
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

GRAPHIC DEVELOPMENT ENVIRONMENT OF AGENT
LOW LEVEL LANGUAGE

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE SZABOLCS KÜRTI
AUTHOR

BRNO 2012

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

GRAFICKÉ VÝVOJOVÉ PROSTŘEDÍ AGENTNÍHO JAZYKA
ALLL
GRAPHIC DEVELOPMENT ENVIRONMENT OF AGENT LOW LEVEL LANGUAGE

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE SZABOLCS KÜRTI
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN HORÁČEK
SUPERVISOR

BRNO 2012

Abstrakt
Cílem této práce je návrh a implementace grafického vývojového prostředí pro agentní
jazyk ALLL. Jazyk ALLL bude představen detailně. Čtenář bude seznámen s frameworkem
ANTLR pro generování nástrojů pro rozpoznávání jazyka. Teoretické základy multiagent-
ních systémů a možnosti zvolené platformy budou taky rozebrány. Po popisu implementace
komplexního grafického vývojového prostředí jsem zařadil popis testování a ohodnocení
dosažených výsledků.

Abstract
The aim of this work is to design and implement a graphic development environment of
agent language ALLL. Language ALLL going to be described in details, such as the ANTLR
framework for generating language recognition tools. Theoretical basis of multi-agent sys-
tems, together with the features of the selected platform, will be discussed as well. Descrip-
tion of the implementation is followed by the presentation of testing. Closure deals with
the discussion of the achieved results.

Klíčová slova
Grafické vývojové prostředí, grafické uživatelské rozhrání, multiagentní systém, bezdrátové
senzorové sítě, Agent Low Level Language, ANTLR

Keywords
Graphic development environment, graphic user interface, multi-agent system, wireless sen-
sor networks, Agent Low Level Language, ANTLR

Citace
Szabolcs Kürti: Graphic development environment of agent low level language, diplomová
práce, Brno, FIT VUT v Brně, 2012

Graphic development environment of agent low level
language

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Jana
Horáčka. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

. .
Szabolcs Kürti

May 21, 2012

Poděkování
Chtěl bych poděkovat Ing. Janu Horáčku za odbornou pomoc a vedení mé diplomové práce.

c© Szabolcs Kürti, 2012.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Preface 3

2 Theoretical analysis 4
2.1 Multi-agent systems and the WSageNt platform 4

2.1.1 Multi-agent systems . 4
2.1.2 WSageNt platform . 5
2.1.3 Agent Low Level Language . 5
2.1.4 Structure of a ALLL agent . 5
2.1.5 Model of a WSageNt network . 6

2.2 Compilation and decompilation . 7
2.2.1 The ANTLR framework . 7
2.2.2 Actions and services used in ALLL 8
2.2.3 High level abstractions . 9

2.3 Semantic meaning of selected actions . 11
2.3.1 Mathematical operations . 11
2.3.2 Message sending . 12
2.3.3 Agent travelling . 12

2.4 Integrated development environment . 12
2.4.1 Source code editor . 13
2.4.2 Interpreter . 14
2.4.3 Debugger . 14

2.5 Graphical development environment . 14
2.5.1 Graphic User Interface . 15
2.5.2 Model-view-controller . 15

3 Design 16
3.1 Abstraction to ALLL compilation . 16
3.2 Recognition of abstract language elements 17
3.3 Static graphic user interface . 19
3.4 Dynamic graphic user interface . 20

3.4.1 Topology editor . 21
3.4.2 Plan base visualization . 21
3.4.3 Graphical source code editing . 23
3.4.4 Colour codes . 26
3.4.5 Dynamic GUI and the logic program model 27

1

4 Implementation 29
4.1 Language recognition . 29

4.1.1 Recognition exception handling . 29
4.1.2 Semantic control . 30
4.1.3 Compiling source code . 31

4.2 Project files . 31
4.2.1 Structure of the project info file . 32
4.2.2 Reading the project info file . 32

4.3 Logic program model . 33
4.3.1 Hierarchy of action classes . 33
4.3.2 Inner representation of actions . 33
4.3.3 Inner representation of agents and nodes 34
4.3.4 Inner representation of a multi-agent system 36

4.4 Dynamic graphic user interface . 36
4.4.1 Class GuiAction . 37
4.4.2 Class GuiPlan . 37
4.4.3 Class Canvas . 38
4.4.4 GUI during debugging . 38

4.5 Agent cloning . 38

5 Tests 40
5.1 Test no. 1 - Blink . 40
5.2 Test no. 2 - Remote sensor . 41
5.3 Test no. 3 - Travelling agent . 43

6 Closure 45

A Content of the CD 47

B Manual 48

C Poster 49

2

Chapter 1

Preface

This master’s thesis deals with the problem of creating a graphic development environ-
ment of Agent Low Level Language (ALLL). This language has been created at the Brno
University of Technology for programming agents in wireless sensor networks. This work
tends to present a detailed analysis, implementation and testing of the graphic development
environment.

This work is built on basics laid down by several others. I drew a lot of information from
bachelor theses [6] and [11] regarding to the syntax of ALLL and the semantic meaning of
individual language constructions.

First chapter contains a comprehensive theoretical analysis. The main problem is de-
composed into subtasks and those are examined in detail. My conceptual guideline is
to describe general concepts first, and place current problems and requirements into that
context. A wide variety of problems is examined. Creation of a graphic development en-
vironment combines a number of different fields like language recognition, graphic user
interface programming and simulation.

The theoretical analysis is followed by the description of the design. Chapter design
tends to present proposed solutions to previously analysed requirements. Compilation and
decompilation of abstract language elements are discussed in detail. Besides language recog-
nition tasks graphic user interface issues are presented as well. Chapter contains a complete
design for source code visualisation, just like the description of possible interactions between
the user and the graphic interface.

Chapter implementation presents how the design of the graphic development environ-
ment was realized. In that chapter we move from general concepts to specific solutions:
classes and code snippets solving explicit problems are listed there. The development envi-
ronment was implemented in language Java.

Description of the implementation is followed by a chapter dealing with testing. Tests
are coupled into several different groups. The last group is formed by tests intended for
real life sensor networks. Those are presented in detail as it is required in the fourth point
of the assignment.

Current state of the development, achieved results and possible improvements are dis-
cussed in the closure.

3

Chapter 2

Theoretical analysis

This chapter tends to present the theoretical analysis of the problem how to create a graphic
development environment for the Agent Low Level Language (ALLL). The analysis can be
decomposed into studying the following sub-problems:

• general concept of multi-agent systems and possibilities of the selected platform,

• compile and decompile ALLL source code,

• requirements set against this specific graphic development environment,

• how to represent and edit compiled code in a visual manner,

• model wireless sensor networks as a multi-agent system,

• simulate the behaviour of the modelled system.

The rest of this chapter deals with the detailed analysis of the above mentioned tasks.
A good analysis is very important. Time is one of the key aspects in every development
process. Good understanding of the problem can save us a lot of unnecessary extra work
caused by bad decisions made in early stages.

2.1 Multi-agent systems and the WSageNt platform

This section gives an overview about how the general concept of multi-agent systems and
the WSageNt platform are related to each other. Key features of WSageNt platform are
presented and discussed briefly as well.

2.1.1 Multi-agent systems

A multi-agent system (MAS) is a system composed of multiple co-operating intelligent
agents within an environment. Agents are designed to collect information about their
surroundings. The acquired knowledge can be processed and shared with other agents in
the environment. Multi-agent systems can be used to solve problems that are difficult or
impossible for an individual agent or a monolithic system to solve. Typical characteristics
of multi-agent system according to [2] are the followings:

• agents are autonomous entities,

4

• no agent has a full global view of the system,

• there is no appointed central decision making agent which controls the others, other-
wise the whole system would be reduced to a monolithic system.

2.1.2 WSageNt platform

The description of the WSageNt platform presented here is based on information available
on the web page of the project [5]. The WSageNt platform is capable to run agents in
wireless sensor nodes (MICAz and IRIS motes). Key features of this platform match the
typical characteristics of a multi-agent system. The multi-agent system is represented by
the network of wireless sensor nodes.

The core of the platform is programmed in TinyOS 2.x. Software is divided into two
major parts: agent platform and the interpreter of ALLL code. Key features of the agent
platform are:

• agent can collect data from the sensor attached to the currently seized node,

• communication of the agents is solved by sending messages,

• agents together with their knowledge can be cloned and loaded into another node.

The interpreter executes programs written in ALLL. Key features of this language are
discussed briefly in the followings.

2.1.3 Agent Low Level Language

The Agent Low Level Language belongs to the long family of imperative languages. Pro-
grams written in ALLL are not compiled but interpreted. One of the main design goals
was, that a source code written in this language should be very small in size because of the
limited memory resources. ALLL is a low level language, it follows that there are no data
types and instead of using variables programmers directly manipulate with registers.

Certain features of this agent language shows similarity with a variety of different other
languages. For example ALLL is an imperative language like C but stores information in a
belief base like logical language Prolog. The behaviour of the multi-agent system depends
on a proper interaction of several agents. From this point of view programming in ALLL
is very similar to using a message parsing interface like Open MPI. Parallel execution of
several nodes must be kept in mind, and their proper synchronization has to be solved.

