁

+ (1 − 𝜆)
(︁

log |Λ𝐴| −
𝑛𝑒∑︁

𝑘=1
Ψ(𝜈𝐴+1−𝑘

2 )
)︁

+ log
⃒⃒
⃒Ω2
⃒⃒
⃒,

with | · | and Ψ(·) denoting the matrix determinant and the digamma function, re-
spectively. Moreover, 𝑛𝑒 = 𝑛𝑥 + 𝑛𝑦.

Proof. The approximate statistics (4.22) are derived based on evaluating the ex-
pected values of the unique entries in (4.20a) given by

E[Σ−1|𝜈, 𝑉 ] = 𝜈Λ̃−1, (4.23a)
E[Σ−1𝜇|𝜈, 𝑉 ] = 𝜈Λ̃−1�̃�, (4.23b)

E[𝜇⊤Σ−1𝜇|𝜈, 𝑉 ] = �̃�𝑛𝑒 + �̃�⊤𝜈Λ̃−1�̃�, (4.23c)

E[log |Σ||𝜈, 𝑉 ] = log |Λ̃| − 𝑛𝑒log 2 −
𝑛𝑒∑︁

𝑘=1
Ψ(𝜈+1−𝑘

2 ). (4.23d)

The proof of the expected values (4.23) can be found in Propositions A.1 and A.2. If
we plug (4.23) for the corresponding elements on the both sides of (4.16), the result
(4.22) follows.

The presence of Ψ in (4.22d) prevents us from finding an explicit expression for
computing ̂︀𝜈𝑡|𝑡−1. However, it turns out that approximating (4.22d) based on the
first three terms of the Taylor series expansion of Ψ is sufficient [45], that is,

̂︀𝜈𝑡|𝑡−1 ≈
(︁
1 +

√︁
1 + 4/3Ξ

)︁⧸︁
2Ξ.

In the final lemma, we present the specific form of the predictive density (4.12),
which is utilized for computing the weights in the steps A3 and B3 in Algorithm 15.
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Lemma 4.4. If we define the densities (4.2) and (4.3) by (4.18) and (4.19), re-
spectively; then, the marginal density (4.12) becomes the Student’s t density given
by 𝑝(𝑦𝑡, 𝑥𝑡|̂︀𝜈𝑡|𝑡−1, ̂︀𝑉𝑡|𝑡−1) = St(𝜉𝑡; �̄�, Λ̄, 𝜈), where

�̄� = Φ(𝑥𝑡−1:𝑡) + ̂︀𝜇𝑡|𝑡−1, (4.24a)

Λ̄ = 1+̂︀𝑅𝑡|𝑡−1
̂︀𝜈𝑡|𝑡−1−𝑛𝑒+1

̂︀Λ𝑡|𝑡−1, (4.24b)

𝜈 = ̂︀𝜈𝑡|𝑡−1 − 𝑛𝑒 + 1, (4.24c)

denote an intermediate mean value, scale matrix, and number of degrees of freedom,
respectively.

Proof. The proof of this result is presented in Lemma A.10.

The resulting estimates can be obtained by taking the expected values of 𝜇𝑡 and
Σ𝑡 with respect to 𝑝𝑁(𝜃𝑡|𝑦1:𝑡) = ∑︀𝑁

𝑖=1 𝑤
𝑖
𝑡𝑝(𝜃𝑡|𝜈𝑖

𝑡|𝑡, 𝑉
𝑖

𝑡|𝑡), which gives

E𝑁 [𝜇𝑡|𝑦1:𝑡] =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝜇
𝑖
𝑡|𝑡,

E𝑁 [Σ𝑡|𝑦1:𝑡] =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡

Λ𝑖
𝑡|𝑡

𝜈𝑖
𝑡|𝑡 −𝑚𝑒 − 1 ,

where the necessary expectations are presented in Propositions A.1 and A.2.
The special case of the above framework consists in the mutual independence of

the noise variables 𝑣𝑡 and 𝑤𝑡. In such situations, it is convenient to choose the prior
(4.19) as the product of two GiW densities with the statistics (𝜈𝑤, 𝑅𝑤, 𝜇𝑤,Λ𝑤) and
(𝜈𝑣, 𝑅𝑣, 𝜇𝑣,Λ𝑣), both being computed separately according to (4.21) for the updat-
ing and (4.22) for the forgetting step. Another consequence of this independence
assumption consists in that (4.12) factorizes into the product of two Student’s t
densities St(𝑥𝑡; �̄�𝑤, Λ̄𝑤, 𝜈𝑤) and St(𝑦𝑡; �̄�𝑣, Λ̄𝑣, 𝜈𝑣), with the associated computations
being handled with (4.24). Similar formulae were used in, e.g., [167].

4.5 Experiments and Results

This section illustrates the behavior of the proposed method compared to a number
of selected techniques for the parameter estimation in non-linear state-space models.
In a simulation scenario based on synthetic data, we compare the algorithms in terms
of the estimation precision and computational complexity. We restrict ourselves to
the case of scalar-valued state and observation variables. To assess the estimation
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precision of the states and parameters, we compute, respectively, the root-mean-
squared error (RMSE) and root-mean-norm-squared error (RMNSE) according to

RMSE =
(︁

1
𝑇

∑︀𝑇
𝑡=1 (𝑥𝑡 − 𝑥𝑁

𝑡|𝑡 )2
)︁1/2

, (4.25)

RMNSE =
(︁

1
𝑇

∑︀𝑇
𝑡=1 ||𝜃𝑡 − 𝜃𝑁

𝑡|𝑡||2
)︁1/2

, (4.26)

where 𝑇 stands for the amount of data samples, and ||·|| denotes the Euclidean norm.
The computational complexity is evaluated as the average time needed to process
all observations. We compare the following algorithms: the particle filter combined
with the expectation maximization algorithm (PFEM) [28], the Rao-Blackwellized
particle filter for static parameter estimation (RBPF) [200], the RBPF with ex-
ponential forgetting (RBPFEF) [167], and the RBPF with alternative stabilized
forgetting (RBPFASF) proposed in Algorithm 15.

4.5.1 Simulation Settings

We generate 𝑇 = 4000 observations from the univariate non-stationary growth
model, which is commonly used to benchmark various state and parameter esti-
mation techniques,

𝑥𝑡 = 𝑥𝑡−1

2 + 25𝑥𝑡−1

1 + 𝑥2
𝑡−1

+ 8 cos(1.2𝑡) + 𝑤𝑡,

𝑦𝑡 = 𝑥2
𝑡

20 + 𝑣𝑡,

where 𝑤𝑡
𝐼𝐼𝐷∼ 𝒩 (·;𝜇𝑤, 𝜎

2
𝑤) and 𝑣𝑡

𝐼𝐼𝐷∼ 𝒩 (·;𝜇𝑣, 𝜎
2
𝑣) are mutually independent Gaussian

noise variables. The initial value of the state variable is distributed as 𝑥1 ∼ 𝒩 (0, 1).
To be comparative, we follow the pattern of parameter changes outlined in [167];
thus, we have 𝜇𝑤,1 = 1, Σ𝑤,1 = 2, 𝜇𝑣,1 = 3, Σ𝑣,1 = 4, and 𝜇𝑤,4000 = 2, Σ𝑤,4000 = 4,
𝜇𝑣,4000 = 1, Σ𝑣,4000 = 7 for the initial and final steps, respectively. The changes
are executed between the times 1500 and 2500, see Fig. 4.1. The initial statis-
tics (𝜈𝑤,1|0, 𝑅𝑤,1|0, 𝜇𝑤,1|0,Λ𝑤,1|0) and (𝜈𝑣,1|0, 𝑅𝑣,1|0, 𝜇𝑣,1|0,Λ𝑣,1|0) are set according to
(5, 0.2, 3, 9) and (5, 0.2, 1, 27), respectively, which holds for the RBPF, RBPFEF, and
RBPFASF. Specifically, for the RBPFASF, the statistics of the alternative hypothe-
sis about the parameter evolution (𝜈𝑤,𝐴, 𝑅𝑤,𝐴, 𝜇𝑤,𝐴,Λ𝑤,𝐴) and (𝜈𝑣,𝐴, 𝑅𝑣,𝐴, 𝜇𝑣,𝐴,Λ𝑣,𝐴)
are given by (5, 0.1, 0, 50) and (5, 0.1, 0, 30). Furthermore, the forgetting factors
of the RBPFEF and RBPFASF are respectively set to 𝜆 = 0.98 and 𝜆 = 0.9998.
Concerning the PFEM algorithm, the initial parameter estimates are defined by
̂︀𝜃1 = (̂︀𝜇𝑤,1, ̂︀𝜇𝑣,1, ̂︀𝜎2

𝑤,1, ̂︀𝜎2
𝑣,1) = (3, 1, 3, 9), the step size satisfies 𝑡−0.6, and the param-

eter estimates are not altered during processing of the first 25 observations. The
resampling is triggered whenever the effective sample size drops below the threshold
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Fig. 4.1: The parameter estimates against the number of observations. The compared
methods are PFEM ( ) [28], RBPF ( ) [200], RBPFEF ( ) [167], and RBPFASF
( ) Algorithm 15. The number of particles is 𝑁 = 512. The results are averaged over
50 independent simulation runs, with the solid line being the median and the shaded area
delineating the interquartile range. The true parameter values are indicated with the
dashed line ( ).

𝑁th = 𝑁/3. Finally, all methods are implemented in their corresponding bootstrap
proposal setting.

4.5.2 Results

The resulting parameter estimates versus the number of observations are depicted
in Fig. 4.1. The PFEM algorithm exhibits relatively good performance in terms of
learning the static parameters; unfortunately, after the parameters start to change,
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Fig. 4.2: The state RMSE (4.25) and the parameter RMNSE (4.26) versus the compu-
tational time (in seconds). The compared methods are PFEM ( ) [28], RBPF ( )
[200], RBPFEF ( ) [167], and RBPFASF ( ) Algorithm 15. The number of parti-
cles 𝑁 takes values in (32, 64, 128, 256, 512, 1024, 2048). The results are averaged over 50
independent simulation runs, with the solid line being the median and the shaded area
delineating the interquartile range.

we can observe that the adaptability of this methods is rather poor. A similar finding
holds also for the RBPF, albeit the parameter estimates are obviously more biased.
The RBPFEF offers better capability of tracking the changes. This is, however,
achieved at the cost of higher variance of the estimated values. In addition, the
estimates of 𝜎2

𝑣 are considerably more biased. The proposed RBPFASF performs
more favorably, mostly providing estimates with lower bias and variance compared
to the other algorithms.

The state RMSE indicator (4.25) versus the computational time in seconds—
for different settings of the number of particles 𝑁—is presented in the left part of
Fig. 4.2. The RBPFEF and RBPFASF algorithms perform very similarly, with the
RBPFASF method being slightly better for low 𝑁 . Although the PFEM algorithm
is computationally more efficient, its RMSE does not approach the level attained by
the RBPFEF and RBPFASF procedures (in the average behavior). In other words,
this algorithm also does not improve any further for 𝑁 > 512, which is caused by
its lower ability to adapt the parameter changes. The RBPF method is significantly
worse compared to the other algorithms. The reason for this consists in that this
approach is not equipped with any ability to trace the parameter variations.

The parameter RMNSE indicator (4.26) versus the computational time is demon-
strated in the right part of 4.2. The proposed RBPFASF algorithm is computation-
ally more expensive at each 𝑁 . However, we can observe that the RMNSE of the
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proposed method with 𝑁 = 128 safely outperforms the other algorithms that run
even with 𝑁 = 2048. Thus, the proposed method surpasses the other procedures
by almost one order of magnitude lower computational time. In other words, this
observation reveals that the proposed RBPFASF approach is significantly more effi-
cient in terms of the computational resources. Moreover, while the other algorithms
improve their performance only slightly when increasing 𝑁 , the proposed approach
still improves the parameter estimation precision as 𝑁 grows. Although the PFEM
algorithm converges rather nicely as the number of particles increases, we must note
that this favorable output of the PFEM algorithm is mainly caused by the fact that
this method does not alter the parameter estimates for the first 25 steps, which
provides an advantage when evaluating (4.26). The RBPF provides poor estimation
accuracy, which is—as mentioned before—caused by the fact that this algorithm
does not posses any ability to deal with the parameter variations. There is also
another reason for this, which we discuss next.

4.6 Discussion

We can observe from the first 1500 steps in Fig. 4.1 that the basic RBPF converges
to wrong values over multiple simulation runs. This behavior is explained by the
particle path degeneracy problem. However, the RBPFEF and the proposed RBP-
FASF are significantly more robust in this respect, as can be seen from the lower bias
of the resulting estimates. This is caused by the presence of the forgetting strate-
gies in these algorithms, which allows us to deal with the time-varying character
of the parameters and also to suppress—to a certain degree—the path degeneracy
problem, as discussed in Remarks 4.1 and 4.2.

The RBPFEF procedure influences its forgetting properties by only tuning the
forgetting factor 𝜆. The proposed RBPFASF algorithm, on the other hand, is more
versatile in this respect. Specifically, it enables us to tune the amount of forgotten
information for each of the estimated parameters by setting the statistics of the alter-
native density. However, this makes the RBPFASF approach more difficult to tune.

Note that the PFEM algorithm is not made to deal with the parameter changes,
and we include it exclusively to determine how much impact it can have when we
use such an algorithm and the parameters undergo slow changes. This method,
similarly to those derived from it [48, 164], also relies on an imposed type of forget-
ting. The formula for computing the smoothed additive functional in this approach
contains the step size 𝑡−𝛼, which can be seen as a time-varying forgetting factor.
For the relation between the step size of the PFEM algorithm (or its variant [48])
and the forgetting factor of the RBPFEF procedure, see [198]. The functionality of
this step-size-based forgetting strategy differs from that characterizing the approach
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developed in this chapter. The value 𝑡−𝛼 progressively discounts the current suf-
ficient statistics 𝑠𝑡(𝑥𝑡−1:𝑡, 𝑦𝑡) of the state-space model (4.2), while the complement
1 − 𝑡−𝛼 prefers the past values accumulated in 𝑉𝑡|𝑡−1. Naturally, such a mechanism
can be efficient in learning static parameters. Nevertheless, poor adaptability has
to be expected if parameter variations arrive too late.
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5 RAO-BLACKWELLIZED PARTICLE GIBBS
KERNELS FOR SMOOTHING IN JUMP
MARKOV NONLINEAR MODELS

Jump Markov nonlinear models (JMNMs) characterize a dynamical system by a
finite number of presumably nonlinear and possibly non-Gaussian state-space con-
figurations that switch according to a discrete-valued hidden Markov process. In this
context, the smoothing problem—the task of estimating fixed points or sequences
of hidden variables given all available data—is of key relevance to many objectives
of statistical inference, including the estimation of static parameters. The present
chapter proposes a particle Gibbs with ancestor sampling (PGAS)-based smoother
for JMNMs. The design methodology relies on integrating out the discrete process
in order to increase the efficiency through Rao-Blackwellization. The experimental
evaluation illustrates that the proposed method achieves higher estimation accuracy
in less computational time compared to the original PGAS procedure.

5.1 Introduction

5.1.1 Context

Particle Markov chain Monte Carlo (PMCMC) methods [4] have recently emerged as
an efficient tool to perform statistical inference in general state-space models (SSMs,
[30]). These algorithms apply sequential Monte Carlo (SMC, [56]) to tackle the
issue of constructing high-dimensional proposal kernels in MCMC [3]. This makes
them particularly well suited for addressing the smoothing problem in jump Markov
nonlinear models (JMNMs). The particle Gibbs with ancestor sampling (PGAS)
kernel [132], which can be seen as a PMCMC smoother, has proved to be a serious
competitor to the prominent SMC-based smoothing strategies such as the backward
simulator [80] and generalized SMC two-filter smoother [25]. For a thorough review
of existing SMC-based smoothers, see [133] and references therein.

The development in this chapter is motivated by the recent progress in construct-
ing PG kernels specifically tailored for jump Markov linear models (JMLMs) [218,
202]. The methods therein exploit the linear Gaussian substructure of the model to
increase their efficiency through Rao-Blackwellization. This is achieved by using the
Kalman filter (KF) to design the conditional variants of either the discrete particle
filter [64] or Rao-Blackwellized particle filter (RBPF, [55]). A common aspect of
these PG methods lies in that the backward information filter (BIF, [148]) is used
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to further increase the effect of Rao-Blackwellization and to improve the mixing
properties [3] via ancestor sampling or backward simulation.

5.1.2 Contributions

The problem with JMNMs is that their nonlinear character prevents us from ap-
plying Rao-Blackwellization in the same sense as with JMLMs; nevertheless, there
is still a tractable substructure to exploit. The present chapter is concerned with
the design of a Rao-Blackwellized PGAS (RBPGAS) kernel that takes advantage of
the hierarchical structure formed by the discrete latent process. The method builds
on the RBPF proposed in [166], which is similar to that introduced in [55] except
it replaces the above-discussed KF with a finite state-space filter; conversely, the
particle filter (PF) focuses on the remaining (continuous-valued) part of the latent
process. However, the design of a finite state-space BIF turns out to be more intri-
cate in this context as it requires us to introduce a sequence of artificial probability
distributions to change the scale of the associated backward recursion.

5.2 Background

5.2.1 Jump Markov Nonlinear Models

The generic form of the discrete-time JMNM considered in the present chapter is
defined by

𝑐𝑡|𝑐𝑡−1 ∼ 𝑝(𝑐𝑡|𝑐𝑡−1), (5.1a)
𝑧𝑡|𝑐𝑡, 𝑧𝑡−1 ∼ 𝑓(𝑧𝑡|𝑐𝑡, 𝑧𝑡−1), (5.1b)
𝑦𝑡|𝑐𝑡, 𝑧𝑡 ∼ 𝑔(𝑦𝑡|𝑐𝑡, 𝑧𝑡), (5.1c)

where the states and measurements are denoted by 𝑧𝑡 ∈ Z ⊆ R𝑛𝑧 and 𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 ,
respectively. The activity of the current regime of the model is indicated by the
discrete mode variable 𝑐𝑡 ∈ C := {1, . . . , 𝐾}. We assume to have access only to the
measurements 𝑦𝑡, while the state 𝑧𝑡 and mode 𝑐𝑡 variables are considered hidden.
Furthermore, for all 𝑐𝑡 ∈ C, the model is characterized by its state transition and
observation probability densities 𝑓(·) and 𝑔(·), respectively. The switching between
the modes is governed by the conditional probability distribution 𝑝(·). At the initial
time step, the hidden variables are distributed according to 𝑧1 ∼ 𝜇(𝑧1|𝑐1) and 𝑐1 ∼
𝑝(𝑐1). For a graphical representation of a JMNM, see Fig. 5.1.
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𝑦𝑡−1 𝑦𝑡 𝑦𝑡+1

Fig. 5.1: Graphical model of a jump Markov nonlinear model.

5.2.2 Problem Formulation

Let 𝑥1:𝑇 := (𝑥1, . . . , 𝑥𝑇 ) denote a generic sequence of variables defined on some
product space X𝑇 , for an integer 𝑇 > 0 denoting the final time point. The aim of
this study is to design an efficient PMCMC smoother targeting the joint smoothing
density given by

𝑝(𝑐1:𝑇 , 𝑧1:𝑇 |𝑦1:𝑇 ) = 𝑝(𝑐1:𝑇 , 𝑧1:𝑇 , 𝑦1:𝑇 )
𝑝(𝑦1:𝑇 ) . (5.2)

However, the density (5.2) is intractable even in situations where (5.1b) and (5.1c)
are linear and Gaussian. The reason consists in that the marginal likelihood 𝑝(𝑦1:𝑇 )
contains summation over 𝐾𝑇 values, which is always impossible to compute exactly,
except for small data sets. Despite this, we consider (5.1b) and (5.1c) nonlinear and
non-Gaussian, making the situation even more difficult as the integral over Z𝑇 in
the marginal likelihood 𝑝(𝑦1:𝑇 ) cannot be evaluated either.

5.2.3 Sequential Monte Carlo

SMC [56] refers to a general class of algorithms suitable for approximating a sequence
of (intractable) target densities {𝜋𝑡(𝑥1:𝑡)}𝑇

𝑡=1. We consider each of these densities
to be defined on a product space X𝑡 and to have the form

𝜋𝑡(𝑥1:𝑡) = 𝛾𝑡(𝑥1:𝑡)/𝑍𝑡, (5.3)

where 𝛾𝑡(𝑥1:𝑡) and 𝑍𝑡 =
∫︀
𝛾𝑡(𝑥1:𝑡)𝑑𝑥1:𝑡 most often constitute the complete data like-

lihood and the marginal likelihood, respectively, with 𝑍𝑡 > 0 for all 𝑡 = 1, . . . , 𝑇 .
The SMC approximation embodies an empirical measure represented by

�̂�𝑡(𝑑𝑥1:𝑡) =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝛿𝑥𝑖
1:𝑡

(𝑑𝑥1:𝑡), (5.4)

which is completely specified by the weighted particle system {𝑥𝑖
1:𝑡, 𝑤

𝑖
𝑡}𝑁

𝑖=1. Here,
the samples {𝑥𝑖

1:𝑡}𝑁
𝑖=1 are termed particle trajectories and represent a hypothetical
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evolution of the true trajectory 𝑥1:𝑡, while the weights {𝑤𝑖
𝑡}𝑁

𝑖=1 assess the contribution
of the corresponding particle trajectories to the resulting approximation.

SMC methods are based on the repetitive use of sequential importance sampling
and resampling in order to propagate (5.4) in time. Let us assume we have the
previously generated particle system {𝑥𝑖

1:𝑡−1, 𝑤
𝑖
𝑡−1}𝑁

𝑖=1. The recursive step of an SMC
method begins with resampling. This procedure consists of sampling a set of ancestor
indices {𝑎𝑖

𝑡}𝑁
𝑖=1 from

P(𝑎𝑖
𝑡 = 𝑗) = 𝑤𝑗

𝑡−1, 𝑗 = 1, . . . , 𝑁. (5.5)

The indices are then applied in the sequential importance sampling approach. This
proceeds by first drawing the particles {𝑥𝑖

𝑡}𝑁
𝑖=1 from the proposal density as

𝑥𝑖
𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖

𝑡
1:𝑡−1), (5.6)

where the index 𝑎𝑖
𝑡 is used to assign the parent trajectory to the offspring particle 𝑥𝑖

𝑡.
The set of ancestors {𝑎𝑖

1:𝑡}𝑁
𝑖=1 thus serves for tracing the genealogy of the particles.

Subsequently, we extend the previous trajectories according to

𝑥𝑖
1:𝑡 := {𝑥𝑎𝑖

𝑡
1:𝑡−1, 𝑥

𝑖
𝑡}. (5.7)

The recursive step is concluded by computing the normalized importance weights
𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑥𝑖
1:𝑡) for 𝑖 = 1, . . . , 𝑁 , where the unnormalized weight function is defined

by
𝑊𝑡(𝑥1:𝑡) := 𝛾𝑡(𝑥1:𝑡)

𝛾𝑡−1(𝑥1:𝑡−1)𝑞𝑡(𝑥𝑡|𝑥1:𝑡−1)
. (5.8)

The initial step applies the standard importance sampling, that is, we first draw
the particles {𝑥𝑖

1}𝑁
𝑖=1 from the initial proposal density 𝑥𝑖

1 ∼ 𝑞1(·), and then cal-
culate the importance weights 𝑤𝑖

1 ∝ 𝑊1(𝑥𝑖
1) for 𝑖 = 1, . . . , 𝑁 , where 𝑊1(𝑥1) =

𝛾1(𝑥1)/𝑞1(𝑥1).

5.2.4 Particle Markov Chain Monte Carlo Smoothing

MCMC [3] constitutes a family of methods appropriate for approximating a target
density 𝜋(𝑥) defined on some space X. The idea underlying MCMC is to simulate a
Markov chain {𝑥[𝑘]}𝑅

𝑘=1 according to

𝑥[𝑘] ∼ 𝒦(·|𝑥[𝑘 − 1]),

where 𝒦 is a Markov transition kernel on X, and 𝑅 denotes the number of MCMC
iterations. The chain is initialized by sampling from an initial density 𝑥[1] ∼ 𝜈(𝑥). If
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the kernel 𝒦 is ergodic and admits the target density 𝜋(𝑥) as its stationary density,
then the chain {𝑥[𝑘]}𝑅

𝑘=1 can be used to approximate expectations in the sense

1
𝑅

𝑅∑︁

𝑘=1
𝜙(𝑥[𝑘]) 𝑎.𝑠.−−→ E𝜋 [𝜙(𝑥)] (5.9)

for 𝑅 → ∞, where 𝑎.𝑠.−−→ labels almost sure convergence, 𝜙 is a suitable function on
X, and E𝜋 [𝜙(𝑥)] is the expected value with respect to 𝜋(𝑥).

An MCMC smoother respects these ideas with the only difference being that the
target density 𝜋 is defined on X𝑇 . However, it is mostly difficult to efficiently sample
from the kernel 𝒦 when the dimension 𝑇 is large. This issue is addressed here on the
basis of a specific PMCMC method known as the PG [4]. The procedure relies on
the conditional SMC (CSMC) update, which is nearly the same as the original SMC
method described above, except one particle trajectory 𝑥′

1:𝑇 is specified in advance.
We refer to 𝑥′

1:𝑇 as the reference trajectory. The consequence of this change is that
one samples from (5.5) and (5.6) only for 𝑖 = 1, . . . , 𝑁 − 1, while the remaining
ancestor index and particle are set as 𝑎𝑁

𝑡 := 𝑁 and 𝑥𝑁
𝑡 := 𝑥′

𝑡, respectively. The rest
of the operations remain unchanged. After finishing the run of the CSMC method, a
new reference trajectory is received by sampling 𝑘 with P(𝑘 = 𝑖) = 𝑤𝑖

𝑇 and selecting
𝑥𝑘

1:𝑇 from {𝑥𝑖
1:𝑇 }𝑁

𝑖=1. The fact that the technique requires a state trajectory as the
input and returns another state trajectory as the output defines a Markov kernel on
X𝑇 , which is called the PG kernel [132]. It is shown in [4] that the kernel is ergodic
and admits 𝜋𝑇 (𝑥1:𝑇 ) as the stationary density.

5.2.5 Particle Gibbs with Ancestor Sampling Kernel

The mixing properties of the basic PG kernel may be poor when the number of
particles 𝑁 is low or the dimension 𝑇 is high. The reason consists in that the
(C)SMC algorithm is quite inefficient in updating the past values of the particle
trajectories (5.7). In fact, for some time points not too far from the current time
𝑡, the number of identical particle trajectories is often very close or equal to 𝑁 .
Such a loss in diversity is commonly known as particle path degeneracy [94]. The
consequence of the phenomenon is that the consecutive trajectories generated by
the PG kernel will be highly correlated, and the ability of the PMCMC smoother
to explore the space of trajectories X𝑇 will thus become unsatisfactory.

To improve the mixing properties, let us adopt the method referred to as PGAS
[132]. The procedure enhances the original PG kernel by introducing an additional
sampling step that generates new values of the ancestor indices 𝑎𝑁

𝑡 , instead of just
setting them as 𝑎𝑁

𝑡 := 𝑁 . The 𝑁th trajectory is constructed, for all 𝑡 ≥ 2, by
concatenating one of the historical trajectories with a future part of the reference
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Algorithm 16 PGAS Kernel [132]
Inputs: 𝑥′

1:𝑇 = 𝑥1:𝑇 [𝑘 − 1].
Outputs: 𝑥1:𝑇 [𝑘] and {𝑥𝑖

1:𝑇 , 𝑤𝑖
𝑇 }𝑁

𝑖=1.
A. Initial step: (𝑡 = 1)

1. Sample 𝑥𝑖
1 ∼ 𝑞1(·) for 𝑖 = 1, . . . , 𝑁 − 1 and set 𝑥𝑁

1 := 𝑥′
1.

2. Compute 𝑤𝑖
1 ∝ 𝑊1(𝑥𝑖

1) for 𝑖 = 1, . . . , 𝑁 .
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Sample 𝑎𝑖
𝑡 with P(𝑎𝑖

𝑡 = 𝑗) = 𝑤𝑗
𝑡−1 for 𝑖 = 1, . . . , 𝑁 − 1.

2. Sample 𝑥𝑖
𝑡 ∼ 𝑞𝑡(·|𝑥𝑎𝑖

𝑡
1:𝑡−1) for 𝑖 = 1, . . . , 𝑁 − 1.

3. Sample 𝑎𝑁
𝑡 using (5.10) and set 𝑥𝑁

𝑡 = 𝑥′
𝑡.

4. Set 𝑥𝑖
1:𝑡 := {𝑥𝑖

𝑡, 𝑥
𝑎𝑖

𝑡
1:𝑡−1} for 𝑖 = 1, . . . , 𝑁 .

5. Compute 𝑤𝑖
𝑡 ∝ 𝑊𝑡(𝑥𝑖

1:𝑡) according to (5.8), for 𝑖 = 1, . . . , 𝑁 .
C. Final step:

1. Sample 𝑘 with P(𝑘 = 𝑖) = 𝑤𝑖
𝑇 and set 𝑥1:𝑇 [𝑘] = 𝑥𝑘

1:𝑇 .

trajectory according to
𝑥𝑁

1:𝑇 := {𝑥𝑎𝑁
𝑡

1:𝑡−1, 𝑥
′
𝑡:𝑇 },

where the connection between the two partial paths is determined by the ancestor
index 𝑎𝑁

𝑡 . After the complete pass through the data, the 𝑁th trajectory no longer
coincides with the reference trajectory, as in the case of the fundamental PG kernel,
but rather becomes fragmented into pieces. The consecutive sampled trajectories
are then significantly less correlated, thus providing a substantial improvement of
the mixing properties. The ancestor 𝑎𝑁

𝑡 is sampled from

P(𝑎𝑁
𝑡 = 𝑖) = 𝑤𝑖

𝑡−1|𝑇 , 𝑖 = 1, . . . , 𝑁, (5.10)

where
𝑤𝑖

𝑡−1|𝑇 ∝ 𝑤𝑖
𝑡−1

𝛾𝑇 ({𝑥𝑖
1:𝑡−1, 𝑥

′
𝑡:𝑇 })

𝛾𝑡−1(𝑥𝑖
1:𝑡−1)

(5.11)

is the probability of connecting the 𝑖th historical trajectory with the future one, see
[132] for the derivation of (5.11) and the proof of ergodicity. The method is recalled
in Algorithm 16. Note the CSMC procedure is represented by steps A and B, and
the basic PG kernel is obtained by setting 𝑎𝑁

𝑡 := 𝑁 in step B3.

5.3 Smoother Design

5.3.1 Design Objectives

A possible approach to design the algorithm consists in directly targeting the join
smoothing density (5.2). This would require us to define 𝛾𝑡(𝑥1:𝑡) := 𝑝(𝑧1:𝑡, 𝑐1:𝑡, 𝑦1:𝑡)
and 𝑍𝑡 := 𝑝(𝑦1:𝑡) in the above framework. The CSMC procedure in Algorithm 16
would then be represented by the conditional PF [4] operating with the composite
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state variable 𝑥𝑡 := (𝑐𝑡, 𝑧𝑡). However, it was noticed in [58] that the PFs sampling
this joint state may suffer from the degeneracy of the mode variables when the
mixing properties of the transition kernel (5.1a) are poor. To suppress this problem,
an RBPF that marginalizes out the mode variable was proposed in [166]. The
development in the present chapter is based on introducing a conditional version of
this RBPF.

Hence, a better solution is to exploit the tractable substructure of the model and
thus factorize (5.2) as

𝑝(𝑐1:𝑇 , 𝑧1:𝑇 |𝑦1:𝑇 ) = 𝑝(𝑐1:𝑇 |𝑧1:𝑇 , 𝑦1:𝑇 )𝑝(𝑧1:𝑇 |𝑦1:𝑇 ).

