
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER SYSTEMS

IMPLEMENTACE OSAZOVACÍHO AUTOMATU V
PROGRAMOVACÍM JAZYCE SIEMENS S7.
IMPLEMENTATION OF A PICK AND PLACE MACHINE IN SIEMENS S7 PROGRAMMING LANGUAGE

BAKALÁŘSKÁ PRÁCE
BACHELOR'S THESIS

AUTOR PRÁCE JAKUB MAREČEK
AUTHOR

VEDOUCÍ PRÁCE Ing. GEERT VANDECASTEELE, KHBO

Ing. PAVEL BARTOŠ, BUT
SUPERVISOR

OOSTENDE2011

Abstrakt
Tato práce se zabývá návrhem metody, jak řídit SIMATIC S5 zařízení pomocí o generaci
novějšího SIMATIC S7 P L C prostřednictvím P R O F I B U S sběrnice, doplněného o dotykový
panel SIMATIC TP177b D P / P N . Pro komunikaci s S5 zařízením byl zvolen modul I M 308-
C D P . Zařízení je zcela řízeno pomocí SIMATIC S7 P L C a dotykového panelu. Jako pro­
gramovací jazyk byl vybrán STL. Aplikace pro dotykový panel byla vytvořena v prostředí
SIMATIC Wincc flexible 2005. Hlavním přínosem této práce je uvedení a popsání metody
řízení zařízení pomocí novějšího P L C . Další směr práce je diskutován v závěrečné kapitole.

Abstract
This work deals with a method of how to control a SIMATIC S5 machine by a newer
SIMATIC S7 P L C and a SIMATIC TP177b D P / P N touch panel via P R O F I B U S . For com­
munication with the S5 machine an interface module I M 308-C D P was chosen. The control
of the machine is completely realized by a newer SIMATIC S7 P L C and a touch panel. As
a programing language was chosen Statement List (STL). The application for the touch
panel was created in SIMATIC Wincc flexible 2005 environment. The main objective of
this work is to propose and describe a method of controlling the machine by a newer P L C .
The future work is discussed at the end.

Klíčová slova
P L C , SIMATIC TP177b D P / P N , P R O F I B U S DP, I M 308-C DP, S T E P 7, STL pro­
gramovací jazyk, G R A F C E T

Keywords
P L C , SIMATIC TP177b D P / P N , P R O F I B U S DP, I M 308-C DP, S T E P 7, STL programing
language, G R A F C E T

Citations
Jakub Marecek: Implementation of a pick and place machine in Siemens S7 programming
language, Bachelor's thesis, Oostende, K H B O Faculty of Engineering Technology, 2011

Implementation of a pick and place machine in Siemens
S7 programming language

Declaration
I declare that this thesis is my own work that was coached by my advisors Ing. Geert
Vandecasteele and Ing. Pavel Bartos. I declare that I mentioned all literature sources,
which were used.

Jakub Mareček
May 16, 2011

Acknowledgements
I would like to thank Erasmus program and coordinators, K H B O and B U T for the oppor­
tunity to study abroad. Many Thanks to my thesis advisor Ing. Geert Vandecasteele for
guiding me throughout this work, for his support, willingness and priceless advices. Also I
would like to thank Ing. Pavel Bartos for his support and willingness. Furthermore, I would
like to thank my parents for the opportunity and finance support to study abroad. Also to
other Erasmus and Belgian students for a great time in Belgium.

© Jakub Marecek, 2011.
This project was created as a school project at KHBO Oostende, Faculty of Engineering
Technology and it is also under the licence of Brno University of Technology, Faculty of
Information Technology. The project is protected by copyright laws and its use without
author's permission is prohibited, besides the cases defined by the law.

Contents

1 Introduction 5
1.1 Motivation 6

2 Programmable logic controller 7
2.1 What is a programmable logic controller? 7
2.2 Architecture of a programmable logic controller 7
2.3 Concept of a cycle 9
2.4 P L C communication with input and output signals 10

3 P R O F I B U S 11
3.1 Introduction 11

3.1.1 Types of P R O F I B U S 11
3.2 P R O F I B U S D P 11

3.2.1 OSI layer model 12
3.2.2 Communication 12
3.2.3 Device classes 13
3.2.4 Cyclic communication 13

4 Hardware 15
4.1 Composition of the system 15
4.2 Pick and place machine 15

4.2.1 Schema 15
4.2.2 Operation modes 16

4.3 SIMATIC S5 P L C 17
4.3.1 Controlling of the pick and place machine 17

4.4 SIMATIC S7 P L C 17
4.5 SIMATIC TP177b D P / P N 17
4.6 Communication bus 18

5 Software 19
5.1 Combination of hardware and software 19
5.2 S T E P 7 19
5.3 Programming Languages 20
5.4 Blocks for structuring a user program 21

5.4.1 Block types 21
5.4.2 Block call 23

5.5 G R A F C E T 24

1

6 Design of the system 26
6.1 Description of the system 26
6.2 Design of the system communication 27

6.2.1 P R O F I B U S D P connection for SIMATIC S5 P L C 27
6.2.2 P R O F I B U S D P connection for SIMATIC S7 P L C 28
6.2.3 P R O F I B U S D P connection for SIMATIC TP177b D P / P N touch panel 28

6.3 Design of the application for the pick and place machine 28
6.3.1 G R A F C E T schema 28
6.3.2 Block design 28

6.4 Design of the application for the touch panel 29

7 Implementation of the system 30
7.1 Implementation of the system communication 30

7.1.1 P R O F I B U S D P setting 30
7.1.2 I M 308-C D P setting 31
7.1.3 Communication between the SIMATIC S7 P L C and the machine . . 32

7.2 Implementation of the pick and place machine 32
7.2.1 Programing language 32
7.2.2 Concept of the program 32
7.2.3 Important parts 32

7.3 Implementation of the touch panel 33

8 Conclusion and Future Work 35

A C D Contents 37

B List of Abbreviations 38

C G R A F C E T Schema of the emergency mode 39

D Selection of the mode in S I M A T I C S T E P S7 P L C 40

E Program in SIMATIC S5 P L C 41

F Touch panel screens 42

2

List of Figures

2.1 Architecture of a programmable logic controller 8
2.2 Cyclically execution of SIMATIC P L C s 9
2.3 Example of an input address 10
2.4 Example of an output address 10

3.1 References between the OSI model and P R O F I B U S 12

4.1 Schema of the pick and place machine 16
4.2 Touch panel SIMATIC TP177b D P / P N . F O T O : Siemens A G 18

5.1 Implementation of A N D function in L A D 20
5.2 Implementation of A N D function in FBS 21
5.3 Implementation of A N D function in STL 21
5.4 Example of calling a block 24
5.5 Example of a stage and an initial stage 24
5.6 Example of an action 25
5.7 Example of a receptivity associated with a transition 25

6.1 Graphic description of the system 26
6.2 Interface Module I M 308-C D P . Figure reprinted from [7] 27
6.3 Graphic description of the block design 29

7.1 Graphic description of the system communication 31
7.2 Overview screen 34
7.3 Process screen 34

3

List of Tables

7.1 Digital inputs and digital outputs sections in the module I M 308-C D P . . 31

4

Chapter 1

Introduction

The theme for this work is to implement a pick and place machine, which is controlled by
a SIMATIC S5 P L C in Siemens ® S T E P 7 programing language and in its environment.
This includes, that the machine should be completely controlled by a newer SIMATIC
S7 P L C instead of the previous. A part of the project work is also a visualization and
a limited control by a SIMATIC TP177b D P / P N touch panel. For connection between
the SIMATIC S5 P L C , the SIMATIC S7 P L C and the touch panel it should be used
P R O F I B U S . The connection allows a communication, by which it is possible to control
the machine by the newer SIMATIC S7 P L C and the touch panel. The whole system is
formed by a pick and place machine, a SIMATIC S5 P L C , a SIMATIC S7 P L C , a SIMATIC
TP177b D P / P N touch panel and a P R O F I B U S connection.