2.1.4 Structure of a ALLL agent

If we examine things with a top-down approach, a wireless sensor network forms a multi-
agent system. Interacting agents can solve certain tasks according to their predefined
behaviour written in ALLL. An agent can be decomposed into the following parts:

• identification,

• plan base,

• plan,

• registers,

5

• knowledge base:

– belief base,

– input base,

Execution of agents start at the plan. Plan is a list of actions dynamically changing
during execution. However I decided to introduce two new terms namely goal and action
stack. Goal remains the same during execution, dynamic changes are displayed by the
action stack. It was necessary because of the source code editor. Goal is part of the source
code, but the visualized code is not changing dynamically. The point of execution can be
followed by a pointer, which jumps from action to action in the source code as it is executed.
In the rest of this text term plan refers to an item of the plan base.

The goal and the plan base represent the behavioural description of the agent. Data
measured by sensors and incoming messages are collected into the input base. The knowl-
edge, acquired by the agent about its surroundings and its own state, can be stored in the
belief base, while registers serve for data manipulation. Knowledge is represented in a form
of tuples containing textual and/or decimal data.

Plan base is an unordered list of plans. Plan is an ordered list of actions labelled with a
name. The label primarily serves for identification, so it has to be unique within the agent.
Goal of the agent is special type of a plan without a name. It is always present, while the
plan base can be empty.

During execution 3 registers can be used to store results returned by actions. Registers
are addressed by register symbols &[1-3]. Certain actions accept tuples that can contain
register references. In those cases content of the register is copied to replace the symbol, or
the action fails if an empty register is referenced.

There is platform specific limitation for agents. The size of the whole agent can not
exceed 2 KB. This is because of the limited memory available on motes. The size compre-
hends all parts of the agent: plan base, goal, action stack, input base, belief base and the
registers.

2.1.5 Model of a WSageNt network

WSageNt networks can be modelled using the following items:

• sensor nodes,

• agents and

• links.

Model of a system is another system that emphasizes certain attributes of the original
system while other features are abstracted. Communication between wireless nodes, in real
life, is done through radio waves. Because of distance or different obstacles e.g. walls, some
nodes can communicate while others can not. Not to mention that temporary signal fade
outs can cause unforeseeable communication package loses. This project does not intend to
deal with the radio communication. Nodes that can communicate are connected by links;
if the link is missing, nodes are mutually unavailable for each other. The most important
and widely used topologies of sensor networks are the followings according to [10]:

6

line

star

mesh (fully connected) tree

Figure 2.1: Frequently used network topologies

2.2 Compilation and decompilation

In order to be able to edit an ALLL source code it needs to be compiled into an inner
representation. In our graphic development environment agents are represented by objects.
Every part of the agent has its own object representation described by dedicated classes.
Not only the behavioural description of the agent is translated. Initial knowledge: content
of the registers, the input and the belief base are compiled to an inner representation too.

Decompilation means a reverse action, when a ALLL source code is created from the
object representation, which is a relatively easy task in comparison with compilation. Every
object knows how to represent its content in a textual form. Agents are exported into a
ALLL source code by decompilation.

2.2.1 The ANTLR framework

Compilation of the source code into a inner representation requires language recognition
tools. This subsection tends to present why the ANTLR (Another Tool for Language
Recognition) framework has been selected for this task.

Building a lexer or a parser manually is a very demanding task. ANTLR is a framework
for generating lexers, parsers and other language recognition tools. The main advantage
of using such a framework is that we can focus on the primary problem and leave the
monotonous work to the generator. ANTLR is written in Java and supports a variety of
target languages, namely: Java, C, C++, C#, Objective-C, Python and Ruby. Terence Parr
from the University of San Francisco stands behind the development since 1989. ANTLR
Works is a grammar development environment with a number of features e.g. grammar
visualisation. I have decided to use this framework because of my good previous experiences.
I worked with the ANTLR plugin available for Eclipse. Description of the framework was
adopted from [9].

7

Tools generated by ANTLR use LL(*) parsing strategy that supports more natural
grammars then other approaches. It is called LL because it recognizes input from left to
right using a leftmost derivation. The other big class of recognizers is called LR because
they use rightmost derivations (for example YACC generates LR-based language tools).
LR recognizers try to match lexemes of the input with the leaves of the parse tree and
work their way up toward the starting symbol. While LL recognizers are goal-oriented and
walk the parsing tree in a top-down way. With a starting rule in mind try to match the
alternative rules. This kind of language processing is very similar to the way how humans
understand complex sentences.

The strength of a LL recognizer depends on the amount of lookahead it uses. With a
lookahead of 1 the recognizer can scan 1 symbol ahead if unable to decide which alternative
rule to use based on the next symbol. Top-down recognizers with a fixed amount of looka-
head k, are called LL(k). One of the biggest advantages of the ANTLR v3 is the LL(*)
parsing strategy that allows lookahead to roam arbitrarily far ahead without a considerable
reduction in recognition speed. This dramatically increases the number of acceptable gram-
mars. However ANTLR has its own limitations too. Not all useful grammars are LL(*)
for example nested structures with a recursive definition can not be accepted. ANTLR
has built in strategies how to deal with this kind of problems but those are beyond our
consideration.

The ANTLR has been selected mainly because of the above mentioned features of the
framework. The following types of language recognition tools are generated by ANTLR for
this project:

• lexer,

• parser and

• tree walkers.

Lexer decomposes input into a stream of lexemes. Parser builds from the lexemes an
abstract syntax tree (AST). Tree walkers walk through abstract syntax trees to execute
actions defined by the programmer.

2.2.2 Actions and services used in ALLL

Actions are the most fundamental building blocks of ALLL. Service call is a special type
of a action that allows to call services of the host platform. A detailed analysis of actions
and services is required in order to be able to compile source code into a proper inner
representation. One of the most important things is to know the number and the type of
parameters that individual actions require. Tables of this section were adopted from [6]
and [11] with some minor changes.

8

code parameter list description
+ [register, tuple] Adds content specified by the parameter

to the belief base.
- [register, tuple] Removes tuples unifiable with the speci-

fied parameter from the belief base.
& ([1− 3]) Changes and clears the active register.
ˆ [(string), register] Calls the plan specified by the parameter
@ (list of actions) Inserts the specified list of actions to the

action stack with and additional
”
catch“

(#) at the end.
! [integer, register], [tuple, register] Sends a message (second parameter) to

the address specified by the first param-
eter.

* [tuple, register] Copies tuples unifiable with the specified
parameter from the belief base to the ac-
tive register.

? [integer, register,] Relocates tuples from the input base to
the active register. Parameter specifies
the source address,

”
“ selects the first

message.
$ (service) Calls the specified service.
none If an error happens actions are deleted

from the stack unit this action is encoun-
tered.

Table 2.1: Table of ALLL actions

2.2.3 High level abstractions

Programming in a low level language like ALLL gives a lot of control over how the code
will be interpreted or executed; however, it is often hard to understand the logic behind
such a code. High level programming languages use abstractions to hide the details of the
computer, and allow to use natural language elements. There is a high level programming
language for describing the behaviour of our agents. It is called Agent High Level Lan-
guage (AHLL). This language has been created by Bc. Robert Kalmár in his bachelor’s
work: Language of Higher Level of Abstraction for Programming Mobile Intelligent Agents.
The above mentioned high level language has a very similar syntax as C: global and lo-
cal variables, if-then-else structures, program blocks, cycles and function calls are natively
supported by AHLL.

The aim of this master’s thesis is to create a graphic development environment for the
Agent Low Level Language, nevertheless it is quite obvious, that implementing a selection
of the previously mentioned higher level structures would have a great impact on the us-
ability of the environment. In my opinion the most important abstraction is the if-then-else
structure, because it enables to make a decision and continue the execution of the program
on different paths.

In this project I am going to focus on the implementation of the if-then-else structure.
Program codes, containing abstract language structures, needs to be translated into ALLL

9

code parameter list description
a none Activates monitoring of incoming messages.
f [list, register] Copies the first item of the specified list to

the active register.
k none Kills the interpreter.
l [(colour〈, state〉?), register] Controls LEDs. Colour

”
r“,

”
g“ or

”
y“ speci-

fies the red, green or the yellow diode respec-
tively. State is optional; if it is omitted the
selected diode is toggled between states on
(1) and off (0).

m ([integer, register]〈, s〉?) Copies the agent to the node addressed by
the parameter. Character

”
s“ attached to the

address stops execution of the current agent.
r [list, register] Copies the tail of the specified list to the ac-

tive register.
s none Suspends execution until a message arrives.
w [(integer), register] Suspends execution for the specified amount

of time (milliseconds).
d [none, (type, integer), register] Collects data from the sensor into the input

base. If no parameter is specified the cur-
rent value is used, otherwise the average (a),
minimum (m) or maximum (M) of the last x
(integer) measurements is returned.

Table 2.2: Table of supported services

code meaning explanation
mul multiply operand 1 ∗ operand 2
div integer division operand 1 / operand 2

mod remainder after integer division operand 1 % operand 2

add addition operand 1 + operand 2

sub subtraction operand 1 − operand 2
les less than operand 1 < operand 2

leq less than or equal operand 1 ≤ operand 2
mor greater than operand 1 > operand 2

meq greater than or equal operand 1 ≥ operand 2
equ equal operand 1 == operand 2

neq not equal operand 1 ! = operand 2

and logic and (conjunction) operand 1 operand 2

orr logic or (disjunction) operand 1 operand 2

not logic not ! operand 1

min unary minus (−1)∗ operand 1
cpy copy variables operand 1 = operand 2

Table 2.3: Mathematical operations supported by the platform

10

before we load them into sensor nodes. The development environment has to support ex-
port/import of abstract structures. There are two ways of doing this. The first option
is, that we define a new language which supports these structures plus native ALLL con-
structions. We store our programs in this language and use an export to translate it into
ALLL. The other option is that the development environment produce only clear ALLL
source code and abstract structures are recognized in this code. The main advantage of
the first solution is that recognition of abstract structures is a non-trivial problem, however
to define a new language just to hold our structures seems to be redundant and needless.
That is, why I decided to implement the second option - recognize if-then-else structures
in the produced ALLL source code.