The main goal is to design a Rao-Blackwellized PG (RBPG) kernel for approximat-
ing the second factor. Then, the sampled trajectories are used in the first factor to
analytically compute a finite state-space smoother.

5.3.2 Conditional Rao-Blackwellized Particle Filter

To show the derivation of the conditional RBPF (CRBPF), let us factorize the
extended target density 𝑝(𝑐𝑡, 𝑧1:𝑡|𝑦1:𝑡) as

𝑝(𝑐𝑡, 𝑧1:𝑡|𝑦1:𝑡) = 𝑝(𝑐𝑡|𝑧1:𝑡, 𝑦1:𝑡)𝑝(𝑧1:𝑡|𝑦1:𝑡). (5.12)

The first factor embodies the posterior distribution of the mode variable given
the sequence 𝑧1:𝑡, which is computable analytically through the standard filtering
recursion based on the forward prediction

𝑝(𝑐𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑐𝑡|𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧1:𝑡−1, 𝑦1:𝑡−1) (5.13)

and the forward update

𝑝(𝑐𝑡|𝑧1:𝑡, 𝑦1:𝑡) ∝ 𝑝(𝑦𝑡, 𝑧𝑡|𝑐𝑡, 𝑧𝑡−1)𝑝(𝑐𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1), (5.14)

forming together a finite state-space filter.
As the second factor is supposed to describe the analytically intractable part

of the model, we resort to the above framework to find the approximation. Thus,
the CSMC method now targets 𝑝(𝑧1:𝑡|𝑦1:𝑡), which requires us to define 𝛾𝑡(𝑥1:𝑡) :=
𝑝(𝑧1:𝑡, 𝑦1:𝑡) while 𝑍𝑡 remains the same. The CSMC procedure in Algorithm 16 there-
fore operates with the marginal state variable 𝑥𝑡 := 𝑧𝑡. In consequence of these
changes, the weight function (5.8) becomes

𝑊𝑡(𝑧1:𝑡) = 𝑝(𝑦𝑡, 𝑧𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1)
𝑞𝑡(𝑧𝑡|𝑧1:𝑡−1)

, (5.15)
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where the marginal density in the numerator is

𝑝(𝑦𝑡, 𝑧𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡∈C
𝑝(𝑦𝑡, 𝑧𝑡|𝑐𝑡, 𝑧𝑡−1)𝑝(𝑐𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1). (5.16)

To compute the weights (5.15) for all the trajectories {𝑧𝑖
1:𝑡}𝑁

𝑖=1, the recursion given
by (5.13) and (5.14) needs to be computed for each 𝑖 = 1, . . . , 𝑁 ; this is crucial to
note as some of the steps in Algorithm 16 are computed just for 𝑁−1 particles. Im-
portantly, too, the posterior distributions (5.14) extend the original particle system,
yielding {𝑧𝑖

1:𝑡, 𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡), 𝑤𝑖

𝑡}𝑁
𝑖=1. Construction of the bootstrap proposal density

for 𝑞𝑡(𝑧𝑡|𝑧1:𝑡−1) is outlined in [166].

5.3.3 Ancestor Sampling Weights

A possible way to acquire an RBPG kernel would be to use the CRBPF in the
basic PG kernel. While this is easy to realize, the mixing properties of the resulting
sampler may be poor, as discussed above. Hence, let us derive the ancestor sampling
to improve upon this issue. Considering we have 𝛾𝑇 (𝑥1:𝑇 ) := 𝑝(𝑧1:𝑇 , 𝑦1:𝑇 ), the weight
(5.11) transforms into

𝑤𝑖
𝑡−1|𝑇 ∝ 𝑤𝑖

𝑡−1𝑝(𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1). (5.17)

The predictive densities in (5.17) can be computed by running one finite state-space
filter for each of the historical state trajectories 𝑧𝑖

1:𝑡−1 over the time range from 𝑡− 1
to 𝑇 . However, if such a straightforward implementation were used, the total cost
of computing the weights (5.17) would amount to 𝒪(𝑇𝐾2𝑁) operations per time
step 𝑡. The issue can be circumvented as demonstrated through the design of the
Rao-Blackwellized particle smoothers (RBPSs) presented within [218, 189], which
consists in rewriting the predictive density as

𝑝(𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑦𝑡:𝑇 , 𝑧

′
𝑡:𝑇 |𝑧𝑖

𝑡−1, 𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧𝑖
1:𝑡−1, 𝑦1:𝑡−1). (5.18)

The summand in (5.18) is similar to the two-filter smoothing formula [24] that is
based on running one filter forward and the other backward in time. In our situation,
the forward filter has already been recalled in (5.13) and (5.14). The backward filter
is designed below.

5.3.4 Finite State-Space Backward Information Filter

The BIF [148] facilitates the computation of the likelihood term in the summand
of (5.18) under a closed-form solution. In the present context, the recursive step of
such a filter iterates, for 𝑡 = 𝑇 − 1, . . . , 1, over the backward prediction

𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡) =
∑︁

𝑐𝑡+1∈C
𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+2:𝑇 |𝑧𝑡+1, 𝑐𝑡+1)𝑝(𝑧𝑡+1, 𝑐𝑡+1|𝑐𝑡, 𝑧𝑡) (5.19)
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Algorithm 17 Finite State-Space BIF
Inputs: 𝑧′

1:𝑇 and {𝜉𝑡(𝑐𝑡)}𝑇
𝑡=1.

Outputs: {𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 )}𝑇

𝑡=1.
A. Initial step: (𝑡 = 𝑇 )

1. Compute 𝑝(𝑐𝑇 |𝑦𝑇 , 𝑧′
𝑇 ) ∝ 𝑝(𝑦𝑇 |𝑐𝑇 , 𝑧′

𝑇 )𝜉𝑇 (𝑐𝑇 ).
B. Recursive step: (𝑡 = 𝑇 − 1, . . . , 1)

1. Compute 𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧′
𝑡:𝑇 ) using (5.22), 𝜉𝑡(𝑐𝑡), and 𝜉𝑡+1(𝑐𝑡+1).

2. Compute 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 ) using (5.23) and 𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧′

𝑡:𝑇 ).

and the backward update

𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡) = 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡)𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡). (5.20)

The initial step computes only the observation density (5.1c) at 𝑡 = 𝑇 . A similar
recursive form has recently been used to develop an RBPS for mixed linear/nonlinear
SSMs in [131].

The difficulty encountered with (5.19) and (5.20) lies in that neither of these is a
probability density in the arguments 𝑧𝑡 and 𝑐𝑡. Therefore, integrating with respect
to these variables might lead to results which are not finite. To overcome this issue,
Briers et al. [26] proposed to design a sequence of artificial probability distributions
to change the scale of such problematic measures. Here, this approach is applied
only to the mode variable 𝑐𝑡 as the state variable 𝑧𝑡 is fixed at this stage of the
design. The sought recursion is introduced below.

Proposition 5.1 (Rescaled backward recursion). Let 𝜉𝑡(𝑐𝑡) denote the artificial
(prior) distribution related to an auxiliary (posterior) distribution 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) ac-
cording to

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) ∝ 𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡)𝜉𝑡(𝑐𝑡). (5.21)

Then, the rescaled version of the backward prediction (5.19) is

𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) ∝
∑︁

𝑐𝑡+1∈C
𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )𝑝(𝑧𝑡+1, 𝑐𝑡+1|𝑐𝑡, 𝑧𝑡)𝜉𝑡(𝑐𝑡)

𝜉𝑡+1(𝑐𝑡+1)
, (5.22)

and, similarly, the backward update (5.20) becomes

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) ∝ 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡)𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ). (5.23)

Proof. The result follows immediately from multiplying both sides of (5.19) and
(5.20) by 𝜉𝑡(𝑐𝑡) and noticing that a definition analogous to (5.21) holds also for
𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ).

To compute the predictive density by means of this reformulated backward re-
cursion, we first substitute from (5.21) into (5.19) to receive

𝑝(𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 |𝑧𝑖

𝑡−1, 𝑐𝑡−1) ∝
∑︁

𝑐𝑡∈C

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 )

𝜉𝑡(𝑐𝑡)
𝑝(𝑧′

𝑡, 𝑐𝑡|𝑐𝑡−1, 𝑧
𝑖
𝑡−1), (5.24)
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and, subsequently, we plug this result into (5.18). Note that 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 ) needs

to be computed only for the reference trajectory as it does not contain any part
of the historical particle trajectories. Thus, the distributions 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧

′
𝑡:𝑇 ) can be

precomputed in a single backward pass through the data. It is also important to
mention the total cost of computing (5.17) becomes 𝒪(𝐾2𝑁) operations in a single
time step 𝑡. The finite state-space BIF is summarized in Algorithm 17.

The artificial distribution is introduced into the backward recursion such that its
choice can be made arbitrarily. Multiple recommendations regarding how to define
𝜉𝑡(𝑐𝑡) are contained in [26]; here, the marginal and independent prior is chosen,
namely, 𝜉𝑡(𝑐𝑡) := 𝑝(𝑐𝑡) = 𝑝(𝑐𝑡|𝑧𝑡), where

𝑝(𝑐𝑡) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑐𝑡|𝑐𝑡−1)𝑝(𝑐𝑡−1). (5.25)

Note this choice simplifies the ratio in (5.22) to the product 𝑝(𝑧𝑡+1|𝑐𝑡, 𝑧𝑡)𝑝(𝑐𝑡|𝑐𝑡+1),
where 𝑝(𝑐𝑡|𝑐𝑡+1) is the backward transition kernel of the mode variable. Other choices
of 𝜉𝑡(𝑐𝑡) are discussed later in the text.

The proposed RBPGAS kernel is summarized in Algorithm 18, where the con-
vention 𝑧1:0 := ∅ and 𝑦1:0 := ∅ holds in step A4. Although not explicitly expressed
in Algorithm 18, the posterior distributions 𝑝(𝑐𝑡−1|𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) are resampled, to-
gether with the particle trajectories 𝑧𝑖

1:𝑡−1, by applying the ancestor indices 𝑎𝑖
𝑡 before

their use in (5.13).

5.3.5 Finite State-Space Smoother

To obtain the smoothed estimates of the mode trajectory, we resort to a finite state-
space forward-backward smoother conditioned on the state trajectory 𝑧1:𝑇 . The
recursive step computes, for 𝑡 = 𝑇 − 1, . . . , 1, the marginal smoothing distribution
according to

𝑝(𝑐𝑡|𝑧1:𝑇 , 𝑦1:𝑇 ) =
∑︁

𝑐𝑡+1∈C

𝑝(𝑐𝑡+1|𝑐𝑡)𝑝(𝑐𝑡|𝑧1:𝑡, 𝑦1:𝑡)
𝑝(𝑐𝑡+1|𝑧1:𝑡, 𝑦1:𝑡)

𝑝(𝑐𝑡+1|𝑧1:𝑇 , 𝑦1:𝑇 ), (5.26)

where 𝑝(𝑐𝑡|𝑧1:𝑡, 𝑦1:𝑡) is produced by the forward recursion formed by (5.13) and (5.14).
For the initial step, the filtering and marginal smoothing distributions are identical.
After computing (5.26) for each of the trajectories {𝑧1:𝑇 [𝑘]}𝑅

𝑘=1 and averaging the
results with (5.9), the maximum a posteriori sequence is taken to represent the
smoothed estimate.

An alternative approach is to use the auxiliary distributions 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 ) in the

two-filter smoother [25].
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Algorithm 18 RBPGAS Kernel for JMNMs
Inputs: 𝑧′

1:𝑇 = 𝑧1:𝑇 [𝑘 − 1].
Outputs: 𝑧1:𝑇 [𝑘] and {𝑧𝑖

1:𝑇 , {𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡)}𝑇

𝑡=1, 𝑤𝑖
𝑇 }𝑁

𝑖=1.
A. Initial step: (𝑡 = 1)

1. Compute the sequence {𝜉𝑡(𝑐𝑡)}𝑇
𝑡=1.

2. Use 𝑧′
1:𝑇 and {𝜉𝑡(𝑐𝑡)}𝑇

𝑡=1 as the input for Algorithm 17 to produce {𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 )}𝑇

𝑡=1.
3. Sample 𝑧𝑖

1 ∼ 𝑞1(·) for 𝑖 = 1, . . . , 𝑁 − 1 and set 𝑧𝑁
1 := 𝑧′

1.
4. Compute 𝑝(𝑐1|𝑧𝑖

1, 𝑦1) and 𝑝(𝑦1, 𝑧𝑖
1) according to (5.14) and (5.16), respectively, for 𝑖 =

1, . . . , 𝑁 .
5. Compute 𝑤𝑖

1 ∝ 𝑊1(𝑧𝑖
1) for 𝑖 = 1, . . . , 𝑁 .

B. Recursive step: (𝑡 = 2, . . . , 𝑇 )
1. Sample 𝑎𝑖

𝑡 with P(𝑎𝑖
𝑡 = 𝑗) = 𝑤𝑗

𝑡−1 for 𝑖 = 1, . . . , 𝑁 − 1.
2. Sample 𝑧𝑖

𝑡 ∼ 𝑞𝑡(·|𝑧𝑎𝑖
𝑡

1:𝑡−1) for 𝑖 = 1, . . . , 𝑁 − 1.
3. Compute 𝑤𝑖

𝑡−1|𝑇 according to (5.17-5.18) and (5.24), using 𝜉𝑡(𝑐𝑡) and 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧′
𝑡:𝑇 ), for

𝑖 = 1, . . . , 𝑁 .
4. Sample 𝑎𝑁

𝑡 with P(𝑎𝑁
𝑡 = 𝑖) = 𝑤𝑖

𝑡−1|𝑇 and set 𝑧𝑁
𝑡 := 𝑧′

𝑡.

5. Set 𝑧𝑖
1:𝑡 := {𝑧𝑖

𝑡, 𝑧
𝑎𝑖

𝑡
1:𝑡−1} for 𝑖 = 1, . . . , 𝑁 .

6. Compute 𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡) and 𝑝(𝑦𝑡, 𝑧𝑖

𝑡|𝑧
𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡−1) according to (5.13-5.14) and (5.16), respec-

tively, for 𝑖 = 1, . . . , 𝑁 .
7. Compute 𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑧𝑖
1:𝑡) according to (5.15), for 𝑖 = 1, . . . , 𝑁 .

C. Final step:
1. Sample 𝑘 with P(𝑘 = 𝑖) = 𝑤𝑖

𝑇 and set 𝑧1:𝑇 [𝑘] := 𝑧𝑘
1:𝑇 .

5.4 Numerical Illustration

This section demonstrates the performance of the proposed RBPGAS kernel (Al-
gorithm 20) in comparison to the PG [4], PGAS [132], RBPG (Algorithm 20 with
setting 𝑎𝑁

𝑡 := 𝑁 in step B4), and RBPGASnr (Algorithm 20 with the non-rescaled
recursion) kernels. Let us consider the nonlinear benchmark model given by

𝑧𝑡 = 0.5𝑧𝑡−1 + 25 𝑧𝑡−1

1 + 𝑧2
𝑡−1

+ 8 cos(1.2𝑡) + 𝑣𝑡, (5.27a)

𝑦𝑡 = 0.05𝑧2
𝑡 + 𝑤𝑡, (5.27b)

where, for 𝑐𝑡 ∈ C := {1, 2}, 𝑤𝑡 ∼ 𝒩 (𝜇𝑐𝑡 , 𝜎
2
𝑐𝑡

) denotes a mode-dependent Gaussian
noise variable with the mean 𝜇𝑐𝑡 and variance 𝜎2

𝑐𝑡
. Furthermore, 𝑣𝑡 ∼ 𝒩 (0, 1) is

an independent and identically distributed Gaussian noise variable with zero mean
and unit variance. The kernel (5.1a) is parameterized by the transition probability
matrix Π according to 𝑝(𝑐𝑡 = 𝑗|𝑐𝑡−1 = 𝑖) := Π𝑖𝑗 with 𝑖, 𝑗 ∈ C. The diagonal entries
of this matrix are set as Π11 = 0.6 and Π22 = 0.8. The mode-dependent means
and variances are defined by 𝜇1 = 0, 𝜇2 = 7 and 𝜎2

1 = 4, 𝜎2
2 = 1. The state

prior density is mode-independent and Gaussian, 𝜇(𝑧1|𝑐1) := 𝒩 (𝑧1; 0, 1). Further,
the prior distribution of the mode variable 𝑝(𝑐1) is parameterized by the vector 𝜆
with the relation 𝑝(𝑐1 = 𝑖) := 𝜆𝑖, where the first entry is 𝜆1 = 0.5; the artificial
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distribution corresponds to (5.25). All the algorithms use the associated bootstrap
proposal density.

The experiment assesses the performance of the compared methods when the
number of particles changes according to 𝑁 = 2𝑛 for 𝑛 = 1, . . . , 9. For all these
values, forty independent runs of the model (5.27) were performed, each producing
the measurement sequence of the length 𝑇 = 100. The algorithms subjected to
comparison were tested with the number of iterations 𝑅 = 500. To evaluate resulting
estimates, the proposed RBPGAS method with 𝑁 = 1024 particles (a higher number
did not lead a significant improvement) was used to compute ‘exact’ state and mode
trajectories for each of the measurement sequences.

As is obvious from Fig. 5.2, the RBPGAS method achieves the best accuracy with
the number of particles 𝑁=4, increasing the value does not provide any noticeable
improvement. The PGAS procedure approaches the performance of the RBPGAS
algorithm as the number of particles increases, with practically no difference in the
RMSE and NNZE indicators for 𝑁 ≥ 32. The distinction between the methods is
most significant at𝑁 = 2 particles, where the effect of Rao-Blackwellization, brought
by the RBPGAS procedure, is most obvious. The PG and RBPG algorithms attain
the precision of the RBPGAS method for a much higher 𝑁 , which is caused by
the absence of the ancestor sampling in these methods. This also implies that
the PG and RBPG algorithms require substantially more computational resources.
Nevertheless, even in this case, it can be seen that the Rao-Blackwellization may
substantially increase the accuracy.

Fig. 5.3 provides a closer look at the situation where the compared algorithms
are applied with 𝑁 = 2 particles. We can see that the RMSE of the PGAS and
RBPGAS methods is competitive for approximately the first 10−1 seconds, with
the RBPGAS algorithm starting to be computationally more efficient (in the av-
erage behavior) after this time. This is obvious from the median and interquartile
range, which decrease more quickly for the RBPGAS procedure. The right part
of Fig. 5.3 reveals that the RBPGAS method achieves lower values of the NNZE
in a shorter computational time. For example, we can see that the value 10 is
there reached after approximately 2 · 10−1 seconds with the PGAS method, while
the same value is attained after approximately 7 · 10−2 seconds with the RBPGAS
algorithm. It is therefore obvious that the RBPGAS procedure is markedly quicker
in approaching the ergodic regime. However, the PG and RBPG kernels deliver
a very slow convergence, being still very far from the ergodic regime. The rea-
son is, again, the lack of the ancestor sampling. The RBPGASnr method has a
higher variance than the RBPGAS procedure, proving the importance of involving
the artificial distribution 𝜉𝑡(𝑐𝑡) into the design.
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Fig. 5.2: Left: the root-mean-square error (RMSE) between the exact and estimated
state trajectories versus the number of particles. Right: the number of non-zero elements
(NNZE) in the error sequence between the exact and estimated mode trajectories versus
the number of particles. The solid line represents the median, and the shaded area is the
interquartile range; both are computed over forty independent runs. The compared algo-
rithms are PG ( ), PGAS ( ), RBPG ( ), RBPGAS ( ), and RBPGASnr ( ).
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Fig. 5.3: Left: the root-mean-square error (RMSE) between the exact and estimated state
trajectories versus the computational time (in seconds). Right: the number of non-zero
elements (NNZE) in the error sequence between the exact and estimated mode trajectories
versus the computational time. The solid line shows the median, and the shaded area is
the interquartile range; both are computed over forty independent runs. The compared
methods are PG ( ), PGAS ( ), RBPG ( ), RBPGAS ( ), and RBPGASnr
( ).
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5.5 Discussion

The uniform prior 𝜆 and stationary distribution calculated as the left eigenvector
of the matrix Π were used to represent the artificial distribution 𝜉𝑡(𝑐𝑡). Both these
options provided results similar to the situation considering (5.25), with only a
minor difference in the variance of the smoothed estimates, indicating insensitivity
to various settings of 𝜉𝑡(𝑐𝑡).

If the transition kernel (5.1a) has poor mixing properties, the proposed RBPGAS
method offers a higher robustness compared to the PGAS algorithm. The trade-off
between the estimation accuracy and computational time then starts to be more
pronounced, with the proposed RBPGAS method still being the more successful
one. The reason lies, as discussed previously, in that the PGAS procedure suffers
from the degeneracy around the mode changes [58]. As shown in the experiments,
the effectiveness is mainly achieved in terms of a shorter time required to reach the
ergodic regime.

There are various particle filters for jump Markov nonlinear models that can be
used to develop the PMCMC kernel. Therefore, a preliminary research on assess-
ing different types of particle filters was performed before deciding which one is the
most suitable basis for developing the PMCMC kernel. A number of well-established
strategies were compared, while also proposing some alternative solutions. The com-
parison comprises of the following methods: (i) the basic particle filter (PF) which
jointly samples both the latent variables; (ii) the Rao-Blackwellized particle filter
(RBPF) [166] which marginalizes out the discrete regime variable; (iii) the interact-
ing multiple model particle filter (IMMPF1) with the ‘mixing stage’ [58]; (iv) the
interacting multiple model particle filter (IMMPF2) with the ‘interaction resam-
pling’ [22]; (v) the exact approximate Rao-Blackwellized particle filter (EARBPF)
[100], where two nested layers of particle filters are utilized: the upper layer sam-
ples the discrete regime variables while the lower layer runs a regime-conditioned
particle filter for each sample from the upper layer; and (vi) the exact approximate
discrete particle filter (EADPF) which modifies the EARBPF method in the sense
of utilizing the optimal resampling [126] in a similar manner as with the discrete
particle filter [64]. Specifically, the idea of designing the EADPF method was first
mentioned in [100]; however, to the best of the author’s knowledge, it is here—in
the present thesis—where such an approach is first realized and exemplified.

The computational complexity of the PF, RBPF, IMMPF1, IMMPF2, EARBPF,
and EADPF algorithms scales according to 𝒪(𝑁), 𝒪(𝐾2𝑁), 𝒪(𝐾𝑁), 𝒪(𝐾𝑁),
𝒪(𝑀𝑁), and 𝒪(𝐾𝑀𝑁), respectively, where 𝐾 is the number of discrete regime
variables, 𝑁 is the number of lower layer particles, and 𝑀 is the number of upper
layer particles. This comparison of computational complexity is only qualitative as
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Fig. 5.4: Left: the root-mean-square error (RMSE) between the true and estimated state
trajectories versus the computational time (in seconds). Right: the number of non-zero
elements (NNZE) in the error sequence between the true and estimated mode trajectories
versus the computational time. The compared algorithms are PF ( ), RBPF ( ),
IMMPF1 ( ), IMMPF2 ( ), EARBPF ( ), and EADPF ( ). The number of
particles, 𝑁 , takes values in (4, 8, 16, 32, 64, 128, 256, 512).

there can be important implementation details creating substantial computational
differences among the considered techniques. Therefore, to justify the decision on
which of the methods is the most suitable one, we evaluate the trade-off between
the computational time and estimation precision. We compare the above procedures
based on the simulation scenario from Section 5.4. The experiment is implemented
in C with a precise decomposition of common subroutines among the compared
methods in order to ensure a fair assessment of the computational time. In this
experiment, we set 𝑀 = 𝑁 and apply the algorithms in their respective bootstrap
proposal setting (in both the layers regarding EARBPF and EADPF). The results
are presented in Fig. 5.4.

Although the EARBPF and EADPF approaches provide the best estimation
precision at the lowest 𝑁 (with the EADPF procedure being better), their hier-
archical implementation makes them computationally more demanding compared
to the remaining—conceptually simpler—algorithms. The RBPF method offers the
most favorable computational time and estimation precision for low 𝑁 . However,
this preferred behavior starts to be less pronounced with increasing 𝑁 . For high 𝑁 ,
the IMMPF2 approach seems to provide the lowest computational time at approx-
imately the same estimation precision compared to the remaining methods. The
IMMPF1 algorithm reveals rather poor performance than the non-nested methods,
as its RMSE and computational time are higher for almost all 𝑁 .
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To conclude, the best choice for developing the PMCMC kernel for jump Markov
nonlinear models is the RBPF method [166] since—as obvious from Fig. 5.4—it
achieves the best estimation precision and computational time at the lowest number
of particles. The justification for this conclusion lies in that the PGAS kernels are
often very efficient with a low number of particles [130]. Therefore, we need to base
their development on particle filters that are most precise, and least computation-
ally demanding, at the lowest number of particles. From this point of view, the
IMMPF1, IMMPF2, EARBPF, and EADPF techniques are inappropriate as they
rely on computing the approximation of the mode-conditioned predictive likelihood,
𝑝(𝑦𝑡|𝑐𝑡, 𝑦1:𝑡−1), which suffers from non-zero bias and substantial variance when the
number of particles is low. Moreover, if the EARBPF or EADPF algorithms were
chosen to proceed with the design, the resulting PGAS kernel would be conceptu-
ally rather difficult. There would be the need to impose the conditioning on the
reference trajectory over the two nested layers. Such an approach would most likely
be computationally very demanding due to the fact that the PGAS kernel has—on
its own—slightly more intricate algorithmic flow, and it is thus technically more
demanding to process by computing devices.
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6 A PARTICLE SAEM ALGORITHM
TO IDENTIFY JUMP MARKOV
NONLINEAR MODELS

The identification of static parameters in jump Markov nonlinear models (JMNMs)
poses a key challenge in explaining nonlinear and abruptly changing behavior of dy-
namical systems. This chapter introduces a stochastic approximation expectation
maximization algorithm to facilitate offline maximum likelihood parameter estima-
tion in JMNMs. The method relies on the construction of a particle Gibbs kernel
that takes advantage of the inherent structure of the model to increase the efficiency
through Rao-Blackwellization. Numerical examples illustrate that the proposed so-
lution outperforms related approaches.

6.1 Introduction

6.1.1 Context

Jump Markov nonlinear models (JMNMs) can be seen as a particular class of nonlin-
ear and non-Gaussian state-space models (SSMs, [30]) where the observation variable
is related to the latent state variable that contains a continuous and discrete-valued
part. While the continuous part describes the dynamics of a system, the discrete
one indicates the switching of different dynamical modes.

The expectation maximization (EM) algorithm by [51] has become a standard
tool to address the maximum likelihood (ML) parameter estimation in SSMs. The
method is favored especially for its inherent feature of splitting the ML problem into
two more conveniently tractable steps known as expectation and maximization. In
the model class considered here, the expectation step is intractable and requires us
to solve the nonlinear smoothing problem [133]. The particle Markov chain Monte
Carlo (PMCMC) methods [4], which rely on sequential Monte Carlo (SMC, [56])
to facilitate the construction of high-dimensional proposal kernels in (MCMC, [3]),
embody an efficient tool to address the issue. The paper [132] recently elaborated
on the PMCMC idea and suggested to combine their particle Gibbs with ancestor
sampling (PGAS) kernel and the stochastic approximation EM (SAEM) algorithm
of [50] to obtain the particle SAEM (PSAEM) procedure. The related paper [202]
then extended this design to propose a Rao-Blackwellized PSAEM (RBPSAEM)
algorithm for jump Markov linear models by utilizing their linear Gaussian sub-
structure.
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A recent EM approach specifically tailored for JMNMs was proposed by [11] who
extended the particle smoothing EM (PSEM) framework of [194]. The method pro-
posed herein differs from this approach mainly in using stochastic approximation,
Rao-Blackwellization, and PMCMC-based smoothing. Another EM solution was
developed by [166] who introduced a Rao-Blackwellized forward smoother, which
differs from the present method also in the smoothing methodology but shares sim-
ilarities with the specific type of Rao-Blackwellization.

6.1.2 Contributions

The contribution of this chapter consists in developing an RBPSAEM method
for JMNMs which exploits the substructure related to the discrete state. This is
achieved by formulating a conditional version of the RBPF proposed by [166]. To
facilitate the ancestor sampling, a finite state-space variant of the backward informa-
tion filter (BIF, [148]) is proposed, requiring us to change the scale of the associated
backward recursion. The experimental evidence indicates that the proposed method
offers a higher estimation accuracy compared to competing approaches.

6.2 Background

6.2.1 Problem Formulation

Consider the discrete-time JMNM given by

𝑐𝑡 ∼ 𝑝(𝑐𝑡|𝑐𝑡−1), (6.1a)
𝑧𝑡 ∼ 𝑓(𝑧𝑡|𝑐𝑡, 𝑧𝑡−1; 𝜃𝑐𝑡), (6.1b)
𝑦𝑡 ∼ 𝑔(𝑦𝑡|𝑐𝑡, 𝑧𝑡; 𝜃𝑐𝑡), (6.1c)

where the continuous states and observations are denoted by 𝑧𝑡 ∈ Z ⊆ R𝑛𝑧 and
𝑦𝑡 ∈ Y ⊆ R𝑛𝑦 , respectively. The discrete state 𝑐𝑡 ∈ C := {1, . . . , 𝐾} indicates the
currently active mode, with 𝐾 being the total number of the modes. We assume that
each mode is described by the probability densities 𝑓(·; 𝜃𝑐𝑡) and 𝑔(·; 𝜃𝑐𝑡), where 𝜃𝑐𝑡 is
the associated parameter set. The probability distribution 𝑝(·) governs the switching
between the modes and is parameterized by the 𝐾×𝐾 transition probability matrix
Π with the entries

Π𝑚𝑛 := P(𝑐𝑡 = 𝑛|𝑐𝑡−1 = 𝑚) = 𝑝(𝑛|𝑚). (6.2)

The set of all unknown parameters, 𝜃 ∈ Θ ⊆ R𝑛𝜃 , is defined by 𝜃 := {Π, {𝜃𝑛}𝐾
𝑛=1}. At

the initial time instance, the latent states are distributed according to 𝑧1 ∼ 𝜇(𝑧1|𝑐1)
and 𝑐1 ∼ 𝜈(𝑐1); both 𝜇 and 𝜈 are assumed to be known.
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We search for the parameter estimate maximizing the likelihood of the observed
data sequence 𝑦1:𝑇 := (𝑦1, . . . , 𝑦𝑇 ), with 𝑇 denoting its length, that is,

̂︀𝜃ML = argmax
𝜃∈Θ

𝑝𝜃(𝑦1:𝑇 ). (6.3)

In the present class of models, the computation of 𝑝𝜃(𝑦1:𝑇 ) cannot be conducted
exactly, as it contains the summation over 𝐾𝑇 possible values, which is infeasible to
perform even for a moderate 𝑇 . Additionally, the integration over Z𝑇 required for
evaluating 𝑝𝜃(𝑦1:𝑇 ) cannot be performed either, as the model is supposed to contain
nonlinearities.

6.2.2 EM and SAEM Algorithms

The EM algorithm [51] is a popular tool to facilitate maximum likelihood estima-
tion in models that contain latent data 𝑥1:𝑇 , such as 𝑥𝑡 := (𝑧𝑡, 𝑐𝑡). The method
relies on that the expected value of the complete data log-likelihood, the so-called
intermediate quantity

𝒬(𝜃, 𝜃′) :=
∫︁

log 𝑝𝜃(𝑥1:𝑇 , 𝑦1:𝑇 )𝑝𝜃′(𝑥1:𝑇 |𝑦1:𝑇 )𝑑𝑥1:𝑇 , (6.4)

can be used to locate the maximizer of the incomplete data likelihood 𝑝𝜃(𝑦1:𝑇 ). The
maximizer is found indirectly in the two-step iterative procedure which alternates
between the expectation (E) and maximization (M) according to

(E) compute 𝒬(𝜃, 𝜃[𝑘 − 1]),
(M) compute 𝜃[𝑘] = argmax

𝜃∈Θ
𝒬(𝜃, 𝜃[𝑘 − 1]),

starting with some 𝜃[0] ∈ Θ. The main motivation behind postulating (6.4) is to
simplify, or at least more conveniently reformulate, the original problem (6.3).

