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Abstract — We deal with dependencies in object-attribute data which is

recorded at separate points in time. The data is formalized by finitely many

tables encoding the relationship between the objects and the attributes and each

table can be seen as a single formal context observed at a separate point in time.

Given such data, we are interested in concise ways of characterizing all if-then

dependencies between the attributes that hold in the data and are preserved in all

time points. In order to formalize the dependencies, we introduce if-then formulas

called temporal attribute implications which can be seen as particular formulas

of linear temporal logic.
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Preface

We introduce a semantic entailment of temporal attribute implications, show

its fixed-point characterization, investigate closure properties of model classes,

present an axiomatization and prove its completeness, and investigate alternative

axiomatizations and normalized proofs. We investigate decidability and com-

plexity issues of the logic and prove that the entailment problem is NP-hard

and belongs to EXPSPACE. We show that by restricting to predictive formu-

las, the entailment problem is decidable in pseudo-linear time. We introduce

non-redundant bases of dependencies from data as non-redundant sets entailing

exactly all the dependencies that hold in the data. In addition, we investigate

minimality of bases as a stronger form of non-redundancy. For given data, we

present a description of minimal bases using the notion of pseudo-intents gener-

alized in the temporal setting. We further investigate properties of minimal sets

of formulas and present sufficient and necessary conditions for their characteriza-

tion. In addition to the characterization of minimality, we present an algorithm

that can be used to minimize any finite set of temporal attribute implications.
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1 Introduction

Formulas describing if-then dependencies between attributes play fundamental

role in reasoning about attributes in many disciplines including database sys-

tems [12, 34], formal concept analysis [23, 26], data mining [1, 51], logic program-

ming [31, 40], and their applications. In these disciplines, the rules often appear

under different names (e.g., attribute implications, functional dependencies, or

simply “rules”) with semantics defined in various structures (e.g., transactional

data, Boolean matrices, or n-ary relations) but as it has been shown in [17], the

rules may be seen as propositional formulas with the semantic entailment defined

as in the propositional logic, possibly extended by additional measures of inter-

estingness. The rules are popular because of their easy readability for non-expert

users. In addition, the entailment problem related to a large family of the rules,

including attribute implications used in formal concept analysis and functional

dependencies used in database systems, is decidable in linear time [4] which also

contributes to their popularity.

In this document, we introduce if-then formulas that express presence of at-

tributes relatively in time and the formulas are evaluated in data where the pres-

ence or absence of attributes changes in time. In our approach, we adopt the

notion of a discrete time, i.e., the data are observed at distinct points in time.

Informally, the formulas can be seen as rules expressing dependencies between

attributes (or features) in the following sense:

IF (a feature y1 is present in time point t1

and · · · and

a feature ym is present in time point tm),

THEN (a feature z1 is present in time point s1

and · · · and

a feature zn is present in time point sn).

As a formula, such dependency can be written as(
yt11 N · · ·N ytmm

)
⇒
(
zs1

1 N · · ·N zsnn
)
, (1.1)

where ytii denotes an attribute/feature yi present in time point ti and analogously

for z
sj
j . As usual, N and ⇒ used in (1.1) denote the usual logical connectives of

conjunction and implication (logical conditional), see [36]. In the document, we
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exploit the fact that N is a logical connective that is interpreted by an idempotent,

commutative, and associative truth function, allowing us to rewrite (1.1) in a set-

theoretic notation as follows:{
yt11 , . . . , y

tm
m

}
⇒
{
zs1

1 , . . . , z
sn
n

}
. (1.2)

In general, rules like (1.2) can be viewed as locally valid, that is, valid exactly

in time points t1, . . . , tm and s1, . . . , sn that appear in the formula. This notion

of validity is in a sense trivial because reasoning with such formulas is easily

reducible to reasoning with classic attribute implications. In contrast, (1.2) can

be viewed as globally valid, i.e., valid for time points t1 + k, . . . , tm + k and

s1 + k, . . . , sn + k for an arbitrary k. In our approach, we consider the global

validity since we want to capture dependencies that are preserved over all time

points and thus endure in time.

We study the formulas from the point of view of temporal reasoning in formal

concept analysis [23]. The classic (dyadic) formal concept analysis (FCA) is a

method of analysis of object-attribute data formalized by binary incidence rela-

tions between a set of objects and a set of attributes. One of the typical outputs

of FCA, given an input incidence data, is a set of if-then dependencies which

entails exactly all if-then dependencies that hold in the data. Among the best

known methods of determining such interesting sets of if-then rules is the method

of Guigues and Duquenne based on computing pseudo-intents from data, see [21,

26]. In many situations, the object-attribute incidence data changes over time and

one may be interested in if-then rules which are universaly valid in all time points.

For instance, we may observe a mechanism which behaves as a transition system

which makes transitions from a state to another one in discrete steps. Supposing

that we do not know the internals of the system and we can only observe a set of

Boolean attributes which are or are not satisfied at a given moment. This gives

us a set of attributes (of a single object—the system) which changes in time, i.e.,

a series of object-attribute incidence data changing in time. Then, rules like (1.2)

may be used to describe the behavior of the system during transitions in terms

of the dependencies between the Boolean attributes. In this situation, an ana-

log of the Guigues-Duquenne bases would be the most helpful because it would

allow us to derive a set of if-then rules describing the system based on its obser-

vation during the transitions. The classic notions related to Guigues-Duquenne

bases are closely related to the notion of entailment of if-then rules. Therefore,
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1 ×
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3 × × ×
4 ×

x y

1 c
2 b
3 a
3 b
3 d
4 a

has(1,c).

has(2,b).

has(3,a).

has(3,b).

has(3,d).

has(4,a).

Figure 1: Example of object-attribute incidence data represented as a formal
context 〈X,Y, I〉 with X = {1, 2, 3, 4} and Y = {a, b, c, d} depicted as a table
(left), relation on relation scheme {x, y} (middle), and PROLOG-style program
consisting of facts (right).

before we show that a reasonable counterpart to the Guigues-Duquenne bases

in the temporal setting indeed exists, we make a thorough investigation on the

entailment.

The input data we consider consists of a finite set X of objects, a finite set Y of

attributes (features), and a binary incidence relation I ⊆ X × Y with 〈x, y〉 ∈ I
interpreted as “object x has attribute y”. In this setting, I can be seen as a

record of object-attribute data observed in a single time point and the triplet

〈X,Y, I〉 is called a (dyadic) formal context [23] in FCA. Let us note that despite

the fact the document is written primarily from the FCA perspective, such data

are the subject of study of many computer science disciplines. For instance,

from the point of view of relational databases [34], 〈X,Y, I〉 can be understood

as a (finite) relation on relation scheme with two attributes—an attribute whose

domain is X and an attribute whose domain is Y . From the point of view of

logic programming [31], 〈X,Y, I〉 can be seen as a definite program consisting of

facts, see Fig. 1 for illustration. In addition, the object-attribute incidence data is

considered as the basic form of input data in most data mining disciplines, most

notably the association rule mining [1, 51].

