
Temporal Attribute
Implications

Jan Tř́ıska

– Dissertation Thesis –

Palacký University Olomouc

2018

Author

Jan Tř́ıska

Department of Computer Science

Faculty of Science, Palacký University

17. listopadu 12

CZ-771 46 Olomouc

Czech Republic

jan.triska@upol.cz

Supervisor

Vilém Vychodil

Keywords: attribute implication, formal concept analysis, complete ax-

iomatization, entailment problem, temporal semantics, temporal data, min-

imality, non-redundancy

Declaration

Hereby I declare that the thesis is my original work.

Parts of this thesis are based on outcomes of the joint scientific work with

Vilém Vychodil. All authors have even share in the results.

Jan Tř́ıska

To my family, with love.

Preface

We deal with dependencies in object-attribute data which is recorded at

separate points in time. The data is formalized by finitely many tables

encoding the relationship between the objects and the attributes and each

table can be seen as a single formal context observed at a separate point in

time. Given such data, we are interested in concise ways of characterizing

all if-then dependencies between the attributes that hold in the data and

are preserved in all time points. In order to formalize the dependencies,

we introduce if-then formulas called temporal attribute implications which

can be seen as particular formulas of linear temporal logic. We introduce a

semantic entailment of the formulas, show its fixed-point characterization,

investigate closure properties of model classes, present an axiomatization

and prove its completeness, and investigate alternative axiomatizations and

normalized proofs. We investigate decidability and complexity issues of

the logic and prove that the entailment problem is NP-hard and belongs

to EXPSPACE. We show that by restricting to predictive formulas, the

entailment problem is decidable in pseudo-linear time. We introduce non-

redundant bases of dependencies from data as non-redundant sets entailing

exactly all the dependencies that hold in the data. In addition, we in-

vestigate minimality of bases as a stronger form of non-redundancy. For

given data, we present a description of minimal bases using the notion of

pseudo-intents generalized in the temporal setting. We further investigate

properties of minimal sets of formulas and present sufficient and necessary

conditions for their characterization. In addition to the characterization of

minimality, we present an algorithm that can be used to minimize any finite

set of temporal attribute implications. Particular parts of this thesis were

published in the following articles:

[54] Jan Triska and Vilem Vychodil. “Logic of temporal attribute impli-

cations”. In: Annals of Mathematics and Artificial Intelligence 79.4

(Apr. 2017), pp. 307–335.

[55] Jan Triska and Vilem Vychodil. “Minimal bases of temporal attribute

implications”. In: Annals of Mathematics and Artificial Intelligence

83.1 (May 2018), pp. 73–97.

[56] Jan Triska and Vilem Vychodil. “On minimal sets of temporal at-

tribute implications”. submitted. 2018.

v

[57] Jan Triska and Vilem Vychodil. “Towards Armstrong-Style Inference

System for Attribute Implications with Temporal Semantics”. In: Mod-

eling Decisions for Artificial Intelligence. Ed. by Vicenç Torra, Yasuo

Narukawa, and Yasunori Endo. Vol. 8825. LNCS. Springer Interna-

tional Publishing, 2014, pp. 84–95.

First and foremost, I thank my advisor Vilém Vychodil for supervising

this thesis. His guidance and support helped make it all possible.

I thank all my friends and fellow students for making each day so en-

joyable. I thank for support by grant No. P202/14-11585S of the Czech

Science Foundation and by the IGA of Palacky University Olomouc No.

IGA PrF 2015 023 and No. IGA PrF 2018 030.

The thesis is organized as follows. In Section 2, we present short prelim-

inaries. We introduce the formulas and present the results on their semantic

entailment in Section 3. In Section 4 we show complete axiomatizations and

in Section 5 we deal with related computational issues related to the seman-

tic entailment. In Section 6, we investigate finite representations of systems

of models, introduce notions of completeness in data, and investigate its

properties. In Section 7, we investigate the structure of non-redundant and

minimal bases of dependencies in data. In Section 8, we provide a charac-

terization of minimality and derived algorithms. Finally, in Section 9 and

Section 10, we present a survey of related work and present a conclusion.

vi

Contents

1 Introduction 3

2 Preliminaries 11

3 Logic of temporal attribute implications 13

4 Complete axiomatizations 23

5 Complexity and algorithms for entailment 33

6 Description of dependencies in data 45

7 Non-redundant and minimal bases 55

8 Structure of minimal sets 67

9 Related work 79

10 Conclusion and future work 83

References 85

1

1 Introduction

Formulas describing if-then dependencies between attributes play funda-

mental role in reasoning about attributes in many disciplines including

database systems [13, 41], formal concept analysis [27, 30], data mining [1,

63], logic programming [38, 50], and their applications. In these disciplines,

the rules often appear under different names (e.g., attribute implications,

functional dependencies, or simply “rules”) with semantics defined in var-

ious structures (e.g., transactional data, Boolean matrices, or n-ary rela-

tions) but as it has been shown in [21], the rules may be seen as proposi-

tional formulas with the semantic entailment defined as in the propositional

logic, possibly extended by additional measures of interestingness. The rules

are popular because of their easy readability for non-expert users. In addi-

tion, the entailment problem related to a large family of the rules, including

attribute implications used in formal concept analysis and functional de-

pendencies used in database systems, is decidable in linear time [5] which

also contributes to their popularity.

In this thesis, we introduce if-then formulas that express presence of

attributes relatively in time and the formulas are evaluated in data where

the presence or absence of attributes changes in time. In our approach, we

adopt the notion of a discrete time, i.e., the data are observed at distinct

points in time. Informally, the formulas can be seen as rules expressing

dependencies between attributes (or features) in the following sense:

IF (a feature y1 is present in time point t1

and · · · and

a feature ym is present in time point tm),

THEN (a feature z1 is present in time point s1

and · · · and

a feature zn is present in time point sn).

As a formula, such dependency can be written as(
yt11 N · · ·N ytmm

)
⇒
(
zs1

1 N · · ·N zsnn
)
, (1.1)

where ytii denotes an attribute/feature yi present in time point ti and anal-

ogously for z
sj
j . As usual, N and ⇒ used in (1.1) denote the usual logical

connectives of conjunction and implication (logical conditional), see [43].

3

In the thesis, we exploit the fact that N is a logical connective that is in-

terpreted by an idempotent, commutative, and associative truth function,

allowing us to rewrite (1.1) in a set-theoretic notation as follows:{
yt11 , . . . , y

tm
m

}
⇒
{
zs1

1 , . . . , z
sn
n

}
. (1.2)

In general, rules like (1.2) can be viewed as locally valid, that is, valid

exactly in time points t1, . . . , tm and s1, . . . , sn that appear in the formula.

This notion of validity is in a sense trivial because reasoning with such

formulas is easily reducible to reasoning with classic attribute implications.

In contrast, (1.2) can be viewed as globally valid, i.e., valid for time points

t1 +k, . . . , tm +k and s1 +k, . . . , sn +k for an arbitrary k. In our approach,

we consider the global validity since we want to capture dependencies that

are preserved over all time points and thus endure in time.

We study the formulas from the point of view of temporal reasoning in

formal concept analysis [27]. The classic (dyadic) formal concept analysis

(FCA) is a method of analysis of object-attribute data formalized by binary

incidence relations between a set of objects and a set of attributes. One of

the typical outputs of FCA, given an input incidence data, is a set of if-then

dependencies which entails exactly all if-then dependencies that hold in the

data. Among the best known methods of determining such interesting sets of

if-then rules is the method of Guigues and Duquenne based on computing

pseudo-intents from data, see [25, 30]. In many situations, the object-

attribute incidence data changes over time and one may be interested in

if-then rules which are universaly valid in all time points. For instance, we

may observe a mechanism which behaves as a transition system which makes

transitions from a state to another one in discrete steps. Supposing that we

do not know the internals of the system and we can only observe a set of

Boolean attributes which are or are not satisfied at a given moment. This

gives us a set of attributes (of a single object—the system) which changes in

time, i.e., a series of object-attribute incidence data changing in time. Then,

rules like (1.2) may be used to describe the behavior of the system during

transitions in terms of the dependencies between the Boolean attributes. In

this situation, an analog of the Guigues-Duquenne bases would be the most

helpful because it would allow us to derive a set of if-then rules describing

the system based on its observation during the transitions. The classic

notions related to Guigues-Duquenne bases are closely related to the notion

4

a b c d

1 ×
2 ×
3 × × ×
4 ×

x y

1 c
2 b
3 a
3 b
3 d
4 a

has(1,c).

has(2,b).

has(3,a).

has(3,b).

has(3,d).

has(4,a).

Figure 1: Example of object-attribute incidence data represented as a formal
context 〈X, Y, I〉 with X = {1, 2, 3, 4} and Y = {a, b, c, d} depicted as a
table (left), relation on relation scheme {x, y} (middle), and PROLOG-style
program consisting of facts (right).

of entailment of if-then rules. Therefore, before we show that a reasonable

counterpart to the Guigues-Duquenne bases in the temporal setting indeed

exists, we make a thorough investigation on the entailment.

The input data we consider consists of a finite set X of objects, a finite

set Y of attributes (features), and a binary incidence relation I ⊆ X×Y with

〈x, y〉 ∈ I interpreted as “object x has attribute y”. In this setting, I can

be seen as a record of object-attribute data observed in a single time point

and the triplet 〈X, Y, I〉 is called a (dyadic) formal context [27] in FCA. Let

us note that despite the fact the thesis is written primarily from the FCA

perspective, such data are the subject of study of many computer science

disciplines. For instance, from the point of view of relational databases [41],

〈X, Y, I〉 can be understood as a (finite) relation on relation scheme with two

attributes—an attribute whose domain is X and an attribute whose domain

is Y . From the point of view of logic programming [38], 〈X, Y, I〉 can be

seen as a definite program consisting of facts, see Fig. 1 for illustration. In

addition, the object-attribute incidence data is considered as the basic form

of input data in most data mining disciplines, most notably the association

rule mining [1, 63].

As we have outlined, we assume that 〈X, Y, I〉 can change in time. To be

more specific, we assume that X and Y are fixed, i.e., the sets of observed

objects and attributes do not change in time, and I is subject to change.

Therefore, instead of single I, we consider a sequence

Il, Il+1, . . . , Ir−1, Ir (1.3)

of incidence relations where l, r are integers (l ≤ r) denoting separate time

5

points and Ii ⊆ X×Y for each i = l, . . . , r. Alternatively, the input data can

be understood as a (finite) database relation on relation scheme consisting

of three attributes: objects (with domain X), attributes (with domain Y),

and time (with domain Z). Also, it can be seen as representing finitely

many facts of the form has(time_point,x,y) as in Fig. 1.

The dependencies we identify in the data generalize the classic if-then

dependencies called attribute implications. Recall that by an attribute im-

plication [25, 27, 30] we mean a propositional formula of the form

(y1 N · · ·N ym)⇒ (z1 N · · ·N zn), (1.4)

where yi, zj are propositional atoms. Both the semantic entailment (i.e.,

entailment defined in terms of validity in models) and syntactic entailment

(i.e., entailment based on provability) of attribute implications are, in fact,

notions inherited from the propositional logic [43]. Interestingly, attribute

implications are closely related to functional dependencies. Although the

interpretation of the formulas as attribute implications and functional de-

pendencies are different, it follows from [19, 21, 51] that both the interpre-

tations yield the same notion of the semantic entailment. As a consequence,

common axiomatizations are used to characterize the semantic entailment

which are typically based on the Armstrong inference rules [3].

If all yi and zj, which appear in (1.4), denote attributes from Y , then

(1.4) can be interpreted in 〈X, Y, I〉 based on its validity for each object

x ∈ X. In more detail, each x ∈ X induces a truth evaluation ex of

propositional atoms such that ex(y) = 1 (logical true) iff 〈x, y〉 ∈ I and

ex(y) = 0 (logical false) otherwise. Then, we may say that (1.4) holds in I

whenever (1.4) is true under ex for all x ∈ X in the sense of propositional

logic. According to our interpretation of I, the fact that (1.4) holds in

I means that each object x ∈ X satisfies the following property: If the

object has all attributes y1, . . . , ym, then it has all attributes z1, . . . , zn,

i.e., the presence of all z1, . . . , zn in the data is implied by the presence of

all y1, . . . , ym. For instance, if we consider I from Fig. 1 (left), then, e.g.,

(aN b)⇒ d and (bN c)⇒ d hold in I. On the other hand, neither of a⇒ d,

b⇒ d, or c⇒ d holds in I.

The dependencies used in the thesis may be seen as extensions of formu-

las like (1.4) incorporating explicit time annotations for each yi, zj. That is,

instead of (1.4), we consider formulas of the form (1.2) where i1, j1, . . . are

6

integers interpreted as relative shifts in time, allowing us to express depen-

dencies such as “if y is currently present and z was present yesterday, then

χ will be present tomorrow” by formulas like (y0 N z−1)⇒ χ1 provided that

the considered “unit of time” is a day. We call formulas of the form (1.2)

temporal attribute implications.

We provide answers to several questions which emerge with temporal

attribute implications. We define the notion of semantic entailment of the

formulas, investigate closure structures of models of theories consisting of

such formulas, and show that the problem of checking whether a formula

is semantically entailed by a set of formulas can be reduced to checking

its validity in a single model. We prove that the semantic entailment has

a complete axiomatization. That is, we show a notion of provability of

temporal attribute implications and show that it coincides with the semantic

entailment. We discuss several possible axiomatizations, including ones that

can be used to consider proofs in particular normal forms. Based on our

insight into the properties of the semantic entailment and provability, we

derive results on decidability and complexity of the entailment problem.

Fourth, we include notes on the relationship of the formulas to formulas

appearing in modal logics [9] and triadic formal concept analysis [35].

After the investigation of the properties of the semantic entailment, we

focus on description of all temporal attribute implications that hold in given

data. In particular, we seek sets of formulas entailing exactly all formulas

that hold in given data. We call such sets complete (in given data). As in

the classic setting, it is desirable to describe complete sets of formulas which

are small. In the thesis, we introduce two notions which may be seen as

two basic properties of “small sets of formulas”: non-redundancy and min-

imality. Complete sets in data which are non-redundant (or minimal) are

called non-redundant (or minimal) bases (of the data) and their structure

and properties are investigated in the thesis. Unlike the classic case, where

the time annotations are not present and minimal bases of finite incidence

data are finite, minimal bases in the temporal setting are infinite in general.

This is one of the aspects that makes the presented theory substantially

different compared to the classic one [25, 27, 30].

Despite the fact that the bases of finite data are infinite, our observations

show that each such base can be split into two parts based on the maximal

difference of time points in the input data (so-called time range):

(i) An interesting finite part which can be enumerated in finitely many

7

i = 0 i = 1 i = 2
a b c

p × ×
q
r ×

a b c

p × ×
q × ×
r × ×

a b c

p
q × ×
r ×

Figure 2: Input data depicted as formal contexts considered in separate
time points for i = 0 (left), i = 1 (middle), and i = 2 (right).

steps. This part consists of formulas where the maximal difference

of time points in their antecedents are within the range of the input

data.

(ii) An infinite part which consists of formulas whose antecedents contain

time points which are outside the time range of the input data.

For illustration of the notions, let us consider the input data from Fig. 2.

Using the introduced notation, the set of objects is X = {p, q, r}, the set

of attributes is Y = {a, b, c}, and the tables in Fig. 2 encode the incidence

relations Ii ⊆ X × Y in time points i = 0, 1, 2. Therefore, in this case, the

time range of the input data is 2 (units) because 2 is the maximal distance

of time points of any attributes in the data.

As an example of a particular minimal base of the data in Figure 2,

we can consider the following set of formulas. We may split the base into

three disjoint subsets. The first (and the most interesting) part of the base

consists of formulas

b0⇒a0,

c0⇒a1,

(b0 N a1)⇒b1,

(c0 N b1)⇒a0,

(c0 N a2)⇒c1.

For all antecedents (and consequents) of the previous formulas, we can con-

sider their time range which is the maximal difference of time points of all

used attributes. Clearly, the time ranges are 0 (first formula), 1 (next three

formulas), and 2 (the last formula) which are all less than or equal to the

time range of the data. For a data analyst, the formulas express that if there

is an object which, in a certain time point, satisfies the condition given by

8

the antecedent, then it must satisfy the condition given by the consequent.

For instance, (c0 N b1)⇒ a0 says “if an object has the attribute c in the

current time point and it has b in the next time point, then is also has a in

the current time point.”

The second group consists of formulas with antecedents within the time

range of the input data and having arbitrary conjunctions of attributes

annotated by time points as their consequents. Namely, the group consists

of

(b0 N c0)⇒ϕ,

(a0 N a2)⇒ϕ,

(c0 N c1 N b2)⇒ϕ,

where ϕ is an arbitrary conjunction of attributes annotated by time points.

Technically, this already represents an infinite set of formulas but with only

finitely many pairwise different antecedents. Intuitively, these formulas ex-

press that certain combinations of attributes in time are not possible in the

input data. For example, (b0 N c0)⇒ b5 is a particular instance of the for-

mula listed first. If there were an object x ∈ X and a time point where b

is present and c is present then the object would have b present in five time

points in the future which is absurd because the time range of the input

data is 2. Therefore, considering the present data, the formula says that

“in the input data, b and c are not present in the same time point for any

object.”

These first two groups of formulas are the most interesting for data ana-

lysts. Given input data encoded by tables as in Fig. 2, the thesis shows how

such “interesting” formulas of a particular minimal base can be obtained

based on systems of pseudo-intents [30] which we generalize in the temporal

setting.

In order to conclude our example, the presented base of the data in

Fig. 2 consists of formulas from which we infer all formulas with antecedents

outside of the time range of the input data. In this particular case, it is

sufficient to consider formulas

(a0 N a2+n)⇒ϕ,

where n is any natural number and ϕ is an arbitrary conjunction of at-

9

tributes annotated by time points. This part of the base is infinite and,

moreover, not so interesting for analysts (if one has a data that spans n

time units, there is no point in finding dependencies which go beyond n

units). It ensures that the base entails all formulas with antecedents out-

side of the time range of the input data. Such formulas trivially hold in the

input data and one can easily verify that a formula is in such a form just

by computing the time range of its antecedent.

The last question studied in the thesis is the problem of characteriz-

ing minimal sets of temporal attribute implications. Problems of finding

minimal descriptions of various structures belong to classic problems in

computer science as well as data analysis. It is well known that some mini-

mality problems are easy (e.g., minimization of finite automata) and some

are intractable or even undecidable (e.g., minimality of Turing machines).

In data analysis, there is a natural need to find descriptions of dependen-

cies, clusters, or patterns in data that are as small as possible in order to

simplify further processing or to enable easier evaluation by human experts.

In this thesis, we show a condition based on checking the presence of two

formulas with special properties that is considerably simpler than checking

the minimality by definition.

The investigation of minimality of sets of if-then rules started with the

seminal paper [40] where the author showed criteria for minimality of non-

redundant sets of functional dependencies based on the notion of direct

determination. The paper showed that transforming a set of rules into an

equivalent and minimal one can be done in polynomial time using the stan-

dard tests of entailment [5]. Later, the result has been extended for a family

of graded/fuzzy attribute implications in [60]. Since all classic if-then rules,

graded/fuzzy attribute implications, and temporal attribute implications

can be seen as general rules whose semantics is defined by particular sys-

tems of isotone Galois connections, see [61, 59], we investigate a minimality

characterization for temporal attribute implications that is analogous to the

classic one [40] and the one for the graded attribute implications [60].

10

2 Preliminaries

In this section, we present the basic notions of closure systems (also known

as Moore families) and closure operators which are used further in the thesis.

More details can be found in [8, 18].

If Y is a set, we denote by 2Y its power set. A closure operator on Y is

a map c : 2Y → 2Y such that

A ⊆ c(A), (2.1)

A ⊆ B implies c(A) ⊆ c(B), (2.2)

c(c(A)) ⊆ c(A), (2.3)

for all A,B ⊆ Y . The conditions (2.1)–(2.3) are called the extensivity,

monotony, and idempotency of c, respectively. Note that (2.1) and (2.3)

yield c(A) = c(c(A)) for all A ⊆ Y . A closure operator c : 2Y → 2Y is called

an algebraic closure operator whenever

c(A) =
⋃
{c(B) |B ⊆ A and B is finite} (2.4)

for all A ⊆ Y . Moreover, A ⊆ Y is called a fixed point of c whenever

c(A) = A.

A system S ⊆ 2Y is called a closure system on Y if it is closed under

arbitrary intersections, i.e.,
⋂
A ∈ S for any A ⊆ S. In the thesis, we

utilize the well-known correspondence between closure systems and closure

operators on Y [18, 8]. In particular, if c is an algebraic closure operator

on Y , we call the closure system of all its fixed points the algebraic closure

system induced by c.

The notion of minimality of theories that is being investigated further

in the thesis relies on the standard notion of cardinality of sets. Recall that

a set A is smaller than or equal to B (in terms of their size) whenever there

is an injective map f : A→ B; we denote this fact by |A| ≤ |B|. Moreover,

A is strictly smaller than B if |A| ≤ |B| and it is not the case that |B| ≤ |A|
in which case we write |A| < |B|. We put |A| = |B| and say that A and B

have the same size whenever |B| ≤ |A| and |A| ≤ |B|.

11

3 Logic of temporal attribute implications

In this section, we present a formalization of the formulas, their interpreta-

tion, and semantic entailment. Let us assume that Y is a non-empty and

finite set of symbols called attributes. Furthermore, we use integers in order

to denote time points. We put

TY =
{
yi | y ∈ Y and i ∈ Z

}
(3.1)

and interpret each yi ∈ TY as “attribute y observed in time i” (technically,

TY can be seen as the Cartesian product Y × Z). It is easy to see that TY
is countable. Furthermore, we introduce the following set:

FY = {M ⊆ TY |M is finite}, (3.2)

and abbreviate the set by F if Y is clear from the context. Obviously, F is

countable since TY is countable.

Under this notation, we may now formalize rules like (1.2) as follows:

Definition 3.1. A temporal attribute implication over Y is a formula of the

form A⇒ B, where A,B ∈ F .

As we have outlined in the introduction, the purpose of time points

encoded by integers which appear in antecedents and consequents of the

considered formulas is to express points in time relatively to a current time

point. Hence, the intended meaning of (1.2) abbreviated by A ⇒ B is

the following: “For all time points t, if an object has all attributes from A

considering t as the current time point, then it must have all attributes from

B considering t as the current time point”. In what follows, we formalize

the interpretation of A⇒ B in this sense.

Since we wish to define formulas being true in all time points (we are

interested in formulas preserved over time), we need to shift relative times

expressed in antecedents and consequents in formulas with respect to a

changing time point. For that purpose, for each M ⊆ TY and i ∈ Z, we

may introduce a subset M + j of TY by

M + j =
{
yi+j | yi ∈M

}
(3.3)

and call it a time shift of M by j (shortly, a j-shift of M). In the thesis, we

utilize the following properties of time shifts.

13

Proposition 3.2. For all M,N ⊆ TY , {Nk ⊆ TY | k ∈ K}, and i, j ∈ Z,

we get

if M ⊆ N then M + i ⊆ N + i, (3.4)

(M + i) + j = M + (i+ j), (3.5)⋃
k∈K(Nk + i) =

⋃
k∈K Nk + i, (3.6)⋂

k∈K(Nk + i) =
⋂

k∈K Nk + i. (3.7)

Proof. All (3.4)–(3.7) follow directly from (3.3).

Based on (3.5), we may omit parentheses and write M + j+ i instead of

(M + i) + j. Also, we write M − i to denote M + (−i).
Temporal attribute implications are formulas, i.e., syntactic notions for

which we define their semantics (interpretation) as follows.

Definition 3.3. A formula A ⇒ B is true in M ⊆ TY whenever, for each

i ∈ Z,

if A+ i ⊆M , then B + i ⊆M (3.8)

and we denote the fact by M |= A⇒ B.