Under mild regularity assumptions, [223] proved that the produced sequence of
the parameter estimates {𝜃[𝑘]}𝑘≥0 converges towards a stationary point of 𝑝𝜃(𝑦1:𝑇 ).
Additionally, the method embodies a monotone optimization procedure as the corre-
sponding sequence of log-likelihood evaluations {log 𝑝𝜃[𝑘](𝑦1:𝑇 )}𝑘≥0 is non-decreasing.

When no explicit solution is available for implementing the E-step, one can
resort to the SAEM algorithm proposed by [50]. The basic idea is to redefine the
E-step so that we first simulate the samples 𝑥1:𝑇 [𝑘] from the joint smoothing density
𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 ) and then use them in the stochastic approximation [182] of the
intermediate quantity (6.4) given by

̂︀𝒬𝑘(𝜃) = (1 − 𝛼𝑘) ̂︀𝒬𝑘−1(𝜃) + 𝛼𝑘 log 𝑝𝜃(𝑥1:𝑇 [𝑘], 𝑦1:𝑇 ), (6.6)

where 𝛼𝑘 ∈ [0, 1] is a positive step size satisfying the constraints ∑︀𝑘≥1 𝛼𝑘 = ∞
and ∑︀

𝑘≥1 𝛼
2
𝑘 < ∞. However, for complicated models, direct sampling from the
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Algorithm 19 Stochastic Approximation Expectation Maximization (SAEM)
A. Initial step: (𝑘 = 0)

1. Set 𝑥1:𝑇 [0] ∈ X𝑇 , 𝜃[0] ∈ Θ, and ̂︀𝒬0(𝜃) := 0.
B. Recursive step: (𝑘 = 1, . . . , 𝑅)

1. Sample 𝑥1:𝑇 [𝑘] ∼ 𝒦𝜃[𝑘−1](·|𝑥1:𝑇 [𝑘 − 1]).
2. Compute ̂︀𝒬𝑘(𝜃) according to (6.6).
3. Compute 𝜃[𝑘] = argmax𝜃∈Θ

̂︀𝒬𝑘(𝜃).

joint smoothing density 𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 ) is often infeasible. In such situations, we
can utilize the MCMC framework [121] and thus draw the samples from a Markov
kernel 𝒦𝜃[𝑘−1] admitting the joint smoothing density as its unique stationary density.
We summarize this MCMC version of the SAEM method in Algorithm 19.

Under the requirement of uniform ergodicity of the kernel 𝒦𝜃[𝑘−1], and with some
regularity assumptions, [121] have proven that the sequence {𝜃[𝑘]}𝑘≥0 converges to
a maximizer of 𝑝𝜃(𝑦1:𝑇 ) when the complete data likelihood belongs to the exponen-
tial family.

An alternative way of sampling from 𝑝𝜃[𝑘−1](𝑥1:𝑇 |𝑦1:𝑇 ) is to utilize the PSEM
framework by [194], which covers the alternative SMC-based smoothing strategies
previously used in the EM context, including those presented by [163], [66]. Never-
theless, the PSEM approach does not rely on the stochastic approximation to reuse
the samples over the iterations and thus requires a notably higher computational
budget.

However, efficient construction of the kernel 𝒦𝜃[𝑘−1] may be difficult with high 𝑇 .
[132] addressed this problem by designing the PGAS kernel which, when combined
with SAEM, can be used to form the PSAEM algorithm (see also [130]). The
development in the present work is based on such ideas. To simplify the subsequent
exposition, let us describe the basic PG kernel, leaving the AS modification to
another section.

6.2.3 Particle Gibbs Kernel

The conditional SMC (CSMC) update introduced by [4] offers a possible approach
for constructing a Markov kernel on X𝑇 . To describe the method, we first briefly
present the standard SMC sampler and then incorporate the features that establish
the conditional version.

SMC methods [56] constitute a general class of procedures appropriate for ap-
proximating a sequence of target densities {𝑝𝜃(𝑥1:𝑡|𝑦1:𝑡)}𝑇

𝑡=1 . The SMC approxima-
tion embodies the empirical measure

̂︀𝑝𝜃(𝑑𝑥1:𝑡|𝑦1:𝑡) =
𝑁∑︁

𝑖=1
𝑤𝑖

𝑡𝛿𝑥𝑖
1:𝑡

(𝑑𝑥1:𝑡), (6.7)
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which is fully determined by the weighted particle system {𝑥𝑖
1:𝑡, 𝑤

𝑖
𝑡}𝑁

𝑖=1, where 𝑥𝑖
1:𝑡

denotes a particle trajectory and 𝑤𝑖
𝑡 labels a weight that assesses the contribution

of the associated trajectory to the resulting approximation.
The initial step of an SMC sampler is assembled of standard importance sam-

pling. Thus, we first draw the particles {𝑥𝑖
1}𝑁

𝑖=1 from the initial proposal den-
sity 𝑥𝑖

1 ∼ 𝑞𝜃(·|𝑦1) and then calculate the importance weights 𝑤𝑖
1 ∝ 𝑊𝜃,1(𝑥𝑖

1) for
𝑖 = 1, . . . , 𝑁 , where 𝑊𝜃,1(𝑥1) = 𝑝𝜃(𝑥1, 𝑦1)/𝑞𝜃(𝑥1|𝑦1).

The recursive step combines sequential importance sampling and resampling in
order to propagate (6.7) recursively in time. Assume we have the previously gen-
erated particle system {𝑥𝑖

1:𝑡−1, 𝑤
𝑖
𝑡−1}𝑁

𝑖=1. The recursion starts with the resampling
procedure, which is equivalent to drawing a set of ancestor indices {𝑎𝑖

𝑡}𝑁
𝑖=1 according

to
P(𝑎𝑖

𝑡 = 𝑗) = 𝑤𝑗
𝑡−1, 𝑗 = 1, . . . , 𝑁. (6.8)

Then, we make use of the indices in the sequential importance sampling approach.
First, this procedure involves generating the particles {𝑥𝑖

𝑡}𝑁
𝑖=1 from the proposal

density
𝑥𝑖

𝑡 ∼ 𝑞𝜃(·|𝑥𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡), (6.9)

where 𝑎𝑖
𝑡 determines the parent trajectory for the offspring particle 𝑥𝑖

𝑡. The set of
ancestor indices {𝑎𝑖

1:𝑡}𝑁
𝑖=1 contains information about the genealogy of the particles.

Second, the previous trajectories are extended as

𝑥𝑖
1:𝑡 := {𝑥𝑎𝑖

𝑡
1:𝑡−1, 𝑥

𝑖
𝑡},

and, finally, we conclude the recursive step by computing the normalized importance
weights 𝑤𝑖

𝑡 ∝ 𝑊𝜃,𝑡(𝑥𝑖
1:𝑡) for 𝑖 = 1, . . . , 𝑁 , where

𝑊𝜃,𝑡(𝑥1:𝑡) := 𝑝𝜃(𝑦𝑡, 𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡−1)
𝑞𝜃(𝑥𝑡|𝑥1:𝑡−1, 𝑦1:𝑡)

. (6.10)

The basic idea of the CSMC update is to modify the above described SMC
sampler so that one particle trajectory 𝑥′

1:𝑇 – called reference trajectory – can
be specified in advance. This is achieved by sampling from (6.8) and (6.9) only
for 𝑖 = 1, . . . , 𝑁 − 1, whereas the remaining particle and ancestor index are set as
𝑥𝑁

𝑡 := 𝑥′
𝑡 and 𝑎𝑁

𝑡 := 𝑁 , respectively. After the procedure has completed, we find a
new reference trajectory by drawing 𝑘 with P(𝑘 = 𝑖) = 𝑤𝑖

𝑇 and selecting 𝑥𝑘
1:𝑇 from

{𝑥𝑖
1:𝑇 }𝑁

𝑖=1. The fact that the method requires a state trajectory as the input and
returns another state trajectory as the output defines a Markov kernel on X𝑇 , which
is referred to as the PG kernel.
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6.3 Expectation

A straightforward way to implement the E-step consists in designing the kernel 𝒦𝜃

such that it produces the samples 𝑥1:𝑇 [𝑘] := (𝑧1:𝑇 , 𝑐1:𝑇 )[𝑘] from the joint smoothing
density 𝑝𝜃(𝑐1:𝑇 , 𝑧1:𝑇 |𝑦1:𝑇 ). However, applying the samples directly in the stochas-
tic approximation (6.6) would not exploit the partial analytical tractability of the
model. As an alternative solution, we use the decomposition

𝑝𝜃(𝑐1:𝑇 , 𝑧1:𝑇 |𝑦1:𝑇 ) = 𝑝𝜃(𝑐1:𝑇 |𝑧1:𝑇 , 𝑦1:𝑇 )𝑝𝜃(𝑧1:𝑇 |𝑦1:𝑇 ) (6.11)

and construct the kernel 𝒦𝜃 so that it generates the samples 𝑧1:𝑇 [𝑘] from the marginal
density 𝑝𝜃(𝑧1:𝑇 |𝑦1:𝑇 ), while the first factor in (6.11) is solved analytically. The
stochastic approximation can therefore be rewritten as

̂︀𝒬𝑘(𝜃) = (1 − 𝛼𝑘) ̂︀𝒬𝑘−1(𝜃) + 𝛼𝑘E𝜃[𝑘−1]
[︁

log 𝑝𝜃(𝑐1:𝑇 , 𝑧1:𝑇 [𝑘], 𝑦1:𝑇 )
⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
, (6.12)

where the expected value is taken w.r.t. 𝑐1:𝑇 . To simplify the notation, we omit the
parameters 𝜃 in the remaining part of this section.

6.3.1 Conditional Rao-Blackwellized Particle Filter

The development of the sought kernel is herein based on the RBPF introduced by
[166], which applies Rao-Blackwellization in a way identical with that demonstrated
in (6.11). With the help of the CSMC framework presented in the previous section,
we can directly cast this RBPF into the conditional RBPF (CRBPF), having in
mind the whole CSMC update now operates with 𝑧𝑡 instead of 𝑥𝑡. This conversion is
actually simple and comprises of only two actions. First, we compute the numerator
in 𝑊𝜃,𝑡(𝑧1:𝑡) (cf. (6.10)) via the marginalization given by

𝑝(𝑦𝑡, 𝑧𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡∈C
𝑝(𝑦𝑡, 𝑧𝑡|𝑐𝑡, 𝑧𝑡−1)𝑝(𝑐𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1), (6.13)

where the first factor of the summand is represented by the product of (6.1c) and
(6.1b). To compute (6.13), we need to introduce a finite state-space filter. This
consists of the filtering recursion formed by the forward update

𝑝(𝑐𝑡|𝑧1:𝑡, 𝑦1:𝑡) ∝ 𝑝(𝑦𝑡, 𝑧𝑡|𝑐𝑡, 𝑧𝑡−1)𝑝(𝑐𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1) (6.14a)

and the forward prediction

𝑝(𝑐𝑡|𝑧1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑐𝑡|𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧1:𝑡−1, 𝑦1:𝑡−1) (6.14b)

which embodies the second factor in the summand of (6.13). Second, since 𝑊𝜃,𝑡(𝑧𝑖
1:𝑡)

has to be evaluated for all 𝑖 = 1, . . . , 𝑁 (implying the recursion given by (6.14a)
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and (6.14b) is also necessary to be computed for each 𝑧𝑖
1:𝑡), we need to enlarge the

memory allocated for the original particle system to incorporate the distributions
𝑝(𝑐𝑡|𝑧𝑖

1:𝑡, 𝑦1:𝑡) as
{𝑧𝑖

1:𝑡, 𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡), 𝑤𝑖

𝑡}𝑁
𝑖=1.

Both the changes (6.13) and (6.14b) are usually undertaken in interpreting PFs as
RBPFs. See, e.g., [192] for a different context. Other details, such as the construction
of the bootstrap proposal density, 𝑝(𝑧𝑡|𝑧1:𝑡−1, 𝑦1:𝑡), are discussed in [166].

6.3.2 Ancestor Sampling Weights

The above-described construction of the CRBPF inherits the well-known drawback
of the standard SMC sampler, namely, the particle path degeneracy problem (see
[94]). In consequence of this phenomenon, the sought kernel may deliver poor mix-
ing. To improve upon this issue, [132] suggested to sample new values of the ancestor
indices 𝑎𝑁

𝑡 according to

P(𝑎𝑁
𝑡 = 𝑖) = 𝑤𝑖

𝑡−1|𝑇 , 𝑖 = 1, . . . , 𝑁, (6.15)

where (in the present context)

𝑤𝑖
𝑡−1|𝑇 ∝ 𝑤𝑖

𝑡−1𝑝(𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) (6.16)

is the probability of connecting the 𝑖th historical trajectory with the future part of
the reference one; see [132] for the derivation of (6.16) and the proof that the PGAS
kernel is uniformly ergodic.

To increase the impact of Rao-Blackwellization, in addition to that brought by
the CRBPF, we express the predictive density in (6.16) by the marginalization

𝑝(𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 |𝑧𝑖

1:𝑡−1, 𝑦1:𝑡−1) =
∑︁

𝑐𝑡−1∈C
𝑝(𝑦𝑡:𝑇 , 𝑧

′
𝑡:𝑇 |𝑧𝑖

𝑡−1, 𝑐𝑡−1)𝑝(𝑐𝑡−1|𝑧𝑖
1:𝑡−1, 𝑦1:𝑡−1). (6.17)

A similar approach for computing the predictive density has recently proved to
be a key element in designing Rao-Blackwellized particle smoothers (RBPSs), see
[218, 189]. The summand in (6.17) is reminiscent of the original two-filter smoothing
formula [24], which is based on running one filter forward and the other backward
in time. In our situation, we exploit the forward filter represented by (6.14a) and
(6.14b). The backward filter is designed below.

6.3.3 Finite State-Space Backward Information Filter

The BIF [148] allows us to compute the likelihood term in the summand of (6.17).
In the above context, the recursive step of such a filter iterates, for 𝑡 = 𝑇 − 1, . . . , 1,
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over the backward prediction

𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡) =
∑︁

𝑐𝑡+1∈C
𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+2:𝑇 |𝑧𝑡+1, 𝑐𝑡+1)𝑝(𝑧𝑡+1, 𝑐𝑡+1|𝑐𝑡, 𝑧𝑡) (6.18a)

and the backward update

𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡) = 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡)𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡). (6.18b)

The initial step calculates only the observation density (6.1c) at 𝑡 = 𝑇 . A similar
recursive form was recently used to develop an RBPS for mixed linear/nonlinear
SSMs in [131].

However, the difficulty encountered with (6.18a) and (6.18b) consists in the fact
that neither of these is a probability distribution in the argument 𝑐𝑡. Therefore,
computing the likelihood term in (6.17) according to the recursion (6.18) may result
in numerical instability [25]. To deal with this issue, we need to change the scale of
the recursion (6.18). The following two propositions show respectively the rescaled
version of (6.18) and how to use it for computing the likelihood term in (6.17).

Proposition 6.1. Let 𝛼𝑡(𝑐𝑡|𝑧𝑡:𝑇 ) and 𝛼𝑡+1(𝑐𝑡|𝑧𝑡:𝑇 ) denote the rescaled backward fil-
tering and predictive distributions, respectively. Then, the backward update (6.18b)
can be rewritten as

𝛼𝑡(𝑐𝑡|𝑧𝑡:𝑇 ) ∝ 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡)𝛼𝑡+1(𝑐𝑡|𝑧𝑡:𝑇 ), (6.19a)

and, similarly, the backward prediction (6.18a) becomes

𝛼𝑡+1(𝑐𝑡|𝑧𝑡:𝑇 ) ∝
∑︁

𝑐𝑡+1∈C
𝛼𝑡+1(𝑐𝑡+1|𝑧𝑡+1:𝑇 )𝑝(𝑧𝑡+1, 𝑐𝑡+1|𝑐𝑡, 𝑧𝑡), (6.19b)

for 𝑡 = 𝑇 − 1, . . . , 1. At the initial time step 𝑡 = 𝑇 , the recursion starts with
𝛼𝑇 (𝑐𝑇 |𝑧𝑇 ) ∝ 𝑝(𝑦𝑇 |𝑐𝑇 , 𝑧𝑇 ).

Proof. See Section 6.7.

Proposition 6.2. Consider we applied Proposition 6.1 to obtain the rescaled back-
ward filtering distribution 𝛼𝑡(𝑐𝑡|𝑧′

𝑡:𝑇 ), where 𝑧′
𝑡:𝑇 is the partial reference trajectory.

Then, the likelihood term in (6.17) can be computed according to

𝑝(𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 |𝑧𝑖

𝑡−1, 𝑐𝑡−1) ∝
∑︁

𝑐𝑡∈C
𝛼𝑡(𝑐𝑡|𝑧′

𝑡:𝑇 )𝑝(𝑧′
𝑡, 𝑐𝑡|𝑐𝑡−1, 𝑧

𝑖
𝑡−1), (6.20)

for 𝑖 = 1, . . . , 𝑁 .

Proof. See Section 6.7.

The above derived results can now be used to summarize the proposed RBPGAS
kernel in Algorithm 20. Here, the knowledge of 𝑧′

1:𝑇 = 𝑧1:𝑇 [𝑘 − 1] allows us to run
the BIF in the initial step (A1) of Algorithm 20. The precomputed distributions
𝛼𝑡(𝑐𝑡|𝑧′

𝑡:𝑇 ) are then used in the recursive step (B3) to obtain the ancestor sampling
weights.
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Algorithm 20 RBPGAS Kernel for JMNMs
Inputs: 𝑧′

1:𝑇 = 𝑧1:𝑇 [𝑘 − 1].
Outputs: 𝑧1:𝑇 [𝑘] and {𝑧𝑖

1:𝑇 , {𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡)}𝑇

𝑡=1, 𝑤𝑖
𝑇 }𝑁

𝑖=1.
A. Initial step: (𝑡 = 1)

1. Use 𝑧′
1:𝑇 in (6.19) to compute {𝛼𝑡(𝑐𝑡|𝑧′

𝑡:𝑇 )}𝑇
𝑡=1.

2. Sample 𝑧𝑖
1 ∼ 𝑞1(·) for 𝑖 = 1, . . . , 𝑁 − 1 and set 𝑧𝑁

1 := 𝑧′
1.

3. Compute 𝑝(𝑐1|𝑧𝑖
1, 𝑦1) and 𝑝(𝑦1, 𝑧𝑖

1) according to (6.14a) and (6.13), respectively, for 𝑖 =
1, . . . , 𝑁 .

4. Compute 𝑤𝑖
1 ∝ 𝑊1(𝑧𝑖

1) for 𝑖 = 1, . . . , 𝑁 .
B. Recursive step: (𝑡 = 2, . . . , 𝑇 )

1. Sample 𝑎𝑖
𝑡 with P(𝑎𝑖

𝑡 = 𝑗) = 𝑤𝑗
𝑡−1 for 𝑖 = 1, . . . , 𝑁 − 1.

2. Sample 𝑧𝑖
𝑡 ∼ 𝑞(·|𝑧𝑎𝑖

𝑡
1:𝑡−1, 𝑦1:𝑡) for 𝑖 = 1, . . . , 𝑁 − 1.

3. Compute 𝑤𝑖
𝑡−1|𝑇 according to (6.16), (6.17), and (6.20), utilizing 𝛼𝑡(𝑐𝑡|𝑧′

𝑡:𝑇 ), for 𝑖 = 1, . . . , 𝑁 .
4. Sample 𝑎𝑁

𝑡 with P(𝑎𝑁
𝑡 = 𝑖) = 𝑤𝑖

𝑡−1|𝑇 and set 𝑧𝑁
𝑡 := 𝑧′

𝑡.

5. Set 𝑧𝑖
1:𝑡 := {𝑧𝑖

𝑡, 𝑧
𝑎𝑖

𝑡
1:𝑡−1} for 𝑖 = 1, . . . , 𝑁 .

6. Compute 𝑝(𝑦𝑡, 𝑧𝑖
𝑡|𝑧

𝑎𝑖
𝑡

1:𝑡−1, 𝑦1:𝑡−1) and 𝑝(𝑐𝑡|𝑧𝑖
1:𝑡, 𝑦1:𝑡) according to (6.13) and (6.14), respectively,

for 𝑖 = 1, . . . , 𝑁 .
7. Compute 𝑤𝑖

𝑡 ∝ 𝑊𝑡(𝑧𝑖
1:𝑡) for 𝑖 = 1, . . . , 𝑁 .

C. Final step:
1. Sample 𝑘 with P(𝑘 = 𝑖) = 𝑤𝑖

𝑇 and set 𝑧1:𝑇 [𝑘] := 𝑧𝑘
1:𝑇 .

6.3.4 Finite State-Space Forward-Backward Smoother

To facilitate the computation of the expected value in (6.12), we prepare a finite
state-space variant of the forward-backward smoother conditioned on the trajectory
𝑧1:𝑇 ; see, e.g., section 5 of [194] for the derivation. In the backward recursion, for
𝑡 = 𝑇 − 1, . . . , 1, the algorithm computes the marginal smoothing distributions

𝑝(𝑐𝑡|𝑧1:𝑇 , 𝑦1:𝑇 ) =
∑︁

𝑐𝑡+1∈C
𝑝(𝑐𝑡, 𝑐𝑡+1|𝑧1:𝑇 , 𝑦1:𝑇 ) (6.21)

and

𝑝(𝑐𝑡, 𝑐𝑡+1|𝑧1:𝑇 , 𝑦1:𝑇 ) = 𝑝(𝑐𝑡+1|𝑐𝑡)𝑝(𝑐𝑡|𝑧1:𝑡, 𝑦1:𝑡)
𝑝(𝑐𝑡+1|𝑧1:𝑡, 𝑦1:𝑡)

𝑝(𝑐𝑡+1|𝑧1:𝑇 , 𝑦1:𝑇 ), (6.22)

where 𝑝(𝑐𝑡|𝑧1:𝑡, 𝑦1:𝑡) is produced by the forward recursion formed by (6.14b) and
(6.14a). At the initial step 𝑡 = 𝑇 , the smoothing distribution (6.21) agrees with the
filtering one.

6.4 Maximization

To implement the M-step, one needs to be more concrete about the densities (6.1b)
and (6.1c). Let us therefore consider the example of estimating the parameters of
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additive Gaussian noise variables in the following JMNM:

𝑧𝑡 = 𝑎(𝑧𝑡−1, 𝑐𝑡) + 𝑣𝑡, 𝑣𝑡 ∼ 𝒩 (𝜇𝑣,𝑐𝑡 ,Σ𝑣,𝑐𝑡 ), (6.23a)
𝑦𝑡 = 𝑏(𝑧𝑡, 𝑐𝑡) + 𝑤𝑡, 𝑤𝑡 ∼ 𝒩 (𝜇𝑤,𝑐𝑡 ,Σ𝑤,𝑐𝑡), (6.23b)

where 𝑣𝑡 and 𝑤𝑡 are the mutually independent Gaussian noise variables with the
mode-dependent mean vector 𝜇·,𝑐𝑡 and covariance matrix Σ·,𝑐𝑡 . The terms 𝑎(·) and
𝑏(·) denote some known nonlinear functions. For all 𝑐𝑡 ∈ C, we intend to estimate
the parameter set 𝜃𝑐𝑡 = {𝜇𝑣,𝑐𝑡 ,Σ𝑣,𝑐𝑡 , 𝜇𝑤,𝑐𝑡 ,Σ𝑤,𝑐𝑡}, along with the matrix Π.

The important feature of (6.23) consists in that it allows us to simplify (6.12)
into a closed-form algebraic solution, as demonstrated by the following lemma.

Lemma 6.1. For the model (6.23), with its unknown parameters, the computation
of the stochastic approximation (6.12) reduces to recursively updating the sufficient
statistics

S𝑘 = (1 − 𝛼𝑘)S𝑘−1 + 𝛼𝑘𝑆𝑘,

where 𝑆𝑘 = (𝑆(1)
𝑘 , . . . , 𝑆

(5)
𝑘 ) is assembled of the vectors containing the entries

𝑆
(1)
𝑚𝑛,𝑘 =

𝑇∑︀
𝑡=2

E𝜃[𝑘−1]
[︁
1(𝑐𝑡 = 𝑛, 𝑐𝑡−1 = 𝑚)

⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
, (6.24a)

𝑆
(2)
𝑛,𝑘 =

𝑇∑︀
𝑡=2

E𝜃[𝑘−1]
[︁
1(𝑐𝑡 = 𝑛)

⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
, (6.24b)

𝑆
(3)
𝑛,𝑘 =

𝑇∑︀
𝑡=2

E𝜃[𝑘−1]
[︁
𝑠(3)(𝑧𝑡−1:𝑡[𝑘], 𝑐𝑡 = 𝑛)

⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
, (6.24c)

𝑆
(4)
𝑛,𝑘 =

𝑇∑︀
𝑡=1

E𝜃[𝑘−1]
[︁
1(𝑐𝑡 = 𝑛)

⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
, (6.24d)

𝑆
(5)
𝑛,𝑘 =

𝑇∑︀
𝑡=1

E𝜃[𝑘−1]
[︁
𝑠(5)(𝑦𝑡, 𝑧𝑡[𝑘], 𝑐𝑡 = 𝑛)

⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
. (6.24e)

Here, (𝑚,𝑛) ∈ C2 and

𝑠(3)(𝑧𝑡−1:𝑡, 𝑐𝑡 = 𝑛) = 1(𝑐𝑡 = 𝑛)[(𝑧𝑡 − 𝑎(𝑧𝑡−1, 𝑐𝑡))⊤ 1]⊤[·],
𝑠(5)(𝑦𝑡, 𝑧𝑡, 𝑐𝑡 = 𝑛) = 1(𝑐𝑡 = 𝑛)[(𝑦𝑡 − 𝑏(𝑧𝑡, 𝑐𝑡))⊤ 1]⊤[·],

with 1(·) denoting the indicator function.

Proof. See Section 6.7.

The expected values in (6.24a) and (6.24b-6.24e) are taken w.r.t. the previously
prepared smoothing distributions (6.22) and (6.21), respectively. For a newly sam-
pled reference trajectory 𝑧1:𝑇 [𝑘], the smoothing distributions need to be computed
only once per iteration 𝑘. Furthermore, to facilitate the estimation of the unknown
parameters, we have to maximize (6.12). The resulting maximizers can also be com-
puted in a closed form and are presented in the following lemma for completeness.
The result can also be found in, e.g., [166].
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Lemma 6.2. At iteration 𝑘, the stochastic approximation (6.12) is maximized w.r.t.
Π𝑚𝑛, and 𝜇𝑣,𝑛, Σ𝑣,𝑛 by

Π𝑚𝑛[𝑘] =
S(1)

𝑚𝑛,𝑘
∑︀𝐾

𝑙=1 S
(1)
𝑚𝑙,𝑘

, ∀(𝑚,𝑛) ∈ C2.

and

𝜇𝑣,𝑛[𝑘] =
S(3)

𝑛,𝑘⟨2⟩
S(2)

𝑛,𝑘

, Σ𝑣,𝑛[𝑘] =
S(3)

𝑛,𝑘⟨1⟩
S(2)

𝑛,𝑘

− 𝜇𝑣,𝑛[𝑘]𝜇𝑣,𝑛[𝑘]⊤,

respectively, where we use the partitioning

S(3)
𝑛,𝑘 =

⎡
⎣S

(3)
𝑛,𝑘⟨1⟩ S(3)

𝑛,𝑘⟨2⟩
· ·

⎤
⎦ .

Proof. See Section 6.7.

The same approach as with 𝜇𝑣,𝑛[𝑘] and Σ𝑣,𝑛[𝑘] holds also for 𝜇𝑤,𝑛[𝑘] and Σ𝑤,𝑛[𝑘].
Using Algorithm 20 to implement Step B1 in Algorithm 19, and replacing Steps B2
and B3 with the expressions from Lemmas 6.1 and 6.2, respectively, leads to the
estimation procedure for the model (6.23).

6.5 Numerical Illustration

This section illustrates the performance of the proposed RBPSAEM algorithm com-
pared to the PSAEM [130] and PSEM [194] procedures.

Let us consider that the functions in (6.23) are given by

𝑎(𝑧𝑡−1, 𝑐𝑡) = 0.5𝑧𝑡−1 + 25 𝑧𝑡−1

1 + 𝑧2
𝑡−1

+ 8 cos(1.2𝑡), (6.25a)

𝑏(𝑧𝑡, 𝑐𝑡) = 0.05𝑧2
𝑡 , (6.25b)

and the total number of modes is 𝐾 = 2. The state noise parameters are known and
mode-independent, with 𝜇𝑣 = 0 and Σ𝑣 = 1. We aim to estimate the remaining
parameters 𝜇𝑤,1, 𝜇𝑤,2, Σ𝑤,1, Σ𝑤,2, Π11, and Π22, whose true values are 0, 8, 5,
1, 0.98, and 0.8, respectively. All the compared procedures are applied with the
bootstrap proposal and 300 iterations. The number of sampled trajectories for the
PSAEM and RBPSAEM algorithms is 𝑁 = 4. For the PSEM approach, we simulate
90 forward and 10 backward trajectories. The experiments are performed on 20
different observation sequences of the length 𝑇 = 1000. The remaining portion of
the simulation settings is included in Section 6.8.

Fig. 6.1 shows that the proposed method surpasses the PSAEM procedure be-
cause of the lower (or very similar) bias and variance of the estimated parameters.
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Although the PSEM technique is better in estimating the transition probabilities,
the remaining estimates converge to incorrect values. The main reason then consists
in that the PSEM algorithm does not rely on the stochastic approximation and thus
requires a higher number of particles to perform similarly to the remaining proce-
dures. Moreover, as the probability Π11 is close to its upper bound, the method
suffers from the degeneracy around the mode changes [58]. Nevertheless, both the
PSAEM and RBPSAEM algorithms seem to be more robust in this respect. In the
present experiment, the time required to compute the proposed RBPSAEM proce-
dure is approximately two times higher than the PSAEM method but forty times
lower than the PSEM approach.

6.6 Discussion

Importantly, the proposed method is not limited only to situations with an analyti-
cally tractable M-step but can be combined with, e.g., the conditional M-step [149]
or gradient-based search techniques.

The idea suggested by [130] that consists in averaging over the index 𝑘 in the log
part of (6.6) by using all the trajectories from one iteration of the RBPGAS kernel
was also investigated. The results were practically the same as those presented here,
and thus this strategy is left out in the present chapter. However, the approach may
be more useful when a better proposal density is designed.

The total cost of computing one iteration with the PSEM, PSAEM, and RBP-
SAEM procedures scales according to 𝒪(𝑇𝑀𝑁), 𝒪(𝑇𝑁), and 𝒪(𝑇𝐾2𝑁), respec-
tively, where 𝑀 is the number of backward trajectories used by the PSEM method
[194]. The extra computational complexity of the RBPSAEM algorithm over the
PSAEM algorithm, given by the 𝐾2 term, is caused by the two levels of marginal-
ization required to compute the ancestor sampling weights. Nevertheless, the lower
variance and faster convergence rate of the estimates provided by the RBPSAEM
approach may increase its computational efficiency over the PSAEM technique. The
experiments supporting this statement are presented in Section 6.8.

