
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

PERFORMANCE BENCHMARK FOR
SMART TV PLATFORMS, SET-TOP BOXES
AND GAME CONSOLES
VÝKONNOSTNÍ TESTY PRO CHYTRÉ TV, SET-TOP BOXY A HERNÍ KONZOLE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍ PRÁCE

Be. TOMÁŠ MADAJ

Ing. JIŘÍ HYNEK

BRNO 2018

Master's Thesis Specification/21234/2017/xmadaj00

Brno Univers i ty of Technology - Faculty of In fo rmat ion Technology

Department of Information Systems Academic year 2017/2018

M a s t e r ' s T h e s i s S p e c i f i c a t i o n

For: M a d a j T o m á š , Be .
Branch of study: Computer Graphics and Multimedia
j j i . | e . P e r f o r m a n c e B e n c h m a r k f o r S m a r t TV P l a t f o r m s , S e t - T o p B o x e s a n d

G a m e C o n s o l e s
Category : Information Systems

Instructions for project work:
1. Get acquainted with the development of applications for smart TV platforms, set-top

boxes and game consoles.
2. Study existing tools used for performance benchmarks of web browser cores.
3. Design a system for performance benchmarks of web browser cores used for chosen

smart TV platforms, set-top boxes and game consoles. Provide proper support for
maintenance of results.

4 . Design a suitable set of tests.
5. Implement the designed system.
6. Evaluate applicability of the implemented system on selected devices. Focus on stability of

results gathered by repetitive test ing. Compare the results with the performance of web
browsers running on desktop computers .

Basic references:
• HbbTv: Resource Library - ETSI TS 102 796 Specification. Onl ine:

https://www.hbbtv.Org/resource-l ibrary/#specif ications
• Open IPTV Forum: OIPFSpecifications. Onl ine: http ://www.oipf . tv
• TIZEN Developers: Tizen TV Web Device API Reference. Onl ine:

https ://developer . t izen.org/dev-
guide/3 .0 .0/org . t izen. web. a pireference/html/device_api/tv/index. html

• webOS TV Developer: Luna Service API. Onl ine:
http://webostv .developer . lge.com/api/webos-serv ice-api/

Requirements for the semestral defense:
Items 1 through 4.

Detailed formal specifications can be found at http://www.f i t .vutbr .cz/ info/szz/

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and
technical background relevant to the problems solved, and specify what parts have been used from earlier projects or
have been taken over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats
common at the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

Supervisor : H y n e k J i n , I n g . , DIFS FIT BUT
Beginning of work: November 1, 2017
Date of delivery: May 23 , 2018

VYSOKÉ UČENÍ TECHNICKÉ V BRNř

Dušan Kolář
Associate Professor and Head of Department

https://www.hbbtv.Org/resource-library/%23specifications
http://www.oipf.tv
https://developer.tizen.org/dev-
http://webostv.developer.lge.com/api/webos-service-api/
http://www.fit.vutbr.cz/info/szz/

Abstract
The purpose of this thesis is to create a tool for development of applications for certain
minority platforms, primarily Smart T V and HbbTV. Those are implemented in a client-
side JavaScript. Target group are hence the JavaScript developers, not the end-users. Said
tool will target simplification and speed-up of development processes, mainly applications'
performance tuning.

Abstrakt
Cílem této práce je vytvořit nástroj pro vývoj aplikací na určité minoritní platformy,
primárně Smart T V a HbbTV. Ty jsou implementovány v klienském JavaScriptu. Cílovou
skupinou jsou tedy vývojáři takových aplikací, nikoli koncoví uživatelé. Zmíněný nástroj
bude mít za cíl zjednodušit a urychlit vývojové procesy, hlavně ladění výkonu aplikací.

Keywords
Smart T V , HbbTV, Tizen, WebOS, Benchmark, JavaScript, React.js, WebGL, CSS Ani ­
mations

Klíčová slova
Smart T V , HbbTV, Tizen, WebOS, Benchmark, JavaScript, React.js, WebGL, CSS animace

Reference
M A D A J , Tomáš. Performance Benchmark for Smart TV Platforms, Set-Top Boxes and
Game Consoles. Brno, 2018. Master's thesis. Brno University of Technology, Faculty of
Information Technology. Supervisor Ing. Jiří Hynek

Performance Benchmark for Smart T V Platforms,
Set-Top Boxes and Game Consoles

Declaration
Hereby I declare that this bachelor's thesis was prepared as an original author's work under
the supervision of Mr. Ing. Jiří Hynek. The supplementary information was provided by
Mautilus, s. r. o.. A l l the relevant information sources, which were used during preparation
of this thesis, are properly cited and included in the list of references.

Tomáš Madaj
July 30, 2018

Acknowledgements
I would like to thank Mr . Jiří Hynek for his consultations and numerous suggestions and
Mr . Petr Mazanec, C T O of Mautilus, s. r. o., for giving me a draft of the assignment in
such a great detail.

Contents

1 Introduction 4
1.1 Problems to be Solved 5
1.2 Outline of this Thesis 5

2 The Development of T V Applications 7
2.1 Specifics of the Development 7

2.1.1 10-foot User Interface 7
2.1.2 Smart T V Quality Assurance Process 8
2.1.3 Background and the Core Problems 8
2.1.4 Improvement of the Development Process 9
2.1.5 Solution Requirements 10

2.2 General Characteristics of the Target Platforms 12

3 T V Application Environments 13
3.1 HbbTV 13

3.1.1 Use Cases 13
3.1.2 Versions and Compatibility 14
3.1.3 Development Specifics 15
3.1.4 Deployment 15
3.1.5 Issues and Testing 15
3.1.6 Safety Concerns 16

3.2 Samsung Tizen 17
3.2.1 Versions and Features 17
3.2.2 Tizen Studio 17
3.2.3 Certificates and Security Profiles 20
3.2.4 Packaging 21
3.2.5 Installation on Real Devices 21

3.3 L G webOS 23
3.3.1 WebOS IDE 23
3.3.2 Packaging 24
3.3.3 Installation on Real Devices 24

3.4 Samsung Orsay 24
3.4.1 Packaging 25
3.4.2 Installation 25

3.5 L G Netcast 25
3.5.1 Packaging 25
3.5.2 Installation 26

3.6 Platforms of Marginal Interest 26

1

4 Existing Solutions 27
4.1 jsPerf 27
4.2 Octane 2.0 27
4.3 Dromaei 27
4.4 BaseMark 28
4.5 Acid3 28
4.6 BrowserBench 28
4.7 HTML5test 29
4.8 Suitest 29

5 Design of the System 30
5.1 System Architecture 30
5.2 Used Technologies 31

5.2.1 M A U T I L U S Smart T V S D K ™ 31
5.2.2 React.js 33
5.2.3 H T M L 5 35
5.2.4 Other Development Tools 36

6 Proposed Set of Tests 38

7 Implementation Details 40
7.1 Project Structure and Development Stack 40
7.2 Individual Tests 41

7.2.1 Canvas rendering 41
7.2.2 React Motion Animations 41
7.2.3 Base64 Encoding and Decoding 41
7.2.4 CSS Animations 42
7.2.5 WebGL 3D rendering 42
7.2.6 Array Flattening 42
7.2.7 Object Deep Cloning and Merging 42

7.3 Specific Programming Principles 42
7.4 Issues Encountered During the Development 43

7.4.1 JavaScript 43
7.4.2 Various 43

8 Evaluation of the System and Results 45
8.1 Applicability Evaluation 45
8.2 Results Measurements and Comparison 45

8.3 Stability of the Results 46

9 Conclusion 48

Bibliography 49

A Manual 52
A . l Build and Deployment of Mautilus Smart T V S D K ™ 3.0 Application . . . 52
A.2 Build and Deployment of Mautilus Smart T V S D K ™ 3.0 StoryBook 52
A.3 Application Installation in Tizen Studio C L I 53
A.4 Creating a Certificate in Tizen Studio C L I 53

2

Configuration Files

Chapter 1

Introduction

Smart Television, sometimes also referred to as Connected TV, can be defined as a tele­
vision which, besides traditional functionalities, has an internet access and is capable of
providing non-linear content with interactive features. By traditional functionalities we
understand displaying content received through conventional linear (commonly known as
live) broadcasting media, either analogue or digital terrestrial, cable or satellite. Nowadays,
the key part of Smart features is considered to be the capability to allow the user to ar­
bitrarily choose and install additional software functionalities which he desires. From that
point of view, the crucial milestone marking the birth of Smart T V was the availability
of application catalogues as we know them from smartphones (Google Play or Apple App
Store). Such devices from mainstream brands first came to market around 2011 with the
appearance of Samsung's Smart TVs with Orsay OS and LG's Netcast OS. Today it is
virtually impossible to buy a television without smart functionality.

Figure 1.1: 2017 Samsung model featuring Tizen 3.0 OS

Applications available on these platforms, however, have their uniquenesses. First, the
most notable one is that the spectrum of applications is heavily dominated by services
which are providing a video content. This can be both a video on demand (VoD) or live
streams (linear broadcast); in either case, the content is received over the internet protocol.
Such market share is indubitably given by the nature of these large screen devices. They, of

4

course, are not meant to be carried around and for decades now watching a video content has
been the leisure time activity of choice for a huge part of the population globally. Nonethe­
less, there is a full range of applications available, much like they are in the smartphone
application stores. Moreover, their visual appearance tends to be significantly different from
the web or mobile client applications of the same services. The most determining cause
of this effect is that the available peripherals are in most cases limited to traditional T V
remote control with only a few buttons. Rarely some sort of kinetic controller is available,
substituting a mouse. Therefore, the applications' GUIs must be designed in such way so
that they would be fully controllable by these restricted input options. Despite sparing no
effort, definitely less can be done within those limitations compared to for instance a touch
screen controlled interface. Inherently, there must be a trade-off made between the number
of features and retaining a certain level of simplicity and thus usage comfort.

1.1 Problems to be Solved

Just like the applications themselves, their development is also quite specific. Generally,
we can say that almost all Smart T V operating systems allow running a JavaScript web
application utilizing some modified web browser core with a platform-specific device A P I
available. This goes for both the native and the H b b T V applications. The difference is that
HbbTV is a standardized environment and, in theory, should be undifferentiated across all
types of devices by all manufacturers. The reality, however, could not be further from this
idyll. [6] [23]

By far the biggest obstacle for developers is the low-performance hardware used in these
devices. It varies greatly over the range of classes of devices, roughly correlating with their
price points. Also, with each generation a certain global improvement in the performance
area can be observed, bringing each price category a notch above the last year's. Subjective
observations done by the developers suggest that the CPUs and GPUs used in mid-end
Smart TVs are roughly corresponding to those found in high-end smartphones 4-5 years
ago. In the oldest or cheapest low-end devices, this problem reaches a critical level. A
typical example is that the GUI animations are becoming infeasible when the device is
simply lacking the performance needed to render them at some reasonable frame rate. It
is virtually impossible to find out what exact hardware is used in the devices though. The
manufacturers only specify the number of processor cores and rarely the size of R A M .

It is very difficult to estimate how the distribution of devices by performance in the
real world looks like. This thesis is hoped to bring some insight into that area. It will be
done specifically by creating a tool that will allow the developers to build a database of
results collected from real devices, statistically evaluate them and to adapt their applica­
tions accordingly. Second, though probably even more important goal is to bring into the
development process a new option of measuring the performance that will provide exact,
reliable and stable results. Not only to evaluate the overall performance of a given device
but also to test the speed of certain application components or algorithms, so that various
implementations and solutions could be compared relatively quickly on multiple devices.

1.2 Outline of this Thesis

The assignment was created based on a list of requirements for such a product provided by
the Chief Technical Officer of the company Mautilus, s. r. o. in Brno, Czech Republic. This

5

company specializes in the custom development of applications for those exact platforms
mentioned earlier in the introduction and in chapter 3 which are also the subject of this
thesis. The mentioned list is included in 2.1.5 . However, the development of this thesis was
done completely independently and the result will be non-commercial and freely available.

Chapter 2 of this work will first bring some light into the development of applications
for T V platforms and its issues, followed by a draft of features expected in the final product.
Then, in chapter 3 the relevant platforms will be introduced in great detail. The research
on currently existing methods and relevant tools for performance measurement is presented
in chapter 4. In chapter 5 the proposed architecture of my solution will gradually be
unwound by presenting a brief description of technologies that the final application will
be built upon. Next chapter 6 contains the carefully selected set of tests which will be
included in the resulting tool. Chapter 7 will describe the technical aspects and details of
the implemented solution. At last, both the result application and sample data gathered
by this application will be evaluated and commented in the 8th chapter.

One more remark I find necessary to be mentioned in the beginning: The televisions
with the leading operating systems of today (Tizen and WebOS []) were first released
only in 2015 and 2014 respectively. As a consequence of that fact, there are extremely few
sources concerning this topic. The most relevant existing materials I was able to find are the
two papers [9] and [8]. Hence, most of the knowledge presented here came from personal
experiences of myself and other developers from commercial projects. Other significant
sources were the official documentations, specifications and (device APIs) references issued
by the manufacturers for the community of developers.

G

Chapter 2

The Development of T V
Applications

This chapter is an introduction to the development processes of T V applications. The
specific aspects and complications will be described and possible improvements will be
discussed.

2.1 Specifics of the Development

The very first Smart TVs to enter the market between 2010 and 2011 suffered from a
great number of issues. Ranging from an overload of software bugs (lacking even complete
implementation of ECMAScr ip t 5 []) to unbearably low performance. Moreover, back then,
the smart functionality was considered as a premium feature and thus it was exclusive to
the more expensive high-end series. The result of that was a very low market penetration.
A l l these issues all combined made the 2011 generation deprecated already in 2014 and since
then no native nor H b b T V applications are being actively supported on the 2011 models.
Therefore, all further mentions of the first generation" shall be referring to the devices of
2012 model line-up as this is the oldest relevant platform for development today.

The most important platforms (because of their market share [25]) are Samsung (using
Tizen OS since 2015) and L G (with WebOS since 2014). Those two platforms are the
primary interest of virtually all real commercial projects and they shall have the spotlight
throughout this thesis as well. Their predecessors (Orsay and Netcast operating systems
by Samsung and L G respectively) are the second most important thanks to the fact that
historically the market share between brands had not been changing much.