As we have outlined, we assume that 〈X,Y, I〉 can change in time. To be more

specific, we assume that X and Y are fixed, i.e., the sets of observed objects and

attributes do not change in time, and I is subject to change. Therefore, instead

of single I, we consider a sequence

Il, Il+1, . . . , Ir−1, Ir (1.3)

of incidence relations where l, r are integers (l ≤ r) denoting separate time points
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and Ii ⊆ X × Y for each i = l, . . . , r. Alternatively, the input data can be

understood as a (finite) database relation on relation scheme consisting of three

attributes: objects (with domain X), attributes (with domain Y ), and time (with

domain Z). Also, it can be seen as representing finitely many facts of the form

has(time_point,x,y ) as in Fig. 1.

The dependencies we identify in the data generalize the classic if-then depen-

dencies called attribute implications. Recall that by an attribute implication [21,

23, 26] we mean a propositional formula of the form

(y1 N · · ·N ym)⇒ (z1 N · · ·N zn), (1.4)

where yi, zj are propositional atoms. Both the semantic entailment (i.e., en-

tailment defined in terms of validity in models) and syntactic entailment (i.e.,

entailment based on provability) of attribute implications are, in fact, notions

inherited from the propositional logic [36]. Interestingly, attribute implications

are closely related to functional dependencies. Although the interpretation of the

formulas as attribute implications and functional dependencies are different, it

follows from [15, 17, 41] that both the interpretations yield the same notion of

the semantic entailment. As a consequence, common axiomatizations are used to

characterize the semantic entailment which are typically based on the Armstrong

inference rules [3].

If all yi and zj , which appear in (1.4), denote attributes from Y , then (1.4)

can be interpreted in 〈X,Y, I〉 based on its validity for each object x ∈ X. In

more detail, each x ∈ X induces a truth evaluation ex of propositional atoms such

that ex(y) = 1 (logical true) iff 〈x, y〉 ∈ I and ex(y) = 0 (logical false) otherwise.

Then, we may say that (1.4) holds in I whenever (1.4) is true under ex for all

x ∈ X in the sense of propositional logic. According to our interpretation of I,

the fact that (1.4) holds in I means that each object x ∈ X satisfies the following

property: If the object has all attributes y1, . . . , ym, then it has all attributes

z1, . . . , zn, i.e., the presence of all z1, . . . , zn in the data is implied by the presence

of all y1, . . . , ym. For instance, if we consider I from Fig. 1 (left), then, e.g.,

(aN b) ⇒ d and (bN c) ⇒ d hold in I. On the other hand, neither of a ⇒ d,

b⇒ d, or c⇒ d holds in I.

The dependencies used in the document may be seen as extensions of formulas

like (1.4) incorporating explicit time annotations for each yi, zj . That is, instead

of (1.4), we consider formulas of the form (1.2) where i1, j1, . . . are integers in-
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terpreted as relative shifts in time, allowing us to express dependencies such as

“if y is currently present and z was present yesterday, then χ will be present to-

morrow” by formulas like (y0 N z−1)⇒ χ1 provided that the considered “unit of

time” is a day. We call formulas of the form (1.2) temporal attribute implications.

We provide answers to several questions which emerge with temporal attribute

implications. We define the notion of semantic entailment of the formulas, inves-

tigate closure structures of models of theories consisting of such formulas, and

show that the problem of checking whether a formula is semantically entailed

by a set of formulas can be reduced to checking its validity in a single model.

We prove that the semantic entailment has a complete axiomatization. That

is, we show a notion of provability of temporal attribute implications and show

that it coincides with the semantic entailment. We discuss several possible ax-

iomatizations, including ones that can be used to consider proofs in particular

normal forms. Based on our insight into the properties of the semantic entailment

and provability, we derive results on decidability and complexity of the entailment

problem. Fourth, we include notes on the relationship of the formulas to formulas

appearing in modal logics [8] and triadic formal concept analysis [29].

After the investigation of the properties of the semantic entailment, we focus

on description of all temporal attribute implications that hold in given data. In

particular, we seek sets of formulas entailing exactly all formulas that hold in given

data. We call such sets complete (in given data). As in the classic setting, it is

desirable to describe complete sets of formulas which are small. In the document,

we introduce two notions which may be seen as two basic properties of “small

sets of formulas”: non-redundancy and minimality. Complete sets in data which

are non-redundant (or minimal) are called non-redundant (or minimal) bases (of

the data) and their structure and properties are investigated in the document.

Unlike the classic case, where the time annotations are not present and minimal

bases of finite incidence data are finite, minimal bases in the temporal setting are

infinite in general. This is one of the aspects that makes the presented theory

substantially different compared to the classic one [21, 23, 26].

Despite the fact that the bases of finite data are infinite, our observations show

that each such base can be split into two parts based on the maximal difference

of time points in the input data (so-called time range):

(i) An interesting finite part which can be enumerated in finitely many steps.

This part consists of formulas where the maximal difference of time points
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i = 0 i = 1 i = 2
a b c

p × ×
q
r ×

a b c

p × ×
q × ×
r × ×

a b c

p
q × ×
r ×

Figure 2: Input data depicted as formal contexts considered in separate time
points for i = 0 (left), i = 1 (middle), and i = 2 (right).

in their antecedents are within the range of the input data.

(ii) An infinite part which consists of formulas whose antecedents contain time

points which are outside the time range of the input data.

For illustration of the notions, let us consider the input data from Fig. 2. Using

the introduced notation, the set of objects is X = {p, q, r}, the set of attributes is

Y = {a, b, c}, and the tables in Fig. 2 encode the incidence relations Ii ⊆ X × Y
in time points i = 0, 1, 2. Therefore, in this case, the time range of the input data

is 2 (units) because 2 is the maximal distance of time points of any attributes in

the data.

As an example of a particular minimal base of the data in Figure 2, we can

consider the following set of formulas. We may split the base into three disjoint

subsets. The first (and the most interesting) part of the base consists of formulas

b0⇒a0,

c0⇒a1,

(b0 N a1)⇒b1,

(c0 N b1)⇒a0,

(c0 N a2)⇒c1.

For all antecedents (and consequents) of the previous formulas, we can consider

their time range which is the maximal difference of time points of all used at-

tributes. Clearly, the time ranges are 0 (first formula), 1 (next three formulas),

and 2 (the last formula) which are all less than or equal to the time range of the

data. For a data analyst, the formulas express that if there is an object which,

in a certain time point, satisfies the condition given by the antecedent, then it

must satisfy the condition given by the consequent. For instance, (c0 N b1)⇒a0

says “if an object has the attribute c in the current time point and it has b in the
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next time point, then is also has a in the current time point.”