2.3 Semantic meaning of selected actions

For debugging purposes actions need to be executed. This demands not only to be aware
of the syntactic structure of a ALLL program, but also to know the semantic meaning
of individual actions. Some actions are quite straightforward, while others require some
explanation. Actions with a complex meaning are described in this section.

2.3.1 Mathematical operations

Mathematical operations supported by the agent platform are listed in table 2.3. Descrip-
tion of mathematical services was adopted from [6]. Because ALLL is a low level language,
something like variables do not exist. Despite this, tuples with the following structure can
substitute variables:

((name),value),

where the first item, representing the name, is a tuple, and the second item is an integer
value. From now on expression variable will refer to this structure instead of its general
meaning.

Registers can contain multiple variables for mathematical operations:

((name),value 1)((name),value 2)...((name),value n),

or values can be present even without names:

(value 1)(value 2)...(value m).

Mathematical operations can be divided into binary and unary operations

• In case of a binary operation the result is computed by applying the operator on
the Cartesian product of input variables.

• Result of a unary operation is computed by applying the operator on every variable
of the operand.

Binary operations have the following form:

$(o, type, op 1, op 2, name 1, name 2, name result),

where:

• type denotes the selected binary operation;

11

• op 1 and op 2 represent a single variable or a register symbol;

• name 1 and name 2 are tuples for filtering input variables. A variable is accepted
by the operation only if its name corresponds with the filter. Variables without names
are selected by empty tuples.

• name result defines the name of the result.

Unary operations have the following form:

$(o, type, op 1, name 1, name result),

where individual items of binary and unary operations are analogous.

2.3.2 Message sending

An agent can communicate with other agents within the environment by sending messages.
Messages arrive to the input base and have the following structure:

(source address, (content)),

where source address is an integer value and (content) is a tuple. Register references in
the content are substituted before sending the message.

Messages are delivered from node to node. Address identifies the node, not the com-
municating agent. Messages are received by the agent at the targeted node. Messages can
be sent only to nodes that are directly visible from the source. The source node tries to
send the message in a cycle until it is successfully sent. If the target node never becomes
available, then the sender stuck in an infinite loop.

2.3.3 Agent travelling

Agents can be moved between nodes by calling the
”
move“ (m) service. If the target node

is not available, the agent ends up in a loop, just like in message sending. If the targeted
node is seized by another agent it is kicked out; new agents are always prioritized.

Depending on how this service was called the agent at the source node can be stopped
or continued to run. If the execution on the source node continues, the agent is, practically
speaking, cloned and the clone is sent to the target node. When an agent is cloned its whole
inner structure is copied including even the content of registers and the point of execution.
The new agent has the same goal, action stack, plan base, belief and input base as the
original. The execution continues from the action that succeeds the recently called

”
move“

(m) service.

2.4 Integrated development environment

An integrated development environment (IDE) is a software application that provides a
comprehensive set of tools to programmers for software development. In general IDE con-
sists of the following parts:

• source code editor,

• compiler and/or interpreter and a

12

• debugger.

In development environments programmers usually work with projects. Projects help
to organize the work. In our graphic development environment project represents a wireless
sensor network or generally speaking a multi-agent system. The following information need
to be stored in a project file:

• the topology of the network,

• agent descriptions,

• initial position of agents,

• comments and

• additional information.

Commenting our source code is more than just a good habit. In lot of companies even finan-
cial bonuses are withheld until the produced source code is properly commented. Comments
are stored in the project file, because they are not allowed in ALLL due to the previously
mentioned size issues of the source code.

2.4.1 Source code editor

The source code editor serves for editing the plan base and the goal of an agent, and it has
to support the following tasks:

• add a new plan,

• delete,

• rename or

• edit and existing plan.

We can think of a goal as a special type of a plan which is always present. It can not
be deleted or renamed but its content is available for editing.

If we want to add a new plan its name has to be defined in advance, because its
uniqueness is controlled first. Plan base can not contain multiple plans with the same
name. Plan names also have to match the following regular expression:

([a-zA-Z0-9])*

The same limitations are applied to renaming as well. After the name is verified, a new
plan is added to the belief base or the selected one is renamed.

Plans of the plan base are available for editing. Editing can be divided further into the
following subtasks:

• add a new action,

• delete an existing action,

• change the order of actions within a plan,

• exchange actions between plans and

• edit parameters of actions.

A detailed description of these tasks is presented later, where their graphical realization
is discussed as well.

13

2.4.2 Interpreter

In our graphic development environment (GDE) ALLL interpreter does not execute the
textual form of the source code, but the compiled inner representation. Central part of the
interpreter is the action stack. Execution continues until the action stack is emptied or the
execution is suspended for some reason. Execution starts with loading actions of the goal
to the action stack. From the interpreters point of view there are three different types of
actions.

• The first type of actions changes only the inner state of the agent.

• Actions of the second type require cooperation from the network (send message, move
agent).

• The third class modifies directly the state of the interpreter (wait, suspend, kill, load
plan).

2.4.3 Debugger

Debugger is one of the most important parts of any development environment. The pur-
pose of the debugger is first and foremost to reveal to potential flaws in the logic of the
produced program. The user plays an active role in this process. There are different types
of debugging:

• examine every action step by step,

• set up breakpoints or

• use conditional breakpoints where debugger stops only if specific conditions are en-
countered.

I have decided to implement the first solution. In my opinion breakpoints are useful for
programs that are longer and more complex than a typical ALLL program.

To debug only one agent in a multi-agent system has a little meaning. Agents behave
like different threads synchronized by messages. In a well written program the order, in
which individual threads (agents) are executed, does not matter. Two different types of
debugging is supported by our GDE:

• individual or

• system.

Individual debugging executes one agent step by step. It has the advantage that changes of
the knowledge base and the action stack can be examined after every step. During system
debugging every agent take one step and we can see how the whole system evolves.

2.5 Graphical development environment

The aim of this work is to create a graphic development environment that extends a simple
IDE with visual code editing. In a graphic IDE source code is manipulated rather visually
than textually. One of the key aspects of development environments is to make program-
ming more convenient and effective to increase productivity. Visual information in general

14

is more acceptable for humans than a textual form. This is true in particular if we consider
the Agent Low Level Language. Actions and services labelled with one single character, no
white-spaces, nested tuples and language constructions can be very confusing. Humans do
not necessarily understand statements accepted by machines. Programming languages have
been born to bring closer machine languages to natural languages. Graphic development
environments take this idea one step further as they form a bridge between programming
languages and the human understanding.

2.5.1 Graphic User Interface

Graphic user interface (GUI) of our development environment can be divided into two
major parts:

• static and

• dynamic graphic user interface.

Expression static GUI refers to the main frame of the application and its static subcom-
ponents. Those are predefined panels and internal frames that do not change their inner
structure. On the other hand, there is the dynamic graphic interface which is closely related
to the visualisation of the network topology and the agents.

2.5.2 Model-view-controller

Model-view-controller (MVC) is a software architecture that separates the business logic
of the application from the user interface. [3] The main advantage of this approach is
that isolated domains can be developed, tested, and maintained independently. The user
interface of the graphic IDE is rather complex, so, it is particularly important to divide the
presentation layer from the logic domain. The control flow of MVC can be described as
follows:

• The user interacts with the user interface.

• The controller handles the event and translates it into an appropriate logic action.

• The controller notifies the logic model of the action.

• The action can change the state of the model. The view queries the model whether
update of the user interface is required or not.

• The user interface waits for further actions from the user. The control flow cycle is
restarted.

15

Chapter 3

Design

This chapter deals with the design of the application based on the theoretical analysis pre-
sented in the previous chapter. Several different topics are discussed like language recogni-
tion, the logic program model and the graphic user interface.

3.1 Abstraction to ALLL compilation

Bachelor’s work of Bc. Robert Kalmár, among other things, deals with translation of high
level structures into ALLL source code. Some of his results are integrated into this work
with some minor changes. Conditioned structures can be implemented due to a specific
feature of the language. If a certain tuple can not be unified with the belief base, then the
action stack is cleared until its totally emptied or the first

”
catch“ (#) action is encountered.

The pseudo program code below explains how an if-then-else structure can be repre-
sented in ALLL. The following text is adopted from [6] with some minor changes.

macro if $condition $then $else

@($condition_true -$condition_true $then)

@($condition_false -$condition_false $else)

macro-end

After the condition is evaluated the result is added to the belief base as a tuple. After
condition evaluation a

”
direct run“ (@) action is executed. The first action inside tries

to unify the true condition with the belief base for branch
”
then“ while false condition

represents the
”
else“ branch. In case of a true condition unification succeeds and the

execution continues. For the
”
else“ branch unification fails, and actions of this branch are

deleted.
Decisions are based on mathematical binary relations. Because of the low level language

condition statements needs to be kept quite simple: one register or operand can figure on
both sides of the condition and the two sides are compared by one mathematical relation.
In the followings transition of an if-then-else structure to a sequence of ALLL actions will
be presented step by step through an example.

Example 1. Express the following sentence in ALLL. If the value in 1st register is less or
equal to the value in the 2nd register, then insert into the belief base tuple (yes), otherwise
insert tuple (no).