Recording to IHS data, the global smart TV market share was controlled by Samsung
Electronics with 37.9%, followed by LG Electronics with 12.5% while Sony, Vizio, and
Philips managed 8.4%, 5.9%, and 3.3% respectively."[25]

2.1.1 10-foot User Interface

The term ,,10-foot user interface" is used generally for all GUIs that will be primarily
displayed on large screens viewed from distances of few metres, much longer than a desktop,
laptop or hand-held displays. First, it must ensure good readability and visibility of all texts
and control elements by making them large and contrasting enough. That is not all by
far, the concept also comprehends the different peripherals which are typically represented
by only a classic remote control. These limitations need to be taken into account when

7

designing the screen layout and position of the active (focusable) control elements such as
buttons, slide bars, scrollable lists, etc. Complete functionalities from an existing desktop
or touchscreen cannot always be transformed into a 10-foot UI. The UI often requires
significant simplifications. The most crucial principle of GUI design is to always make clear
which element is focused and never lose the focus. Because of the controllability by an
R C with almost always only 4-directional arrows, it is highly recommended to place all the
elements in an orthogonal grid, so that it would always be clear which element will receive
the focus next after a user action. Nonetheless, the GUI needs to be universal enough to
allow the small fraction of user base who will connect a kinetic controller, mouse or a full-
layout keyboard (which is completely possible with USB peripherals) to fully utilize them
as well.

2.1.2 Smart T V Quality Assurance Process

Before each application becomes available to the end-users by being listed in an app store,
it must pass a Quality Assurance Process (QA). This is true for literally every platform
with the exception of the HbbTV. Android T V applications are naturally published and
distributed through the Google Play and they go through its Q A . Other proprietary sys­
tems have own app stores as well as own Q A handled by each vendor individually. They all
have guides, checklists and documentation templates to be fulfilled beforehand.1 The two
trickiest and least obvious parts that have to be implemented correctly in every single ap­
plication are error handling and multitasking (on devices that support it). The problematic
part of multitasking is correctly suspending and restoring the application state, which is an
especially complex procedure in players with D R M involved. Very similar procedures are
applied to make instant-on functionality work correctly. The applications must be seem­
ingly „unfrozen", unaffected by the T V being turned off to standby mode and turned on
again.

Although the release date of the benchmark application developed as a part of this
thesis is not yet scheduled, it sure might be useful to know what such a process includes.
As it typically takes weeks, it's highly desired to pass the Q A right away in the round. The
key points to manage that are very well summarized in the blog post 2 by the Mautilus
company.

2.1.3 Background and the Core Problems

As it has been brought up in the introduction, the main problem the developers of these
applications are dealing with is the low performance of devices caused by their hardware.
Insufficient memory had become less of a problem after only a couple generations of Smart
TVs. However, the insufficient computational power of their CPUs and GPUs persists.
Majority of them (for example even 2016 mid-range Samsung series 6 Tizen) struggle to
even render a transition of few images at 60FPS making even such trivial an extremely
common task visibly stuttery. And that is one of the worst possible blows to the overall
user experience. It is absolutely necessary to address these issues by carefully tuning the
performance through various software optimizations. Now, such optimizations are typically
done by finding the most efficient ways of lowering scene complexity — such with minimal

1

example of Samsung: https://developer.samsung.com/tv/distribute/launch-checklist

https: //www.mautilus.com/blog/smarttv-app-qa-process-10-tips-to-make-it-through-on-the-

first-attempt/

8

https://developer.samsung.com/tv/distribute/launch-checklist
http://www.mautilus.com/blog/smarttv-app-qa-process-10-tips-to-make-it-through-on-the-

impact to the visual quality while causing the greatest performance improvement. Such
process, of course, is always very circuitous, protracts the development significantly and
thus is also very expensive.

The situation gets even worse regardless. Customers who order an application devel­
opment naturally tend to require widest possible coverage of supported devices. If an
optimization for the slowest devices was utilized, the product might become rather visu­
ally unappealing. Which is both completely unnecessary and undesired as the mid- and
high- end devices would be left with the same scanty application, leaving their potential
unfulfilled. Usual compromise of this is to target the estimated median of overall devices'
performance. Of course, that is a rather suboptimal one as it results in slower devices
suffering from jerky behaviour and faster ones are typically left with lower resolution than
they would actually be able to handle.

The ideal, perfect solution would be to have an application that will be able to adjust
its complexity (hence its performance requirements too) on runtime to precisely match and
fully utilize the performance level of the device it is running on. That part of this work will
most directly affect other applications developed in the future.

The global real-world distribution of performances of devices is hard to estimate. Within
the sales of a single generation, it can be expected to have somewhat normal distribution
shifted towards low-end. The reason behind that is that, as mentioned earlier in the in­
troduction, the performance of a device usually roughly correlates with its price tag. And
therefore it copies the number of pieces sold. The second aspect is a certain general shift in
performance upwards with each new generation to come to the market. Unlike with smart-
phones, there is only a tiny after-market for the private trading of used television. They
are likely to be used until they malfunction which makes the oldest devices back from, say,
2013 still very sizeable and significant group. In comparison, most of the 2013 smartphones
have already forced their owners to an upgrade a long time ago. However, the first aspect of
televisions to become outdated are the smart functionalities, application performance and
application support. And as the televisions have for decades had the secondary function
as displayers for external sources (historically S C A R T , in the last 15 years HDMI) , the
smart functionalities can be upgraded in this way as well. There are countless of cheap
streaming sticks, dongles and boxes (like Chromecast, Roku, Amazon Fire T V , . . .) which
can effectively multiply the lifespan of the television by cheaply providing an up-to-date
hardware and software.

2.1.4 Improvement of the Development Process

The purpose of this work is to develop a performance benchmark — a testing application
that will execute performance measuring tests. It will be run directly on the device being
tested. The test runner shall be automatized and the set of tests configurable in multiple
ways. The core functionality is to measure the performance of device's web engine, that is
the rendering core (for example WebKit, Chromium, Presto, . . .) and the JavaScript engine
(for example V8, JavaScriptCore, . . .) . That is closely followed by the need for assigning
a score or rating based on the result. The score should be an absolute value normalized
to a chosen device, probably the currently most wide-spread model. The reason for that
is so that it would be possible to compare any of the devices tested at any time with each
other. Also, it is desirable to compare them with the standard browsers run on a much more
powerful desktop PCs. A common practice of the developers is to run and immediately test

9

the progress in a standard browser with C P U throttling enabled. This will provide them
with an accurate value of the throttling ratio.

There are few more expected use cases. It is desired to collect the results for the purpose
of statistical evaluation. For this, a simple server with a database solution and suitable A P I
will be needed as well as the support in the client-side application and library. Furthermore,
an optional extension of the benchmark might be a functionality similar to the jsPerf [4.1].
It would allow the developers to execute, measure and to compare the speed of arbitrary
JavaScript algorithms/scripts in order to find the optimizations with a lesser effort. It
should also be able to test the performance of an isolated React component, test the speed
of animations etc.

2.1.5 Solution Requirements

This subsection contains the complete assignment received from the C T O of company Mau-
tilus, s. r. o. in Brno. However, as it was already stated in the introduction chapter, the
result will be non-proprietary and publicly available. This assignment served as a mere
inspiration for the thesis and will not be followed in its entirety mostly because its extent
is too big.

Two distinct parts are expected as the result:

• Standalone application benchmark

• Light-weight library

Standalone Benchmark

The standalone application will be used both to comfortably test new features in develop­
ment and to build a database of detailed performance aspects of various devices. There are
pretty much no limitations to the execution time.

• It will run an included set of tests (or its subset) in a manner similar to for example
browser benchmarks Octane 2.0 3 and Dromaeo 4 .

• It will display the results of the test both graphically and log them to a developer
console as well.

• It will calculate a single performance score in such manner so that it will be rea­
sonably stable when the benchmark is run repeatedly. (Problem that the developers
have been frequently encountering is that the televisions are running various tasks
in the background which have a short-term but significant influence on the speed of
application of interest. Therefore it is entirely possible that substantial fluctuations
will be recorded throughout multiple runs.)

• Based on the result assigning the device into one of a few discrete performance classes
(for example low-end, mid-end, high-end). That will allow the automatic runtime
adjustments to be done in a simpler way by selecting a discrete configuration set.

• The results along with a detailed info about the device will be posted to a logging
server.

3

https: //chromium.github.io/octane/
4

http://dromaeo.com/

10

http://dromaeo.com/

• Support of as many platforms as possible. The cross-platform compatibility will be
guaranteed and limited by the use of the M A U T I L U S Smart T V S D K ™ [5.2.1] and
drivers available within it. Starting with H b b T V 1.1.1, Samsung Tizen, Samsung
Orsay, L G WebOS, L G Netcast, Hisense Vidaa, Panasonic Firefox, PlayStation 4,
Xbox One, Google Chrome, Android T V (Philips, SONY) , . . .

Library

The library should be possible to be included in any third party application. This could be
achieved by incorporating it into the Mautilus Smart T V S D K ™ [5.2.1] and that way into
any other applications built on it.

It should contain only a minimal subset of the most important tests from the standalone
application [2.1.5]. Thanks to that it could be run much more quickly. Typically only once
during the first launch of an application after it was installed or, optionally, at each start
or even multiple times. That is, however, not a concern of the library as it will be entirely
in control of the third party developer. Important is to keep the launch delay as little as
possible.

For the purposes of the library, several classes according to the performance level should
be established. The third party applications which will include this library will then, af­
ter resolving their performance category, be able to select the corresponding configuration.
Those will be manually assembled sets of functionalities switches specific to each applica­
tion and each performance class.

The key properties are:

• Short execution time of the tests — ideally ~ 2000 ms at most.

• Small size — ideally under 100 kB.

• Beside the brief performance test it should be able to test support for various features
of interest (HTML5 Canvas, CSS3, WebGL, . . .) .

• The developers should be able to configure the subset of tests they will want to be
used in their applications.

Examples of expected tests

• Test of D O M rendering speed.

• Speed of all types of D O M query selectors.

• D O M manipulation: speed of generating and modifying H T M L elements, JavaScript-
inline-style animations. Correlation of these properties to various sizes of D O M .

• Speed of mathematical operations: for example physical simulations, object collisions.
Natives Math methods as well as simplified, lowered precision and integer calculations.

• Rendering speed of images in various formats, versions, compression settings, and
resolutions.

• Test of rendering frame rate in a real 2D game.

• Speed of CSS2 and CSS3 animations.

11

• Test of array operations speed (for example flattening of nested arrays).

• Test of string operations speed including Regular Expressions.

• Test of bitwise operations speed.

• Test of 2D and 3D raycasting speed.

• Test of encryption and hash functions speed (for example A E S , SHA-256, SHA-512).

• Combined tests of various operations and animations done in parallel, which would
simulate common situations in a real application or game.

• H T M L 5 support test and canvas 2D rendering speed test.

• WebGL support test and rendering speed, Ray-Tracing renderer speed test.

• Web Workers support test and parallel operations speed test and scaling correlation.

Furthermore, I intend to add a single more test in order to also determine the current
state of readiness of the WebRTC 5 technology on these platforms, where I foresee a great
potential for it.

2.2 General Characteristics of the Target Platforms

There is not much of a hierarchy present in the nomenclature of the platforms discussed
here, but there are some components that must be specified when referring to some subset of
Smart T V platform. They will be shortly explained now. The most important is, of course,
the brand or the manufacturer. Second, comes the operating system and its version. Last
is the year of the release. A n example: LG WebOS 3.5 2017. Furthermore, there can be a
division between series and model groups specific to brands which will be elucidated in the
corresponding sections of this chapter.

Generally speaking, pretty much all of the manufacturers update their product line
annually, they rarely use multiple operating systems or even versions of them in one gener­
ation, making it a little easier to keep track of. Exceptions to this rule are:

• Samsung having both Tizen and Orsay OS in the 2015 model lineup.

• L G having both webOS and Netcast in 2014 and 2015 models.

• Philips is by far the worst case, in 2012 having used Ne tTV OS and Fusion OS in
version 2 and 3; M K T OS in 2013 and 2014; NetTV and Android T V in 2015. Since
2016 they have abandoned all but Android T V .

Following chapter will contemplate the specific aspects of each individual platform or
operating system in great depth.

5

https: //developer.mozilla.org/en-US/docs/Web/API/WebRTC_API

12

Chapter 3

T V Application Environments

This chapter elaborates on individual T V ecosystems including their application platforms
and their development environments.

3.1 H b b T V

HbbTV is a technology of hybrid television. That means a combination of linear broadcast
with some interactive features. Those are implemented as a JavaScript application bound
to a D V B channel via its metadata. Only a U R L leading to the application is included in
the D V B transport stream. When a T V recognizes the special H b b T V tag (also referred
to as HbbTV signalization) marking the availability of an application, it accesses the U R L
and launches the application in an overlay over the linear broadcast.

There are several versions of the H b b T V standard. Their feature set is being gradually
extended. However, it also brings the issue of the highly inconsistent support on the de­
vices. The product owners are forced to make a decision on the lowest compatible HbbTV
version. That always leaves a group of users unable to access the application. However, in
the devices from the early generations, it is not rare to see the H b b T V implemented incom­
pletely or even straight-up incorrectly, especially the video player APIs. This is specifically
mentioned in 7.4 . The specifications of all versions of H b b T V are publicly available in full
extent. [3] [16]

Nearly all of the early generations of devices use the Opera Presto core, after 2014 a
shift towards the Apple WebKit can be observed in the major brands, and latest, after
2016, Samsung and L G are switching to Chromium core with V8 JavaScript engine. The
rendering core used can be easily detected from the User-Agent value. [20] [6]

3.1.1 Use Cases

HbbTV is in the vast majority of cases used as supplementary O T T (Over the Top) service
of a T V channel. It is often referred to as Red Button portal. These portals can offer a wide
range of applications, typical ones are E P G (Electronic Program Guide), weather forecast
service, news, interactive advertisements, games, . . . Often such applications are already
provided as part of the Smart T V OS native toolset, nevertheless, they still tend to be
commonly implemented in the H b b T V portals. The reason for that restriction is that they
can be completely customized to each channel's specific needs, often featuring significant
extension, for example, trailers in the E P G . The biggest potential of this platform is mostly
seen in the advertisement because, naturally, T V channel owners are looking for a way to

13

Figure 3.1: H b b T V application of Czech T V channel Nova. Thumbnail of the live broadcast
is located in the header. Screenshot was taken on a set-top box V U + Z E R O running a
linux-based Enigma2 OS. Font rendering inconsistency is very noticeable.

justify the development costs by monetizing these systems. Also, the interactive advertise­
ments are perceived to be much more intriguing and thus efficient. Common practice is
that an advertiser orders development of an advertisement which he then distributes to the
T V companies to have it deployed. There are already at least two H b b T V advertisement
management systems (intended for the T V companies) in existence.