6.7 Proofs

6.7.1 Proof of Proposition 1

The proof of Proposition 6.1 carries out by first formulating a basic BIF and then
its rescaled version.
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The derivation of the formula for computing the backward filtering distribution
𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) begins with the application of the law of conditional probability

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) = 𝑝(𝑐𝑡, 𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )

= 𝑝(𝑦𝑡|𝑐𝑡, 𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑦𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) . (6.26)

By using the fact that, given 𝑐𝑡 and 𝑧𝑡, there is no further information about 𝑦𝑡

contained in 𝑦𝑡+1:𝑇 and 𝑧𝑡+1:𝑇 , the first term in the numerator of (6.26) becomes the
observation model (6.1c),

𝑝(𝑦𝑡|𝑐𝑡, 𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) = 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡),

which allows us to rewrite (6.26) according to

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) ∝ 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡)𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ), (6.27)

where the equality up to the proportionality constant ∝ is used.
The formula for calculating the backward predictive distribution 𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )

can be derived by applying the marginalization

𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) =
∑︁

𝑐𝑡+1∈C
𝑝(𝑐𝑡, 𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ).

Here, we continue by expressing the summand in the sense of the law of conditional
probability

𝑝(𝑐𝑡, 𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) =
∑︁

𝑐𝑡+1∈C

𝑝(𝑐𝑡, 𝑐𝑡+1, 𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )

=
∑︁

𝑐𝑡+1∈C

𝑝(𝑐𝑡, 𝑧𝑡|𝑐𝑡+1, 𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )
𝑝(𝑧𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 ) . (6.28)

For the first term in the numerator of (6.28), we perform the sequence of rearrange-
ments given by

𝑝(𝑐𝑡, 𝑧𝑡|𝑐𝑡+1, 𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 ) = 𝑝(𝑐𝑡, 𝑐𝑡+1, 𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑐𝑡+1, 𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )

= 𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+2:𝑇 |𝑐𝑡, 𝑧𝑡, 𝑐𝑡+1, 𝑧𝑡+1)𝑝(𝑐𝑡, 𝑧𝑡, 𝑐𝑡+1, 𝑧𝑡+1)
𝑝(𝑐𝑡+1, 𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )

= 𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+2:𝑇 |𝑐𝑡, 𝑧𝑡, 𝑐𝑡+1, 𝑧𝑡+1)𝑝(𝑐𝑡, 𝑧𝑡|𝑐𝑡+1, 𝑧𝑡+1)
𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+2:𝑇 |𝑐𝑡+1, 𝑧𝑡+1)

= 𝑝(𝑐𝑡, 𝑧𝑡|𝑐𝑡+1, 𝑧𝑡+1), (6.29)

where, to obtain the last line, we apply

𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+2:𝑇 |𝑐𝑡, 𝑧𝑡, 𝑐𝑡+1, 𝑧𝑡+1) = 𝑝(𝑦𝑡+1:𝑇 , 𝑧𝑡+2:𝑇 |𝑐𝑡+1, 𝑧𝑡+1).
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That is, utilizing the Markov property of transition models (6.1a) and (6.1b), we can
see that, given 𝑐𝑡+1 and 𝑧𝑡+1, there is no more information about 𝑦𝑡+1:𝑇 and 𝑧𝑡+2:𝑇

contained in 𝑐𝑡 and 𝑧𝑡. After substituting (6.29) in (6.28), we obtain

𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) ∝
∑︁

𝑐𝑡+1∈C
𝑝(𝑐𝑡, 𝑧𝑡|𝑐𝑡+1, 𝑧𝑡+1)𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 ). (6.30)

The formula (6.30) closes the functional recursion of the sought BIF via the backward
filtering distribution from the previous time step, 𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 ). The BIF is
then formed by (6.27) and (6.30).

To rescale the filter, we first rewrite the backward transition kernel as

𝑝(𝑐𝑡, 𝑧𝑡|𝑐𝑡+1, 𝑧𝑡+1) = 𝑝(𝑐𝑡+1, 𝑧𝑡+1|𝑐𝑡, 𝑧𝑡)𝑝(𝑐𝑡, 𝑧𝑡)
𝑝(𝑐𝑡+1, 𝑧𝑡+1)

,

and plug it back in (6.30), which yields

𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 ) ∝
∑︁

𝑐𝑡+1∈C

𝑝(𝑐𝑡+1, 𝑧𝑡+1|𝑐𝑡, 𝑧𝑡)𝑝(𝑐𝑡, 𝑧𝑡)
𝑝(𝑐𝑡+1, 𝑧𝑡+1)

𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )

∝
∑︁

𝑐𝑡+1∈C

𝑝(𝑐𝑡+1, 𝑧𝑡+1|𝑐𝑡, 𝑧𝑡)𝑝(𝑐𝑡|𝑧𝑡)
𝑝(𝑐𝑡+1|𝑧𝑡+1)

𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 ). (6.31)

Subsequently, we divide both sides of (6.27) and (6.31) by the conditional prior
density 𝑝(𝑐𝑡|𝑧𝑡), resulting in

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑐𝑡|𝑧𝑡)

∝ 𝑝(𝑦𝑡|𝑐𝑡, 𝑧𝑡)
𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )

𝑝(𝑐𝑡|𝑧𝑡)
, (6.32a)

𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑐𝑡|𝑧𝑡)

∝
∑︁

𝑐𝑡+1∈C
𝑝(𝑐𝑡+1, 𝑧𝑡+1|𝑐𝑡, 𝑧𝑡)

𝑝(𝑐𝑡+1|𝑦𝑡+1:𝑇 , 𝑧𝑡+1:𝑇 )
𝑝(𝑐𝑡+1|𝑧𝑡+1)

. (6.32b)

By introducing the notation

𝛼𝑡(𝑐𝑡|𝑧𝑡:𝑇 ) := 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑐𝑡|𝑧𝑡)

, (6.33a)

𝛼𝑡+1(𝑐𝑡|𝑧𝑡:𝑇 ) := 𝑝(𝑐𝑡|𝑦𝑡+1:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑐𝑡|𝑧𝑡)

, (6.33b)

the recursion (6.32) can finally be rewritten into the form given by (6.19).

6.7.2 Proof of Proposition 2

The requirement is to compute the likelihood term in (6.17) for a single partial
reference trajectory 𝑧′

𝑡:𝑇 and multiple particles 𝑧𝑖
𝑡−1, where 𝑖 = 1, . . . , 𝑁 . Therefore,

it is convenient to rewrite it as

𝑝(𝑦𝑡:𝑇 , 𝑧
′
𝑡:𝑇 |𝑧𝑖

𝑡−1, 𝑐𝑡−1) =
∑︁

𝑐𝑡∈C
𝑝(𝑦𝑡:𝑇 , 𝑧

′
𝑡+1:𝑇 |𝑧′

𝑡, 𝑐𝑡)𝑝(𝑧′
𝑡, 𝑐𝑡|𝑐𝑡−1, 𝑧

𝑖
𝑡−1). (6.34)
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This formulation allows us to compute 𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡) in a single backward pass
through the data. However, computing 𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡) directly according to
(6.18) may result in numerical instability. To resolve this issue, we use the fact that
the backward filtering distribution is proportional to the product of the likelihood
𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡) and the conditional prior 𝑝(𝑐𝑡|𝑧𝑡), that is,

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) = 𝑝(𝑐𝑡, 𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )

= 𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡)𝑝(𝑐𝑡, 𝑧𝑡)
𝑝(𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )

= 𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡)𝑝(𝑐𝑡|𝑧𝑡)
𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡)

∝ 𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡)𝑝(𝑐𝑡|𝑧𝑡). (6.35)

After dividing both sides of (6.35) by 𝑝(𝑐𝑡|𝑧𝑡), we obtain

𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 )
𝑝(𝑐𝑡|𝑧𝑡)

∝ 𝑝(𝑦𝑡:𝑇 , 𝑧𝑡+1:𝑇 |𝑧𝑡, 𝑐𝑡), (6.36)

which can be used to replace the first term in the summand of (6.34). Here, we can
notice that it is more convenient to find a recursive relation for a direct propagation
of the ratio, than computing the conditional prior 𝑝(𝑐𝑡|𝑧𝑡) and use it to divide the
backward filtering distribution 𝑝(𝑐𝑡|𝑦𝑡:𝑇 , 𝑧𝑡:𝑇 ) at each time step. This motivates the
derivation of the rescaled BIF recursion given in Proposition 6.1.

The result (6.20) is then simply obtained by applying (6.33a) in (6.36) and
substituting it for (6.34).

6.7.3 Proof of Lemma 3

The proof of Lemma 6.1 starts with applying the chain rule to factorize the complete
data log likelihood

log 𝑝𝜃(𝑐1:𝑇 , 𝑧1:𝑇 , 𝑦1:𝑇 ) =
𝑇∑︁

𝑡=2
log 𝑝(𝑐𝑡|𝑐𝑡−1)+

𝑇∑︁

𝑡=2
log 𝑓(𝑥𝑡|𝑐𝑡, 𝑥𝑡−1; 𝜃𝑐𝑡) +

𝑇∑︁

𝑡=1
log 𝑔(𝑦𝑡|𝑐𝑡, 𝑥𝑡; 𝜃𝑐𝑡). (6.37)

As mentioned in Section 6.2.1, the initial terms 𝜇(𝑧1|𝑐1) and 𝜈(𝑐1) are known and
therefore excluded in (6.37). (This is also the reason why (6.24a-6.24c) start to sum
at 𝑡 = 2.) To find a concrete form of the expected value in (6.12), let us write the
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model (6.1) for the specific case (6.23) as

𝑝(𝑐𝑡|𝑐𝑡−1) =
𝐾∏︁

𝑚=1

𝐾∏︁

𝑛=1
Π1(𝑐𝑡=𝑛,𝑐𝑡−1=𝑚)

𝑚𝑛 , (6.38a)

𝑓(𝑧𝑡|𝑐𝑡, 𝑧𝑡−1; 𝜃𝑐𝑡) ∝
𝐾∏︁

𝑛=1
|Σ𝑣,𝑛|−0.51(𝑐𝑡=𝑛)×

exp
{︁

− 0.5 tr
(︁
𝐻𝑣

𝑛𝑠
(3)(𝑧𝑡−1:𝑡, 𝑐𝑡 = 𝑛)

)︁}︁
, (6.38b)

𝑔(𝑦𝑡|𝑐𝑡, 𝑧𝑡; 𝜃𝑐𝑡) ∝
𝐾∏︁

𝑛=1
|Σ𝑤,𝑛|−0.51(𝑐𝑡=𝑛)×

exp
{︁

− 0.5 tr
(︁
𝐻𝑤

𝑛 𝑠
(5)(𝑦𝑡, 𝑧𝑡, 𝑐𝑡 = 𝑛)

)︁}︁
, (6.38c)

where we introduce the parameter-dependent terms

𝐻𝑣
𝑛 = [𝐼 𝜇𝑣,𝑛 ]⊤Σ−1

𝑣,𝑛 [·],
𝐻𝑤

𝑛 = [𝐼 𝜇𝑤,𝑛]⊤Σ−1
𝑤,𝑛 [·],

with the statistics 𝑠(3) and 𝑠(5) being given as in Lemma 6.1. After substituting
(6.38) for the corresponding terms in (6.37), and using the linearity of expectation
operator, we obtain

E𝜃[𝑘−1]
[︁

log 𝑝𝜃(𝑐1:𝑇 , 𝑧1:𝑇 [𝑘], 𝑦1:𝑇 )
⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
:=

𝐾∑︁

𝑚=1

𝐾∑︁

𝑛=1
𝑆

(1)
𝑚𝑛,𝑘 log Π𝑚𝑛− 1

2

𝐾∑︁

𝑛=1

(︁
log |Σ𝑣,𝑛|𝑆(2)

𝑛,𝑘 + tr(𝐻𝑣
𝑛𝑆

(3)
𝑛,𝑘)

)︁

− 1
2

𝐾∑︁

𝑛=1

(︁
log |Σ𝑤,𝑛|𝑆(4)

𝑛,𝑘 + tr(𝐻𝑤
𝑛 𝑆

(5)
𝑛,𝑘)

)︁
, (6.39)

where the statistics (6.24) are introduced. Note we ignore the constant terms in
(6.39). The expected value in the form (6.39) can conveniently be written as the
inner product

E𝜃[𝑘−1]
[︁

log 𝑝𝜃(𝑐1:𝑇 , 𝑧1:𝑇 [𝑘], 𝑦1:𝑇 )
⃒⃒
⃒𝑧1:𝑇 [𝑘], 𝑦1:𝑇

]︁
=⟨𝑆𝑘, 𝜓(𝜃)⟩, (6.40)

with the vector 𝑆𝑘 = (𝑆(1)
𝑘 , . . . , 𝑆

(5)
𝑘 ), whose entries are given by those defined in

(6.24), and function 𝜓(𝜃) which summarizes the corresponding parameter-dependent
terms. The form of the r.h.s. of (6.40) is reproduced across all iterations 𝑘, which
enables us to rewrite (6.12) according to

̂︀𝒬𝑘(𝜃) = ⟨S𝑘, 𝜓(𝜃)⟩ = ⟨(1 − 𝛼𝑘)S𝑘−1 + 𝛼𝑘𝑆𝑘, 𝜓(𝜃)⟩. (6.41)

Now, as the dependence between the corresponding entries of the statistics S𝑘 and
parameter-dependent terms in 𝜓(𝜃) is linear, the maximization of (6.41) w.r.t. a
given parameter will result in an estimator which is only a function of the statistics
(c.f. Lemma 6.2). This statement concludes the proof of Lemma 6.1.
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6.7.4 Proof of Lemma 4

To better clarify the maximization of (6.12), let us reuse the derivations of the proof
of Lemma 6.1 for writing (6.41) as

⟨S𝑘, 𝜓(𝜃)⟩ =
𝐾∑︁

𝑚=1

𝐾∑︁

𝑛=1
S(1)

𝑚𝑛,𝑘 log Π𝑚𝑛− 1
2

𝐾∑︁

𝑛=1

(︁
log |Σ𝑣,𝑛|S(2)

𝑛,𝑘 + tr(𝐻𝑣
𝑛S

(3)
𝑛,𝑘)

)︁

− 1
2

𝐾∑︁

𝑛=1

(︁
log |Σ𝑤,𝑛|S(4)

𝑛,𝑘 + tr(𝐻𝑤
𝑛 S

(5)
𝑛,𝑘)

)︁
. (6.42)

We first perform the maximization w.r.t. Π𝑚𝑛. Therefore, we leave the Π𝑚𝑛-
independent terms in (6.42), which reduces the optimization problem to

maximize
Π𝑚𝑛

𝐾∑︁

𝑚=1

𝐾∑︁

𝑛=1
S(1)

𝑚𝑛,𝑘 log Π𝑚𝑛,

subject to
𝐾∑︁

𝑛=1
Π𝑚𝑛 = 1, 𝑚 ∈ C, Π𝑚𝑛 ≥ 0, ∀(𝑚,𝑛) ∈ C2.

The solution can be found by formulating the Lagrangian

𝐾∑︁

𝑛=1
S(1)

𝑚𝑛,𝑘 log Π𝑚𝑛 + 𝜆(1 −
𝐾∑︁

𝑙=1
Π𝑚𝑙)

for each 𝑚 ∈ C, where 𝜆 is the Lagrange multiplier. Since the optimized function
is concave, taking the partial derivatives w.r.t. Π𝑚𝑛 and 𝜆 leads to the first-order
necessary and sufficient conditions to find the global maximizer Π𝑚𝑛[𝑘].

Subsequently, we find the maximizers w.r.t. 𝜇𝑣,𝑛 and Σ𝑚𝑛. Ignoring the 𝜇𝑣,𝑛 and
Σ𝑚𝑛-independent terms in (6.42), the optimization problem is reduced to

maximize
𝜇𝑣,𝑛;Σ𝑣,𝑛

−log |Σ𝑣,𝑛|S(2)
𝑛,𝑘 − tr(𝐻𝑣

𝑛S
(3)
𝑛,𝑘).

Similarly to the previous case, taking the partial derivatives w.r.t. 𝜇𝑣,𝑛 and Σ−1
𝑣,𝑛

leads to the first-order necessary and sufficient conditions for finding the global
maximizers 𝜇𝑣,𝑛[𝑘] and Σ𝑣,𝑛[𝑘]. (The required matrix derivatives are 𝜕

𝜕𝑋
log |𝑋| =

𝑋−⊤, 𝜕
𝜕𝑋

tr(𝐴𝑋𝐵) = 𝐴⊤𝐵⊤, 𝜕
𝜕𝑋

tr(𝐴𝑋−1𝐵) = −𝑋−⊤𝐴⊤𝐵⊤𝑋−⊤.)

6.8 Additional Results

This section presents additional experiments with the jump Markov nonlinear model
(6.25). We assess the compared algorithms in terms of the computational time and
estimation accuracy of the hidden state and parameter trajectories.

To facilitate reproducibility of the numerical illustrations, we first provide the
rest of the simulation settings presented in Section 6.5. The continuous state prior
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is defined as mode-independent 𝜇(𝑧1|𝑐1) := 𝒩 (𝑧1; 0, 1), and the discrete state prior
𝜈(𝑐1) is fixed to the vector (0.5, 0.5). The step-size sequence is generated as 𝛼𝑘 = 1
for 𝑘 ≤ 50 and 𝛼𝑘 = (𝑘 − 50)−0.7 for 𝑘 > 50. The compared algorithms are
randomly (using uniform distribution) initialized from [0.5𝜃, 1.5𝜃], excepting the
diagonal entries of Π initialized from [0, 1].

In the first experiment, we evaluate the computational time of the compared
algorithms across multiple iterations, with the same number of particles as con-
sidered before. To assess the estimation accuracy, the ‘ground truth’ continuous
state, discrete state, and parameter trajectories were generated by the RBPSAEM
method with 𝑁 = 1024 particles. Fig. 6.2 illustrates that the RMSE of the contin-
uous state trajectories is comparable for the PSAEM and RBPSAEM algorithms
until approximately the first second of the simulation run. After this point, the
RBPSAEM approach starts to outperform the PSAEM procedure by reaching lower
values of the RMSE in less computational time. The NNZE of the discrete state
trajectory is more favorable for the RBPSAEM algorithm, which is obvious from
that its values are lower compared to the PSAEM method for almost full duration
of the experiment. The performance in terms of the NNZE begins to be compara-
tive for the PSAEM and RBPSAEM techniques as they approach ergodic regime.
A similar behavior can also be observed for the RMSE of the parameters, where the
proposed RBPSAEM algorithm again surpasses its PSAEM counterpart. Specifi-
cally, the RBPSAEM method achieves a lower RMSE in less computational time.
We can see, for instance, that RMSE = 1 is reached by the RBPSAEM procedure
after approximately one second, while the same RMSE is attained by the PSAEM
method after roughly two seconds. The PSEM algorithm fails to compete with the
remaining methods due to its performance indicators converging to high values at
the cost of extra computational time.

In the second experiment, the aforementioned performance indicators are recorded
with the number of particles being changed according to 𝑁 = 2𝑖 for the PSAEM
and RBPSAEM algorithms, and respecting 𝑁 = 50 + 10 · 2𝑖 for the PSEM pro-
cedure, where 𝑖 = 1, . . . , 5. The number of backward trajectories for the PSEM
method remains unchanged. The ‘ground truth’ trajectories are again computed
by the RBPSAEM algorithm with 𝑁 = 1024 particles. Fig. 6.3 reports that the
proposed method achieves lower values of the RMSE for all 𝑁 . Specifically, one
can notice that the RBPSAEM technique is upper bounded by its PSAEM counter-
part, making the effect of Rao-Blackwellization evident. Although the performance
of the PSEM method is poor again, we can notice that increasing the number of
particles makes the assessment criteria lower. However, to make the performance of
the PSEM algorithm comparative to the remaining methods, its number of particles
needs to be substantially increased.
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7 DYNAMIC BAYESIAN KNOWLEDGE
TRANSFER BETWEEN A PAIR
OF KALMAN FILTERS

The research in this chapter was conducted under
the supervision of Dr. Anthony Quinn.

Transfer learning is a framework that includes—among other topics—the de-
sign of knowledge transfer mechanisms between Bayesian filters. Transfer learning
strategies in this context typically rely on a complete stochastic dependence struc-
ture being specified between the participating learning procedures (filters). This
chapter proposes a method that does not require such a restrictive assumption. The
solution in this incomplete modelling case is based on the fully probabilistic design
of an unknown probability distribution which conditions on knowledge in the form
of an externally supplied distribution. We are specifically interested in the situation
where the external distribution accumulates knowledge dynamically via Kalman fil-
tering. Simulations illustrate that the proposed algorithm outperforms alternative
methods for transferring this dynamic knowledge from the external Kalman filter.

7.1 Introduction

7.1.1 Context

Transfer learning [168] has become a key research direction in statistical machine
learning [156]. The basic principle of transfer learning is to utilize the experience of
an external learning agent (source task) to improve the learning of a primary agent
(target task). Transfer learning has recently witnessed substantial attention in a
multitude of theoretically and practically oriented scientific fields, such as reinforce-
ment learning [204], deep learning [14], autonomous driving [91], computer vision
[169], sensor networks [211], etc. This chapter focuses on a specific transfer learning
context referred to as Bayesian transfer learning and its deployment in statistical
signal processing. We are specifically interested in developing a procedure for prob-
abilistic knowledge transfer in sensor networks where each knowledge-bearing node
constitutes a Bayesian filter acting on its associated state-space model.

The conventional approach to Bayesian transfer learning involves replacing the
prior distribution of standard Bayesian learning with a distribution conditioned on
the transferred knowledge [206]. The methods based on this principle differ in the
way the knowledge-conditioned prior is elicited [17]. An alternative principle is to
define the joint posterior distribution of both source and target quantities of interest
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given source and target data, and then to compute the posterior distribution of the
target quantity by marginalization [105]. Hierarchical Bayesian learning provides
another formalization of Bayesian transfer learning [222], where the knowledge is
transferred by means of a hyper-prior. However, it seems that a widely accepted
consensus on Bayesian transfer learning is missing. This chapter seeks to fill this
gap.

7.1.2 Contributions

The common aspect of the above approaches is that they assume existence of an
explicit model of all unknown quantities of interest, enabling Bayes’ rule to accom-
modate transfer learning, which we call here the complete modelling case. In the
present chapter, we are concerned with a scenario where there is not enough knowl-
edge to construct such a model explicitly. We refer to this particular situation as
the incomplete modelling case. The previous work in this respect [67] involved a
static Bayesian knowledge transfer for a pair of Kalman filters, where the external
knowledge is transferred in the form of a marginal distribution defined at a single
time-step. The present chapter extends this work by designing a mechanism for
transferring distributions defined over multiple time-steps, thus achieving dynamic
and on-line Bayesian knowledge transfer.

7.2 Knowledge Transfer Between a Pair of
Bayesian Filters

7.2.1 Problem Formulation

Let us consider a state-space model given by

𝑥𝑖 ∼ 𝑓(𝑥𝑖|𝑥𝑖−1), (7.1a)
𝑧𝑖 ∼ 𝑓(𝑧𝑖|𝑥𝑖), (7.1b)

where 𝑥𝑖 ∈ X ⊆ R𝑛𝑥 and 𝑧𝑖 ∈ Z ⊆ R𝑛𝑧 are respectively the state and observa-
tion variables defined at the discrete-time instants 𝑖 = 1, . . . , 𝑛. The state-space
model (7.1) is fully determined by the state transition (7.1a) and observation (7.1b)
probability densities, with all their parameters being known. At the initial time step
(𝑖 = 1), the state variable is distributed according to 𝑥1 ∼ 𝑓(𝑥1). The time-evolution
of the state-space model (7.1) is characterized by the joint augmented model

𝑓(x𝑛, z𝑛)=𝑓(z𝑛|x𝑛)𝑓(x𝑛)≡
𝑛∏︁

𝑖=1
𝑓(𝑧𝑖|𝑥𝑖)𝑓(𝑥𝑖|𝑥𝑖−1), (7.2)
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External Filter
𝑧1,𝑒 𝑧2,𝑒 𝑧𝑛,𝑒

𝑥1,𝑒 𝑥2,𝑒 𝑥𝑛,𝑒

Primary Filter

𝑧1 𝑧2 𝑧𝑛

𝑥1 𝑥2 𝑥𝑛

𝑓𝑒

𝑚𝑜a

Fig. 7.1: A pair of Bayesian filters acting on their state-space models. The external filter
provides the density 𝑓𝑒 summarizing knowledge of the quantities (states or observations)
gathered over the whole run of the filter. The primary filter makes use of this external
knowledge to improve state inference over the corresponding time interval.

where 𝑓(z𝑛|x𝑛) and 𝑓(x𝑛) define the joint observation model and joint state pre-prior
model, respectively. In (7.2), we respect the convention 𝑥0 ≡ ∅ and use the boldface
notation v𝑛 ≡ (𝑣1, . . . , 𝑣𝑛) to denote a sequence of variables 𝑣𝑖 ∈ V, for 𝑖 = 1, . . . , 𝑛.
Moreover, we use the symbols 𝑚 and 𝑓 to denote unspecified (variational form) and
specified (fixed form) densities, respectively.

We are concerned with the problem of optimally transferring knowledge from
an external Bayesian filter (source task) to a primary one (target task). The filters
operate on their respective models, processing their local observations, and estimat-
ing their local states (Fig. 1). The conditional independence structure between the
variables in each model is as specified in (7.2). However, an explicit conditioning
mechanism describing dependence between (x𝑛, z𝑛) and (x𝑛,𝑒, z𝑛,𝑒) is assumed miss-
ing. Note that there is no edge between these node sets in the graphical model in
Fig. 1. The common modelling approach based on a joint density of the external
and primary variables is therefore unavailable. This incomplete modelling scenario
is addressed here as a problem of optimal design of an unknown probability density,
processing the external (distributional) knowledge as a constraint. Specifically, we
design a dynamic Bayesian knowledge transfer method, where knowledge is trans-
ferred in the form of a joint probability density, 𝑓𝑒, describing a sequence of external
quantities, either x𝑛,𝑒 or z𝑛,𝑒.

7.2.2 Fully Probabilistic Design

A central concern of probabilistic inference is to design (i.e. infer) a stochastic model
representing our beliefs about an unknown quantity of interest, 𝑣 ∈ V. The con-
struction of such a model is naturally performed by processing our knowledge, 𝑘
(from physical laws, empirical facts etc.), about the modelled quantity in some way.
However, such knowledge is usually insufficient to determine the model completely.
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Thus, an explicit density, 𝑚(𝑘|𝑣), quantifying our beliefs about 𝑘 given 𝑣 is unavail-
able, and we therefore cannot compute 𝑚(𝑣|𝑘) directly by application of Bayes’ rule.
The model is then sought within a user-specified set of possible models, 𝑚(𝑣|𝑘) ∈ M,
that are compatible with 𝑘. To complete the decision-making set-up, we specify our
preferences about the unknown model, 𝑚(𝑣|𝑘), by defining its ideal prescription,
𝑚I(𝑣). Fully probabilistic design (FPD, [106]) is a principled and axiomatically jus-
tified [110] approach for optimally choosing 𝑚 ∈ M while taking into account our
knowledge and preferences. The optimal model (i.e. design) provides a compromise
between the knowledge, 𝑘, and the ideal prescription, 𝑚I. It is found as the density
that is closest to 𝑚I(𝑣) in the minimum Kullback-Leibler divergence (KLD, [123])
sense, while respecting the set-based knowledge constraint, 𝑚 ∈ M:

𝑚𝑜(𝑣|𝑘) ≡ argmin
𝑚∈M

𝒟(𝑚||𝑚I),

where 𝒟(𝑚||𝑚I) is the KLD from 𝑚 to 𝑚I, given as

𝒟(𝑚||𝑚I) = E𝑚

[︂
ln
(︂
𝑚

𝑚I

)︂]︂
,

with E𝑚 denoting the expected value with respect to 𝑚. The density 𝑚𝑜(𝑣|𝑘) ∈ M
is also consistent with 𝑘 and is referred to as the FPD-optimal design. Typically,
𝑚I /∈ M. The case where 𝑚I ∈ M implies that the knowledge constraint is inactive,
leading to 𝑚𝑜 = 𝑚I.

In common with the minimum cross-entropy (MXE) principle [195], the FPD
framework is a deterministic approach for designing an unknown density. A recent
extension of FPD leading to a stochastic design of the unknown density has been
provided in [177], conferring measures of uncertainty on the designed density. The
key feature that distinguishes FPD from the MXE principle is that FPD allows
preferences about the unknown model to be processed. The MXE principle follows
the same setting as presented above, but the ideal model, 𝑚I, is replaced by a prior
model, 𝑚P.

7.3 Dynamic Bayesian Knowledge Transfer

This section formalizes dynamic Bayesian knowledge transfer as an FPD-based op-
timal design of an unknown density and shows its application in Bayesian filtering.
A principal purpose of Bayesian filtering is to compute the marginal (filtering) den-
sity, 𝑓(𝑥𝑖|z𝑖), of the joint state posterior density, 𝑓(x𝑖|z𝑖). Under the conditional
independence assumptions adopted in (7.2), this density becomes

𝑓(𝑥𝑖|z𝑖) = 𝑓(𝑧𝑖|𝑥𝑖)𝑓(𝑥𝑖|z𝑖−1)
𝑓(𝑧𝑖|z𝑖−1)

, (7.3a)
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with

𝑓(𝑥𝑖|z𝑖−1) =
∫︁
𝑓(𝑥𝑖|𝑥𝑖−1)𝑓(𝑥𝑖−1|z𝑖−1)𝑑𝑥𝑖−1, (7.3b)

𝑓(𝑧𝑖|z𝑖−1) =
∫︁
𝑓(𝑧𝑖|𝑥𝑖)𝑓(𝑥𝑖|z𝑖−1)𝑑𝑥𝑖. (7.3c)

(7.3b) and (7.3c) are the one-step-ahead state and observation predictors, respec-
tively.

To solve the transfer learning problem (Fig. 1), we use FPD to choose opti-
mally the unknown joint augmented model of the states and observations, (x𝑛, z𝑛),
conditioned on the external density, 𝑓𝑒. This factorizes as follows:

𝑚(x𝑛, z𝑛|𝑓𝑒) = 𝑚(z𝑛|x𝑛, 𝑓𝑒)𝑚(x𝑛|𝑓𝑒). (7.4)

We express our joint preferences about the quantities (x𝑛, z𝑛) by defining the ideal
joint augmented model as (7.2), that is,

𝑚I(x𝑛, z𝑛) ≡ 𝑓(x𝑛, z𝑛). (7.5)

The FPD-optimal choice, 𝑚𝑜, conditioned on the external knowledge, 𝑓𝑒, is found as
the unique minimizer of the KLD from the unknown model (7.4) to the ideal model
(7.5):

𝑚𝑜(x𝑛, z𝑛|𝑓𝑒) ∈ argmin
𝑚∈M

𝒟(𝑚||𝑚I). (7.6)

The external knowledge—encoded as 𝑓𝑒—is transferred by constraining the set M
in a specific way, as we now show.

7.3.1 Transferring an External Joint Observation Predictor

We choose to transfer the external joint observation predictor, 𝑓𝑒(z𝑛,𝑒). To do so,
we must specify exactly how the 𝑓𝑒 condition constrains the functional form of 𝑚 in
(7.4). First, we consider the 𝑓𝑒-conditioned joint observation model, which factorizes
as

𝑚(z𝑛|x𝑛, 𝑓𝑒) =
𝑛∏︁

𝑖=1
𝑚(𝑧𝑖|x𝑖, z𝑖−1, 𝑓𝑒),

and we impose the following conditional independence assumption:

𝑚(𝑧𝑖|x𝑖, z𝑖−1, 𝑓𝑒) ≡ 𝑓𝑒(𝑧𝑖,𝑒|z𝑖−1,𝑒) |𝑧𝑖,𝑒=𝑧𝑖
. (7.7)

Here, we have constrained the 𝑓𝑒-conditioned model for the primary observations to
be the externally supplied one-step-ahead observation predictor. Next, we consider
the 𝑓𝑒-conditioned joint state prior model in (7.4), which factorizes as

𝑚(x𝑛|𝑓𝑒) =
𝑛∏︁

𝑖=1
𝑚(𝑥𝑖|x𝑖−1, 𝑓𝑒),
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and we impose the conventional Markov property:

𝑚(𝑥𝑖|x𝑖−1, 𝑓𝑒) ≡ 𝑚(𝑥𝑖|𝑥𝑖−1, 𝑓𝑒).