16

The first thing we need to do is to identify which register can be used for condition
evaluation. In this case the 3rd register is not used by the mathematical operation. Assume
that the belief base (BB) is empty and registers &1, &2 contain values (1), (2) respectively.

&(3) &3: empty
$(o,leq,&1,&2,(),(),(cond)) &3: (((cond),1))

+&3 BB: (((cond),1))

@(AS: ..+(yes)#..

*(((cond),1)) &3: ((((cond),1)))(((cond),1))

-(((cond),1)) BB: empty
&(3) &3: empty
+(yes) BB: (yes)

)

@(AS: ..+(no)#

*(((cond),0)) AS: empty (because action failed)
-(((cond),0))

&(3)

+(no)

)

This is the right place to mention, that to ensure correct behaviour, one minor restriction
needs to be introduced. Action

”
catch“ (#) can not be used within the abstraction, because

this implementation assumes, that at time of calling action *(((cond), 0/1)) the closest
symbol on the action stack (AS) defines the end of the current branch.

The difference between mine and the previously implemented solution is that action
-(((cond),0/1)) is called in both branches. This action removes the result of the con-
dition evaluation from the belief base immediately after evaluation. The same if-then-else
abstraction can be called recursively without reaching its end. If the result of the previous
evaluation is not removed from the belief base, it can lead to an undesired behaviour.

3.2 Recognition of abstract language elements

The previous section presented how an if-then-else abstraction is translated into ALLL. This
section deals with the reverse transition - how abstract structures can be recognized in a
sequence of ALLL actions. First we need to decide what kind of mechanism is required for
abstraction recognition. Language ALLL enables nested structures for example @(*(1,)),
so, it is not a regular language. A context-free grammar is required to match start and
end brackets. Languages generated by context-free grammars are equivalent to languages
accepted by pushdown automatons. A pushdown automaton is need to be created in order
to recognize abstract structures. Design of the automaton respects that several abstractions
can be nested into each other. I would like to emphasize that this automaton is not used to
parse the ALLL language, but the sequence of ALLL actions. Language recognition tools
generated by the ANTLR framework compile the source code into its inner representation,
and abstract structures are searched in the compiled code. Textual and graphic repre-
sentation of automaton Mabs was based on examples from [1]. The automaton is defined
as:

17

Mabs = (Q, Σ,Γ, δ, q0, Z, F), where

• Q = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, then, else, f1, f2, f3 } is the set of states.

• Σ: input alphabet is equal to the set of actions supported by ALLL.

• Γ = { $, @(,) } is the stack alphabet.

• δ: transition relations are described in the subsequent picture.

• Starting state q0 = 1.

• Z = $ is the initial stack symbol.

• F = { f1, f2, f3 } is the set of accepting states.

$/$, &(x)

$/$, $(o(rel,o1,o2,v1,v2,cond))

$/$, +&x

$/$, @(

$/$, *(cond, 1)

$/$, -(cond, 1)

$/$, &(x) $/$,)

$/$, α ∈ Σ\{#, @(,)} @(/@(, α ∈ Σ\{#, @(,)}

$/@(, @(

@(/@(@(, @(

@(/ǫ,)

$/$, β = @(

$/$, γ = *(cond, 0)

$/$, δ = -(cond, 0)

$/$, ϕ ∈ Σ

$/@(, @(

@(/@(@(, @(

@(/ǫ,)

$/$, α ∈ Σ\{#, @(,)} @(/@(, α ∈ Σ\{#, @(,)}

$/$, η =&(x)

$/$,)

$/$, ϕ ∈ Σ

else

then

$/$, ω ∈ Σ \ {β}

$/$, ω ∈ Σ \ {γ}

$/$, ω ∈ Σ \ {δ}

$/$, ω ∈ Σ \ {η}

2

3

4

5

7

8 f1

f2

f3

9

10

11

1

Figure 3.1: Pushdown automaton Mabs

Pushdown automaton Mabs accepts the input sequence of actions if an if-then-else ab-
straction starts with the first action. States 1-3 match condition evaluation, states 4-8

18

accept actions that control whether
”
then“ branch should be invoked or not. State then

accepts the content of the
”
then“ branch, including nested if-then-else abstractions. The

machine accepts input by final state f1 if there are no more actions after the
”
then“ branch.

States 9 - 10 accept actions that control whether
”
else“ branch should be invoked or not.

Acceptance by final state f2 means that the
”
then“ branch is followed by at least one other

action but it does not represent an
”
else“ branch. State else, just like state then, accepts

the content of the current branch. The input is accepted by final state f3 if the first action
of the sequence starts a complete if-the-else abstract structure. States f2 and f3 accept any
action supported by ALLL, because we need to accept a sequence which ends at the end
of the program. Practically speaking the machine consumes everything what follows the
abstract structure. Bracket matching is not controlled in these states, the input has to be
a valid and correctly encapsulated sequence of ALLL actions.

3.3 Static graphic user interface

Static graphic user interface comprehends the layout of the main window of the application
and its subcomponents. The main frame is structured as follows.

1

2 3

4 5

1

Figure 3.2: Sketch of the main frame

Menu bar is at the top of the main frame (1). Column on the left (2) is reserved for lan-
guage elements (actions, services, abstractions). The right side is divided horizontally. The
upper part (3) deals with the visualization of the topology and the behavioural description
of agents. The bottom part is further divided into a control panel (4) and a list of other
panels (5). Control panel is for debugging purposes, it contains the following information
about the currently displayed agent:

• content of registers,

• id of the currently active register,

• state of the agent described by the following flags:

19

– monitoring incoming messages,

– waiting for a message,

– interpreter is killed.

The control panel also displays details about the node seized by the displayed agent. Sensor
node related information are the following:

• id of the node,

• actual value measured by the sensor.

The sensor field displays editable data. It helps to debug programs with decisions, where
agents can behave differently according to the value returned by the sensor.

Tabbed pane labelled with number 5 contains the following panels:

• code view & import,

• knowledge base,

• project properties and

• console.

Code view & import panel displays the ALLL source code of the agent. Whatsoever
change is made to the agent through the graphic interface, the effect on the textual repre-
sentation is instantly displayed on this panel. Another task that has been placed here is
the agent import. A file chooser dialogue is displayed after a click on the

”
import agent“

button. If the selected file represents a valid agent, the actually displayed is replaced by
the new definition.

Knowledge base panel enables to initialize the content of the belief and to follow their
changes during debugging. The third field displayed by this panel is not editable. It
represents the current state of the action stack. Actions waiting for execution are listed
there.

Project properties panel enables to view and edit basic properties (title and description)
of the project. The result of the last executed task, for example: open project, import agent,
initialize knowledge base, start debugging, stop debugging, save project, etc. is displayed
on the console panel. In case of an error a detailed error description helps the user to find
out what the problem might be.

3.4 Dynamic graphic user interface

Dynamic graphic user interface can be divided into the topology editor and the source code
editor. Topology editor serves for modelling wireless sensor networks while the source code
editor visually represents the source code of agents in an editable way. Dynamic graphic
user interface is called dynamic because it can restructure itself according to the users
interactions with interface. Dynamic GUI is very similar to a painters canvas. User can
add new elements, remove or edit existing content.

20

3.4.1 Topology editor

The desired topology can be created with just a few clicks in the topology editor of the
development environment. Agents can be inserted to the created network. Every node can
hold exactly 1 or 0 agent. Nodes contain sensors for collecting data and a set of red, green
and yellow diodes for visual signalization. Agents can be dragged into a different node or

b

b b

b

b b

b

b b

agent

node without agent

diodes

b

b

b

b

b

link

b

b b

b

b b

eraser

Figure 3.3: Topology editor

deleted by dropping them outside a node. Links are editable too. Unneeded nodes can be
deleted by dragging them over the eraser object. If a node is deleted, the attached links
are deleted as well. If the node contained an agent it is removed from the network too.

3.4.2 Plan base visualization

This section deals with the visual representation of programs written in ALLL. The focus
is on the behavioural description. The main task is to represent graphically the goal and
the plan base of agents in a editable form.

Plan base is an unordered collection of plans. Plan contains actions in a specified order.
In the rest of this section visual representation of these structures will be explained in
a bottom-up way. First actions and their parameters are examined, after that plans are
presented, and last but not least the graphic representation of a plan base is described.

Actions consists of the following parts:

• name,

• parameter list and

• alternative parameters.

Actions are identified by their names. Parameter list of an action contains 0 to n parameters.
In some cases the the actual value of the parameter can be replaced with a register reference.
This is solved in our graphic IDE by using alternative parameters. The user can select
whether he/she wants to use an explicit value or a register symbol. In order to make the
best use of the available space, only the currently selected parameter is visible by default.
The list of alternatives becomes visible only if the user wants to replace the currently active
parameter. For example action

”
add to belief base“ (+) can be defined in the following

ways:

21

• +&1

• +(1,2,3).

Add to BB register 1 Add to BB register 1

tuple (1,2,3)

Figure 3.4: Graphical representation of the
”
add to belief base“ (+) action

Visual representation of a plan contains the following major components:

• header,

• left column,

• right column and

• action container.

header

action container

warning

comment

delete

plan name

right columnleft column

block edge

block of actions

block edge

action

action

Figure 3.5: Graphical representation of a plan

Header contains further subcomponents e.g the name of the plan is displayed on the left
side. Name has to be displayed in an editable way, because plans can be renamed. Buttons
on the right side of the header intend to:

• display warning messages,

• display a comment box and

22

• delete the selected plan.

