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Abstract
The Brno Data Department has access to multiple datasets regarding cycling traffic num-
bers. The goal of the thesis was developing a model integrating these sources for the Trans-
portation Department of the city planning office to gain insights about how the infras-
tructure is used daily. Each dataset is aggregated to a different basemap with a slightly
different street network. This thesis introduces an algorithmic approach to street matching
based on similarity, overlap percentage and other parameters. Two algorithms for match-
ing point-based and polyline-based geometries are presented. As well as a model mapping
locations among different datasets and a dashboard visualizing values from them side-by-
side. The robustness of the algorithms enables usage in any geographical application using
spatial data. The dashboard provides useful information about cycling transport for both
casual users and professionals designing the infrastructure of Brno.

Abstrakt
Oddelenie dát v Brne má prístup k viacerým dátovým sadám o počtoch cyklistov. Cieľom
práce bolo vytvoriť model integrujúci tieto zdroje pre odbor dopravy magistrátu mesta,
aby získali prehľad o tom, ako sa infraštruktúra denne využíva. Každý súbor údajov je
agregovaný na inú základnú mapu s mierne odlišnou sieťou ulíc. Táto práca predstavuje
algoritmický prístup k porovnávaniu ulíc na základe podobnosti, percentuálneho prekrytia
a ďalších parametrov. Poskytnuté sú dva algoritmy na porovnávanie geometrie založenej
na bodoch a úsečkách geometrie. Rovnako aj model priraďujúci lokácie medzi rôznymi
dátovými sadami a informačný panel vizualizujúci hodnoty z nich vedľa seba. Robustnosť
algoritmov umožňuje ich použitie v akejkoľvek geografickej aplikácii využívajúcej priestorové
údaje. Informačný panel poskytuje užitočné informácie o cyklistickej doprave pre bežných
používateľov aj odborníkov, ktorí navrhujú infraštruktúru mesta Brna.
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Rozšířený abstrakt
Mestá orientované majú negatívny vplyv na životné prostredie a sú náročné na priestor.
Bicykle sú skvelou alternatívou dopravy, ale ich integrácia do existujúcej infraštruktúry
prináša rôzne problémy. Získavanie viac informácií pre dopravné oddelenie umožňuje vykoná-
vať lepšie rozhodnutia a zabezpečiť, aby sa cyklistická doprava stávala atraktívnejšia a pop-
ulárnejšia. Existuje viacero dátových sád, avšak každá z nich má len čiastočné časové alebo
priestorové pokrytie mesta. Ich integrácia by mohla zlepšiť oboje.

Dostupné súbory údajov zahŕňajú automatické snímače na bicykle, ktoré detekujú cyk-
listov na rôznych miestach v meste, údaje z kampane „Do Práce Na Kole", ktorá podporuje
udržateľné spôsoby dopravy vytvorením súťaže, v ktorej môžu skupiny ľudí alebo spoločnosti
súťažiť, kto za mesiac najazdí najviac kilometrov. Ďalej údaje zo štatistík sčítania cyklis-
tov, ktoré vykonáva Brnenská komunikačná spoločnosť a údaje z športovej aplikácie Strava,
ktorá sa používa na meranie a zdieľanie GPS trás. Každý súbor údajov agreguje zozbieraný
počet cyklistov do inej uličnej siete.

Nekonzistentnosť základných máp nedovoľuje možnosť jednoduchého prepojenia, takže
je potrebný algoritmický prístup na porovnanie ulíc medzi rôznymi sieťami. Algoritmus
na integráciu rôznych uličných sietí využíva zaokrúhľovanie súradníc na transformovanie
pseudo-spojitého priestoru na diskrétny. Váhuje podobnosť línií podľa uhlov a používa na
porovnávanie percentuálny prístup k prekrývaniu ohraničujúcich obálok. Konečný dátový
model využíva nepriame kódovanie a mapovanie na koncové súbory údajov. Algoritmus
párovania je unikátny prístup a je vytvorený robustne, takže ho možno použiť v množstve
aplikácií, kedykoľvek sa vyskytnú nezrovnalosti v základnej mape. Cieľom algoritmu je nájsť
rovnakú ulicu v rôznych sieťach základných máp a vytvoriť mapovanie, ktoré umožňuje
porovnávať hodnoty medzi zdrojmi údajov. Optimalizácia algoritmu je vykonaná tak,
že vybrané okno mapy je rozdelené na menšie, rovnako veľké segmenty. Potom sa ulice
porovnávajú len s tými, ktoré sa nachádzajú v rovnakom segmente.