The aim of this work is to propose and describe a method of how to control a SIMATIC
S5 machine by a newer SIMATIC S7 P L C using P R O F I B U S . There is also described a design
and an implementation of the pick and place machine and an application for the touch panel
as well.

The work is structured into following chapters. The main objective of the second chapter
is to define and present a programmable logic controller; how it works and how it could be
used to control a machine, in general to control a kind of process.

The third chapter is aimed to describe P R O F I B U S that allows communication, by which
it is possible to control the machine by the newer SIMATIC S7 P L C .

In the fourth chapter, there is mentioned a hardware part of the system, a schema of
the machine and other hardware parts used in the project work.

The fifth chapter describes a software part of the work. There could be found a de­
scription of S T E P 7 environment, programing languages that can be used and a concept
of programing of SIMATIC P L C s . There is also introduced G R A F C E T as a graphical
representation of algorithms of an automated system.

The method how to achieve a communication between the system parts via P R O F I B U S
and a design how to implement the machine is given in chapter six. There is also mention
of a design part for the touch panel application.

The implementation of the system of communication, the program for the pick and
place machine and the application for the touch panel is described in the seventh chapter.

The eighth chapter includes the end summary and future work possibilities.

5

1.1 Motivation
The basic motivation for this work is to enable to control the machine by a newer SIMATIC
S7 P L C . Afterwards, it allows to use S T E P 7 environment, which offers more convenient
and easier implementation of the machine than previous.

This work could also serve as an overview of an automated system and give a reader
a slight idea of the image of it.

6

Chapter 2

Programmable logic controller

2.1 What is a programmable logic controller?

A programmable logic controller (PLC) is in general an embedded system that carries out
a program typically used for controlling a system e.g. a press for shaping plastic parts.
If we remove plastic covers of a P L C , core hardware could remind us a simple computer
formed by a central processor unit that carries out instructions of a program and a memory
that stores the program and data as well. The P L C is not a general-purpose workstation
as e.g. a desktop computer, but it is flexible enough to be used in many applications for
controlling wide range systems. A n apt definition of a programmable logic controller (PLC)
says in [!], it is: "A digitally operating system, designed for use in an industrial environment
which uses a programmable memory for internal storage of user-oriented instructions for
implementing specific functions such as logic, sequencing, timing, counting and arithmetic,
to control, through digital or analogue inputs and outputs, various types of machines or
processes.1'

Early P L C s were designed to replace relay logic systems. The very first P L C s appeared
in about 1969 in the United States as a response to the demands of the automotive industry
to develop automated production lines which could keep pace with technical evolution and
with new production models. [10]

Previous used logic systems weren't flexible enough and with every change the system
had to be rewired. The main advantage of programmable logic controllers against the relay
logic systems became their flexibility - a programmable logic controller allows to program
the logic while a relay logic system implements the logic by wiring particular logical gates.
P L C successfully replaced previous systems.

Since the very first appearance P L C s have become an essential part in many applica­
tions which are found in the most industrial sectors i.e. agricultural and food industries,
metallurgy, mechanical and automotive engineering. The automotive industry is still one
of the largest users of PLCs .

2.2 Architecture of a programmable logic controller

Core hardware of a P L C consists of a processor unit and a memory unit. To these basic parts
are added other components which complete a P L C and are necessary for its functionality
and for the application itself as well. These parts are internal P L C bus, input and output
modules, a power supply unit, communication interface and other special modules.

7

Process

- TT

I n I :• 1.11-

I
Outputs

Internal Bus

I
f 1

UP
V >

I
Interface

Figure 2.1: Architecture of a programmable logic controller

• The processor unit more precisely a microprocessor represents the "brain" and pro­
vides "intelligence" of a P L C . It is used for making decisions on which statements
of the user program are executed. It carries out instructions of a program and thus
a P L C control a process.

The unit mainly works in a cyclic processing mode (described below). It also supports
time-controlled processing for processes requiring signals at constant intervals and
interrupt-driven processing if the reaction on some process signals must be fast. []

• The internal bus of a P L C is used for communication with all the P L C units (a mi­
croprocessor unit, a memory unit, input and outputs units and other interfaces).

Transferred data is used for addressing, data as information and data for controlling.

• The memory unit provides a space for persistence storing the user program and a stor­
age for data stored from inputs and for outputs modules.

• The input and output modules, are besides the user program, the thing that makes
a P L C very universal. These modules are used for monitoring and controlling a pro­
cess. There are two main groups of the modules based on the type of information -
digital and analogue.

The input modules provide a current state of a process. According to these values
a P L C makes a decision by the user program and thus create new outputs.

The outputs modules provide a current action on a process.

• The power supply unit is used for the conversion of the main A C voltage (230V)
to the low D C voltage (24V). It provides a power supply for the P L C components
including the inputs and outputs and other interface modules.

8

• The communication interface is used for transfer data on communication networks
from or to other P L C s . Most common is P R O F I B U S and P R O F I N E T .

• The special modules are used in various applications that measure a location, there
are modules for regulation and Fuzzy logic, modules for diagnostic and many more.

2.3 Concept of a cycle

A program or user program in a P L C is executed cyclically. As the project work is based
on Siemens ®SIMATIC PLCs , these following steps of execution describe their solution 1 .
Information used in this section are from [1].

1. Input status in the Pll
memory.

2. The execution of the user
program with an access from
the Pll and to PIQ as well as
the timer, the counter and
from the mem. bit.

3. Status from the PIQ
transferred to the outputs.

PLC program in
program memory

1. Statement
2. Statement

last Statement

^PM

Timer

Counter

Mem. bit

PIQ

Figure 2.2: Cyclically execution of SIMATIC P L C s

1. When the P L C is switched on, the processor unit questions if the individual inputs
have been transmitted or not. If yes, the actual input values (status of the inputs)
are stored in the process-image input table (PII).

2. Then the processor unit carries out the user program. The required input information
can be already accessed. While proceeding the user program, the new outputs are
formed. The results of the outputs are written into a process-image output table
(PIQ). Also other storage areas for counters, timers and memory bits can be accessed
during the processing of the program.