Left and right columns are used to display information specific to individual actions.
The action container arranges actions of the plan. Every action is displayed on a separate
row in order to keep the visual code clean. One of the main tasks of the action container
is to display structured actions correctly. Typical structured actions are the

”
direct run“

(@) action and high level abstractions. Structured actions defines blocks. Actions within a
block are displayed with indent for better readability.

There is an additional visual description layer above the individual plans, namely the
plan base. Plans do not stand on their own with no connections to the others. Action

”
indirect run“ (ˆ) is used to load actions to the action stack from the plan specified by

the passed parameter. Visually it can be described as a jump to the target plan. Plans of
the plan base are interconnected by jumps leading from

”
indirect run“ actions to plans. If

the target plan is the same as the source, we speak about recursive jumps. If the passed
parameter is a register symbol, no connection is drawn because the content of the addressed
register is not available during editing. There is no way to tell without debugging on which
plan the action points.

plan A

plan B

goal

jump to plan A

jump to plan B

jump to plan A

jump where register points

Figure 3.6: Graphical representation of a plan base

Connections are drawn to a layer that is below the layer of plans. It helps to keep the
graphic representation manageable and perspicacious, because the connection lines do not
interfere with the content of plans.

3.4.3 Graphical source code editing

The graphic source code editor supports not only visualization but editing as well. Editing
composes from the following tasks:

• move the selected action within the plan base and

• edit parameters.

Parameters are represented by predefined components available in Java. Combo boxes,
check boxes, text fields and other items are used. Their content is initialized according to

23

the inner representation of the source code. The inner representation of the source code is
updated whenever user interacts with these components and changes the value they hold.
If incorrect data are entered, the update is not executed, and the graphic user interface
displays a warning to let the user know that something is wrong.

New actions are added by using a so called empty action. Every plan including the
goal contains an empty action. The newly added action appears in place of the selected
empty action, while it is pushed one position further. Even if there is a number of plans
displayed on the screen only one empty action can be selected at a time. There are some
other restrictions too e.g. empty actions can not be exchanged between plans; every plan
contains exactly one. Of course empty action has no textual representation, because it does
not exist in ALLL; serves only editing purposes.

Plan A

block start

empty action

action b

action c

Plan A {after}

block start

action a

action b

action c

action d

block end block end

empty action

+ a

+ d

Figure 3.7: Adding new actions

One of the most natural way of modifying things on a computer screen is to drag and
drop them. With this in mind actions can be repositioned, exchanged between plans or
deleted by dragging and dropping. The position of the dragged action at the time of release
defines how to respond to the drop event. If the action is dropped above the empty space
between the plans it means deletion, otherwise the action is placed to its new position. Inner
representation of the source code is re-generated according to the new graphic definition.

Plan A

block start

action a

action b

action c

action d

action e

Plan A {after}

block start

action a

action d

action b

action c

action e

block end

block end

Figure 3.8: Change the order of actions

24

plan A plan B

block start

block end

action c

action b

action d

action e

action z

action y

action xaction a

Figure 3.9: Drag and drop actions

Plans are not represented internally as a one-dimensional array of actions. A structured
action can contain other actions, because of this a tree like structure is required. A struc-
tured action is displayed as a block of actions enclosed by edges. Actions can be moved
into or move out from a block in two ways. The first option is to drag and drop the action
directly. The other one is to move one of the edges. It is important to control that a block
edge can not be moved into an incorrect position in which distinct blocks are overlapping.
The starting edge of a block represents the whole structured action. If it is deleted or
dropped into another plan, the whole block of actions is moved. It is important to update
parent-children relations of structured actions after a change.

Plan A

block start

action a

action b

action c

action d

action e

Plan A {after}

block start

action a

action b

action c

action d

action e

block end

block end

Figure 3.10: Re-structure actions by moving block edges

25

Plan A

block start x

action a

action b

action c

Plan A {after}

block start y

action a

block end x

block end y

block start y

block end y

block start x

action b

block end x

action c

Figure 3.11: Example, correct position of a block edge

Plan A

block start x

action a

action b

action c

Plan A {after}

block end x

block start y

block end y

block start x

action a

action b

action c

block end x

block start y

block end y

Figure 3.12: Example, incorrect position of a block edge

3.4.4 Colour codes

Using colour codes to express differences between elements is are very useful approach,
especially in a graphic environment. Agents during debugging can change their state.
Following colour codes represent possible states of an agent.

normal running suspended stopped finished error

Table 3.1: Colour codes of agent states

A purple colour is used by default in the topology editor (no debugging). Green tone
represents a running agent. Yellow color is used to express, that the execution of the agent

26

is suspended until a message arrives. Agents painted in gray are stopped, for example
because of calling the move service with the

”
stop“ parameter. A blue tint notifies that

the action stack of the agent has emptied normally while red tells us that is has emptied
because of a failed action.

Colour codes are also used in the source code editor. Actions are painted using the
following colour set.

default structured selected succeeded failed suspended auxiliary

Table 3.2: Colour codes of actions

Simple actions and services have orange color. Edges of structured actions are painted
using a blue tone. If the user clicks on one of the edges, they turn into a lighter colour to
visually express the selection and the boundaries of the structure.

The rest of the colour palette is for debugging. Successfully executed actions turn to
green (and back into the their original colour as the execution moves forward). Actions
that failed for some reason, for example because of invalid input parameters, are repainted
in red. Service that suspends execution of the agent until a message arrives turns to yellow.
Auxiliary color code is used at conditions. Abstractions are decompiled into a sequence
of ALLL actions. Those are executed one by one. Action

”
if“ turns to green in case of

a true condition. Red color is used to express a false condition or that the mathematical
operation inside the abstraction got invalid parameters. A tone of brown color is used when
an auxiliary action of the actual abstraction is executed.

3.4.5 Dynamic GUI and the logic program model

In our implementation there are two different kinds of user-graphic interface interactions.
Some of them can cause a change in the model state while effects of the second type are
restricted to the graphic domain. Removing an action from a plan for example, changes
the model state, but re-arranging GUI plans on the canvas does not.

The logic domain and the graphic interface are sharply separated. Classes of the logic
domain are collected into the package called logic while elements of the graphic user
interface are in a separate package called gui. Few selected GUI objects play the role of a
controller.

Visualization of language elements is solved by GUI objects while the logic model is
defined by different objects. There is a mirroring between objects of the logic and the
graphic domain. GUI objects realize only the graphic representation while objects of the
logic model store the information which is presented. It helps to reduce information redun-
dancy since the same information is not stored twice There is a 1:1 relationship between
the two kinds of objects. Their hierarchical structure is described on the picture below.

27

action

gui actionaction

gui action containeraction container

gui planplan

gui action

Figure 3.13: Object hierarchy example

Graphic interface objects belong to their logic model equivalents. They are created and
disposed together. When a GUI object wants to display some information about the model,
for example the actual value of a parameter, it can ask the logic action to return it. It was
a design principle to define object interactions in a way, that the logic model does not event
now that it is being visualized. Only the graphic representation is aware about both of the
domains. One of the main advantages of this solution is that there is no need to constantly
synchronize the logic model with its view. In most of the cases the graphical representation
is simply rebuilt according to the current state of the logic model.

28

Chapter 4

Implementation

This chapter tends to present the implementation of the ALLL graphic development envi-
ronment. This part describes solutions to problems presented in the previous chapter. The
following topics are discussed:

• language recognition,

• model-view-controller design pattern,

• logic program model and the

• graphic user interface (GUI).

4.1 Language recognition

Source code written in ALLL is compiled into an inner representation using the following
language recognition tools generated by the ANTLR framework:

• lexer (class ALLLLexer),

• parser (class ALLLParser) and

• abstract syntax tree walkers.

Two distinct tree walkers solve the following tasks:

• semantic control (class SemanticTreeWalker) and

• building inner representation of a source code (class ReaderTreeWalker).

4.1.1 Recognition exception handling

The lexer and parser tools are generated according to the rules defined in the ALLL.g
grammar file, and perform the first two phases of the language recognition process. During
lexical and syntactical analysis several errors can occur. ANTLR has a very sophisticated
error handling and reporting system. Basically there are two kinds of a language recognition
error in this framework:

• The first type is from which a recognizer can recover by guessing what the problem
might be. The recognition continues only a warning is displayed to the user.

29

• In the second case recognizer fails to recover and recognition stops.

In order to use custom error handling, defined in our class Error, some parts of the gen-
erated lexer and parser need to be replaced with our code. The following code snippet is
added to ALLL.g to override the function displaying recoverable errors.

@lexer::members{

public void displayRecognitionError(

String[] tokenNames,

RecognitionException e){

Error.addLexicalException(e);

}

}

Unrecoverable errors can be overridden by adding the following code to the grammar
file.

@lexer::rulecatch{

catch (RecognitionException e){

Error.addLexicalException(e);

}

}

Prefix lexer:: in the previous examples notifies that the code is intended for the lexer.
Without the prefix functions of the parser are overridden by default.

Output of the parser is the abstract syntax tree (AST) of the program. Tree walkers
take the AST generated by the parser and walk through it. By adding code snippets to the
tree walker it can become a translator an interpreter or can implement any kind of a desired
functionality. Tree walkers are defined by tree grammars. In this project tree walkers are
used for semantic error handling and creating the inner representation of the source code.