The second group consists of formulas with antecedents within the time range

of the input data and having arbitrary conjunctions of attributes annotated by

time points as their consequents. Namely, the group consists of

(b0 N c0)⇒ϕ,

(a0 N a2)⇒ϕ,

(c0 N c1 N b2)⇒ϕ,

where ϕ is an arbitrary conjunction of attributes annotated by time points. Tech-

nically, this already represents an infinite set of formulas but with only finitely

many pairwise different antecedents. Intuitively, these formulas express that cer-

tain combinations of attributes in time are not possible in the input data. For

example, (b0 N c0)⇒b5 is a particular instance of the formula listed first. If there

were an object x ∈ X and a time point where b is present and c is present then

the object would have b present in five time points in the future which is absurd

because the time range of the input data is 2. Therefore, considering the present

data, the formula says that “in the input data, b and c are not present in the

same time point for any object.”

These first two groups of formulas are the most interesting for data analysts.

Given input data encoded by tables as in Fig. 2, the document shows how such

“interesting” formulas of a particular minimal base can be obtained based on

systems of pseudo-intents [26] which we generalize in the temporal setting.

In order to conclude our example, the presented base of the data in Fig. 2

consists of formulas from which we infer all formulas with antecedents outside of

the time range of the input data. In this particular case, it is sufficient to consider

formulas

(a0 N a2+n)⇒ϕ,

where n is any natural number and ϕ is an arbitrary conjunction of attributes

annotated by time points. This part of the base is infinite and, moreover, not

so interesting for analysts (if one has a data that spans n time units, there is no

point in finding dependencies which go beyond n units). It ensures that the base

entails all formulas with antecedents outside of the time range of the input data.

Such formulas trivially hold in the input data and one can easily verify that a
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formula is in such a form just by computing the time range of its antecedent.

The last question studied in the document is the problem of characterizing

minimal sets of temporal attribute implications. Problems of finding minimal

descriptions of various structures belong to classic problems in computer science

as well as data analysis. It is well known that some minimality problems are

easy (e.g., minimization of finite automata) and some are intractable or even

undecidable (e.g., minimality of Turing machines). In data analysis, there is a

natural need to find descriptions of dependencies, clusters, or patterns in data that

are as small as possible in order to simplify further processing or to enable easier

evaluation by human experts. In this document, we show a condition based on

checking the presence of two formulas with special properties that is considerably

simpler than checking the minimality by definition.

The investigation of minimality of sets of if-then rules started with the semi-

nal paper [33] where the author showed criteria for minimality of non-redundant

sets of functional dependencies based on the notion of direct determination. The

paper showed that transforming a set of rules into an equivalent and minimal

one can be done in polynomial time using the standard tests of entailment [4].

Later, the result has been extended for a family of graded/fuzzy attribute impli-

cations in [49]. Since all classic if-then rules, graded/fuzzy attribute implications,

and temporal attribute implications can be seen as general rules whose seman-

tics is defined by particular systems of isotone Galois connections, see [50, 48],

we investigate a minimality characterization for temporal attribute implications

that is analogous to the classic one [33] and the one for the graded attribute

implications [49].

2 Logic of temporal attribute implications

In this section, we present a formalization of the formulas, their interpretation,

and semantic entailment. We provide its complete axiomatization and show nor-

malized proofs. In addition, we show bounds on complexity of the semantic

entailment and focus on a subproblem which typically appears in applications.

For the subproblem we provide a pseudo-polynomial time [24] decision algorithm.

Let us assume that Y is a non-empty and finite set of symbols called attributes.
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Furthermore, we use integers in order to denote time points. We put

TY =
{
yi | y ∈ Y and i ∈ Z

}
(2.1)

and interpret each yi ∈ TY as “attribute y observed in time i” (technically, TY can

be seen as the Cartesian product Y × Z). It is easy to see that TY is countable.

Furthermore, we introduce the following set:

FY = {M ⊆ TY |M is finite}, (2.2)

and abbreviate the set by F if Y is clear from the context. Obviously, F is

countable since TY is countable.

Under this notation, we may now formalize rules like (1.2) as follows:

Definition 2.1. A temporal attribute implication over Y is a formula of the form

A⇒ B, where A,B ∈ F .

As we have outlined in the introduction, the purpose of time points encoded by

integers which appear in antecedents and consequents of the considered formulas

is to express points in time relatively to a current time point. Hence, the intended

meaning of (1.2) abbreviated by A⇒ B is the following: “For all time points t, if

an object has all attributes from A considering t as the current time point, then

it must have all attributes from B considering t as the current time point”. In

what follows, we formalize the interpretation of A⇒ B in this sense.

Since we wish to define formulas being true in all time points (we are interested

in formulas preserved over time), we need to shift relative times expressed in

antecedents and consequents in formulas with respect to a changing time point.

For that purpose, for each M ⊆ TY and i ∈ Z, we may introduce a subset M + j

of TY by

M + j =
{
yi+j | yi ∈M

}
(2.3)

and call it a time shift of M by j (shortly, a j-shift of M).

Temporal attribute implications are formulas, i.e., syntactic notions for which

we define their semantics (interpretation) as follows.

Definition 2.2. A formula A⇒ B is true in M ⊆ TY whenever, for each i ∈ Z,

if A+ i ⊆M , then B + i ⊆M (2.4)
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and we denote the fact by M |= A⇒ B.

Remark 1. The value of i in the definition may be understood as a sliding time

point. Moreover, A+i and B+i represent sets of attributes annotated by absolute

time points considering i as the current time point.

We consider the following notions of a theory and a model:

Definition 2.3. Let Σ be a set of formulas (called a theory). A subset M ⊆ TY
is called a model of Σ if M |= A ⇒ B for all A ⇒ B ∈ Σ. The system of all

models of Σ is denoted by Mod(Σ), i.e.,

Mod(Σ) =
{
M ⊆ TY |M |= A⇒ B for all A⇒ B ∈ Σ

}
. (2.5)

In general, Mod(Σ) is infinite and there may be theories that do not have any

finite model. For instance, consider a theory containing ∅ ⇒ {y0}.
We now turn our attention to the structure of systems of all models of tem-

poral attribute implications. In case of the ordinary attribute implications, it is

well known that systems of their models are exactly closure systems in Y [23].

Interestingly, the systems of models in our case are exactly the algebraic closure

systems that are closed under time shifts. This additional closure property is

introduced by the following definition.

Definition 2.4. A system S ⊆ 2TY of subsets of TY is called closed under time

shifts whenever M + i ∈ S for all M ∈ S and i ∈ Z.