3. In the third step, the status from the PIQ will transfer to the outputs. After this
step, it continues to operate, as seen in point 1 if the P L C hasn't been switched off.

Pr inc ip les of the cyclically execution are similar to P L C s that are produced by other manufactures.

9

2.4 PLC communication with input and output signals

The inputs and outputs modules more precisely their signals are used for monitoring and
controlling a process. A system of the communication between the SIMATIC P L C s and
the inputs and outputs modules is described in [1].

The determination of a certain input or output in the program is referred to as address­
ing. The inputs and outputs of the P L C are mostly defined in groups of eight on digital
input or digital output devices. This eight unit is called a byte. Every such group receives
a number as a byte address.

Every input or output byte is divided into eight individual bits. V i a the bits it can
respond. These bits are numbered from bit 0 to bit 7. Thus one receives a bit address.

Below, there are mentioned following examples of the input and output addressing.

I 0.4

Figure 2.3: Example of an input address

/specifies an input, 0 the byte address and 4 the bit address. The byte address and bit
address are always separated with a point.

Q 5 .7

Figure 2.4: Example of an output address

Q specifies an output, 5 the byte address and 7 the bit address.

To input and output signals are attached sensors and actors that are used for monitoring
and controlling the particular process.

10

Chapter 3

PROFIBUS

3.1 Introduction

P R O F I B U S (Process Field Bus) is a standardized open field bus system communication.
Information used in this chapter can be found in [], information about P R O F I B U S D P in
[5].

P R O F I B U S is not just one communication system, but a variety of protocols built
on the same field-bus technology. Therefore users can combine varieties of P R O F I B U S
protocols with their own software and other requirements, resulting in a unique application
profile. P R O F I B U S was formed in 1987 and nowadays is often used in many applications
in Europe.

3.1.1 Types of P R O F I B U S

P R O F I B U S has advanced through a few revisions. In some cases, advances have led to
a new type of P R O F I B U S . In other cases, new revisions mean different versions of the same
type of P R O F I B U S .

There are three different versions of P R O F I B U S :

• P R O F I B U S F M S (Fieldbus Message Specification) was designed to communicate be­
tween a programmable logic controllers and PCs, sending complex information be­
tween them. Unfortunately the F M S technology was not as flexible as needed.

This protocol was not appropriate for less complex messages or communication on
a wider, more complicated network.

• P R O F I B U S D P (Decentralized Peripherals) is used in the overwhelming majority of
P R O F I B U S application profiles nowadays. Application profiles allow users to combine
their requirements for a specific solution.

• P R O F I B U S P A (Process Automation) standardizes the process of transmitting mea­
sured data. P R O F I B U S P A was designed specifically for use in hazardous environ­
ments.

3.2 PROFIBUS DP

In my project I worked with the SIMATIC P L C s that support P R O F I B U S D P communi­
cation and also the touch panel supports P R O F I B U S D P communication. Therefore this

11

section describes more deeply P R O F I B U S D P topology and the communication itself.

3.2.1 OSI layer model

The design of the technology modules with P R O F I B U S is oriented toward the OSI layer
model (Open Systems Interconnection Reference Model). Here, the communication process
between two nodes is distributed over seven " layers".

P R O F I B U S uses layers 1, 2 and 7:

OSI Layer Model PROFIBUS Layer Model

User program
s /

App. profiles
i)

1.
' \
Application Layer

PROFIBUS DP Protocol
(DP-VO, DP-V1, DP-V2)

6.
-

Presentation Layer

Not used M Session Layer
Not used

4.
h

Transport Layer
Not used

F

3.
i

Network Layer

Not used

2.

i

Data link Layer

f \
Fieldbus Data Link
Master Slave concept

t Token concept ^

M Physical Layer Transmission tech.

Figure 3.1: References between the OSI model and P R O F I B U S

• Layer 1 defines the physical transmission. Wi th P R O F I B U S , there are copper-wire
versions (RS485 and M B P) and optical and wireless transmission.

• Layer 2 defines the description of the bus access method, including data security. Wi th
P R O F I B U S , this is the master-slave method in conjunction with the token method.

• Layer 7 forms the interface to the application and thus represents the link between
the application and communication. Wi th P R O F I B U S , the communication protocol
P R O F I B U S D P is used here.

• The actual application process lies above layer 7 and it is not part of the OSI model.

3.2.2 Communication

P R O F I B U S devices communicate using the P R O F I B U S D P (Decentralized Periphery) com­
munication protocol, which is the same for all applications and which allows cyclical and
acyclical communication and specifies rules for this. The core of the communication pro­
cess is the master-slave method, where a master (active communication nodes: P L C , P C
or control system) cyclically prompt the connected slaves (passive communication nodes:
field devices, I/Os, drives) to exchange data.

The polled slave answers the master with a response message. The request message
contains the output data, e.g. set point speed of a drive, and the associated response

12

message contains the input data, e.g. the latest measured value from a sensor. A bus cycle
comes to an end once all connected slaves have been polled in order.

In addition to this cyclical communication for the fast exchange of input and output
data between the master and slaves at regular intervals, need based data can also be trans­
mitted using P R O F I B U S , e.g. device setting data. A master has the initiative, accessing
the data of a slave in read or write mode acyclically. There can be more than one master
in a P R O F I B U S system. In such a case, the access authorization passes from the active
master to the next master (token-passing principle).

3.2.3 Device classes

P R O F I B U S devices are divided into three classes based on their functions:

P R O F I B U S D P master (class 1)
A P R O F I B U S D P master of class 1 (DPMI) is a master which uses cyclical communi­

cation to exchange process data with its associated slaves. Devices of this type are often
integrated in a memory of a programmable logical controller or an automation station of
the process control system.

P R O F I B U S D P master (class 2)
A P R O F I B U S D P master of class (DPM2) was originally defined as a master used as

a tool in the context of P R O F I B U S system commissioning. Devices of this type are usually
part of an engineering station used for device configuration. A D P M 2 do not need to be
permanently connected to the bus system.

P R O F I B U S slave
A P R O F I B U S D P slave is a passive communication node which reacts to requests from

the master by sending a response message. Devices in this class are usually field devices
(remote I /O, drive, valve, transducer, analyzer) which acquire process variables or play
a part in the process by means of manipulated variables. A differentiation is made between
compact and modular slave devices.

A modular device comprises a head station containing the fieldbus interface and a num­
ber of slots into which various modules can be inserted. B y combining different modules,
modular slaves can be adapted flexibly to respond to prevailing requirements with regard
to input and output data.

Compact devices have a fixed set of input and output data comparable to a modular
device with precisely one permanently installed module.

The majority of slave devices in process automation are modular devices on which,
rather than being physically present, the individual modules simply exist in the device
software (virtual modules). These virtual modules (and, therefore, access to the associ­
ated input and output data) are activated or deactivated when cyclic communication is
established.

3.2.4 Cyclic communication

When the configuration is loaded on the class 1 master with the help of the configuration
tool, then the master establishes cyclical communication with the associated slave devices

13

(MSO channel). During this power-up phase, the slave adopts a two-stage approach to
checking the configuration data received from the master.