Lately the option of injecting VoD (Video on Demand) into the linear D V B content if
often mentioned for the future versions of H b b T V 2.0 . It could serve mostly for personalized
advertisements.

3.1.2 Versions and Compatibility

The specifications of all versions of H b b T V are publicly available in full extent. [3] [16] The
versions of H b b T V most commonly found implemented (or claimed to be implemented) are
1.1.1, 1.2.1., 1.3.1 and 1.4.1. Version 1.5.1 appeared for the first time only in 2017 and the
same applies for 2018 models. However, Samsung suggested a possibility of bringing the
support for H b b T V 2.0 in future firmware update. [] In general, the biggest new features
of the latest 2.0.x versions are various possibilities of cross-platform integration and better
video support including U H D resolution, high framerates, modern codecs like H E V C and
V P 9 and H D R colour profiles.

It can happen sometimes that certain feature is required (most frequently adaptive video
streaming using M P E G - D A S H) which is supported only in given H b b T V version (1.2.1 in
case of M P E G - D A S H) . In such case, the application is disabled from even launching (except
for some error message) on devices with lower H b b T V version. This significantly reduces
the testing effort as those older devices may be ignored completely.

14

3.1.3 Development Specifics

A user interface design aspect specific for H b b T V are so-called safe-zones. The resolution of
HbbTV application is 1280 x 720 px but only the area without 5% margin is defined as safe
to be used because it might get cropped. It is a part of OIPF specifications [], however,
only two manufacturers really require them. Sony crops the application by 3.5% (20 px on
top and bottom), Panasonic by 5% (36px on top and bottom). This concept of safe-zones
is a relic surviving in the broadcast standards from the age of C R T screens.

Another limitation is the availability of fonts. The default font family is Tiresias Screen-
font. Support for custom fonts officially starts in version 1.3.1. A n important word of
warning: each manufacturer can implement the Tiresias font themselves and the resulting
text size may vary significantly. That can cause complications when the scene layout is too
tight.

Last and perhaps the most important are the controls. A n application can set a keymask
and then register key events handlers. To put it shortly, only the absolute minimum of keys
should be masked out for the application. Other keystrokes should be left to be handled by
the T V . For example, channel selection keys should never be used. Preventing the user to
exit the application or change the channel may result in fines by the broadcast regulators
and such incidents did happen so this should be taken seriously.

3.1.4 Deployment

The applications can only be launched on the T V when the tag is received as a part of the
D V T channel's transport stream. Then, it can lead to the application hosted on an H T T P S
server, for example in the local network. That can be achieved by creating an own D V B
broadcast using, for example, the OpenCaster 1 . Although, there are some concerns about
the legal aspects of this practice in some countries.

For this exact purpose, to even make testing H b b T V applications on real devices some­
how feasible, Mautilus has developed a H W gadget called HbbTV Play out kit2. This tool
provides a user-friendly UI allowing fairly easy set-up of a custom test channel(s) with,
of course, the H b b T V signalization leading to any own test server. It is also based on
OpenCaster and Raspberry P i , all in a custom 3D printed enclosure.

3.1.5 Issues and Testing

As mentioned before, H b b T V applications are built using H T M L and JavaScript and as
such should be runnable in any browser. However, they are heavily dependant on the
HbbTV A P I . There are plug-ins emulating this A P I available for Mozilla Firefox and Google
Chrome. Still, it is recommended to access the application deployed on a local server
because of the CORS restrictions {Cross-Origin Resource Sharing). Those should be also
part of the H b b T V on real devices, however, only Sony is really using it.

„CORS is a mechanism that uses additional HTTP headers to tell a browser to let a
web application running at one origin (domain) have permission to access selected resources
from a server at a different origin. A web application makes a cross-origin HTTP request
when it requests a resource that has a different origin (domain, protocol, and port) than its
own origin.
For security reasons, browsers restrict cross-origin HTTP requests initiated from within

x

http: //www.avalpa.com/the-key-values/ 15-f ree-sof tware/33-opencaster

https: //www.mautilus.com/products/hbbtv-playout-kit/

15

http://www.avalpa.com/the-key-values/
http://www.mautilus.com/products/hbbtv-playout-kit/

scripts. For example, XMLHttpRequest and the Fetch API follow the same-origin policy.
This means that a web application using those APIs can only request HTTP resources from
the same origin the application was loaded from unless the response from the other origin
includes the right CORS headers."'^

Also, in 3.1 it was said the oldest devices use Opera Presto browser core. Because of
that, the desktop builds of Opera from before 2012 are valuable testing tools of last resort.

It is highly recommended to test the application on a widest possible range of real
devices. Ideally at least each OS in each version by each manufacturer. Additionally, it
has to support any device capable of receiving the relevant broadcast and with HbbTV
capabilities. That includes all kinds of set-top boxes. And, those are by far the most
problematic devices, which is not surprising as those are typically small manufacturers
making low-cost devices in small batches. Many share the same OS core, but fragmentation
is still very high. Typically, the higher-end models use Linux-based OS Enigma2 with
various GUI extensions which, however, do not matter, because there is only one HbbTV
plug-in available and it is compatible across all Enigma2 systems. Issues appear with small
Chinese vendors who decided to implement the H b b T V themselves. These bugs are literally
impossible to detect without testing on real devices and they are also extremely difficult
to debug because of the lack of H b b T V developer tools, such as a remote debugger. Often
even the little available, such as a remote log console is made useless when a device fails to
run JavaScript at all because of the wrongly implemented parser or something else in the
JavaScript engine. Relatively common is an incomplete implementation of ECMAScr ip t [2]
even in its version 5 which is fortunately rather easy to discover and fix with an appropriate
polyfill.

A similar situation is with H T M L and CSS support. H T M L usually did not support
even table elements on devices until 2014, likewise CSS3 was a rarity until roughly the same
time. On the other hand, at some brands, some H T M L 5 and CSS3 functionality appeared
ahead of support of the H b b T V version officially implementing it. [] Latest devices often
suffer bugs, for example, canvas element was dysfunctional on Samsung Tizen 2017 (in
both native and H b b T V applications) for many months after their initial release but luckily,
unlike most bugs, got fixed by a firmware update. Missing support for certain CSS effects
is perhaps the least severe problem as it doesn't cause an application to crash.

A possible measure to reduce the testing device pool by an order of magnitude could be
to the only test the devices sold or distributed in the target country. It is not rare that only
very few people own some of the most problematic devices and want to use the HbbTV
application. In such case, when a customer (the channel owner) receives a complaint, it is
often cheaper to give the user a new device (to which they so far always agreed) than to
identify the bug and implement a fix for it.

3.1.6 Safety Concerns

In February 2017 fairly serious H b b T V attack was presented at the E B U Media Cyber
Security Seminar'1. Essentially, it is performed by creating a D V B - T broadcast with a fake
channel configured to fully match some real legitimate channel. The only difference is in
the H b b T V tag — it is modified to lead to the attacker's application. The broadcast does
not need to have high power. As long as the targeted device receives it stronger than the
real broadcast, it switches to use the stronger source, in this case, the malicious one.

3

https: //developer.mozilla.org/en-US/docs/Web/HTTP/CORS
4

https: //youtu.be/bOJ_8QHX60A

16

A property of H b b T V is that the application is always launched immediately without
any indication (except for the H b b T V tag being present). The only defence against this
kind of attacks is disabling the H b b T V completely. Of course, only the terrestrial D V B is
vulnerable to this attack, it is virtually impossible on cable nor satellite broadcasts.

There is already McAfee Antivirus application available in the Tizen Store (only for 2017
models with Tizen 3.0) but it does not mention H b b T V anywhere in the descriptions.

3.2 Samsung Tizen

Samsung uses the Tizen OS in countless variations and versions across many platforms
ranging from smartphones and smartwatches to smart home appliances like fridges and
washing machines. It was first featured in smart TVs in 2015 in its version 2.3, then in
2016 version 2.4, in 2017 version 3.0 [Fig. 1.1] and also in the latest 2018 models in its
version 4.0. [22]

Tizen applications can be implemented in JavaScript (referred to as „Web Applications"
by Samsung's guides), .NET, or C++ (referred to as ,JSfative Applications"). The applica­
tion has access to the Device A P I [21]. This will, however, not be used directly because of
usage of the Mautilus S D K [5.2.1], which introduces an A P I acting as a generic abstraction
layer over the vendor-specific APIs. Tizen TVs use various rendering cores and JavaScript
engines with inconsistent supported feature sets and versions. The up-to-date overview can
be found in [] and [20].

The functionalities of the Tizen A P I are categorized into several privilege groups. [18]
The Tizen ecosystem uses a system of certificates (Author and Distributor) which are
linked to a Samsung account when created and are carrying its privilege level. When an
application uses a functionality belonging to certain privilege group (for example D R M for
the streamed video player) it has to be signed with a certificate authorized for that privilege
group usage during the building and packaging process. Unsigned packages are not possible
to be installed on a real device.

3.2.1 Versions and Features

This is one of very few parts that are properly documented in one place, well structured
and in great detail. General overview of most important properties including supported
streaming and D R M combinations [19]; Overview all models, their categorization, operat­
ing systems and their versions [22]; Web Engine Specifications (available JavaScript, CSS
and H T M L versions and features) [20]; Supported media formats (down to codec subver­
sions) [17].

3.2.2 Tizen Studio

The Tizen Studio 6 is a comprehensive set of tools for developing Tizen native and Web
applications. It consists of an IDE, emulators, toolchain, sample code, and documentation.
Tizen Studio runs on Windows and Ubuntu, as well as macOS. It is based on the Eclipse
IDE, overtaking all of its Java slowness and instability and taking them much further. Tizen

5

https: //www. iotgadgets. com/2017/05/samsung-partners-mcafee-brings-security- software-

gal axy-s8-smart-tvs-pcs/
6

https://developer. t izen. org/development/t izen-studio

17

https://developer

applications can also be developed without relying on the official Tizen Studio, as long as
the application complies with the Tizen packaging rules.

H Web-Teen Studio
File Edit Navigate Search Project Run NbO Development Window Tools Help

m - m I a # - © - <a* LtJCUJ^HG-J-aJ^H] • | jj— ̂ H K̂ l O '

Project ExpJw

er_1_:_3S_Tiztn_IP103

New >

Build Project F10
Build Signed Package

Run As >
Debug Ai
Profiled >

Validate
Check Privilege

Delete Delete
Move...
Rni lM. , F2
Refresh
Clow Project

Check Stale Object >

CheckJa/aStnpt Rules

Conligure
Localization

Show In Alt+5hih>W >

1»m

Properties Alt-t- Enter

Is

£ ©

Connection Explotef

1 Tizen Web Application

Debug Configurations,,

l p 172.20.3̂ 11:2*101 [UE40MJ6102)

Name IP Port Connect

1SL4a_JHD_7i« 17220.3.210 26101 • 1TJ2.FHD T722DJ.Z12 26101

16_32_f hd 172,20.3,207 26101

16_«_FHD 17220 J) 201 26101 i ^ n
V

m Tizen Studio update available

Figure 3.2: Tizen Studio in Windows. Montage: shown are the context menu for installation
of project with a debugger attached and the Device Connection Manager

The predecessor of the Tizen Studio was called Tizen S D K . It was deprecated in late
2016. It is still possible to use it, but it is unable to build applications with Tizen 3.0 (2017
T V models) support.

Hidden Issues

Besides explicit requirements such as installed J D K , there is one crucially important con­
dition which is mentioned absolutely nowhere. In order to use create and sign a project
package, it is absolutely necessary to have a Windows User Account name that does not
contain a space character. That would cause the packaging command chain to fail. Specif­
ically because of one folder manipulating tool within it which seems to be running sort of
emulated Unix regime. This fails when a path containing a space is used. There is no error
message, only a numerical error code which is not even unambiguous to this issue. Back
in 2017 when spent days dealing with this bug for the first time there was no mention of
it even in Samsung/Tizen developer forums. It had been resolved by a pure guess. The
W U A C username can be checked with windows command echo yousernameyo. Changing
the username of an existing Windows account is possible but very much recommended not
to do so because it can cause tremendous issues with many other Microsoft applications
(Office etc.). Creating a new Windows account is really the least complicated option.

Similarly, changing the default installation locations may cause issues with some tools
within the Tizen Studio and it is advised not to change it. In all following C L I examples I

18

will used the default installation path (C:\tizen-studio\) as well as default path to the
projects workspace (C: \Users\

0

/
0
username0/o\workspace\).

The Tizen Studio IDE has significant memory demands especially during packaging,
installing and debugging. Running out of free memory had been experienced on machines
with 8GB R A M installed. It can cause the mentioned operations to fail without any error
message suggesting the real cause.

Last but not least, whenever a file is imported into a project in the Tizen Studio, the
IDE runs a JSHint validation. When an entire large project is imported, this can take a
couple minutes on a low-power dual-core C P U . This isn't the case when a .wgt package
is imported, as those are validated during packaging (with C L I as well) and the validation
after the import is skipped. This can, however be disabled in Window > Preferences as
shown in Figure 3.3. The use case for importing entire file structures will be demonstrated
later in 3.2.5.

E] Prefere

type filter teat

v Tizen Studio

Automatic Updates
Logging
NaCI
Rapid Developments
REST Viewer
Sample
Security Profiles
Tools

v Web

Configuration Editor
CSS Editor
HTML Editor
JavaScript Editor
JSQN Editor
Privilege

JavaScript Analyzer

Tl
JavaScript Editor

JavaScript Validation
The following parsers are used in checking JavaScript syntax.
Choos-e the level of checking:

JSHint validator

• X

Build • R «

Validation Level Warning T

• JSHint Options
• JSHint Properties

Restore Defaults Apply

Apply and Close I Cancel

Figure 3.3: Disabling the automatic JSHint syntax validation.