Theorem 2.5. Let S ⊆ 2TY be an algebraic closure system that is closed under

time shifts. Then, there is a theory Σ such that S = Mod(Σ).

Theorem 2.6. Let Σ be a theory. Then, Mod(Σ) is an algebraic closure system

closed under time shifts.

Taking into account Theorem 2.6, for each theory Σ, we may consider a closure

operator induced by Mod(Σ) which maps each M ⊆ TY to the least model of Σ

containing M .

Definition 2.7. Let Σ be a theory. For each M ⊆ TY , we put

[M ]Σ =
⋂
{N ∈ Mod(Σ) |M ⊆ N} (2.6)

and call [M ]Σ the semantic closure of M under Σ.
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Using the well-known relationship between closure operators and closure sys-

tems [14, 7], [· · ·]Σ defined by (2.6) is indeed a closure operator.

We now define semantic entailment of formulas and explore its properties. The

notion is defined the usual way using the notion of a model introduced before.

Definition 2.8. Let Σ be a theory. Formula A⇒ B is semantically entailed by

Σ if M |= A⇒ B for each M ∈ Mod(Σ).

Analogously as for the classic attribute implications, the semantic entailment

of A⇒ B by a theory Σ can be checked using the least model of Σ generated by

A as it is shown in the following theorem.

Theorem 2.9. For any Σ and A⇒ B, the following conditions are equivalent:

(i) Σ |= A⇒ B,

(ii) [A]Σ |= A⇒ B,

(iii) B ⊆ [A]Σ.

Next, we present a deduction system for our formulas and a related notion of

provability which represents the syntactic entailment of formulas. The provability

is based on an extension of the Armstrong axiomatic system [3] which is well

known mainly in database systems [34]. The extension we propose accommodates

the fact that time points in formulas are relative. The deductive system we use

consists of the following deduction rules.

Definition 2.10. We introduce the following deduction rules:

(Ax) infer A∪B ⇒ A,

(Cut) from A⇒ B and B∪C ⇒ D infer A∪C ⇒ D,

(Shf) from A⇒ B infer A+ i⇒ B + i,

where i ∈ Z and A,B,C,D are arbitrary finite subsets of TY .

Definition 2.11. A proof of A ⇒ B by Σ is a finite sequence δ1, . . . , δn such

that δn equals A⇒ B and for each i = 1, . . . , n we have

(i) δi ∈ Σ, or

(ii) δi is infered by (Ax), (Cut), or (Shf) from formulas deltaj where j < i.
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We say that A⇒ B is provable by Σ, denoted Σ ` A⇒ B, if there is a proof of

A⇒ B by Σ.

Our inference system is complete in the usual sense:

Theorem 2.12 (completeness). Σ ` A⇒ B iff Σ |= A⇒ B.

Now, we show bounds on the computational complexity of deciding whether

a temporal attribute implication is provable by a finite set Σ of other temporal

attribute implications.

We formalize the decision problem of entailment as a language of encodings

of finitely many formulas, i.e., we put

LENT = {〈Σ, A⇒ B〉 |Σ is a finite theory and Σ ` A⇒ B}, (2.7)

considering a fixed TY .

Let us note that in the case of the ordinary attribute implications and func-

tional dependencies, the problem of determining whether a given formula follows

by a finite set of formulas is easy and there exist efficient linear time decision

algorithms [4]. In contrast, the corresponding decision problem in our setting is

hard:

Theorem 2.13 (lower bound). LENT is NP-hard.

Theorem 2.14 (upper bound). LENT belongs to EXPSPACE.

We now turn our attention to issues of entailment of formulas which typically

appear in applications in prediction. The restriction on particular formulas allows

us to improve the complexity of the entailment problem. Based on the time

points present in antecedents and consequents of attribute implications, we may

consider formulas that describe presence of attributes in future time points. That

is, based on the presence of attributes in the past, the formulas indicate which

attributes are present in future time points. Technically, such formulas can be

seen as attribute implications where all time points in the antecedents are smaller

(i.e., denote earlier time points) than all time points in the consequents which

denote later time points. We call such formulas predictive and define the notion

as follows.

Definition 2.15. A temporal attribute implication A ⇒ B over Y is called

predictive whenever A,B ∈ F \ {∅} and for each xi ∈ A and yj ∈ B, we have

i ≤ j. A theory Σ is called predictive whenever all its formulas are predictive.
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In the next assertion, we utilize lower and upper time bounds of non-empty

sets from F : For any M ∈ F \ {∅}, put

l(M) = min{i ∈ Z | yi ∈M for some y ∈ Y }, (2.8)

u(M) = max{i ∈ Z | yi ∈M for some y ∈ Y }. (2.9)

Thus, l(M) and u(M) are the lowest and greatest time points which appear in M ,

respectively. Clearly, A ⇒ B is predictive iff both A and B are non-empty and

u(A) ≤ l(B).

Let LPRE be the language consisting of encodings of pairs of all finite predictive

theories and predictive formulas, i.e.,

LPRE = {〈Σ, A⇒ B〉 |Σ is finite and Σ and A⇒ B are predictive}. (2.10)

We establish the following observation on the time complexity of deciding whether

a predictive formula is provable by a finite predictive theory.

Theorem 2.16. LENT ∩ LPRE is decidable in a pseudo-polynomial time.

An explicit procedure for deciding LENT ∩ LPRE in a pseudo-linear time is

described in Algorithm 1. It is a generalization of LinClosure [4], cf. also [34],

which incorporates applicable time shifts of formulas in Σ. The algorithm accepts

three arguments:

1. a finite predictive theory Σ,

2. a finite A ⊆ TY , and

3. a non-negative number Max ≥ u(A),

and it returns a subset M ⊆ [A]Σ such that M ∩ T = [A]Σ ∩ T for

T = {yi ∈ TY | l(A) ≤ i ≤ Max}. (2.11)

Remark 2. The procedure in Algorithm 1 is called PseudoLinClosure because

for given parameters, Σ, A, and Max , it computes a subset of the closure of [A]Σ

in a linear time with respect to the numeric value of the encoding of its input

arguments, i.e., its time complexity is pseudo-linear. Indeed, this is a consequence

of the fact that each yi where l(A) ≤ i ≤ Max is updated during the computation

at most once.
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Algorithm 1: PseudoLinClosure (Σ, A,Max )

1 forall E ⇒ F ∈ Σ do
2 for i from l(A)− l(E) to Max − l(F ) do
3 set count [E ⇒ F, i] to |E|;
4 forall yj ∈ E do
5 add 〈E ⇒ F, i〉 to list [yi+j ];
6 end

7 end

8 end
9 set M to A;

10 set update to A;
11 while update 6= ∅ do
12 choose yi from update;
13 set update to update \{yi};
14 forall 〈E ⇒ F, j〉 ∈ list[yi] do
15 set count [E ⇒ F, j] to count [E ⇒ F, j]− 1;
16 if count[E ⇒ F, j] = 0 then
17 set new to F + j \M ;
18 set M to M ∪ new ;
19 set update to update ∪new ;

20 end

21 end

22 end
23 return M
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3 Concise descriptions of dependencies

In this section, we define input data and complete theories as sets of formulas

which semantically entail all formulas which hold in given data. We introduce

non-redundancy and minimality as properties of “small theories” and show that

for each data there is a minimal complete set of formulas. In addition, we provide

characterization of minimal theories and an algorithm for minimalization.