At first, the parameters set in the configuration (e.g. master address, watchdog time
and ID number) are transferred to the slave (parameterization) and checked (configuration).
The ID number is unique for each device type and is assigned by PI. Cyclical communication
can only take place if the ID number from the configuration tallies with the ID number is
saved in the slave. Next, the information about the configured modules is transferred to
the slave and checked.

Cyclical communication can only be established if the modules which are physically
present with those set in the configuration or if the device can adapt to the configuration
received.

Successful establishment of communication is then verified via the requested diagnos­
tics data, the slave reports invalid parameter or configuration data to the master through
corresponding errors in the P R O F I B U S standard diagnostics. If the parameter and config­
uration data is valid, then the master will initiate cyclical communication with the slave
device.

14

Chapter 4

Hardware

4.1 Composition of the system

The system, as was defined in the Chapter 1, consists of following hardware parts that are
described in these sections. It is formed by the pick and place machine, SIMATIC S5 P L C ,
SIMATIC S7 P L C , SIMATIC TP177b D P / P N touch panel and P R O F I B U S connection.

4.2 Pick and place machine

The machine is used for grouping of coil cores for an anti-lock braking system (ABS). More
precisely, it distributes coil covers onto coil cores and the coil cores are grouping together
in two rows of four each. After this, the process is repeated for another set of coil cores.

The system is pneumatic. The machine works in either an automatic mode or in a man­
ual mode. A n operator of the machine chooses between the modes.

The machine is originally controlled by a SIMATIC S5 P L C .

4.2.1 Schema

The schema of the machine is displayed on Figure 4.1 below. The machine consists of
the followings parts:

• The stock is basically used for storing and supplying the coil covers to the process.
One more function is positioning the coil cover into a position when the bottom part
of the cover is down. The stock is made by the upper part and lower part.

• The upper stock is used for supplying the coil covers to the process. The bottom
contains a vibrating surface that is used for movement of the coils covers. The coil
covers fall into the lower stock.

• The lower stock is used for storing and positioning the coil covers to the right position.
It is spiral shaped and it also contains a vibrating surface for transporting the covers
to the conveyor band.

• The conveyor band is used for transporting the covers from the stock to the deck.

• The deck is mainly used for queuing the covers. The covers are arranged in rows of
four pieces. On the deck there also operate other components (the pressing pad, the

15

blocking stick and the lift table) that are used for right positioning that fits the coil
cores.

• The pressing pad, the blocking stick and the lift table are used for positioning the cov­
ers that fits the coil cores.

• The gripper 1 and 2 are used for transporting the covers right on the coil coils.
The coils are stored in a box.

Gripper 1 & Gripper 2

•*
Back Front

Back Front

Upper Stock

positioning the covers
in the right position that
fits the coil cores

Figure 4.1: Schema of the pick and place machine

4.2.2 Operation modes

The pick and place machine operates in either an automatic mode or in a manual mode.
In the case of emergency there is also an emergency mode.

Automatic mode
By pressing a start button the machine starts operation. A switch has to be also in

a position for the automatic mode. The coil covers are supplied from the stock. Once
the covers are arranged in the row of four in the right position and the box that stores the
coil cores is in the right position as well, then the covers are put onto the coil cores. At
first, the first row is put by the gripper 1. That completes one cycle of the process. Then
the machine continues again for the gripper 2. After that, the cycle of the procedure is
completely. This mode of the machine works in an infinitive loop.

16

Manual mode
Before the manual mode can start, the switch has to be in a position for the manual

mode. This mode is completely controlled by an operator who, by pressing a step button,
controls the process.

The result of the mode is exactly the same as in the automatic mode.

Emergency mode
By pressing an emergency button this immediately invokes the emergency mode. It

could also be invoked by opening any of the doors that cover the machine.
A l l components are immediately set into the safe position. After releasing the emergency

button or closing the doors, the machine is set into the default starting position.

4.3 SIMATIC S5 PLC

The SIMATIC S5 P L C consists of following parts:

• C P U : 115U 942

• Power supply: M24-20, input 230 V A C , output 24 V D C , 20 A

• Input modules: 2x Digital Input 32x24 V D C

• Output modules: l x Digital Output 32x24 V D C

There is no interface for communication via P R O F I B U S or P R O F I N E T .

4.3.1 Controlling of the pick and place machine
The SIMATIC S5 P L C inputs and outputs modules are assigned to sensors and actors
of the machine. Inputs represent the status of the machine e.g. a sensor that indicates
if gripper 1 and gripper 2 are in the upper position. Outputs are used for actions e.g.
a movement of gripper 1 to the lower position.

Inputs start at address I 0.0 and outputs start at address Q 40.0.

4.4 SIMATIC S7 PLC

The SIMATIC S7 P L C (SIMATIC S7-300, 315-2EG10-0AB0 station) consists of the folow-
ing parts:

• C P U : 315-2PN/DP

• Power suply: PS307, input 230 V A C , output 24 V D C

There is also available P R O F I B U S D P interface and P R O F I N E T interface for a com­
munication.

4.5 SIMATIC TP177b D P / P N

SIMATIC TP177b D P / P N is a 5.7-inch touch screen panel. It allows an operator to control
and monitor machines and plants.

Interfaces for communication with Siemens ©SIMATIC S7 P L C e.g. via M P I , P R O F I B U S
DP, P R O F I N E T are on-board and available to use.

17

Figure 4.2: Touch panel SIMATIC TP177b D P / P N . F O T O : Siemens A G .

4.6 Communication bus

As a communication bus it is used P R O F I B U S D P as assigned. This allows communication
with SIMATIC S5 P L C and SIMATIC S7 P L C and finally controlling the machine by
SIMATIC S7 P L C and the touch panel.

18

Chapter 5

Software

This chapter is aimed to describe a software part used in the system as a software package
and programming languages that could be used for programming the machine in SIMATIC
S7 environment. There is also mention of G R A F C E T ; a graphical representation of algo­
rithms of automated systems, which are used to represent a functionality of the pick and
place machine.

5.1 Combination of hardware and software

According to the definition of a program logic controller in Chapter 2, a P L C is flexible
to use in many applications. The flexibility is mainly given by programming a set of
instructions, as it is called a user program. The same basic controllers can be used in many
applications for controlling a wide range systems mainly by just changing the program of
the P L C . The software part is thus very important.

5.2 STEP 7

S T E P 7 is a basic software package that provides configuring and programming SIMATIC
PLCs . Information used to describe S T E P 7 can be found in [6]. The S T E P 7 Standard
package includes a series of applications (tools) within the software:

• SIMATIC Manager

• Symbol Editor

• N E T P R O Communication Configuration

• Hardware-Configuration

• Programming Languages

• Blocks for structuring the program

• Hardware Diagnostics

These tools and applications are used through the process of setting up and managing
a project, configuring and assigning parameters to hardware, network setting and con­
figuration, creating programs and programming, simulating and debugging, downloading

19

a program to a P L C and for testing the automation system. Primarily used application
is an environment SIMATIC Manager used for configuring, programming and simulating
PLCs .