Remark 1. (a) The value of i in the definition may be understood as a

sliding time point. Moreover, A + i and B + i represent sets of attributes

annotated by absolute time points considering i as the current time point.

Note that using (3.3), the condition (3.8) can be equivalently restated as

“A ⊆ M − i implies B ⊆ M − i,” i.e., instead of shifting the antecedents

and consequents of the formula, we may shift the set M .

(b) Observe that A⇒ B is trivially true in M whenever B ⊆ A because

in that case (3.8) trivially holds for any i. By definition, A ⇒ B is not

true in M , written M 6|= A ⇒ B iff there is i such that A + i ⊆ M and

B+i *M . In words, in the time point i, M has all attributes of A but does

not have an attribute in B, i.e., the time point i serves as a counterexample.

Example 1. One particular example of a subset M of TY can be a daily

weather observation from an airport station. For instance, we can consider

Y as

Y = {rn, rl, rm, tv, tc, tm, wl, wm, ws},

14

rn rl rm tv tc tm wl wm ws
15 × × ×
16 × × ×
17 × × ×
18 × × ×
19 × × ×
20 × × ×
21 × × ×
22 × × ×
23 × × ×
24 × × ×
25 × × ×
26 × × ×
27 × × ×
28 × × ×
29 × × ×

Figure 3: Daily weather observation from an airport station.

where the attributes have the following meaning: “no rainfall” (denoted

rn), “light rainfall” (denoted rl), “moderate rainfall” (denoted rm), “tem-

perature is very cold”, (denoted tv), “temperature is cold”, (denoted tc)

“temperate is mild”, (denoted tm) “light wind” (denoted wl), “moderate

wind” (denoted wm), and “strong wind” (denoted ws). A subset of TY may

be depicted as a two-dimensional table with rows corresponding to time

points, columns corresponding to attributes in Y , and crosses and blanks

in the table, indicating whether attributes annotated by time points belong

to the subset. For instance, if M is given by the table in Figure 3, then

rn15 ∈ M , rl15 6∈ M , etc1. In this case, we have M |= {wl0, wm1} ⇒ {tc3}.
On the other hand, M 6|= {wm0, wl1} ⇒ {tc3, rm3, tc4} because for i = 22,

we have {wm0, wl1} + 22 = {wm22, wl23} ⊆ M and {tc3, rm3, tc4} + 22 =

{tc25, rm25, tc26} *M .

We consider the following notions of a theory and a model:

Definition 3.4. Let Σ be a set of formulas (called a theory). A subset

M ⊆ TY is called a model of Σ if M |= A ⇒ B for all A ⇒ B ∈ Σ. The

system of all models of Σ is denoted by Mod(Σ), i.e.,

Mod(Σ) =
{
M ⊆ TY |M |= A⇒ B for all A⇒ B ∈ Σ

}
. (3.9)

In general, Mod(Σ) is infinite and there may be theories that do not

have any finite model. For instance, consider a theory containing ∅ ⇒ {y0}.
1The data is based on discretization of real meteorological information for Aug 14

which can be found at http://www.bom.gov.au/climate/dwo/IDCJDW0100.shtml.

15

http://www.bom.gov.au/climate/dwo/IDCJDW0100.shtml

We now turn our attention to the structure of systems of all models of

temporal attribute implications. In case of the ordinary attribute impli-

cations, it is well known that systems of their models are exactly closure

systems in Y [27]. Interestingly, the systems of models in our case are ex-

actly the algebraic closure systems that are closed under time shifts. This

additional closure property is introduced by the following definition.

Definition 3.5. A system S ⊆ 2TY of subsets of TY is called closed under

time shifts whenever M + i ∈ S for all M ∈ S and i ∈ Z.

We first show that Mod(Σ) is a closure system closed under time shifts:

Theorem 3.6. Let Σ be a theory. Then, Mod(Σ) is closed under arbitrary

intersections and time shifts.

Proof. The fact that Mod(Σ) is closed under arbitrary intersections follows

by analogous arguments as in the case of ordinary attribute implications

taking into account that (3.8) must hold for all i ∈ Z. That is, for any

M ⊆ Mod(Σ) and arbitrary A ⇒ B ∈ Σ, we reason as follows. If A + i ⊆⋂
M, then A+ i ⊆M for all M ∈M and thus B + i ⊆M for all M ∈M

because M ⊆ Mod(Σ). Therefore, B + i ⊆
⋂
M, proving

⋂
M |= A ⇒ B

which further gives
⋂
M∈ Mod(Σ) since A⇒ B ∈ Σ was arbitrary.

In order to show that Mod(Σ) is closed under time shifts, take M ∈
Mod(Σ) and j ∈ Z. It suffices to prove that M + j ∈ Mod(Σ). In order to

see that, take A ⇒ B ∈ Σ. If A + i ⊆ M + j, then A + (i − j) ⊆ M and

thus B + (i − j) ⊆ M because M ∈ Mod(Σ) and A ⇒ B ∈ Σ. Therefore,

B + i ⊆ M + j, i.e., M + j |= A ⇒ B for arbitrary A ⇒ B ∈ Σ, showing

M + j ∈ Mod(Σ).

Taking into account Theorem 3.6, for each theory Σ, we may consider a

closure operator induced by Mod(Σ) which maps each M ⊆ TY to the least

model of Σ containing M .

Definition 3.7. Let Σ be a theory. For each M ⊆ TY , we put

[M]Σ =
⋂
{N ∈ Mod(Σ) |M ⊆ N} (3.10)

and call [M]Σ the semantic closure of M under Σ.

Using the well-known relationship between closure operators and closure

systems [18, 8], [· · ·]Σ defined by (3.10) is indeed a closure operator. Note

16

that in general, [M]Σ can be infinite even if Y and M are finite. This is

in contrast with the ordinary attribute implications using finite Y . Never-

theless, in our setting we can prove that even if [M]Σ is infinite, it can be

obtained as a union of finitely generated elements of Mod(Σ), showing that

Mod(Σ) is in fact an algebraic closure system.

Theorem 3.8. Let Σ be a theory. For each M ⊆ TY , we have

[M]Σ =
⋃
{[N]Σ |N is finite subset of M}. (3.11)

Proof. Observe that the monotony of [· · ·]Σ yields [N]Σ ⊆ [M]Σ for any

finite N ⊆M and thus the “⊇”-part of (3.11) is obvious.

For brevity, putM = {[N]Σ |N is finite subset of M}. In order to prove

the “⊆”-part of (3.11), it suffices to show that
⋃
M is a model of Σ that

contains M because [M]Σ is the least model of Σ containing M . For any

yi ∈ M , we have [{yi}]Σ ∈ M and thus yi ∈ [{yi}]Σ ⊆
⋃
M by the

extensivity of [· · ·]Σ which proves M ⊆
⋃
M.

Now, take any A⇒ B ∈ Σ and suppose that A+i ⊆
⋃
M. Observe that

for every yj ∈ A + i there is [Nyj]Σ ∈ M such that yj ∈ [Nyj]Σ. Moreover,

the fact that A+i is finite yields that
⋃
{Nyj | yj ∈ A+i} is finite and we thus

have
[⋃
{Nyj | yj ∈ A+ i}

]
Σ
∈M. Clearly, A+ i ⊆

[⋃
{Nyj | yj ∈ A+ i}

]
Σ

and thus it follows that B + i ⊆
[⋃
{Nyj | yj ∈ A + i}

]
Σ
⊆
⋃
M because

A⇒ B ∈ Σ. Altogether,
⋃
M |= A⇒ B and so

⋃
M∈ Mod(Σ).

Using Theorem 3.8, we may establish that each algebraic closure system

closed under time shifts is a system of models of some theory consisting of

temporal attribute implications. Before we go to the proof, we show how

the property of being closed under time shifts can be formulated in terms

of closure operators.

Lemma 3.9. Let S be a closure system that is closed under arbitrary time

shifts and let CS be the induced closure operator. For each M ⊆ TY and

i ∈ Z,

CS(M + i) = CS(M) + i. (3.12)

Proof. “⊆”: Since S is closed under time shifts, we get CS(M) + i ∈ S. In

addition, M + i ⊆ CS(M) + i on account of the extensivity of CS and (3.4).

Therefore, CS(M + i) ⊆ CS(M) + i by monotony and idempotency of CS .

17

“⊇”: The extensivity of CS gives M + i ⊆ CS(M + i) and thus M ⊆
CS(M + i) − i. Moreover, CS(M + i) − i ∈ S because S is closed under

time shifts and thus CS(M) ⊆ CS(M + i) − i which gives CS(M) + i ⊆
CS(M + i).

Lemma 3.10. Let C be a closure operator satisfying C(M + i) = C(M) + i

for each M ⊆ TY and i ∈ Z. Then, the system SC of all fixed points of C is

closed under arbitrary time shifts.

Proof. Take M ∈ SC and any i ∈ Z, i.e., M ⊆ TY such that M = C(M).

Clearly, M + i = C(M) + i and since C(M) + i = C(M + i), we get

M + i = C(M + i), proving that M + i ∈ SC.

The previous two lemmas give the following consequence.

Corollary 3.11. A closure system S is closed under arbitrary time shifts

iff the corresponding closure operator CS satisfies (3.12).

Based on our previous observations, we may now establish the connec-

tion between systems of models of temporal attribute implications and al-

gebraic closure systems closed under time shifts.

Theorem 3.12. Let S ⊆ 2TY be an algebraic closure system that is closed

under time shifts. Then, there is a theory Σ such that S = Mod(Σ).

Proof. Assume that CS is the closure operator induced by S and put

Σ = {A⇒ B |A,B ∈ F and B ⊆ CS(A)}.

We show that S = Mod(Σ) by proving that both inclusions hold.

“⊆”: Take M ∈ S and A,B ∈ F such that B ⊆ CS(A). We now check

that M |= A ⇒ B. Assume that A + i ⊆ M . Then, A ⊆ M − i and by

the monotony of CS and utilizing (3.12), we have CS(A) ⊆ CS(M − i) =

CS(M)− i = M − i which yields that B ⊆M − i, i.e., B + i ⊆M , showing

M |= A⇒ B. As a consequence, S ⊆ Mod(Σ).

“⊇”: We let M ∈ Mod(Σ) and prove that M ∈ S which means to prove

that CS(M) = M . Since S is an algebraic closure system, it suffices to

check that CS(A) ⊆ M for each finite A ⊆ M . Assuming that A ⊆ M and

A is finite, take any finite B ⊆ CS(A). By definition, A⇒ B ∈ Σ and since

M ∈ Mod(Σ), we get that for i = 0, A+ 0 ⊆M implies B + 0 ⊆M . Since

A+ 0 = A and A ⊆M , we therefore obtain B = B + 0 ⊆M . Since B was

an arbitrary finite subset of CS(A), we conclude that CS(A) ⊆M .

18

We now define semantic entailment of formulas and explore its prop-

erties. The notion is defined the usual way using the notion of a model

introduced before.

Definition 3.13. Let Σ be a theory. Formula A ⇒ B is semantically

entailed by Σ if M |= A⇒ B for each M ∈ Mod(Σ).

The following lemma justifies the description of time points in attribute

implications as relative time points. Namely, it states that each A ⇒ B

semantically entails all formulas resulting by shifting the antecedent and

consequent of A⇒ B by a constant factor.

Lemma 3.14. {A⇒ B} |= A+ i⇒ B + i.

Proof. Take M ∈ Mod({A⇒ B}) and let (A+ i) + j ⊆M . Then, A+ i ⊆
M − j and by Theorem 3.6, we get M − j ∈ Mod({A ⇒ B}) which yields

B + i ⊆M − j and thus (B + i) + j ⊆M , proving M |= A+ i⇒ B + i

Analogously as for the classic attribute implications, the semantic en-

tailment of A ⇒ B by a theory Σ can be checked using the least model of

Σ generated by A as it is shown in the following theorem.

Theorem 3.15. For any Σ and A⇒ B, the following conditions are equiv-

alent:

(i) Σ |= A⇒ B,

(ii) [A]Σ |= A⇒ B,

(iii) B ⊆ [A]Σ.

Proof. Clearly, (i) implies (ii) since [A]Σ ∈ Mod(Σ); (ii) implies (iii) be-

cause A + 0 ⊆ [A]Σ. Assume that (iii) holds and take M ∈ Mod(Σ) and

i ∈ Z such that A + i ⊆ M . Then, A ⊆ M − i and thus B ⊆ [A]Σ ⊆
[M− i]Σ = [M]Σ− i by (3.12) from which it follows that B+ i ⊆ [M]Σ = M ,

proving (i).

We conclude this section by notes on the propositional semantics of our

formulas. Recall from the introduction that the classic attribute implica-

tions on finite Y can be understood as propositional formulas. Namely, an

attribute implication of the form{
y1, . . . , ym

}
⇒
{
z1, . . . , zn

}
, (3.13)

19

can be seen as a propositional formula in the form (1.4). Thus, (1.4) may

be called a propositional counterpart of (3.13). Obviously, there are in gen-

eral several propositional counterparts of (3.13) since formulas equivalent

to (1.4) in sense of the propositional logic result, e.g., by rearranging the

propositional variables y1, . . . , ym, z1, . . . , zn in a different order. We neglect

this aspect and always consider a fixed propositional counterpart of each

attribute implication. It can be shown that if one takes the propositional

counterparts of attribute implications, then their semantic entailment in

sense of the propositional logic coincides with the semantic entailment as

it is defined for attribute implications. We now show that an analogous

correspondence can also be established in our case.

We start by considering the following notation. For any finite A,B ⊆
TY and for any M ⊆ TY , we put M |=PL A ⇒ B whenever A * M or

B ⊆ M . That is, M |=PL A ⇒ B means that A ⇒ B is true in M as a

classical attribute implication. Clearly, M |=PL A⇒ B does not imply that

M |= A ⇒ B in sense of Definition 3.3. Moreover, we may introduce the

set of models of Σ in the classic sense:

ModPL(Σ) =
{
M ⊆ TY |M |=PL A⇒ B for all A⇒ B ∈ Σ

}
(3.14)

and put Σ |=PL A ⇒ B whenever M |=PL A ⇒ B for all M ∈ ModPL(Σ).

Therefore, |=PL denotes the semantic entailment of attribute implications

in the classic sense. Again, |=PL is in general different from |= introduced

in Definition 3.13 but we can establish the following characterization:

Theorem 3.16. Let Σ be a theory and let

ΣPL = {A+ i⇒ B + i |A⇒ B ∈ Σ and i ∈ Z}. (3.15)

Then Mod(Σ) = ModPL(ΣPL). As a consequence, for each A⇒ B, we have

Σ |= A⇒ B iff ΣPL |=PL A⇒ B.

Proof. The first part of the claim is easy to see. Indeed, for each A ⇒ B

we have M ∈ Mod({A⇒ B}) iff for each i ∈ Z, we have A+ i ⊆M implies

B + i ⊆ M which is true iff M ∈ ModPL({A + i ⇒ B + i | i ∈ Z}). Hence,

it follows that Mod(Σ) = ModPL(ΣPL).

Now, assume that Σ |= A ⇒ B and take M ∈ ModPL(ΣPL) such that

A ⊆ M . Then A + 0 ⊆ M and M ∈ Mod(Σ) and thus B = B + 0 ⊆ M ,

proving that ΣPL |=PL A ⇒ B. Conversely, let ΣPL |=PL A ⇒ B and

20

A + i ⊆ M for M ∈ Mod(Σ). That is, we have A ⊆ M − i and, owing

to Theorem 3.6, M − i ∈ Mod(Σ) = ModPL(ΣPL). As a consequence of

M − i |=PL A ⇒ B, we get B ⊆ M − i and thus B + i ⊆ M , showing

Σ |= A⇒ B. Altogether, Σ |= A⇒ B iff ΣPL |=PL A⇒ B.

Now, based on Theorem 3.16, we may argue that for each Σ there is a set

of propositional formulas Σ′ such that the propositional counterpart of A⇒
B follows by Σ′ in sense of the propositional logic. Indeed, Σ′ can be taken

as the set of propositional counterparts to all formulas in ΣPL: Owing to

Theorem 3.16, A⇒ B follows by ΣPL as a classic attribute implication over

(a denumerable set of attributes) TY and thus the propositional counterpart

of A⇒ B follows by the propositional counterparts to all formulas in ΣPL.

21

4 Complete axiomatizations

In this section, we present a deduction system for our formulas and a related

notion of provability which represents the syntactic entailment of formulas.

The provability is based on an extension of the Armstrong axiomatic sys-

tem [3] which is well known mainly in database systems [41]. The extension

we propose accommodates the fact that time points in formulas are relative.

The deductive system we use consists of the following deduction rules.

Definition 4.1. We introduce the following deduction rules :

(Ax) infer A∪B ⇒ A,

(Cut) from A⇒ B and B∪C ⇒ D infer A∪C ⇒ D,

(Shf) from A⇒ B infer A+ i⇒ B + i,

where i ∈ Z and A,B,C,D are arbitrary finite subsets of TY .

Remark 2. (a) Note that there are several equivalent systems which are

called the Armstrong systems [41]. In our presentation, the rule (Ax) can

be seen as a nullary deduction rule which is an axiom scheme, i.e., each

A∪B ⇒ A may be called an axiom. (Cut) and (Shf) are binary and unary

deduction rules, respectively. In the classic case, (Ax) and (Cut) form a

system which is equivalent to that from [3]. We call the additional rule

(Shf) the rule of “time shifts.” Also note that in the database literature,

(Cut) is also referred to as the rule of pseudo-transitivity [41].

(b) The rules in Definition 4.1 can be written as fractions with hypothe-

ses (formulas preceding “infer”) above the conclusion (formula following

“infer”) as

A∪B ⇒ A
(Ax),

A⇒ B, B∪C ⇒ D

A∪C ⇒ D
(Cut),

A⇒ B

A+ i⇒ B + i
(Shf).

Although we are going to use (Ax), (Cut), and (Shf) as the basic deduc-

tion rules in our system, we define the notion of provability relatively to a

collection of deduction rules because we later investigate systems consisting

of other rules. Thus, a general deduction system is a set R of n-ary rules of

the form “from ϕ1, . . . , ϕn, infer ψ”.

Definition 4.2. Let R be a deduction system. An R-proof of A ⇒ B by

Σ is a finite sequence δ1, . . . , δn such that δn equals A ⇒ B and for each

i = 1, . . . , n we have

23

(i) δi ∈ Σ, or

(ii) R contains a rule “from ϕ1, . . . , ϕn infer ψ” such that ψ is equal to δi

and we have {ϕ1, . . . , ϕn} ⊆ {δj | j < i}.

We say that A ⇒ B is R-provable by Σ, denoted Σ `R A ⇒ B, if there is

an R-proof of A⇒ B by Σ.

If R consists solely of (Ax), (Cut), and (Shf), we write just Σ ` A⇒ B

and call A ⇒ B provable by Σ. Analogously, we use the term “proof”

instead of “R-proof”. In the thesis, we use the following properties of

provability.

Proposition 4.3. For every A,B,C,D ∈ F , we have

(Ref) ` A⇒ A,

(Wea) {A⇒ C} ` A∪B ⇒ C,

(Acc) {A⇒ B∪C,C ⇒ D∪E} ` A⇒ B∪C∪D,

(Add) {A⇒ B,A⇒ C} ` A⇒ B∪C,

(Aug) {B ⇒ C} ` A∪B ⇒ A∪C,

(Pro) {A⇒ B∪C} ` A⇒ B,

(Tra) {A⇒ B,B ⇒ C} ` A⇒ C.

Proof. The laws hold because our system is an extension of the Armstrong

system in which the laws hold as well, see [3, 41].

Our inference system is sound in the usual sense:

Theorem 4.4 (soundness). If Σ ` A⇒ B then Σ |= A⇒ B.

Proof. The proof goes by induction on the length of a proof, considering

the facts that each axiom is true in all models, (Cut) is a sound deduction

rule [41], and (Shf) is sound on account of Lemma 3.14. In more detail, let

δ1, . . . , δn be a proof by Σ and let Σ |= δi for all i < j. Then, if δj results

by δi using (Shf) for some i < j, then Σ |= δi yields that M |= δi for all

M ∈ Mod(Σ) and thus, using Lemma 3.14, M |= δj for all M ∈ Mod(Σ),

showing Σ |= δj. The rest follows as in the classic case.

In the proof of completeness, we utilize the notion of a syntactic closure

which is introduced as follows.

24

Definition 4.5. Let Σ be a theory. For each M ⊆ TY , we put

M0
Σ = M, (4.1)

Mn+1
Σ = Mn

Σ ∪
⋃{

F + i |E ⇒ F ∈ Σ and E + i ⊆Mn
Σ

}
, (4.2)

Mω
Σ =

⋃∞
n=0 M

n
Σ. (4.3)

and call Mω
Σ the syntactic closure of M under Σ.

By the Tarski fixpoint theorem [53], the operator that maps M to Mω
Σ

defined by (4.3) is indeed a closure operator, so the term “closure” in the

name syntactic closure is appropriate. The following observation shows that

the term “syntactic” is also appropriate since closures are directly related

to provability.

Lemma 4.6. Let A,B ⊆ TY be finite. Then, B ⊆ Aω
Σ iff Σ ` A⇒ B.

Proof. Suppose that B ⊆ Aω
Σ. Since B is finite, there is m such that B ⊆

Am
Σ . Thus, in order to show that Σ ` A ⇒ B, it suffices to check that for

every n and every finite D ⊆ An
Σ, we have Σ ` A⇒ D since then the claim

readily follows for D = B and n = m. By induction, assume the claim holds

for n and all finite D ⊆ An
Σ. Consider n + 1 and take a finite D ⊆ An+1

Σ .

Now, consider a finite

D′ = {〈E ⇒ F, i〉 |E ⇒ F ∈ Σ and E + i ⊆ An
Σ}

such that

D ⊆ An
Σ ∪

⋃
{F + i | 〈E ⇒ F, i〉 ∈ D′} ⊆ An+1

Σ .

Notice that since we assume D finite, such finite D′ always exists. Now, by

induction hypothesis, for each 〈E ⇒ F, i〉 ∈ D′, we have Σ ` A ⇒ E + i

owing to E + i ⊆ An
Σ ⊆ Aω

Σ. Furthermore, for E ⇒ F ∈ Σ, we have

Σ ` E + i⇒ F + i using (Shf). Thus, (Tra) gives Σ ` A⇒ F + i for each

〈E ⇒ F, i〉 ∈ D′. In addition to that, D ∩ An
Σ ⊆ An

Σ and thus Σ ` A ⇒
D ∩An

Σ. Since D′ is finite and D ⊆ (D ∩An
Σ)∪

⋃
{F + i | 〈E ⇒ F, i〉 ∈ D′},

Σ ` A⇒ D follows by finitely many applications of (Add) and (Pro). As a

consequence, Σ ` A⇒ B.

Conversely, assume that Σ ` A ⇒ B. By Theorem 4.4, Σ |= A ⇒ B.

We show that Aω
Σ ∈ Mod(Σ). Take E ⇒ F ∈ Σ, i ∈ Z and let E + i ⊆ Aω

Σ.

25

Since E + i is finite, there must be n such that E + i ⊆ An
Σ and thus

F + i ⊆ An+1
Σ ⊆ Aω

Σ, proving that Aω
Σ ∈ Mod(Σ). Now, Σ |= A ⇒ B and

A+ 0 = A ⊆ Aω
Σ yields that B + 0 = B ⊆ Aω

Σ.

Note that Lemma 4.6 is in fact a syntactic counterpart of Theorem 3.15.

Now, using previous observations, we derive that our logic is complete:

Theorem 4.7 (completeness). Σ ` A⇒ B iff Σ |= A⇒ B.