Recall the set F defined by (2.2) and the values l(M) and u(M) defined

by (2.8) and (2.9), respectively. For any M ∈ F \ {∅}, we put

‖M‖ = u(M)− l(M). (3.1)

The value ‖M‖ is called the time range of M , respectively.

In our representation of minimal bases, a key role will be played by subsets of

TY which are in a canonical form in the following sense:

Definition 3.1. For M ⊆ TY , we put

r(M) =

{
M − l(M), if M ∈ F \ {∅},
M, otherwise,

(3.2)

and call r(M) the canonical form of M . In addition, for any system S ⊆ 2TY , we

call r(S) = {r(M) |M ∈ S} the canonical form of S.

Following the motivation in the introduction, we are primarily interested in

dependencies which hold not only for individual objects changing in time but

for a general finite set of objects changing in time. Therefore, we formalize the

input data and extend |= accordingly to accomodate general sets of objects as

follows. In addition to Y , we consider a finite non-empty set X of objects and,

analogously as we have introduced TY for Y , see (2.1), we consider TX for X as

TX =
{
xi |x ∈ X and i ∈ Z

}
. Then, each X-indexed system of non-empty sets

in F is considered as input data. In other words, by input data we mean any I
of the following form:

I = {Ix ∈ F \ {∅} |x ∈ X}. (3.3)

That is, each Ix ∈ I is a non-empty and finite subset of TY . From the point of

view of the interpretation of I, each Ix ∈ I can be seen as a record of attributes
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(changing in time) of the object x ∈ X. Furthermore, we say that A⇒ B is true

in the input data I = {Ix ∈ F \ {∅} |x ∈ X}, written I |= A ⇒ B, whenever

Ix |= A⇒ B for all x ∈ X.

Clearly, each I of the form (3.3) can be represented by a Z-indexed finite

sequence of formal contexts as in Fig. 2 and, conversely, each Z-indexed finite

sequence of finite formal contexts (using fixed X and Y ) can be represented by

an I of the form (3.3).

Example 1. Let X = {p, q, r}, Y = {a, b, c, d}, and let I = {Ip, Iq, Ir} where

Ip = {a0, b0, a1, b1},

Iq = {a1, c1, a2, b2},

Ir = {c0, a1, c1, a2}.

Following the previous comment, the corresponding Z-indexed sequence of con-

texts corresponding to this particular I is in fact the sequence depicted in Fig. 2.

From now on, we assume we are given input data I of the form (3.3). For

A ⊆ TX and B ⊆ TY , we put

A↑I =
⋂
{Ix − i |xi ∈ A}, (3.4)

B↓I = {xi ∈ TX |B ⊆ Ix − i}. (3.5)

If there is no danger of confusion, we write just ↑ and ↓ instead of ↑I and ↓I . It

is routine to check that ↑ and ↓ are a couple of operators which form an antitone

Galois connection, see [14, 23].

We now introduce the notion of completeness of sets of temporal attribute

implications with respect to given data.

Definition 3.2. Σ is called complete in I whenever for every A ⇒ B we have

I |= A⇒ B iff Σ |= A⇒ B.

Investigation of complete sets is interesting since they convey information

about all discussed if-then dependencies which hold in given data. In order to

characterize complete sets we utilize the following notion:

Definition 3.3. A theory Σ is finitely generated whenever there is t ∈ Z such

that for every M ∈ Mod(Σ)\{∅, TY } we have M ∈ F and ‖M‖ ≤ t, ∅ ∈ Mod(Σ),

and Mod(Σ) ∩ (F \ {∅}) 6= ∅.
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Theorem 3.4. Σ is complete in some I iff Σ is finitely generated.

Our goal is to describe complete sets which are minimal in terms of their size.

In the discourse, we utilize the following notion of equivalence of theories:

Definition 3.5. We put Σ1 v Σ2 whenever, for every A ⇒ B, if Σ1 |= A ⇒ B

then Σ2 |= A ⇒ B; we put Σ1 ≡ Σ2 and say that Σ1 and Σ2 are equivalent

whenever Σ1 v Σ2 and Σ2 v Σ1.

The description of complete sets which are in addition minimal can be based

on formulas whose consequents are based on closures of sets from F which can be

infinite, namely, equal to TY . Since we consider formulas as implications between

finite sets of attributes, we extend the notion of temporal attribute implications

by allowing TY to appear as an antecedent or a consequent. By this, we are able

to consider just a single formula A ⇒ TY which serves as a finite representation

of an infinite theory of the form {A⇒ B |B ∈ F}.

Definition 3.6. An expression A ⇒ B where A,B ∈ F ∪ {TY } is called an

extended temporal attribute implication. We put M |= A ⇒ B whenever, for

every i ∈ Z, A+ i ⊆M implies B + i ⊆M .

The notions of models and semantic entailment of extended temporal attribute

implication are defined in much the same way as in the case of the original for-

mulas, see Section 2. From now on, we are going to work with extended temporal

attribute implications and we are not going to stress the term “extended.”

Complete sets can be large and not very interesting because many of the

contained formulas can be entailed by other formulas. We therefore look for

complete sets which are at least non-redundant in the following sense:

Definition 3.7. Σ is called non-redundant whenever for any Σ′ ⊂ Σ we have

Σ′ 6≡ Σ. If Σ is non-redundant and complete in I then Σ is called a (non-

redundant) base of I.

Next, we express particular non-redundant sets of formulas which are given

by special systems that are subsets of F . The systems are introduced in the

following definition and generalize the classic notion of pseudo-intents proposed

in [26].

Definition 3.8. A set P ∈ F is a pseudo-intent of I if P 6= P ↓↑ and for any

pseudo-intent Q of I such that Q ⊂ P we have Q↓↑ ⊆ P . The set of all pseudo-

intents of I is denoted by PI .
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# r(P ) ‖P‖ r(P )↓↑

1 {b0} 0 {a0, b0},
2 {c0} 0 {c0, a1},
3 {a0, b0, a1} 1 {a0, b0, a1, b1},
4 {c0, a1, b1} 1 {a0, c0, a1, b1},
5 {a0, b0, c0, a1, b1} 1 TY ,
6 {a0, a2} 2 TY ,
7 {c0, a1, a2} 2 {c0, a1, c1, a2},
8 {c0, a1, c1, a2, b2} 2 TY

Figure 3: Example of canonical forms of all pseudo-intents of the input data from
Example 1 limited to pseudo-intents with time range up to 2.