4.1.2 Semantic control

Some of the control mechanisms is moved from the parser to the semantic control defined in
a separate class called Semantics. The idea behind that is to keep the parser flexible and
more general. Lets take an example. The service which controls the LEDs can accept only
certain values as the color parameter. The parser controls only whether the parameter is
a string and the supported values (

”
r“

”
g“

”
y“) are controlled subsequently by the semantic

tree walker. It ensures, that support for additional LED colors can be added only by
redefining the adequate semantic control, without making any change to the parser. On top
of that semantic control is inevitable because of

”
jumps“ within the plan base. Controlling

the existence of the targeted plan is beyond the power of the parser.
The following semantic controls are executed by the semantic tree walker:

• Every
”
indirect run“ (ˆ) action refers to an existing plan.

• Valid register id (1-3) is used when a register is referenced.

• Valid state (0,1 or none) and color (
”
r“

”
g“

”
y“) parameters are passed to LED control

services.

• A supported calculation mode (
”
a“

”
m“

”
M“) parameter is passed to data collecting

services.

30

• Tuples in the input base have valid source addresses (integer - message,
”
s“

”
a“

”
m“

”
M“ for sensor data) .

Semantic control was designed to be expansible. New control mechanisms can be defined
easily in three steps:

1. Create a new exception class derived from ALLLSemanticException to describe the
new semantic error.

2. Implement the logic in a new static method of the Semantics class. In case of an
error the method throws the exception defined in point 1.

3. Add code snippet to the semantic tree walker to call the new method of the Semantics
class.

4.1.3 Compiling source code

Inner representation of the source code is built by the reader tree walker. Object repre-
sentation of agents is assembled by calling static functions of the Reader class in a specific
order. The reader tree walker is responsible for the following actions:

• For each recognized language element create an object for inner representation.

• Define connections between the created objects: actions belong to plans, plans to a
plan base and plan base to an agent.

• Recognize high level language structures in a sequence of ALLL actions.

4.2 Project files

Definition of the modelled multi agent system can be saved as a project. Project attributes
are stored in a XML document. Behavioural and state descriptions of individual agents
are stored in separate files with an .alll extension. It is beneficial, because agents can be
easily imported into another project. An agent description has the following structure:

(plan base)(goal)

reg:(initial content of the 1st register)

reg:(initial content of the 2st register)

reg:(initial content of the 3st register)

bb:(belief base)

ib:(input base)

The XML document stores, among others, information about the network topology,
details about the plan base visualization, comments and agent source code files are linked
too. It is important to use CDATA sections where it is required. Start of a character data
section indicates to the XML parser that the following content do not need to be parsed.
A property which can contain arbitrary characters, e.g. project description, is stored as
character data.

31

4.2.1 Structure of the project info file

The project info document is structured as follows.

<project>

<properties>

<title>[!CDATA[{project title}]]</title>

<description>[!CDATA[{project description}]]<description/>

<nodecounter>{node counter}</nodecounter>

<agentcounter>{agent counter}</agentcounter>

<sink x="{x-coordinate}" y="{y-coordinate}"/>

</properties>

<nodes>

<node ord="{node number}" x="{y-coordinate}" y="{y-coordinate}"/>

...

</nodes>

<links>

<link dst="{destination node}" src="{source node}"/>

...

</links>

<agents>

<agent file="{source file}"

name="{agent name}"

class="{agent class}"

ord="{agent number}"

node="{initial position}">

<plan isgoal="true"

name="_goal"

x="{x-coordinate}"

y="{y-coordinate}"/>

<plan isgoal="false"

name="blick"

x="{x-coordinate}"

y="{y-coordinate}">

<comment>[!CDATA[{comment}]]</comment>

</plan>

...

</agent>

...

</agents>

</project>

4.2.2 Reading the project info file

The first thing we need to solve, in order to load projects, is parsing XML documents. Lan-
guage Java supports several application programming interfaces (API) for XML processing.
I have decided to use the xpath package. XPath uses path expressions to select nodes or
node-sets in an XML document. It is a more convenient than sequential processing for
example.

32

The validity of the loaded information needs to be verified. The following controls are
executed:

• In network topology sink (eraser) can not be positioned initially over any of the nodes.

• Link items can not connect non-existing nodes.

• Agents can not be added to non-existing nodes in the network.

• Agent definition source files have to exist.

• Plans referenced in the project file have to exist in the model.

If the requested information is not found in the document or any of the previous controls
fails, an CorruptedProjectException is thrown and loading is interrupted.

4.3 Logic program model

The logical program model defines the inner representation of a real life sensor network
including the agents. The reality is transformed into an abstract model defining which
attributes of real life entities are the most important for us, and how we work with them.
This section tends to present the structural units of the logic program model using a bottom-
up approach.

4.3.1 Hierarchy of action classes

Actions and services supported by ALLL are internally represented by separate classes.
These classes are organized into a hierarchical tree structure. This hierarchy expresses
which actions share certain attributes and functionality. Some action classes are abstract,
they can not be instantiated.

Abstract class ActionToR groups actions that have exactly one parameter which can be
a tuple or a register (abbreviation

”
ToR“ stands for Tuple or Register). Classes derived

from the abstract class Service are transformed into their textual representation with
one extra step: services have to be wrapped into a

”
service call“ ($) action. Next to

simple actions there are structured actions as well. Actions
”
direct run“ (@) and condition

”
if-then-else“ group actions into blocks. Abstract class Condition allows to extend the

currently supported if-then-else structure with additional structures e.g.
”
while“ or

”
for“

cycles. Class ServiceLoR play a very similar role as class ActionToR, except that services

”
first“ (f) and

”
remainder“ (r) accept as a parameter a register symbol or a tuple, which

can not contain register symbols only integers, string values and unificators.

4.3.2 Inner representation of actions

Action objects represent ALLL actions or services. Services are called using a special action

”
service call“ ($), but from our point of view it is irrelevant. Terms action and service are

used interchangeably in this text, as they both refer to an executional unit of a ALLL
program.

The most important part of an action is its parameter list. Major class of ALLL actions
has only one parameter, but several actions require more parameters. ALLL allows in most
of the cases to pass parameters through a register reference. So, we need to be able to
define whether we want to use as parameter a register or a specific value. Another example

33

to alternative parameters can be the
”
test input base“ (?) action, which accepts three

different kinds of a parameter: integer value, register or a unificator. These alternatives
are modelled as components. Parameter has a list of components which represents the
selection of available alternatives. Exactly one component is active at a time and it defines
the currently used parameter type. Some components have predefined values while others
accept input from the user. For example register components allow to switch between
registers 1-3, but tuple component waits for the user to enter a value. These components
are reusable in different actions.

parameter

action

parameter

register component active
b

integer component active

register component active
b

tuple component active

Figure 4.1: Inner representation of an action

Parameters and components play an important role in decompiling the inner represen-
tation of an action to ALLL code snippet. The textual representation of an action is defined
by the type of the action and the parameter list. The textual representation of a parameter
is defined by the currently active component and the value what holds.

4.3.3 Inner representation of agents and nodes

The inner representation of agents copies the general structure of agents. It has a belief,
input and plan base and a goal, however it has an additional unit as well. Virtual machine
is used to execute actions. Virtual machines can be divided into two major parts: to a set
of registers and an action stack. State of the action stack defines which actions in which
order going to be executed. Debugging starts with loading actions of the plan to the action
stack. The top of the stack points to the currently executed action, it is like a program
pointer. I have decided to move the virtual machine from the sensor node to the agent,
because when an agent is cloned the state of the action stack needs to be cloned as well.
Actions are loaded to the action stack from the plan base, so cloning of the plan base is
closely related to the action stack. That is the main reason why machines executing agent
source code are part of the agents.

34

A
c
ti

o
n

A
c
ti

o
n

T
o
R

S
e
r
v
ic

e

A
d

d
2B

B
(+

)
D

el
et

eF
ro

m
B

B
(-

)
T

es
tB

B
(*

)

S
e
r
v
ic

e
L

o
R

R
em

ai
n

d
er

(r
)

F
ir

st
(f

)

M
o

n
it

o
rM

sg
(a

)
K

il
l

(k
)

L
E

D
C

o
n

tr
o

l
(l

)

M
o

v
e

(m
)

S
u

sp
en

d
(s

)

S
en

so
rD

at
a

(d
)

W
ai

t
(w

)

M
at

h
(o

)

S
en

d
M

sg
(!

)
C

at
ch

(#
)

C
o
n

d
it

io
n

If
T

h
en

E
ls

e

S
tr

u
c
tu

re
d

D
ir

ec
tR

u
n

(@
)

C
h

A
R

(&
)

T
es

tI
B

(?
)

D
ir

ec
tR

u
n

(^
)

Figure 4.2: Hierarchy of action classes

35

belief base

input base

plan base

goal

virtual machine

registers action stack

agent

sensor node

diodes

sensor

Figure 4.3: Structure of an agent - sensor node object pair

Sensor nodes have relatively simple structure, they contain LEDs for signalization and
a sensor for data collecting. The context of the currently seized node needs to be passed
to those actions that manipulate with them. It is done trough the connection that exists
between the agent and its host node. This connection is bracken up when agent moves to
another node.

4.3.4 Inner representation of a multi-agent system

The inner representation of a multi-agent system can be divided into the following parts:

• topology,

• list of agents,

• auxiliary variables for debugging.

The topology defines how many nodes the system contains, and how are those node
connected. The initial position of agents is also part of the topology. The auxiliary variables
are used to restore pre-debug state of the system. The state of the multi-agent system before
and after the debugging can differ. Number and position of agents can change. New agents
can born by cloning and working agents can be kicked-out from their node by other agents.
Auxiliary variables keep track of these changes. A new record is created for every new
agent, and kicked-out agents are stored in a recycle bin. By using these informations the
initial state can be restored without re-generating the whole system.