Proof. If Σ 0 A ⇒ B, we prove that there is M ∈ Mod(Σ) such that

M 6|= A⇒ B. Indeed, we show that one can take Aω
Σ for M . By Lemma 4.6,

Σ 0 A ⇒ B yields B * Aω
Σ. So, for i = 0, we have that A + i = A ⊆ Aω

Σ

and B+ i = B * Aω
Σ, i.e., Aω

Σ 6|= A⇒ B. In addition to that, if E + i ⊆ Aω
Σ

for E ⇒ F ∈ Σ and i ∈ Z, then Σ ` A ⇒ E + i by Lemma 4.6 and so

Σ ` A⇒ F + i using (Shf) and (Tra). Using Lemma 4.6 again, F + i ⊆ Aω
Σ

which proves Aω
Σ ∈ Mod(Σ). The rest is a consequence of Theorem 4.4.

As a corollary of the previous observations, we get the following assertion

showing that both the syntactic and semantic closures coincide.

Theorem 4.8. For every M ⊆ TY , we have [M]Σ = Mω
Σ .

Proof. We get [M]Σ ⊆Mω
Σ since [M]Σ is the least model of Σ containing M .

Conversely, observe that for any N ∈ Mod(Σ) such that M ⊆ N , it follows

that Mω
Σ ⊆ Nω

Σ = N . Hence, for N being [M]Σ, we get Mω
Σ ⊆ [M]Σ.

Remark 3. Let us stress that the notions of semantic and syntactic en-

tailment we have considered in this thesis are different from their clas-

sic counterparts. Indeed, each temporal attribute implication can also be

seen as a classic attribute implication per se because the sets A and B in

A⇒ B are subsets of TY . Therefore, in addition to the semantic entailment

from Definition 3.13, we may consider the ordinary one which disregards

the special role of time points. The same applies to the provability—

the classic notion is obtained by omitting the rule (Shf). For instance,

Σ = {{x1} ⇒ {y2}, {y5} ⇒ {z2}} proves {x4} ⇒ {y5} by (Shf) and thus

{x4} ⇒ {z2} by (Tra). On the other hand, Σ does not prove {x4} ⇒ {z2}
without (Shf).

Remark 4. (a) We can show that our system of deduction rules consisting

of (Ax), (Cut), and (Shf) is non-redundant, i.e., all rules in the system are

independent. Indeed, no formulas are provable by Σ = ∅ using only (Cut)

26

and (Shf) and thus (Ax) is independent. Moreover, (Cut) is independent

since all formulas provable by Σ = ∅ using only (Ax) and (Shf) are exactly

all instances of (Ax). The independence of (Shf) follows by Remark 3.

(b) Let us note that the deductive system in Definition 4.1 is not minimal

in terms of the number of deduction rules. Indeed, we may replace (Cut)

and (Shf) by a single deduction rule

A⇒ B + i, B∪C ⇒ D

A ∪ (C + i)⇒ D + i
(Cuti). (4.4)

Indeed, observe that (Cut) is a particular case of (Cuti) for i = 0 and (Shf)

results by (Cuti) and (Ax) for A = B = ∅. Conversely, {A⇒ B+i, B∪C ⇒
D} ` A∪(C + i)⇒ D + i because using (3.6), the sequence

A⇒ B + i, B∪C ⇒ D, (B + i)∪(C + i)⇒ D + i, A∪(C + i)⇒ D + i

is a proof of A∪(C + i)⇒ D + i using (Cut) and (Shf). As a consequence,

the system consisting of (Ax), (Cut), and (Shf) is equivalent to (Ax) and

(Cuti).

(c) An alternative deduction system for our logic can be based on (Ref)

instead of (Ax) and a single rule which is a modification of a simplification

deduction rule [14]. First, it is easily seen that (Ax) and (Cut) may be

equivalently replaced by the following rule and (Ref):

A⇒ B, C ⇒ D

A ∪ (C \B)⇒ D
(Sim). (4.5)

Indeed, (Sim) is a rule derivable by (Ax) and (Cut) because the sequence

A⇒ B,B∪C ⇒ C,C ⇒ D,B∪C ⇒ D,A∪(C\B)⇒ D,

is a proof of A∪(C\B) ⇒ D by {A ⇒ B,C ⇒ D} using (Ax) and (Cut);

apply the rule twice and observe that B ∪ C = B ∪ (C \ B). Conversely,

observe first that (Ax) is derivable by (Ref) and (Sim) because from B ⇒ B

and A ⇒ A it follows that B∪(A\B) ⇒ A that is, A∪B ⇒ A. Moreover,

(Cut) is derivable by (Ref) and (Sim) because the following sequence

C ⇒ C, ∅ ⇒ ∅, C ⇒ ∅, A⇒ B,B∪C ⇒ D,A∪((B∪C)\B)⇒ D,A∪C ⇒ D,

27

is a proof of A∪C ⇒ D by {A ⇒ B,B∪C ⇒ D} in which we have used

(Sim) three times and utilized the fact that C∪((A∪((B∪C)\B))\∅) = A∪
C. Altogether, (Ax) and (Cut) can indeed be replaced by (Ref) and (Sim).

Note that (Sim) may be perceived even more natural than (Cut) because it

is applicable to any two input formulas. Note that a rule analogous to (Sim)

with the inferred formula being A∪ (C \B)⇒ B ∪D was first proposed by

Darwen [16, page 140]. Now, we may consider an extension of (Sim) which

involves time shifts:

A⇒ B + i, C ⇒ D

A ∪ ((C \B) + i)⇒ D + i
(Simi). (4.6)

Analogously as in the case of (Cuti), (Sim) is a particular case of (Simi) for

i = 0 and (Shf) results by (Simi) and (Ref) for A = B = ∅. Therefore, the

deductive system in Definition 4.1 can be replaced by (Ref) and (Simi).

As a more important corollary of the completeness, there is the following

observation on compactness of the semantic entailment which is used in

Section 8:

Corollary 4.9. Σ |= A ⇒ B iff there is a finite Σ′ ⊆ Σ such that Σ′ |=
A⇒ B.

We now focus on the order in which the deduction rules may be applied

in proofs. We show that each proof may be transformed into a normalized

proof which involves applications of deduction rules in a special order. First,

we show that (Shf) commutes with the other rules. Formally, we introduce

the property for a general deduction rule R as follows:

Let R be a deduction rule of the form “from ϕ1, . . . , ϕn infer ψ”. We

say that (Shf) commutes with R if for any formula χ which results by ψ

using (Shf) there are ϕ′1, . . . , ϕ
′
n which result by ϕ1, . . . , ϕn using (Shf),

respectively, such that χ is provable by {ϕ′1, . . . , ϕ′n} using R.

Lemma 4.10. (Shf) commutes with (Ax), (Cut), and (Shf).

Proof. Clearly, (Shf) commutes with (Ax) because the result of application

of (Shf) to an instance of (Ax) is again an instance of (Ax). Moreover, (Shf)

commutes with itself since (A+ i) + j equals A+ (i+ j) for any A ⊆ TY and

i, j ∈ Z. Therefore, it remains to check that (Shf) commutes with (Cut).

Consider formulas A ⇒ B and B∪C ⇒ D and the formula A∪C ⇒ D

28

which results by (Cut) and formula (A∪C) + i ⇒ D + i which results by

(Shf). Clearly, if we apply (Shf) to A⇒ B and B∪C ⇒ D for i, we obtain

A + i ⇒ B + i and (B∪C) + i ⇒ D + i, respectively. The second formula

equals (B + i)∪(C + i) ⇒ D + i and thus we may apply (Cut) to obtain

(A + i) ∪ (C + i) ⇒ D + i which equals (A∪C) + i ⇒ D + i, proving that

(Shf) commutes with (Cut).

Theorem 4.11. Σ ` A ⇒ B iff there is a finite Σ′ ⊆ ΣPL such that

Σ′ `R A⇒ B for R containing (Ax) and (Cut).

Proof. In order to see the only-if part, assume that Σ ` A ⇒ B which

means there is a proof of A ⇒ B by Σ. The proofs contains only finitely

many formulas in Σ and thus, we may consider a finite Σ′′ ⊆ Σ such that

Σ′′ ` A⇒ B. Moreover, the proof contains only finitely many applications

of (Shf) and, using Lemma 4.10, there is a proof of A ⇒ B by Σ′′ which

starts by formulas in Σ′′, then continues with applications of (Shf), and

terminates with formulas derived without using (Shf). Therefore, there is

a finite Σ′ ⊆ (Σ′′)PL ⊆ ΣPL such that A ⇒ B is provable by Σ′ using only

(Ax) and (Cut). The if-part of the assertion is easy to see.

The previous observation allows us to introduce special derivation se-

quences which represent proofs in a normalized form in that all utilized de-

duction rules are applied in a particular order. The proofs are constructed

using deduction rules (Ref), (Shf), (Acc), and (Pro), see Proposition 4.3.

Definition 4.12. A finite sequence of formulas ϕ1, . . . , ϕn is called a nor-

malized derivation sequence of A⇒ B using formulas in Σ if the sequence

(i) starts with finitely many formulas in Σ;

(ii) continues by formulas obtained using (Shf) applied to formulas in (i);

(iii) continues by A⇒ A;

(iv) continues by formulas obtained using (Acc) whose first argument is

the preceding formula and the second argument is a formula in (i) or

(ii);

(v) terminates with A ⇒ B which results by the preceding formula by

(Pro).

Normalized derivation sequences are sufficient and adequate means for

determining provability of formulas:

29

Theorem 4.13. Σ ` A ⇒ B iff there is a normalized derivation sequence

of A⇒ B using formulas in Σ.

Proof. The if-part follows directly by the fact that a normalized derivation

sequence of A ⇒ B using formulas in Σ is a proof of A ⇒ B by Σ using

(Ref), (Shf), (Acc), and (Pro). Since all of them are rules derivable by (Ax),

(Cut), and (Shf), see Proposition 4.3, we get Σ ` A⇒ B.

Conversely, by Theorem 4.11 we get that A⇒ B is provable by a finite

Σ′ ⊆ ΣPL using only (Ref) and (Cut). Therefore, we may form the (i)

and (ii)-parts of the derivation sequence using the formulas in Σ′ followed

by A ⇒ A. Next, observe that there is a finite sequence A0, . . . , An of

subsets of TY such that A0 = A, Ai = Ai−1 ∪ F for some E ⇒ F ∈ Σ′

satisfying E ⊆ Ai−1, and An ⊇ B. In order to see that, consider (4.2) and

the fact that A ⇒ B is provable by Σ′ without using (Shf). By moment’s

reflection, we can see that the (iv)-part of the derivation sequence is formed

of formulas A ⇒ Ai (i = 0, . . . , n), and the sequence is terminated by a

single application of (Pro) to obtain A⇒ B.

We conclude the section by showing further properties of provability.

The next assertion may be viewed as a type of a deduction theorem.

Theorem 4.14. Let Σ be a theory and A,B ⊆ TY be finite. Then the

following statements are equivalent:

(i) Σ ∪ {∅ ⇒ A} ` ∅ ⇒ B,

(ii) there are i1, . . . , in ∈ Z such that Σ `
⋃n

m=1(A+ im)⇒ B.

Proof. “(i)⇒ (ii)”: Let A1 ⇒ B1, . . . , An ⇒ Bn be a proof of ∅ ⇒ B by

Σ ∪ {∅ ⇒ A}. For each p = 1, . . . , n, we show that there are i1, . . . , ipn ∈ Z
for which Σ ` Ap ∪

⋃pn
m=1(A + im) ⇒ Bp. The proof goes by induction on

p. Thus, take p = 1, . . . , n and assume the claim holds for all q < p. We

distinguish the following cases:

– Ap ⇒ Bp is an instance of (Ax). Then, we let pn = 1, i1 = 0, and thus

Ap ∪
⋃pn

m=1(A + im) equals Ap ∪ A, i.e., Ap ∪ A ⇒ Bp follows using

(Ax).

– Ap ⇒ Bp ∈ Σ. As in the previous case, for pn = 1 and i1 = 0 using

(Wea) we infer Ap ∪ A⇒ Bp, showing Σ ` Ap ∪ A⇒ Bp.

30

– Let Ap ⇒ Bp result by Aq ⇒ Bq and Ar ⇒ Br using (Cut). In this

case, there is C such that Ar = Bq∪C, Bp = Br, and Ap = Aq∪C. By

induction hypothesis, there are i1, . . . , iqn ∈ Z and i′1, . . . , i
′
qr ∈ Z such

that Σ ` Aq∪
⋃qn

m=1(A+ im)⇒ Bq and Σ ` Bq∪C ∪
⋃qr

m=1(A+ i′m)⇒
Br. Therefore, using (Cut), Σ ` Aq ∪

⋃qn
m=1(A+ im) ∪C ∪

⋃qr
m=1(A+

i′m) ⇒ Bp. Hence, for i′′1 = i1, . . . , i
′′
qn = iqn , i

′′
qn+1

= i′1, . . . , i
′′
qn+qr = i′qr

it follows that Σ ` Aq ∪ C ∪
⋃qn+qr

m=1 (A + i′′m) ⇒ Bp, i.e., Σ ` Ap ∪⋃qn+qr
m=1 (A+ i′′m)⇒ Bp.

– Let Ap ⇒ Bp result by Aq ⇒ Bq using (Shf). Then, Ap = Aq + i

and Bp = Bq + i for some i ∈ Z. By induction hypotheses, there

are i1, . . . , iqn such that Σ ` Aq ∪
⋃qn

m=1(A + im) ⇒ Bq. Using (Shf),

we get Σ `
(
Aq ∪

⋃qn
m=1(A + im)

)
+ i ⇒ Bq + i. Now, observe that(

Aq∪
⋃qn

m=1(A+ im)
)

+ i equals (Aq + i)∪
⋃qn

m=1(A+ im+ i). Therefore,

the claim holds for integers i1 + i, . . . , iqn + i.

As a special case for p = n, we get (ii) because An = ∅.
“(ii)⇒ (i)”: Let Σ `

⋃n
m=1(A+ im)⇒ B for some i1, . . . , in ∈ Z. From

the monotony of provability, we get that Σ∪{∅ ⇒ A} `
⋃n

m=1(A+im)⇒ B.

Moreover, for each m = 1, . . . , n we get Σ ∪ {∅ ⇒ A} ` ∅ ⇒ A + im using

(Shf). Hence, Σ∪{∅ ⇒ A} ` ∅ ⇒
⋃n

m=1A+im by finitely many applications

of (Add) and (Tra) gives Σ ∪ {∅ ⇒ A} ` ∅ ⇒ B.

Example 2. Let us observe that a direct counterpart of the classic deduction

theorem does not hold in our system. For instance, we may take a theory

Σ = {∅ ⇒ {x1}}. Then, using (Shf) for i = 1, we easily see that Σ `
∅ ⇒ {x2}. On the other hand, we have 0 {x1} ⇒ {x2} and thus in general

Σ ∪ {∅ ⇒ A} ` ∅ ⇒ B does not imply that Σ ` A⇒ B which holds in the

classic case.

Example 3. One of the classic laws about provability that apply to attribute

implications and can be formulated in terms of attribute implications as

formulas with limited expressive power compared to general propositional

formulas is the principle of the proof by cases. Formally, if R consists only

of (Ax) and (Cut), then the following are equivalent:

• Σ `R A⇒ B;

• Σ ∪ {C ⇒ D} `R A⇒ B and Σ ∪ {D ⇒ C} `R A⇒ B.

31

This follows immediately by the fact that in this case, `R becomes the

classic propositional provability. The law does not apply in our system

where R contains the additional rule (Shf). For instance, consider the

following theory

Σ = {{x0} ⇒ {c1}, {x0} ⇒ {d2}, {c2} ⇒ {y0}, {d1} ⇒ {y0}}.

Obviously, we have Σ ∪ {{c0} ⇒ {d0}} ` {x0} ⇒ {y0} using (Shf) and two

applications of (Cut). Analogously, we get Σ ∪ {{d0} ⇒ {c0}} ` {x0} ⇒
{y0}. On the other hand, we can show that Σ 0 {x0} ⇒ {y0}, i.e., the

principle of the proof by cases does not hold. In order to see that Σ 0
{x0} ⇒ {y0}, observe that [{x0}]Σ = {y−1, x0, c1, y1, d2} for which [{x0}]Σ 6|=
{x0} ⇒ {y0}. Thus, since our logic is sound and [{x0}]Σ ∈ Mod(Σ), we

indeed have Σ 0 {x0} ⇒ {y0}.

Remark 5. We may say that Σ′ is a completion of Σ if Σ ⊆ Σ′ and for

any finite C,D ⊆ TY , we have either Σ′ ` C ⇒ D or Σ′ ` D ⇒ C.

Let us note that analogous notions of completions play an important role in

completeness proofs of various logics, cf. [31]. Namely, if a given theory does

not prove a formula it is often desirable to find its completion that does not

prove the formula as well. As a consequence of Example 3, we observe that

this is not possible in our logic. Namely, the example shows a particular

case where Σ 0 {x0} ⇒ {y0} and there is no completion Σ′ such that

Σ′ 0 {x0} ⇒ {y0}. Indeed, each completion Σ′ proves either {c0} ⇒ {d0}
or {d0} ⇒ {c0} and thus it also proves {x0} ⇒ {y0}. Nevertheless, we were

able to prove Theorem 4.7 without having this property.

32

5 Complexity and algorithms for entailment

In this section, we show bounds on the computational complexity of deciding

whether a temporal attribute implication is provable by a finite set Σ of

other temporal attribute implications. Then, we focus on a subproblem

which typically appears in applications. For the subproblem we provide a

pseudo-polynomial time [28] decision algorithm.

We formalize the decision problem of entailment as a language of encod-

ings of finitely many formulas, i.e., we put

LENT = {〈Σ, A⇒ B〉 |Σ is a finite theory and Σ ` A⇒ B}, (5.1)

considering a fixed TY . In order to show the lower bound of the time com-

plexity of LENT, we utilize a reduction of decision problems [45] which in-

volves the unbounded subset sum problem. The decision variant of the

unbounded subset sum problem is formulated as follows: An instance of the

problem is given by n non-negative integers j1, . . . , jn and a target value

z; the answer to the instance is “yes” iff there are non-negative integers

c1, . . . , cn such that

∑n
i=1 ciji = z. (5.2)

The unbounded subset sum decision problem is NP-complete, see [33, Propo-

sition A.4.1].

Let us note that in the case of the ordinary attribute implications and

functional dependencies, the problem of determining whether a given for-

mula follows by a finite set of formulas is easy and there exist efficient

linear time decision algorithms [5]. In contrast, the corresponding decision

problem in our setting is hard:

Theorem 5.1 (lower bound). LENT is NP-hard.

Proof. We prove the claim by showing that the unbounded subset sum

problem is polynomial time reducible to LENT. Consider an instance of the

unbounded subset sum problem given by non-negative integers j1, . . . , jn

and z. For the integers we consider

Σ =
{
{y0} ⇒ {yji} | i = 1, . . . , n

}
(5.3)

and put A = {y0}, B = {yz}. We now prove that
∑n

i=1 ciji = z holds true

33

for some non-negative integers c1, . . . , cn iff Σ ` {y0} ⇒ {yz} by proving

both implications.

In order to prove the if-part, assume that Σ ` {y0} ⇒ {yz}. Using

Theorem 4.13, it follows there is a normalized derivation sequence ϕ1, . . . , ϕk

of {y0} ⇒ {yz} using formulas in Σ. In the proof, we utilize a part of the

sequence which results by applications of (Acc), see Definition 4.12 (iv). All

formulas in this part of the sequence can be written as

{y0} ⇒ Ai︸ ︷︷ ︸
ϕi

, {y0} ⇒ Ai+1︸ ︷︷ ︸
ϕi+1

, . . . , {y0} ⇒ Ak−1︸ ︷︷ ︸
ϕk−1

,

where Ai, . . . , Ak−1 are finite subsets of TY , Ai = {y0}, and yz ∈ Ak−1

because ϕk results from ϕk−1 by (Pro), cf. Definition 4.12. By induction,

we show for every Al (i ≤ l ≤ k− 1) that the following property is satisfied:

If yw ∈ Al, then there are non-negative integers c1, . . . , cn

such that w =
∑n

i=1 ciji.

Notice the property is satisfied for l = i since in that case we have Al = Ai =

{y0} and thus, we may put c1 = c2 = · · · = cn = 0. Assuming the claim

holds for l, we prove it for l+1 as follows. Inspecting Definition 4.12 (iv), it

follows that {y0} ⇒ Al+1 results from {y0} ⇒ Al and {y0}+ t⇒ {yjm}+ t

using (Acc) where t ∈ Z and 1 ≤ m ≤ n. As a consequence {y0} + t ⊆ Al

and thus, by induction hypothesis, there are non-negative integers d1, . . . , dn

such that t = 0 + t =
∑n

i=1 diji. Then, jm + t = jm +
∑n

i=1 diji and so

jm + t =
∑n

i=1 ciji for non-negative integers c1, . . . , cn defined by

ci =

{
di + 1, if i = m,

di, otherwise.

Now, since we have Al+1 ⊆ Al ∪ {yjm+t}, the property holds for Al+1. As a

particular case, for {yz} ⊆ Ak−1 we conclude there are non-negative integers

c1, . . . , cn for which
∑n

i=1 ciji = z which concludes the first part of the proof

of Theorem 5.1.

Conversely, let
∑n

i=1 ciji = z for some non-negative integers c1, . . . , cn.

By induction, we show that Σ ` {y0} ⇒ {yzk} for every zk =
∑k

i=1 ciji

where k = 0, . . . , n. As a particular case for k = n, we obtain the desired

fact that Σ ` {y0} ⇒ {yz} because zn = z.

Observe that for k = 0, the claim follows trivially by (Ax). Now, suppose

34

the claim holds for k < n. By induction hypothesis, Σ ` {y0} ⇒ {yzk}.
Moreover, we have Σ ` {y0} ⇒ {yjk+1} because {y0} ⇒ {yjk+1} ∈ Σ.

Using (Shf), we also get Σ ` {y0} + jk+1 ⇒ {yjk+1} + jk+1, i.e., using

(Cut), it follows that Σ ` {y0} ⇒ {y2jk+1}. Repeating the last argument

ck+1-times, we obtain Σ ` {y0} ⇒ {yck+1jk+1}. Now, using (Shf), we get

Σ ` {y0} + zk ⇒ {yck+1jk+1} + zk, i.e., Σ ` {yzk} ⇒ {yck+1jk+1+zk}. Hence,

Σ ` {y0} ⇒ {yzk+1} follows by (Cut) using the fact that zk+1 = zk+ck+1jk+1,

which finishes the proof.

The reduction involved in Theorem 5.1 is illustrated in the following

example.

Example 4. Let us show a particular instance of the unbounded subset sum

problem and its reduction to LENT. We consider integers 5, 7, 11, and a

target number 31 as an instance of the problem. The answer to this instance

is “yes” because for numbers 4, 0, and 1, the sum 4 · 5 + 0 · 7 + 1 · 11 is equal

to 31. The corresponding theory Σ, see the proof of Theorem 5.1, is

Σ = {{y0} ⇒ {y5}, {y0} ⇒ {y7}, {y0} ⇒ {y11}}.

In this case, {y0} ⇒ {y31} is provable from Σ because we may chain four

shifted instances of {y0} ⇒ {y5} and a single shifted instance of {y0} ⇒
{y11} by using (Cut). It corresponds with the sum 4 · 5 + 0 · 7 + 1 · 11. In a

more detail, the corresponding proof of {y0} ⇒ {y31} by Σ is the following

sequence of formulas:

1. {y0} ⇒ {y5} formula in Σ

2. {y0}+ 5⇒ {y5}+ 5 using (Shf) on 1.

3. {y0} ⇒ {y10} using (Cut) on 1. and 2.