Package Manager

By default, Tizen Studio installation contains only very basic tools whilst the others need to
be installed additionally as extensions. That applies also to extension allowing development,
packaging and installation for televisions. The utility for this purpose is the Package Man­
ager. It is an independent tool and can be launched either from the IDE (Tools menu or TM
+ ['Shift -ff] + P I) or directly at C: \tizen-studio\package-manager\package-manager. exe .
In the same location can be found a package-manager.exe, however, it seems to not be
meant for a standalone use without the GUI (no documentation is available in itself or
anywhere else). The list of packages recommended for development for T V is in Figure 3.4 .

Tizen Studio CLI

The Tizen Studio also offers a command line interface, although it is implemented only for a
somewhat limited subset of functionalities. Also, from my rather extensive testing, I found
it significantly problematic in older Tizen SDK, with many functions working incorrectly or
not working at all, most often with unhelpful error messages with no obvious cause. There
is no complete and consistent documentation available, instead, there are only bits and

19

file:///tizen-studio/package-manager/package-manager

• Package Manager

TIZEN STUDIO

Package Manager

• Package Manager

TIZEN STUDIO

Package Manager

View installed packages-

License Update Status Action

> I g U . o T v (m delete)

v ^ Tizen SDK toot

v Baseline SDK • 11 1

.NET CLI ! ± install:

Certificate Manager 'ftdelete)

Emul,.orm,n, g„ (f t del eta)

Native CLI (f t delete)

Native IDE • i . i

> Native toolchain (& install)

Web CLI undelete')

Web IDE undelete1)
V

Native tool chair [Tizen SDK tool;)

Native tool chain is. a set of ct
open-source based packages

linker and debugger, vi

Extension SDK

View installed packages

L, t,n Se Update Status Action

v <̂ Extra,

loT Setup Manager

v TV Extension5.-4.0 (ft delete) 1
Emu, a ,„ (ft delete)

Web app, development (ft delete)

> IOT-Headed-4.C

> IOT-Headles-!--4.:

Samsung Certificate Extension (ft delete)

Samsung Wearable Extension & (=)

v TV Extensions-Tools (ft delete) 1
Repair (optional] (ft delete')

Web app. tools (ft delete)

IOT-Headed-4.0 (Extras]

Description
Tizen loT Headed Custom Platforn

Figure 3.4: Tizen Studio Package Manager GUI in Windows. Recommended set of exten­
sions is shown as installed (those with a red delete button)

pieces of documentations, references, tutorial and examples for various subsets of features
offered to be found on several Samsung and Tizen developer web locations.

CLI option of the most common actions will be demonstrated as well as the more
common IDE.

3.2.3 Certificates and Security Profiles

The Certificate Manager GUI available in the Tizen Studio IDE is highly recommended
over the C L I . Also, the Samsung Certificate Extension [3.2.2] [Fig. 3.4] is required. This
Manager replaced the

As was mentioned at the beginning of 3.2, Tizen uses a system of certificates and there
are two of them (Author and Distributor) needed for packaging, installing and publishing
the application. In reality, a single certificate file (.pl2) can be used in places of both of
them and also across any number of applications. The reason why they're split into two is
to allow better control in case two different organizations are developing and publishing a
single application. The certificates represent a link to a specific Samsung account bearing
a certain level of privileges.

Likewise, for working on several projects simultaneously Tizen Studio has easily switch-
able Certificate Profiles (previously called Security Profiles) each of which can be set up
with different certificates. One of them is always set as the global default in the C L I and
whenever later a profile is not specified in a command, the active global default is used.

A certificate is needed only for signing a package. Installation of a pre-made and signed
.wgt package 3.2.4 can be done via the Tizen Studio CLI without a certificate. On the

20

contrary, when using the Tizen Studio IDE, a certificate is necessary because there is no
discrete option for an installation. Instead, the . wgt package must be imported (its project
space is loaded) and when being installed, it is first implicitly packaged and signed again.

GUI set-up

The steps of creating a Certificate Profile using the Tizen Studio Certificate Manager GUI
are shown in Samsung's own guide 7 very clearly and in enough detail. The Certificate

The .p l2 Manager can be found in Tools menu or launched by JOT
certificates can be created either directly in the Certificate Manager (which is recommended
for the Distributor certificate as the DUIDs (Device-Unique Identification) to which it will
allow installations are bound to it) or at Samsung or Tizen websites and then imported. In
either Samsung Developer account is a necessity.

CLI set-up

Creating a dummy Author certificate (useful for installation over CLI) is described in man­
ual A . 4 .

3.2.4 Packaging

The .wgt package is basically a renamed .zip archive, it can be easily looked inside.
Besides the identical project structure, it contains a license file. There is also a second kind
of package, a .tmg, which is described later in 3.2.5.

In the Tizen Studio IDE a .wgt package is implicitly created during installation or it
can be done individually. Both options are visible in Figure 3.2.

CLI

Both Web CLI and Native CLI extensions [3.2.2] [Fig. 3.4] are required for this for a reason
unspecified by Samsung. Missing the Native CLI extension causes a meaningless and com­
pletely unhelpful error exception in thread "main" Java.lang.NoClassDefFoundError:
org/tizen/core/gputil/PathUtil/".

The command to create a . wgt package (by default will be placed in the working directory)
is:
C:\tizen-studio\tools\ide\bin\tizen.bat package -t wgt
-s <name_of_certificate_profile> — <path_to_working_directory>

3.2.5 Installation on Real Devices

There are two ways to install a packaged application onto a real Tizen device. In either
case, it is first needed to enable the developer mode on the T V where the application should
be installed.

1. On a T V , navigate to Smart Hub > APPS > My Apps.
7

https://developer. Samsung, com/tv/develop/getting-started/setting-up-sdk/creating-

certificates

21

file://C:/tizen-studio/tools/ide/bin/tizen.bat
https://developer

2. Type sequence 12345 on the remote control or a keyboard. A window will be opened.

3. Toggle the switch Dev mode: to on.

4. Into Host PC IP enter the IP of the P C from which the Tizen Studio will be connected.

5. A message suggesting a reboot will appear, however, I found this not necessary if the
Dev Mode had already been turned on at some point before.

Via Tizen Studio IDE

First, recommended one, is to install the application using the Tizen Studio. Now, there
multiple options for how to get it in there in case it was developed in some other envi­
ronment. The IDE itself is of a rather poor usability and thus there is a good chance the
application will be developed in some other IDE more suitable for JavaScript projects. One
option is to create a new empty project in Tizen Studio IDE and then the entire file struc­
ture can be imported into the project. This is much less comfortable and slower (especially
with the JSHint validator enabled [3.2.2]). Then the project can be built, packaged and
installed. Or, thanks to the Tizen Studio C L I option, the packaging can be integrated
into the building chain in any task runner (Grunt, Gulp, Webpack, . . .) . Afterwards the
. wgt package can be imported into the Tizen studio (which implicitly loads it as a project
because it must have been signed during packaging even via CLI) and directly installed and
launched on a television.

Via Tizen Studio CLI

The installation can also be performed using the C L I only and thus also included into an
automatized task chain. The process is described in manual A . 3 .

From USB drive

The second way is to install the application from a USB drive. This, however requires a
Samsung Seller account with Partner level privileges. That is because the .wgt package
cannot be installed directly, it first needs to be signed using a Samsung's online USB Demo
Packaging T o o l 8 . There it is recertified, repackaged into a .tmg package (still effectively
a .zip archive) and a separate license file is generated. Both the .tmg package and the
widget. license file need to be placed in a folder named userwidget in the root of the
drive. For for example F:\userwidget\myApplication.tmg.

After attaching the USB drive to a television a message in the top part of the screen
will appear informing about installation start and then the second one about the instal­
lation success or failure (most often caused by certification issues). Then the application
will appear in the list of installed applications and it will stay permanently installed and
accessible even after unplugging the USB drive. In fact, when the T V is turned off and on
again with the USB drive attached, it detects the installation package and reinstalls the
application.

On Tizen 2.3 (2015) it is no longer possible to install an application from a USB drive.
This can now only be performed on Tizen 2.4, 3.0 and 4.0 (2016, 2017 and 2018).

Tizen Studio I D E also has one crucially important feature — it allows the applications
to be installed and launched on a real device with a debugger attached to them. It is

8

http: / / seller.samsungapps.com/tv/portal/main

22

file://F:/userwidget/myApplication.tmg
http://seller.samsungapps.com/tv/portal/main

essentially a stripped-down version of the Chromium debugger (or at least is based on
it and the Chrome DevTools remote debugging protocol 9) with D O M inspector, Styles
live editor, JavaScript debugger, console, network inspector, performance and rendering
analytic tools and many more. This is shown in Figure 3.2.

3.3 L G webOS

Also, the webOS applications are using a JavaScript A P I [] as a way to get access to
the device's functions and control them. L G splits it into Standard Web A P I (normal
JavaScript and H T M L functionality only with player extensions) and Luna Service A P I for
device-specific controls like the D R M , device information etc. plus a library webOSTV. js
which implements 2 classes with methods for easily accessing the Luna Service A P I calls.
The exact extent of supported JavaScript, H T M L and CSS implementations is documented
in great detail, however, it still had not been outdated for the 2018 models with webOS 4.0
(as of July 2018). [7]

Figure 3.5: L G webOS main menu. Versions 1-4 are visually indistinguishable.

3.3.1 WebOS I D E

WebOS also offers a developer IDE and toolkit named webOS IDE10. It is very similar to
Tizen Studio, the reason being that it is also based on Eclipse IDE. However, unlike Tizen,
the webOS ecosystem uses no certificates in the development process. The different security
measures will be explained along with packaging and installation. Another difference is that
webOS IDE contains a manager of applications on connected devices allowing to individually
install, uninstall and run applications.

The emulators are not included in the IDE but they are virtual machines for the Oracle
VirtualBox. Important is to enable P A E / N X and V T - x / A M D - V options.

9

https://chromedevtools.github.io/devtools-protocol/
1 0

http: //webost v.developer .lge. com/sdk/tools/ide/

23

https://chromedevtools.github.io/devtools-protocol/

3.3.2 Packaging

The packaging tool offers a minification step. It is recommended for performance improve­
ment, however, during the development, it makes debugging almost impossible. The file
which must be included in each webOS project root before packaging is appinf o. j son [B.4]

3.3.3 Installation on Real Devices

Until 2016 webOS applications were installed from USB drives. The . ipk package was
created as an output of the webOS IDE and then it had to be signed and repackaged with
a D R M on webOS T V Developer portal as USB App Test. This is similar to what Samsung
enabled on Tizen models 2016 and newer.

Now the installation is possible only through the webOS S D K . Special Developer Mode
application had been added to televisions. It can be found in the standard application
menu and it requires a login with a webOS T V Developer account. A reboot is done and
afterwards, a synchronization passphrase is displayed. Later on, it will have to be entered
when connecting to the device in the webOS IDE. Also, a timer showing for how long the
developer mode will stay enabled is displayed and a button to extend this time easily is
present.

If an .ipk package was created by the C L I packaging tool or obtained in any other
way, it can be installed immediately without the need of importing it as a project and
repackaging it before installation (unlike Tizen Studio).

Another improvement over the Tizen Studio is in the Target Configuration (connected
devices manager). In there a list of installed applications is available with options to launch
any of them remotely, also with debugger connected even if it was installed any time before
by someone else.

3.4 Samsung Orsay

Orsay is the Samsung's first smart T V operating system, the predecessor of the Tizen OS. It
was launched with the very first generation of smart TVs in 2011 and it had last appeared
in the very lowest model group 15TV_ENTRY of 2015 []. It was, luckily, not a very
common device as it was suffering from vastly inferior hardware performance compared
to the 2015 models with Tizen OS and its other features were fairly limited as well, for
example, it did not even support the H b b T V plug-in.

(a) Orsay 2011, 2012 (b) Orsay 2013, 2014, 2015

24

As for development, it only supports ES5 and partially CSS3. Sadly, unlike for the
Tizen, the detailed web engine specification is not available. Although, it is safe to assume
that if the Tizen 2.3 doesn't have support for something, neither does the Orsay.

3.4.1 Packaging

Orsay has a much more straightforward application development and deployment. It does
not need to be signed, certified or packaged in any special/unconventional way. Only
requirement are for conf ig.xml [Fig. B. l] and widget. info [Fig. B.2] files in the root.
The conf ig.xml also links the application's icons.

These properties can also be conveniently exploited to further simplify the application
development, mainly testing. A shell application can be created which loads its content
from a predefined network location. That location can be even the actual working directory.
This enables to launch the updated version without reinstallation and it even makes a hot
module reload (HMR) possible — eliminating the need to even restart the application.

3.4.2 Installation

There are two ways to install the application to Orsay T V .
The first option is from a network folder. Typically an H T T P server (WAMP, X A M P ,

. . .) is used on a computer in the local network. In the root of the web server must
be a folder „Widget" with a widget .xml [B.3] file in it. The file can contain multiple
applications/widgets. The entire application needs to be zipped with index.html in the
root of the archive. Then a special user „develop" (no password) needs to be logged in on
the T V which enables am „IP Setting" and „Start User App Sync" in the menu, in the first
one the IP address of the server needs to be entered. Then the „sync" can be done which
will install (can take up to one minute depending on the size) all applications listed in the
widget. xml file on the T V permanently.

The second way is to launch it from a USB drive. The index.html file has to be in
a folder one level above the root, for example F:\myAppName\index.html. Rest of the
project structure can be defined in any relative way in the index.html . The application
should appear shortly after plugging in the USB drive. However, the application is not
installed permanently and is only accessible as long as the USB drive is present.

3.5 L G Netcast

Netcast is the LG' s first smart T V operating system, the predecessor of the WebOS. It was
launched with the very first generation of smart TVs in 2011 and it had last appeared in
2014, then in the very lowest model group of 2015 (under the name SimpleSmart; similar
to Samsung Orsay 2015 [3.4]) alongside the WebOS 1.x and WebOS 2.x.

A specific of GUI of Netcast applications is that a button Q.Menu must be implemented
in any player the application might contain. It is specific for Netcast platform, they have the
same H W button on the RCs, it opens a menu with some image „enhancements" settings.

3.5.1 Packaging

Similar to Samsung Orsay, there is no special package type for Netcast. The application
is simply put into a special folder structure before installation. The only file that must be
included in each Netcast project root before packaging is manifest .xml and set of icons.

25

file://F:/myAppName/index.html

3.5.2 Installation

Only option to install unpublished application on a Netcast T V is from a USB drive. The
application must into a special folder structure so that the index.html would be located
in F:\lgapps\installed\<6>-di<7i£ IZO\index.html. After connecting a USB drive to
a T V , icon of the USB drive will appear in the list of installed applications and when it is
accessed, list of applications on the USB drive will appear.