The multi-agent system also implements an interface towards actions. Message sending
and agent move require knowledge about the topology. The multi-agent system can tell
whether the agent can be moved or the message can be delivered to the target node.

4.4 Dynamic graphic user interface

In the followings some of the implementation details of the dynamic graphic user interface
will be presented. The most important classes of source code visualization and editing are
described below.

36

4.4.1 Class GuiAction

Class GuiAction is derived from class JPanel and serves as a container for action parame-
ters. GuiAction is an abstract class. The differences in presentation of individual actions
are handled by derived classes. Basically the content is displayed by collecting components
from the parameters to a list and items of this list are organized using a FlowLayout. Some
actions, e.g. binary mathematical operation or message sending, require more sophisti-
cated arrangement of items, primarily because there is to many of them. In this case the
FlowLayout is replaced by a SpringLayout.

The minimal width of an action is a sum calculated from the minimum width of com-
ponents plus padding. Naturally it can be overridden in derived classes where specific
arrangement of components is used. Even one action can have different minimum width
depending on the currently selected parameter. Alternative parameters are displayed using
my custom ParameterSelectPane which is very similar to a combo box, but instead a
textual value it holds components. It behaves as an abstract component, and its minimal
width is based on the current selection.

4.4.2 Class GuiPlan

The graphic representation of plans was implemented according to the design presented in
the previous chapter. Instances of the GuiPlan class serve as graphic user interface objects
for logic domain plans. Different subcomponents e.g. header, side columns, action container
are derived from the JPanel class as well as the whole graphic plan. Subcomponents are
organized using a SpringLayout, which allows to define positions using relations instead
of constant values. The action container uses a BoxLayout to display individual actions on
top of each other. Indent used to display blocks of actions is solved by creating custom
empty borders around the actions.

Figure 4.4: Snapshot of a GUI plan

Plans are always displayed on the smallest possible surface. Height is primarily defined
by the number of actions within the plan. When a new action is added or an existing

37

is deleted, size of the plan is re-calculated. Calculating the minimum width of a plan is
a bit more complicated, because editing action parameters can change it too. Displaying
plans with correct dimensions is ensured by overriding the getMinimumSize() method of
the Component class (class JPanel is derived from Component).

4.4.3 Class Canvas

Class Canvas extends JLayeredPanel and displays the plan base and the goal of one selected
agent. Distinct layers are used to display different groups of objects. From the bottom to
the top layer they are the followings:

• background,

• connections,

• plans and

• pop-up boxes.

Layer plan is actually a group of layers, because each plan is assigned to a different layer.
This organization allows to the order them completely freely. Pop-up boxes are internal
frames added to the POPUP LAYER of the canvas. Two different boxes are used, one for
displaying user comments, another to create a new plan.

Class Canvas plays an important role in dragging and dropping actions. On the one
hand canvas ensures the dragged action to be above the layer of plans, on the other hand
canvas can tell above which plan the dragged action was released. It is important to place
the dragged action above the layer of plans, otherwise actions from lower layers could be
hidden by plans of higher layers during dragging.

4.4.4 GUI during debugging

To prevent code editing during debugging graphic user interface has to react differently
to user interactions during execution. Precautions are twofold. On the one hand mouse
handler methods do not react during debugging. On the other hand components of GUI
actions are disabled.

State of the multi-agent system, whether it is being debugged or not, is provided by
the isDebugging() static method of the Project class. All JComponents (text boxes,
combo boxes, etc.) used for visualization can be disabled in one step by calling the
setEnabled(false) overridden method of the GuiAgent class. Disabled JComponents in
Java are repainted using tones of gray with low contrast by default. Information displayed
by those components is hard to read during debugging. This problem can be solved by
initializing the native UIManager Java class. User specified colors can override the default
ones.

4.5 Agent cloning

Cloning an agent is one of the problems that had to be solved effectively. It is possible
to clone objects in language Java, but the returned clone still shares its inner structure
with the original one. Class AgentFactory implements deep cloning of agents. The most

38

demanding subtask of agent cloning is to clone actions. Actions are cloned by creating new
actions using parameters of the original action in the constructor.

The problem is that, because of better maintainability, every action is defined in a
different class. First we have to find out which constructor we want to call. Reflection is
used to find the correct one. Reflection is a feature in the Java programming language. It
allows an executing Java program to examine or

”
introspect“ upon itself, and manipulate

internal properties of the program [7]. Objects in Java can have several constructors.
Reflection can return the desired one if we specify the list of parameter types. To simplify
things every action can have only one constructor, and parameters are defined in the most
general way, by using the Object class. The following source code sample demonstrates
constructor creation.

Constructor ct = null;

Class runtimetype[] = new Class[1];

/* Get the class */

Class cls = action.getClass();

/* CONSTRUCTOR WITHOUT PARAMETERS */

if (action.getParameters().size() < 1){

Constructor cts[] = cls.getConstructors();

if (cts.length > 0){

/* Default constructor e.g. ServiceKill() */

ct = cts[0];

}

/* CONSTRUCTOR WITH PARAMETERS */

}else{

/* Get parameter types */

ArrayList<Class> partypes = new ArrayList<Class>();

for(int i = 0; i < action.getParameters().size(); i++){

partypes.add(Object.class);

}

/* For example ActionSendMsg(Object, Object) */

ct = cls.getConstructor(partypes.toArray(runtimetype));

}

If a structured action is cloned its children have to be cloned as well. During the process
of agent cloning the same action can be met several times, for example because of child-
parent relationships. The same action has to be mapped to the same clone. Agent factory
saves every cloned action to a HashMap<Action,Action>, where the key represents the
original action and the value the cloned one. When a new action is passed for cloning, this
map is controlled first. If the action has been previously cloned the value from this map is
returned. Otherwise the process of cloning continues and the result is saved.

The cloned agent is a perfect and autonomous copy of the original agent. Right after
the cloning they are in the same state, have the same behavioural description, but because
they both continue to run on different nodes it can change very quickly. The behavioural
description remains the same, but the knowledge they collect about their environment will
probably be different.

39

Chapter 5

Tests

Software Testing is the process of executing a program or system with the intent of finding
errors. [8] Or, it involves any activity aimed at evaluating an attribute or capability of a
program or system and determining that it meets its required results. [4] Testing phase of
our graphic development environment (GDE) can be divided into 3 different steps.

The first phase have run parallel with the implementation. In this phase the program
have been tested on its own. The aim of these tests was to verify that the GDE conformances
design requirements. A typical examples can be:

• Export and subsequent import of the same source code in order to verify correct
functionality of compiling and decompiling.

• Export and subsequent import of if-then-else abstractions in different forms (with /
without else branch, nested conditions) to test abstraction recognition.

• Test of the dynamic graphic graphic user interface: moving, deleting actions, creating
new plans, etc.

The second phase includes comparison of outputs from the GDE and from the WSageNt
interpreter. Typical example can be the test named

”
Blink“, which is presented below. Of

course, it is only one of the many tests of the second phase. Implementation of the semantic
meaning of individual actions have been tested exhaustively.

The third phase represents testing on real life sensor networks. Tests
”
Remote sensor“

and
”
Travelling agent“ (presented below) have been created in order to verify correct be-

haviour of the GDE debugger.
During tests a number of bugs and errors have been revealed. All of them have been

fixed. Nevertheless it is fairly improbable to find all of the problems only by running a
few tests. Although I am assured that tests presented in this chapter helped to improve
correctness and reliability of the created development environment.

5.1 Test no. 1 - Blink

Test
”
Blink“ is a simple test for verifying correct functionality of the source code editor

and the debugger of GDE. Working with the belief base and the LED control services are
tested primarily. The simplest topology is used for this test, only one agent in one node is
required. The source code of the agent has been adopted, with some minor changes, from
[11] (page 27).

40

Agent blink

Plan Base (fill,(+(led,r,600)+(led,g,700)+(led,y,800)

^(blink)#^(fill)))

(blink,(&(1)*(led, ,)&(2)$(f,&1)-&2&(1)$(r,&2)&(3)

$(f,&1)$(l,&3)&(2)$(r,&1)&(1)$(f,&2)$(w,&1)$(l,&3)

^(blink)))

Goal ^(fill)

Table 5.1: Agent
”
blink“

Figure 5.1: Outputs produced by the debugger and the WSageNt interpreter

This program fills the belief base of the agent with tuples that define, which diode and
for how long (in ms) should be turned on. After executing all the LED control services the
belief base remains empty, but the cycle is restarted from the beginning, and the execution
continues.

This test is based on comparison. Model state changes caused by debugging were com-
pared to the output of the WSageNt interpreter running the same code. State trajectories
matched, so, the debugger has passed this test.

5.2 Test no. 2 - Remote sensor

Collection of programs called
”
Remote sensor“ serves for testing data collection, message

sending, synchronization and correct functionality of the if-then-else abstraction. A very
simple topology, line of two nodes, is used. There are two agents in this system: the

”
sensor“

and the
”
display“. One of the agents (

”
sensor“) measures a value. The input received from

the sensor is sent to the address defined in the belief base. After that execution of the agent
is suspended. In this state

”
sensor“ is waiting for an acknowledgement from the

”
display“.

Agent
”
display“ receives the message and processes the input value. If the received value

is less then a predefined threshold, the green diode, otherwise the red diode is turned on.
After that an acknowledgement is sent back. This signalizes to the

”
sensor“ that agent

”
display“ has finished and is waiting for the next value to process.