4. {y0}+ 10⇒ {y5}+ 10 using (Shf) on 1.

5. {y0} ⇒ {y15} using (Cut) on 3. and 4.

6. {y0}+ 15⇒ {y5}+ 15 using (Shf) on 1.

7. {y0} ⇒ {y20} using (Cut) on 5. and 6.

8. {y0} ⇒ {y11} formula in Σ

9. {y0}+ 20⇒ {y11}+ 20 using (Shf) on 8.

10. {y0} ⇒ {y31} using (Cut) on 7. and 9.

35

Remark 6. The entailment problem is closely related to the existence of non-

negative solutions of linear Diophantine equations. Indeed, for a theory Σ

which consists of formulas of the form {y0} ⇒ {yji} for i = 1, . . . , n, by

inspecting the proof of Theorem 5.1, we can see that Σ ` {y0} ⇒ {yz} iff

the linear Diophantine equation j1x1 + · · · + jnxn = z has a non-negative

solution.

Our observations on the upper bound of computational complexity in-

volve additional classes of decision problems. In order to establish an upper

bound, we utilize the fact that the satisfiability problem of temporal logic

with “until” and “since” operators over a linear flow of time is decidable in

polynomial space [49]. For the purpose of our proof, we use the linear tem-

poral logic over 〈Z, <〉 with the unary temporal operators � (always), ◦F
(next time), and ◦P (previous time) because these operators are definable

using operators “until” and “since”, see [4] for details.

From now on, we consider Y (the set of attributes) as (a subset of) the

set of propositional variables. Recall that formulas of the temporal logic

with the above-mentioned operators are defined as follows: Each y ∈ Y is

a formula; if ϕ and ψ are formulas, then ¬ϕ, ϕNψ, ϕ⇒ ψ, �ϕ, ◦F ϕ, and

◦P ϕ are formulas. In order to interpret the formulas we consider a standard

structure K = 〈W, e, r〉 where W = Z, r is the genuine ordering < on Z,

and e is an evaluation such that e(w, y) ∈ {0, 1} for all w ∈ Z and y ∈ Y .

Given K and w ∈ Z, we interpret the formulas as usual: We put

(i) K, w |= y whenever e(w, y) = 1;

(ii) K, w |= ¬ϕ whenever K, w 6|= ϕ;

(iii) K, w |= ϕNψ whenever K, w |= ϕ and K, w |= ψ;

(iv) K, w |= ϕ⇒ ψ whenever K, w 6|= ϕ or K, w |= ψ;

(v) K, w |= �ϕ whenever K, w′ |= ϕ for all w′ ∈ Z;

(vi) K, w |= ◦F ϕ whenever K, w′ |= ϕ for w′ ∈ Z such that w < w′ and

there does not exist z ∈ Z such that w < z < w′;

(vii) K, w |= ◦P ϕ whenever K, w′ |= ϕ for w′ ∈ Z such that w′ < w and

there does not exist z ∈ Z such that w′ < z < w.

We say that ϕ is true in K whenever K, w |= ϕ for all w ∈ Z. Moreover, we

say that ϕ is satisfiable whenever there is a structure K such that K, 0 |= ϕ.

36

Moreover for each formula of the form (1.2), we consider its counterpart in

the considered temporal logic

�
((
4i1y1 N · · ·N4imym

)
⇒
(
4j1z1 N · · ·N4jnzn

))
, (5.4)

where 4i is defined as follows:

4iy =

y, if i = 0,

◦F4i−1y, if i > 0,

◦P4i+1y, if i < 0.

(5.5)

Note that the construction of 4iy from yi requires space that is linear in

(the absolute value of) i ∈ Z, i.e., it is exponential in the length of the

encoding of i.

Theorem 5.2. LENT is reducible in exponential space to the satisfiability

problem of the linear temporal logic over 〈Z, <〉 with unary temporal opera-

tors “always”, “next time”, and “previous time”.

Proof. First, observe that for each subset of TY we may consider a cor-

responding structure which makes the same formulas true—any A ⇒ B is

true in the subset of TY iff its counterpart given by (5.4) is true in the corre-

sponding structure. Namely, for M ⊆ TY , we may consider KM = 〈W, e, r〉,
where e(w, y) = 1 if yw ∈ M and e(w, y) = 0 otherwise. Conversely, for

K = 〈W, e, r〉, we put MK = {yw | e(w, y) = 1}. Now, for any w ∈ W , it is

easy to see that M |= A ⇒ B iff KM , w |= ϕ where ϕ is the counterpart

to A⇒ B given by (5.4). From now on, we tacitly identify attribute impli-

cations with their counterparts. Furthermore, we have K, w |= A ⇒ B iff

MK |= A⇒ B.

Now, for a given Σ = {A1 ⇒ B1, . . . , Am ⇒ Bm} and A ⇒ B we

may consider formula A1 ⇒ B1 N · · ·NAm ⇒ BmN¬
(
A ⇒ B

)
whose

construction requires exponential space. From the previous observation, it

is obvious that the formula is satisfiable iff Σ 6|= A⇒ B.

Corollary 5.3 (upper bound). LENT belongs to EXPSPACE.

Proof. The decision procedure reduces the input of LENT to the satisfia-

bility problem of linear temporal logic over 〈Z, <〉 with unary temporal

operators “always”, “next time”, and “previous time” in exponential space,

see Theorem 5.2. Then, the input is reduced to the satisfiability problem of

37

the linear temporal logic over 〈Z, <〉 with binary temporal operators “until”

and “since” in linear space [4] which we can decide in polynomial space [49].

Altogether, the decision procedure decides LENT in exponential space.

Remark 7. Note that the results of Theorem 5.2 and Corollary 5.3 can

also be interpreted so that LENT is decidable in a pseudo-polynomial space

because we reduce an instance of LENT to an instance (of the satisfiabil-

ity problem of the above-mentioned temporal logic) the length of which is

bounded from above by the numeric value encoded in the original input.

With respect to the new instance, the decision procedure works in polyno-

mial space.

We now turn our attention to issues of entailment of formulas which

typically appear in applications in prediction. The restriction on particular

formulas allows us to improve the complexity of the entailment problem.

Based on the time points present in antecedents and consequents of at-

tribute implications, we may consider formulas that describe presence of

attributes in future time points. That is, based on the presence of at-

tributes in the past, the formulas indicate which attributes are present in

future time points. Technically, such formulas can be seen as attribute im-

plications where all time points in the antecedents are smaller (i.e., denote

earlier time points) than all time points in the consequents which denote

later time points. We call such formulas predictive and define the notion as

follows.

Definition 5.4. A temporal attribute implication A⇒ B over Y is called

predictive whenever A,B ∈ F \ {∅} and for each xi ∈ A and yj ∈ B, we

have i ≤ j. A theory Σ is called predictive whenever all its formulas are

predictive.

Remark 8. Note that the deduction rules (Shf) and (Cut) preserve the prop-

erty of being predictive. That is, if A⇒ B is provable by a predictive theory

Σ without using (Ax), then A⇒ B is predictive. General instances of (Ax)

are not predictive formulas.

In the next assertion, we utilize lower and upper time bounds of non-

empty sets from F : For any M ∈ F \ {∅}, put

l(M) = min{i ∈ Z | yi ∈M for some y ∈ Y }, (5.6)

u(M) = max{i ∈ Z | yi ∈M for some y ∈ Y }. (5.7)

38

Thus, l(M) and u(M) are the lowest and greatest time points which appear

in M , respectively. Clearly, A ⇒ B is predictive iff both A and B are

non-empty and u(A) ≤ l(B).

Theorem 5.5. Let Σ and A⇒ B be predictive. Then, for

ΣB
A = {E + i⇒ F + i |E ⇒ F ∈ Σ and l(A)− l(E) ≤ i ≤ u(B)− l(F)}

(5.8)

we have Σ ` A⇒ B iff ΣB
A `R A⇒ B for R containing (Ax) and (Cut).

Proof. Observe that the if-part of the claim is trivial. In order to prove

the only-if part, assume that Σ ` A ⇒ B. That is, B ⊆ [A]Σ owing to

Theorem 4.6 and Theorem 3.15. Note that ΣB
A `R A⇒ B for R containing

(Ax) and (Cut) means that A ⇒ B is provable by ΣB
A as an ordinary at-

tribute implication. Let A◦ denote the least subset of TY with the following

properties:

(i) A ⊆ A◦, and

(ii) for each E ⇒ F ∈ ΣB
A : if E ⊆ A◦ then F ⊆ A◦.

Since A◦ is in fact the syntactic closure of A with respect to R, ΣB
A `R A⇒

B iff B ⊆ A◦. That is, in order to prove the desired claim, it suffices to

show that A◦ ∩ T = [A]Σ ∩ T for

T = {yi ∈ TY | l(A) ≤ i ≤ u(B)}.

Trivially, we get that A◦ ∩ T ⊆ [A]Σ ∩ T . In order to prove the converse

inclusion, according to Theorem 4.8, it suffices to check that An
Σ∩T ⊆ A◦∩T

for each non-negative integer n. By induction, assume that An
Σ∩T ⊆ A◦∩T

and take yj ∈ (An+1
Σ ∩T)\(An

Σ∩T) = (An+1
Σ \An

Σ)∩T . The fact yj ∈ An+1
Σ \An

Σ

yields there is E ⇒ F ∈ Σ and i ∈ Z such that E + i ⊆ An
Σ and yj ∈ F + i.

It can be shown that E + i ⇒ F + i ∈ ΣB
A . Indeed, since Σ is predictive,

observe that l(E) + i = l(E + i) ≥ l(An
Σ) = l(A) and thus i ≥ l(A)− l(E).

Moreover, yj ∈ F + i yields l(F + i) = l(F) + i ≤ j and thus i ≤ j − l(F)

which gives i ≤ u(B) − l(F) on account of j ≤ u(B) since yj ∈ T . As a

consequence, E + i ⇒ F + i ∈ ΣB
A . Furthermore, E + i ⊆ An

Σ and the fact

that E ⇒ F is predictive give E + i = (E + i)∩ T ⊆ An
Σ ∩ T . By induction

hypothesis, E + i ⊆ A◦ and thus F + i ⊆ A◦ by (ii). Hence, yj ∈ A◦ and so

An+1
Σ ∩ T ⊆ A◦ ∩ T .

39

Let LPRE be the language consisting of encodings of pairs of all finite

predictive theories and predictive formulas, i.e.,

LPRE = {〈Σ, A⇒ B〉 |Σ is finite and Σ and A⇒ B are predictive}. (5.9)

Based on Theorem 5.5, we establish the following observation on the time

complexity of deciding whether a predictive formula is provable by a finite

predictive theory.

Theorem 5.6. LENT ∩ LPRE is decidable in a pseudo-polynomial time.

Proof. Take a finite predictive Σ and a predictive formula A ⇒ B. The

theory ΣB
A given by (5.8) is finite. According to Theorem 5.5, the problem

of deciding Σ ` A ⇒ B is reducible to the problem of deciding whether

ΣB
A entails A ⇒ B without using (Shf), i.e., in the sense of the entailment

of ordinary attribute implications. Therefore, the problem is decidable in

a time that is polynomial with respect to the size of ΣB
A [5, 27, 41]. Now,

observe that the size of (the encoding of) ΣB
A may be bounded from above

by the size of (the encoding of) Σ multiplied by

n = max{max(0, u(B) + l(E)− l(A)− l(F) + 1) |E ⇒ F ∈ Σ}, (5.10)

i.e., the size of ΣB
A is polynomial in the numeric value encoded in the input

Σ and hence LENT ∩ LPRE is decidable in a pseudo-polynomial time.

Remark 9. (a) By considering only LENT∩LPRE, we have improved the up-

per bound since pseudo-polynomial time algorithms belong to EXPTIME [28]

which is believed to be better than EXPSPACE. Observe that LENT∩LPRE

is also NP-hard because we can use the same reduction as in Theorem 5.1.

(b) Because of the complexity issues, in applications it is reasonable

to consider temporal attribute implications with small difference between

lower and upper time bounds (maxspan [22]) since LENT∩LPRE is decidable

in pseudo-linear time with respect to n given by (5.10).

An explicit procedure for deciding LENT ∩LPRE in a pseudo-linear time

is described in Algorithm 1. It is a generalization of LinClosure [5], cf.

also [41], which incorporates applicable time shifts of formulas in Σ. The

algorithm accepts three arguments:

1. a finite predictive theory Σ,

40

Algorithm 1: PseudoLinClosure (Σ, A,Max)

1 forall E ⇒ F ∈ Σ do
2 for i from l(A)− l(E) to Max − l(F) do
3 set count [E ⇒ F, i] to |E|;
4 forall yj ∈ E do
5 add 〈E ⇒ F, i〉 to list [yi+j];
6 end

7 end

8 end
9 set M to A;

10 set update to A;
11 while update 6= ∅ do
12 choose yi from update;
13 set update to update \{yi};
14 forall 〈E ⇒ F, j〉 ∈ list[yi] do
15 set count [E ⇒ F, j] to count [E ⇒ F, j]− 1;
16 if count[E ⇒ F, j] = 0 then
17 set new to F + j \M ;
18 set M to M ∪ new ;
19 set update to update ∪ new ;

20 end

21 end

22 end
23 return M

41

2. a finite A ⊆ TY , and

3. a non-negative number Max ≥ u(A),

and it returns a subset M ⊆ [A]Σ such that M ∩ T = [A]Σ ∩ T for

T = {yi ∈ TY | l(A) ≤ i ≤ Max}. (5.11)

The soundness of the algorithm is justified by the following observation:

Theorem 5.7. Let Σ and A⇒ B be predictive and let Σ be finite. Then, Al-

gorithm 1 executed with arguments Σ, A, and u(B), terminates after finitely

many steps and for the returned value M we have Σ ` A⇒ B iff B ⊆M .

Proof. The arguments are fully analogous to those in case of the classic

LinClosure, so we present here comments on issues arising only in the

context of attributes annotated by time points. Technical details can be

found in [5]. Notice that Algorithm 1 uses auxiliary structure count and list

to store information about formulas. The structure count can be seen as

an associative array indexed by (pointers to) formulas in Σ and integers i

representing time shifts. The value of count [E ⇒ F, i] is initially set to the

number of attributes in the antecedent of E ⇒ F (shifted by i). During the

computation, count [E ⇒ F, i] represents the number of remaining attributes

in E+i that have not been “updated.” The structure list is an array indexed

by attributes annotated by time points and the value of list [yi] is a list of

records 〈E ⇒ F, j〉 representing (pointers to) formulas in Σ and their j-shifts

such that yi appears in the antecedent of E ⇒ F shifted by j. An additional

variable update is initialized at line 10 and maintains attributes annotated

by time points that are waiting to be “updated.” An update of yi, see lines

13–21, consists in decrementing the counter of occurrences of attributes in

shifted antecedents in all formulas where yi appears. All such formulas (and

their j-shifts) are found in list [yi], see line 14. If count [E ⇒ F, j] reaches

zero, see line 16, the antecedent of E + j ⇒ F + j is already contained in

M , and all new attributes in F + j are prepared for update. Clearly, the

procedure terminates after finitely many steps, and by Theorem 5.5, the

attributes annotated by time points accumulated in M represent a subset of

[A]Σ. In addition, if u(B) ≤ Max , then B ⊆M iff B ⊆ [A]Σ iff Σ ` A⇒ B

as a consequence of our previous observations.

Remark 10. The procedure in Algorithm 1 is called PseudoLinClosure

because for given parameters, Σ, A, and Max , it computes a subset of the

42

closure of [A]Σ in a linear time with respect to the numeric value of the

encoding of its input arguments, i.e., its time complexity is pseudo-linear.

Indeed, this is a consequence of the fact that each yi where l(A) ≤ i ≤ Max

is updated during the computation at most once.

Example 5. Consider a set M given by the table in Figure 3. Since M can

be regarded as transactional data over a set of items Y with a dimensional

attribute d the domain of which is Z, we can utilize the algorithm proposed

in [39]. The parameters for the algorithm are numbers maxspan, minsupport,

and minconfidence for which we obtain a set Σ of all predictive A⇒ B where

u(A∪B)− l(A∪B) ≤ maxspan, minconfidence ≤ confidence(A⇒ B), and

minsupport ≤ support(A ⇒ B). For this particular example we consider

maxspan = 5, minconfidence = 1 since we are interested in formulas true in

M , and support = 5. In this setting, we obtain

Σ = {{wm0} ⇒ {tc4}, {wl0} ⇒ {tc3},
{wl0} ⇒ {wm1}, {wl0} ⇒ {wm1, tc3},
{wl0, wm1} ⇒ {tc3}, {rn0, wl2} ⇒ {tc3},
{rn0, rn3} ⇒ {tc3}, {tc0, rn5} ⇒ {tc5},
{tc0, tc3, rn5} ⇒ {tc5}, {rn0, tc0, rn3} ⇒ {tc3},
{rn0, tc0, wm2} ⇒ {tc3}}.

Now, we may successively reduce the set Σ by removing formulas A ⇒ B

such that Σ \ {A ⇒ B} ` A ⇒ B, i.e., without loss of information. Since

Σ is predictive we may use PseudoLinClosure and obtain the following

set:

Σ′ = {{wm0} ⇒ {tc4}, {wl0} ⇒ {wm1, tc3},
{rn0, rn3} ⇒ {tc3}, {rn0, wm2} ⇒ {tc3},
{tc0, rn5} ⇒ {tc5}},

i.e., the equivalent non-redundant set contains less than half of the formu-

las in Σ. For maxspan = 5 and support = 2, the reduction is much more

significant. From the total number of 34, 440 generated formulas, Pseu-

doLinClosure can be used to produce an equivalent set consisting of

only 81 formulas.

43

6 Description of dependencies in data

In this section, we introduce and study properties of notions related to

the containment and equivalence of sets of attributes annotated by time

points with respect to possible time shifts. In addition, we show a finite

representation of important subsets of F ∪ {TY } based on considering their

finite quotient sets. The notions and their properties are extensively used

in Section 7. Then we define complete theories as sets of formulas which

semantically entail all formulas which hold in given data. We characterize

complete theories in terms of their models which are closely related to fixed

points of particular closure operators induced by data.

Definition 6.1. For A,B ⊆ TY we put A v B whenever there is i ∈ Z
such that A + i ⊆ B; we put A 6v B if it is not the case that A v B; we

put A @ B whenever A v B and B 6v A; put A 6@ B whenever A 6v B or

B v A; and put A ≡ B, whenever A v B and B v A.

Remark 11. Following the definition, A v B can be read as “a shift of

A is contained in B”. It is easily seen that v is a quasi-order (reflexive

and transitive) relation on any S ⊆ 2TY and, as a consequence, ≡ is an

equivalence relation. Trivially, if A ⊆ B then A v B since A+ 0 = A. As a

consequence, ∅ v B and A v TY for any A,B ⊆ TY . Furthermore, for any

finite A,B ⊆ TY , it follows that A @ B iff there is i ∈ Z such that A+i ⊂ B.

This observation cannot be extended for general (infinite) A,B ⊆ TY : For

A = {yt ∈ TY | 0 ≤ t}, we have A v A, i.e., A 6@ A and A+ 1 ⊂ A.

Proposition 6.2. If A v B and A v C then A v (B + i) ∩ C for some

i ∈ Z.

Proof. By definition, A v B and A v C mean there are j, k ∈ Z such

that A + j ⊆ B and A + k ⊆ C. Thus, A ⊆ B − j and A ⊆ C − k and so

A ⊆ (B−j)∩(C−k). Furthermore, we get A+k ⊆ ((B−j)∩(C−k))+k =

(B − j + k) ∩ C. Thus, for i = k − j, we have A v (B + i) ∩ C.

Recall the set F defined by (3.2) and the values l(M) and u(M) defined

by (5.6) and (5.7), respectively. For any M ∈ F \ {∅}, we put

‖M‖ = u(M)− l(M). (6.1)

The value ‖M‖ is called the time range of M , respectively.

45

Remark 12. Note that the definition of time range can be more general if

we define is as follows: For M ∈ F

‖M‖ = sup{abs(i− j) | yi, zj ∈M}

where abs(i) denotes an absolute value of an integer i and supS is a supre-

mum of the set S. In this case we have included an emptyset for which we

have ‖∅‖ = 0. In this thesis, we present the results as they were published

in [55] with one difference in notation. In [55], we denote F as a set of all

non-empty and finite sets.

Lemma 6.3. For any A ∈ F ∪ {TY } and B ⊆ TY , A ≡ B iff there is i ∈ Z
such that A+ i = B.

Proof. The if-part is easy. Conversely, assume A ≡ B and consider two

cases: If A ∈ {∅, TY } then clearly A+ i = B for every i ∈ Z. Suppose that

A 6∈ {∅, TY }. Since A ≡ B then there are i, j ∈ Z such that A+ i ⊆ B and

B + j ⊆ A. Then B + j + i ⊆ A + i ⊆ B. Thus, B is non-empty since

A+ i ⊆ B and B is also finite since B + j ⊆ A and A ∈ F . Together with

the observation B + j + i ⊆ B we have l(B) ≤ l(B + j + i) = l(B) + j + i,

i.e., 0 ≤ j+ i. Moreover, u(B) + j+ i = u(B+ j+ i) ≤ u(B), i.e., j+ i ≤ 0.

Finally, j+i = 0, i.e., B = B+j+i ⊆ A+i ⊆ B, which proves A+i = B.

Remark 13. The previous assertion cannot be extended to arbitrary A ⊆
TY : For A = {yt ∈ TY | 0 ≤ t} and B = {yt ∈ TY | t = 0 or 2 ≤ t}, we have

A ≡ B and for every i ∈ Z we have A + i 6= B. Moreover, it is easily seen

that M,N ∈ F \ {∅} and N ≡M imply ‖N‖ = ‖M‖.

In our representation of minimal bases, a key role will be played by

subsets of TY which are in a canonical form in the following sense:

Definition 6.4. For M ⊆ TY , we put

r(M) =

{
M − l(M), if M ∈ F \ {∅},
M, otherwise,

(6.2)

and call r(M) the canonical form of M . In addition, for any system S ⊆ 2TY ,

we call r(S) = {r(M) |M ∈ S} the canonical form of S.

Remark 14. The letter “r” in r(M) refers to “representation” because we

are going to use r(M) as a representation of M which has some desirable

46

properties. Indeed, consider any M ∈ F . Then, we clearly have l(r(M)) =

l(M − l(M)) = 0 and u(r(M)) = u(M − l(M)) = u(M) − l(M) = ‖M‖.
Directly by the definiton of v, we get ‖N‖ ≤ ‖M‖ provided that N v M .

Moreover, we have N 6v M provided that ‖N‖ > ‖M‖. Since r(M) is a

shift of M we have r(M) ≡M for any M ⊆ TY .

Lemma 6.5. For any S ⊆ 2TY , a map h : r(S)→ S/≡ such that h(r(M)) =

[M]≡ for any M ∈ S is surjective.

Proof. Notice that h is well defined since for every N,M ⊆ TY we have

r(N) ≡ N and r(M) ≡ M , i.e., if r(N) = r(M) then N ≡ M which is

equivalent to [N]≡ = [M]≡ since ≡ is an equivalence. In addition, h is

surjective: Take an arbitrary M∈ S/≡ and consider r(M) where M ∈M.

By the definition of h, we have h(r(M)) = [M]≡ =M.

Note that the map h used in Lemma 6.5 is not injective in general. The

following definition introduces the notion of finite representability that will

be extensively used in this section.

Definition 6.6. A set S ⊆ F ∪ {TY } is finitely representable whenever

there is t ∈ Z such that for every M ∈ S \ {∅, TY } we have ‖M‖ ≤ t.

Theorem 6.7. S ⊆ F ∪ {TY } is finitely representable iff r(S) is a finite

set.