3.6 Platforms of Marginal Interest

Sony had their own framework CEB for models 2012-2014. Later they switched to Android
T V OS and there the JavaScript applications are now published on Google Play with the
Android WebView wrapper used as their shell. The C E B can still be used in Android TVs
but it adds an extra layer to the applications and as such is inherently less stable and worse
performing. And of course, a native Java Android application is the third option.

Blu-ray players also typically feature the same OS as Smart TVs of the same vendor.
They, however, never contain a D V B tuner, therefore the H b b T V is not a concern there.
Furthermore, their market share is negligible, numbers sold are ever declining, customers
sparsely want their applications to be released for these players, as the tiny user pool size
simply does not justify the increase of development cost. Even though the OS is basically
the same as the T V , behaviour in some scenarios can differ vastly and require lengthy
debugging and patching.

Streaming sticks or set-top boxes like Roku T V , Google Chromecast, Apple T V or
Amazon fireTV use either Android or some closed proprietary OS and do not allow to run
or install JavaScript applications. These kinds of devices lack a D V B tuner too and so the
HbbTV is not present either.

Satellite, Cable or Terrestrial D V B Set-top boxes are considered only in the context of
HbbTV platform in this work. They mostly feature a closed proprietary OS without an
option to install (complete lack of distribution system) and run JavaScript applications.

Gaming consoles (PlayStation 3 and 4, Xbox 360 and One) are also considered here,
although JavaScript applications are mostly just for VoD services there. Rarely for games
as they have some far better performing options for implementation of those. Neither in
these can we find a D V B tuner, therefore they cannot run any H b b T V applications.

26

file://IZO/index.html

Chapter 4

Existing Solutions

For the relevant platforms, there is currently no kind of a neither complex nor partial nor
single-purpose performance-measuring tools (also known as benchmarks") in existence; not
even a simple test of the implemented version of ECMAScr ip t []. However, there are plenty
of browser performance benchmarks and tests available. Those can be a valuable source of
inspiration to the composition and content of this benchmark application.

4.1 jsPerf

jsPerf 1 - - „JavaScript performance playground" — is an advanced tool for JavaScript
snippets, algorithms, or scripts performance profiling. It is an open-source project developed
under an M I T License, thus making it possible to use it or its parts in a simplified form
in here. This is not focused on measurement of performance differences between different
platforms or browsers.

4.2 Octane 2.0

Octane 2 is a complex browser performance benchmark. It consists of 17 different tests
ranging from core JavaScript features, bit and math operations usage in cryptography,
regular expressions, memory demanding operations with large objects and arrays to ray
tracer, emulators, virtual machines and compilers transpiled to JavaScript. It is an open-
source project under a BSD License, thus making it possible to use it or its parts in a
simplified form in here.

4.3 Dromaei

Dromaei 3 is Mozilla JavaScript performance test suite. This benchmark has a vast pool of
test cases, the combined running time of all of them is ~ 30 minutes. It is an open-source
project with a license enabling it to be used, modified, published, distributed, sub-licensed,
and/or sold. Thus making it possible to use it or its parts in a simplified form in here.

x

https: / / j sperf.com/
2

http: / / chromium.github.io/octane/
3

http://dromaeo.com/

27

http://sperf.com/
http://chromium.github.io/
http://dromaeo.com/

4.4 BaseMark

BaseMark' 1 is a highly complex benchmark, not focused on the browser's rendering core
and JavaScript engine but the overall aspects of a device (such as the battery drain test). I
found it not usable for this work since it is as closed commercial product and it is difficult
to see even what types of tests it uses without a reverse engineering.

4.5 Acid3

Acid3 5 is arguably the best known web test that checks a web browser's compliance with
elements of various web standards and rates it with a score up to 100. It consists of 6
buckets" [27] :

1. D O M Traversal, D O M Range, H T T P

2. DOM2 Core and D O M 2 Events

3. DOM2 Views, DOM2 Style, CSS 3 selectors and Media Queries

4. Behaviour of H T M L tables and forms when manipulated by script and D O M 2 H T M L

5. S V G , H T M L , SMIL, Unicode, . . .

6. ECMAScr ip t

This test does not have a license stated, therefore their adoption will be avoided. Also,
it only tests features support but does no performance measurements. Nonetheless, it is
still strongly inspirational as many of its features intersect with the proposed test set [2.1.5].

4.6 BrowserBench

BrowserBench 6 consists of several benchmarks: JetStream, ARES-6, MotionMark, Speedome­
ter each testing performance in different type of tasks. The tests include ES6 features,
graphical animations, responsiveness (D O M changes presumably) and various advanced
tasks (cryptography, raytracing, regular expressions, base64 coding, n-body simulation,
. . .) . Most of the source codes are available but their licensing varies, some are owned
by Apple Inc. and their usability would need more thorough legal examination. However
many, especially in the JetStream part are relatively easily reproducible, for example, the
base64 encoding test will be included already in the first stage [6]. The most interesting one,
MotionMark, which tests the D O M and Canvas graphical performance is unfortunately not
open-source.

4

https: //web.basemark.com/
5

http: //acid3. acidtests.org/
6

http://browserbench.org/

28

http://acidtests.org/
http://browserbench.org/

4.7 H T M L 5 t e s t

H T M L 5 t e s t 7 is, like the Acid3, not a performance benchmark but a test of H T M L 5 and
ECMAScr ip t support. It includes the very latest features such as ObjectRTC 8 . As it does
no kind of performance measurements, it is of little value here.

4.8 Suitest

Suitest 9 is not a benchmarking tool. It's a comprehensive set of hardware and software
tools for automatized application testing. The most unique part is the hardware allowing
to connect multiple IR R C 1 0 transmitters (placed directly at individual devices). This
allows emulated and scripted IR R C commands to be used to control the applications. It is
done through a fairly simple GUI , making it possible even for testers without programming
knowledge. It also provides a way of inserting a D O M inspector into the tested applications.
Thanks to that, real-time internal states can be accessed and compared with expected
values. It doesn't contain any JavaScript debugger. It allows massive parallelization and
speed-up of a big part of the highly time-demanding quality assurance process. However,
it proves close to none information about the application or device performance.

7

http://html5test.com/
8

https: //ortc.org/
9

https: //suite, st/ii eatures.html

"infrared Radiation Remote Control

29

http://html5test.com/

Chapter 5

Design of the System

The standalone benchmark [2.1.5] will be an application built on the Mautilus Smart T V
S D K ™ [5.2.1]. It can later be relatively simply packed into a single component that will
be includable in any other application using the Mautilus SDK. Such library form was
mentioned in the solution draft by the Mautilus company. [2.1.5]

5.1 System Architecture

A scene is a name for React component [5.2.2] which is loaded and rendered directly by
the router. In this case, it is resolved based on the hash part of the U R L . Simply put,
Router, go ('path ') activates and inserts the scene which is linked with the path into the
D O M a removes all others. The first scene is named Home. It contains device information
and button to start the benchmarking. Each individual test will be a separate scene. None
of the tests will allow any user interaction except for closing the application. At last, the
Results scene will display the overall benchmark score, partial tests scores and it will allow
to post them.

There are multiple approaches (or patterns) to benchmarking in of JavaScript applica­
tions []. The two basic and simplest patterns will be described here. First one is measuring
the execution time of the tested code or several iterations of it. Naturally, a lower result here
means higher performance. The problem is that when the test length approaches the small­
est unit of time resolution in a browser, the results become useless. That can be avoided by
designing the tests complicated enough so that their execution will take long enough even
on faster systems in the future. The second pattern is reversed approach — setting a fixed
time a counting how many iterations of a test were executed within that time period. This,
on the contrary, requires the single tests iterations to have short enough execution time. It
must be a small fraction of the total execution time, otherwise, the resulting score (itera­
tions count) will not have good informational value when comparing similarly performing
devices. In this case, faster devices in the future are not a concern, but the slow ones
are. As it was suggested already, low scores do not allow an accurate comparison. Besides
these two basic approaches, the benchmarking can be done adaptively, the test complexity
can be dynamically changed between iterations based on the earlier performance to achieve
consistent total execution time or some other criteria. This understandably increases the
overall complexity of the benchmark framework and calculations of the results too.

30

I selected the first mentioned pattern for this thesis — measuring the execution time
of static tasks and using it as the test score. The reason is its simplicity (with the time
possibilities in mind) and better suitability for low-performing devices.

Internal collecting of the results is done through the Redux store [5.2.2]. Reducers and
actions are created for posting the results. They are imported in each Test scene and called
at the end of each test. They will be accessed at the end from the Results scene via selectors.

The results will be sent to Google Analytics. That is the simplest and most universal
way of data gathering for statistical purposes. The module for Analytics will be prepared.
The results can be optionally posted from the Results scene.

5.2 Used Technologies

This section lists all significant technologies utilized in the solution application.

5.2.1 M A U T I L U S Smart T V S D K ™

This SDK, developed by the Mautilus company, has the goal of allowing the developers
to write only a single application which will be runnable on any platform. It achieves it
by creating an overlay over the APIs specific to each platform / OS and providing one own
uniform A P I which the application will use regardless of the platform it is running on. This
principle is illustrated in Figure 5.1. Also in case of this benchmark those properties of the
Mautilus S D K will serve as basis ensuring the multi-platform compatibility.

fragmented target device
environ ment

Mautilus Smart TV SDK ™ 3.0

Driver*

HbbTV / Smart TV Application

End user

•

Any
device

Figure 5.1: Basic high-level schema of the Mautilus Smart T V S D K 3.0 principles. [11]

The inter layer illustrated in Figure 5.2 is implemented and available to the applications
as Device class. This class contains the intersection of sets of methods from all vendor-
specific drivers / APIs. Those are to a great extent similar in the functionalities provided.
When the S D K is initialized during the launch of an application, the device and platform
are detected. The detection is done in the JavaScript runtime environment from the User-
Agent value in most cases. At last, the driver for the detected platform driver is loaded.
Respective Device class' methods are initialized or overridden by those from the driver
which are using platform's native A P I methods.

31

There are other classes than the Device for different more specific drivers but they all
work in a similar manner. These include Persistent storage drivers, D R M (Digital Rights
Management) drivers, Controls, Inputs (SW keyboards, text fields, . . .) , and others. The
D R M are typically used for secured video streaming in paid SVoD (Streaming or Sub­
scription Video on Demand) services, the most used are Microsoft PlayReady and Google
Widevine (has Classic and newer Modular variants). The Mautilus Smart T V S D K ™ also
contains a set of commonly used application components and modules, such as the internal
keyboard, generic player UI, subtitles, user accounts and others.

Smart TV/set-top box/game console application
M o d u l e s

Locally stored data Remote logging

Configuration Unit tests

Minimizer Debug müde

Application engine

Application user-interface

• n a u t i l u s Smart TV SDK7

Application framework
Scenes Snippets Virtual

keyboard
Focus

handling
Subtitles

Remote
console Core

Drivers (LG, Samsung, Philips, etc.)
Storage Player DRM Controls

Device firmware/OS

Web kit/Opera/Net Front/And raid TV

Vendor's/01 PF API

HbbTV Application manager
DSM-CC AIT Tuner PVR

DVB stack

Device hardware (System-on-chip)
Samsung, LG, Philips, SONY, Panasonic, VESTEL, Grundig Toshiba, Sharp, Xbox One, Arris, etc.

Figure 5.2: More detailed schema of the Mautilus Smart T V S D K ™ architecture. [13]

The Mautilus Smart T V S D K i M 3.0 also comes with the StoryBook. The StoryBook is
an application built on the SDK and it is a catalogue of components previously developed
as part of various projects available for immediate use in applications. Some of these (for
example the image carousel component) will be used in this benchmark too.

Enhancement of the SDK's platforms support is not the subject of this work and shall be
left to the team of developers assigned to it. As of December 2017, the Mautilus S D K 3.0 is
still in development, officially unreleased, and fully supports only Samsung Tizen, Samsung
Orsay, L G WebOS, L G Netcast and HbbTV. Other drivers that were available in the
Mautilus S D K 2.x are being or will be ported in near future. Neither the documentation for
version 3.0 is completed. Documentation for version 2 is available though []. M A U T I L U S
SmartTV S D K ™ is available under BSD license 1. Most of the technologies used are
determined by this SDK. It is implemented as a React application and therefore using
ECMAScr ip t 2015 (ES6).

1 Available at: https: //github.com/mautilus/sdk/blob/master/LICENSE.TXT

32

5.2.2 React.js

React.js is a JavaScript library for building dynamic interactive user interfaces. The views
are created declaratively for each state of the application and React very efficiently up­
dates and renders just the minimal subtree of components affected when the data changes.
This approach by letting the view updates be executed implicitly and automatically in the
background by the React's logic, of course, makes your code more predictable and easier
to debug.

React views are built from encapsulated components that manage their own state and
these are then composed in multiple levels to make highly complex user interfaces. The
component's logic is written in JavaScript (instead of templates), which allows to easily
pass rich data through the application and keep its state out of the D O M .

React applications are written in ES6 [] version of JavaScript, heavily utilizing classes
and extensions, module exports and imports and other new capabilities of ES6. Custom
components are classes extended from the React. Component. Each of them implements a
render () method that takes input data and returns what to display. The input data that
is passed into the component can be accessed by renderO via t h i s .props. The render ()
return value is either a n u l l , string or it is defined in a JSX syntax. Usage of J S X [5.2.3] can
be avoided by using a significantly more complex raw JavaScript code, however, this would
be an inherently inefficient method. A n imported component class becomes accessible and
usable as a J S X tag which can be a part of the return value of render () method and that
is exactly how the tree-like hierarchical component structure is created.

Pure Component

Pure component does only shallow comparison between prevState and nextState which
generally results in fewer re-renders. This provides an option to implement/override custom
highly optimized shouldComponentUpdate () methods leading to a speed up, especially in
case of huge/deep state and props objects.

State

Components have not only the properties (this. props) but also State (this. state). Prop­
erties is a read-only object passed down when invoking a component. State is an object
set by the component itself from inside by its own methods. The state object should never
be changed directly (practice referred to as ,piutation") but via the t h i s . setState ()

method. It should be treated as if it were immutable. Thus calling (this. setState () does
not always result in component re-render if the state was not changed or, in case of pure
components [5.2.2], if the change was too deep.