The S T E P 7 Standard package can be extended by optional software packages. These
packages provide higher-level programming languages, another technology oriented software
and H M I software used for operator control and monitoring. In the project, it uses just
H M I software for monitoring and visualization the process.

5.3 Programming Languages

With S T E P 7 it is possible to create S7 programs in standard languages Ladder Logic
(LAD) , Function Block Diagram (FBD) or Statement List (STL). Before writing a program,
the author needs to decide which language is suitable to use for the particular application.

Following examples below represent, how to implement A N D function in L A D , F B D
and STL language. Inputs are located at addresses 0.0 and 0.1 and an output is located at
address 0.1.

Information used to describe the programming languages was found in [6].

• Ladder Logic Programming Language (LAD) is a graphic representation of the S T E P
7 programming language. The syntax for the instructions are similar to a relay ladder
logic diagram that enables easy tracking of the signal flow between power rails as it
passes through various contacts, complex elements, and output coils.

The program consists of individual L A D elements arranged in a series that is parallel
to one another. Programming of a current path, or rung, begins on the left power
rail. [9]

10.0 10.1 Q 0.0

H I 1 I 0

Figure 5.1: Implementation of A N D function in L A D

• Function Block Diagram Programming Language (FBD) is also a graphic represen­
tation of the S T E P 7 programming language and uses the logic boxes familiar from
Boolean algebra to represent the logic. Complex functions (for example, math func­
tions) can be represented directly in conjunction with the logic boxes.

While programming in F B D it is also easy to track the signal flow and the program
in F B D can be transferred to STL language as well.

20

0.0

I 0.1

& Q 0.0 &

=

Figure 5.2: Implementation of A N D function in FBS

• Statement List Programming Language (STL) is a textual representation of the S T E P
7 programming language, similar to some kind of an assembly language. Information
to describe STL language was found in [I]. A n STL program consists of statements.
A statement is the smallest autonomous unit of a user program. It represents a work
specification for the C P U .

To make programming easier and more transparent, STL includes some higher-level
language constructions e.g. structured data access and block parameters.

A I 0.0

A I 0.1

Q 0.0

Figure 5.3: Implementation of A N D function in STL

5.4 Blocks for structuring a user program

With S T E P 7 it is possible to structure the user program into blocks. This means it is
possible to divide the entire program into smaller units. As a block we can imagine a single
unit of instructions (statements) that can be called as a function or procedure, it could also
be a unit that stores some data; there is the main block which is called every cycle and
many other blocks that are used for system purposes.

This concept of structuring into blocks has important advantages such as larger pro­
grams are easier to understand, an individual section can be standardized, we can use
procedures for repeat calling, functions as an abstraction of a problem and any modifica­
tion of the entier program is therefore easier.

5.4.1 Block types

There are several types of blocks that are mentioned below. The blocks of the same type
are distinguished by numbers. Information used in this subsection can be found in [6].

Organization blocks (OBs)
OBs represent the interface between the operating system of a P L C and the user pro­

gram. B y programming OBs the C P U behavior is determined. They also determine the se­
quence (start events) by which individual program sections are executed. A n O B call can

21

interrupt the execution of another O B . Which OB is allowed to interrupt another O B de­
pends on its priority. Higher priority OBs can interrupt lower priority OBs. The lowest
priority has Organization Block for Cyclic Program Processing (OBI) .

They are used for cyclic controlling, start-up behavior of the P L C , interrupt-driven
program executing, error handling and other system purposes.

The most important OBs are:

• Start-up Organization Blocks OB100, OB101 and OB102 are used for initialisation.
Every time the status of the C P U changes from the STOP status to R U N status
the start-up organization blocks are called. After execution, the O B I is called.
The priority level (class) is 27 (one of the highest).

• Organization Block for Cyclic Program Processing The O B I is an organization block
that starts the user program. The operating system calls O B I cyclically. The priority
level (class) of the O B I is 1 (the lowest).

• Hardware Interrupt Organization Blocks The OB40 to OB47 are used for a hardware
interrupt. When the interrupt is detected, the device driver calls the right OB (from
OB40 to OB47) if it has a higher priority level (class) then the block that is currently
executing. Otherwise the interrupt is ignored. The priority level (class) of OB40 is
16 and it increase until OB47 that has 23.

Functions (FCs)
It is possible to program the whole user program into the O B I , but according to the ad­

vantages mentioned above and "good programming practices" it is proper to structure
the program. Functions are mainly used for this reason. A function is a logic block "with­
out memory". Temporary variables belonging to the F C are saved in the local data stack.
This data is then lost when the F C has been executed. To save data permanently, functions
can also use shared data blocks. Therefore, we can say a function is a procedure in higher
programming languages if it is called regularly or a unit for structuring the program.

Function blocks (FBs)
Function blocks are another way to structure the program. The difference between

a function and a function block is that the function block has a memory. A function
block is a block "with memory". It is assigned a data block as its memory (instance data
block). The parameters that are transferred to the F B and the static variables are saved
in the instance D B . Temporary variables are saved in the local data stack. Data saved in
the instance D B are not lost when execution of the F B is complete. Data saved in the local
data stack are, however, lost when execution of the F B is completed.

Data blocks (DBs)
Data blocks are used for storaging some data such as bits vectors used as samples,

alphanumeric values and for storing the actual parameters and the static data of the F B
. Therefore we distinguish Instance Data Blocks that are related to a F B and Shared
Data Blocks that are used for storing user data.

22

System Functions (SFCs)
The user, besides his programmed blocks, can also use preprogrammed functions (SFCs)

and blocks (SFBs) that are provided. A system function is a preprogrammed function that
is integrated on the S7 C P U . You can call the SFC in your program. SFCs are part of
the operating system and are not loaded as part of the program. Like FCs, SFCs are blocks
"without memory". S7 CPUs provide SFCs for the following functions:

• Copying and block functions

• Checking the program

• Handling the clock and run-time meters

• Transferring data sets

• Addressing modules

• Distributed I /O

• Global data communication

• and others

System function blocks (SFBs)
A system function block (SFB) is a function block integrated on the C P U . SFBs are

part of the operating system and are not loaded as part of the program. Like FBs, SFBs
are blocks "with memory" so the user has to create instance data blocks as well. S7 CPUs
provide the following SFBs:

• for communication via configured connections

• for integrated special functions

5.4.2 Block call

The main block that starts the user program is O B I . From the O B I other blocks that form
and contain the user program is usually called. The following figure shows an example of
a block call. Calling block calls the called block. After the call, the execution of the program
comes to the called block and instructions there are completely executed. After the called
block is ended, the execution comes back to the calling block right under the call instruction
and the execution keeps continuing in the calling block.

The block from which is able to call other blocks can be OB, F B or F C . The called
block must be one of F B , F C , SFB or SFC. For example, from an O B isn't possible to call
another OB. The block call is made by instructions. In STL programming language we
can use either an unconditional block call or a conditional block call. The parameter of
the instruction is the particular called block.