41

Agent sensor

Plan Base (address,(&(1)*(address,)&(3)$(f,&1)&(2)$(r,&3)))

(cycle,(^(measure)^(send)^(cycle)))

(measure,(&(1)$(d)?()))

(send,(!(&2,&1)^(ack)))

(ack,(&(1)$(s)?()))

Goal $(a)^(address)^(cycle)

Belief Base (address,2)

Node 3

Table 5.2: Agent
”
sensor“

Agent display

Plan Base (cycle,(&(1)$(s)?()^(blink)^(cycle)))

(blink,($(l,(g,0))$(l,(r,0))&(2)

$(o,les,&1,(560),(),(),(cond))+&2

@(*(((cond),1))-(((cond),))&(2)$(l,(g,1)))

@(*(((cond),0))-(((cond),))&(2)$(l,(r,1)))!(3,(next))))

Goal $(a)^(cycle)

Node 2

Table 5.3: Agent
”
display“

Figure 5.2: Test no. 2 - snapshot from the GDE

Testing on a real wireless sensor network took place as follows. Sensors were set to
measure temperature. The two IRIS motes were turned on. Agent

”
display“ had been

loaded into node number 2 first, after that, agent
”
sensor“ to node number 3. Almost

immediately, as the base station has finished to load the second agent, green diode on the
2nd node turned on. Blinking of the diode showed that there is a continuous communication
between the two nodes. The first phase of the test finished successfully. In the second phase
the

”
sensor“ had been several times drawn close to a heat source (ventilation-blower of a

notebook) and put away. When the sensor node was close to the heat source, the red diode
turned on at the remote node. If the sensor has been away, after a short time (needed by
the sensor to cool down),

”
display“ switched to green. The pair of

”
sensor“ and

”
display“

agents worked as it was expected.

42

The value used as a threshold between
”
green“ and

”
red“ states had been selected before

the actual test, and its actual value (560) was based on several test measurements.

5.3 Test no. 3 - Travelling agent

The aim of the third example is to test agent moving. A mesh topology is used. Tester
network consists 4 fully connected nodes. Initial position (pos,(2)) of the agent is loaded
the the belief base before the start. Traveller agent

”
jumps“ from one node to another based

on the predefined path specified by action +(path, (3,4,5,2)). Plan savepath saves the
remaining path to the belief base, while plan loadpath loads it as a list of addresses to the
1st register. Head of this list is transferred to the 2nd register and service

”
move“ (m) is

called. Move service is invoked with the additional
”
stop“ parameter. This ensures, that

there is always only one active agent in the network. Agent informs us about its current
position by blinking the green diode once. Agent

”
traveller“ moves along a closed circuit.

When the starting position is reached again, plan savepath saves the previously travelled
path to belief base, and the cycle is re-started.

Agent traveller

Plan Base (cycle,(^(savepath)^(loadpath)^(jump)^(cycle)))

(savepath,(@(*(pos,(2))+(path,(3,4,5,2))-(pos,))

@(&(3)*(pos,)&(3)$(r,&1)+(path,&3)-(pos,))))

(loadpath,(&(1)*(path,)&(2)$(f,&1)&(3)$(r,&2)&(1)

$(f,&3)-(path,)))

(jump,(&(2)$(f,&1)$(m,(&2,s))$(l,(g,1))$(w,(300))

$(l,(g))+(pos,&2)))

Goal ^(cycle)

Belief Base (pos,(2))

Node 2

Table 5.4: Agent
”
traveller“

Figure 5.3: Test no. 2 - snapshot from the GDE

43

The actual test started by turning on the four IRIS motes and arranging them in a line
according the predefined path programmed into the agent. Agent started at node no. 2.
Blinking green diodes showed the path of the agent. Agent moved as it was expected, when
it reached the last node, agent jumped right back the the first one. After a few cycles the
test had been considered as successful and had been finished.

44

Chapter 6

Closure

The aim of this thesis was to design and implement a fully functional graphic development
environment (GDE) of Agent Low Level Language. First of all I had to study this specific
agent language, after that I could start to implement the solution.

The created environment supports the following tasks. Any source code written in
ALLL can be imported into the environment, where the visualized form of the program can
be edited and exported back into ALLL. The environment supports not only native ALLL
instructions but the

”
if-then-else“ abstraction can be used as well. Projects help to organize

our work. A project wraps a number of agents and the specified network topology into a
multi-agent system. Projects can be saved and opened just like in any other development
environment. Topology editor of the GDE serves for modelling real life sensor networks.
Last but not least the designed system can be examined during execution using the debugger
tool.

Tests presented in the previous chapter prove that this implementation is usable. How-
ever a number of possible improvements could be added e.g. support for additional services:
neighbour discovery, footprints of agents, etc. The number of supported abstraction needs
expansion as well. Structures like

”
while“,

”
for“ and

”
switch“ could be integrated next

to
”
if-then-else“. Examining possibilities of ALLL source code optimalization would be an

interesting topic too.
After experimenting with the created environment, creating and debugging a few multi-

agent systems, I found the program very useful. Especially when I compared the graphically
displayed source code to its textual representation. It is a lot easier to understand the
logic of the program from its visualized form. Debugger helps us to understand not only
how the whole system works, but the specific semantic meaning of individual actions as
well. I think this program could be used for educational purposes too. I would strongly
recommend, for those who have just started to learn agent programming and ALLL, to
start with this graphic development environment. I hope that with my work I contributed
to this promising field of development.

45

Bibliography

[1] A. Meduna, R. Lukáš. Formálne jazyky a překladače. materials for course IFJ, 2008.

[2] Wikipedia article. Multi-agent system [online].
http://en.wikipedia.org/wiki/Multi agent system, [cit. 2011-11-21].

[3] Wikipedia article. Model-view-controller [online].
http://en.wikipedia.org/wiki/Model view controller, [cit. 2011-11-28].

[4] Hetzel, William C. The Complete Guide to Software Testing 2nd ed. Wellesley, Mass,
1988. ISBN: 0894352423.

[5] Horáček, J. Wsagent: Multiagent platform for wireless sensor networks [online].
http://www.fit.vutbr.cz/~ihoracek/WSageNt/, 2010 [cit. 2011-11-21].

[6] Kalmár, R. Jazyk Vyšší Úrovně Abstrakce pro Programování Mobilních Inteligentních
Agentů. bachelor’s thesis, Brno, FIT VUT v Brně, 2010.

[7] G. McCluskey. Using java reflection [online].
http://java.sun.com/developer/technicalArticles/ALT/Reflection/, [cit.
2012-03-15].

[8] Myers, Glenford J. The art of software testing. New York : Wiley, 1979. ISBN:
0471043281.

[9] Parr, T. The Definitive ANTLR Reference. USA, 2010. ISBN-10: 0-9787392-5-6.

[10] S. Buettrich, A. E. Pascual. Basic wirelles infrastructure and topologies [online].
http://www.itrainonline.org/itrainonline/mmtk/wireless en/

04 Infrastructure Topology/

04 en mmtk wireless basic-infrastructure-topology slides.pdf, 2006 [cit.
2011-11-23].

[11] Spáčil, P. Mobilní Agenti v Bezdrátových Senzorových Sítích. bachelor’s thesis, Brno,
FIT VUT v Brně, 2009.

46

Appendix A

Content of the CD

The enclosed CD contains the following structure of folders:

• text:

– contains the text of this thesis in a portable document format (.pdf), and as a

– LATEX project (including graphic files),

• program:

– contains Java source files of the graphic development environment,

– ANT makefile and

– users manual,

• doc

– contains program documentation,

• poster:

– contains the poster in a portable document format (.pdf).

47

Appendix B

Manual

Requirements:

• Java compiler.

• Apache Ant builder tool.

Required libraries are enclosed in directory
”
libs“ next to the source files. To run the

application follow the instructions. Copy the
”
program“ directory into your hard disk, open

the directory with a command line tool and type: ant compile. If the compilation finished
successfully, type: ant run, to run the graphic development environment.

48

Appendix C

Poster

The poster was handed over in a paper form to the supervisor; the .pdf version is on the
enclosed optical disk.

49

	Preface
	Theoretical analysis
	Multi-agent systems and the WSageNt platform
	Multi-agent systems
	WSageNt platform
	Agent Low Level Language
	Structure of a ALLL agent
	Model of a WSageNt network

	Compilation and decompilation
	The ANTLR framework
	Actions and services used in ALLL
	High level abstractions

	Semantic meaning of selected actions
	Mathematical operations
	Message sending
	Agent travelling

	Integrated development environment
	Source code editor
	Interpreter
	Debugger

	Graphical development environment
	Graphic User Interface
	Model-view-controller

	Design
	Abstraction to ALLL compilation
	Recognition of abstract language elements
	Static graphic user interface
	Dynamic graphic user interface
	Topology editor
	Plan base visualization
	Graphical source code editing
	Colour codes
	Dynamic GUI and the logic program model

	Implementation
	Language recognition
	Recognition exception handling
	Semantic control
	Compiling source code

	Project files
	Structure of the project info file
	Reading the project info file

	Logic program model
	Hierarchy of action classes
	Inner representation of actions
	Inner representation of agents and nodes
	Inner representation of a multi-agent system

	Dynamic graphic user interface
	Class GuiAction
	Class GuiPlan
	Class Canvas
	GUI during debugging

	Agent cloning

	Tests
	Test no. 1 - Blink
	Test no. 2 - Remote sensor
	Test no. 3 - Travelling agent

	Closure
	Content of the CD
	Manual
	Poster