Component Lifecycle

By default, when a component's state or props change, the component will re-render. If the
UI depends on some other data than state (data dependencies from props should be copied
to the state in componentWillMount ()), re-rendering can be done manually by calling
forceUpdateO . This will cause render() without previous shouldComponentUpdate().
However, for all child components normal lifecycle methods will be called, including the
shouldComponentUpdate(). Nonetheless, React will only update the D O M if the H T M L
output changed. Normally, usage of f orceUpdate () should be avoided. A l l updates should

33

be done, as intended, based on data changes in this .props and t h i s . state. Fully accept­
able way to affect (and/or optimize) updates is by using Pure Components [5.2.2].

Redux

Extremely simply put, Redux brings a store object which can be considered as a global
state of the application. The most common pattern for store usage is the combination of
reducers, actions, and selectors.

Reducers are functions which create and update parts of the store based on received
(by parameters) action type and new data to be stored. Similar action types are grouped
in reducers. They are not called directly from components. Actions are functions which
dispatch a single event. Store calls a reducer function based on that event. Actions are
called directly from the components. Selectors are functions which return pre-defined part
of the store.

There is also a quite common Connect pattern. This creates a wrapper component
(called container) mapping the actions and selectors onto props of the wrapped component.
This is a step further towards having all updates triggered purely by data changes without
creating any listeners or callbacks from the component itself.

React Motion

JavaScript animations tool with some unique properties. Surprisingly, experiments have
shown that its performance is far superior to CSS3 transitions [5.2.3] in certain cases. Those
are when multiple style properties (for example position and dimensions) of one element or
multiple elements are being animated. It was often the case with CSS3 that these parallel
atomic animations were poorly synchronized, leading to an apparent offset between their
begins and ends. That is an unacceptable visual glitch for the end-users. The React Motion
does not suffer from this at all.

React Performance

React used provide a set of low-level methods for performance profiling. They came within
the react-addons-perf package (Perf class), however, they were deprecated in version 16
of React. They official recommendation 2 Chrome Performance tab. Another highly useful
and popular React development tool is their Chrome extension 3 which brings a React's
virtual D O M inspector and highlighter of components' updates.

Bluebird

Bluebird is a JavaScript Promise library. Promises have been chosen for the Mautilus S D K
as the best option of asynchronicity handling and chaining and Bluebird was found to be
the best Promise library, mostly because of its closeness to the native implementation of
them. The async-await 4 was only standardized in ES7 (2017) [] which is not yet being
used in the Mautilus S D K build configuration. The update of babel [5.2.4] configuration to
ES7 support can be expected in the near future.

2

https: //react j s.org/docs/perf .html
3

https://chrome, google, com/webstore/detail/react-developer-tools/

fmkadmapgofadopljbjfkapdkoienihi
4

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/

async_function

34

https://chrome
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/

5.2.3 H T M L 5

Latest revision of the H T M L [26] is supported in latest systems such as Tizen [3.2] and
webOS[3.3]. However, due to the desired universality and backwards compatibility also
promised by the use of Mautilus S D K [5.2.1], it needs to be transpiled to older, better
supported ES5 [2]. This will be achieved by using of the Babel [5.2.4].

Canvas

Canvas is an H T M L 5 element (<canvas>). It comes with a JavaScript A P I (context) for
2D drawing. It is also used by WebGL (also via (context) API) as a rendering target for
GPU-accelerated 3D graphics.

Recently a bug concerning the H T M L 5 canvas was discovered in Samsung Tizen 2017
firmware from September 2017. Attempting to render a D O M containing a canvas element
resulted in an application crash. This had already been fixed by a firmware update.

CSS3

Main interests in this work will be the Animations, Transforms (mainly the effects of 3D
Transforms on the merging of the rendering layers and impact of that on performance),
Transitions and Flexible Box Layout Modules [15]. Also, 3D Transforms and implicit group­
ing of elements into layers might have a significant influence on the performance.

J S X

J S X is a syntax extension to JavaScript. It is highly recommended to be used with React
to describe the looks and internal composition and structure of the UI. J S X brings a sort
of templating language capabilities into JavaScript while maintaining its full power.

Example of a variable declaration: const element = <h2>Sample text</h2>;. It is
neither a string nor H T M L . The JSX creates React elements which is a data type introduced
by React.

WebGL

„WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics A P I
based on OpenGL ES, exposed to ECMAScr ip t via the H T M L 5 Canvas element. It stays
very close to the OpenGL ES specification, with some concessions made for what develop­
ers expect out of memory-managed languages such as JavaScript. WebGL 1.0 exposes the
OpenGL ES 2.0 feature set; WebGL 2.0 exposes the OpenGL ES 3.0 A P I .
WebGL brings plugin-free 3D to the web, implemented right into the browser. Major
browser vendors Apple (Safari), Google (Chrome), Microsoft (Edge), and Mozilla (Firefox)
are members of the WebGL Working Group." []

Developing each application with a bare WebGL would, however, be unfeasibly ineffi­
cient. There are a handful of WebGL libraries, SDKs and frameworks. A l l those that will
be named below also feature an extensive collection of demos and examples some of which
will be used in this benchmark application. Those will be possible to utilize as a base for
the WebGL performance tests.

35

WebGL Libraries and Frameworks

Arguably the best and most widely used WebGL library is the T H R E E . j s 5 6 . One of the
reasons THREE. j s is so popular is because it is so easy to get into for novices in the 3D
graphics programming. It has an exceptionally good documentation too.

Physijs 7 is a physics engine plug-in for the three.js . BabylonJS 8 is another 3D engine
based on WebGL. Its particularly interesting feature is selectable WebGL 1.0/WebGL 2.0
renderer. It includes its own physics engine. PixiJS 9 is supposedly the best performing
2D WebGL renderer. A custom demo (developed as a project in course Advanced Computer
Graphics) utilizing dynamic 3D fractals will be used here too.

5.2.4 Other Development Tools

This subsection will list technologies and tools which are important to mention because
they were used extensively during the development but that are not directly used in the
resulting application.

Node.js

Node server and npm are requirement of the Mautilus S D K [5.2.1] for the application build­
ing and running the development servers. For this project Node 6.9 is recommended. Newer
versions may cause compatibility issues to some of the external dependencies used.

Babel

B a b e l 1 0 is a JavaScript compiler. Typically, the code is written utilizing all the features
from the latest ECMAScr ip t versions [2]. They can, however, be sparsely supported by the
browsers. Then it is transpiled into an older version of ECMAScr ip t with a better support
across browsers. Source version pre-set in this case is ECMAScr ip t 2015 (ES6) and the
target version is ECMAScr ip t 5.1. The babel outputs from higher version pre-sets have
not yet been properly tested on real devices. Features of the ECMAScr ip t 2016 (ES7) and
ECMAScr ip t 2017 (ES8) need to have explicit polyfills.

Webpack

Webpack 1 1 is a front-end module bundler that works great with the latest modern front-end
workflows and stacks including Babel and React.js among others. It uses a module system
(introduced in ES6 []). Webpack works best with npm (Node Package Manager).

Important analytic tool to mention here is the Webpack Visual izer 1 2 which interactively
displays the bundle composition, hierarchy, relative and absolute sizes of the individual
nodes and modules [Fig. 5.3]. Results of the analysis are exported as an H T M L file. This

5

https: //three j s.org/
6

https://lstwebdesigner.com/3d-javascript-libraries/
7

https: //github.com/chandlerprall/Physij s
8

https: //www.babylonjs.com/
9

http: //www.pixi j s.com/
1 0

https: //babel j s.io/
n

https: //webpack. j s.org/
1 2

https: //github.com/chrisbateman/webpack-visualizer

36

https://lstwebdesigner.com/3d-javascript-libraries/
http://www.babylonjs.com/
http://www.pixi

tool is available in form of an npm package [5.2.4] and it uses the famous JavaScript library
D3.js 1 3 for the interactive sunburst graph visualisations.

WEBPACK VISUALIZER

s r c > s c r e e n s > s h a r e d > c o m p o n e n t s > K e y b o a r d

Figure 5.3: Output of the Webpack Visualizer tool. Component Keyboard is focused by
mouse hover. Its subcomponents are visible in the graph, its placement in the project
structure is visible both in the graph and underneath. Its percentual and absolute size is
shown (including its subcomponents).

;

https://d3 js.org/

37

https://d3
http://js.org/

Chapter 6

Proposed Set of Tests

This chapter describes which tests had been selected to be included in the benchmark, the
reasons for having them will be explained as well as their structure and composition.

These tests were selected so that they would represent the majority of the highly
performance-demanding operations commonly found in all T V applications. First big group
of such tasks are undoubtedly the visual effects and animations of user actions, second are
transformations of large data structures. Typically, content catalogues of SVoD services
are hundreds of kilobytes large JSON files. Those need to be split and remapped to fit the
application navigational structure and UI specific for these platforms. References at each
item lead to the detail of its implementation.

• Framerate during animation of a single D O M element's (<div>) style (position, size
and opacity) by React Motion. [7.2.2]

• Framerate during animation of a single D O M element's (<div>) style (position, size
and opacity) by CSS animations. [7.2.4]

• Test of Canvas element and its methods support.

• Framerate during the animation of a single Canvas element's (circle) position and
size. [7.2.1]

• Test of WebGL support.

• Framerate of animation of a primitive 3D WebGL scene containing only a rotating
cube. [7.2.5]

• Framerate of animation of a 3D WebGL scene containing increasingly complex fractals
(Menger sponge or Sierpinski pyramid). [7.2.5]

• Base64 encoding and decoding [7.2.3]. This M I M E content transfer encoding is very
commonly used for data transitions in all kinds of services. It allows encoding any
binary data as a plain alphanumerical string. Testing is done on multiple large (8 k B -
16 M B) strings.

• Array flattening [7.2.6]. It is often required to have data in flat arrays. Those are
such that none of their items is an array. This operation simply recursively moves all
items of nested arrays into the parent array.

38

• Objects deep cloning and merging [7.2.7]. A property of object copying in JavaScript
is that its properties, which are references to other objects, are copied as they are.
That means they are still referencing the children of the original object. Therefore,
it must be differentiated when the copying is recursive (deep). Merging is performed
similarly. Two objects containing properties with identical keys will be merged by
simply overwriting those properties in the destination object. Whereas during re­
cursive (deep) merge, if the values of the matching properties are objects, those are
recursively merged too. Native Object. assign() 1 method added in ES6 also does
only shallow merge (can be used for shallow clone too).

x

https://developer. mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/

assign

39

https://developer
http://mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/

Chapter 7

Implementation Details

7.1 Project Structure and Development Stack

The benchmark application is based on the Mautilus Smart T V S D K [5.2.1] which predeter­
mines its project structure. The empty project contains for example ESLint configurations1,
flow2 configurations, webpack [5.2.4] configurations for building and packaging of the ap­
plication. The requirements and commands are listed in the Manual appendix [A.l] and in
/README.md file.

Mautilus S D K contains in its core also a set of High Order Components (HoC). Which
simply means a wrapper that injects some common methods and properties. These are most
notably used in the Focus Container and Focusable HoCs. They are Redux / store based,
they come with actions, reducers and selectors and they are the base of focus handling [2.1.1]
in applications. The S D K also comes with many pre-made low-level components. They can
be browsed in the StoryBook application [A.2]

A l l of the scenes are located in src/scenes/ folder and the router is configured in
src/index. j s . The src/index. j s file is the react application's root. It is the first executed
script, everything is initialized there. As it was mentioned already, HashRouter

3

 is used
in this application. The application is also prepared for translations via the i l8n module' 1

and for device-independent time. That can be required for results collecting and it would
be achieved by fetching a timestamp from a selected server and using a calculated time
offset from the local device time later on. The application is also capable of displaying a
throbber 5, notifications and dialog 6 windows.

The Home scene has a single button that starts the benchmarking. There is also a
component Info containing information about the device it is running on. Those data are
available from the Device driver.

The experimenting with different animation techniques and various methods of score
calculation took up by far the biggest part of development time. Most of the experiments
ended up unsuccessfully and could not be included in the final version of the application.

xBased on the most popular ESLint config for React projects airbnb: https://www.npmjs.com/package/
eslint-config-airbnb

2Static type checker for JavaScript: https://flow.org/en/
3

https: //github.com/ReactTraining/react-router/blob/master/packages/react-router-dom/
docs/api/HashRouter.md

4https: //www.npmj s.com/package/il8n
5 Indefinite progress animation, typically during scene loading or data downloading.
6Dialog window is an overlay requesting user action.

40

https://www.npmjs.com/package/
https://flow.org/en/
http://www.npmj

In the final version, the test scores are the measured running times of the test cases.
They are collected to the Redux store. There is a reducer (/src/reducers. js) and action
(/src/actions. js) for saving the individual results. Each test scene does this at the end
of a test run.

Result scene displays a final score, partial scores, it has buttons for running the tests
again and for posting the tests. It uses a selector (/src/selectors. js) for accessing the
test results. The scene can be extended in many ways including various graphs, comparison
with other downloaded results, posting results to other servers etc. Centralized collecting
of the statistics may be done most simply and universally via Google Analytics. This driver
is implemented but it was kept very general for multiple reasons. There is no demand for it
yet and also because the legal side of such data collecting would have to be examined. The
logs format can be adjusted in /src/analytics. js and the Google Analytics Tracking ID
(„UA-xxxxxx-x") can be set in /config.js.

7.2 Individual Tests

This section will describe implementational details of individual tests. Running length of
each test was tuned to be between 250ms and 3s on a desktop P C .

7.2.1 Canvas rendering

The native window.requestAnimationFrame() 7 function was used for the timing of ani­
mation step size. This is the simplest way of ensuring maximal possible rendering frame
rate (FPS — frames per second) without any unnecessarily frequent updates. A callback to
animation-iterating function is scheduled using the window. requestAnimationFrame (cb).
The browser executes the registered function as soon as possible. Then, it needs to be
scheduled again, typically at the end of the animation-iterating function itself. The test is
ended after rendering 240 frames.

7.2.2 React Mot ion Animations

A <div> element is created. Its style (top, left, width, height, opacity) are declared within
the Motion HoC (High Order Component). That pattern creates a dependency on the rota­
tion angle stored in t h i s . state. anim. A. Then any change of t h i s . state. anim. A causes a
component re-render with the style being animated by interpolation guided by the Motion
HoC. The this.state.anim.A is updated with interval of 1ms using the setStateO

method of React. Component. However, React internally schedules the state updates in
groups if they are done milliseconds apart. That means not every single setState () causes
one update of this.state. In this case, about 250 updates per second are performed in
desktop browser.