Under these specified knowledge constraints, the unknown 𝑓𝑒-conditioned joint aug-
mented model (7.4) becomes

𝑚(x𝑛, z𝑛|𝑓𝑒) ≡ 𝑓𝑒(z𝑛)𝑚(x𝑛|𝑓𝑒). (7.8)

With 𝑓𝑒(z𝑛) fixed via the external filter, the 𝑓𝑒-conditioned joint state prior factor,
𝑚(x𝑛|𝑓𝑒), is the only variational quantity which we can now choose via FPD for
the purpose of optimal knowledge transfer. In summary, the 𝑓𝑒-constrained set of
candidate models is

M ≡
{︁
models (7.8) with 𝑓𝑒(z𝑛) fixed

and 𝑚(x𝑛|𝑓𝑒) variational
}︁
. (7.9)

The following proposition establishes the fact that 𝑓𝑒(z𝑛,𝑒) is sequentially processed
into the FPD-optimal joint state prior of the primary filter. This will be key in
securing a recursive, causal, dynamic Bayesian transfer learning algorithm between
a pair of Kalman filters, as we will see in Section 7.3.2.

Proposition 7.1. The unknown joint augmented model satisfies the knowledge con-
straint, 𝑚 ∈ M(7.9), imposed by transfer of the external joint observation predictor,
𝑓𝑒(z𝑛,𝑒). The ideal model is defined in (7.5), and 𝐷(𝑚||𝑚I) < ∞,∀𝑚 ∈ M. Then,
an FPD-optimal design of 𝑚—i.e. a solution of (7.6)—is

𝑚𝑜(x𝑛, z𝑛|𝑓𝑒) = 𝑓𝑒(z𝑛)𝑚𝑜(x𝑛|𝑓𝑒), (7.10)

with

𝑚𝑜(x𝑛|𝑓𝑒) =
𝑛∏︁

𝑖=1
𝑚𝑜(𝑥𝑖|𝑥𝑖−1, 𝑓𝑒) (7.11a)

∝ 𝑓(x𝑛)
𝑛∏︁

𝑖=1
exp{−𝒟(𝑓𝑒||𝑓)}𝛾(𝑥𝑖). (7.11b)

Here,

𝑚𝑜(𝑥𝑖|𝑥𝑖−1, 𝑓𝑒)≡ 𝑓(𝑥𝑖|𝑥𝑖−1) exp{−𝒟(𝑓𝑒||𝑓)}𝛾(𝑥𝑖)
𝛾(𝑥𝑖−1)

, (7.12)

𝒟(𝑓𝑒||𝑓)≡
∫︁
𝑓𝑒(𝑧𝑖|z𝑖−1,𝑒) ln 𝑓𝑒(𝑧𝑖|z𝑖−1,𝑒)

𝑓(𝑧𝑖|𝑥𝑖)
𝑑𝑧𝑖, (7.13)

𝛾(𝑥𝑖−1)≡
∫︁
𝑓(𝑥𝑖|𝑥𝑖−1)

× exp{−𝒟(𝑓𝑒||𝑓)}𝛾(𝑥𝑖)𝑑𝑥𝑖. (7.14)

The normalization functions, 𝛾(𝑥𝑖), need to be computed via a backward sweep
through the recursions (7.14), for 𝑖 = 𝑛, . . . , 1, initialized with 𝛾(𝑥𝑛) ≡ 1.
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Proof. See Section 7.6.2.

Proposition 7.1 shows that FPD-optimal Bayesian transfer learning is achieved
by updating the pre-prior, 𝑓(x𝑛), to the prior, 𝑚𝑜(x𝑛|𝑓𝑒). This is achieved via
modulation with a product term (7.11b) containing the external knowledge over
the full time horizon. Correspondingly, at each time instant, 𝑖, the update of the
state transition model to the FPD-optimal state transition model is achieved via the
modulation (7.12). This optimal joint prior, 𝑚𝑜(x𝑛|𝑓𝑒), can therefore be sequentially
processed by the primary filter, via (7.3), since it enjoys the recursive factorization
form in (7.11b,7.12). In particular, (7.12) replaces (7.1a) in the standard Bayesian
filtering setting (7.3), optimally transferring the external joint observation predictor,
𝑓𝑒(z𝑛,𝑒), in a sequential manner.

7.3.2 Transfer of an External Kalman Filter Observation
Predictor

Here, we describe a specific application of Proposition 7.1 to the case of transferring
the external Kalman filter joint observation predictor. The Kalman filter is one of
the very restricted instances which ensure that the Bayesian filtering equations (7.3)
are tractable. Specifically, (7.1) is specialized to the linear-Gaussian case:

𝑓(𝑥𝑖|𝑥𝑖−1) ≡ 𝒩𝑥𝑖
(𝐴𝑥𝑖−1, 𝑄), (7.15a)

𝑓(𝑧𝑖|𝑥𝑖) ≡ 𝒩𝑧𝑖
(𝐶𝑥𝑖, 𝑅), (7.15b)

and the marginal state pre-prior density has to be chosen as the Gaussian density
𝑓(𝑥1) ≡ 𝒩𝑥1(𝜇1|0,Σ1|0). Here, 𝒩𝑣(𝜇,Σ) denotes the Gaussian density of a (vector)
random variable, 𝑣, with the mean, 𝜇, and covariance matrix, Σ; and 𝐴 and 𝐶 are
matrices of appropriate dimensions. Under these assumptions, the densities (7.3)
preserve the Gaussian form across all iterations, 𝑖 = 1, . . . , 𝑛,

𝑓(𝑥𝑖|z𝑖) = 𝒩𝑥𝑖
(𝜇𝑖|𝑖,Σ𝑖|𝑖), (7.16a)

𝑓(𝑥𝑖|z𝑖−1) = 𝒩𝑥𝑖
(𝜇𝑖|𝑖−1,Σ𝑖|𝑖−1), (7.16b)

𝑓(𝑧𝑖|z𝑖−1) = 𝒩𝑧𝑖
(𝑧𝑖|𝑖−1, 𝑅𝑖|𝑖−1), (7.16c)

with the shaping parameters being computed explicitly and recursively as follows:

𝜇𝑖|𝑖 = 𝜇𝑖|𝑖−1 +𝐾(𝑧𝑖 − 𝑧𝑖|𝑖−1), (7.17a)
Σ𝑖|𝑖 = Σ𝑖|𝑖−1 −𝐾𝑅𝑖|𝑖−1𝐾

⊤, (7.17b)
𝜇𝑖|𝑖−1 = 𝐴𝜇𝑖−1|𝑖−1, (7.18a)
Σ𝑖|𝑖−1 = 𝐴Σ𝑖−1|𝑖−1𝐴

⊤ +𝑄, (7.18b)
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𝑧𝑖|𝑖−1 = 𝐶𝜇𝑖|𝑖−1, (7.19a)
𝑅𝑖|𝑖−1 = 𝐶Σ𝑖|𝑖−1𝐶

⊤ +𝑅. (7.19b)

Here, 𝐾 ≡ Σ𝑖|𝑖−1𝐶
⊤𝑅−1

𝑖|𝑖−1 and ⊤ denotes matrix transposition. These formulae
follow directly from application of the conditioning and marginalization rules for
Gaussian densities containing affine transformations [188].

To support our next proposition, we present the following lemma, which specifies
the computation of the normalization function (7.14) in this Kalman context.

Lemma 7.1. Let the state-space model be defined by (7.15), and the external one-
step-ahead observation predictor by (7.16c), i.e. 𝑓𝑒(𝑧𝑖,𝑒|z𝑖−1,𝑒) ≡ 𝒩𝑧𝑖,𝑒

(𝑧𝑖|𝑖−1,𝑒,𝑅𝑖|𝑖−1,𝑒),
𝑖 = 𝑛, . . . , 2. Then, (7.14) preserves the form

𝛾(𝑥𝑖−1) ∝ exp
[︁

− 1
2(𝑥⊤

𝑖−1𝑆𝑖−1|𝑖𝑥𝑖−1 − 2𝑥⊤
𝑖−1𝑟𝑖−1|𝑖)

]︁
, (7.20)

and its explicit computation reduces to the recursion

𝑟𝑖−1|𝑖 = 𝐴⊤(𝐼𝑛𝑥 − 𝐿)𝑟𝑖|𝑖, (7.21a)
𝑆𝑖−1|𝑖 = 𝐴⊤(𝐼𝑛𝑥 − 𝐿)𝑆𝑖|𝑖𝐴, (7.21b)

where, for 𝑖 = 𝑛− 1, . . . , 2,

𝑟𝑖|𝑖 = 𝑟𝑖|𝑖+1 + 𝐶⊤𝑅−1𝑧𝑖|𝑖−1,𝑒, (7.22a)
𝑆𝑖|𝑖 = 𝑆𝑖|𝑖+1 + 𝐶⊤𝑅−1𝐶, (7.22b)

and, for 𝑖 = 𝑛,

𝑟𝑛|𝑛 = 𝐶⊤𝑅−1𝑧𝑛|𝑛−1,𝑒, (7.23a)
𝑆𝑛|𝑛 = 𝐶⊤𝑅−1𝐶. (7.23b)

Here, 𝐿 ≡ 𝑆𝑖|𝑖𝑄
1
2 (𝑄⊤

2 𝑆𝑖|𝑖𝑄
1
2 + 𝐼𝑛𝑥)−1𝑄

⊤
2 , 𝐼𝑛𝑥 is the 𝑛𝑥 ×𝑛𝑥 identity matrix, and 𝑄 1

2

is the Cholesky factor of 𝑄.

Proof. See Section 7.6.3.

Lemma 7.1 demonstrates the connection between the computation of (7.14) and
the backward information filter [148] which takes the mean value of the external
predictor 𝑧𝑖|𝑖−1,𝑒 as the observation input. Based on this result, the next proposition
furnishes the explicit recursive computation of the FPD-optimal state transition
model (7.12).

Proposition 7.2. Under the conditions of Lemma 7.1, the FPD-optimal state tran-
sition model (7.12) is given by

𝑚𝑜(𝑥𝑖|𝑥𝑖−1, 𝑓𝑒) = 𝒩𝑥𝑖
(𝜇𝑜

𝑖 ,Σ𝑜
𝑖 ), (7.24)
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Algorithm 21 FPD-optimal processing for dynamic transfer between Kalman filters
A. Backward sweep:

1. For 𝑖 = 𝑛,
* use 𝑧𝑛|𝑛−1,𝑒 in (7.23) to compute (𝑟𝑛|𝑛, 𝑆𝑛|𝑛).
* use (𝑟𝑛|𝑛, 𝑆𝑛|𝑛) in (7.21) to compute (𝑟𝑛−1|𝑛, 𝑆𝑛−1|𝑛).

2. For 𝑖 = 𝑛 − 1, . . . , 2;
* use 𝑧𝑖|𝑖−1,𝑒 and (𝑟𝑖|𝑖+1, 𝑆𝑖|𝑖+1) in (7.22) to compute (𝑟𝑖|𝑖, 𝑆𝑖|𝑖).
* use (𝑟𝑖|𝑖, 𝑆𝑖|𝑖) in (7.21) to compute (𝑟𝑖−1|𝑖, 𝑆𝑖−1|𝑖).

B. Forward sweep:
1. For 𝑖 = 1, set 𝜇1|0, Σ1|0 and use it in (7.17) to compute (𝜇1|1, Σ1|1).
2. For 𝑖 = 2, . . . , 𝑛;

* use (𝜇𝑖−1|𝑖−1, Σ𝑖−1|𝑖−1) in (7.27) to compute (𝜇𝑖|𝑖−1, Σ𝑖|𝑖−1).
* use (𝜇𝑖|𝑖−1, Σ𝑖|𝑖−1) in (7.17) to compute (𝜇𝑖|𝑖, Σ𝑖|𝑖).

with the shaping parameters calculated according to

𝜇𝑜
𝑖 = (𝐼𝑛𝑥 − Σ𝑜

𝑖𝑆𝑖|𝑖)𝐴𝑥𝑖−1 + Σ𝑜
𝑖 𝑟𝑖|𝑖, (7.25)

Σ𝑜
𝑖 = 𝑄

1
2 (𝑄⊤

2 𝑆𝑖|𝑖𝑄
1
2 + 𝐼𝑛𝑥)−1𝑄

⊤
2 . (7.26)

Here, 𝑟𝑖|𝑖 and 𝑆𝑖|𝑖 are given by (7.22a) and (7.22b), respectively.

Proof. See Section 7.6.4.

Proposition 7.2 specifies the optimal adaptation of the primary (i.e. target)
Kalman filter flow, in order to process transferred knowledge in the form of the
external joint observation predictor. If we apply (7.24) in (7.3b), then the one-
step-ahead state predictor preserves the Gaussian form of (7.16b). However, the
difference is that, now, the shaping parameters (7.18a,7.18b) are replaced with

𝜇𝑖|𝑖−1 = (𝐼𝑛𝑥−Σ𝑜
𝑖𝑆𝑖|𝑖)𝐴𝜇𝑖−1|𝑖−1+Σ𝑜

𝑖 𝑟𝑖|𝑖, (7.27a)
Σ𝑖|𝑖−1 = (𝐼𝑛𝑥−Σ𝑜

𝑖𝑆𝑖|𝑖)𝐴Σ𝑖−1|𝑖−1𝐴
⊤(𝐼𝑛𝑥−Σ𝑜

𝑖𝑆𝑖|𝑖)⊤+Σ𝑜
𝑖 , (7.27b)

respectively. The resulting filter with FPD-optimal dynamic transfer is summarized
in Algorithm 21.

7.4 Experiments

The purpose of this section is to compare the proposed method against alternative
approaches. We evaluate the performance of the primary filter when keeping its
observation variance 𝑅 fixed but changing the observation variance of the external
filter 𝑅𝑒, which quantifies the confidence of the external knowledge. To assess the re-
sulting state estimates, we use the mean norm squared-error, MNSE = 1

𝑛

∑︀𝑛
𝑖=1 ||𝑥𝑖−

𝜇𝑖|𝑖||2, with || · || denoting the Euclidean norm. We are concerned with a simple
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Fig. 7.2: The mean norm squared-error (MNSE) of the primary filter versus the observa-
tion variance 𝑅𝑒 of the external Kalman filter. The results are averaged over 1000 inde-
pendent simulation runs, with the solid line being the median and the shaded area delin-
eating the interquartile range. The procedures that are compared are (i) the Kalman filter
with No Transfer (NT), (ii) Static Bayesian knowledge Transfer (ST) [67], (iii) Dynamic
Bayesian knowledge Transfer (DT) given by Algorithm 21, (iv) an informally adapted ver-
sion of DT (DTi) which we mention in Section 7.5; and (v) Measurement Vector Fusion
(MVF) [220].

position-velocity state-space model [61] specified by

𝐴 =
⎡
⎣1 1
0 1

⎤
⎦ , 𝐶 =

[︁
1 0

]︁
, 𝑄 = 10−5𝐼2, 𝑅 = 10−3.

The number of time steps is 𝑛 = 50. The results of the compared algorithms are
illustrated in Fig. 7.2.

The MNSE of the NT filter defines a reference level against which the remaining
filters are compared. This level is obviously constant as the external observation
variance does not enter the standard Kalman filter via (7.19b). The error in the
remaining filters varies according to the ratio of the primary and external observation
variances. We can observe that the proposed DT filter achieves positive knowledge
transfer for 𝑅𝑒 < 3 × 10−3, which is evidenced by the fact that the error of the
DT filter is lower than that of the NT filter in this range. Moreover, the DT filter
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outperforms the MVF filter in the same interval, and it also outperforms the ST filter
for 𝑅𝑒 < 2 × 10−2. The important observation is that the ST and MVF filters meet
the performance of the NT filter close to the intersection where 𝑅𝑒 = 𝑅, but the
proposed DT filter passes this point with a markedly lower error and meets the NT
filter later (i.e. for higher external observation variance). This increased robustness
of the DT filter, which now benefits even from external observations that are of a
lower quality than the primary ones, is achieved because of its ability to accumulate
the external knowledge over multiple time steps via the dynamic transfer which is
the focus of this chapter. The ST and MVF filters do not have this property, as is
evidenced by the fact that their error is, respectively, worse and very similar to the
NT filter, above 𝑅𝑒 = 𝑅. However, accumulating external knowledge of increasingly
poor quality does lead to a more quickly decreasing performance of the DT filter for
𝑅𝑒 > 2 × 10−2.

7.5 Discussion

In common with the ST filter of [67], the DT filter is also insensitive to the trans-
fer of the covariance of the external observation predictor 𝑅𝑖|𝑖−1,𝑒. The loss of this
moment information occurs when evaluating the KLD (7.13) and can informally be
resolved by replacing 𝑅 with 𝑅𝑖|𝑖−1,𝑒 in (7.22) and (7.23). This simple substitution
defines the DTi filter introduced in Section 7.4. The experiments demonstrate that
the DTi filter surpasses all the other filters across the full range of values of 𝑅𝑒. This
outcome is remarkable as it proves that improved estimation accuracy is achieved
by implementing this FPD-optimal Bayesian transfer learning, obviating the need—
usually prohibitive—to specify an explicit stochastic dependence structure between
the external and primary quantities. It is also important to note that the DT fil-
ter offers the same advantage, albeit over a slightly shorter range of values of 𝑅𝑒.
However, it seems that the fragile dependence assumptions inherited by the MVF
filter undermine its performance. The fact that we do not require these dependence
assumptions is a markedly simplifying feature of this FPD-based transfer learning
framework, and should ensure its consistency in a wide range of applications. In Sec-
tion 7.7, we provide evidence that the proposed method also offers more robustness
against higher values of the state covariance 𝑄.

A universal Bayesian transfer learning framework has been elusive so far. How-
ever, the practical evidence of this chapter—along with the axiomatically driven
optimality it provides—supports the assertion that FPD-optimal Bayesian transfer
learning can become such a universal framework.
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7.6 Proofs

7.6.1 Preliminaries

To make subsequent derivations more compact, we first introduce the following two
auxiliary lemmata.

Lemma 7.2. Let 𝑓(𝑥|�̄�) = 𝒩𝑥(𝐴�̄�,𝑄) and 𝑔(𝑥) = exp{−1
2(𝑥⊤𝑆𝑥 − 2𝑥⊤𝑟)}, where

𝐴, 𝑄, 𝑆 and 𝑟, �̄� are constant real-valued matrices and vectors of appropriate di-
mensions, respectively, with 𝑄 and 𝑆 being symmetric and positive definite, then

𝒩𝑥(𝐴�̄�,𝑄) exp
{︁

− 1
2(𝑥⊤𝑆𝑥− 2𝑥⊤𝑟)

}︁
=

𝒩𝑥(𝜇,Σ) exp
{︁

− 1
2(�̄�⊤𝑆�̄�− 2�̄�⊤𝑟 − 𝑎)

}︁
. (7.28)

Here, we introduce the quantities

𝜇 = (𝐼 − Σ𝑆)𝐴�̄�+ Σ𝑟, (7.29a)

Σ = 𝑄
1
2𝑇−1𝑄

⊤
2 , (7.29b)

𝑟 = 𝐴⊤(𝐼 − 𝑆𝑄
1
2𝑇−1𝑄

⊤
2 )𝑟, (7.29c)

𝑆 = 𝐴⊤(𝐼 − 𝑆𝑄
1
2𝑇−1𝑄

⊤
2 )𝑆𝐴, (7.29d)

𝑎 = ||𝑟||2
𝑄

1
2 𝑇 −1𝑄

⊤
2

− log |𝑄𝑆 + 𝐼|, (7.29e)

𝑇 = 𝑄
⊤
2 𝑆𝑄

1
2 + 𝐼, (7.29f)

with ||𝑣||2𝑊 = 𝑣⊤𝑊𝑣 and |𝑊 | denoting the square of the weighted norm and matrix
determinant, respectively.

Proof. We begin with rearranging the product on the l.h.s. of (7.28) according to

𝑓(𝑥|�̄�)𝑔(𝑥) = (2𝜋)− 𝑛𝑥
2 exp

{︁
− 1

2(ℎ(𝑥, �̄�) + log |𝑄|)
}︁
, (7.30)

where
ℎ(𝑥, �̄�) = ||𝑥− 𝐴�̄�||2𝑄−1 + ||𝑥||2𝑆 − 2𝑥⊤𝑟. (7.31)

The proof then continues by separating the 𝑥-dependent terms and completing the
square in (7.31), which leads to

ℎ(𝑥, �̄�) = ||𝑥− 𝜇||2Σ−1 − ||𝜇||2Σ−1 + ||𝐴�̄�||2𝑄−1 , (7.32)

using 𝜇 ≡ Σ(𝑟+𝑄−1𝐴�̄�) and Σ−1 ≡ 𝑆 +𝑄−1. The next step concerns only the last
two terms in (7.32) where we gather the first and second-order quantities related to
�̄� as

ℎ(𝑥, �̄�) = ||𝑥− 𝜇||2Σ−1 + ||𝐴�̄�||2𝑄−1−𝑄−1Σ𝑄−1 − 2�̄�⊤𝐴⊤𝑄−1Σ𝑟 − ||𝑟||2Σ. (7.33)
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Substituting (7.33) back in (7.30) and extending the exponent by log |Σ| − log |Σ|
allows us to write

(2𝜋)− 𝑛𝑥
2 exp

{︁
− 1

2(ℎ(𝑥, �̄�) + log |𝑄| + log |Σ| − log |Σ|)
}︁

= 𝒩𝑥(𝜇,Σ) exp
{︁

− 1
2(�̄�⊤𝑆�̄�− 2�̄�⊤𝑟 − 𝑎)

}︁
, (7.34)

where

𝑟 = 𝐴⊤𝑄−1(𝑆 +𝑄−1)−1𝑟, (7.35a)
𝑆 = 𝐴⊤(𝑄−1 −𝑄−1(𝑆 +𝑄−1)−1𝑄−1)𝐴, (7.35b)
𝑎 = ||𝑟||2(𝑆+𝑄−1)−1 − log |𝑄𝑆 + 𝐼|, (7.35c)

utilizing 𝑆 +𝑄−1 = 𝑄−1(𝑄𝑆 + 𝐼) to obtain (7.35c).
However, the form of the shaping parameters (7.35a) and (7.35b) is inconvenient

for practical computations, mainly due to the presence of the inverse matrix 𝑄−1.
This issue can simply be resolved by taking advantage of the identities

𝑄−1(𝑆 +𝑄−1)−1 = (𝐼 + 𝑆𝑄)−1 = 𝐼 − 𝑆(𝑆 +𝑄−1)−1, (7.36a)
𝑄−1 −𝑄−1(𝑆 +𝑄−1)−1𝑄−1 = (𝑆−1 +𝑄)−1 = 𝑆 − 𝑆(𝑆 +𝑄−1)−1𝑆, (7.36b)

which both result from the matrix inversion lemma. These formulae leave the in-
verse matrix 𝑄−1 only in the inner term (𝑆 + 𝑄−1)−1. By taking advantage of the
factorization 𝑄 = 𝑄

⊤
2 𝑄

1
2 , with 𝑄

1
2 being the Cholesky factor of 𝑄, we obtain

(𝑆 +𝑄−1)−1 = 𝑄
1
2 (𝑄⊤

2 𝑆𝑄
1
2 + 𝐼)−1𝑄

⊤
2 = 𝑄

1
2𝑇−1𝑄

⊤
2 , (7.37)

where we introduce (7.29f). Finally, substituting (7.37) in (7.36), and then plugging
(7.36a) and (7.36b) in (7.35a) and (7.35b), respectively, leads to the formulae for
computing the shaping parameters (7.29c) and (7.29d).

Lemma 7.3. Let 𝑓𝑒(𝑧) = 𝒩𝑧(𝑧, �̄�) and 𝑓(𝑧|𝑥) = 𝒩𝑧(𝐶𝑥,𝑅), where �̄�, 𝐶, 𝑅 and 𝑧, 𝑥
are constant real-valued matrices and vectors of appropriate dimensions, respectively,
with �̄� and 𝑅 being symmetric and positive definite, then

exp
{︁

− 𝒟(𝑓𝑒||𝑓)
}︁

= exp
{︁

− 1
2(𝑥⊤𝐶⊤𝑅−1𝐶𝑥− 2𝑥⊤𝐶⊤𝑅−1𝑧 − 𝑏)

}︁
, (7.38)

where
𝑏 = −2E𝑓𝑒 [log 𝑓𝑒(𝑧)] − 𝑛𝑧 log(2𝜋) − log |𝑅| − E𝑓𝑒 [||𝑧||2𝑅−1 ].

Proof. The proof follows straightforwardly from

𝒟(𝑓𝑒||𝑓) = E𝑓𝑒 [log 𝑓𝑒(𝑧)] − E𝑓𝑒 [log 𝑓(𝑧|𝑥)]
= E𝑓𝑒 [log 𝑓𝑒(𝑧)] + 1

2(𝑛𝑧 log(2𝜋) + log |𝑅| + E𝑓𝑒 [||𝑧||2𝑅−1 ])
+ 1

2(||𝐶𝑥||2𝑅−1 − 2𝑥⊤𝐶⊤𝑅−1E𝑓𝑒 [𝑧]). (7.39)
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Applying the basic identity
∫︀
𝑧𝒩𝑧(𝑧, �̄�)𝑑𝑧 = 𝑧 to the third term in (7.39) and

plugging the result in exp{−𝒟(𝑓𝑒||𝑓)} leads to (7.38) and concludes the proof. Note
there is no need to calculate the expected values in the first two terms in (7.39) as
they do not depend on 𝑥.

7.6.2 Proof of Proposition 1

To simplify the assertion, let us introduce the shorthand notation 𝑚𝑛 ≡ 𝑚(x𝑛, z𝑛),
�̄� ≡ 𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒), and 𝑓𝑛 ≡ 𝑓(x𝑛, z𝑛). The proof begins in a way similar to the
original formulation of the FPD for designing control strategies [106, 109]. We begin
with rearranging (7.6) according to

min
𝑚𝑛∈M

𝒟(𝑚𝑛||𝑓𝑛) = min
𝑚𝑛∈M

∫︁
𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)𝑚𝑛−1

× ln 𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)𝑚𝑛−1

𝑓(𝑧𝑛|𝑥𝑛)𝑓(𝑥𝑛|𝑥𝑛−1)𝑓𝑛−1
𝑑x𝑛𝑑z𝑛

= min
𝑚𝑛∈M

(︃∫︁
𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)𝑚𝑛−1

× ln 𝑚𝑛−1

𝑓𝑛−1
𝑑𝑥𝑛𝑑𝑧𝑛𝑑x𝑛−1𝑑z𝑛−1

+
∫︁
𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)𝑚𝑛−1

× ln 𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)
𝑓(𝑧𝑛|𝑥𝑛)𝑓(𝑥𝑛|𝑥𝑛−1)

𝑑𝑥𝑛𝑑𝑧𝑛𝑑x𝑛−1𝑑z𝑛−1

)︃

= min
𝑚𝑛∈M

(︃
𝒟(𝑚𝑛−1||𝑓𝑛−1) +

∫︁
𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)𝑚𝑛−1

× ln 𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)
𝑓(𝑧𝑛|𝑥𝑛)𝑓(𝑥𝑛|𝑥𝑛−1)

𝑑𝑥𝑛𝑑𝑧𝑛𝑑x𝑛−1𝑑z𝑛−1

)︃
, (7.40)

where we apply the definition of the KL divergence, the independence assumptions
given in the models (7.5) and (7.8), and the normalization property of density func-
tions. To describe the minimization of 𝒟(𝑚𝑛||𝑓𝑛), let us denote the second term in
the last line of (7.40) as

𝐶(𝑚𝑛−1, �̄�) ≡
∫︁
𝑚𝑛−1𝐵(𝑥𝑛−1, �̄�)𝑑x𝑛−1𝑑z𝑛−1, (7.41)

where, to simplify the subsequent rearrangements, we introduce an intermediate
quantity

𝐵(𝑥𝑛−1, �̄�) ≡
∫︁
𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒) ln 𝑓𝑒(𝑧𝑛)𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)

𝛾(𝑥𝑛)𝑓(𝑧𝑛|𝑥𝑛)𝑓(𝑥𝑛|𝑥𝑛−1)
𝑑𝑥𝑛𝑑𝑧𝑛, (7.42)

in which the definition 𝛾(𝑥𝑛) ≡ 1 is applied. This inclusion of 𝛾(𝑥𝑛) is required to
take care of the normalization functions, as will be obvious later on in the proof.
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Since 𝑓𝑒 is considered fixed, 𝑚𝑛−1 and �̄� are the only quantities to be optimized
in (7.41). After attaining the minimum with respect to �̄�, we can continue by
minimizing the remaining terms with respect to 𝑚𝑛−1. These considerations allow
us to formulate a recursive scheme for the optimization task (7.40) given by

min
𝑚𝑛∈M

𝒟(𝑚𝑛||𝑓𝑛) = min
𝑚𝑛−1∈M

(︂
𝒟(𝑚𝑛−1||𝑓𝑛−1) + min

�̄�∈M
𝐶(𝑚𝑛−1, �̄�)

)︂
. (7.43)

To find the minimizer of (7.41) with respect to �̄�, let us rewrite (7.42) according to

𝐵(𝑥𝑛−1, �̄�) =
∫︁
𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)

[︃
ln 𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)
𝛾(𝑥𝑛)𝑓(𝑥𝑛|𝑥𝑛−1)

+ 𝒟(𝑓𝑒||𝑓)
]︃
𝑑𝑥𝑛, (7.44)

where

𝒟(𝑓𝑒||𝑓) =
∫︁
𝑓𝑒(𝑧𝑛) ln 𝑓𝑒(𝑧𝑛)

𝑓(𝑧𝑛|𝑥𝑛)𝑑𝑧𝑛 (7.45)

is the KLD from 𝑓𝑒(𝑧𝑛) to 𝑓(𝑧𝑛|𝑥𝑛) which is conditioned on 𝑥𝑛. Now, we are in
the position which allows us to find the minimizer. Introducing the normalization
function

𝛾(𝑥𝑛−1) =
∫︁
𝑓(𝑥𝑛|𝑥𝑛−1) exp{−𝒟(𝑓𝑒||𝑓)}𝛾(𝑥𝑛)𝑑𝑥𝑛

into (7.44) provides us with

𝐵(𝑥𝑛−1, �̄�) =
∫︁
𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒) ln 𝑚(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒)

𝑓(𝑥𝑛|𝑥𝑛−1) exp{−𝒟(𝑓𝑒||𝑓)}𝛾(𝑥𝑛)
𝛾(𝑥𝑛−1)

𝑑𝑥𝑛 − ln 𝛾(𝑥𝑛−1),

(7.46)

from which, by applying the basic property of the KL divergence, 𝐷(𝑚||𝑚) = 0, we
obtain

𝑚𝑜(𝑥𝑛|𝑥𝑛−1, 𝑓𝑒) = 𝑓(𝑥𝑛|𝑥𝑛−1) exp{−𝒟(𝑓𝑒||𝑓)}𝛾(𝑥𝑛)
𝛾(𝑥𝑛−1)

. (7.47)

Finally, substituting this partial minimizer (7.47) into (7.46), applying the at-
tained optimum 𝐵(𝑥𝑛−1, �̄�

𝑜) = − ln 𝛾(𝑥𝑛−1) in (7.41), and plugging the result in
(7.43), yields

min
𝑚𝑛−1∈M

(︂
𝐷(𝑚𝑛−1||𝑓𝑛−1) −

∫︁
𝑚𝑛−1 ln 𝛾(𝑥𝑛−1)𝑑x𝑛−1𝑑z𝑛−1

)︂
,

where we can see that 𝛾(𝑥𝑛−1) enters 𝐷(𝑚𝑛−1||𝑓𝑛−1) in the same way as 𝛾(𝑥𝑛) enters
𝐷(𝑚𝑛||𝑓𝑛), which allows the procedure to be repeated recursively. Performing the
above described minimization for the remaining terms of the recursion leads to the
full result 𝑚𝑜(x𝑛, z𝑛|𝑓𝑒) and concludes the proof. �

172



7.6.3 Proof of Lemma 1

The proof of Lemma 7.1 begins by writing (7.14) as backward time and data updat-
ing equations

𝛾(𝑥𝑖−1) =
∫︁
𝑓(𝑥𝑖|𝑥𝑖−1)𝛽(𝑥𝑖)𝑑𝑥𝑖, (7.48)

𝛽(𝑥𝑖) ≡ exp{−𝒟(𝑓𝑒||𝑓)}𝛾(𝑥𝑖). (7.49)

The rest of the proof then proceeds by induction. Let us first be concerned with
how to derive the initial shaping parameters of (7.49). Thus, for 𝑖 = 𝑛, we take
𝛾(𝑥𝑛) ≡ 1 from Proposition 7.1 and adopt Lemma 7.3 to express exp{−𝒟(𝑓𝑒||𝑓)},
which leads to

𝛽(𝑥𝑛) = exp
{︁

− 1
2(𝑥⊤

𝑛𝐶
⊤𝑅−1𝐶𝑥𝑛 − 2𝑥⊤

𝑛𝐶
⊤𝑅−1𝑧𝑛|𝑛−1,𝑒 − 𝑏𝑛)

}︁

≡ exp
{︁

− 1
2(𝑥⊤

𝑛𝑆𝑛|𝑛𝑥𝑛 − 2𝑥⊤
𝑛 𝑟𝑛|𝑛 − 𝑐𝑛|𝑛)

}︁
, (7.50a)

where 𝑟𝑛|𝑛 and 𝑆𝑛|𝑛 are given by (7.23), and 𝑐𝑛|𝑛 = 𝑏𝑛. We continue by seeking for-
mulae that reduce the computation of (7.49) into a closed-form algebraic recursion.
For 𝑖 = 𝑛− 1, . . . , 1, let us assume

𝛾(𝑥𝑖) = exp
{︁

− 1
2(𝑥⊤

𝑖 𝑆𝑖|𝑖+1𝑥𝑖 − 2𝑥⊤
𝑖 𝑟𝑖|𝑖+1 − 𝑐𝑖|𝑖+1)

}︁
,

then, after substituting this into (7.49) and applying Lemma 7.3 in order to express
exp{−𝒟(𝑓𝑒||𝑓)}, we obtain

𝛽(𝑥𝑖) = exp
{︁

− 1
2

(︁
𝑥⊤

𝑖 (𝑆𝑖|𝑖+1 + 𝐶⊤𝑅−1𝐶)𝑥𝑖

− 2𝑥⊤
𝑖 (𝑟𝑖|𝑖+1 + 𝐶⊤𝑅−1𝑧𝑖|𝑖−1,𝑒) − 𝑐𝑖|𝑖+1 − 𝑏𝑖

)︁}︁

≡ exp
{︁

− 1
2(𝑥⊤

𝑖 𝑆𝑖|𝑖𝑥𝑖 − 2𝑥⊤
𝑖 𝑟𝑖|𝑖 − 𝑐𝑖|𝑖)

}︁
, (7.50b)

which reveals that 𝑟𝑖|𝑖 and 𝑆𝑖|𝑖 are given by (7.22), and 𝑐𝑖|𝑖 = 𝑐𝑖|𝑖+1 + 𝑏𝑖. The last
step in proving Lemma 7.1 consists of finding a closed-form algebraic recursion for
updating the shaping parameters of (7.48). For 𝑖 = 𝑛, . . . , 2, this can be achieved
by first substituting (7.50b) and 𝑓(𝑥𝑖|𝑥𝑖−1) = 𝒩𝑥𝑖

(𝐴𝑥𝑖−1, 𝑄) into (7.48) and then
making use of Lemma 7.2 to write

𝛾(𝑥𝑖−1) =
∫︁

exp
{︁

− 1
2(𝑥⊤

𝑖 𝑆𝑖|𝑖𝑥𝑖 − 2𝑥⊤
𝑖 𝑟𝑖|𝑖)

}︁
𝒩𝑥𝑖

(𝐴𝑥𝑖−1, 𝑄)𝑑𝑥𝑖 exp
{︁

1
2𝑐𝑖|𝑖

}︁

≡
∫︁

𝒩𝑥𝑖
(𝜇𝑜

𝑖 ,Σ𝑜
𝑖 )𝑑𝑥𝑖 exp

{︁
− 1

2(𝑥⊤
𝑖−1𝑆𝑖−1|𝑖𝑥𝑖−1 − 2𝑥⊤

𝑖 𝑟𝑖−1|𝑖 − 𝑐𝑖−1|𝑖)
}︁
,

applying
∫︀ 𝒩𝑥𝑖

(𝜇𝑜
𝑖 ,Σ𝑜

𝑖 )𝑑𝑥𝑖 = 1 leads to the sought result, with 𝑟𝑖−1|𝑖 and 𝑆𝑖−1|𝑖 given
by (7.21), and 𝑐𝑖−1|𝑖 = 𝑐𝑖|𝑖 + 𝑎𝑖. �
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7.6.4 Proof of Proposition 2

The proof of Proposition 2 relies on rewriting (7.12) according to

𝑚𝑜(𝑥𝑖|𝑥𝑖−1, 𝑓𝑒) = 𝑓(𝑥𝑖|𝑥𝑖−1)𝛽(𝑥𝑖)∫︀
𝑓(𝑥𝑖|𝑥𝑖−1)𝛽(𝑥𝑖)𝑑𝑥𝑖

, (7.51)

with 𝛽(𝑥𝑖) having the same form as (7.49). For 𝑖 = 𝑛, . . . , 2, we first substitute
𝑓(𝑥𝑖|𝑥𝑖−1) = 𝒩𝑥𝑖

(𝐴𝑥𝑖−1, 𝑄) and (7.50) in (7.51) and then use Lemma 7.2 to obtain

𝑚𝑜(𝑥𝑖|𝑥𝑖−1, 𝑓𝑒) =
𝒩𝑥𝑖

(𝜇𝑜
𝑖 ,Σ𝑜

𝑖 ) exp
{︁
−1

2(𝑥⊤
𝑖−1𝑆𝑖−1|𝑖𝑥𝑖−1 − 2𝑥⊤

𝑖 𝑟𝑖−1|𝑖 − 𝑐𝑖−1|𝑖)
}︁

exp
{︁
−1

2(𝑥⊤
𝑖−1𝑆𝑖−1|𝑖𝑥𝑖−1 − 2𝑥⊤

𝑖 𝑟𝑖−1|𝑖 − 𝑐𝑖−1|𝑖)
}︁ , (7.52)

where we utilize
∫︀ 𝒩𝑥𝑖

(𝜇𝑜
𝑖 ,Σ𝑜

𝑖 )𝑑𝑥𝑖 = 1 in the denominator. Canceling out the expo-
nential terms then leads to sought result (7.24). �

7.7 Additional Experiments

We stick to the same simulation example and settings as in Section 4 and only inves-
tigate the performance of the compared filters for different values of the observation
variance 𝑅 and state covariance matrix 𝑄.

The MNSE for 𝑅 = (10−1, 10−2, 10−4, 10−5) is depicted in Fig. 7.3 (with the case
of 𝑅 = 10−3 being given in Fig. 7.2). The situation where 𝑅 = 10−1 and 𝑅 = 10−2 is
similar. For both these settings, we can observe that the DT filter is outperformed
by the MVF filter when the values of 𝑅𝑒 are low. However, from approximately two
orders of magnitude below 𝑅𝑒 = 𝑅, the DT filter starts to dominate the MVF filter.
Once again, we need to remind that the DT filter is not designed with dependence
assumptions between external and primary quantities being known. The ST filter is
closer to the performance of the NT filter but still takes advantage of the external
information to improve its performance for most of the values of 𝑅𝑒. The situation
changes for increasingly more precise measurements of the primary filter 𝑅 = 10−4

and 𝑅 = 10−5. The DT filter is now better than MVF filter for the values of 𝑅𝑒

that are lower than those slightly after the intersection point 𝑅𝑒 = 𝑅. In the case
of highly precise measurements 𝑅 = 10−5, we can see that the ST filter no longer
benefits from the external information at any value of 𝑅𝑒, and the MVF filter has
practically the same performance as the NT filter. The DTi filter surpasses the
remaining filters at every combination of 𝑅 and 𝑅𝑒.

Fig. 7.4 shows the MNSE of the compared methods for 𝑄 = (10−1, 10−2, 10−3,

10−4) · 𝐼2. (The value of primary observation variance is 𝑅 = 10−3 and the situation
for 𝑄 = 10−5 ·𝐼2 coincides with Fig. 7.2.) Describing the situation from 𝑄 = 10−4 ·𝐼2

to 𝑄 = 10−1 · 𝐼2, we can observe that the MNSE of the MVF filter quickly becomes
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indistinguishable from the NT filter and remains in this state for all the values
𝑄. The MVF filter therefore substantially suffers from higher values of 𝑄. The
ST method also performs poorly when increasing 𝑄, where for 𝑄 ≥ 10−3 · 𝐼2 the
external information does not improve its performance over the NT filter. However,
an important observation is that the DT procedure provides better performance
compared to the NT and ST filters for most of the values of 𝑅𝑒 and 𝑄. For increasing
values of 𝑄, we see that the distance between the MNSE of the DT and DTi filters
diminishes when decreasing 𝑅𝑒. We can also observe that as the values of 𝑄 increase,
the MNSE of the DTi filter is increasingly collinear with, and have farther distance
from, the reference level delineated by the NT filter for higher values of 𝑅𝑒. Similarly
as in the case of changing 𝑅, the DTi filter outperforms the rest of the algorithms
over the full range of 𝑅𝑒 and 𝑄. All in all, we can conclude that the DT and DTi
methods are more robust for high values of state covariance matrix 𝑄.
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Fig. 7.3: The mean norm squared-error (MNSE) of the primary filter versus the obser-
vation variance 𝑅𝑒 of the eternal Kalman filter for different settings of the observation
variance 𝑅 of the primary Kalman filter. The results are averaged over 1000 independent
simulation runs, with the solid line being the median and the shaded area delineating the
interquartile range. The procedures that are compared are (i) the Kalman filter with No
Transfer (NT), (ii) Static Bayesian knowledge Transfer (ST) [67], (iii) Dynamic Bayesian
knowledge Transfer (DT) given by Algorithm 21, (iv) an informally adapted version of DT
(DTi) which we mention in Section 7.5; and (v) Measurement Vector Fusion (MVF) [220].
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Fig. 7.4: The mean norm squared-error (MNSE) of the primary filter versus the observa-
tion variance 𝑅𝑒 of the eternal Kalman filter for different settings of the state covariance
matrix 𝑄 of the primary Kalman filter. The results are averaged over 1000 independent
simulation runs, with the solid line being the median and the shaded area delineating the
interquartile range. The procedures that are compared are (i) the Kalman filter with No
Transfer (NT), (ii) Static Bayesian knowledge Transfer (ST) [67], (iii) Dynamic Bayesian
knowledge Transfer (DT) given by Algorithm 21, (iv) an informally adapted version of DT
(DTi) which we mention in Section 7.5; and (v) Measurement Vector Fusion (MVF) [220].

177



CONCLUSION

Chapter 1 describes the fundamental principles and building blocks of sequential
Monte Carlo and particle Markov chain Monte Carlo methods. The presentation in
this chapter is made in a generic way in order to focus on only the main principles
of the discussed algorithms, without adopting any context specific details.

Chapter 2 discusses implementation aspects and consequences of applying the
methods presented in Chapter 1 to the state and parameter inference in state-
space models. To support the motivation for the use of SMC-based methods in this
thesis, an attention is paid to also discuss alternative approximate strategies—the
assumed Gaussian density methods. We do not make any final ranking between
these approaches as they both have their pros and cons depending on a specific
problem (being the trade-off between the approximation error and computational
time, which depends on the severity of nonlinearities in the state-space model).
Chapter 2 considers various strategies to perform the filtering and smoothing in
state-space models. A possible agenda for future work in this matter is to make an
exhaustive and up-to-date experimental comparison of diverse smoothing strategies,
as such comparison is currently missing in the literature.

Chapter 3 is concerned with the design of the projection-based Rao-Blackwellized
particle filter for estimating static parameters in the conditionally conjugate state-
space models. The primary objective was to devise an SMC-based approach which
counteracts the particle path degeneracy problem. This was accomplished by for-
mulating the projection-based updates for computing the statistics representing the
posterior density of the parameters in order to avoid their resampling and thus make
them less affected by the degenerate particle trajectories. The results reveal that
the proposed solution indeed decreases the variance of the parameter estimates over
multiple simulation runs compared to the plain Rao-Blackwellized particle filter,
and it therefore suffers less from the degeneracy problem. Moreover, the proposed
approach outperforms a number of alternative techniques for parameter estimation
in nonlinear and non-Gaussian state-space models. In the presented experiment, the
resulting solution has approximately the same computational complexity as the ba-
sic Rao-Blackwellized particle filter but provides an improved estimation precision.
Therefore, for the same precision level of both these methods, we obtain a consid-
erable decrease in the computational time in favor of the proposed method. When
changing the signal-to-noise ratio in the considered experimental setup, the proposed
projection-based Rao-Blackwellized particle filter starts to be more sensitive to the
initial setting of the posterior statistics. This increased sensitivity is mainly caused
by the adoption of the bootstrap proposal density. Therefore, designing a suitable
approximation of the optimal proposal density may provide more robustness in this
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sense.
The proposed algorithm can be applied to, e.g., Gaussian process-based (Bayesian)

optimization [85], seasonal epidemics detection [129], charge estimation of batteries
[138], etc.

The idea of computing the projections seems to provide an interesting opportu-
nity for counteracting the particle path degeneracy problem. Therefore, the primary
aim of future work should be focused on different strategies for the evolution of the
statistics and investigating dependence of the algorithm on the forgetting properties
of the state-space model. A possible generalization of the proposed approach is to
use an MCMC procedure [78] at each iteration in order to facilitate application to
nonlinear and non-Gaussian state-space models without the tractable substructure
with respect to the parameters. An increase in the computational complexity of
such an algorithm should be expected. Another possibility is to extend the method
to allow for the parameter inference in the conditionally conjugate jump Markov
models. Such a method could then be applied to, e.g., traffic flow monitoring [174]
and evaluation of the stock return sensitivity to macroeconomic news announcement
[89]. Alternatively, to enable tracking of time-varying parameters, it is also tempting
to extend the estimation procedure by a suitable forgetting strategy [122, 107].

Chapter 4 investigates the possibility of using alternative stabilized forgetting
in the context of SMC-based estimation of slowly-varying parameters in condi-
tionally conjugate state-space models. It is demonstrated that the proposed Rao-
Blackwellized particle filter outperforms the one introduced in [167]; more concretely,
the estimates of the measurement noise variance are less biased, and the approach
also reduces the variance of the estimated parameters. This is achieved in a compu-
tationally more efficient way. Specifically, in the present experiment, the proposed
method reduces the computational time by an order of magnitude. The algorithm
offers a fair degree of adaptability by allowing us to tune the forgetting of the past
information by the hyper-parameters of the alternative density. This makes the
method slightly more difficult to tune (setting the statistic 𝜇𝐴 of the alternative
density to zero always substantially simplifies the initial tuning).

There is a multitude of practical problems for which the proposed technique can
be utilized, such as estimating parameters of automotive-grade sensors [18], tire radii
estimation [142], etc.

The proposed algorithm—similarly to the one from Chapter 3—can also be ex-
tended to incorporate the MCMC steps, thus broadening the range of admissible
models to completely nonlinear and non-Gaussian state-space models. However, to
simplify the applicability of the proposed method, the main direction of future work
will consist in facilitating an autonomous adaptation of the hyper-parameters of the
alternative density. A possible approach how to solve this requirement lies in the
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hierarchical Bayesian modeling [17].
Chapter 5 designs Rao-Blackwellized particle Gibbs kernels for smoothing in

jump Markov nonlinear models. The experimental evidence shows that the pro-
posed algorithms are computationally more efficient than the competing approaches.
An additional investigation of the proposed (ancestor-sampling-based) procedure re-
vealed that the introduction of the artificial prior is redundant. However, changing
the scale of the backward information filtering recursion—provided by the associated
design step—is necessary. Practically, this means that we can set the artificial prior
to one, while leaving the related derivations intact. The necessary change of scale
is then still preserved in the algorithm design. A formally more suitable derivation
of this part of the algorithm is provided in Chapter 6. In various experiments, the
algorithm without the change of scale provided poor estimation precision compared
to the one with this change. In fact, the former version numerically failed several
times during the experiments, whereas the latter one always prevailed.

A possible application scenario for the developed smoothing algorithm consists
in offline processing of experimental data in indoor localization [160], target classi-
fication [8], fault detection [203], etc. In such cases, the proposed method can serve
as a generator of reference trajectories for the development and validation of online
algorithms.

Chapter 6 proposes the Rao-Blackwellized particle stochastic approximation ex-
pectation algorithm for jump Markov nonlinear models, offering a computationally
more efficient alternative to the basic formulation which jointly samples both the la-
tent variables. The efficiency depends on the distance between the individual regimes
of the jump Markov nonlinear model. On the one hand, if the regime parameters
are substantially different, it is easy to detect the changes in the observations and
the algorithm provides best efficiency. On the other hand, if the regime parameters
are very similar, it is harder to capture the changes in the observations and the
method is less efficient. However, in the latter case, it is no more reasonable to use
an algorithm which assumes both continuous state and discrete regime variables, it
would suffice to use an algorithm which considers only the continuous state variable.
The rationale behind this statement is that the changes in the observations become
so small that they will be hidden in the noise, and there is thus no need to consider
a jump Markov nonlinear model but rather a plain nonlinear non-Gaussian state-
space model. Therefore, the best performance can be expected when the changes are
clearly distinguishable from the noise. This behavior is common for all algorithms
dealing with switching models.

The method is applicable to parameter identification in diverse application areas
such as option pricing in financial markets [35], engine performance diagnosis [213],
land vehicle positioning [31], etc.
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The proposed Rao-Blackwellized particle stochastic approximation expectation
algorithm can be seen as an instance of where the Rao-Blackwellized particle Gibbs
kernel from Chapter 5 can be utilized. This building block opens up for the design of
various identification strategies in jump Markov nonlinear models, including particle
Gibbs with ancestor sampling for Bayesian parameter inference [132].

Chapter 7 devises an FPD-based optimal dynamic Bayesian transfer learning
approach and shows its application to probabilistic knowledge transfer between a
pair of Kalman filters. The resulting experiments demonstrate that FPD offers a
potential for building a versatile framework for Bayesian transfer learning. However,
there is still the question of dealing with the aforementioned insensitivity to the
second moment transfer, as discussed in Section 7.5. A possible answer to this
problem may lie in the recently proposed hierarchical FPD-based Bayesian transfer
learning [178], which will be the primary aim of future work.

We have focused thusfar on the basic scenario of one-directional knowledge trans-
fer between two nodes. The natural extension of the proposed approach therefore
consists of (i) facilitating the knowledge transfer among a greater number of nodes
and (ii) making the transfer bi-directional. Specifically, the former point will re-
quire us to introduce an optimal weighting mechanism to assess knowledge in a
network of nodes. Another possible extension is to replace the Kalman filters with
different forms of Gaussian filters [188], requiring us to make slight modifications to
the derivations presented in Section 7.3.2. Although the application of sequential
Monte Carlo methods [56] may be feasible, the recursive computation of (7.14) may
present problems. Finally, one can change the transferred knowledge and conditional
independence assumptions specified in (7.8) in order to propose other FPD-based
transfer learning options, such as transfer of the external joint state predictor.
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A SOME USEFUL STATISTICAL ANALYSIS

A.1 Preliminaries

Lemma A.1 (Block 𝐿𝐷𝑈 and 𝑈𝐷𝐿 decompositions). Let us consider real-valued
matrices 𝐴, 𝐵, 𝐶, and 𝐷 defined on the spaces R𝑛×𝑛, R𝑛×𝑚, R𝑚×𝑛, and R𝑚×𝑚,
respectively, where 𝑛 ∈ N≥1 and 𝑚 ∈ N≥1. If the matrices 𝐴 and 𝐷 are invertible,
then we can find 𝐿𝐷𝑈 and 𝑈𝐷𝐿 decompositions as follows:

[︃
𝐴 𝐵

𝐶 𝐷

]︃
=
[︃

𝐼 𝑂

𝐶𝐴−1 𝐼

]︃[︃
𝐴 𝑂

𝑂 𝐷 − 𝐶𝐴−1𝐵

]︃[︃
𝐼 𝐴−1𝐵

𝑂 𝐼

]︃
(A.1a)

=
[︃
𝐼 𝐵𝐷−1

𝑂 𝐼

]︃[︃
𝐴−𝐵𝐷−1𝐶 𝑂

𝑂 𝐷

]︃[︃
𝐼 𝑂

𝐷−1𝐶 𝐼

]︃
, (A.1b)

where 𝑂 and 𝐼 are respectively zero and unit diagonal matrices of appropriate di-
mensions.

Proof. It is enough to simply multiply the matrices on the r.h.s. of (A.1a) and (A.1b)
to make Lemma A.1 proved; however, it is more interesting to simultaneously show
how we obtain the Schur’s complement, 𝐷 − 𝐶𝐴−1𝐵. Hence, we use the quadratic
form

[︃
𝑎

𝑏

]︃⊤[︃
𝐴 𝐵

𝐶 𝐷

]︃[︃
𝑎

𝑏

]︃
= 𝑎⊤𝐴𝑎+ 𝑏⊤𝐶𝑎+ 𝑎⊤𝐵𝑏+ 𝑏⊤𝐷𝑏,

which yields, after completing the square,

(𝑎+ 𝐴−1𝐶⊤𝑏)⊤𝐴(𝑎+ 𝐴−1𝐵𝑏) + 𝑏⊤(𝐷 − 𝐶𝐴−1𝐵)𝑏

=
[︃
𝑎

𝑏

]︃⊤[︃
𝐼 𝑂

𝐶𝐴−1 𝐼

]︃[︃
𝐴 𝑂

𝑂 𝐷 − 𝐶𝐴−1𝐵

]︃[︃
𝐼 𝐴−1𝐵

𝑂 𝐼

]︃[︃
𝑎

𝑏

]︃
, (A.2)

where we can see that the second term on the l.h.s. of (A.2) is the Schur’s comple-
ment, and we simultaneously proof (A.1a). The second equality (A.1b) follows the
same approach.

Lemma A.2 (Inversion of a block lower-triangular matrix). The lower-triangular,
real-valued, block matrix 𝐿 ∈ R𝑛×𝑛 and its inverse 𝐿−1 are given as follows:

𝐿 =
[︃
𝐼 𝑂

𝐿21 𝐼

]︃
, 𝐿−1 =

[︃
𝐼 𝑂

−𝐿21 𝐼

]︃
,

where 𝐿21, 𝑂, and 𝐼 are repsectively arbitrary, zero, and unit diagonal matrices of
appropriate dimensions.
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Proof. The assertion leads directly from comparing the entries of 𝐿𝐿−1 = 𝐼𝑛.

Lemma A.3 (Inversion of a block matrix). Let us consider real-valued matrices 𝐴,
𝐵, 𝐶, and 𝐷 belonging to the spaces R𝑛×𝑛, R𝑛×𝑚, R𝑚×𝑛, and R𝛾×𝛾, respectively;
then, the inversion of the following matrix holds:
[︃
𝐴 𝐵

𝐶 𝐷

]︃−1

=
[︃
𝐼 −𝐴−1𝐵

𝑂 𝐼

]︃[︃
𝐴−1 𝑂

𝑂 (𝐷 − 𝐶𝐴−1𝐵)−1

]︃[︃
𝐼 𝑂

−𝐶𝐴−1 𝐼

]︃
(A.3a)

=
[︃
𝐴−1 + 𝐴−1𝐵(𝐷 − 𝐶𝐴−1𝐵)−1𝐶𝐴−1 −𝐴−1𝐵(𝐷 − 𝐶𝐴−1𝐵)−1

−(𝐷 − 𝐶𝐴−1𝐵)−1𝐶𝐴−1 (𝐷 − 𝐶𝐴−1𝐵)−1

]︃
(A.3b)

=
[︃

𝐼 𝑂

−𝐷−1𝐶 𝐼

]︃[︃
(𝐴−𝐵𝐷−1𝐶)−1 𝑂

𝑂 𝐷−1

]︃[︃
𝐼 −𝐵𝐷−1

𝑂 𝐼

]︃
(A.3c)

=
[︃

(𝐴−𝐵𝐷−1𝐶)−1 −(𝐴−𝐵𝐷−1𝐶)−1𝐵𝐷−1

−𝐷−1𝐶(𝐴−𝐵𝐷−1𝐶)−1 𝐷−1𝐶(𝐴−𝐵𝐷−1𝐶)−1𝐵𝐷−1 +𝐷−1

]︃
, (A.3d)

if all the inversions are admissible.

Proof. To prove the assertion, we utilize Lemma A.1 and Lemma A.2.

Lemma A.4 (The matrix inversion lemma). Let 𝐴, 𝐵, 𝐶, and 𝐷 be real-valued
matrices belonging to the spaces R𝑛×𝑛, R𝑛×𝑚, R𝑚×𝑛, and R𝑚×𝑚, respectively; then,
it holds

(𝐴+𝐵𝐷𝐶)−1 = 𝐴−1 − 𝐴−1𝐵(𝐷−1 + 𝐶𝐴−1𝐵)−1𝐶𝐴−1, (A.4)

considering the required inversions exist.

Proof. The proof follows directly from comparing the first entry of (A.3b) and (A.3d)
in Lemma A.3.

Lemma A.5. Let us consider a scalar-valued variable 𝑣 ∈ R and the function
𝑓(𝑣) = 𝑣𝑛 exp{−𝑎𝑣2}, where 𝑎 ∈ R>0 and 𝑛 ∈ N≥0; then, the integral 𝐽 =
∫︀∞

−∞ 𝑣𝑛 exp{−𝑎𝑣2}𝑑𝑣 yields
(i) 𝐽 = 0 for odd 𝑛,

(ii) 𝐽 = Γ
(︁

𝑛+1
2

)︁
𝑎− 𝑛+1

2 for even 𝑛,
(iii) 𝐽 = 𝜋

1
2𝑎− 1

2 for 𝑛 = 0.

Proof. (i) For odd 𝑛, the function 𝑓(𝑣) is odd, that is, 𝑓(−𝑣) = −𝑓(𝑣), and we
therefore have 𝐽 =

∫︀∞
0 𝑓(𝑣)𝑑𝑣 +

∫︀ 0
−∞ 𝑓(𝑣)𝑑𝑣 =

∫︀∞
0 𝑓(𝑣)𝑑𝑣 − ∫︀∞

0 𝑓(𝑣)𝑑𝑣 = 0. (ii) For
even 𝑛, we introduce the substitution 𝑡 = 𝑎𝑣2, from which it leads that 𝑣 = (𝑡/𝑎) 1

2

and 𝑑𝑣 = 1/2(𝑎𝑡)− 1
2𝑑𝑡. Hence, we can write 𝑎− 𝑛+1

2
∫︀∞

0 𝑡
𝑛+1

2 −1 exp{−𝑡}𝑑𝑡, where we
recognize the gamma function [1], Γ(𝑏) =

∫︀∞
0 𝑡𝑏−1 exp{−𝑡}𝑑𝑡, with 𝑏 ∈ R>0.
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Lemma A.6 (Multivariate gamma function). The real-valued multivariate gamma
function is given by

Γ𝑛(𝑎) =
∫︁

𝑋>0
|𝑋|𝑎− 𝑛+1

2 exp{−tr(𝑋)}𝑑𝑣(𝑋) = 𝜋𝑛 𝑛−1
4

𝑛∏︁

𝑖=1
Γ
(︂
𝑎− 𝑖− 1

2

)︂
, (A.5)

where 𝑎 > 𝑛−1
2 . The integration is taken over the space of symmetric positive definite

real-valued matrices 𝑋 ∈ R𝑛×𝑛, with 𝑣(𝑋) taking the unique entries of vec(𝑋) by
removing all supradiagonal elements of 𝑋.

Proof. To prove (A.5), we use the fact that the determinant and the trace of 𝑋 can
be computed according to

|𝑋| = 𝑥11|�̄�22|, (A.6a)
tr(𝑋) = 𝑥11 + tr(�̄�22) + tr(𝑥21𝑥

−1
11 𝑥12), (A.6b)

where �̄�22 = 𝑋22 − 𝑥21𝑥
−1
11 𝑥12. These formulae can simply be obtained by decom-

posing 𝑋 into blocks and applying (A.1a), that is,

𝑋 =
[︃
𝑥11 𝑥12

𝑥21 𝑋22

]︃
=
[︃

1 0⊤
𝑛−1

𝑥21𝑥
−1
11 𝐼𝑛−1

]︃[︃
𝑥11 0⊤

𝑛−1

0𝑛−1 𝑋22 − 𝑥21𝑥
−1
11 𝑥12

]︃[︃
1 𝑥−1

11 𝑥12

0𝑛−1 𝐼𝑛−1

]︃
.

Consequently, by substituting (A.6) for the respective terms in (A.5), we obtain

Γ𝑛(𝑎) =
∫︁ ∞

0
𝑥

𝑎− 1
2 (𝑛+1)

11 exp{−𝑥11}
𝑛−1∏︁

𝑖=1

∫︁
exp{−𝑥−1

11 𝑥
2
12,𝑖}𝑑𝑥12,𝑖𝑑𝑥11

×
∫︁

�̄�22>0
|�̄�22|𝑎− 1

2 (𝑛+1) exp{−tr(�̄�22)}𝑑𝑣(�̄�22),

where 𝑥12,𝑖 denotes the 𝑖th entry of the vector 𝑥12. The integral w.r.t. 𝑥12,𝑖 can be
computed by utilizing Lemma A.5, the point (iii), with 𝑎 = 𝑥−1

11 , which results in
∫︀

exp{−𝑎−1
11 𝑥

2
12,𝑖}𝑑𝑥12,𝑖 = (𝑥11𝜋) 1

2 . Furthermore, we notice that the integral w.r.t.
�̄�22 is equivalent to Γ𝑛−1

(︁
𝑎− 1

2

)︁
. If we put this together, we can write

Γ𝑛(𝑎) = 𝜋
𝑛−1

2

∫︁ ∞

0
𝑥𝑎−1

11 exp{−𝑥11}𝑑𝑥11Γ𝑛−1
(︁
𝑎− 1

2

)︁

= 𝜋
𝑛−1

2 Γ(𝑎)Γ𝑛−1
(︁
𝑎− 1

2

)︁
, (A.7)

where we use, similarly as in Lemma A.5, the definition of the Gamma integral. It is
now obvious that (A.7) defines a recursive formula, which, after unwrapping, yields

Γ𝑛(𝑎) = 𝜋
𝑛−1

2 Γ(𝑎)𝜋 𝑛−2
2 Γ

(︁
𝑎− 1

2

)︁
· · · 𝜋 𝑛−𝑛

2 Γ
(︁
𝑎− 𝑛−1

2

)︁

= 𝜋𝑛 𝑛−1
4

𝑛∏︁

𝑖=1
Γ
(︁
𝑎− 𝑖−1

2

)︁
. (A.8)

Here, we use simple identities ∑︀𝑛
𝑖=1

(︁
𝑛−𝑖

2

)︁
= 𝑛𝑛−1

4 and ∑︀𝑛
𝑖=1 𝑖 = 𝑛𝑛+1

2 . From (A.8),
we the r.h.s. of (A.5), and the proof is thus concluded.
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A.2 Common Probability Density Functions

In this section, we prove various properties of the probability density functions that
are commonly used in the present document. The proofs are carried out by means
of the straightforward matrix and integral calculus, without the need to rely on
philosophically deeper constructions, such as the moment generating functions [20].