Proof. Assume that S ⊆ F ∪ {TY } is finitely representable, i.e., there is

t ∈ Z such that for every M ∈ S \ {∅, TY } we have ‖M‖ ≤ t. For any

M ∈ S \ {∅, TY }, we have l(r(M)) = 0 and u(r(M)) = ‖M‖. Hence,

‖r(M)‖ = ‖M‖ ≤ t. Now, clearly r(S) ⊆ R for R = {N ∈ F \{∅} |u(N) ≤
t and l(N) = 0} ∪ {∅, TY } which is finite because Y is finite, proving the

finiteness of r(S).

Conversely, let S ⊆ F ∪ {TY } such that r(S) is finite. If S 6= ∅, then we

can take t as the maximum of values ‖M‖ for all M ∈ S \ {∅, TY }. Again,

utilizing the fact that ‖r(M)‖ = ‖M‖ for each M ∈ S \{∅, TY }, we get that

‖M‖ ≤ t for all M ∈ S \ {∅, TY }, i.e., S is finitely representable.

Corollary 6.8. If S ⊆ F ∪ {TY } is finitely representable then S/≡ is a

finite set.

Proof. Consequence of Theorem 6.7 and Lemma 6.5.

47

Following the motivation in the introduction, we are primarily interested

in dependencies which hold not only for individual objects changing in time

but for a general finite set of objects changing in time. Therefore, we for-

malize the input data and extend |= accordingly to accomodate general sets

of objects as follows. In addition to Y , we consider a finite non-empty set

X of objects and, analogously as we have introduced TY for Y , see (3.1), we

consider TX for X as TX =
{
xi |x ∈ X and i ∈ Z

}
. Then, each X-indexed

system of non-empty sets in F is considered as input data. In other words,

by input data we mean any I of the following form:

I = {Ix ∈ F \ {∅} |x ∈ X}. (6.3)

That is, each Ix ∈ I is a non-empty and finite subset of TY . From the point

of view of the interpretation of I, each Ix ∈ I can be seen as a record of

attributes (changing in time) of the object x ∈ X. Furthermore, we say

that A ⇒ B is true in the input data I = {Ix ∈ F \ {∅} | x ∈ X}, written

I |= A⇒ B, whenever Ix |= A⇒ B for all x ∈ X.

Clearly, each I of the form (6.3) can be represented by a Z-indexed

finite sequence of formal contexts as in Fig. 2 and, conversely, each Z-

indexed finite sequence of finite formal contexts (using fixed X and Y) can

be represented by an I of the form (6.3).

Example 6. Let X = {p, q, r}, Y = {a, b, c, d}, and let I = {Ip, Iq, Ir} where

Ip = {a0, b0, a1, b1},
Iq = {a1, c1, a2, b2},
Ir = {c0, a1, c1, a2}.

Following the previous comment, the corresponding Z-indexed sequence of

contexts corresponding to this particular I is in fact the sequence depicted

in Fig. 2. It is routine to check that I |= {b0}⇒ {a0}, I |= {c0}⇒ {a1},
and I |= {a0, b0, a1}⇒{b1}. On the other hand, I 6|= {a0}⇒{b0} because

Iq 6|= {a0}⇒{b0} and I 6|= {a0, a1}⇒{b1} because Ir 6|= {a0, a1}⇒{b1}.

From now on, we assume we are given input data I of the form (6.3).

For A ⊆ TX and B ⊆ TY , we put

A↑I =
⋂
{Ix − i |xi ∈ A}, (6.4)

B↓I = {xi ∈ TX |B ⊆ Ix − i}. (6.5)

48

If there is no danger of confusion, we write just ↑ and ↓ instead of ↑I and
↓I . It is routine to check that ↑ and ↓ are a couple of operators which

form an antitone Galois connection, see [18, 27]. That is, they are maps
↑ : 2TX → 2TY and ↓ : 2TY → 2TX such that (i) A ⊆ A↑↓ and B ⊆ B↓↑ for

all A ⊆ TX and B ⊆ TY ; and (ii) A1 ⊆ A2 implies A↑2 ⊆ A↑1 and B1 ⊆ B2

implies B↓2 ⊆ B↓1 for all A1, A2 ⊆ TX and B1, B2 ⊆ TY .

Remark 15. As an important consequence, the composed map ↓↑ : 2TY →
2TY is a closure operator which plays an important role in characterization

of minimal bases. Thus, we first investigate its properties. First, using (6.4)

and (6.5), we get that

B↓↑ =
⋂
{Ix − i |B ⊆ Ix − i and xi ∈ TX}. (6.6)

Furthermore, from (6.6) it follows that B↓↑ + i = (B + i)↓↑ for every i ∈ Z.

We extend the notion of a time range introduced in (6.1) to subsets of F .

In particular, for ∅ 6= I ⊆ F \ {∅}, we put

‖I‖ = max
M∈I
‖M‖. (6.7)

Notice that there is always a non-empty M ∈ F such that ‖M↓↑‖ ≤ ‖I‖
since ∅ 6= I ⊆ F \ {∅} and if we have a non-empty M ∈ F such that

‖M‖ > ‖I‖, then M↓ = ∅ and thus M↓↑ = TY . In addition, ∅↓↑ = ∅
because ∅↓↑ is equal to the intersection of all sets Ix − i for all xi ∈ TX ,

see (6.6).

Lemma 6.9. For B = {A↑ |A ⊆ TX}, we have B ⊆ F ∪ {TY } and B is

finitely representable.

Proof. Take any A ⊆ TX and denote the system {Ix − i |xi ∈ A} by A.

Thus A↑ =
⋂
A on the account of (6.4) and A ⊆ F since any Ix is a finite

set. Then, for every Ix− i ∈ A we have
⋂
A v Ix, i.e., ‖

⋂
A‖ ≤ ‖Ix‖ ≤ ‖I‖

provided that
⋂
A 6∈ {∅, TY }. Altogether, B ⊆ F ∪ {TY } and B is finitely

representable.

Lemma 6.10. The following statements are equivalent:

(i) A 6v Ix for every x ∈ X,

(ii) A↓ = ∅,

(iii) A↓↑ = TY .

49

∅

{c0, a1}

{c0, a1, c1, a2}

{a0}

{a0, b0}

{a0, a1}

{a0, c0, a1}
{a0, a1, b1}

{a0, c0, a1, b1}
{a0, b0, a1, b1}

TY

Figure 4: Lattice of canonical forms of all fixed points of the operator ↓↑

induced by I from Example 6.

Proof. Clearly, (ii) implies (iii) and (i) implies (ii). Assume that (iii)

holds. Using (6.6), A↓↑ =
⋂
A where every M ∈ A is in the form Ix − i for

some x ∈ X and i ∈ Z. Then, by the assumption, we have either A = ∅ or

A = {TY }. Since every Ix is finite, the latter cannot be the case. Therefore,

A = ∅ yields A 6v Ix for every x ∈ X.

The following assertion shows that the system of all fixed points of the

closure operator ↓↑ given by (6.6) forms an algebraic (finitary) closure system

which is in addition closed under time shifts in the following sense: If M is

a fixed point of ↓↑, then so is any M + i.

Theorem 6.11. MI = {M↓↑ |M ⊆ TY } is an algebraic closure system

which is closed under time shifts. Moreover, we have MI ⊆ F ∪ {TY } and

MI is finitely representable.

Proof. Applying Lemma 6.9, MI ⊆ F ∪ {TY } and MI is finitely repre-

sentable. Since ↓↑ satisfies M↓↑ + i = (M + i)↓↑ for any M ⊆ TY and

i ∈ Z, we get that MI is a closure system that is closed under time shifts.

Therefore, it suffices to show that for every M ⊆ TY we have M↓↑ =
⋃
A

where A = {A↓↑ |A is a finite subset of M}. The claim is trivial for M be-

ing finite. Assume that M is infinite. There is a finite N ⊆ M such that

‖I‖ < ‖N‖ which implies that for every Ix we have N 6v Ix. Therefore,

N↓↑ = TY by Lemma 6.10, i.e., M↓↑ = N↓↑ = TY =
⋃
A.

50

Example 7. Let us consider the input data from Example 6. The set MI

of all fixed points of ↓I↑I is obviously infinite. For instance, {a0} ∈ MI

and thus {ai} ∈ MI for any i ∈ Z. Applying Theorem 6.11, MI is finitely

representable and thus according to Corollary 6.8, we can factorize MI by

≡ to get a finite system of subsets ofMI . As a consequence of Theorem 6.7,

the elements of such a factorization are in a one-to-one correspondence with

the canonical form r(MI) ofMI . For our particular I, Fig. 4 depicts r(MI)

which is ordered by ⊆. Therefore, each fixed point of ↓I↑I results as a shift

of a fixed point shown in the diagram in Fig. 4.

Furthermore, the closure operator ↓↑ is able to characterize the truthness

of formulas in the input data. The following theorem states a similar result

as Theorem 3.15.

Theorem 6.12. For any input data I and formula A ⇒ B, the following

conditions are equivalent:

(i) I |= A⇒ B,

(ii) A↓ ⊆ B↓,

(iii) B ⊆ A↓↑.

Proof. By definition (i) whenever Ix |= A ⇒ B for all x ∈ X which holds

iff A + i ⊆ Ix implies B + i ⊆ Ix for all i ∈ Z. Moreover, the latter is

equivalent to A↓ ⊆ B↓ on the account of (6.5) which proves that (i) is

equivalent to (ii). The equivalence of (ii) and (iii) follows by properties of

antitone Galois connections.

We now introduce the notion of completeness of sets of temporal at-

tribute implications with respect to given data.

Definition 6.13. Σ is called complete in I whenever for every A⇒ B we

have I |= A⇒ B iff Σ |= A⇒ B.

Investigation of complete sets is interesting since they convey informa-

tion about all discussed if-then dependencies which hold in given data. The-

orem 3.12 show that each algebraic closure system which is closed under time

shifts is a system of models of some set of temporal attribute implications.

Therefore, for each I there is Σ such that Mod(Σ) = MI , i.e., Mod(Σ) is

finitely representable by Theorem 6.11. As a further consequence of The-

orem 3.15 and Theorem 6.12, each I admits Σ that is complete in I. For

51

instance, one can consider Σ = {A ⇒ B | I |= A ⇒ B} which is trivially

complete in I. Complete sets can be characterized in terms of their models

as follows:

Theorem 6.14. Σ is complete in I iff MI = Mod(Σ).

Proof. The assertion can be proved using the same arguments as for the

classic attribute implications. Let Σ is complete in I and take any A ∈MI .

Using Theorem 6.12, I |= A ⇒ A↓↑ and thus Σ |= A ⇒ A↓↑ because Σ is

complete in I. As a consequence, we get A↓↑ ⊆ [A]Σ on the account of

Theorem 3.15. Now, take any A ∈ Mod(Σ). Since, Σ |= A ⇒ [A]Σ, we get

I |= A⇒ [A]Σ and thus [A]Σ ⊆ A↓↑. Therefore, the operators ↓↑ and [· · ·]Σ
have the same fixed points, i.e., MI = Mod(Σ).

Conversely, letMI = Mod(Σ). In that case, [A]Σ = A↓↑ for any A ⊆ TY .

Thus, using Theorem 3.15 and Theorem 6.12, Σ |= A⇒ B iff B ⊆ [A]Σ iff

B ⊆ A↓↑ iff I |= A⇒ B.

As a consequence of Theorem 6.11 and Theorem 6.14, any Σ complete

in some I has a finitely representable set of models. In order to characterize

complete sets we utilize the following notion:

Definition 6.15. A theory Σ is finitely generated whenever Mod(Σ) is

finitely representable, ∅ ∈ Mod(Σ), and Mod(Σ) ∩ (F \ {∅}) 6= ∅.

As a direct consequence of our previous observations, we define the fol-

lowing property of theories that are complete in data:

Corollary 6.16. Let I be in the form (6.3). Then every Σ that is complete

in I is finitely generated.

The name finitely generated is appropriate because by Theorem 6.7, the

set r(Mod(Σ)) of canonical forms of all models of Σ is finite provided that

Σ is finitely generated. In addition, there is a tight connection between

finitely generated theories and the input data we consider.

Theorem 6.17. Let Σ be a finitely generated theory. Then there is IΣ in

the form (6.3) such that Σ is complete in IΣ.

Proof. Put X = r(Mod(Σ)) \ {∅, TY } and let IΣ = {IM |M ∈ X} where

IM = M . From the fact that Mod(Σ) is finitely representable, we have

that r(Mod(Σ)) is a finite set, i.e., IΣ is also finite. Furthermore, IΣ is

52

non-empty because Mod(Σ) ∩ (F \ {∅}) 6= ∅, i.e., IΣ ⊆ F . Hence, IΣ is in

the form (6.3). Now, in order to show that Σ is complete in IΣ, it suffices to

proveMIΣ = Mod(Σ), see Theorem 6.14. Let M ∈MIΣ . By Theorem 6.11,

we have that M = M↓↑. Therefore, by (6.6), we have

M =
⋂
{N − i |N ∈ r(Mod(Σ)) \ {∅, TY } and M ⊆ N − i}.

Hence, M ∈ Mod(Σ) since Mod(Σ) is a closure system closed under time

shifts, i.e., MIΣ ⊆ Mod(Σ). Conversely, let M ∈ Mod(Σ). Obviously,

M ∈ MIΣ if M = ∅ and M = TY . Suppose that M ∈ F . In that case,

r(M) ∈ IΣ and thus r(M) ∈ MIΣ owing to (6.6). Finally, M ∈ MIΣ

because MIΣ is closed under time shifts, see Theorem 6.11.

To sum up the observations of Corollary 6.16 and Theorem 6.17, com-

plete theories in data are exactly the theories which are finitely generated:

Corollary 6.18. Σ is complete in some I iff Σ is finitely generated.

Remark 16. It is possible to simplify the Definition 6.15 by excluding the

condition Mod(Σ) ∩ (F \ {∅}) 6= ∅. However, the updated definition char-

acterize different input data. Particularly, the data where we admit objects

with no attributes, i.e., I = {IX ∈ F | x ∈ X}. In this thesis, we present

the definition and the result as in [55].

Our goal is to describe complete sets which are minimal in terms of

their size. In the discourse, we utilize the following notion of equivalence of

theories:

Definition 6.19. We put Σ1 v Σ2 whenever, for every A ⇒ B, if Σ1 |=
A ⇒ B then Σ2 |= A ⇒ B; we put Σ1 ≡ Σ2 and say that Σ1 and Σ2 are

equivalent whenever Σ1 v Σ2 and Σ2 v Σ1.

Remark 17. Obviously, if Σ1 ⊆ Σ2 then we have Σ1 v Σ2. Also note that

for any A⇒ B and i, j ∈ Z, we have {A+ i⇒ B + i} ≡ {A+ j ⇒ B + j},
see (Shf) in Proposition 4.3. By standard arguments, it can be shown that

Σ1 v Σ2 iff Mod(Σ2) ⊆ Mod(Σ1) and, as a consequence, Σ1 ≡ Σ2 iff

Mod(Σ2) = Mod(Σ1).

As we shall see later in the thesis, the description of complete sets which

are in addition minimal can be based on formulas whose consequents are

based on closures of sets from F which can be infinite, namely, equal to TY .

53

Since we consider formulas as implications between finite sets of attributes,

we extend the notion of temporal attribute implications by allowing TY to

appear as an antecedent or a consequent. By this, we are able to consider

just a single formula A ⇒ TY which serves as a finite representation of an

infinite theory of the form {A⇒ B |B ∈ F}.

Definition 6.20. An expression A⇒ B where A,B ∈ F∪{TY } is called an

extended temporal attribute implication. We put M |= A ⇒ B whenever,

for every i ∈ Z, A+ i ⊆M implies B + i ⊆M .

The notions of models and semantic entailment of extended temporal

attribute implication are defined in much the same way as in the case of the

original formulas, see Section 3. From now on, we are going to work with

extended temporal attribute implications and we are not going to stress the

term “extended.”

Remark 18. By the previous definition and the fact that TY + i = TY for

any i ∈ Z, M |= A ⇒ TY iff M |= A + i ⇒ TY for any A,M ⊆ TY and

i ∈ Z. Also, if M |= A ⇒ TY then either A 6v M or M = TY . Hence, we

have M |= A⇒ TY iff A vM implies M = TY .

Lemma 6.21. Σ = {A⇒ A↓↑ | A ∈ F ∪ {TY }} is complete in I.

Proof. First, observe that Σ has no infinite model except for TY . Indeed,

if M ∈ Mod(Σ) is infinite, then owing to the fact that Y is finite, there is

a finite A ⊆ M such that ‖A‖ > ‖I‖ and so A↓↑ = TY , see Lemma 6.10.

Therefore, the fact that M |= A ⇒ A↓↑ yields M = TY . Now, using

Theorem 6.11 and Theorem 6.14, it suffices to show that for any A ∈ F ∪
{TY } we have A = A↓↑ iff A ∈ Mod(Σ). For any A ∈ F ∪ {TY } we have

A⇒ A↓↑ ∈ Σ. Therefore, if A ∈ Mod(Σ) then A = A↓↑. Conversely, assume

that A = A↓↑ and take an arbitrary C ⇒ C↓↑ ∈ Σ. The properties of ↓↑

together with the assumption C + i ⊆ A yield C↓↑ + i = (C + i)↓↑ ⊆ A↓↑.

Finally, C↓↑ + i ⊆ A using A = A↓↑, showing A |= C ⇒ C↓↑.

54

7 Non-redundant and minimal bases

Lemma 6.21 shows a particular set of formulas that is complete in data. The

set is large and not very interesting because many of the contained formulas

are entailed by other formulas. We therefore look for complete sets which

are at least non-redundant in the following sense:

Definition 7.1. Σ is called non-redundant whenever for any Σ′ ⊂ Σ we

have Σ′ 6≡ Σ. If Σ is non-redundant and complete in I then Σ is called a

(non-redundant) base of I.

Lemma 7.2. Σ is non-redundant iff for any A⇒ B ∈ Σ we have Σ\{A⇒
B} 6|= A⇒ B.

Proof. To prove the if-part, take A ⇒ B ∈ Σ and put Σ′ = Σ \ {A ⇒ B}.
Clearly, Σ′ ⊂ Σ. Furthermore, Σ′ 6≡ Σ since Σ′ 6|= A⇒ B and Σ |= A⇒ B.

Since A ⇒ B was taken arbitrarily, for each Σ′′ ⊂ Σ we have Σ′′ 6≡ Σ, i.e.,

Σ is non-redundant. Conversely, let Σ be non-redundant, take A⇒ B ∈ Σ,

and put Σ′ = Σ \ {A ⇒ B}, i.e., Σ′ 6≡ Σ. By contradiction, let Σ′ |= A ⇒
B. Thus, for every M ∈ Mod(Σ′) we have M |= A ⇒ B. In addition,

M |= C ⇒ D for every C ⇒ D ∈ Σ′ since M ∈ Mod(Σ′). Altogether we

have Mod(Σ′) ⊆ Mod(Σ). Moreover, Σ′ ⊆ Σ yeilds Mod(Σ) ⊆ Mod(Σ′),

i.e., Mod(Σ′) = Mod(Σ). Thus, Σ′ ≡ Σ which is a contradiction.

Remark 19. Clearly, a non-redundant theory Σ does not contain formulas

∅ ⇒ ∅ and TY ⇒ B for any B ∈ F ∪ {TY }. In addition, if Σ is finitely

generated, it does not contain formulas ∅ ⇒ B for any B ∈ F ∪ {TY } since

∅ is a model of Σ. Hence, formulas of non-redundant and finitely generated

theories have antecedents from F .

In the rest of the section, we express particular non-redundant sets of

formulas which are given by special systems that are subsets of F . The

systems are introduced in the following definition and generalize the classic

notion of pseudo-intents proposed in [30].

Definition 7.3. A set P ∈ F is a pseudo-intent of I if P 6= P ↓↑ and for

any pseudo-intent Q of I such that Q ⊂ P we have Q↓↑ ⊆ P . The set of all

pseudo-intents of I is denoted by PI .

Remark 20. If I is clear from the context, we write P to denote PI . Note

that under the conditions we require for I, PI always exists and is given

55

r(P) ‖P‖ r(P)↓↑

1 {b0} 0 {a0, b0},
2 {c0} 0 {c0, a1},
3 {a0, b0, a1} 1 {a0, b0, a1, b1},
4 {c0, a1, b1} 1 {a0, c0, a1, b1},
5 {a0, b0, c0, a1, b1} 1 TY ,
6 {a0, a2} 2 TY ,
7 {c0, a1, a2} 2 {c0, a1, c1, a2},
8 {c0, a1, c1, a2, b2} 2 TY

Figure 5: Example of canonical forms of all pseudo-intents of the input data
from Example 6 limited to pseudo-intents with time range up to 2.

uniquely which can be verified by Noetherian induction [62] using the fact

that ⊂ is a well-founded relation on S = {P ∈ F |P 6= P ↓↑}. Let us

note that the notion of a pseudo-intent in our temporal setting behaves

differently as in the classic case. For instance, unlike the classic case, PI is

infinite and ∅, which may be a pseudo-intent in the classic case, is never a

pseudo-intent in our setting because ∅↓↑ = ∅ as we have already observed.

Moreover, TY is not a pseudo-intent because TY is always equal to its closure.

Lemma 7.4. PI is closed under time shifts.

Proof. Recall @ from Definition 6.1 and Remark 11. It is easily seen that @

restricted to PI × PI is a well-founded relation. By Noetherian induction,

we prove that any P ∈ PI satisfies the following property: “For any i ∈ Z,

we have P + i ∈ PI .” Assume that the property holds for any Q ∈ PI
such that Q @ P . Take any i ∈ Z. It suffices to show that P + i ∈ PI .
Following Definition 7.3, take Q ∈ PI such that Q ⊂ P + i. The last strict

inclusion means Q @ P and so Q− i ∈ PI . Furthermore, Q− i ⊂ P yields

(Q − i)↓↑ ⊆ P owing to Definition 7.3. Using Theorem 6.11, Q↓↑ − i ⊆ P ,

i.e., Q↓↑ ⊆ P + i. Hence, P + i ∈ PI .

Example 8. The fact that PI is closed under time shift means, among other

things, that PI is infinite. However, if we restrict ourselves to the pseudo-

intents in the canonical form and, in addition, we limit ourselves only to

those with time range within the time range of the input data, there are only

finitely many of such pseudo-intents. Following our preliminary discussion

in the introduction, such pseudo-intents turn out to be the most interesting

ones. Going back to the data in Example 6, see also Figure 2, there are

56

exactly eight pseudo-intents with these properties. They are listed together

with their time ranges and closures in Figure 5.

The previous observation allows us to give an equivalent description of

the sets in PI :

Corollary 7.5. For any P ∈ F , we have that P is a pseudo-intent of I iff

for any Q ∈ r(PI) and i ∈ Z such that Q+ i ⊂ P we have Q↓↑+ i ⊆ P .

For any system S ⊆ F and I of the form (6.3), we put

ΣS =
{
M ⇒M↓↑ |M ∈ r(S)

}
. (7.1)

By Theorem 6.11, the theory ΣS given by (7.1) is well defined because M↓↑

is either finite or equal to TY . The following observations show that systems

of pseudo-intents define non-redundant bases of the form (7.1). Note that

for brevity, in the rest of the section we denote PI just by P .

Lemma 7.6. For every P ∈ P we have ΣP |= P ⇒ P ↓↑.

Proof. Take an arbitrary P ∈ P . Then there is Q ⇒ Q↓↑ ∈ ΣP such that

Q = r(P). Such Q indeed exists since P is closed under time shifts. In

addition, Q,P ∈ F , i.e., Q = P − l(P) and so Q↓↑ = (P − l(P))↓↑ =

P ↓↑ − l(P). Therefore, using Proposition 4.3, ΣP |= P ⇒ P ↓↑ since ΣP |=
Q⇒ Q↓↑ holds trivially.