7.2.3 Base64 Encoding and Decoding

Random string 8192 characters long is generated. Then it is encoded to Base64 and decoded
back. Native JavaScript functions atob() and btoa() are used for this. There are 12
iterations of this with the string length being doubled each time. Last one is thus 16 M B
large.

7

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

41

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame

7.2.4 C S S Animations

This test could not be implemented because after an extensive research I reached a con­
clusion that there is no way to measure rendering frame rate of a CSS animation. The
CSS3 animations have configurable duration and there is an event 'animationend'. The
frame rate can be seen in desktop browsers' developer tools, but it cannot be accessed from
a JavaScript application. For example, MotionMark [4.6] uses a rendering loop guided by
window. requestAnimationFrame () and changes element's . style .transform based on
the last frame duration. The element then re-renders with the updated style in a single
step. That is, however, not a CSS animation but a JavaScript one.

7.2.5 W e b G L 3D rendering

WebGL test could not be finished in time because of unexpected difficulties with the inte­
gration of the THREE. j s library into a React application.

7.2.6 Array Flattening

Native Array.prototype.flat() is not used because it is still only a specification proposal
with experimental / candidate status and rather sparse support 8 . Lodash f lattenDeepO

 9

is used instead. Array is generated predictively in src/screens/Test03/data. j s , reaching
depth of 12 and resulting in flat array 495 000 elements long.

7.2.7 Object Deep Cloning and Merging

As there are no native functions for deep cloning or merging of Objects in JavaScript [2],
lodash cloneDeep 1 0 and merge 1 1 were used. Three testing object were generated using
https://www.json-generator.com (reaching 1.17MB) and they were further manually ad­
justed. They are imported from src/screens/Test04/data. j s , cloned and merged..

7.3 Specific Programming Principles

In this section, some programming practices specific for development for these platforms
will be presented.

Any D O M access is slow and should be done minimally. The most efficient practice to
achieve this is to be pre-loading and saving references to D O M elements which will be used
multiple times later. Query selectors (for example by classes) are especially slow and should
be avoided completely. It is possible to use nothing but Document .getElementByldO

 1 2

.

Excessive usage of H T M L elements IDs is therefore necessary, j Query library only worsens
this compared to the native query methods because it adds the backwards compatibil­
ity for old browsers which slows the functions even further. Likewise, the React r e f s 1 3

should be avoided for both performance reasons and because their usage is viewed as a bad
programming practice.

8

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/

flat
9

https: //lodash. com/docs/#f lattenDeep
1 0

https: //lodash. com/docs/4.17.10#cloneDeep
n

https: //lodash.com/docs/4.17. l#merge
12

https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById
1 3

https: //react j s.org/docs/ref s-and-the-dom.html

42

https://www.json-generator.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/
https://developer.mozilla.org/en-US/docs/Web/API/Document/getElementById

Usage of minimizers as a part of the application build chain is highly recommended.
Not only as a sort of source codes protection but also as an easy way to gain a slight perfor­
mance improvement. Many allow different optimization priorities (such as memory usage,
code size, . . .) . Those options can be useful especially in H b b T V where the application
is downloaded not only once, although the TVs use caching. However, this can also cause
some troubles on devices with incorrect JavaScript parser implementation. For example,
many D V B - S set-top boxes were found to be crashing during parsing of the source code
because it was containing Object keys without quotes. The same need for minimal size
goes for other assets, especially images. Services like T inyPNG 1 4 come in very useful here.
Unfortunately, no device was yet observed to properly implement incremental loading of
interlaced P N G or J P E G images.

Testing on emulators is generally not very useful because they mostly do not reflect the
limitations of the real devices. This difference can be seen for example in the Samsung's
specification sheets [19] (no one else publishes these specifications of emulators).

H M R {Hot Module Reload) is a tool which radically improves development efficiency
However, sometimes it was not possible to be used because the application used a customer's
account security system. The customer refused to allow on their servers login from the
unknown domains or user-agents (Smart T V platforms), therefore the application had to
be run redirected within a shell application and that, of course, didn't react on H M R
messages from the webpack server.

7.4 Issues Encountered During the Development

This section will list some but not all significant platform- or device-specific bugs and lim­
itations discovered during development for these platforms. Selected are especially those
directly contradicting expectations set by device specifications, references and documenta­
tions.

7.4.1 JavaScript

• Function.prototype.bind() is not fully supported throughout all platforms (most
notably 2011 and 2012 Samsung Orsay and L G Netcast, in both native Smart T V
and H b b T V environments). Even though Babel [5.2.4] transpiles the source codes to
ES5.1 [2], these cases must me polyfilled explicitly.

• Multiple Philips TVs and set-top boxes are ignoring H b b T V application destroy call
(or do not implement it at all). The workaround for this is preventively calling
window, close afterwards (if an application is ended before, it will never be executed)

7.4.2 Various

• Some S V G images are causing applications on Tizen 2017 to crash immediately after
launching before even executing any JavaScript code, making it literally impossible
to debug. It had not yet been identified what in the S V G specifically is the source
of this issue. Therefore the only safe way is to re-test the application every time an
S V G image is inserted.

1 4

https: //t inypng. com/

43

• Applications on Tizen 2017 crashed when attempting to render a canvas element.
This had been fixed after several months by a firmware patch.

• The firmware updates can sometimes bring in new bugs. Example from Tizen 2016:
Players stopped working when a combination of SmoothStreaming and PlayReady
D R M was used. This was fixed in another patch several months later.

H b b T V players

By far the most troublesome component of all applications are the players, especially when
used with D R M or in HbbTV. In H b b T V players the absolutely least reliable and prop­
erly working thing is the seeking. Problems are most frequently occurring when seeking to
positions close to the end or beginning of a video. On some, especially older devices, the
issues can range from simply ignoring and not executing the seek, to application freezing
or crashing. It is safe to say that manufacturers outright violated the OIPF and HbbTV
standards [3] [16], implemented the H b b T V components and functions incompletely or in­
correctly and didn't patch them even after many years.

• Philips with Android 2015 — ignoring seek do the end of a video.

• Philips with Fusion 2 2012 — application crashes when seeking to the end of a video
and stops the playback after seeking to other position.

• Philips with M T K 2014 — player stops the playback after seeking to any position.

• Panasonic 2013-2015 — application crashes when seeking to the time 0.

• L G Netcast 2012-2014 — calling pause or stop on the player while having no video
source attached caused the application to freeze.

• L G Netcast 2015 (also known as SimpleSmart) — random application crashes after
any seeking.

• Samsung Tizen 2015 models suffer from failing to start a playback even though the
player state changed accordingly; a workaround had to be implemented that watches
whether the video position also really changes and restarts the playback until it ac­
tually does.

44

Chapter 8

Evaluation of the System and
Results

In this chapter the real-world applicability, usefulness and target audience of the resulting
tool will be discussed, as well as the results collected from it during testing.

8.1 Applicabil i ty Evaluation

This technical report itself can serve as an encyclopaedia for developers, both beginners and
seniors, crafting applications for these platforms all across the world thanks to its English
localization. After all, they are the intended target users of the benchmark application too.
The test set surely needs to be extended to cover more scenarios, but even in the current
state, it can provide a valuable insight into how a given device performs relative to others.

8.2 Results Measurements and Comparison

During the development of this thesis, the Mautilus had conducted own testing and pub­
lished the results []. Apparently, this test was based on the H b b T V game engine which
for compatibility reasons included both Canvas and D O M Tenderers. The D O M renderer
should serve as a legacy option but as the results suggest, even on the very recent gener­
ations it can hugely outperform the Canvas renderer. Results measured by my own more
comprehensive benchmark were achieved on different devices than Mautilus had published.
Therefore the relative performance differences cannot be cross-checked.

Two televisions were acquired for the testing: Samsung UE32M5572AU (2017 Tizen
3.0) and L G 32LK6200PLA (2018 webOS 4.0). It was, however, discovered that the we-
bOS driver in Mautilus S D K doesn't work properly on this 2018 model. After a tedious
debugging session I have determined that it gets stuck during the driver initialization but
I was unable to fix the bug in time. As it was said earlier, the cross-platform compatibility
is secured by the Mautilus S D K and extending or fixing it is not a subject of this thesis.

Both televisions used for testing were privately purchased. Unfortunately, the truly
high-end models could not be tested at this time. The reason is simply the lack of means
to acquire a high-end model as those are nonlinearly more expensive. The pricing is so also
due to the fact that the high-end models are only manufactured in largest screen sizes. The
older models are understandably not available for purchase any longer. Also, I no longer
have access to the testing device pool of the Mautilus company.

45

(a) Home Scene of the ap- (b) Results Scene of the ap- (c) Application stuck on the
plication on Samsung Tizen plication on Samsung Tizen Splash screen because of mal-
UE32M5572. UE32M5572. functional driver initialization

on webOS 2018. L G 32LK62.

Figure 8.1: Photos of the benchmark application launched on real televisions.

The following table shows the average of 3 runs on each platform measured in millisec­
onds. The first platform is Google Chrome on a desktop with Intel Core i7-8550U C P U ,
the second is the same platform with 6x C P U throttling enabled in the Performance tab
of developer tools, and the third one is Samsung UE32M5572AU T V .

Test Name Chrome Chrome (6x throttling) Tizen 2017
Canvas Animation 1669 1706 15 063
React Motion 2 001 6 332 2 316
Base64 coding 349 2 978 2 666
Array Flattening 466 4193 4 898
Object Merging 275 2 280 4 509
Overall 4 760 17489 29452

We can observe that the Canvas Animation (timed rendering of 100 frames) is limited
to 60FPS because of the usage of window.requestAnimationFrame(), even though it is
GPU-accelerated and actual render probably take less then 16 ms. On the Tizen T V , it
performs significantly worse, reaching only 7FPS . This can be ascribed to an extremely
low-power G P U . React Motion animation (timed rendering of 500 frames) does perform
quite close on Tizen and the desktop as it is not highly G P U and memory demanding.
Other tests are around 10 times slower on the Tizen, which can be attributed to their high
memory demands.

8.3 Stability of the Results

The following table shows results of 3 runs in Google Chrome on a desktop with Intel Core
i7-8550U C P U with i G P U . The scores are simply the durations of test runs in milliseconds.

46

Test Name Run 1 Run 2 Run 3
Canvas Animation 1609 1681 1701
React Motion 1998 1997 2 000
Base64 coding 376 342 350
Array Flattening 472 489 548
Object Merging 310 290 253
Overall 4 765 4 799 4 762

The following table shows results of 5 runs on Samsung UE32M5572AU T V . The scores
are simply the durations of test runs in milliseconds.

Test Name Run 1 Run 2 Run 3 Run 4 Run 5
Canvas Animation 15 082 15 025 15135 15111 14 998
React Motion 2 391 2186 2 393 2 238 2 470
Base64 coding 2 639 2 558 2 649 2 594 2 616
Array Flattening 4 600 4 626 4 621 4 614 4 620
Object Merging 4 771 4 529 5 005 4 967 4 729
Overall 29438 28 924 29 803 29 524 29433

A l l tested platforms show significantly stable results. However, other older devices can­
not be expected to behave similarly. As the devices are built on a relatively low-performance
H W , they have very limited multitasking capabilities. This factor can be expected to be
the main source of an instability of results achieved in a repetitive benchmarking. Other
applications running in the background have the biggest influence. Their suspended state
and thus C P U utilization is hardly estimable. Next variables are caching and memory oc­
cupancy possibly resulting in memory swapping. The difference in load time of applications
between heir first and following launches is very well observable.

Also, it needs to be mentioned that devices which supporting some sort of multitask­
ing also (in their native device APIs) typically distinguish between killing and closing the
application. Closing means that the application will only be minimized and expectedly
suspended. This gives users much 'snappier' experience, the device feels faster and more
responsive. Not too surprisingly, the manufacturers encourage this in applications. Some
(Samsung) even strictly demand this be correctly handled in order to pass their Q A pro­
cess [2.1.2]. Not killing the application, of course, means a possibility to switch back to it
seemingly instantly and finding it in the state it was left in (again Samsung is extraordi­
narily strict in this matter while making it very uneasy to achieve the desired behaviour).
While this application does not need to comply with those criteria until it will be distributed
through the official application markets, the others still may and will influence the results
of these tests.

47

Chapter 9

Conclusion

The goal of this thesis was to become deeply familiar with the development of applications
for unusual platforms such as Smart T V , identify the biggest complications during devel­
opment, design and implement a product which would improve some of the problematic
aspects of development.

Analysis of both the problems and possible solutions was completed in full extent. I
researched, analysed and described in a great depth the development processes and tools on
the five major platforms, as well as the platforms themselves. Solution system was proposed
and the implementational technologies were selected, studied, described in adequate detail,
and I got practically acquainted with them. I assembled the set of tests with realistic
time possibilities in mind. The draft of solution requirements provided by the Mautilus
company served as a mere inspiration due to its vast extent which made it more suitable
for a dedicated team of multiple developers. The benchmark application was implemented
in a basic but fully functional form and tested on two major platforms (Samsung Tizen and
L G webOS). Results have been gathered and evaluated along with their statistical stability.
The biggest shortcoming is the missing test of CSS3 animations frame rate, as it was found
technically impossible to access necessary data from a JavaScript application.

The application code is not 'polished' nor tested enough to be ready for release. It is
a solid backbone allowing vast extendability mainly in terms of adding more tests into it.
This technical report serves both as a manual to the application and as an introduction
guide into the programming of applications for Smart T V and related platforms. Its value
lies in its richness in practical experiences.

Possible future steps in development are:

• Refactoring the code and extending the test set before release.

• Finishing the GUI , for example adding a progress information during the test run.

• Making the benchmark exportable as a single component that can be simply used in
other applications.

• Adding a module for downloading and displaying results posted from tests ran on
other devices.

However, the most important thing will be ensuring development capacities for expan­
sions and maintenance. That will most likely be done by an open-source release and possibly
by the involvement of the Mautilus company which might have interest in this.