Proposition A.1 (The matrix Gaussian probability density and its properties). A
matrix-valued random variable 𝑋 ∈ R𝑛×𝑚 is Gaussian distributed if it follows the
probability density function in the form

vec(𝑋) ∼ 𝒩 (vec(�̂�), 𝑌 ⊗ 𝑍)

= ℐ−1 exp
{︁

− 1
2

(︁
vec(𝑋) − vec(�̂�)

)︁⊤(︁
𝑌 ⊗ 𝑍

)︁−1(︁
vec(𝑋) − vec(�̂�)

)︁}︁
(A.9a)

= ℐ−1 exp
{︁

− 1
2tr
(︁
𝑌 −1(𝑋 − �̂�)⊤𝑍−1(𝑋 − �̂�)

)︁}︁
, (A.9b)

where �̂� ∈ R𝑛×𝑚 labels the mean value matrix, 𝑌 ∈ R𝑚×𝑚 and 𝑍 ∈ R𝑛×𝑛 are
symmetric, positive-definite matrices, ⊗ is the Kronecker product, and ℐ denotes
the proportionality constant. We consider that

a) the proportionality constant is ℐ = (2𝜋)𝑛𝑚
2 |𝑌 |𝑛

2 |𝑍|𝑚
2 ;

b) the first non-central moment is E(𝑋) = �̂�;
c) the second non-central moment is E(𝑋𝐻𝑋⊤) = tr(𝑌 𝐻)𝑍 + �̂�𝐻�̂�⊤, where

𝐻 ∈ R𝑚×𝑚 is an arbitrary matrix;
d) the second non-central moment is E(𝑋⊤𝐻𝑋) = tr(𝑍𝐻)𝑌 + �̂�⊤𝐻�̂�, where

𝐻 ∈ R𝑛×𝑛 is an arbitrary matrix.

Proof. We start by establishing tools needed to prove the above statements. The
proofs are carried out in the sense of the second expression (A.9b). The equivalence
between (A.9a) and (A.9b) can be established as

vec(𝑋 − �̂�)⊤(𝑌 ⊗ 𝑍)−1vec(𝑋 − �̂�) = vec(𝑋 − �̂�)⊤vec(𝑍−1(𝑋 − �̂�)𝑌 −1)
= tr

(︁
(𝑋 − �̂�)⊤𝑍−1(𝑋 − �̂�)𝑌 −1

)︁
,

where the identities (𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1, (𝐵⊤ ⊗ 𝐴)vec(𝐶) = vec(𝐴𝐶𝐵), and
vec(𝐴)⊤vec(𝐵) = tr(𝐴⊤𝐵) are used. These three formulae are discussed and proven
in [143]. The expression (A.9b) is not very convenient for performing the integration
directly. Therefore, we need to resort to the change of variables formula. Thus, we
search a proper transformation 𝑋 = 𝐹 (𝑈), where 𝐹 : R𝑛×𝑚 → R𝑛×𝑚, and the
corresponding Jacobian determinant.
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The matrices 𝑌 and 𝑍 can be decomposed into the product of their square root
matrices 𝑌 = (𝑌 1

2 )⊤𝑌
1
2 and 𝑍 = (𝑍 1

2 )⊤𝑍
1
2 , respectively, which allows us to write

tr
(︁
𝑌 − 1

2 (𝑌 − 1
2 )⊤(𝑋 − �̂�)⊤𝑍− 1

2 (𝑍− 1
2 )⊤(𝑋 − �̂�)

)︁

= tr
[︁(︁

(𝑍− 1
2 )⊤(𝑋 − �̂�)𝑌 − 1

2
)︁(︁

(𝑍− 1
2 )⊤(𝑋 − �̂�)𝑌 − 1

2
)︁⊤]︁

.

We introduce the substitution

𝑈 = (𝑍− 1
2 )⊤(𝑋 − �̂�)𝑌 − 1

2 , (A.10)

from which we obtain the sought transformation

𝑋 = (𝑍 1
2 )⊤𝑈𝑌

1
2 + �̂�. (A.11)

Taking differentials of the both sides of (A.11) yields

𝑑𝑋 = (𝑍 1
2 )⊤(𝑑𝑈)𝑌 1

2 ,

which further provides, after vectorizing,

vec(𝑑𝑋) = vec((𝑍 1
2 )⊤(𝑑𝑈)𝑌 1

2 ) = ((𝑌 1
2 )⊤ ⊗ (𝑍 1

2 )⊤)vec(𝑑𝑈). (A.12)

The Jacobian matrix is therefore given as

𝜕 vec(𝐹 (𝑈))
𝜕(vec(𝑈))⊤ = ((𝑌 1

2 )⊤ ⊗ (𝑍 1
2 )⊤);

accordingly, the Jacobian determinant satisfies
⃒⃒
⃒⃒
⃒
𝜕 vec(𝐹 (𝑈))
𝜕(vec(𝑈))⊤

⃒⃒
⃒⃒
⃒ = |𝑌 |𝑛

2 |𝑍|𝑚
2 , (A.13)

where we use the formula |𝐴⊗𝐵| = |𝐴|𝑏|𝐵|𝑎, with 𝐴 ∈ R𝑎×𝑎 and 𝐵 ∈ R𝑏×𝑏, see [143].
Now, with the above tools, let us consecutively prove a) − d).

a) From (A.9b) and the normalization property of probability density functions
E(1) = 1, we have

ℐ =
∫︁

exp
{︁

− 1
2tr
(︁
𝑌 −1(𝑋 − �̂�)⊤𝑍−1(𝑋 − �̂�)

)︁}︁
𝑑𝑋. (A.14)

Using (A.10), (A.12), and (A.13), the integral (A.14) can be rewritten as

ℐ =
∫︁

exp
{︁

− 1
2tr
(︁
𝑈⊤𝑈

)︁}︁
|𝑌 |𝑛

2 |𝑍|𝑚
2 𝑑vec(𝑈)

and decomposed into the product of simpler integrals ℐ𝑖𝑗 according to

ℐ = |𝑌 |𝑛
2 |𝑍|𝑚

2

𝑛∏︁

𝑖=1

𝑚∏︁

𝑗=1
ℐ𝑖𝑗 = |𝑌 |𝑛

2 |𝑍|𝑚
2

𝑛∏︁

𝑖=1

𝑚∏︁

𝑗=1

∫︁
exp

{︁
− 1

2𝑢
2
𝑖𝑗

}︁
𝑑𝑢𝑖𝑗, (A.15)
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where we utilize

tr(𝑈⊤𝑈) = vec(𝑈)⊤vec(𝑈) =
𝑛∑︁

𝑖=1

𝑚∑︁

𝑗=1
𝑢2

𝑖𝑗.

Consequently, using Lemma A.5, the point (iii), with 𝑎 = 1
2 , in (A.15), gives

ℐ = (2𝜋)𝑛𝑚
2 |𝑌 |𝑛

2 |𝑍|𝑚
2 , which concludes the proof of part a).

b) The expected value of 𝑋 w.r.t. (A.9b) can be written as

E(𝑋) = ℐ−1
∫︁
𝑋 exp

{︁
− 1

2tr
(︁
𝑌 −1(𝑋 − �̂�)⊤𝑍−1(𝑋 − �̂�)

)︁}︁
𝑑𝑋.

If we apply (A.11) and (A.13) to the above formula, we obtain

E(𝑋) = (𝑍 1
2 )⊤𝐽1𝑌

1
2 + �̂�𝐽2,

where

𝐽1 = ℐ−1
∫︁
𝑈 exp

{︁
− 1

2tr
(︁
𝑈⊤𝑈

)︁}︁
|𝑌 |𝑛

2 |𝑍|𝑚
2 𝑑vec(𝑈). (A.16)

The integral (A.16) can be calculated entry-wise according to

𝐽1,𝑖𝑗 = (2𝜋)− 𝑛𝑚
2

∫︁
𝑢𝑖𝑗 exp

{︁
− 1

2𝑢
2
𝑖𝑗

}︁
𝑑𝑢𝑖𝑗

×
𝑛∏︁

𝑘=1,𝑘 ̸=𝑖

𝑚∏︁

𝑙=1,𝑙 ̸=𝑗

∫︁
exp

{︁
− 1

2𝑢
2
𝑘𝑙

}︁
𝑑𝑢𝑘𝑙 (A.17)

After, employing the point (i) of Lemma A.5 in (A.17), we can see that 𝐽1 =
𝑂𝑛𝑚, where 𝑂𝑛𝑚 is the zero matrix of dimension 𝑛×𝑚. This result, and the
fact that 𝐽2 is simply E(1) = 1, allows us to state that E(𝑋) = �̂� and thus to
conclude the proof of part b).

c) The expected value of 𝑋𝐻𝑋⊤, taken over (A.9b), is defined as

E(𝑋𝐻𝑋⊤) = ℐ−1
∫︁
𝑋𝐻𝑋⊤

× exp
{︁

− 1
2tr
(︁
𝑌 −1(𝑋 − �̂�)⊤𝑍−1(𝑋 − �̂�)

)︁}︁
𝑑𝑋,

which, after utilizing (A.11) and (A.13), leads to

E(𝑋𝐻𝑋⊤) = (𝑍 1
2 )⊤𝐽1𝑍

1
2 + (𝑍 1

2 )⊤𝐽2𝑌
1
2𝐻�̂�⊤

+ �̂�𝐻(𝑌 1
2 )⊤𝐽⊤

2 𝑍
1
2 + �̂�𝐻�̂�⊤𝐽3,

where 𝐽2 and 𝐽3 are respectively equivalent to 𝐽1 and 𝐽2 of part b). Therefore,
we will be concerned with computing only the first integral, which is given by

𝐽1 = ℐ−1
∫︁
𝑈𝐴𝑈⊤ exp

{︁
− 1

2tr
(︁
𝑈⊤𝑈

)︁}︁
|𝑌 |𝑛

2 |𝑍|𝑚
2 𝑑vec(𝑈), (A.18)

209



where 𝐴 = 𝑌
1
2𝐻(𝑌 1

2 )⊤. To calculate (A.18), we resort to the entry-wise
approach as before. For this reason, we write the entries of the product 𝑈𝐴𝑈⊤

according to

(𝑈𝐴𝑈⊤)𝑖𝑗 =
𝑛∑︁

𝑘=1

𝑛∑︁

𝑙=1
𝑢𝑖𝑙𝑎𝑙𝑘𝑢𝑗𝑘. (A.19)

Now, we need to distinguish between diagonal and non-diagonal entries. For
𝑖 ̸= 𝑗, the integral can be expressed as

𝐽1,𝑖𝑗 = (2𝜋)− 𝑛𝑚
2

𝑛∑︁

𝑘=1

𝑛∑︁

𝑙=1
𝑎𝑙𝑘

∫︁
𝑢𝑖𝑙 exp

{︁
− 1

2𝑢
2
𝑖𝑙

}︁
𝑑𝑢𝑖𝑙

×
∫︁
𝑢𝑗𝑘 exp

{︁
− 1

2𝑢
2
𝑗𝑘

}︁
𝑑𝑢𝑗𝑘

×
𝑛∏︁

𝑝=1,𝑝 ̸=𝑖
𝑝 ̸=𝑗

𝑚∏︁

𝑞=1,𝑞 ̸=𝑙
𝑞 ̸=𝑘

∫︁
exp

{︁
− 1

2𝑢
2
𝑝𝑞

}︁
𝑑𝑢𝑝𝑞,

where we recognize the integral given by the point (i) of Lemma A.5, with
𝑎 = 1

2 , and we therefore obtain 𝐽1,𝑖𝑗 = 0. For 𝑖 = 𝑗, the integral can be
decomposed according to

𝐽1,𝑗𝑗 = (2𝜋)− 𝑛𝑚
2

𝑛∑︁

𝑘=1

𝑛∑︁

𝑙=1,𝑙 ̸=𝑘

𝑎𝑙𝑘

∫︁
𝑢𝑗𝑙 exp

{︁
− 1

2𝑢
2
𝑗𝑙

}︁
𝑑𝑢𝑗𝑙

×
∫︁
𝑢𝑗𝑘 exp

{︁
− 1

2𝑢
2
𝑗𝑘

}︁
𝑑𝑢𝑗𝑘

×
𝑛∏︁

𝑝=1,𝑝 ̸=𝑗

𝑚∏︁

𝑞=1,𝑞 ̸=𝑙
𝑞 ̸=𝑘

∫︁
exp

{︁
− 1

2𝑢
2
𝑝𝑞

}︁
𝑑𝑢𝑝𝑞

+ (2𝜋)− 𝑛𝑚
2

𝑛∑︁

𝑟=1
𝑎𝑟𝑟

∫︁
𝑢2

𝑗𝑟 exp
{︁

− 1
2𝑢

2
𝑗𝑟

}︁
𝑑𝑢𝑗𝑟

×
𝑛∏︁

𝑝=1,𝑝 ̸=𝑗

𝑚∏︁

𝑞=1,𝑞 ̸=𝑟

∫︁
exp

{︁
− 1

2𝑢
2
𝑝𝑞

}︁
𝑑𝑢𝑝𝑞, (A.20)

The first term of (A.20) leads, again, to the use of the point (i) of Lemma A.5
and is therefore equal to zero. However, the second term of (A.20) relies on
the point (ii) of Lemma A.5. As both the integrals in the second term are
equal to (2𝜋) 1

2 , we obtain, after canceling (2𝜋)− 𝑛𝑚
2 ,

𝐽1,𝑗𝑗 =
𝑛∑︁

𝑟=1
𝑎𝑟𝑟.

Now, recalling that 𝐴 = 𝑌
1
2𝐻(𝑌 1

2 )⊤, we write

𝐽1 = tr(𝑌 𝐻)𝐼𝑛
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which is the resulting value of (A.18). Finally, gathering up the integrals leads
to

E(𝑋𝐻𝑋⊤) = tr(𝑌 𝐻)𝑍 + �̂�𝐻�̂�⊤

and the conclusion of the proof for part c).
d) We begin by writing the expected value of the quadratic form 𝑋⊤𝐻𝑋 w.r.t.

(A.9b) as

E(𝑋⊤𝐻𝑋) = ℐ−1
∫︁
𝑋⊤𝐻𝑋

× exp
{︁

− 1
2tr
(︁
𝑌 −1(𝑋 − �̂�)⊤𝑍−1(𝑋 − �̂�)

)︁}︁
𝑑𝑋. (A.21)

Then, we proceed by using (A.11) and (A.13) in (A.21) to obtain

E(𝑋⊤𝐻𝑋) = (𝑌 1
2 )⊤𝐽1𝑌

1
2 + (𝑌 1

2 )⊤𝐽⊤
2 𝑍

1
2𝐻�̂�

+ �̂�⊤𝐻(𝑍 1
2 )⊤𝐽2𝑌

1
2 + �̂�⊤𝐻�̂�𝐽3,

where 𝐽2 and 𝐽3 are the same as 𝐽1 and 𝐽2 of part b), respectively. The
remaining integral is given by

𝐽1 = ℐ−1
∫︁
𝑈⊤𝐴𝑈 exp

{︁
− 1

2tr
(︁
𝑈⊤𝑈

)︁}︁
|𝑌 |𝑛

2 |𝑍|𝑚
2 𝑑vec(𝑈), (A.22)

with 𝐴 = 𝑍
1
2𝐻(𝑍 1

2 )⊤. The calculations are performed entry-wise as in the
previous parts. A small difference consists in that we now have

(𝑈⊤𝐴𝑈)𝑖𝑗 =
𝑚∑︁

𝑘=1

𝑚∑︁

𝑙=1
𝑢𝑖𝑙𝑎𝑙𝑘𝑢𝑗𝑘,

instead of (A.19). The calculation of (A.22) is then carried out in the same
way as in part c), which provides us with

E(𝑋⊤𝐻𝑋) = tr(𝑍𝐻)𝑌 + �̂�⊤𝐻�̂�

and concludes the proof.

Proposition A.2 (The inverse-Wishart probability density and its properties).
A symmetric, positive definite, matrix random variable 𝑍 ∈ R𝑛×𝑛 is distributed
according to inverse-Wishart density if it follows a probability density function in
the form

𝑍 ∼ 𝑖𝒲(𝜈,Λ) = ℐ−1|𝑍|− 1
2 (𝜈+𝑛+1) exp

{︁
− 1

2tr
(︁
𝑍−1Λ

)︁}︁
, (A.23)

where 𝜈 > 𝑛−1 is the number of degrees of freedom, and Λ ∈ R𝑛×𝑛 is the (symmetric
positive definite) scale matrix. We assume the properties given as follows:
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a) the proportionality constant is

ℐ = 2𝑛𝜈
2 |Λ|− 𝜈

2𝜋𝑛 𝑛−1
4

𝑛∏︁

𝑖=1
Γ
(︂
𝜈 + 1 − 𝑖

2

)︂
,

b) the first non-central moment of 𝑍−1 is E(𝑍−1) = 𝜈Λ−1,
c) the first non-central moment of 𝑍 is E(𝑍) = Λ

𝜈−𝑛−1
d) the first non-central moment of ln |𝑍| is

E(ln |𝑍|) = ln |Λ| − 𝑛 ln 2 −
𝑛∑︁

𝑖=1
Ψ
(︂
𝜈 + 1 − 𝑖

2

)︂
,

where 𝜓(𝑎) = 𝑑Γ(𝑎)
𝑑𝑎

is the digamma function [1].

Proof. Let us begin by preparing tools that will be needed prove the above state-
ments. Performing integration directly with (A.23) is inconvenient. We therefore
need to find a transformation 𝑍 = 𝐹 (𝑈) in order to ease the involved calculus. Let
us consider Λ = (Λ 1

2 )⊤Λ 1
2 ; then, choosing the substitution given by

2𝑈 = (Λ 1
2 )⊤𝑍−1Λ 1

2 ,

leads to the required transformation

𝑍 = (2− 1
2 Λ 1

2 )𝑈−1(2− 1
2 Λ 1

2 )⊤. (A.24)

To obtain the Jacobian determinant, we differentiate both sides of (A.24), that is,

𝑑𝑍 = −(2− 1
2 Λ 1

2𝑈−1)𝑑𝑈(2− 1
2 Λ 1

2𝑈−1)⊤. (A.25)

We continue by applying the vectorization operator to (A.25),

vec(𝑑𝑍) = −(2− 1
2 Λ 1

2𝑈−1) ⊗ (2− 1
2 Λ 1

2𝑈−1)vec(𝑑𝑈). (A.26)

However, since 𝑍 is a symmetric matrix, we need to take into account the repeating
terms. Thus, we use 𝑣(𝐴) operator that extracts the unique terms of vec(𝐴) by
eliminating all supradiagonal elements of 𝐴, with 𝐴 ∈ R𝑎×𝑎 being a symmetric
matrix [143]. The vectors 𝑣(𝐴) and vec(𝐴) are related by the duplication matrix 𝐷𝑛

according to 𝐷𝑛𝑣(𝐴) = vec(𝐴), which, after applying to the both sides of (A.26),
gives

𝑑𝑣(𝑍) = −𝐷+
𝑛 (2− 1

2 Λ 1
2𝑈−1) ⊗ (2− 1

2 Λ 1
2𝑈−1)𝐷𝑛𝑑𝑣(𝑈), (A.27)

where 𝐷+
𝑛 is the Moore-Penrose inverse of 𝐷𝑛. The Jacobian determinant is then

calculated by utilizing |𝐴⊗𝐵| = |𝐴|𝑏|𝐵|𝑎, where 𝐴 ∈ R𝑎×𝑎 and 𝐵 ∈ R𝑏×𝑏, in (A.27),
which yields

⃒⃒
⃒⃒
⃒
𝜕𝑣(𝑍)
𝜕𝑣(𝑈)⊤

⃒⃒
⃒⃒
⃒ = (−1) 1

2 𝑛(𝑛+1)|2− 1
2 Λ 1

2𝑈−1|𝑛+1.
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The absolute value of this determinant—needed to carry out the change of variables—
is given by

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒
𝜕𝑣(𝑍)
𝜕𝑣(𝑈)⊤

⃒⃒
⃒⃒
⃒

⃒⃒
⃒⃒
⃒ = 2− 1

2 𝑛(𝑛+1)|Λ| 1
2 (𝑛+1)|𝑈 |−(𝑛+1). (A.28)

In the remaining parts of the proof, there will be the need to reshape the entries
of 𝑈 according to

𝑈 𝑖𝑖 = 𝑃𝜎𝑖
𝑈𝑃⊤

𝜎𝑖
=
[︃
𝑢𝑖𝑖 𝑢-𝑖𝑖

𝑢⊤
-𝑖𝑖 𝑈-𝑖𝑖

]︃
, (A.29)

where 𝑃𝜎𝑖
= (𝑒⊤

𝜎𝑖(1), . . . , 𝑒
⊤
𝜎𝑖(𝑛))⊤ is the permutation matrix with a particular choice of

the permutation 𝜎𝑖 : {1, 2, . . . , 𝑖, . . . , 𝑛} → {𝑖, 2, . . . , 1, . . . , 𝑛}, and 𝑒𝑗 is the vector
with one at the 𝑗th entry and zeros otherwise. Thus, by writing 𝜎𝑖(𝑗), we select
𝑗th entry of the vector 𝜎𝑖 after permuting the first and 𝑖th entry. The entries of
(A.29) are described as follows: 𝑢𝑖𝑖 is the diagonal entry we intend to have at the
first position, 𝑢-𝑖𝑖 is the row vector with 𝑢𝑖𝑖 being excluded, and 𝑈-𝑖𝑖 is the matrix
containing the rest of the entries after the exchange of the 𝑖th row and the 𝑖th
column. The determinant of 𝑈 𝑖𝑖 is invariant under the above permutation.

Similarly to (A.6), the determinant and the trace of (A.29), are calculated with
using (A.1a) of Lemma A.1 as

|𝑈 𝑖𝑖| = 𝑢𝑖𝑖|�̄�-𝑖𝑖|, (A.30a)
tr(𝑈 𝑖𝑖) = 𝑢𝑖𝑖 + tr(�̄�-𝑖𝑖) + tr(𝑢⊤

-𝑖𝑖𝑢
−1
𝑖𝑖 𝑢-𝑖𝑖 ), (A.30b)

where �̄�-𝑖𝑖 = 𝑈-𝑖𝑖 − 𝑢⊤
-𝑖𝑖𝑢

−1
𝑖𝑖 𝑢-𝑖𝑖 .

a) We use the fact that integrating (A.23) leads to E(1) = 1, which allows us to
write

ℐ =
∫︁

𝑍>0
|𝑍|− 1

2 (𝜈+𝑛+1) exp
{︁

− 1
2tr
(︁
𝑍−1Λ

)︁}︁
𝑑𝑣(𝑍). (A.31)

To obtain a more convenient form for the integration, we apply the change
of variables with previously prepared transformation (A.24) and the absolute
value of the associated Jacobian determinant (A.28), which gives

ℐ = 2𝑛𝜈
2 |Λ|− 𝜈

2

∫︁

𝑍>0
|𝑈 | 1

2 (𝜈−𝑛−1) exp
{︁

− tr𝑈
)︁}︁
𝑑𝑣(𝑈),

where we recognize the integral that is equivalent to the multivariate Gamma
function, and we therefore simply use Lemma A.6 to obtain the result

ℐ = 2𝑛𝜈
2 |Λ|− 𝜈

2 Γ𝑛(0.5𝜈).

The proof of part a) is here concluded.
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b) The expected value of 𝑍−1 taken w.r.t. (A.23) yields

E(𝑍−1) = ℐ−1
∫︁

𝑍>0
𝑍−1|𝑍|− 1

2 (𝜈+𝑛+1) exp
{︁

− 1
2tr
(︁
𝑍−1Λ

)︁}︁
𝑑𝑣(𝑍),

which, similarly as in part a), after using the change of variables with (A.24)
and (A.28), provides us with

E(𝑍−1) = 2Γ𝑛(0.5𝜈)−1(Λ− 1
2 )⊤𝐽(Λ− 1

2 ),

where

𝐽 =
∫︁

𝑈>0
𝑈 |𝑈 | 1

2 (𝜈−𝑛−1) exp{−tr𝑈}𝑑𝑣(𝑈). (A.32)

We approach the calculation of (A.32) in the entry-wise manner. Thus, for
the diagonal entries 𝑢𝑖𝑖, the integral (A.32) can be decomposed as

𝐽𝑖𝑖 =
∫︁ ∞

0
𝑢

1
2 (𝜈−𝑛+1)
𝑖𝑖 exp{−𝑢𝑖𝑖}

𝑛−1∏︁

𝑗=1

∫︁
exp{−𝑢−1

𝑖𝑖 𝑢
2
-𝑖𝑖,𝑗}𝑑𝑢-𝑖𝑖,𝑗𝑑𝑢𝑖𝑖

×
∫︁

�̄�-𝑖𝑖>0
|�̄�-𝑖𝑖|

1
2 (𝜈−𝑛−1) exp{−tr(�̄�-𝑖𝑖)}𝑑𝑣(�̄�-𝑖𝑖), (A.33)

where we use (A.30), with 𝑢-𝑖𝑖,𝑗 denoting the 𝑗th entry of the vector 𝑢-𝑖𝑖. We
continue by applying the point (iii) of Lemma A.5 to compute the inner integral
in (A.33),

∫︀
exp{−𝑢−1

𝑖𝑖 𝑢
2
-𝑖𝑖,𝑗}𝑑𝑥-𝑖𝑖,𝑗 = (𝑢𝑖𝑖𝜋) 1

2 , and Lemma A.6 to obtain the last
integral in (A.33), which results in

𝐽𝑖𝑖 = 𝜋
𝑛−1

2

∫︁ ∞

0
𝑢

𝜈
2
𝑖𝑖 exp{−𝑢𝑖𝑖}𝑑𝑢𝑖𝑖Γ𝑛−1

(︁
𝜈−1

2

)︁

= 𝜋
𝑛−1

2 Γ
(︁

𝜈
2 + 1

)︁
Γ𝑛−1

(︁
𝜈−1

2

)︁

= 𝜈
2 Γ𝑛

(︁
𝜈
2

)︁
,

where Lemma A.5 is applied once more in the first line. For the non-diagonal
entries 𝑢-𝑖𝑖,𝑗, we have

𝐽-𝑖𝑖,𝑗 =
∫︁ ∞

0
𝑢

1
2 (𝜈−𝑛−1)
𝑖𝑖 exp{−𝑢𝑖𝑖}

∫︁
𝑢-𝑖𝑖,𝑗 exp{−𝑢−1

𝑖𝑖 𝑢
2
-𝑖𝑖,𝑗}𝑑𝑢-𝑖𝑖,𝑗

×
𝑛−1∏︁

𝑘=1,𝑘 ̸=𝑗

∫︁
exp{−𝑢−1

𝑖𝑖 𝑢
2
-𝑖𝑖,𝑘}𝑑𝑢-𝑖𝑖,𝑘𝑑𝑢𝑖𝑖

×
∫︁

�̄�-𝑖𝑖>0
|�̄�-𝑖𝑖|

1
2 (𝜈−𝑛−1) exp{−tr(�̄�-𝑖𝑖)}𝑑𝑣(�̄�-𝑖𝑖) = 0, (A.34)

where according to the point (iii) Lemma A.5, the integral in the second line of
(A.34),

∫︀
𝑢-𝑖𝑖,𝑗 exp{−𝑢−1

𝑖𝑖 𝑢
2
-𝑖𝑖,𝑗}𝑑𝑢-𝑖𝑖,𝑗, is equal to zero, making the non-diagonal

entries zero. Gathering the results of the particular entries, we obtain

𝐽 = 0.5𝜈Γ𝑛(0.5𝜈)𝐼𝑛,

which concludes the proof of part b).
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c) The proof is left as an exercise to the reader.
d) The expected value of ln |𝑍| w.r.t. (A.23) is

E(ln |𝑍|) = ℐ−1
∫︁

𝑍>0
ln |𝑍||𝑍|− 1

2 (𝜈+𝑛+1) exp
{︁

− 1
2tr
(︁
𝑍−1Λ

)︁}︁
𝑑𝑣(𝑍). (A.35)

Here, we do not have to proceed by a complete integration as in the previous
cases. We only need to realize that 𝑎𝑥 ln 𝑎 = 𝑑𝑎𝑥

𝑑𝑥
, which yields, after using in

(A.35),

E(ln |𝑍|) = ℐ−1
∫︁

𝑍>0
−2 𝑑

𝑑𝜈
|𝑍|− 1

2 (𝜈+𝑛+1) exp
{︁

− 1
2tr
(︁
𝑍−1Λ

)︁}︁
𝑑𝑣(𝑍).

By utilizing (A.31), and simply interchanging the order of the integration and
derivation, we can write

E(ln |𝑍|) = −2ℐ−1 𝑑

𝑑𝜈
ℐ,

which yields, when using another simple identity 1
𝑓(𝑥)

𝑑𝑓(𝑥)
𝑑𝑥

= 𝑑 ln 𝑓(𝑥)
𝑑𝑥

,

E(ln |𝑍|) = −2 𝑑
𝑑𝜈

ln ℐ.

Subsequently, from part a), we have

𝑑

𝑑𝜈
ln ℐ = 1

2𝑥 ln 2 − 1
2 ln |Λ| +

𝑥∑︁

𝑖=1

𝑑
(︁

𝜈+1−𝑖
2

)︁

𝑑𝜈

𝑑

𝑑
(︁

𝜈+1−𝑖
2

)︁Γ
(︂
𝜈 + 1 − 𝑖

2

)︂

= 1
2𝑥 ln 2 − 1

2 ln |Λ| + 1
2

𝑥∑︁

𝑖=1
Ψ
(︂
𝜈 + 1 − 𝑖

2

)︂
,

which concludes the proof.

Lemma A.7 (The Gauss-inverse-Wishart and exponential family densities). The
Gauss-inverse-Wishart density

𝑝(𝜇,Σ) = 𝜋− 𝑛
2 2− 𝑛(𝜈𝛼−𝑛−1)

2 |Λ𝛼| 𝜈𝛼−𝑛−2
2 Γ𝑛

(︂
𝜈𝛼 − 𝑛− 2

2

)︂−1
Σ− 𝑛

2
𝛼 |Σ|− 𝜈𝛼

2

× exp
{︁

− 1
2tr
[︁
Σ−1

(︁
(𝜇− 𝜇𝛼)Σ−1

𝛼 (𝜇− 𝜇𝛼)⊤ + Λ𝛼

)︁]︁}︁

is related to the exponential family (prior) density

𝑝(𝜃|𝜈𝛼, 𝑉𝛼) = exp{⟨𝜂(𝜃), 𝑉𝛼⟩ − 𝜈𝛼𝜁(𝜃) − log ℐ(𝜈𝛼, 𝑉𝛼)}

through

𝜈𝛼 = 𝜈𝛼, 𝜁(𝜃) = 1
2 log |Σ|,

𝑉𝛼 =
[︃
Λ𝛼 + 𝜇𝛼Σ−1

𝛼 𝜇⊤
𝛼 𝜇𝛼Σ−1

𝛼

Σ−1
𝛼 𝜇⊤

𝛼 Σ−1
𝛼

]︃
, 𝜂(𝜃) =

[︃
Σ−1 Σ−1𝜇

𝜇⊤Σ−1 𝜇⊤Σ−1𝜇

]︃
,

ℐ(𝜈𝛼, 𝑉𝛼) = 𝜋
𝑛
2 2

𝑛(𝜈𝛼−𝑛−1)
2 |Λ𝛼|− 𝜈𝛼−𝑛−2

2 Γ𝑛

(︂
𝜈𝛼 − 𝑛− 2

2

)︂
Σ

𝑛
2
𝛼 .
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Proof. The result follows from isolating a simple identity in the exponent of the
Gauss-inverse-Wishart density according to

(𝜇− 𝜇𝛼)Σ−1
𝛼 (𝜇− 𝜇𝛼)⊤ + Λ𝛼

=
[︃
𝐼𝑛

−𝜇⊤

]︃⊤[︃
𝜇𝛼Σ−1

𝛼 𝜇⊤
𝛼 𝜇𝛼Σ−1

𝛼

Σ−1
𝛼 𝜇⊤

𝛼 Σ−1
𝛼

]︃[︃
𝐼𝑛

−𝜇⊤

]︃
+
[︃
𝐼𝑛

−𝜇⊤

]︃⊤[︃Λ𝛼 0
0⊤ 0

]︃[︃
𝐼𝑛

−𝜇⊤

]︃
.