Theorem 7.7. ΣP is a non-redundant base of I.

Proof. Utilizing Theorem 6.14, we prove that ΣP is complete in I by show-

ing MI = Mod(ΣP). Take an arbitrary A ∈ MI , i.e., A = A↓↑. More-

over, take P ⇒ P ↓↑ ∈ ΣP and i ∈ Z such that P + i ⊆ A. Then us-

ing the properties of the operator ↓↑ we have P ↓↑ + i = (P + i)↓↑ ⊆ A↓↑.

Thus P ↓↑ + i ⊆ A↓↑ = A using the assumption. Conversely, assume that

A ∈ Mod(ΣP). Then we have A |= P ⇒ P ↓↑ for every P ∈ r(P), i.e., for

every P ∈ r(P) and i ∈ Z such that P + i ⊆ A we have P ↓↑ + i ⊆ A.

Moreover, assume that A 6= A↓↑. Then A ∈ P by Corollary 7.5. Therefore,

A |= A ⇒ A↓↑ owing to (7.1) and Proposition 4.3, i.e., A↓↑ ⊆ A since we

have A + 0 ⊆ A. In addition, the extensivity of ↓↑ yields A↓↑ = A which is

a contradiction, i.e., A ∈MI .

In order to prove the non-redundancy, we take an arbitrary Σ′ ⊂ ΣP

and show Σ′ 6≡ ΣP , i.e., Mod(ΣP) 6= Mod(Σ′). Since Σ′ ⊂ ΣP , there is

57

P ⇒ P ↓↑ ∈ ΣP such that P ⇒ P ↓↑ 6∈ Σ′. Take Q ⇒ Q↓↑ ∈ Σ′ and i ∈ Z
such that Q + i ⊆ P . Observe that by the definition of ΣP it cannot be

the case that Q + i = P for any i ∈ Z since Q 6= P and Q,P ∈ r(P), i.e.,

l(Q) = l(P) = 0. Therefore, by Corollary 7.5, we have Q↓↑ + i ⊆ P , i.e.,

P ∈ Mod(Σ′). On the other hand, we have ΣP |= P ⇒ P ↓↑ and P 6= P ↓↑.

Therefore, P 6∈ Mod(ΣP) since P + 0 ⊆ P and P ↓↑ + 0 * P .

Example 9. Again, consider the data in Example 6 that are also depicted in

Figure 2. A non-redundant base of the data given by its system of pseudo-

intents that is described in Theorem 7.7 can be written as

ΣP = {{b0}⇒{a0, b0},
{c0}⇒{c0, a1},
{a0, b0, a1}⇒{a0, b0, a1, b1},
{c0, a1, b1}⇒{a0, c0, a1, b1},
{a0, b0, c0, a1, b1}⇒TY ,
{a0, a2}⇒TY ,
{c0, a1, a2}⇒{c0, a1, c1, a2},
{c0, a1, c1, a2, b2}⇒TY , . . .}.

The ellipsis in the previous expression indicates that ΣP consists of other

formulas of the form P ⇒ P ↓↑ where P ∈ r(P) and ‖P‖ > 2, i.e., formulas

whose antecedents fall outside the time range of the input data. As we

shall see in a moment, there are infinitely many pseudo-intents with this

property, i.e., the non-redundant base ΣPI is always infinite for any I of the

form (6.3).

In the rest of this section, we prove that the non-redundant theory ΣP

is satisfying a stronger condition of minimality. Technically, the minimality

is defined in a different way than in the classical setting as we shall see in a

moment. The main reason behind this is that finitely generated theories are

always infinite which is a direct consequence of the following observation.

Theorem 7.8. Let Σ be a finitely generated theory. Then,

S = {A ⊆ TY | A⇒ B ∈ Σ}

is not finitely representable.

58

Proof. Note that S is the system of all antecedents of all formulas in Σ. By

contradiction, assume we have t ∈ Z such that ‖A‖ ≤ t for every A ∈ S.

Since Σ is finitely generated, there is at least one non-empty and finite

M ∈ Mod(Σ). Therefore, we can consider an infinite set

C =
⋃{

M + (‖M‖+ t+ 1) · i | i ∈ Z
}

It can be shown that C is a model of Σ. Indeed, observe that for each

E ⇒ F ∈ Σ such that E + i ⊆ C for some i ∈ Z we have E + i v M

because ‖E‖ ≤ t. Thus, there is j ∈ Z such that (E + i) + j ⊆ M . Since

M |= E+ i⇒ F + i, we get that (F + i) + j ⊆M and so F + i ⊆ C. Hence,

C is an infinite model of Σ such that C 6= TY which contradicts the fact

that Mod(Σ) is finitely representable.

Hence, Theorem 7.8 yields that finitely generated theories are not finite.

As a consequence, no I of the form (6.3) admits a finite non-redundant

base. This is in contrast with the classic non-redundant bases of finite

formal contexts which are always finite [27, 30]. Also note that taking into

account the fact that F is countable, we have that any theory is at most

countable, i.e., finitely generated theories are countable, i.e., of the same

size. Therefore, it would be worthless to define minimal theories in our

setting the same way as in the classic case [41] as theories with the least

size among all equivalent theories since all finitely generated theories would

be minimal. Instead, we introduce the following notion of minimality:

Definition 7.9. A finitely generated theory Σ is minimal whenever for each

Σ′ ⊆ Σ and Γ′ such that Σ′ ≡ Γ′ we have |Σ′| ≤ |Γ′|.

Remark 21. Note that if Σ in Definition 7.9 were finite then the condition

of minimality would coincide with the classic one but as we have seen in

Theorem 7.8, the considered theories are always infinite. In such setting,

Definition 7.9 introduces a stronger notion of minimality of Σ than just

requiring that |Σ| ≤ |Γ| for any Γ satisfying Σ ≡ Γ.

Before we prove the minimality of ΣP where P is the system of pseudo-

intents of I, we show properties of minimality that will be further used.

Proposition 7.10. Let Σ be a theory and Σ′ its subset. Then for each Γ′

equivalent to Σ′ we have that Σ ≡ (Σ \ Σ′) ∪ Γ′.

59

Proof. The claim follows from the fact that Σ and (Σ \ Σ′) ∪ Γ′ have the

same models which is easy to see. Indeed, let M ∈ Mod(Σ). In that case,

we have M ∈ Mod(Σ′). Since for any A⇒ B ∈ Γ′, we have Σ′ |= A⇒ B, it

follows that M |= A⇒ B, i.e., M ∈ Mod(Γ′). The rest is clear. Conversely,

let M ∈ Mod((Σ\Σ′)∪Γ′). For any A⇒ B ∈ Σ′, we have Γ′ |= A⇒ B and

thus M |= A⇒ B, i.e., M ∈ Mod(Σ′) from which we get M ∈ Mod(Σ).

Lemma 7.11. A finitely generated theory Σ is minimal iff for each Σ′ ⊆ Σ

and Γ′ such that (Σ \ Σ′) ∪ Γ′ ≡ Σ we have |Σ′| ≤ |Γ′|.

Proof. First assume that Σ is minimal and take Σ′ ⊆ Σ and Γ′ such that

Σ ≡ (Σ \Σ′)∪Γ′. Obviously, |Σ′| = |Σ \ (Σ \Σ′)| because Σ \Σ′ ⊆ Σ. Now,

applying the minimality of Σ for Σ ⊆ Σ we get |Σ| ≤ |(Σ \ Σ′) ∪ Γ′| and

together with the previous observation, it follows that

|Σ′| = |Σ \ (Σ \ Σ′)| ≤ |((Σ \ Σ′) ∪ Γ′) \ (Σ \ Σ′)|.

Utilizing Σ \ Σ′ ⊆ (Σ \ Σ′) ∪ Γ′, the previous inequality gives |Σ′| ≤ |Γ′|.
Conversely, the assertion follows by Proposition 7.10. Indeed, assume

that for each Σ′ ⊆ Σ and Γ′ such that Σ ≡ (Σ \ Σ′) ∪ Γ′, we have |Σ′| ≤
|Γ′|. Take Σ′ ⊆ Σ and Γ′ such that Σ′ ≡ Γ′, i.e., Σ ≡ (Σ \ Σ′) ∪ Γ′ by

Proposition 7.10, i.e., |Σ′| ≤ |Γ′| using the assumption.

Put in words, the observation in Lemma 7.11 says that no subset of a

minimal theory can be equivalently replaced by a smaller theory. Therefore,

minimal theories are non-redundant according to Definition 7.1, see Theo-

rem 7.2. We now elaborate the proof of the minimality of ΣP . Note that in

the rest of the section, P denotes the system of all pseudo-intents of I.

Lemma 7.12. Let P ∈ P and A ⊆ TY be such that P * A↓↑. Then

A↓↑ ∩ P = (A↓↑ ∩ P)↓↑.

Proof. Assume that P * A↓↑ which means that P * A↓↑ ∩ P . It suffices to

show that A↓↑ ∩ P is a model of ΣP because the rest is a consequence of

Theorem 7.7 and Theorem 6.14. Take Q ⇒ Q↓↑ ∈ ΣP and i ∈ Z such that

Q+i ⊆ A↓↑∩P . Then Q+i ⊂ P since P * A↓↑∩P . Therefore, Q↓↑+i ⊆ P .

We also have Q+ i ⊆ A↓↑ thus Q↓↑ + i = (Q+ i)↓↑ ⊆ (A↓↑)↓↑ = A↓↑ by the

properties of ↓↑. As a consequence, Q↓↑ + i ⊆ A↓↑ ∩ P .

Lemma 7.13. Let Σ be equivalent to ΣP . Then for each P ∈ P there is

A⇒ B ∈ Σ such that A↓↑ ≡ P ↓↑ and P 6|= A⇒ B.

60

Proof. Let P ∈ PI which means that P 6= P ↓↑. Clearly, P 6|= P ⇒ P ↓↑ and

thus P 6∈ Mod(ΣP) = Mod(Σ). Therefore, there is A ⇒ B ∈ Σ and i ∈ Z
such that A + i ⊆ P and B + i * P , meaning that P 6|= A ⇒ B. Now, we

prove A↓↑+ i = P ↓↑. Using A+ i ⊆ P , it follows that A↓↑+ i ⊆ P ↓↑. For the

converse inclusion, it suffices to show that P ⊆ A↓↑ + i. By contradiction,

assume P * A↓↑ + i. Since A ⇒ B ∈ Σ and Σ is complete in I, we have

B ⊆ A↓↑ and so B + i ⊆ A↓↑ + i. Therefore, A↓↑ + i * P since B + i * P .

Then, it follows that (A↓↑ + i) ∩ P ⊂ A↓↑ + i. From P * (A + i)↓↑ and

Lemma 7.12, we have (A + i)↓↑ ∩ P = ((A + i)↓↑ ∩ P)↓↑. Since A + i ⊆ P

and A+ i ⊆ (A+ i)↓↑ we have A+ i ⊆ (A+ i)↓↑ ∩ P . Altogether A↓↑ + i =

(A+ i)↓↑ ⊆ ((A+ i)↓↑∩P)↓↑ = (A↓↑+ i)∩P ⊂ A↓↑+ i, a contradiction. Thus

P ⊆ A↓↑ + i, i.e., P ↓↑ ⊆ A↓↑ + i. Altogether A↓↑ + i = P ↓↑, i.e., A↓↑ ≡ P ↓↑

by Lemma 6.3 since A↓↑ ⊆ F ∪ {TY } by Theorem 6.11.

Lemma 7.14. If P1 6v P2 and P2 6v P1 for P1, P2 ∈ r(P), then ((P1 + k) ∩
P2)↓↑ = (P1 + k) ∩ P2 for any k ∈ Z.

Proof. Take Σ1 = ΣP \ {P1 ⇒ P ↓↑1 } and Σ2 = ΣP \ {P2 ⇒ P ↓↑2 }. Under this

notation, P1 ∈ Mod(Σ1) ⊆ Mod(Σ1 ∩ Σ2) and P2 ∈ Mod(Σ2) ⊆ Mod(Σ1 ∩
Σ2). Moreover, Mod(Σ1 ∩ Σ2) is closed under time shifts, i.e., P1 + k ∈
Mod(Σ1 ∩ Σ2) for any k ∈ Z. Therefore, (P1 + k) ∩ P2 ∈ Mod(Σ1 ∩ Σ2). In

addition, from P1 6v P2 it follows that P1 6v P2∩(P1 +k). As a consequence,

P2 ∩ (P1 + k) |= P1 ⇒ P ↓↑1 and so (P1 + k) ∩ P2 ∈ Mod(Σ2). In much the

same way, P2 6v P1 gives (P1 + k) ∩ P2 ∈ Mod(Σ1). Then (P1 + k) ∩ P2 ∈
Mod(Σ1 ∪Σ2) = Mod(ΣP). Hence, (P1 + k) ∩ P2 = ((P1 + k) ∩ P2)↓↑ owing

to the fact that ΣP is complete in I, see Theorem 6.14.

Theorem 7.15. ΣP is minimal.

Proof. By contradiction, assume that ΣP is not minimal. Therefore, by

Lemma 7.11, there is Σ′ ⊆ ΣP and Γ′ such that ΣP is equivalent to Σ =

(ΣP \ Σ′) ∪ Γ′ and |Γ′| < |Σ′|. Therefore, Γ′ is finite since any subset of

a finitely generated theory is at most countable. Also note that Γ′ can

always be taken so that Γ′ and ΣP \ Σ′ are disjoint. We use such Γ′ and

Σ = (ΣP \ Σ′) ∪ Γ′ further in the proof.

Take P ⇒ P ↓↑ ∈ Σ′ and observe that by Lemma 7.13 there isA⇒ B ∈ Σ

such that A↓↑ ≡ P ↓↑ and P 6|= A ⇒ B. It can be shown that such A ⇒ B

belongs to Γ′. Indeed, by contradiction, suppose that A ⇒ B 6∈ Γ′, i.e.,

A⇒ B ∈ ΣP \Σ′. In that case, A ∈ r(P), B = A↓↑, and also A 6= P because

61

P ⇒ P ↓↑ 6∈ ΣP \ Σ′. Now, suppose that A + i ⊆ P for some i ∈ Z. We

cannot have A+ i = P since A,P ∈ r(P) and A 6= P . Therefore, A+ i ⊂ P .

Now, using Corollary 7.5, it follows that B + i = A↓↑ + i ⊆ P . Since i ∈ Z
was taken arbitrarily, the latter fact shows P |= A ⇒ B which contradicts

P 6|= A⇒ B. Hence, for each P ⇒ P ↓↑ ∈ Σ′ there is A⇒ B ∈ Γ′ such that

A↓↑ ≡ P ↓↑ and P 6|= A⇒ B.

Now, by the pigeonhole principle and using the previous claim, the facts

that Γ′ is finite and |Γ′| < |Σ′| yield there are distinct P1 ⇒ P ↓↑1 ∈ Σ′ and

P2 ⇒ P ↓↑2 ∈ Σ′ for which there is A ⇒ B ∈ Γ′ such that P ↓↑1 ≡ A↓↑ ≡ P ↓↑2 ,

P1 6|= A⇒ B, and P2 6|= A⇒ B.

In order to finish the proof, it suffices to show that P1 = P2 which

contradicts the fact that P1 ⇒ P ↓↑1 and P2 ⇒ P ↓↑2 are distinct. It cannot

be the case that P2 @ P1. Indeed, then by the definition of pseudo-intent

P ↓↑2 v P1 ⊂ P ↓↑1 which would contradict P ↓↑1 v P ↓↑2 . In much the same way,

we argue that it cannot be the case that P1 @ P2 either.

Now, assume P1 6≡ P2. Directly from Definition 6.1, P1 6≡ P2 together

with our previous observations P1 6@ P2 and P2 6@ P1 yield P1 6v P2 and

P2 6v P1. Therefore, by Lemma 7.14, (P1 + k) ∩ P2 = ((P1 + k) ∩ P2)↓↑

for any k ∈ Z. Utilizing A v P1 and A v P2, Proposition 6.2 yields

A v (P1 + j) ∩ P2 for some j ∈ Z. Then A↓↑ v ((P1 + j) ∩ P2)↓↑ =

(P1 + j)∩P2 ⊆ P2 ⊂ P ↓↑2 , meaning that A↓↑ @ P ↓↑2 . This would be absurd if

both A↓↑ and P ↓↑2 were infinite and thus equal to TY . So, both A↓↑ and P ↓↑2

must be finite. Then, A↓↑ @ P ↓↑2 contradicts the fact that A↓↑ ≡ P ↓↑2 owing

to Lemma 6.3. Therefore, P1 ≡ P2. Since each pseudo-intent is finite, see

Definition 7.3, there is i ∈ Z such that P1 + i = P2 owing once again to

Lemma 6.3. Then i = 0 since P1, P2 ∈ r(P), i.e., P1 = P2.

Based on the observations in this section, we argue that in the temporal

setting we use in this thesis, there is a reasonable notion of a pseudo-intent

which can be used to determine bases of input data which are minimal.

The notion of minimality has been introduced to accommodate the fact

that all bases of input data in our setting are infinite. Nevertheless, the

observed minimality of the obtained bases has some implications for the

finite “interesting part” of bases that was discussed in the introduction.

Namely, in any base given by pseudo-intents, the interesting part cannot

be replaced by smaller and equivalent set of formulas. This is a direct

consequence of the previous observations and the notion of minimality from

62

Definition 7.9.

Example 10. We conclude this section by presenting a minimal base which

is equivalent to that in the introduction. Consider again the input data

from Fig. 2. The base given by the system of pseudo-intents of the input

data has been presented in Example 9. Theorem 7.15 yields that the base

is in addition minimal in sense of Definition 7.9. Following our discussion

on “interesting rules” in the introduction, we can split the base into disjoint

subsets Σ1, Σ2, and Σ3. Namely, Σ1 consists of all formulas where the

antecedents and consequents are withing the time range of the input data:

Σ1 = {{b0}⇒{a0, b0},
{c0}⇒{c0, a1},
{a0, b0, a1}⇒{a0, b0, a1, b1},
{c0, a1, b1}⇒{a0, c0, a1, b1},
{c0, a1, a2}⇒{c0, a1, c1, a2}}.

The formulas in Σ1 can be further simplified by reducing the attributes

in their antecedents and consequents. For instance, we can use the fact

that {A ⇒ B} ≡ {A ⇒ B\A}, see Definition 6.19, and take Σ′1 where all

consequents and antecedents of all formulas are disjoint:

Σ′1 = {{b0}⇒{a0},
{c0}⇒{a1},
{a0, b0, a1}⇒{b1},
{c0, a1, b1}⇒{a0},
{c0, a1, a2}⇒{c1}}.

Furthermore, the antecedents of some of the formulas in Σ′1 can further be

simplified. For instance, we can easily see that {A⇒ B,A∪B∪C ⇒ D} is

equivalent to {A ⇒ B,A∪C ⇒ D}. Applying this rule three times on Σ′1,

we obtain Σ′′1 of the following form:

Σ′′1 = {{b0}⇒{a0},
{c0}⇒{a1},
{b0, a1}⇒{b1},
{c0, b1}⇒{a0},
{c0, a2}⇒{c1}}.

63

By moment’s reflection, we can see that the formulas in Σ′′1 correspond to

the formulas in the first part of the base in the introduction.

The second important subset of the base is Σ2 which consists of for-

mulas whose antecedents fall withing the time range of the input data and

consequents do not:

Σ2 = {{a0, b0, c0, a1, b1}⇒TY ,
{a0, a2}⇒TY ,
{c0, a1, c1, a2, b2}⇒TY }.

Again, the formulas in Σ2 can be simplified by considering formulas in Σ′′1
and the above-mentioned equivalence:

Σ′2 = {{b0, c0}⇒TY ,
{a0, a2}⇒TY ,
{c0, c1, b2}⇒TY }.

The formulas in Σ′2 correspond to the formulas in the second part of the

base presented in the introduction. Let us note that since we consider

extended formulas (with TY allowed as a consequent), Σ′2 is in fact a finite

representation of infinitely many formulas from the second part of the base

from the introduction.

Finally, the base consists of infinitely many formulas whose antecedents

are P ∈ r(P) such that ‖P‖ > ‖I‖ = 2. That is, the final part can be

written as Σ3 = ΣP \ (Σ1 ∪ Σ2) and we have ΣP ≡ Σ′′1 ∪ Σ′2 ∪ Σ3. Applying

the minimality of ΣP , see Theorem 7.15, there is no Γ = Γ′ ∪ Σ3 such that

Γ ≡ ΣP . From this point of view, the interesting part of ΣP is the smallest

possible in terms of the number of its formulas.

Let us conclude the example by outlining how to show that in this par-

ticular case, the infinite subset Σ3 of the base is in the form

Σ3 =
{
{a0, a2+n}⇒TY |n ∈ N

}
which corresponds with the third part of the base presented in the introduc-

tion. It is easy to see that each {a0, a2+n} belongs to r(P) for any natural

n. In order to see that all P ∈ r(P) with ‖P‖ > 2 are of the form {a0, a2+n}
for some natural n, we first assume that P = {a0, . . .} and bi ∈ P for some

i > 2. Using the fact that {b0} ∈ r(P) and {b0}↓↑ = {a0, b0}, we conclude

64

that ai ∈ P . Furthermore, {a0, ai} ∈ r(P) and {a0, ai}↓↑ = TY . Hence,

{a0, ai} ⊂ P yields TY ⊆ P which is absurd because P is finite. Therefore,

bi 6∈ P . Analogously, we get that ci 6∈ P for i > 2. Using similar arguments,

we can show that (i) if P = {b0, . . .}, then ai 6∈ P and ci 6∈ P for any i > 2;

(ii) if P = {c0, . . .}, then ai 6∈ P and bi 6∈ P for any i > 2, which concludes

the argument.

65

8 Structure of minimal sets

We start this section by introducing a notation for expressing that consid-

ering a theory Σ, an antecedent A implies a shift of another finite subset

of TY and prove essential properties of the new notion. This property will

later be used to define equivalence of antecedents of formulas and will be

crucial for our investigation of minimality.

Definition 8.1. For a theory Σ and A,B ∈ F ∪ {∅}, we put Σ |= A⇒∗ B
whevener there is i ∈ Z such that Σ |= A⇒ B + i.

Example 11. Consider a theory Σ = {{a0, c1} ⇒ {b1}}. Then we have

[{a0, c1}]Σ = {a0, b1, c1} which means Σ |= {a0, c1} ⇒ {a0, b1, c1}. Moreover,

it is easy to see that {a0, b1, c1} = {a3, b4, c4} − 3, i.e., we have also Σ |=
{a0, c1} ⇒ {a3, b4, c4} − 3. Using the notation introduced in Definition 8.1,

we can write Σ |= {a0, c1} ⇒∗ {a3, b4, c4}.

Using Definition 8.1 and Definition 6.1, we can establish a characteriza-

tion of Σ |= A⇒∗ B similar to that of Theorem 3.15:

Lemma 8.2. For any theory Σ and any A,B ∈ F , the following conditions

are equivalent:

(i) Σ |= A⇒∗ B,

(ii) B v [A]Σ,

(iii) [B]Σ v [A]Σ.

Proof. By definition, Σ |= A ⇒∗ B means that there is i ∈ Z such that

Σ |= A⇒ B+ i. By Theorem 3.15, we get B+ i ⊆ [A]Σ and thus B v [A]Σ

by Definition 6.1. This shows that (i) implies (ii). Now, assume that (ii)

holds, i.e., B v [A]Σ, meaning that B+ i ⊆ [A]Σ for some i ∈ Z. By isotony

and idempotency of the semantic closure, we get [B + i]Σ ⊆ [[A]Σ]Σ = [A]Σ.