Example 2. The fact that PI is closed under time shift means, among other

things, that PI is infinite. However, if we restrict ourselves to the pseudo-intents

in the canonical form and, in addition, we limit ourselves only to those with time

range within the time range of the input data, there are only finitely many of

such pseudo-intents. Following our preliminary discussion in the introduction,

such pseudo-intents turn out to be the most interesting ones. Going back to the

data in Example 1, see also Figure 2, there are exactly eight pseudo-intents with

these properties. They are listed together with their time ranges and closures in

Figure 3.

For any system S ⊆ F and I of the form (3.3), we put

ΣS =
{
M ⇒M↓↑ |M ∈ r(S)

}
. (3.6)

The following observations show that systems of pseudo-intents define non-redun-

dant bases of the form (3.6). Note that for brevity, in the rest of the section we

denote PI just by P.

Theorem 3.9. ΣP is a non-redundant base of I.

The non-redundant theory ΣP is satisfying a stronger condition of minimality.

Technically, the minimality is defined in a different way than in the classical

setting as we shall see in a moment. The main reason behind this is that no I of

the form (3.3) admits a finite non-redundant base. This is in contrast with the

classic non-redundant bases of finite formal contexts which are always finite [23,

26]. Also note that taking into account the fact that F is countable, we have that

any theory is at most countable, i.e., finitely generated theories are countable,
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i.e., of the same size. Therefore, it would be worthless to define minimal theories

in our setting the same way as in the classic case [34] as theories with the least

size among all equivalent theories since all finitely generated theories would be

minimal. Instead, we introduce the following notion of minimality:

Definition 3.10. A finitely generated theory Σ is minimal whenever for each

Σ′ ⊆ Σ and Γ′ such that Σ′ ≡ Γ′ we have |Σ′| ≤ |Γ′|.

Before we prove the minimality of ΣP where P is the system of pseudo-intents

of I, we show properties of minimality that will be further used.

Lemma 3.11. A finitely generated theory Σ is minimal iff for each Σ′ ⊆ Σ and

Γ′ such that (Σ \ Σ′) ∪ Γ′ ≡ Σ we have |Σ′| ≤ |Γ′|.

Put in words, the observation in Lemma 3.11 says that no subset of a minimal

theory can be equivalently replaced by a smaller theory. Therefore, minimal

theories are non-redundant according to Definition 3.7.

Theorem 3.12. ΣP is minimal.

Based on the observations in this section, we argue that in the temporal setting

we use in this document, there is a reasonable notion of a pseudo-intent which

can be used to determine bases of input data which are minimal. The notion of

minimality has been introduced to accommodate the fact that all bases of input

data in our setting are infinite. Nevertheless, the observed minimality of the

obtained bases has some implications for the finite “interesting part” of bases

that was discussed in the introduction. Namely, in any base given by pseudo-

intents, the interesting part cannot be replaced by smaller and equivalent set of

formulas. This is a direct consequence of the previous observations and the notion

of minimality from Definition 3.10.

In order to characterize minimal sets of formulas, we start by introducing a

notation for expressing that considering a theory Σ, an antecedent A implies a

shift of another finite subset of TY . This property will later be used to define

equivalence of antecedents of formulas and will be crucial for the investigation of

minimality.

Definition 3.13. For a theory Σ and A,B ∈ F ∪ {∅}, we put Σ |= A ⇒∗ B
whevener there is i ∈ Z such that Σ |= A⇒ B + i.

We now turn our attention to a particular equivalence relation defined on

antecendents of formulas in a theory Σ.

22



Definition 3.14. Let Σ be a theory and A,C ∈ F . We say that A and C are

equivalent under Σ, written A ≡Σ C, whenever Σ |= A ⇒∗ C and Σ |= C ⇒∗ A.

Furthermore, we define EΣ(A) as the set of all C ⇒ D ∈ Σ such that A ≡Σ C.

In the following definition, we introduce a notion capturing a stronger form

of semantic entailment of temporal attribute implications. The notion plays a

central role in the characterization of minimal sets of formulas.

Definition 3.15. Let Σ be a theory, A,B ∈ F . We say that A ⇒ B is directly

entailed by Σ, written Σ 
 A⇒ B, whenever Σ \ EΣ(A) |= A⇒ B.

Note that the direct entailment introduced in Definition 3.15 generalizes the

notion of direct determination known from the classic setting [33]. There are ba-

sically two main differences between the notions. First, direct entailment refers

to formulas in our temporal setting whereas the classic notion does not. Sec-

ond, direct entailment is defined in terms of the semantic entailment whereas

the classic direct determination was defined in terms of derivation DAGs [33, 34]

that can be seen as graphical proof system that is equivalent to the system of

Armstrong inference rules [3]. Let us also note that [49] introduces a notion of

direct provability that utilizes graded attribute implications and is based on an

Armstrong-style inference system parameterized by globalization [42].

The following assertion presents a necessary and sufficient condition for a

non-redundant theory to be minimal. The condition is based on checking the

non-existence of a pair of formulas with particular properties.

Theorem 3.16 (Characterization of Minimality). Let Σ be a non-redundant the-

ory such that for each A ⇒ B,C ⇒ D ∈ EΣ(H) we have Σ 
 A ⇒∗ C iff

Σ |= C ⇒ A− i and Σ 
 A⇒ C + i for some i ∈ Z. Then Σ is minimal iff there

are no distinct A⇒ B,C ⇒ D ∈ Σ such that A ≡Σ C and Σ 
 A⇒∗ C.

Remark 3. (a) As an example of theories for which the assumption in Corol-

lary 3.16 holds, consider theories where the semantic closures of finite sets are

finite. Indeed, assume that for Σ we have that A ∈ F implies [A]Σ ∈ F and take

A⇒ B,C ⇒ D ∈ EΣ(H) such that Σ 
 A⇒∗ C and A 6= ∅ (a non-trivial case).

Then we have Σ |= C ⇒ A + j and Σ 
 A ⇒ C + i for some i, j ∈ Z. As a

consequence, Σ |= A⇒ A+ (j + i) and so Σ |= A⇒ A+ (j + i) · k for any k ∈ N
which holds iff A+ (j + i) · k ⊆ [A]Σ for any k ∈ N. Hence, j = −i because [A]Σ

cannot be infinite. The converse implication is trivial.
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(b) Another important example of theories that fullfill the conditions of Corol-

lary 3.16 are finitely generated theories, see Definition 3.3. For such theory it holds

A ∈ F implies [A]Σ ∈ F ∪{TY }. Hence, we can use the same arguments as in (a)

and handle the case when [A]Σ = TY . Using the assumption Σ |= C ⇒ A+ j we

have A+ j ⊆ [C]Σ which means TY = TY + j = [A]Σ + j ⊆ [C]Σ, i.e., [C]Σ = TY .