Navrhovaný dátový model využíva sieť ulíc z OpenStreetMap ako zdroj pravdy. Posky-
tuje užitočné informácie o type cesty, stave vozovky atď. Uvedený algoritmus k nej priradí
koncové súbory údajov o cyklistickej doprave v Brne. Sú mapované podľa príslušných ID,
takže ich vnútorné hodnoty nie sú duplikované, ale len nepriamo zakódované a vzájomne
mapované. Týmto spôsobom sa o pridávanie nových údajov starajú ich vlastníci a nie je
potrebné ich v tejto práci riešiť.

Výsledné dáta zobrazuje vytvorený informačný panel (dashboard). Je vytvorený v rámci
portálu geografického informačného systému ArcGIS, ktorý využíva aj Dátove oddelenie
mesta Brna a má v ňom uložené dátové sady využívané v tejto práci. To znamená, že
nie sú treba prenášať alebo hosťovať samostatne, keďže ovládací panel ArcGIS sa môže
natívne dotazovať na tieto vrstvy, ktoré sú verejné. Hlavné zobrazenie panela využíva
integračný model. Výberom ulice v mapovom prehliadači sa zobrazí používateľovi výber
tabuliek a grafov na pravej strane, zostavené z údajov týkajúcich sa vybranej ulice. V ľavom
bočnom paneli sa nachádza výber dátumu, ktorý slúži len na vyhľadávanie údajov z auto-
matických snímačov, pretože tieto sú generované na hodinovej báze. Prehliadač máp možno
prepnúť na rôzne pentlogramy zobrazujúce niektoré bežné spôsoby použitia dátových sád.
Údaje zo služby Strava nebolo možné pridať, pretože podliehajú veľmi prísnym licenčným
pravidlám a nemôžu byť zdieľané s nikým bez výslovného prístupu od tímu Strava Metro.
Jednoduchý nástroj na zobrazovanie dát zo Stravy v podobnom formáte ako zvyšok panelu
je zahrnutý v práci a môže byť využitý ľudmi, ktorí majú prístup k týmto dátam. Táto
práca bola zapojená do konferencie EXCEL@FIT 2023, kde vyhrala ocenenie odborným
panelom, ako aj partnerom z praxe.
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Chapter 1

Introduction

In today’s more environmentally conscious culture, more and more people realize that it’s
better for society, to limit car dependency in big cities. Alternative ways of moving around
town are greener and more inclusive to people without cars, or driving licenses, or those who
are unable to operate a vehicle for a multitude of reasons. Other forms of transport create
significantly less air pollution, noise pollution, and they decrease the risk of fatal traffic
accidents. Designing our cities for people, not cars, creates a better and richer community.

That’s where major cities started to implement cycling as an ideal form of transporta-
tion. Bicycles are cheap, sustainable, and often faster than cars in dense areas as they
can easily skip through traffic. They also save space for all those overcrowded parking
lots and most importantly — they save money. With this shift of movement, the bike
sharing services became widely popular around larger urban hubs. Cycling infrastruc-
ture is still in the early stages in most cities. The major challenges are the funds re-
quired and the space limitations of already established streets, roads, and pathways. This
leads to cyclists sharing their designated part of the street with either cars or pedestrians.

The only way to make cycling safe and attractive to the wide masses is by creating
safer and dedicated infrastructure for bicycles. In order to do that, the city planning office
needs to have a good understanding of how the current infrastructure is used, and where
are the critical spots that need to be addressed.

This thesis attempts to solve these issues in the Czech city of Brno, by creating a data
pipeline integrating multiple sources of cycling traffic data into a database, storing it, and
preparing it for future use. An algorithm for matching different street networks is devel-
oped and used to incorporate said datasets. The final created model is then visualized
by an intuitive dashboard. Chapter number 2 breaks down cartography basics and geo-
graphical applications. Ways of storing and processing such data are explained in Chapter
3. Cycling data and their nuances are addressed in Chapter 4, as well as approaches to docu-
menting cycling traffic in different cities around the world. There are multiple complex data
sets used in the presented application. These are analyzed in Chapter 5. Chapters 6 and 7
introduce the proposed architecture of the application and the data. As well as its final
implementation, including the public dashboard created. Chapter 8 explains experiments
conducted with the system and their findings.
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Chapter 2

Geospatial Applications

This chapter introduces basic information and terminology concerning geospatial data, pro-
jecting them onto a 2D map, and transforming them into a digital space. Understanding
the process of generating maps and how they relate to Earth, helps design more accu-
rate and robust applications.