A.3 Joint, Conditional, and Marginal Densities

Lemma A.8 (Gaussian conditional and marginal densities). Let us consider the
Gaussian probability density function 𝒩 (𝑥;𝜇,Σ), where 𝑥 ∈ R𝑛, and 𝜇 and Σ denote
the mean vector and covariance matrix, respectively. If 𝒩 (𝑥;𝜇,Σ) is the joint density
that can be partitioned according to

𝑝(𝑥𝑎, 𝑥𝑏) = 𝒩
(︃[︃
𝑥𝑎

𝑥𝑏

]︃
;
[︃
𝜇𝑎

𝜇𝑏

]︃
,

[︃
Σ𝑎𝑎 Σ𝑎𝑏

Σ𝑏𝑎 Σ𝑏𝑏

]︃)︃
, (A.36)

then the conditional and marginal densities are

𝑝(𝑥𝑎|𝑥𝑏) = 𝒩 (𝑥𝑎;𝜇𝑎|𝑏,Σ𝑎|𝑏), (A.37)
𝑝(𝑥𝑏) = 𝒩 (𝑥𝑏;𝜇𝑏,Σ𝑏), (A.38)

where

𝜇𝑎|𝑏 = 𝜇𝑎 + Σ𝑎𝑏Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏), (A.39a)

Σ𝑎|𝑏 = Σ𝑎𝑎 − Σ𝑎𝑏Σ−1
𝑏𝑏 Σ𝑏𝑎. (A.39b)

Proof. The density (A.36) reads

𝑝(𝑥𝑎, 𝑥𝑏) = (2𝜋)− 𝑛
2

⃒⃒
⃒⃒
⃒
Σ𝑎𝑎 Σ𝑎𝑏

Σ𝑏𝑎 Σ𝑏𝑏

⃒⃒
⃒⃒
⃒

− 1
2

× exp
{︃

− 1
2

[︃
𝑥𝑎 − 𝜇𝑎

𝑥𝑏 − 𝜇𝑏

]︃⊤[︃
Σ𝑎𝑎 Σ𝑎𝑏

Σ𝑏𝑎 Σ𝑏𝑏

]︃−1[︃
𝑥𝑎 − 𝜇𝑎

𝑥𝑏 − 𝜇𝑏

]︃}︃
. (A.40)

After utilizing (A.3c) and 𝑛 = 𝑛𝑎 + 𝑛𝑏 in (A.40), we obtain

𝑝(𝑥𝑎, 𝑥𝑏) = (2𝜋)− 𝑛𝑎
2 |Σ𝑎𝑎 − Σ𝑎𝑏Σ−1

𝑏𝑏 Σ𝑏𝑎|− 1
2

× exp{−1
2(𝑥𝑎 − (𝜇𝑎 + Σ𝑎𝑏Σ−1

𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)))
⊤(Σ𝑎𝑎 − Σ𝑎𝑏Σ−1

𝑏𝑏 Σ𝑏𝑎)−1

× (𝑥𝑎 − (𝜇𝑎 + Σ𝑎𝑏Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)))}

× (2𝜋)− 𝑛𝑏
2 |Σ𝑏𝑏|−

1
2 exp{−1

2(𝑥𝑏 − 𝜇𝑏)
⊤Σ−1

𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)},
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which yields

𝑝(𝑥𝑎, 𝑥𝑏) = (2𝜋)− 𝑛𝑎
2 |Σ𝑎|𝑏|−

1
2 exp{−1

2(𝑥𝑎 − 𝜇𝑎|𝑏)
⊤Σ−1

𝑎|𝑏(𝑥𝑎 − 𝜇𝑎|𝑏)}
× (2𝜋)− 𝑛𝑏

2 |Σ𝑏𝑏|−
1
2 exp{−1

2(𝑥𝑏 − 𝜇𝑏)
⊤Σ−1

𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)}
= 𝒩 (𝑥𝑎;𝜇𝑎|𝑏,Σ𝑎|𝑏)𝒩 (𝑥𝑏;𝜇𝑏,Σ𝑏),

where we recognize the desired conditional (A.37) and marginal (A.38) densities.

Lemma A.9 (Student’s t conditional and marginal densities). Let us consider the
Student’s t probability density function St(𝑥;𝜇,Σ, 𝜈), where 𝑥 ∈ R𝑛, and 𝜇, Σ,
and 𝜈 denote the mean vector, scale matrix, and the number of degrees of freedom,
respectively. If St(𝑥;𝜇,Σ, 𝜈) is the joint density that can be partitioned according to

𝑝(𝑥𝑎, 𝑥𝑏) = St
(︃[︃
𝑥𝑎

𝑥𝑏

]︃
;
[︃
𝜇𝑎

𝜇𝑏

]︃
,

[︃
Σ𝑎𝑎 Σ𝑎𝑏

Σ𝑏𝑎 Σ𝑏𝑏

]︃
, 𝜈

)︃
, (A.41)

then the conditional and marginal densities are given by

𝑝(𝑥𝑎|𝑥𝑏) = St(𝑥𝑎;𝜇𝑎|𝑏,Σ𝑎|𝑏, 𝜈𝑎|𝑏), (A.42)
𝑝(𝑥𝑏) = St(𝑥𝑏;𝜇𝑏,Σ𝑏, 𝜈), (A.43)

where

𝜇𝑎|𝑏 = 𝜇𝑎 + Σ𝑎𝑏Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏), (A.44a)

Σ𝑎|𝑏 = 𝜈 + (𝑥𝑏 − 𝜇𝑏)
⊤Σ−1

𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)
𝜈 + 𝑛𝑏

(Σ𝑎𝑎 − Σ𝑎𝑏Σ−1
𝑏𝑏 Σ𝑏𝑎), (A.44b)

𝜈𝑎|𝑏 = 𝜈 + 𝑛𝑏. (A.44c)

Proof. The density (A.41) is written as

𝑝(𝑥𝑎, 𝑥𝑏) =
Γ
(︁

𝜈+𝑛
2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛
2

⃒⃒
⃒⃒
⃒⃒
Σ𝑎𝑎 Σ𝑎𝑏

Σ𝑏𝑎 Σ𝑏𝑏

⃒⃒
⃒⃒
⃒⃒

− 1
2

×
(︃

1 + 1
𝜈

[︃
𝑥𝑎 − 𝜇𝑎

𝑥𝑏 − 𝜇𝑏

]︃⊤[︃
Σ𝑎𝑎 Σ𝑎𝑏

Σ𝑏𝑎 Σ𝑏𝑏

]︃−1[︃
𝑥𝑎 − 𝜇𝑎

𝑥𝑏 − 𝜇𝑏

]︃)︃− 𝜈+𝑛
2

. (A.45)

After applying (A.3c) in (A.45), we get

𝑝(𝑥𝑎, 𝑥𝑏) =
Γ
(︁

𝜈+𝑛
2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛
2 |Σ𝑎𝑎 − Σ𝑎𝑏Σ−1

𝑏𝑏 Σ𝑏𝑎|− 1
2 |Σ𝑏𝑏|−

1
2

×
(︃

1 + 1
𝜈

(𝑥𝑎 − (𝜇𝑎 + Σ𝑎𝑏Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)))

⊤(Σ𝑎𝑎 − Σ𝑎𝑏Σ−1
𝑏𝑏 Σ𝑏𝑎)−1

× (𝑥𝑎 − (𝜇𝑎 + Σ𝑎𝑏Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)))

+ 1
𝜈

(𝑥𝑏 − 𝜇𝑏)
⊤Σ−1

𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)
)︃− 𝜈+𝑛

2

, (A.46)
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which directly reveals (A.44a). To make the subsequent algebra more compact, we
rewrite (A.46) according to

𝑝(𝑥𝑎, 𝑥𝑏) =
Γ
(︁

𝜈+𝑛
2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛
2 |Σ𝑎𝑎 − Σ𝑎𝑏Σ−1

𝑏𝑏 Σ𝑏𝑎|− 1
2 |Σ𝑏𝑏|−

1
2

(︃
1 + 𝑎

𝜈
+ 𝑏

𝜈

)︃− 𝜈+𝑛
2

, (A.47)

and we introduce the intermediate quantities

𝑎 = (𝑥𝑎 − 𝜇𝑎|𝑏)
⊤(Σ𝑎𝑎 − Σ𝑎𝑏Σ−1

𝑏𝑏 Σ𝑏𝑎)−1(𝑥𝑎 − 𝜇𝑎|𝑏), (A.48a)
𝑏 = (𝑥𝑏 − 𝜇𝑏)

⊤Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏). (A.48b)

Let us consider
(︃

1 + 𝑎

𝜈
+ 𝑏

𝜈

)︃
=
(︃

1 + 𝑎(𝜈 + 𝑏)
𝜈(𝜈 + 𝑏) + 𝑏

𝜈

)︃
=
(︃

1 + 𝑎

𝜈 + 𝑏

)︃(︃
1 + 𝑏

𝜈

)︃
,

which, after substituting in (A.47) and applying 𝑛 = 𝑛𝑎 + 𝑛𝑏, leads to

𝑝(𝑥𝑎, 𝑥𝑏) =
Γ
(︁

𝜈+𝑛𝑎+𝑛𝑏

2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛𝑎
2

(︃
1 + 𝑏

𝜈

)︃− 𝑛𝑎
2

|Σ𝑎𝑎 − Σ𝑎𝑏Σ−1
𝑏𝑏 Σ𝑏𝑎|− 1

2

×
(︃

1 + 𝑎

𝜈 + 𝑏

)︃− 𝜈+𝑛𝑎+𝑛𝑏
2

(𝜈𝜋)− 𝑛𝑏
2 |Σ𝑏𝑏|−

1
2

(︃
1 + 𝑏

𝜈

)︃− 𝜈+𝑛𝑏
2

. (A.49)

Furthermore, we extend (A.49) as

𝑝(𝑥𝑎, 𝑥𝑏) =
Γ
(︁

𝜈+𝑛𝑎+𝑛𝑏

2

)︁

Γ
(︁

𝜈+𝑛𝑏

2

)︁ (𝜈𝜋)− 𝑛𝑎
2

(𝜈 + 𝑛𝑏)− 𝑛𝑎
2

(𝜈 + 𝑛𝑏)− 𝑛𝑎
2

(︃
𝜈

𝜈
+ 𝑏

𝜈

)︃− 𝑛𝑎
2

× |Σ𝑎𝑎 − Σ𝑎𝑏Σ−1
𝑏𝑏 Σ𝑏𝑎|− 1

2

(︃
1 + 𝑎

(𝜈+𝑛𝑏)
(𝜈+𝑛𝑏)(𝜈 + 𝑏)

)︃− 𝜈+𝑛𝑎+𝑛𝑏
2

×
Γ
(︁

𝜈+𝑛𝑏

2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛𝑏
2 |Σ𝑏𝑏|−

1
2

(︃
1 + 𝑏

𝜈

)︃− 𝜈+𝑛𝑏
2

. (A.50)

When substituting (A.48) in (A.50) and rearranging the red terms, we can write

𝑝(𝑥𝑎, 𝑥𝑏) =
Γ
(︁

𝜈+𝑛𝑎+𝑛𝑏

2

)︁

Γ
(︁

𝜈+𝑛𝑏

2

)︁
(︁
(𝜈 + 𝑛𝑏)𝜋

)︁− 𝑛𝑎
2

⃒⃒
⃒⃒
⃒

𝜈+(𝑥𝑏−𝜇𝑏)⊤ Σ−1
𝑏𝑏

(𝑥𝑏−𝜇𝑏)
𝜈+𝑛𝑏

(Σ𝑎𝑎 − Σ𝑎𝑏Σ−1
𝑏𝑏 Σ𝑏𝑎)

⃒⃒
⃒⃒
⃒

− 1
2

×
(︃

1 + 1
𝜈 + 𝑛𝑏

(𝑥𝑎 − 𝜇𝑎|𝑏)
⊤

×
(︁

𝜈+(𝑥𝑏−𝜇𝑏)⊤ Σ−1
𝑏𝑏

(𝑥𝑏−𝜇𝑏)
𝜈+𝑛𝑏

(Σ𝑎𝑎 − Σ𝑎𝑏Σ−1
𝑏𝑏 Σ𝑏𝑎)

)︁−1
(𝑥𝑎 − 𝜇𝑎|𝑏)

)︃− 𝜈+𝑛𝑎+𝑛𝑏
2

×
Γ
(︁

𝜈+𝑛𝑏

2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛𝑏
2 |Σ𝑏𝑏|−

1
2

(︃
1 + (𝑥𝑏 − 𝜇𝑏)

⊤Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)
𝜈

)︃− 𝜈+𝑛𝑏
2

,
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where we use 𝑐𝑛𝑎 |𝐴| = |𝑐𝐴| for 𝐴 ∈ R𝑛𝑎×𝑛𝑎 and 𝑐 ∈ R. Identifying the remaining
statistics (A.44b) and (A.44c) provides us with

𝑝(𝑥𝑎, 𝑥𝑏) =
Γ
(︁

𝜈𝑎|𝑏+𝑛𝑎

2

)︁

Γ
(︁

𝜈𝑎|𝑏
2

)︁
(︁
𝜈𝑎|𝑏𝜋

)︁− 𝑛𝑎
2 |Σ𝑎|𝑏|−

1
2

(︃
1 +

(𝑥𝑎 − 𝜇𝑎|𝑏)
⊤Σ−1

𝑎|𝑏(𝑥𝑎 − 𝜇𝑎|𝑏)
𝜈𝑎|𝑏

)︃−
𝜈𝑎|𝑏+𝑛𝑎

2

×
Γ
(︁

𝜈+𝑛𝑏

2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛𝑏
2 |Σ𝑏𝑏|−

1
2

(︃
1 + (𝑥𝑏 − 𝜇𝑏)

⊤Σ−1
𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)
𝜈

)︃− 𝜈+𝑛𝑏
2

= St(𝑥𝑎;𝜇𝑎|𝑏,Σ𝑎|𝑏, 𝜈𝑎|𝑏)St(𝑥𝑏;𝜇𝑏,Σ𝑏, 𝜈),

which shows the desired conditional (A.42) and marginal (A.43) densities and con-
cludes the proof.

Corollary A.1 (Uncorrelated Student’s t random variables). Let us assume that
Σ𝑎𝑏 and Σ𝑏𝑎 are zero matrices in (A.41), then the random variables 𝑥𝑎 and 𝑥𝑏 are
uncorrelated and distributed according to

𝑝(𝑥𝑎|𝑥𝑏) = St(𝑥𝑎;𝜇𝑎|𝑏,Σ𝑎|𝑏, 𝜈𝑎|𝑏), (A.51)
𝑝(𝑥𝑏) = St(𝑥𝑏;𝜇𝑏,Σ𝑏, 𝜈), (A.52)

where

𝜇𝑎|𝑏 = 𝜇𝑎,

Σ𝑎|𝑏 = 𝜈 + (𝑥𝑏 − 𝜇𝑏)
⊤Σ−1

𝑏𝑏 (𝑥𝑏 − 𝜇𝑏)
𝜈 + 𝑛𝑏

Σ𝑎𝑎,

𝜈𝑎|𝑏 = 𝜈 + 𝑛𝑏.

Remark A.1. In Corollary A.1, we see that having uncorrelated Student’s t random
variables does not imply their independence (as in the case of Gaussian random
variables). The Student’s t random variables can only become independent if 𝜈 → ∞.

Lemma A.10 (The Gauss-inverse-Wishart density and its conditional and marginal
densities). Let us consider the Gaussian probability density function 𝒩 (𝑥;𝜇,Σ),
where 𝑥 ∈ R𝑛, with 𝜇 and Σ denoting the mean vector and covariance matrix, re-
spectively. Furthermore, let 𝒩 𝑖𝒲(𝜇,Σ;𝜇𝛽,Σ𝛽, 𝜈𝛽,Λ𝛽) be the Gauss-inverse-Wishart
density, where 𝜇𝛽 is the least-square estimate of 𝜇, Σ𝛽 is the variance of the least-
square estimate, 𝜈𝛽 is the number of degrees of freedom, and Λ𝛽 is the least-square
reminder. Then, the joint density

𝑝(𝜇,Σ, 𝑥) = 𝒩 (𝑥;𝜇,Σ)𝒩 𝑖𝒲(𝜇,Σ;𝜇𝛽,Σ𝛽, 𝜈𝛽,Λ𝛽) (A.53)

admits the conditional density of the parameters (𝜇,Σ) and the marginal density of
the data 𝑥 given by

𝑝(𝜇,Σ|𝑥) = 𝒩 𝑖𝒲(𝜇,Σ;𝜇𝛼,Σ𝛼, 𝜈𝛼,Λ𝛼), (A.54)
𝑝(𝑥) = St(𝑥;𝜇𝛽, Σ̄, 𝜈), (A.55)
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where

𝜇𝛼 = 𝜇𝛽 + Σ𝛼(𝑥− 𝜇𝛽), (A.56a)

Σ𝛼 = Σ𝛽

1 + Σ𝛽

, (A.56b)

𝜈𝛼 = 𝜈𝛽 + 1, (A.56c)

Λ𝛼 = Λ𝛽 + 1
1 + Σ𝛽

(𝑥− 𝜇𝛽)(𝑥− 𝜇𝛽)⊤, (A.56d)

and

Σ̄ = 1 + Σ𝛽

𝜈𝛽 − 𝑛+ 1Λ𝛽, (A.57a)

𝜈 = 𝜈𝛽 − 𝑛+ 1. (A.57b)

Proof. Let us start the proof by expressing the densities in (A.53) as

𝑝(𝑥|𝜇,Σ) = (2𝜋)− 𝑛
2 |Σ|− 1

2 exp
{︁

− 1
2(𝑥− 𝜇)⊤Σ−1(𝑥− 𝜇)

}︁
(A.58)

and

𝑝(𝜇,Σ) = 𝜋− 𝑛
2 2− 𝑛(𝜈𝛽+1)

2 |Λ𝛽|
𝜈𝛽
2 Γ𝑛(0.5𝜈𝛽)−1Σ− 𝑛

2
𝛽 |Σ|− 1

2 (𝜈𝛽+𝑛+2)

× exp
{︁

− 1
2tr
[︁
Σ−1

(︁
(𝜇− 𝜇𝛽)Σ−1

𝛽 (𝜇− 𝜇𝛽)⊤ + Λ𝛽

)︁]︁}︁
. (A.59)

We are first concerned with how to combine the exponents of (A.58) and (A.59).
The remaining elements of these densities are treated later. The exponent of (A.58)
can be rewritten as

𝑝(𝑥|𝜇,Σ) ∝ exp
{︃

− 1
2tr

(︃
Σ−1

[︃
𝐼𝑛

−𝜇⊤

]︃⊤[︃
𝑥

1

]︃[︃
𝑥

1

]︃⊤[︃
𝐼𝑛

−𝜇⊤

]︃)︃}︃
, (A.60)

and, similarly as in Lemma A.7, the exponent of (A.59) can be rearranged as

𝑝(𝜇,Σ) ∝ exp
{︃

− 1
2tr

(︃
Σ−1

[︃
𝐼𝑛

−𝜇⊤

]︃⊤[︃
𝑉 𝑥𝑥

𝛽 𝑉 𝑥1
𝛽

𝑉 1𝑥
𝛽 𝑉 11

𝛽

]︃[︃
𝐼𝑛

−𝜇⊤

]︃)︃}︃
. (A.61)

Now, the exponent of the joint density 𝑝(𝜇,Σ, 𝑥) is obtained by multiplying (A.60)
and (A.61), that is,

𝑝(𝜇,Σ, 𝑥) ∝ exp
{︃

− 1
2tr

(︃
Σ−1

[︃
𝐼𝑛

−𝜇⊤

]︃⊤[︃
𝑉 𝑥𝑥

𝛼 𝑉 𝑥1
𝛼

𝑉 1𝑥
𝛼 𝑉 11

𝛼

]︃[︃
𝐼𝑛

−𝜇⊤

]︃)︃}︃
, (A.62)

where
[︃
𝑉 𝑥𝑥

𝛼 𝑉 𝑥1
𝛼

𝑉 1𝑥
𝛼 𝑉 11

𝛼

]︃
=
[︃
𝑉 𝑥𝑥

𝛽 𝑉 𝑥1
𝛽

𝑉 1𝑥
𝛽 𝑉 11

𝛽

]︃
+
[︃
𝑥𝑥⊤ 𝑥

𝑥⊤ 1

]︃
. (A.63)
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By applying Lemma A.1, the quadratic form in (A.62) yields
[︃
𝐼𝑛

−𝜇⊤

]︃⊤[︃
𝑉 𝑥𝑥

𝛼 𝑉 𝑥1
𝛼

𝑉 1𝑥
𝛼 𝑉 11

𝛼

]︃[︃
𝐼𝑛

−𝜇⊤

]︃
= (𝜇− 𝜇𝛼)⊤Σ−1

𝛼 (𝜇− 𝜇𝛼) + Λ𝛼, (A.64)

defining the updated statistics

Σ𝛼 = (𝑉 11
𝛼 )−1, (A.65a)

𝜇𝛼 = 𝑉 𝑥1
𝛼 (𝑉 11

𝛼 )−1, (A.65b)
Λ𝛼 = 𝑉 𝑥𝑥

𝛼 − 𝑉 𝑥1
𝛼 (𝑉 11

𝛼 )−1𝑉 1𝑥
𝛼 . (A.65c)

Expressing the exponent (A.62) by means of the r.h.s. of (A.64) and rearranging
the remaining (non-exponential) elements of (A.58) and (A.59) leads to the joint
density in the form

𝑝(𝜇,Σ, 𝑥) = 𝜋−𝑛2− 𝑛(𝜈𝛽+2)
2 |Λ𝛽|

𝜈𝛽
2 Γ𝑛(0.5𝜈𝛽)−1Σ− 𝑛

2
𝛽 |Σ|− 1

2 (𝜈𝛼+𝑛+2)

× exp
{︁

− 1
2tr
[︁
Σ−1

(︁
(𝜇− 𝜇𝛼)Σ−1

𝛼 (𝜇− 𝜇𝛼)⊤ + Λ𝛼

)︁]︁}︁
. (A.66)

Computing the updated statistics according to (A.65) is cumbersome. We there-
fore aim to find recursive relations in the same way as in [171]. From (A.63), we can
see that plugging 𝑉 11

𝛽 + 1 for 𝑉 11
𝛼 in (A.65a) allows us to derive

Σ𝛼 = (𝑉 11
𝛽 + 1)−1

= (Σ−1
𝛽 + 1)−1

= Σ𝛽

1 + Σ𝛽

. (A.67)

Next, by inserting 𝑉 𝑥1
𝛽 + 𝑥 for 𝑉 𝑥1

𝛼 and Σ𝛼 for (𝑉 11
𝛼 )−1 in (A.65b), we find the

recursive formula for updating the least-square estimate

𝜇𝛼 = (𝑉 𝑥1
𝛽 + 𝑥)Σ𝛼

= (𝜇𝛽Σ−1
𝛽 + 𝑥)Σ𝛼

= (𝜇𝛽(Σ−1
𝛼 − 1) + 𝑥)Σ𝛼

= 𝜇𝛽 + Σ𝛼(𝑥− 𝜇𝛽). (A.68)

Finally, substituting 𝑉 𝑥𝑥
𝛽 +𝑥𝑥 for 𝑉 𝑥𝑥

𝛼 , 𝑉 𝑥1
𝛽 +𝑥 for 𝑉 𝑥1

𝛼 , and Σ𝛼 for (𝑉 11
𝛼 )−1 in (A.65c)
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leads to

Λ𝛼 = 𝑉 𝑥𝑥
𝛽 + 𝑥𝑥⊤ − (𝑉 𝑥1

𝛽 + 𝑥)Σ𝛼(𝑉 𝑥1
𝛽 + 𝑥)⊤

= 𝑉 𝑥𝑥
𝛽 + 𝑥𝑥⊤ − 𝑥Σ𝛼𝑥

⊤ − 𝑥Σ𝛼𝑉
1𝑥

𝛽 − 𝑉 𝑥1
𝛽 Σ𝛼𝑥

⊤ − 𝑉 𝑥1
𝛽 Σ𝛼𝑉

1𝑥
𝛽

= 𝑉 𝑥𝑥
𝛽 + 𝑥

1 + Σ𝛽

1 + Σ𝛽

𝑥⊤ − 𝑥Σ𝛼𝑥
⊤ − 𝑥Σ𝛼𝑉

1𝑥
𝛽 − 𝑉 𝑥1

𝛽 Σ𝛼𝑥
⊤ − 𝑉 𝑥1

𝛽 Σ𝛼𝑉
1𝑥

𝛽

+ 𝑉 𝑥1
𝛽 Σ𝛽𝑉

1𝑥
𝛽 − 𝑉 𝑥1

𝛽 Σ𝛽𝑉
1𝑥

𝛽

= Λ𝛽 + 𝑥
1

1 + Σ𝛽

𝑥⊤ − 𝑥
Σ𝛽

1 + Σ𝛽

𝑉 1𝑥
𝛽 − 𝑉 𝑥1

𝛽

Σ𝛽

1 + Σ𝛽

𝑥⊤ + 𝑉 𝑥1
𝛽 Σ𝛽

1
1 + Σ𝛽

Σ𝛽𝑉
1𝑥

𝛽

= Λ𝛽 + 1
1 + Σ𝛽

(𝑥− 𝜇𝛽)(𝑥− 𝜇𝛽)⊤. (A.69)

Now we have all what we need to find the conditional and marginal densities we
are looking for. Let us extended (A.66) according to

𝑝(𝜇,Σ, 𝑥) = 𝜋− 𝑛
2 2− 𝑛(𝜈𝛼+1)

2 |Λ𝛼| 𝜈𝛼
2 Γ𝑛(0.5𝜈𝛼)−1Σ− 𝑛

2
𝛼 |Σ|− 1

2 (𝜈𝛼+𝑛+2)

× exp
{︁

− 1
2tr
[︁
Σ−1

(︁
(𝜇− 𝜇𝛼)Σ−1

𝛼 (𝜇− 𝜇𝛼)⊤ + Λ𝛼

)︁]︁}︁

× Γ𝑛(0.5𝜈𝛼)
Γ𝑛(0.5𝜈𝛽)𝜋

− 𝑛
2 (1 + Σ𝛽)− 𝑛

2 |Λ𝛽|
𝜈𝛽
2 |Λ𝛼|− 𝜈𝛼

2 , (A.70)

where, from (A.67), we apply Σ𝛽 = Σ𝛼(1+Σ𝛽). The first part in (A.70) is equivalent
to the sought conditional density (A.54). The second part still needs further rear-
rangements to result in the desired marginal density (A.55). Thus, after substituting
(A.69) in the last line of (A.70), we have

𝑝(𝜇,Σ, 𝑥) = 𝒩 𝑖𝒲(𝜇,Σ;𝜇𝛼,Σ𝛼, 𝜈𝛼,Λ𝛼)

×
Γ𝑛

(︁
𝜈𝛽+1

2

)︁

Γ𝑛

(︁
𝜈𝛽

2

)︁ 𝜋− 𝑛
2 (1 + Σ𝛽)− 𝑛

2 |Λ𝛽|
𝜈𝛽
2

×
⃒⃒
⃒⃒
⃒Λ𝛽 + 1

1 + Σ𝛽

(𝑥− 𝜇𝛽)(𝑥− 𝜇𝛽)⊤
⃒⃒
⃒⃒
⃒

− 𝜈𝛼
2

, (A.71)

where the ratio of the multivariate gamma functions can be simplified as

Γ𝑛

(︁
𝜈𝛽+1

2

)︁

Γ𝑛

(︁
𝜈𝛽

2

)︁ =
𝜋𝑛 𝑛−1

4
∏︀𝑛

𝑖=1 Γ
(︁

𝜈𝛽+1
2 − 𝑖−1

2

)︁

𝜋𝑛 𝑛−1
4
∏︀𝑛

𝑖=1 Γ
(︁

𝜈𝛽

2 − 𝑖−1
2

)︁

=
Γ
(︁

𝜈𝛽−𝑛+2
2

)︁
Γ
(︁

𝜈𝛽−𝑛+3
2

)︁
Γ
(︁

𝜈𝛽−𝑛+4
2

)︁
. . .Γ

(︁
𝜈𝛽+1

2

)︁

Γ
(︁

𝜈𝛽−𝑛+1
2

)︁
Γ
(︁

𝜈𝛽−𝑛+2
2

)︁
Γ
(︁

𝜈𝛽−𝑛+3
2

)︁
. . .Γ

(︁
𝜈𝛽

2

)︁

=
Γ
(︁

𝜈𝛽+1
2

)︁

Γ
(︁

𝜈𝛽−𝑛+1
2

)︁ . (A.72)
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The last rearrangement consists in making the extensions with the red terms ac-
cording to

𝑝(𝜇,Σ, 𝑥) = 𝒩 𝑖𝒲(𝜇,Σ;𝜇𝛼,Σ𝛼, 𝜈𝛼,Λ𝛼)

×
Γ
(︁

𝜈𝛽−𝑛+1+𝑛

2

)︁

Γ
(︁

𝜈𝛽−𝑛+1
2

)︁ 𝜋− 𝑛
2
⃒⃒
⃒𝜈𝛽−𝑛+1

𝜈𝛽−𝑛+1(1 + Σ𝛽)Λ𝛽

⃒⃒
⃒
− 1

2

×
(︂

1 + (𝑥− 𝜇𝛽)⊤
(︁

𝜈𝛽−𝑛+1
𝜈𝛽−𝑛+1(1 + Σ𝛽)Λ𝛽

)︁−1
(𝑥− 𝜇𝛽)

)︂− 𝜈𝛽−𝑛+1+𝑛

2
(A.73)

and using the identities 𝑐𝑛|𝐴| = |𝑐𝐴| and |𝐴 + 𝑐𝑏𝑏⊤| = |𝐴|(1 + 𝑐𝑏⊤𝐴−1𝑏), where
𝐴 ∈ R𝑛×𝑛, 𝑏 ∈ R𝑛 and 𝑐 ∈ R. After recognizing the statistics (A.57) in (A.73), we
can find the sought marginal density (A.55) as demonstrated below

𝑝(𝜇,Σ, 𝑥) = 𝒩 𝑖𝒲(𝜇,Σ;𝜇𝛼,Σ𝛼, 𝜈𝛼,Λ𝛼)

×
Γ
(︁

𝜈+𝑛
2

)︁

Γ
(︁

𝜈
2

)︁ (𝜈𝜋)− 𝑛
2 |Σ̄|− 1

2

(︃
1 + (𝑥− 𝜇𝛽)⊤Σ̄−1(𝑥− 𝜇𝛽)

𝜈

)︃− 𝜈+𝑛
2

= 𝒩 𝑖𝒲(𝜇,Σ;𝜇𝛼,Σ𝛼, 𝜈𝛼,Λ𝛼)St(𝑥;𝜇𝛽, Σ̄, 𝜈),

which concludes the proof.
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