Finally, using Lemma 3.9, we get [B]Σ + i = [B + i]Σ ⊆ [A]Σ, showing that

(iii) holds. Now, assume that (iii) holds. In order to prove Σ |= A ⇒∗ B,

it suffices to check that B + i ⊆ [A]Σ for some i ∈ Z, see Theorem 3.15.

Observe that [B]Σ v [A]Σ means [B]Σ + i ⊆ [A]Σ for some i ∈ Z and,

applying Lemma 3.9 together with the extensivity of [· · ·]Σ, we get B + i ⊆
[B + i]Σ ⊆ [A]Σ, finishing the proof.

It is easily seen that the law of transitivity of implication extends to⇒∗

as it is shown in the next lemma.

67

Lemma 8.3. If Σ |= A⇒∗ B and Σ |= B ⇒∗ C then Σ |= A⇒∗ C.

Proof. From Σ |= A ⇒∗ B and Σ |= B ⇒∗ C, it follows that Σ |= A ⇒
B + i and Σ |= B ⇒ C + j for some i, j ∈ Z. Using Lemma 3.14, we get

Σ |= B + i⇒ C + (i+ j) and thus Σ |= A⇒ C + (i+ j) by the transitivity

of implication (see Proposition 4.3), showing Σ |= A⇒∗ C.

The following assertion is used as one of the core arguments in proofs of

the subsequent observations. It shows that in a situation where a formula

A ⇒ B is entailed by Σ and its entailment is dependent on a presence of

other formula C ⇒ D in Σ, then there is an important relationship between

the antecedents A and C:

Theorem 8.4. If Σ |= A ⇒ B and Σ \ {C ⇒ D} 6|= A ⇒ B then we have

Σ \ {C ⇒ D} |= A⇒∗ C.

Proof. Let Σ |= A ⇒ B and Σ \ {C ⇒ D} 6|= A ⇒ B and observe that

by Theorem 3.15, we get B ⊆ [A]Σ and B 6⊆ [A]Σ\{C⇒D}. The last two

facts together with the isotony of [· · ·]Σ yield A ⊆ [A]Σ\{C⇒D} ⊂ [A]Σ. As

an immediate consequence, we get that [A]Σ\{C⇒D} is not a model of Σ.

Since [A]Σ\{C⇒D} is a model of Σ\{C ⇒ D}, there must be i ∈ Z such that

C+i ⊆ [A]Σ\{C⇒D} (andD+i * [A]Σ\{C⇒D}), which means C v [A]Σ\{C⇒D},

i.e., Σ \ {C ⇒ D} |= A⇒∗ C by Lemma 8.2.

We now turn our attention to a particular equivalence relation defined

on antecendents of formulas in a theory Σ.

Definition 8.5. Let Σ be a theory and A,C ∈ F . We say that A and

C are equivalent under Σ, written A ≡Σ C, whenever Σ |= A ⇒∗ C and

Σ |= C ⇒∗ A. Furthermore, we define EΣ(A) as the set of all C ⇒ D ∈ Σ

such that A ≡Σ C.

It can be easily checked that ≡Σ is reflexive, symmetric, and transitive,

see Lemma 8.3. Hence, ≡Σ can be seen as an equivalence on Σ. In this

sense, each EΣ(A) 6= ∅ acts as an equivalence class modulo ≡Σ.

68

Example 12. Consider a theory

Σ = {{a0, b1, c1} ⇒ {b0},
{b0, c1} ⇒ {a−1},
{a0} ⇒ {c2},
{b0} ⇒ {c0},
{b0, c0} ⇒ {c−1}}.

Then we have [{a0, b1, c1}]Σ = {c−1, a0, b0, c0, b1, c1, c2}. Therefore, using

Theorem 3.15, we have Σ |= {a0, b1, c1} ⇒ {b0, c1} + 0 from which we con-

clude that Σ |= {a0, b1, c1} ⇒∗ {b0, c1}. On the other hand, [{b0, c1}]Σ =

{c−2, a−1, b−1, c−1, b0, c0, c1} from which we can deduce Σ |= {b0, c1} ⇒
{a0, b1, c1} − 1 using the same argument as before, i.e., Σ |= {b0, c1} ⇒∗

{a0, b1, c1}. Thus, under the notation of Definition 8.5, {b0, c1} ≡Σ {a0, b1, c1}.
Moreover, we have

EΣ({a0, b1}) = {{a0, b1, c1} ⇒ {b0}, {b0, c1} ⇒ {a−1}}

since we can show {a0, b1} ≡Σ {a0, b1, c1} similarly as above using the

fact that [{a0, b1}]Σ = {c−1, a0, b0, c0, b1, c1, c2}. The other non-empty sets

EΣ(· · ·) are

EΣ({a0}) = {{a0} ⇒ {c2}} and

EΣ({b0}) = {{b0} ⇒ {c0}, {b0, c0} ⇒ {c−1}}

and together with EΣ({a0, b1}) they form a partition on Σ induced by the

equivalence ≡Σ of antecedents.

Theorem 8.6. Let Σ and Γ be equivalent theories and H ∈ F be such that

EΣ(H) 6= ∅. Then for every A ⇒ B ∈ EΣ(H) such that Σ \ {A ⇒ B} 6|=
A⇒ B there is C ⇒ D ∈ EΓ(H).

Proof. Take any A⇒ B ∈ EΣ(H) such that Σ \ {A⇒ B} 6|= A⇒ B. Since

Σ is equivalent to Γ we have Γ |= A⇒ B. Moreover, using Propostion 4.9,

we can take a finite Γ′ ⊆ Γ such that Γ′ |= A ⇒ B and for every Γ′′ ⊂ Γ′

we have Γ′′ 6|= A ⇒ B. Observe that Γ′ is not empty since B 6⊆ A which

follows from the assumption Σ \ {A⇒ B} 6|= A⇒ B.

Now, we claim that there is C ⇒ D ∈ Γ′ such that Σ \ {A ⇒ B} 6|=
C ⇒ D. We prove it by contradiction. Assume that for every C ⇒ D ∈ Γ′

69

we have Σ \ {A ⇒ B} |= C ⇒ D. Then, we would have Σ \ {A ⇒ B} |=
A ⇒ B because Γ′ |= A ⇒ B. This, however, contradicts the assumption

Σ \ {A⇒ B} 6|= A⇒ B.

Obviously, H ≡Γ A. In order to prove that H ≡Γ C, it is sufficient to

prove that A ≡Γ C since ≡Γ is transitive. Since Σ \ {A ⇒ B} 6|= C ⇒ D

and Σ |= C ⇒ D we have Σ |= C ⇒∗ A using Theorem 8.4. Therefore,

Γ |= C ⇒∗ A since Γ and Σ are equivalent. On the other hand, since

Γ′ \ {C ⇒ D} 6|= A ⇒ B and Γ′ |= A ⇒ B we have Γ′ |= A ⇒∗ C using

Theorem 8.4 and so Γ |= A⇒∗ C. Altogether, A ≡Γ C.

In the following definition, we introduce a notion capturing a stronger

form of semantic entailment of temporal attribute implications. The notion

plays a central role in the characterization of minimal sets of formulas.

Definition 8.7. Let Σ be a theory, A,B ∈ F . We say that A ⇒ B is

directly entailed by Σ, written Σ A⇒ B, whenever Σ\EΣ(A) |= A⇒ B.

Note that the direct entailment introduced in Definition 8.7 general-

izes the notion of direct determination known from the classic setting [40].

There are basically two main differences between the notions. First, direct

entailment refers to formulas in our temporal setting whereas the classic no-

tion does not. Second, direct entailment is defined in terms of the semantic

entailment whereas the classic direct determination was defined in terms of

derivation DAGs [40, 41] that can be seen as graphical proof system that

is equivalent to the system of Armstrong inference rules [3]. Let us also

note that [60] introduces a notion of direct provability that utilizes graded

attribute implications and is based on an Armstrong-style inference system

parameterized by globalization [52].

Example 13. Consider the same theory Σ as in Example 12 and put Γ =

Σ \ EΣ({a0, b1, c1}), i.e.,

Γ = {{a0} ⇒ {c2},
{b0} ⇒ {c0},
{b0, c0} ⇒ {c−1}}.

Then we have [{a0, b1, c1}]Γ = {a0, c0, b1, c1, c2} from which we deduce Γ |=
{a0, b1, c1} ⇒ {b1, c2} using Theorem 3.15. Using the notation introduced

in Definition 8.7, we have Σ {a0, b1, c1} ⇒ {b1, c2}.

70

Lemma 8.8. For each C ∈ F satisfying EΣ(C) 6= ∅ there is A ⇒ B ∈
EΣ(C) such that Σ C ⇒∗ A.

Proof. Take any C ∈ F satisfying EΣ(C) 6= ∅ and put

S = {Σ′ ⊆ Σ |Σ′ |= C ⇒∗ A for some A⇒ B ∈ EΣ(C)}.

On the account of the assumption EΣ(C) 6= ∅, we have S 6= ∅ because Σ ∈ S.

Moreover, applying Proposition 4.9, there are finite sets in S. Hence, we

can fix Σ′ ∈ S as any of the finite sets in S that have the least number of

formulas.

Now, it suffices to prove that Σ′ ∩ EΣ(C) = ∅ because in that case we

would obtain Σ′ ⊆ Σ \ EΣ(C). By contradiction, assume that there is E ⇒
F ∈ Σ′ ∩ EΣ(C). Then, Σ′ \ {E ⇒ F} 6|= C ⇒∗ A because Σ′ has the least

number of formulas. By Theorem 8.4, we have Σ′ \ {E ⇒ F} |= C ⇒∗ E.

Since E ⇒ F ∈ EΣ(C), we have found a finite theory in S that contains

less formulas than Σ′, a contradiction.

Theorem 8.9. Let Σ and Γ be equivalent. Then for each A⇒ B ∈ EΣ(H)

satisfying Σ \ {A ⇒ B} 6|= A ⇒ B there is C ⇒ D ∈ EΓ(H) such that

Γ A⇒∗ C.

Proof. Acording to Theorem 8.6, for each A ⇒ B ∈ EΣ(H) satisfying Σ \
{A⇒ B} 6|= A⇒ B there is C ′ ⇒ D′ ∈ EΓ(H), i.e., EΓ(H) 6= ∅. Moreover,

EΓ(H) = EΓ(A), i.e., by Lemma 8.8, there is C ⇒ D ∈ EΓ(A) such that

Γ A⇒∗ C.

The following theorem shows a natural property that equivalent theories

induce the same direct entailment relations.

Theorem 8.10. If Σ is equivalent to Γ, then Σ A⇒ B iff Γ A⇒ B.

Proof. Assume that Σ A⇒ B and take a finite Σ′ ⊆ Σ\EΣ(A) such that

Σ′ |= A ⇒ B and, for each Σ′′ ⊂ Σ′, we have Σ′′ 6|= A ⇒ B. Clearly, such

Σ′ exists owing to Proposition 4.9. Now, it suffices to show that for each

C ⇒ D ∈ Σ′ we have Γ \ EΓ(A) |= C ⇒ D. In that case, we would obtain

Γ A⇒ B as a consequence of Σ′ |= A⇒ B.

By contradiction, let there be C ⇒ D ∈ Σ′ so that Γ\EΓ(A) 6|= C ⇒ D.

Since Γ and Σ are equivalent, we have Γ |= C ⇒ D. Using Proposition 4.9,

there is a finite Γ′ ⊆ Γ such that Γ′ |= C ⇒ D and Γ′ \ {E ⇒ F} 6|= C ⇒ D

71

for some E ⇒ F ∈ EΓ(A). By Theorem 8.4, Γ′ |= C ⇒∗ E and so Γ |=
C ⇒∗ E. Moreover, we have Γ |= E ⇒∗ A since E ≡Γ A, i.e., Γ |= C ⇒∗ A
and so Σ |= C ⇒∗ A by Lemma 8.3 and utilizing the fact that Σ and Γ are

equivalent. In addition to that, we have Σ′ \ {C ⇒ D} |= A ⇒∗ C using

Theorem 8.4 and the fact that Σ′ \ {C ⇒ D} 6|= A⇒ B, i.e., Σ |= A⇒∗ C.

Altogether, A ≡Σ C which contradicts the fact that Σ′ ⊆ Σ \ EΣ(A).

The following assertion shows that the property of transitivity of impli-

cation, i.e., from Σ |= A ⇒ B and Σ |= B ⇒ C, one derives Σ |= A ⇒ C,

holds for the direct entailment.

Theorem 8.11. If Σ A⇒ B and Σ B ⇒ C then Σ A⇒ C.

Proof. Clearly, the claim is trivial if C ⊆ B. Thus, we inspect the situation

when C * B. It suffices to show that Σ \ EΣ(A) |= B ⇒ C. Indeed,

the rest follows by the transitivity of implication, see Proposition 4.3. We

proceed by contradiction. Let Σ \ EΣ(A) 6|= B ⇒ C. Since Σ |= B ⇒ C,

utilizing Proposition 4.9, there is a finite Σ′ ⊆ Σ such that Σ′ |= B ⇒ C

and Σ′ \ {E ⇒ F} 6|= B ⇒ C for some E ⇒ F ∈ EΣ(A). Using Theorem

8.4, we have Σ′ \ {E ⇒ F} |= B ⇒∗ E, so Σ |= B ⇒∗ A using Σ |= E ⇒∗ A
and Lemma 8.3. In addition, using Σ |= A ⇒ B, we get A ≡Σ B, i.e.,

EΣ(A) = EΣ(B) which contradicts the assumption Σ \ EΣ(A) 6|= B ⇒ C

since Σ B ⇒ C.

The following assertion presents a sufficient condition for a non-redundant

theory to be minimal. The condition is based on checking the non-existence

of a pair of formulas with particular properties.

Theorem 8.12. Let Σ be a non-redundant theory which is not minimal.

Then there are distinct A ⇒ B,C ⇒ D ∈ Σ such that A ≡Σ C and

Σ A⇒∗ C.

Proof. It is easy to see that the claim is trivial if Σ contains distinct formulas

A⇒ B and C ⇒ D such that A = C. Thus, we focus on the case when Σ

contains no distinct formulas with equal antecedents.

We prove the theorem by contradiction. Therefore, take a non-redundant

theory Σ which is not minimal and satisfies the following condition: For

every distinct A⇒ B,C ⇒ D ∈ Σ such that A ≡Σ C we have Σ 6 A⇒∗ C.

According to Lemma 7.11, there are Γ′ and Σ′ ⊆ Σ such that |Γ′| < |Σ′| and

72

Σ ≡ (Σ\Σ′)∪Γ′. Moreover, Γ′ is finite because |Σ′| is at most denumerable,

i.e., we can take Γ′ such that for each Γ′′ ⊂ Γ′ we have Σ 6≡ (Σ \ Σ′) ∪ Γ′′.

In the following we denote (Σ \ Σ′) ∪ Γ′ by Γ. Taking into account the

non-redundancy of Σ and applying Theorem 8.9, for each A⇒ B ∈ EΣ(H)

there is C ⇒ D ∈ EΓ(H) such that Γ A ⇒∗ C. In other words, for each

A ⇒ B ∈ Σ there is C ⇒ D ∈ Γ such that A ≡Γ C and Γ A ⇒∗ C. If

in addition A ⇒ B ∈ Σ′ then C ⇒ D ∈ Γ′ because C ⇒ D ∈ Σ \ Σ′ ⊆ Σ

would contradict the assumption that Σ 6 A⇒∗ C.

Hence, using the fact that |Γ′| < |Σ′| and the pigeonhole principle, there

are two distinct A ⇒ B,A′ ⇒ B′ ∈ Σ′ for which there is a single C ⇒
D ∈ Γ′ such that A ≡Γ C, A′ ≡Γ C, Γ A ⇒∗ C, and Γ A′ ⇒∗ C.

Moreover, we have Γ \ {C ⇒ D} 6|= C ⇒ D since for each Γ′′ ⊂ Γ′ we have

Σ 6≡ (Σ \ Σ′) ∪ Γ′′, i.e., using Theorem 8.9, for C ⇒ D there is E ⇒ F ∈ Σ

such that C ≡Σ E and Σ C ⇒∗ E. Therefore, by equivalency of Σ and Γ

and the transitivity of ≡Σ, we have A ≡Σ E and A′ ≡Σ E. Furthermore, by

Theorem 8.11 and Theorem 8.10, we have Σ A ⇒∗ E and Σ A′ ⇒∗ E.

Since A 6= A′ (formulas A⇒ B and A′ ⇒ B′ do not have equal antecedents)

we have either A′ 6= E or A 6= E. In both cases the assumed property of Σ

is violated. Indeed, in the first case there are distinct A′ ⇒ B′, E ⇒ F ∈ Σ

such that A′ ≡Σ E and Σ A′ ⇒∗ E. The other case is similar.

The following assertion presents a necessary condition of minimality.

Theorem 8.13. Let Σ be a theory and let A⇒ B,C ⇒ D ∈ Σ be distinct

formulas such that Σ |= C ⇒ A − i and Σ A ⇒ C + i for some i ∈ Z.

Then Σ is not minimal.

Proof. We prove the theorem by showing that there is Σ′ ⊆ Σ and Γ′ such

that |Σ′| > |Γ′| and Σ ≡ (Σ \Σ′)∪Γ′ which is a sufficient condition to show

that Σ is not minimal, see Lemma 7.11. We put Σ′ = {A ⇒ B,C ⇒ D}
and Γ′ = {C ⇒ D ∪ (B − i)}. Moreover, we denote (Σ \ Σ′) ∪ Γ′ by Γ.

Clearly |Σ′| > |Γ′|. Therefore, it suffices to prove Σ ≡ Γ.

It is easy to see that Γ |= C ⇒ D since by C ⇒ D ∪ (B − i) ∈ Γ

we get Γ |= C ⇒ D ∪ (B − i) and so Γ |= C ⇒ D, cf. Proposition 4.3.

Furthermore, Σ A⇒ C+ i means Σ\EΣ(A) |= A⇒ C+ i which together

with Σ |= C ⇒ A − i yields A ≡Σ C. Hence, Σ \ EΣ(A) ⊆ Γ and so

Γ |= A⇒ C + i. From C ⇒ D ∪ (B − i) ∈ Γ, we get Γ |= C ⇒ D ∪ (B − i)
and so Γ |= C + i ⇒ (D ∪ (B − i)) + i using Lemma 3.14. Then, by

73

transitivity of implication, we get Γ |= A⇒ (D+ i)∪B and so Γ |= A⇒ B

by Proposition 4.3.

Conversely, A⇒ B ∈ Σ yields Σ |= A− i⇒ B− i owing to Lemma 3.14.

Hence, using Σ |= C ⇒ A − i, it follows that Σ |= C ⇒ B − i. Combining

the last observation with the fact that C ⇒ D ∈ Σ, we obtain Σ |= C ⇒
D ∪ (B − i), see Proposition 4.3. Altogether, Σ ≡ Γ.

Putting the observations of Theorem 8.12 and Theorem 8.13 together,

we obtain the following conclusion:

Corollary 8.14 (Characterization of Minimality). Let Σ be a non-redundant

theory such that for each A ⇒ B,C ⇒ D ∈ EΣ(H) we have Σ A ⇒∗ C
iff Σ |= C ⇒ A − i and Σ A ⇒ C + i for some i ∈ Z. Then Σ is

minimal iff there are no distinct A ⇒ B,C ⇒ D ∈ Σ such that A ≡Σ C

and Σ A⇒∗ C.

Remark 22. (a) As an example of theories for which the assumption in

Corollary 8.14 holds, consider theories where the semantic closures of finite

sets are finite. Indeed, assume that for Σ we have that A ∈ F implies

[A]Σ ∈ F and take A ⇒ B,C ⇒ D ∈ EΣ(H) such that Σ A ⇒∗ C
and A 6= ∅ (a non-trivial case). Then we have Σ |= C ⇒ A + j and

Σ A⇒ C+i for some i, j ∈ Z. As a consequence, Σ |= A⇒ A+(j+i) and

so Σ |= A⇒ A+(j+ i) ·k for any k ∈ N which holds iff A+(j+ i) ·k ⊆ [A]Σ

for any k ∈ N. Hence, j = −i because [A]Σ cannot be infinite. The converse

implication is trivial.

(b) Another important example of theories that fullfill the conditions of

Corollary 8.14 are finitely generated theories Definition 6.15. A theory Σ is

finitely generated whenever (i) ∅ is its model, (ii) it has another non-trivial

model, and (iii) there is t ∈ N such that in each model of Σ except for

TY the largest difference between times points of attributes is at most t.

In other words, the time span of each model (except for TY) is bounded

from above. In that case, A ∈ F implies [A]Σ ∈ F ∪ {TY }. Hence, we can

use the same arguments as in (a) and handle the case when [A]Σ = TY .

Using the assumption Σ |= C ⇒ A+ j we have A+ j ⊆ [C]Σ which means

TY = TY + j = [A]Σ + j ⊆ [C]Σ, i.e., [C]Σ = TY . Therefore, Σ |= C ⇒ A− i
holds.

Let us stress that the finitely generated theories used in Remark 22 (b)

represent a wide family of theories that are natural from users’ point of view.

74

Indeed, as it has been shown in Corollary 6.18, finitely generated theories

are exactly theories entailing all if-then dependencies that hold in finite

data sets. Therefore, Theorem 8.13 can be applied to any set of temporal

attribute implications that is derived from a finite data set and entails all

temporal attribute implications that hold in the data set.

We can summarize our observations by the following two algorithms the

soundness of which follows from Theorem 8.12, Theorem 8.13, and Theo-

rem 3.15.

Algorithm 1 (Test of Minimality).

input: Σ satisfying the assumptions of Corollary 8.14 (see Remark 22)

output: YES (is minimal) / NO (is not minimal)

If there are distinct A⇒ B,C ⇒ D ∈ Σ such that A− i ⊆ [C]Σ

and C+i ⊆ [A]Σ\EΣ(A) for some i ∈ Z, then return NO, otherwise

return YES.

�

Algorithm 2 (Minimization Step).

input: Σ satisfying the assumptions of Corollary 8.14 (see Remark 22)

output: a theory that is equivalent to Σ

If there are distinct A⇒ B,C ⇒ D ∈ Σ such that A− i ⊆ [C]Σ

and C + i ⊆ [A]Σ\EΣ(A) for some i ∈ Z, then return (Σ \ {A ⇒
B,C ⇒ D}) ∪ {C ⇒ D ∪ (B − i)}, otherwise return Σ.

�

Remark 23. Observe that if Σ is finite, then both Algorithm 1 and Algo-

rithm 2 terminate after finitely many steps and the total number of com-

puted closures is polynomial in the number of formulas in Σ. Indeed, the

tests involve distinct pairs of formulas from Σ and, clearly, Σ \ EΣ(A) can

also be determined based on computing closures the number of which is

polynomial in the size of Σ. From this point of view, the complexity of our

procedure is no worse than for the classic test of minimality [40].

The algorithms are demontrated in the following example.

75

Example 14. Consider the same theory as in Example 12, i.e.,

Σ = {{a0, b1, c1} ⇒ {b0},
{b0, c1} ⇒ {a−1},
{a0} ⇒ {c2},
{b0} ⇒ {c0},
{b0, c0} ⇒ {c−1}}.

It is easy to check that Σ is non-redundant. In order to check mini-

mality, we have to check whether there are distinct antecedents satisfy-

ing the conditions of Theorem 8.13 that are also summarized in Algo-

rithm 1. Take {a0, b1, c1} and {b0, c1} for which we have {a0, b1, c1} − 1 ⊆
{c−2, a−1, b−1, c−1, b0, c0, c1} = [{b0, c1}]Σ, i.e., Σ |= {b0, c1} ⇒ {a0, b1, c1} −
1. Moreover, in Example 13, we have showed Σ {a0, b1, c1} ⇒ {b0, c1}+1.

Therefore, Σ is not minimal by Theorem 8.13.