23

Calling Block

1. Statement

Exe cution
flow

Call

Continue
^Block Ended

Called Block

Calling block
execution

Block Ended

Figure 5.4: Example of calling a block

5.5 G R A F C E T

Information from [10] was used in this section. The G R A F C E T was originally a method­
ology intended for the design and graphical representation of the command algorithms of
an automated system. Wi th its rigorous correspondence with the logic to be programmed
have led certain manufacturers to transform G R A F C E T into a programming language.

The G R A F C E T language can be used in either a graphical or a literal representation.
The machine is described by the graphical form. The graphical form uses elementary dia­
grams which are put together to express the meaning - step, associated command, transition,
symbol of convergence or divergence, with the possibility of expressing logic conditions.

The graphical representation of G R A F C E T is made up of a set of stages, arcs, transi­
tions, labels and receptivities.

The stage
The stage is a situation of the system in which all or part of the control unit is not

changed with respect to the input-outputs of the automated system. Conventionally a stage
is representation by a square numbered in its upper part. The initialization stage is marked
by a double outline.

17

Stage 17 Initial
stage 0

Figure 5.5: Example of a stage and an initial stage

24

Actions associated with a stage
With each stage there can be associated actions on the system. These actions are

specified in a rectangle, the label, situated at the right of the stage symbol.

2 Start motor no. 1
Increment C4

Start motor no. 1
Increment C4

Figure 5.6: Example of an action

Transition and receptivity
A transition is a "barrier" necessary in separating two successive stages. The receptivity

associated with a transition is a Boolean function expressing the logic condition which allows
the clearance of the transition (necessary condition).

The satisfaction of a receptivity is still not a sufficient condition for the freeing of
a transition: it is also necessary for the previous stage to be activated.

11
Timing T of 10 s

j T= l [w h e n f reaches 10 s)

E3

Figure 5.7: Example of a receptivity associated with a transition

A R C S
Arcs are a directed straight line segment linking to a transition, or a transition to a stage,

but never two transitions or two stages together.
By convention the vertical direction from top to bottom is not marked with arrows

(implicit direction).

25

Chapter 6

Design of the system

6.1 Description of the system

The system consists of the three basic parts. The first part is the pick and place machine,
second is SIMATIC S T E P 5 P L C which inputs and outputs modules are assigned to the sen­
sors and actors of the machine so it originally controls the machine and the third part is
SIMATIC S T E P 7 P L C that should completely control the machine instead of S T E P 5
P L C . The part of the system is also SIMATIC T P 177b D P / P N touch panel that is used
for a visualization and controlling the machine as well.

The system is illustrated on Figure 6.1 below. The design of the whole system can be
divided into software and hardware part.

The hardware part describes a design of the communication via P R O F I B U S D P that al­
lows a communication with SIMATIC S5 P L C and SIMATIC S7 P L C and finally controlling
the machine by SIMATIC S7 P L C .

The software part consists of a design of a program for SIMATIC S7 P L C that controls
the machine and an application for the touch panel.

Figure 6.1: Graphic description of the system

26

6.2 Design of the system communication

The concept of this system is that both P L C s and the touch panel are connected via P R O F I B U S
D P and that allows a communication between them and finally provides a control of the ma­
chine by SIMATIC S7 P L C .

The problem of this part is to find a way how to connect both P L C s and the touch
panel via P R O F I B U S DP .

6.2.1 P R O F I B U S D P connection for S I M A T I C S5 P L C

The C P U 115U 942 of the SIMATIC S5 P L C is not available with an integrated P R O F I B U S
D P interface; therefore, there is a need to find an interface module which allows a commu­
nication via P R O F I B U S DP.

I chose an interface module I M 308-C D P for the C P U 115U 942 of SIMATIC S5 P L C .

Interface module I M 308-C D P
Information used in this paragraphs are from []. Module I M 308-C D P is a P R O F I B U S

D P master and/or slave module for SIMATIC S5-115U/H up to S5-155U/H. It provides up
to 122 passive nodes. The I M 308-C enables connection between the distributed I /O stations
to the S5-115U, S5-135U and S5-155U programmable controllers via the P R O F I B U S - D P
bus.

Figure 6.2: Interface Module I M 308-C DP . Figure reprinted from [].

More information about its functionality and setting can be found in [7].

27

6.2.2 P R O F I B U S D P connection for S I M A T I C S7 P L C

The C P U 315-2PN/DP of SIMATIC S7 P L C is a C P U that is made available with an in­
tegrated P R O F I B U S D P interface.

6.2.3 P R O F I B U S D P connection for S I M A T I C TP177b D P / P N touch
panel

The SIMATIC T P 177b D P / P N touch panel is made available with an integrated P R O F I B U S
D P interface as well.

6.3 Design of the application for the pick and place machine

The specification of the pick and place machine can be found in Section 4.2. Its functionality
as the automatic, manual and emergency mode is described by G R A F C E T schema.

In this section there are terms used from Chapter 5. There is a describtion of the G R A F C E T
schema of the machine and also a concept of the block structure of the program.

6.3.1 G R A F C E T schema

The G R A F C E T schema of the pick and place machine has two initial stages M10.0 shared
with the automatic and manual mode and M12.0 for the emergency mode.

The automatic or manual mode starts either when a start button is pressed or a step
button is pressed. After the start, there have to be proceed out a several actions that turn
on the upper stock, the vibrating surface, the lower stock, the conveyor band and open the
main valve. Then the schema continues with other conditions and after that with another
stage. Once the machine ends the first cycle of moving the covers onto the coil coils, it
continues again for the other gripper.

The emergency mode could be invoked immediately by pressing an emergency button or
if any of the doors that cover the machine are opened. Once the emergency mode completes
all stages, the emergency button is unpressed and all doors are closed, the initial stages are
set as default.

6.3.2 Block design

The concept of the program for the pick and place machine consists of following block
structure. There is used O B I object and two functions objects. I chose functions instead of
functions blocks, because there is no need of static memory for remembering any variables,
when there is work just with inputs and outputs. There is also use of OB100 for initializing
the two initial stages that is called immediately after the run mode of the P L C .

O B I is cyclically called and from it, the FC1 and FC2 are called. At first, FC1 is
called which represents the logic conditions and after that FC2 is called which represents
the actions.

OB100
The OB100 is used for initialization. Every time the status of the C P U changes from

the STOP status to R U N status the start-up organization block OB100 is called. The block
initialize the two initial stages M10.0 and M12.0.

28

OBI
After execution the OB 100 the O B I is cyclically called. O B I starts the program that

drives the pick and place machine. In this block two functions FC1 at first and after that
FC2 are called. After S T O P or S H U T D O W N the P L C ends its work.

FC1
FC1 contains the logic conditions. After satisfaction, the condition and with the active

previous stage, it is possible to deactivate previous stage and activate the next stage.

FC2
FC2 contains the actions. There the instructions are carried out under the active stage.

Start

Figure 6.3: Graphic description of the block design

6.4 Design of the application for the touch panel

SIMATIC TP177b D P / P N touch panel should be used for the control and visualization
of the pick and place machine. The application should be created with SIMATIC Wince
flexible 2005 environment.

The application should allow to view the entire process schema, it should also visu­
alize the status of the machine and there should be some acting components for limited
controlling of the machine.