2.1 Map Projections

This section gathers information mostly from [20, 4, 8].
Displaying a spherical planet like the Earth in two dimensions requires a process of “flat-

tening”, called projection. There is no way to preserve all information when reducing di-
mensions. The surface of the sphere needs to be distorted to correctly draw it onto a flat
canvas. Common properties that are distorted as an aftermath of projection are area, form,
distance, and direction [22].

There are three commonly used types of projections classified according to the surface
area from which they are derived [23]:

• Cylindrical

• Conical

• Azimuthal

Every projection has strengths and weaknesses. This is the reason for the need for mul-
tiple philosophies. A good cartographer needs to understand the differences and choose
the correct model for his purpose 2.1.

Conical Projections

Conical projection places a cone around the earth and unwraps it into a canvas. It’s
mostly useful for mapping long east-to-west regions because the created distortion is con-
stant along common parallels. This is why conical projections are very popular for re-
gional maps in mid-latitude areas (approximately 20° to 60° North and South). Perhaps
the most popular and widely used conical projection is Lambert Conformal Conic,
released in 1772 and used to this day1.

1https://en.wikipedia.org/wiki/Lambert_conformal_conic_projection
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Figure 2.1: Types of mapping projections from the left: azimuthal, conical, cylindrical.
Source: [8].

Cylindrical Projections

Placing a cylinder around a globe and unraveling it creates a projection considered a stan-
dard for nautical purposes and general navigation in the world. It keeps constant true
direction, meaning a straight line on the map is the same direction as would show a com-
pass. The most famous cylindrical projection is the Mercator, released in 15692. While
this projection is very close to the reality around the Equator, its distortion rapidly in-
creases while moving away and closer to the Arctic. Many newer projections are still based
on this first model.

Azimuthal Projection

These types of projections plot the surface of the Earth using a flat plane. They are most
commonly used over Polar areas but can be used for small-scale maps of continents such
as Australia. This is a conformal projection in that shapes are well preserved over the map,
although extreme distortions do occur towards the edge of the map.

2.1.1 Coordinate Systems

A geodetic coordinate system is a system used to identify the location of points on the Earth’s
surface. It uses a set of mathematical formulas to describe the location of a point in re-
lation to a reference ellipsoid, which is a mathematically defined shape that approximates
the Earth’s shape. This section gathers knowledge from [10].

2https://en.wikipedia.org/wiki/Mercator_projection
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Latitude and Longitude

The location of a point on the surface of the Earth in reference to the equator and the prime
meridian is indicated by these coordinates. Latitude, which is measured in degrees north or
south of the equator, is the angle between a place on the surface of the Earth and the equa-
tor. Longitude, which is represented in degrees east or west of the prime meridian, is
a measurement of the angle between a place on Earth’s surface and the prime meridian.
Geographic information systems (GIS) and other applications frequently identify locations
on the Earth’s surface using latitude and longitude, which are widely used in geodetic
coordinate systems.

Universal Transverse Mercator (UTM) Coordinates

These coordinates are used to represent a point’s distance from a central meridian in me-
ters. Maps of smaller areas typically use UTM coordinates because they accurately depict
the surface of the Earth, while greater scales can lead to distortion. In surveying, map-
ping, and other fields where an exact position is crucial, UTM coordinates are frequently
utilized.

2.2 Geographical Information Systems

A geographical information system (GIS) is a tool used for capturing, storing, analyz-
ing, and managing spatial and geographic data [21]. In order to collect, manage, ana-
lyze, and present all types of geographically linked data, it incorporates hardware, soft-
ware, and data. GIS can be used to create maps and reports based on spatial data and to
analyze and visualize spatial data, such as the locations of roads, buildings, and rivers.