Therefore, Σ |= C ⇒ A− i holds.

Let us stress that the finitely generated theories used in Remark 3 (b) represent

a wide family of theories that are natural from users’ point of view. Indeed,

as it has been shown in Corollary 3.4, finitely generated theories are exactly

theories entailing all if-then dependencies that hold in finite data sets. Therefore,

Theorem 3.16 can be applied to any set of temporal attribute implications that

is derived from a finite data set and entails all temporal attribute implications

that hold in the data set.

We can summarize our observations by the following two algorithms the sound-

ness of which follows from Theorem 3.16 and Theorem 2.9.

Algorithm 1 (Test of Minimality).

input: Σ satisfying the assumptions of Corollary 3.16 (see Remark 3)

output: YES (is minimal) / NO (is not minimal)

If there are distinct A ⇒ B,C ⇒ D ∈ Σ such that A − i ⊆ [C]Σ

and C + i ⊆ [A]Σ\EΣ(A) for some i ∈ Z, then return NO, otherwise

return YES.

�

Algorithm 2 (Minimization Step).

input: Σ satisfying the assumptions of Corollary 3.16 (see Remark 3)

output: a theory that is equivalent to Σ

If there are distinct A ⇒ B,C ⇒ D ∈ Σ such that A − i ⊆ [C]Σ and

C + i ⊆ [A]Σ\EΣ(A) for some i ∈ Z, then return (Σ \ {A ⇒ B,C ⇒
D}) ∪ {C ⇒ D ∪ (B − i)}, otherwise return Σ.

�
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Remark 4. Observe that if Σ is finite, then both Algorithm 1 and Algorithm 2

terminate after finitely many steps and the total number of computed closures

is polynomial in the number of formulas in Σ. Indeed, the tests involve distinct

pairs of formulas from Σ and, clearly, Σ\EΣ(A) can also be determined based on

computing closures the number of which is polynomial in the size of Σ. From this

point of view, the complexity of our procedure is no worse than for the classic

test of minimality [33].

4 Related work

In database systems and knowledge engineering, there appeared isolated ap-

proaches which propose temporal semantics of if-then rules. We present here

a short survey of the approaches and highlight the differences between our ap-

proach and the existing ones.

Formulas called temporal functional dependencies emerged in databases with

time granularities [5]. In this approach, a time granularity is a general partition

of time like seconds, weeks, years, etc., and a time granularity is associated to

each relational schema. In addition, each tuple in a relation is associated with

a part (so-called granule) of granularity. In this setting, temporal functional

dependencies are like the ordinary functional dependencies [17, 34] with a time

granularity as an additional component. The concept of validity of temporal

functional dependencies is defined in much the same way as its classic counterpart

and includes an additional condition that granules of tuples need to be covered

by any granule from granularity of the temporal functional dependency. Thus, [5]

uses an ordinary notion of validity of functional dependencies which is restricted

to some time segments. This is conceptually very different from the problem we

deal with in this document since in our approach, each attribute appearing in a

rule is annotated by a relative time point and our rules are considered true in

data whenever they hold in all time points.

Several approaches to temporal if-then rules, which are conceptually similar

to [5], appeared in the field of association rules [1, 51] as the so-called temporal

association rules [2, 30, 38]. In these approaches, the input data is in the form of

transactions (i.e., subsets of items) where each transaction occurred at some point

in time and the interest of the papers lies in extracting association rules from data

which occur during a specified time cycle. For instance, one may be interested in

extracting rules which are valid in “every spring month of a year”, “every Monday
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in every year”, etc. As in the case of the temporal functional dependencies,

the temporal association rules may be understood as classic association rules

occurring during specified time cycles.

Other results motivated by temporal semantics of association rules includes

the so-called inter-transaction association rules [18, 19, 28, 47], see [32] for a

survey of approaches. The papers propose algorithms to extract, given an input

transactional data and a measure of interestingness (based on levels of minimal

support and confidence), if-then rules which are preserved over a given period

of time. From this point of view, the rules can be seen as formulas studied in

this document restricted to predictive rules (see Definition 2.15) whose validity

is considered with respect to the additional parameter of interestingness. As a

consequence, the inter-transaction association rules are related to the rules in our

approach in the same way as the ordinary association rules [1] are related to the

ordinary attribute implications [23]. The results in [18, 19, 28, 32, 47] are focused

almost exclusively on algorithms for mining the inter-transaction association rules

and are not concerned with problems of entailment of the rules and the underlying

logic. In contrast, the problems of entailment of rules are investigated in this

document and we show there is reasonably strong logic for reasoning with such

rules. Furthermore, we deal with a problem of extracting sets of rules satisfying

a condition–minimality and the ability to describe all dependencies which hold in

the data, instead of extracting rules from data satisfying a condition (given by the

interestingness measure). Our observations may stimulate further development

in the field of inter-transaction association rules and similar formulas and their

applications in various domains [18, 27].

The formulas studied in this document are also related to particular pro-

gram rules which appear in Datalog extensions dealing with flow of time and

related phenomena [11, 10, 9] such as DatalognS (Datalog with n successors).

The formulas we consider correspond to a fragment of rules which appear in such

Datalog extensions. Despite the similar form of our formulas and the program

rules, there does not seem to be a direct relationship (or a reduction) of the

entailment problem of our formulas and the recognition problem of DatalognS

programs. As we have outlined in the introduction our formulas can also be seen

as particular PROLOG rules. Despite the possibility to consider our rules in these

(and other) database and logic programming languages, we aim at different goals.

Most importantly, we have provided an Armstrong-style axiomatization which is

strong-complete, i.e., complete over arbitrary Σ, and focuses on the inference of
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formulas (rules) from (finite or infinite) sets of rules. In contrast, PROLOG uses

definite programs (finite sets of formulas) and its inference system is based on the

resolution principle. Our development of the topic is primarily motivated by tem-

poral extensions of rules which are used in FCA [23] where the Armstrong-style

systems are extensively used and, therefore, our approach is a natural direction

to go in that matter.

Note that predictive formulas, as they were introduced in Definition 2.15,

can be translated into further existing languages. For instance, the formulas

can be represented by TeDiLog [20] rules—a recent temporal logic programming

language whose semantics is defined using structures with a beginning and a linear

flow of time. Thus, the semantics of TeDiLog differs from our because of the

existence of the beginning of time and it includes a modality “always in future”.