We can use a size reduction introduced in the proof of Theorem 8.13,

which is also present in Algorithm 2, and transform Σ into an equivalent

theory

Σ′ = {{b0, c1} ⇒ {a−1, b1},
{a0} ⇒ {c2},
{b0} ⇒ {c0},
{b0, c0} ⇒ {c−1}}.

However, Σ′ is not minimal since there are antecedents {b0}, {b0, c0} for

which we have {b0, c0} ⊆ {c−1, b0, c0} = [{b0}]Σ, i.e., Σ |= {b0} ⇒ {b0, c0}.
Moreover, ∅ |= {b0, c0} ⇒ {b0}, i.e., Σ′ {b0, c0} ⇒ {b0}. Therefore, using

Algorithm 2 again, we transform Σ′ into

Σ′′ = {{b0, c1} ⇒ {a−1, b1},
{a0} ⇒ {c2},
{b0} ⇒ {c−1, c0}}.

In order to check that Σ′′ is minimal it suffices to investigate equivalent

antecedents by means of ≡Σ′′ , see Theorem 8.12. It is easy to see that there

are no equivalent antecedents. Hence, Σ′′ is minimal.

Note that minimal theories can contain formulas with equivalent an-

76

tecedents. For instance, consider a theory

Γ = {{a0} ⇒ {a0, b0}, {b0} ⇒ {a0, b0}}

for which we have [{a0}]Γ = {a0, b0} = [{b0}]Γ. Therefore, Γ |= {a0} ⇒∗ {b0}
and Γ |= {b0} ⇒∗ {a0}, i.e., {a0} ≡Γ {b0}. However, it is not the case that

either Γ {a0} ⇒∗ {b0} or Γ |= {b0} ⇒∗ {a0}. Hence, Γ is minimal.

77

9 Related work

In database systems and knowledge engineering, there appeared isolated

approaches which propose temporal semantics of if-then rules. We present

here a short survey of the approaches and highlight the differences between

our approach and the existing ones.

Formulas called temporal functional dependencies emerged in databases

with time granularities [6]. In this approach, a time granularity is a general

partition of time like seconds, weeks, years, etc., and a time granularity is

associated to each relational schema. In addition, each tuple in a relation

is associated with a part (so-called granule) of granularity. In this setting,

temporal functional dependencies are like the ordinary functional depen-

dencies [21, 41] with a time granularity as an additional component. The

concept of validity of temporal functional dependencies is defined in much

the same way as its classic counterpart and includes an additional condition

that granules of tuples need to be covered by any granule from granularity

of the temporal functional dependency. Thus, [6] uses an ordinary notion

of validity of functional dependencies which is restricted to some time seg-

ments. This is conceptually very different from the problem we deal with

in this thesis since in our approach, each attribute appearing in a rule is

annotated by a relative time point and our rules are considered true in data

whenever they hold in all time points.

Several approaches to temporal if-then rules, which are conceptually sim-

ilar to [6], appeared in the field of association rules [1, 63] as the so-called

temporal association rules [2, 36, 47]. In these approaches, the input data

is in the form of transactions (i.e., subsets of items) where each transac-

tion occurred at some point in time and the interest of the papers lies in

extracting association rules from data which occur during a specified time

cycle. For instance, one may be interested in extracting rules which are

valid in “every spring month of a year”, “every Monday in every year”,

etc. As in the case of the temporal functional dependencies, the temporal

association rules may be understood as classic association rules occurring

during specified time cycles.

Other results motivated by temporal semantics of association rules in-

cludes the so-called inter-transaction association rules [22, 23, 34, 58], see

[39] for a survey of approaches. The papers propose algorithms to extract,

given an input transactional data and a measure of interestingness (based

79

on levels of minimal support and confidence), if-then rules which are pre-

served over a given period of time. From this point of view, the rules can

be seen as formulas studied in this thesis restricted to predictive rules (see

Definition 5.4 in Section 5) whose validity is considered with respect to

the additional parameter of interestingness. As a consequence, the inter-

transaction association rules are related to the rules in our approach in the

same way as the ordinary association rules [1] are related to the ordinary

attribute implications [27]. The results in [22, 23, 34, 39, 58] are focused

almost exclusively on algorithms for mining the inter-transaction associa-

tion rules and are not concerned with problems of entailment of the rules

and the underlying logic. In contrast, the problems of entailment of rules

are investigated in this thesis and we show there is reasonably strong logic

for reasoning with such rules. Furthermore, we deal with a problem of ex-

tracting sets of rules satisfying a condition–minimality and the ability to

describe all dependencies which hold in the data, instead of extracting rules

from data satisfying a condition (given by the interestingness measure).

Our observations may stimulate further development in the field of inter-

transaction association rules and similar formulas and their applications in

various domains [22, 32].

The formulas studied in this thesis are also related to particular program

rules which appear in Datalog extensions dealing with flow of time and re-

lated phenomena [12, 11, 10] such as DatalognS (Datalog with n successors).

The formulas we consider correspond to a fragment of rules which appear

in such Datalog extensions. Despite the similar form of our formulas and

the program rules, there does not seem to be a direct relationship (or a

reduction) of the entailment problem of our formulas and the recognition

problem of DatalognS programs. As we have outlined in the introduction

our formulas can also be seen as particular PROLOG rules. Despite the

possibility to consider our rules in these (and other) database and logic

programming languages, we aim at different goals. Most importantly, we

have provided an Armstrong-style axiomatization which is strong-complete,

i.e., complete over arbitrary Σ, and focuses on the inference of formulas

(rules) from (finite or infinite) sets of rules. In contrast, PROLOG uses

definite programs (finite sets of formulas) and its inference system is based

on the resolution principle. Our development of the topic is primarily moti-

vated by temporal extensions of rules which are used in FCA [27] where the

Armstrong-style systems are extensively used and, therefore, our approach

80

is a natural direction to go in that matter.

Note that predictive formulas, as they were introduced in Definition 5.4,

can be translated into further existing languages. For instance, the for-

mulas can be represented by TeDiLog [24] rules—a recent temporal logic

programming language whose semantics is defined using structures with a

beginning and a linear flow of time. Thus, the semantics of TeDiLog differs

from our because of the existence of the beginning of time and it includes

a modality “always in future”. In contrast, our rules are interpreted as if

they contained a hidden modality “always (including points in the past)”.

With analogous conceptual differences, the predictive formulas can also be

translated into plans of the planning domain definition language (PDDL,

see [15, 29]) or expressed in situation calculus [42, 46, 48]. An open question

is whether such transformations can be used to get further insight into the

entailment problem of our formulas.

Temporal attribute implications can be seen as extensions of attribute

implications studied in FCA and functional dependencies in relational data-

bases [41]. Interestingly, in both the FCA and database communities there

appeared results characterizing minimal sets of if-then formulas with dif-

ferent motivations. The minimality of sets of functional dependencies was

thoroughly examined in the seminal paper [40] where the author gives cri-

teria for minimality of non-redundant sets of functional dependencies based

on the notion of direct determination. In this thesis, we present a similar

result for temporal attribute implications. Interestingly, [40] shows that

transforming a set of functional dependencies into an equivalent and min-

imal one can be done in polynomial time and the algorithm exploits the

standard tests of entailment of functional dependencies [5].

In FCA, the seminal paper [30] shows a description of minimal sets of

attribute implications based on the notion of pseudo-intents. Unlike the

results on functional dependencies where the input for minimization is a set

of formulas, [30] computes the minimal bases directly from object-attribute

incidence data which turns out to be a hard problem as it is shown in [20].

In this thesis, we generalize the results of [30] in the temporal setting.

The form of data we consider as “input data” in our approach is closely

related to triadic formal contexts [35]. Although there appeared approaches

to attribute implications from the point of view of the triadic FCA [7, 26],

they do not annotate attributes by conditions (such as time points as in

our case). Our formulas are syntactically different and have a different

81

interpretation than if-then dependencies which were introduced in triadic

FCA. The initial approach to if-then rules in triadic FCA [7] considers

formulas written as (A ⇒ B)C where A,B are subsets of attributes and C

is a set of conditions. A formula of this form is considered true in a triadic

context if the following condition is satisfied:

If an object has all attributes from A under all conditions from

C, then it also has all attributes from B under all conditions

from C.

Clearly, our formulas represent different dependencies since the approach

in [7] annotate whole formulas by conditions (such as time points as in our

case) whereas in our case is annotated each particular attribute. Hence,

different attributes appearing in a formula can be annotated by different

conditions. Later, stronger formulas were proposed in [26] which are con-

sidered true in a triadic context if the following condition is satisfied:

For each condition c ∈ C: If an object has all attributes in A

(under c) then it also has all attributes in B (under c).

Again, our formulas are different in that the annotations appear in an-

tecedents and consequents of the formulas.

82

10 Conclusion and future work

We have presented logic for reasoning with if-then rules expressing depen-

dencies between attributes changing in time. The logic extends the classic

logic for dealing with if-then rules by considering discrete time points as an

additional component. We have studied both the semantic entailment based

on preserving validity in models in all time points and syntactic entailment

represented by a provability relation. We have shown a characterization of

the semantic entailment based on least models and syntactico-semantical

completeness of the logic. We have shown the problem of entailment is

NP-hard, decidable in exponential space, and its simplified variant which

involves only predictive formulas is decidable in pseudo-linear time. We

have studied the notions of completeness in data changing in time, non-

redundancy, and minimality of theories which are derived from finite se-

quences of object-attribute incidence data recorded in separate points in

time. We have shown a generalization of the notion of a pseudo-intent

which fits well into our model and proved that important non-redundant

and minimal bases are determined by systems of pseudo-intents. Unlike the

classic case, the bases are always infinite but contain finitely many formu-

las which constitute a part which is most relevant to data analysts. We

have paid attention to properties inherent to minimal theories. We have

introduced and investigated the notion of equivalence of antecedents of for-

mulas and the notion of direct entailment that has been introduced as a

stronger form of semantic entailment. Using the notions, we have presented

necessary and sufficient conditions of minimality and presented families of

theories for which such conditions can be applied. In the special case of fi-

nite theories, our criteria of minimality yield algorithms that can be used to

minimize theories in finitely many steps. The minimization procedure relies

on computing semantic closures whose number is polynomial in the size of

the input—in this sense, the algorithm behaves as the classic minimization

algorithm for attribute implications (or functional dependencies).

Future research directions we consider interesting include utilization of

generalized quantifiers [37, 44] to capture notions like “validity in all time

points with possible exceptions”, connections to rules which may emerge in

temporal databases [17], further analysis of algorithms related to the entail-

ment, and finding connections to various types of logic programing schemes

and formalisms supporting temporal extensions or modalities [10, 24, 46],

83

adaptation of classic algorithms for computing bases, detailed complexity

analysis and experimental evaluation of the proposed algorithms, and ap-

plications of bases in domain-specific areas of data mining concerned with

input data changing in time.

84

References

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. “Mining Asso-

ciation Rules Between Sets of Items in Large Databases”. In: Proceed-

ings of the 1993 ACM SIGMOD International Conference on Man-

agement of Data. SIGMOD ’93. Washington, D.C., USA: ACM, 1993,

pp. 207–216.

[2] Juan M. Ale and Gustavo H. Rossi. “An Approach to Discovering

Temporal Association Rules”. In: Proceedings of the 2000 ACM Sym-

posium on Applied Computing. Vol. 1. SAC ’00. Como, Italy: ACM,

2000, pp. 294–300.

[3] William Ward Armstrong. “Dependency structures of data base rela-

tionships”. In: Information Processing 74: Proceedings of IFIP Con-

gress. Ed. by J. L. Rosenfeld and H. Freeman. Amsterdam: North

Holland, 1974, pp. 580–583.

[4] Alessandro Artale et al. “The Complexity of Clausal Fragments of

LTL”. In: CoRR abs/1306.5088 (2013).

[5] Catriel Beeri and Philip A. Bernstein. “Computational problems re-

lated to the design of normal form relational schemas”. In: ACM

Trans. Database Syst. 4 (1 Mar. 1979), pp. 30–59.

[6] Claudio Bettini, Sushil Jajodia, and Xiaoyang Sean Wang. Time Gran-

ularities in Databases, Data Mining, and Temporal Reasoning. Sprin-

ger, 2000.

[7] Klaus Biedermann. “A foundation of the theory of trilattices”. Dis-

sertation. Aachen: TU Darmstadt, 1998.

[8] Garrett Birkhoff. Lattice theory. 1st. Providence: American Mathe-

matical Society, 1940.

[9] Patick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.

Secaucus, NJ, USA: Cambridge University Press, 2002.

[10] Jan Chomicki and Tomasz Imieliński. “Finite Representation of In-

finite Query Answers”. In: ACM Trans. Database Syst. 18.2 (June

1993), pp. 181–223.

85

[11] Jan Chomicki and Tomasz Imieliński. “Relational Specifications of In-

finite Query Answers”. In: Proceedings of the 1989 ACM SIGMOD In-

ternational Conference on Management of Data. SIGMOD ’89. Port-

land, Oregon, USA: ACM, 1989, pp. 174–183.

[12] Jan Chomicki and Tomasz Imieliński. “Temporal Deductive Databases

and Infinite Objects”. In: Proceedings of the 7th ACM SIGACT-SIG-

MOD-SIGART Symposium on Principles of Database Systems. PODS

’88. Austin, Texas, USA: ACM, 1988, pp. 61–73.

[13] Edgar F. Codd. “A relational model of data for large shared data

banks”. In: Commun. ACM 13 (6 1970), pp. 377–387.

[14] Pablo Cordero et al. “Non-deterministic ideal operators: An adequate

tool for formalization in Data Bases”. In: Discrete Applied Mathemat-

ics 156.6 (Mar. 2008), pp. 911–923.

[15] Stephen Cresswell and Alexandra M. Coddington. “Compilation of

LTL Goal Formulas into PDDL”. In: Proc. 16th Eureopean Confer-

ence on Artificial Intelligence, ECAI’2004, including Prestigious Ap-

plicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August

22-27, 2004. Ed. by Ramon López de Mántaras and Lorenza Saitta.

IOS Press, 2004, pp. 985–986.

[16] Chris J. Date and Hugh Darwen. “Relational Database Writings 1989–

1991”. In: Addison-Wesley Publishing Co., Inc., 1992. Chap. The Role

of Functional Dependence in Query Decomposition, pp. 133–154.

[17] Chris J. Date, Hugh Darwen, and Nikos A. Lorentzos. Time and Rela-

tional Theory: Temporal Databases in the Relational Model and SQL.

Morgan Kaufmann, 2014.

[18] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and

Order. Cambridge: Cambridge University Press, 1990.

[19] Claude Delobel and Richard G. Casey. “Decomposition of a Data Base

and the Theory of Boolean Switching Functions”. In: IBM Journal of

Research and Development 17.5 (1973), pp. 374–386.

[20] Felix Distel and Barış Sertkaya. “On the Complexity of Enumerating

Pseudo-intents”. In: Discrete Appl. Math. 159.6 (Mar. 2011), pp. 450–

466.

86

[21] Ronald Fagin. “Functional dependencies in a relational database and

propositional logic”. In: IBM Journal of Research and Development

21.6 (Nov. 1977), pp. 534–544.

[22] Ling Feng, Tharam Dillon, and James Liu. “Inter-transactional Asso-

ciation Rules for Multi-dimensional Contexts for Prediction and Their

Application to Studying Meterological Data”. In: Data Knowl. Eng.

37.1 (Apr. 2001), pp. 85–115.

[23] Ling Feng et al. “A Template Model for Multidimensional Inter-

transactional Association Rules”. In: The VLDB Journal 11.2 (Oct.

2002), pp. 153–175.

[24] Jose Gaintzarain and Paqui Lucio. “Logical Foundations for More

Expressive Declarative Temporal Logic Programming Languages”. In:

ACM Trans. Comput. Logic 14.4 (Nov. 2013), 28:1–28:41.

[25] Bernhard Ganter. “Two Basic Algorithms in Concept Analysis”. In:

Proceedings of the 8th International Conference on Formal Concept

Analysis. ICFCA’10. Agadir, Morocco: Springer-Verlag, 2010, pp. 312–

340.

[26] Bernhard Ganter and Sergei Obiedkov. “Implications in Triadic For-

mal Contexts”. In: Conceptual Structures at Work. Ed. by Karl Erich

Wolff, Heather D. Pfeiffer, and Harry S. Delugach. Vol. 3127. Lec-

ture Notes in Computer Science. Springer Berlin Heidelberg, 2004,

pp. 186–195.

[27] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Math-

ematical Foundations. 1st. Secaucus, NJ, USA: Springer-Verlag New

York, Inc., 1997.

[28] Michael R. Garey and David S. Johnson. Computers and Intractabil-

ity: A Guide to the Theory of NP-Completeness. New York, NY, USA:

W. H. Freeman & Co., 1979.

[29] Malik Ghallab et al. PDDL—the Planning Domain Definition Lan-

guage, version 1.2. Technical Report CVC TR-98-003/DCS TR-1165

(Oct.) Tech. rep. Yale Center for Computational Vision and Control,

Yale University, 1998.

[30] Jean-Louis Guigues and Vincent Duquenne. “Familles minimales d’im-

plications informatives resultant d’un tableau de données binaires”.

In: Math. Sci. Humaines 95 (1986), pp. 5–18.

87

[31] Petr Hájek. Metamathematics of Fuzzy Logic. Dordrecht, The Nether-

lands: Kluwer Academic Publishers, 1998.

[32] Yo-Ping Huang, Li-Jen Kao, and Frode-Eika Sandnes. “Efficient Min-

ing of Salinity and Temperature Association Rules from ARGO Data”.

In: Expert Syst. Appl. 35.1–2 (July 2008), pp. 59–68.

[33] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Prob-

lems. Springer Berlin Heidelberg, 2004.

[34] Anthony J. T. Lee et al. “An Efficient Algorithm for Mining Closed

Inter-transaction Itemsets”. In: Data Knowl. Eng. 66.1 (July 2008),

pp. 68–91.

[35] Fritz Lehmann and Rudolf Wille. “A triadic approach to formal con-

cept analysis”. In: Conceptual Structures: Applications, Implementa-

tion and Theory. Ed. by Gerard Ellis et al. Vol. 954. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 1995, pp. 32–43.

[36] Yingjiu Li et al. “Discovering calendar-based temporal association

rules”. In: Data and Knowledge Engineering 44.2 (2003), pp. 193–

218.

[37] Per Lindström. “First Order Predicate Logic with Generalized Quan-

tifiers”. In: Theoria 32.3 (1966), pp. 186–195.

[38] John W. Lloyd. Foundations of Logic Programming. New York, NY,

USA: Springer-Verlag New York, Inc., 1984.

[39] Hongjun Lu, Ling Feng, and Jiawei Han. “Beyond Intratransaction

Association Analysis: Mining Multidimensional Intertransaction As-

sociation Rules”. In: ACM Trans. Inf. Syst. 18.4 (Oct. 2000), pp. 423–

454.

[40] David Maier. “Minimum Covers in Relational Database Model”. In:

J. ACM 27.4 (Oct. 1980), pp. 664–674.

[41] David Maier. Theory of Relational Databases. Rockville, MD, USA:

Computer Science Pr, 1983.

[42] John McCarthy and Phillip J. Hayes. “Readings in Nonmonotonic

Reasoning”. In: ed. by Matthew L. Ginsberg. San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1987. Chap. Some Philosophical

Problems from the Standpoint of Artificial Intelligence, pp. 26–45.

88

[43] Elliott Mendelson. Introduction to Mathematical Logic. Chapman and

Hall, 1987.

[44] Andrzej Mostowski. “On a generalization of quantifiers”. eng. In: Fun-

damenta Mathematicae 44.1 (1957), pp. 12–36.

[45] Christos H. Papadimitriou. Computational Complexity. Addison-Wes-

ley Publishing Co., Inc., 1994.

[46] Javier Pinto and Raymond Reiter. “Reasoning about time in the situ-

ation calculus”. In: Annals of Mathematics and Artificial Intelligence

14.2 (1995), pp. 251–268.

[47] Chris P. Rainsford and John F. Roddick. “Adding Temporal Seman-

tics to Association Rules”. English. In: Principles of Data Mining

and Knowledge Discovery. Ed. by Jan M. Żytkow and Jan Rauch.

Vol. 1704. Lecture Notes in Computer Science. Springer Berlin Hei-

delberg, 1999, pp. 504–509.

[48] Raymond Reiter. “Artificial Intelligence and Mathematical Theory of

Computation”. In: ed. by Vladimir Lifschitz. San Diego, CA, USA:

Academic Press Professional, Inc., 1991. Chap. The Frame Problem

in the Situation Calculus: A Simple Solution (Sometimes) and a Com-

pleteness Result for Goal Regression, pp. 359–380.

[49] Mark Reynolds. “The complexity of decision problems for linear tem-

poral logics”. In: Journal of Studies in Logic 3.1 (2010), pp. 19–50.

[50] John A. Robinson. “A Machine-Oriented Logic Based on the Resolu-

tion Principle”. In: J. ACM 12.1 (1965), pp. 23–41.

[51] Yehoshua Sagiv et al. “An equivalence between relational database

dependencies and a fragment of propositional logic”. In: J. ACM 28.3

(July 1981), pp. 435–453.

[52] Gaisi Takeuti and Satoko Titani. “Globalization of intuitionistic set

theory”. In: Annals of Pure and Applied Logic 33 (1987), pp. 195–211.

[53] Alfred Tarski. “A Lattice-Theoretical Fixpoint Theorem and Its Ap-

plications”. In: Pacific Journal of Mathematics 5 (1955), pp. 285–309.

[54] Jan Triska and Vilem Vychodil. “Logic of temporal attribute impli-

cations”. In: Annals of Mathematics and Artificial Intelligence 79.4

(Apr. 2017), pp. 307–335.

89

[55] Jan Triska and Vilem Vychodil. “Minimal bases of temporal attribute

implications”. In: Annals of Mathematics and Artificial Intelligence

83.1 (May 2018), pp. 73–97.

[56] Jan Triska and Vilem Vychodil. “On minimal sets of temporal at-

tribute implications”. submitted. 2018.

[57] Jan Triska and Vilem Vychodil. “Towards Armstrong-Style Inference

System for Attribute Implications with Temporal Semantics”. In:

Modeling Decisions for Artificial Intelligence. Ed. by Vicenç Torra,

Yasuo Narukawa, and Yasunori Endo. Vol. 8825. LNCS. Springer In-

ternational Publishing, 2014, pp. 84–95.

[58] Anthony K. H. Tung et al. “Breaking the Barrier of Transactions:

Mining Inter-transaction Association Rules”. In: Proceedings of the

Fifth ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining. KDD ’99. San Diego, California, USA: ACM,

1999, pp. 297–301.

[59] Vilem Vychodil. “Closure structures parameterized by systems of iso-

tone Galois connections”. In: International Journal of Approximate

Reasoning 91 (2017), pp. 1–21.

[60] Vilem Vychodil. “On minimal sets of graded attribute implications”.

In: Information Sciences 294 (2015), pp. 478–488.

[61] Vilem Vychodil. “Parameterizing the semantics of fuzzy attribute im-

plications by systems of isotone Galois connections”. In: IEEE Trans.

on Fuzzy Systems 24 (3 2016), pp. 645–660.

[62] Wolfgang Wechler. Universal Algebra for Computer Scientists. Vol. 25.

EATCS Monographs on Theoretical Computer Science. Berlin Heidel-

berg: Springer-Verlag, 1992.

[63] Mohammed J. Zaki. “Mining non-redundant association rules”. In:

Data Mining and Knowledge Discovery 9 (2004), pp. 223–248.

90

	Introduction
	Preliminaries
	Logic of temporal attribute implications
	Complete axiomatizations
	Complexity and algorithms for entailment
	Description of dependencies in data
	Non-redundant and minimal bases
	Structure of minimal sets
	Related work
	Conclusion and future work
	References