29

Chapter 7

Implementation of the system

In this chapter, the whole system implementation is described. At first, the implementation
of the communication, then the program for the pick and place machine and the application
for the touch panel.

7.1 Implementation of the system communication

In this section, there is used the previous design of the communication discussed in Sec­
tion 6.2 and also information about P R O F I B U S D P presented in Chapter 3.

Once we have the required hardware parts, it is possible to start implementing the com­
munication. The concept of the system communication works with two master stations and
one slave station.

The masters stations is the SIMATIC S7 P L C and the SIMATIC TP177b D P / P N touch
panel.

The slave station is the interface module I M 308-C DP.

7.1.1 P R O F I B U S D P setting
There was used the following setting of the communication using P R O F I B U S D P :

• Profile: D P

• Transmission rate: 1.5 Mbps

• Highest station address (HSA): 126

• Default bus parameters and theirs cyclic distribution

There was used the following setting of the devices:

• C P U 315-2PN/DP (SIMATIC S7 P L C) : master (class 1), address 24

• SIMATIC T P 177b D P / P N (touch panel): master (class 1), address 31

• I M 308-C D P (communication interface of the SIMATIC S5 P L C) : slave, address 16

30

Figure 7.1: Graphic description of the system communication

7.1.2 I M 308-C D P setting

The module I M 308-C D P is set as a slave with address 16. It is also set to contain three
digital inputs and three digital outputs sections, which are used to exchange data between
the machine inputs, outputs and the S I M A T C I S7 P L C program, as explained below.

Table 7.1: Digital inputs and digital outputs sections in the module I M 308-C D P

Designation Input Address Output Address
16bytes DI/constcy 1 byte 50 .. 65
16bytes DI/constcy 1 byte 66 .. 81
16bytes DI/constcy 1 byte 82 .. 97
16bytes DO/constcy 1 byte 50 .. 65
16bytes DO/constcy 1 byte 66 .. 81
16bytes DO/constcy 1 byte 82 .. 97

The digital inputs from address I 50.0 represent the real digital inputs used in the ma­
chine that start from I 0.0. The same is valid for the digital outputs from address Q 50.0
and in the machine Q 40.0. We need to represent the inputs and outputs like that, because
it is not possible to change the real outputs directly nor a direct access to the real inputs.

The program in SIMATIC S7 P L C works with these inputs and outputs addresses;
therefore, there is a need to translate the inputs and outputs addresses into to the real
addresses. The translation is made by a short program, which is ran by SIMATIC S5 P L C
as explained below.

31

7.1.3 Communication between the S I M A T I C S7 P L C and the machine

The communication between the SIMATIC S7 P L C and the machine is proceeded indirectly
through the module I M 308-C DP, more precisely through its inputs and outputs addresses
via P R O F I B U S DP . The communication is in detail described below.

The SIMATIC S7 P L C runs a program that controls the machine.
The SIMATIC S5 P L C runs a short program that reads inputs from the machine (from

address 0.0) and writes them as outputs (from address 50.0) by using the module I M 308-C
DP. There are available to the SIMATIC S7 P L C . The program (of the SIMATIC S5 P L C)
also reads inputs from the module I M 308-C (from address 50.0), which were changed by
the SIMATIC S7 P L C program and writes them as outputs to the machine (from address
40.0).

7.2 Implementation of the pick and place machine

7.2.1 Programing language

As a programing language for the program, I chose Statement List (STL), because it is based
on a kind of assembly language and because of my computational science background. STL
program is hard for maintenance; therefore, the previous block design was very important.

7.2.2 Concept of the program

The implementation implements the G R A F C E T schema of the machine and uses the block
structure, as it was designed and described in Section 6.3.

The principle of the stages is to do the particular actions. The conditions check if
the particular actions have been executed. Once the actions are carried out, the conditions
that check them are set to true and the program can continue with the next stage.

The stages were implemented as memory bits e.g. the initial stage M10.0 is implemented
as the first bit (bit 0) in memory address M10.

The transitions were implemented as logical functions.

7.2.3 Important parts

While implementing the G R A F C E T shcema of the machine; there had to be solved following
problems, how to implement a timer and a possitive edge detection.

Timer
The G R A F C E T schema of the machine contains a several parts of waiting. This part

was implemented by using a timer. I used an on-delay timer.
Here is an example how to use an on-delay timer.

A M10.5 // If M10.5 stage i s active.
L S5T#10s // Load 10 seconds into accumulator (ACCU 1).
SD T l // Start timer T l as an on-delay timer.

A T l // Check the expiration of timer T l .

32

Possitive edge detection of a step button
The manual mode is controlled by a step button. When it is pressed, the program

should move to the next stage.
Here is an example how to detect a positive edge of an input (a step button). There are

also used two auxiliary variables (bit M140.0 and M140.1). F P instruction detects a rising
edge when the R L O (satisfaction of a condition or conditions) transitions from "0" to "1"
and indicates this by R L O = 1.

A "Step" / / I f the step button pressed.
FP M140.0 // FP detection - transitions from "0" to "1".

M140.1 // It i s indicated by RLO = 1. Saved i n M140.1.

A M10.0 // If M10.5 stage i s active.
AN "Switch_AuMa" // And the manual mode i s set.
A M140.1 // And M140.1 (where i s saved the re s u l t) .

... // Move to the next stage.

R M140.1 // Reset M140.1 (for next usage).

7.3 Implementation of the touch panel

The application for the touch panel was created in SIMATIC Wince flexible 2005 environ­
ment that is an extended application of Siemens ® S T E P 7 software package. The created
application includes four views on the process and machine.

On the first Figure 7.2 is displayed the overview of the process. This view is displayed
after starting up the application. There is located a lamp that indicates if the machine is
working or not, there is displayed if the machine is working in the automatic or manual
mode, also there are located lamps that by flickering indicate if the emergency button is
pressed or if any doors is opened and lamps that are used to display the status of other parts
of the machine. By pressing the "Process" button or by pressing the area that indicate if
"Machine is working", the second screen is activated.

The second view on the Figure 7.3 displays the entire process. This screen is com­
posed as an overview of all the parts of the machine. There are also lamps that indicate
the current operation mode of the machine and emergency status. Every part of the ma­
chine is made as a schema symbol that signifies the status of activating or deactivating. If
the schema line is displayed with green color, it means that the particular part is active,
otherwise it displays with black color. There are also lamps that are supplying sensors of
the machine. If the area of the lamp is filled by yellow color, it indicates that the part is
located in the particular position by the sensor. The sensors are mostly used to indicate
a location of the part or appearance e.g. appearance of the covers in the queue. There is
also used " S T A R T " and " S T E P " button. These buttons are used for controlling the ma­
chine. A n operator can choose between the buttons located on the machine or buttons used
on the touch panel - the result is the same.

The last two screens provide a detail view on the process of positioning the covers and
on grippers. Thus, an operator has a clear imagine about which parts are currently using.