In contrast, our rules are interpreted as if they contained a hidden modality

“always (including points in the past)”. With analogous conceptual differences,

the predictive formulas can also be translated into plans of the planning domain

definition language (PDDL, see [13, 25]) or expressed in situation calculus [35,

37, 39]. An open question is whether such transformations can be used to get

further insight into the entailment problem of our formulas.

Temporal attribute implications can be seen as extensions of attribute impli-

cations studied in FCA and functional dependencies in relational databases [34].

Interestingly, in both the FCA and database communities there appeared results

characterizing minimal sets of if-then formulas with different motivations. The

minimality of sets of functional dependencies was thoroughly examined in the

seminal paper [33] where the author gives criteria for minimality of non-redundant

sets of functional dependencies based on the notion of direct determination. In

this document, we present a similar result for temporal attribute implications.

Interestingly, [33] shows that transforming a set of functional dependencies into

an equivalent and minimal one can be done in polynomial time and the algorithm

exploits the standard tests of entailment of functional dependencies [4].

In FCA, the seminal paper [26] shows a description of minimal sets of at-

tribute implications based on the notion of pseudo-intents. Unlike the results on

functional dependencies where the input for minimization is a set of formulas,

[26] computes the minimal bases directly from object-attribute incidence data

which turns out to be a hard problem as it is shown in [16]. In this document,

we generalize the results of [26] in the temporal setting.

The form of data we consider as “input data” in our approach is closely
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related to triadic formal contexts [29]. Although there appeared approaches to

attribute implications from the point of view of the triadic FCA [6, 22], they

do not annotate attributes by conditions (such as time points as in our case).

Our formulas are syntactically different and have a different interpretation than

if-then dependencies which were introduced in triadic FCA. The initial approach

to if-then rules in triadic FCA [6] considers formulas written as (A⇒ B)C where

A,B are subsets of attributes and C is a set of conditions. A formula of this form

is considered true in a triadic context if the following condition is satisfied:

If an object has all attributes from A under all conditions from C,

then it also has all attributes from B under all conditions from C.

Clearly, our formulas represent different dependencies since the approach in [6]

annotate whole formulas by conditions (such as time points as in our case) whereas

in our case is annotated each particular attribute. Hence, different attributes

appearing in a formula can be annotated by different conditions. Later, stronger

formulas were proposed in [22] which are considered true in a triadic context if

the following condition is satisfied:

For each condition c ∈ C: If an object has all attributes in A (under

c) then it also has all attributes in B (under c).

Again, our formulas are different in that the annotations appear in antecedents

and consequents of the formulas.

5 Conclusion

We have presented logic for reasoning with if-then rules expressing dependencies

between attributes changing in time. The logic extends the classic logic for dealing

with if-then rules by considering discrete time points as an additional component.

We have studied both the semantic entailment based on preserving validity in

models in all time points and syntactic entailment represented by a provability

relation. We have shown a characterization of the semantic entailment based on

least models and syntactico-semantical completeness of the logic. We have shown

the problem of entailment is NP-hard, decidable in exponential space, and its

simplified variant which involves only predictive formulas is decidable in pseudo-

linear time. We have studied the notions of completeness in data changing in

time, non-redundancy, and minimality of theories which are derived from finite
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sequences of object-attribute incidence data recorded in separate points in time.

We have shown a generalization of the notion of a pseudo-intent which fits well

into our model and proved that important non-redundant and minimal bases are

determined by systems of pseudo-intents. Unlike the classic case, the bases are

always infinite but contain finitely many formulas which constitute a part which is

most relevant to data analysts. We have paid attention to properties inherent to

minimal theories. We have introduced and investigated the notion of equivalence

of antecedents of formulas and the notion of direct entailment that has been

introduced as a stronger form of semantic entailment. Using the notions, we have

presented necessary and sufficient conditions of minimality and presented families

of theories for which such conditions can be applied. In the special case of finite

theories, our criteria of minimality yield algorithms that can be used to minimize

theories in finitely many steps. The minimization procedure relies on computing

semantic closures whose number is polynomial in the size of the input—in this

sense, the algorithm behaves as the classic minimization algorithm for attribute

implications (or functional dependencies).

Souhrn

Představili jsme logiku pro vyvozováńı pomoćı if-then pravidel vyjadřuj́ıćımi

závislosti mezi atributy měńıcimi se v čase. Tato logika rozšǐruje klasickou logiku

zabývaj́ıćı se if-then pravidly, kde přidáváme diskrétńı čas jako daľśı složku.

Zkoumali jsme semantické vyplýváńı založené na zachováńı platnosti v modelech

ve všech okamžićıch v pr̊uběhu času a syntaktické vyplýváńı reprezentované relaćı

dokazatelnosti. Ukázali jsme charakterizaci semantického vyplýváńı založeném

na nejmenš́ım modelu a syntakticko-semantickou úplnost logiky. Dokázali jsme,

že problém semantického vyplýváńı je NP-těžký, rozhodnutelný v exponenciálńım

prosotoru a jeho zjednodušená varianta zahrnuj́ıćı prediktivńı formule je rozhod-

nutelná v pseudo-lineárńım čase. Zkoumali jsme pojem úplnosti na datech měńı-

ćıch se v čase, neredundantnost a minimalitu teoríı, které jsou odvozené z koneč-

ných posloupnost́ı objekt-atributových incidenčńıch datech zaznamenaných v od-

dělených bodech v čase. Ukázali jsme zobecněńı pojmu pseudo-intent, který se

dobře hod́ı do našeho modelu a prokázali, že d̊uležité neredundantńı a minimálńı

báze jsou odvozeny ze systémů pseudo-intent̊u. Na rozd́ıl od klasického př́ıpadu

jsou báze vždy neokonečné, ale obsahuj́ı konečné množstv́ı formuĺı, které ob-

sahuj́ı část, která je nejv́ıce zaj́ımavá pro datové analytiky. Zaj́ımaly nás základńı
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vlastnosti minimálńıch teoríı. Zavedli jsme a prozkoumali pojem ekvivalence an-

tecedent̊u formuĺı a pojem př́ımého vyplýváńı byl zaveden jako silněǰśı forma

sémantického vyplýváńı. Pomoćı těchto pojmů jsme ukázali nutnou a postačuj́ıćı

podmı́nku minimality a představili skupiny teoríı, pro které tato podmı́nka může

být použita. Ve speciálńım př́ıpadě, kdy máme konečnou teorii, naše podmı́nka

minimality indukuje algoritmus, kterým lze teorii minimalizovat v konečně mnoha

kroćıch. Minimalizačńı procedura je založená na výpočtu sémantických uzávěr̊u,

jejichž počet je polynomický ve velikosti vstupu. V tomto smyslu se algorit-

mus chová jako klasický minimalizačńı algoritmus pro atributové implikace (nebo

funkčńı závislosti).
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