18

Bibliography

[1] Bynens, M . : Bulletproof JavaScript benchmarks. Personal blog. [Online; accessed
10-July-2018].
Retrieved from: ht tps: / /mathiasbynens.be/notes/ javascript-benchmarking

[2] Ecma International: ECMAScript® 2017 Language Specification (ECMA-262, 8th
edition, June 2017). Ecma Standards. [Online; accessed 2-January-2018].
Retrieved from: h t tps : / /www.ecma- in t e rná t iona l .o rg / ecma-262 /8 .0 / index .h tml

[3] ETSI , H b b T V Association: Hybrid broadcast broadband TV Specifications. HbbTV
Resource Library. [Online; accessed l-January-2018].
Retrieved from: h t tps : / /www.hbbtv.org/resource-l ibrary/#specif i c a t i o n s

[4] Herwig, B. : Televizory Samsung pro rok 2018 nabízejí unikátní režim ambient a jsou
připraveny i na HbbTV 2.0. televizniweb.cz. [Online; accessed ll-June-2018].
Retrieved from:
h t tp : / /www.televizniweb.cz/2018/04/televizory-samsung-pro-rok-2018-
nab i ze j i -un ika tn i - r ez im-ambien t - a - j sou -p r ip r aveny - i -na -hbb tv -2 -0 /

[5] L G Electronics: Standard Web API. WebOS T V Developer. [Online; accessed
27-December-2017].
Retrieved from:
h t tp : //webost v.developer.lge.com/api/web-api/supported-standard-web-api/

[6] L G Electronics: Web Engine. WebOS T V Developer. [Online; accessed 06-June-2018].
Retrieved from:
h t tp : //webost v.developer.lge.com/discover/webos-tv-platform/web-engine/

[7] L G Electronics: webOS TV Web API Coverage. WebOS T V Developer. [Online;
accessed 29-January-2018].
Retrieved from: h t tp : / /webos tv .developer . lge .com/appl ica t ion / f i les /
api_references/20170608_1496987509/

[8] Lladó, J . C.: Developing a generic web application for Tizen TV: Case study.
October 2015. [Online; accessed 26-December-2017].
Retrieved from: h t tps : //www.researchgate.net/profile/Kruzkaya_Ordonez/
publication/303345367_Actas-VI-CTVDI-IV-jAUTIcompressed/links/
573dce2708ae9f741b2f f 84e.pdf #page=139

[9] Matulac, J . S.: Case Study of Tizen Operating System. Faculty of Information and
Communication Studies, University of the Philippines Open University, Laguna,
Philippines 4031. January 2016. [Online; accessed 26-December-2017].

49

https://mathiasbynens.be/notes/javascript-benchmarking
http://www.ecma-intern�tional.org/ecma-262/8.0/index.html
http://www.hbbtv.org/resource-library/%23specif
http://televizniweb.cz
http://www.televizniweb.cz/2018/04/televizory-samsung-pro-rok-2018-
http://lge.com/
http://lge.com/applicat
http://www.researchgate.net/profile/Kruzkaya_Ordonez/

Retrieved from: h t tps : //www.researchgate.net/profile/Joemar_Matulac/
publication/29214353l_Case_Study_of_Tizen_Operating_System/links/
56aal7dd08ae2df82166c290/Case-Study-of-Tizen-Operating-System.pdf

[10] Mautilus, s.r. o.: HbbTV Development - How to Make an App Compatible on Every
Device. Mautilus Blog. [Online; accessed 4-June-2018].
Retrieved from: h t tps : //www.mautilus.com/blog/hbbtv-apps-development-how-
to-make-an-app-compat i b l e - o n - e v e r y - d e v i c e /

[11] Mautilus, s.r.o.: Mautilus SDK 3.0 is here! Mautilus Blog. [Online; accessed
27-December-2017].
Retrieved from: ht tps: / /www.mauti lus .com/blog/mauti lus-sdk-30-je-na-svete/

[12] Mautilus, s.r.o.: Mautilus SDK 3.0 is here! Mautilus Blog. [Online; accessed
13-June-2018].
Retrieved from:
h t tps : //www.maut i lus . com/b log /wha t - i s - the - speed-of -your - tv /

[13] Mautilus, s.r.o.: Mautilus Smart TV SDK™. GitHub public repository. [Online;
accessed 26-December-2017].
Retrieved from: ht tps : / /g i thub.com/maut i lus /sdk

[14] Mautilus, s.r.o.: Mautilus Smart TV SDK™ API Documentation. [Online; accessed
27-December-2017].
Retrieved from: ht tp: / /smart tv.mauti lus .eom/SDK/#l/api

[15] Mozilla and individual contributors.: CSS3. M D N web docs. [Online; accessed
2-January-2018].
Retrieved from: h t tps : / /developer.mozilla.org/en-US/docs/Web/CSS/CSS3

[16] Open I P T V Forum: OIPF Specifiacations. [Online; accessed l-January-2018].
Retrieved from: ht tp: / /www.oipf . tv/

[17] S A M S U N G : Media Specifications. S A M S U N G D E V E L O P E R S . [Online; accessed
15-March-2018].
Retrieved from: h t tps :
/ /developer .samsung.com/tv/develop/specif ica t ions/media-specif ica t ions

[18] S A M S U N G : Security and API Privileges. S A M S U N G D E V E L O P E R S . [Online;
accessed 20-June-2018].
Retrieved from:
h t tps : / /deve loper . t i zen .org /deve lopment / t ra in ing /web-appl ica t ion /
unders tanding- t izen-programming/secur i ty-and-api -pr iv i leges

[19] S A M S U N G : Smart TV General Specifications. S A M S U N G D E V E L O P E R S . [Online;
accessed 25-December-2017].
Retrieved from: h t tp :
/ /developer . samsung.com/tv /develop/speci f ica t ions /genera l -speci f ica t ions

[20] S A M S U N G : Smart TV Web Engine Specifications. S A M S U N G D E V E L O P E R S .
[Online; accessed 25-December-2017].
Retrieved from: h t tp : / /developer .samsung.com/tv/develop/specif icat ions/
web-engine-speci f ica t ions

50

http://www.researchgate.net/profile/Joemar_Matulac/
http://www.mautilus.com/blog/hbbtv-apps-development-how-
https://www.mautilus.com/blog/mautilus-sdk-30-je-na-svete/
http://www.maut
http://ilus.com/blog/what-is-the-speed-of-your-tv/
https://github.com/mautilus/sdk
http://smarttv.mautilus.eom/SDK/%23l/api
http://developer.mozilla.org/
http://www.oipf.tv/
http://samsung.com/tv/develop/
https://developer.tizen.org/development/training/web-application/
http://samsung.com/tv/develop/
http://developer.samsung.com/

[21] SAMSUNG: Tizen TV Web Device API Reference. SAMSUNG DEVELOPERS.
[Online; accessed 25-December-2017].
Retrieved from: https: //developer.tizen.org/development/api-references/
web-application?redirect=
/ dev-guide/3.0.0/org. tizen. web. apiref erence/html/device_api/tv/index.html

[22] SAMSUNG: TV Model Groups. SAMSUNG DEVELOPERS. [Online; accessed
25-December-2017].
Retrieved from:
http://developer.samsung.com/tv/develop/specif ications/tv-model-groups

[23] SAMSUNG: Web Runtime. SAMSUNG DEVELOPERS. [Online; accessed
06-July-2018].
Retrieved from: https: //developer.tizen.org/development/training/web-
application/under standing-tizen-programming/web-runtime

[24] The Khronos Group Inc.: WebGL Overview: OpenGL ES for the Web. The Khronos
Group Inc.. [Online; accessed l-January-2018].
Retrieved from: https://www.khronos.org/webgl/

[25] Udin, E.: Tizen OS set to dominate 70year. Tizen Experts. [Online; accessed
30-December-2017].
Retrieved from: https: //www.tizenexperts.com/2017/ 12/tizen-os-set-
dominate-70-global-smart-tv-market-year/

[26] Web Platform Working Group: HTML 5.3. World Wide Web Consortium. [Online;
accessed 29-May-2018].
Retrieved from: https://www.w3.org/TR/html53/

[27] Wikipedia contributors: Acid3 — Wikipedia, The Free Encyclopedia. 2017. [Online;
accessed 2-January-2018].
Retrieved from:
https: //en. wikipedia.org/w/index.php?title=Acid3&oldid=816684616

51

http://developer.tizen.org/
http://developer.samsung.com/tv/develop/specif
http://developer.tizen.org/
https://www.khronos.org/webgl/
http://www.tizenexperts.com/2017/
https://www.w3.org/TR/html53/

Appendix A

Manual

Prerequisites are node.js [5.2.4] and optionally Tizen Studio C L I [3.2.2] and webOS T V
CLI [3.3.1] to build packages for those platforms.

A . l Bu i ld and Deployment of Mauti lus Smart T V S D K ™
3.0 Application

1. npm i n s t a l l

2. npm run b u i l d : d l l

3. (a) npm run dev

(b) i . npm run watch <platform>

i i . npm run start <platform>

(c) npm run build:prod <platform>

<platform> G {tizen, webos, Samsung, hbbtv, playstation}

3a deploys the application on local server with H M R , the U R L will be logged in terminal.
3b deploys a local H M R server and builds a package which needs to be installed on a device.
3c builds a package which can be distributed, installed and ran anywhere.

A.2 Bu i ld and Deployment of Mauti lus Smart T V S D K ™
3.0 StoryBook

1. npm i n s t a l l

2. npm run b u i l d : d l l

3. (a) npm run storybook:server

(b) npm run storybook:build <platform>

<platform> G {tizen, webos, Samsung, hbbtv, playstation}

3a deploys the storybook on local server with H M R , the U R L will be logged in terminal.
3b builds a package which can be distributed, installed and ran anywhere.

52

A.3 Applicat ion Installation in Tizen Studio C L I

1. Enable developer mode on T V .

2. C:\tizen-studio\tools\> sdb connect <IP_of_the_TV> :26101

The televisions use port 26101, other devices may vary.

3. (Optional control step) Now the connected device should be listed here:

C:\tizen-studio\tools\> sdb devices

Return format: <serial> <state> <target>

serial should match <IP_of_the_TV> :26101 as had been used earlier.
state is supposed to be device .

4. Uninstallation should not usually be necessary. Following i n s t a l l function should

perform the uninstallation implicitly.

C:\tizen-studio\tools\ide\bin\> tizen u n i n s t a l l -s <serial> -p <appID>

serial is again <IP_of_the_TV> :26101
appID string as it is stated in project_root\conf iguration\conf ig.xml , for ex­
ample 6AsvPiBNtr.appname

5. Installation

C:\tizen-studio\tools\ide\bin\>

tizen i n s t a l l -s <serial> - f <filename>.wgt — <path_to_wgt_folder>

6. Run the installed application:

C:\tizen-studio\tools\ide\bin\>

tizen run -s <serial> -p <appID>

Note: Some 2015 models are failing to perform this command.

A.4 Creating a Certificate in Tizen Studio C L I

1. C:\tizen-studio\tools\ide\bin\> tizen c e r t i f i c a t e -a <name>

-p <password> -f <file_name>

Default path where it will be created:
C:\tizen-studio-data\keystore\author\

2. Creating a Certificate Profile or replacing certificates of existing one:
C:\tizen-studio\tools\ide\bin\> tizen security-profiles add

-n <certificate_name> -a <absolute_path>\a.uthoz.pl2 -p <password>

-d <absolute_path>\distributor.pl2 -pd <password>

3. Before the first use of Tizen C L I the global default is needed to be initialized as
needed so that the security profile does not need to be explicitly stated every time
later:
C:\tizen-studio\tools\ide\bin\> tizen c l i - c o n f i g „default.profiles.path

= C: XUsers Y/
0
username0/o\workspace\. metadata\. plugins\

org.tizen.common.sign\profiles.xml" — g l o b a l

53

file:///tizen-studio-data/keystore/author/
file:///distributor

Appendix B

Configuration Files

<?xml version="1.0" encoding="UTF-8"?>

<widget xmlns="http://www.Samsung.com/">

<cpname itemtype="string"/>

<cplogo itemtype="string"/>

<cpauthjs itemtype="string"/>

<ThumbIcon itemtype="string">icons/Samsung/106x087.png</ThumbIcon>

<BigThumbIcon itemtype="string">icons/Samsung/115x095.png</BigThumbIcon>

<ListIcon itemtype="string">icons/samsung/086x070.png</ListIcon>

<BigListIcon itemtype="string">icons/samsung/115x095.png</BigListIcon>

<category itemtype="string"/>

<autoUpdate itemtype="boolean">y</autoUpdate>

<ver itemtype="string">l .0. K/ver>

<mgrver itemtype="string"/>

<fullwidget itemtype="boolean">y</fullwidget>

Ctype itemtype="string">user</type>

<srcctl itemtype="boolean">y</srcctl>

<ticker itemtype="boolean">n</ticker>

<mouse itemtype="boolean">y</mouse>

<network itemtype="boolean">n</network>

<childlock itemtype="boolean">n</childlock>

<videomute itemtype="boolean">n</videomute>

<dcont itemtype="boolean">y</dcont>

<widgetname itemtype="string">myAppName</widgetname>

<description itemtype="string"/>

<width itemtype="string">1280</width>

<height itemtype="string">720</height>

<author itemtype="group">

<name itemtype="string">MyName</name>

<email itemtype="string"/>

<link itemtype="string">www.mysite.com</link>

<organization itemtype="string">MyCompany</organization>

</author>

</widget>

Figure B . l : Samsung Orsay config.xml example

Use Alpha Blending? = Yes

Screen Resolution = 1280x720

Figure B.2: Samsung Orsay widget.info example

54

http://www.Samsung.com/
http://www.mysite.com%3c/link

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<rsp stat="ok">

<list>

<widget id="ProjectID">

<title>Project Name</title>

<compression size="123456" type="zip"/>

<description>Project Description</description>

<download>http://xxx.xxx.xxx.xxx/anyPathToWidget/file.zip</download>

</widget>

</list>

</rsp>

Figure B.3: Samsung Orsay widget.xml example

"icon": "icons/webos/80x80.png",

"main": "index.html",

"bglmage": "icons/webos/bg.png",

" t i t l e " : "appName",

"type": "web",

"resolution": "1280x720",

"version": "1.0.1",

"splashBackground":

"transparent": true,

"bgColor": "#edlled",

"vendor": "name",

"largelcon": "icons/webos/130xl30.png",

"iconColor": "#cd2c24",

"id": "com.test.app"

Figure B.4: L G webOS app i n f o , j son example

55

http://xxx.xxx.xxx.xxx/anyPathToWidget/file.zip%3c/download