33

SIEMENS SIMATIC PANEL

Process Review 5/5/2011 11:07:41 AM . 'stopRUN~|

Machine is Working • Pressure
Upper Stock

Emergency Button • Lower Stock
Doors Opened o Conveyor B.
Automatic Mode o Vibrating Sur,
Manual Mode o

Figure 7.2: Overview screen

Figure 7.3: Process screen

34

Chapter 8

Conclusion and Future Work

The main object of this bachelor's thesis was to propose and describe a method of how
to control a SIMATIC S5 machine by a newer SIMATIC S7 P L C using P R O F I B U S . We
successfully designed and implemented the system of communication, the program control­
ling the machine in S T E P 7 STL language and the application for the touch panel. A l l
requirements were accomplished.

The project work has already been used by other domestic students who had their
laboratory concerning the implementation of the machine. They could use all of advantages
that come with S T E P 7 environment.

The work could be used as an idea of a design and implementation of the program for
the machine. The theoretical part could also be useful for future international students as
a description of the machine in English language.

This thesis could also serve as an overview of an automated system and give to a reader
a slight imagine about it.

The future work might be rewiring the inputs and outputs of the machine to a newer
type of P L C . This method of how to control the machine by a newer P L C provides an in­
comparable programming comfort, but there is still a need for the use of the old P L C . This
solution illustrates the problematic of communication, a student can compare both envi­
ronments, notify the progress and programing comfort, but it is not suitable for a practical
use. If we wanted to implement and use the machine in reality, the ideal solution would be
replacement of the old P L C by a newer type and rewire the inputs and outputs.

35

Bibliography

[1] Module A3 - 'Startup' P L C Programming with S T E P 7. [online]
http: //www. automation. Siemens. com/mcms/see/en/advancecLtraining/training_materia
download_training_material/a_basics_step7_programming/Documents/a03_startup .pdf,
02/2002. Manual.

[2] Programmable Controllers - Part 1: General Information. International
Electrotechnical Commission, IEC 1131-1, 1992, (also British Standard BS E N
61131:1994).

[3] SIMATIC S5, S5-135U, C P U 928B - Version - 3UB21, 1996. Programming Guide.

[4] P R O F I B U S System Description, Technology and Application, [online]
http://www.profibus.com/nc/downloads/downloads/profibus-technology-
and-application-system-description/download/9592/, 2008.

[5] P R O F I B U S , Comprehensive Protocol Overview, [online]
http://www.rtaautomation.com/profibus/, Apri l , 2011.

[6] SIMATIC, Programming with S T E P 7, Edition 03/2006. Manual.

[7] SIMATIC S5, E T 200 Distributed I /O System, [online]
http://support.automation.Siemens.com/WW/llisapi.dll/csfetch/1142470/
ET200_e.pdf?func=cslib.csFetch&nodeid=1142140, Edition 04, 1995. Manual.

[8] Hans Berger. Automating with STEP 7 in STL and SCL. Publicis Corporate
Publishing, 3rd revised edition, 2005. ISBN 3-89578-243-2.

[9] Hans Berger. Automating with STEP 7 in LAD and FBD. Publicis Corporate
Publishing, 4th edition, 2008. ISBN 978-3-89578-297-8.

[10] Gilles Michel. Programmable Logic Controllers, Architecture and Application. John
Wiley & Sons, 1990. ISBN 0-471-92463-6.

36

http://www.profibus.com/nc/downloads/downloads/profibus-technology-
http://www.rtaautomation.com/profibus/
http://support.automation.Siemens.com/WW/llisapi.dll/csfetch/1142470/

Appendix A

CD Contents

• README - software description and basic usage

• src/ - source codes

• doc/ - text

37

Appendix B

List of Abbreviations

P L C programmable logic controller

C P U central processor unit

A C alternating current

D C direct current

L A D ladder logic

STL statement list

F B D function block diagram

OB organisation block

F C function

F B function block

D B data block

SFC system function

SFB system function block

F M S fieldbus message specification

D P decentralized peripherals

D P process automation

M P I multi point interface

38

Appendix C

GRAFCET Schema of
the emergency mode

M12.0

NOODSTOP cyclos

noodstop ingedrukt of er is een deur geopend

MI2.1 automatistne heruiitialiseren

— sutomatisme is geherinitial iseerd

M l 2.2 R uitvoer voorraad + trilplaat aan/uit = uit
R trtJpot aan/uit = uit
R merker M90,0"selectiegrijperl/grijper2 0/1 •'= grijper 1

R aandrukplaartjes omJaagfomhoog — omhoog
R transportband aall/uil - uil
R draaisysteem kernen blokkeren/deblokkeren = dcblokkcren
R grijper I omlaag/omhoog = omhoog
R grijper 2 omlaag/omhoog - omhoog

(grijper 1 en grijper 2 zijn omhoog) .(trilpot is uitgeschaketd) .(draaisysteem
spoelkernen gedeblokkeerd)

M12.3 R grijper 1 en grijper 2 naar achter/voor = vooraan
S draaisysteem spoelkernen (is de rusttoesrand)
R heftafel omhoog/omlaag - omiaag

(grijper 1 en grijper 2 zijn vooraan) .(draaisysteem spoelkernen in rust) .
(heftafel is omiaag)

M12.4 R aandrukplaatjes naar voor/achter = naar achter
S grijper 1 omlaag/onihoog - omiaag
S grijper 2 omlaag/omhoog ~ omiaag

(aandrukplaatjes zijn naar achter) .(grijpers 1 & 2 zijn omiaag)

M12.5 R hoofdventiel
R grijper 1 grijpen loslaten = Joslaten
R grijper 2 grijpen/loslaten = loslaten
K grijper 1 omlaag/omhoog = omhoog
R grijper 2 omlaag/omhoog - omhoog

noodstop is niet meer ingedrukt en de deuren zijn dicht

39

Appendix D

Selection of the mode in SIMATIC
STEP S7 PLC

// Selection of the mode

//M10.0 i s def set in OB100

// M10.1
// - Automatic Mode
A M 10.0
A "Switch-AuMa"
A "Start"
A "EmButtonJJP"
AN "Door_C0"

// - Manual Mode
0(
A M 10.0
AN "SwitchJVuMa"
A M 140.1
R M 140.1
)
S M 10.1
R M 10.0

//M12.0 i s def set i n 0B100

// M12.1 - Emergency Mode
A M 12.0
A(
ON "EmButtonJJP"
0 "Door_C0"
)
S M 12.1
R M 12.0

40

Appendix E

Program in SIMATIC S5 PLC

L EW 50
T AW 40
L EW 52
T AW 42

L EW 0
T AW 50
L EW 2
T AW 52
L EW 4
T AW 54

BE

l r The S5 envrinment was in German language. E (Eingabe) means input (I), A (Ausgabe) means output
(Q).

41

Appendix F

Touch panel screens

SIEMENS SIMATIC P/WEl-

Process Review 5/5/2011 11:07:41 AM f jtojjjijö|

O v e r v i e w

Machine is Working

Emergency Button
Doors Opened
Automatic Mode
Manual Mode

o
o
o

Pressure
Upper Stock
Lower Stock
Conveyor B.
Vibrating Sur.

Process GRIP POS

42

43