Numerous fields, such as urban planning, resource management, transportation, and en-
vironmental evaluation, utilize this technology. To manage resources more effectively, it can
be used to examine spatial linkages, patterns, and trends. Additionally, interactive maps
that let people explore and engage with spatial data visually can be produced using GIS.

Some common components include data input and management tools, mapping and vi-
sualization tools, and analysis and modeling tools. Maps, satellite photos, and other types
of spatial data are just a few of the different formats that GIS data can take. New
techniques and tools are continually being created to expand this technology’s capabili-
ties and open the door to more complex types of analysis and visualization.

Geospatial File Types

There are many commonly used file types to store geospatial data [20].

• Geojson file format was adapted from JavaScript Object Notation (JSON) format.
It stores coordinates as text including points, lines, and polygons. GeoJSON stores
objects within curly braces and in general, has less markup overhead.

• Shapefile is the most commonly used geospatial format, often considered an industry
standard. It consists of three different types of files

– .shp — feature geometry

– .shx — shape index
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– .dbf — attribute data

• GPX (GPS Exchange format) is an XML schema that describes waypoints, tracks,
and routes captured from a GPS receiver. Because GPX is an exchange format, you
can openly transfer GPS data from one program to another based on its description
properties.

• GML allows for the use of geographic coordinates extension of XML. GML stores
geographic entities (features) in the form of text. Each feature has a list of proper-
ties, geometry (points, lines, curves, surfaces, and polygons), and a spatial reference
system.

• OSM files are the native XML-based file for the OpenStreetMap project (discussed
later in this section). These files are a collection of vector features from crowd-
sourced contributions from the open community. the more efficient, smaller PBF
Format (“Protocolbuffer Binary Format”) is an alternative to the XML-based format
stored in binary.

OpenStreetMap

The OpenStreetMap project (OSM) is a free geographic database developed and maintained
by the open-source community. It gathers data from volunteer contributors and other
available sources like public government datasets. OSM is the golden standard for base
maps and street networks in all GIS applications. Thanks to the open-source nature
of the data, it’s often more recent and up-to-date than the data of the private sector
mapping vendors like Google Maps.

This rich and robust database of streets, objects, earth topology, and many other points
of interest is used to make electronic maps, create turn-by-turn navigation systems, or vi-
sualize any kind of geospatial data [28]. OpenStreetMap Foundation also provides a pub-
lic API useful for building custom solutions that require communication with the OSM
database. Full snapshots of the database are also periodically released as downloadable
files.

ArcGIS

ArcGIS is a software platform for creating, managing, analyzing, and sharing geographic and
spatial data. It consists of a suite of products designed to work together to enable users
to create, share, and use maps and other spatial data.

It provides a robust set of utilities and APIs in multiple programming languages, for cre-
ators of geospatial applications. ArcGIS uses a subscription payment model but offers a free
base-level subscription for students and open-source developers.

The key feature of this geographic information system is cloud-based data hosting,
the basic structure can be seen in Figure 2.2. It enables developers to store and retrieve
data in multiple formats, version them, and process the data close to the final application
according to the “data locality” theorem [9]. It states that heavy computations should be
moved as close to the data location as possible, instead of moving the data into the com-
putational cluster.

A standard file or a dataset is represented as a feature layer. ArcGIS provides rich
querying capabilities with SQL and spatial queries and supports all commonly used data
file formats from Section 2.2.
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Figure 2.2: Basic structure of ArcGIS data hosting features. Source: [16].

The ArcGIS web interface has an easy-to-use tool to create maps and visualizations
from the stored data. It features multiple base map options and an interactive user-friendly
filtering system for ad-hoc visuals and analyses.

2.3 Personal Localization and Navigation

With the development of Global Navigation Satellite Systems (GNSS), it became possible
to collect individual location information. They are satellite-based systems that locate
an object on the ground by using a network of satellites orbiting the planet.

GNSS systems operate by sending satellite-based signals to a ground-based receiver.
Based on how long it takes a message to get to the receiver, the receiver determines how
far away each satellite is. The receiver can establish its location on the surface of the Earth
by calculating the distance from at least three satellites. [27]

GNSS systems are widely used for navigation, location tracking, and timing applica-
tions. They are utilized in a variety of gadgets, such as drones, smartphones, and GPS
units for automobiles. Surveying, mapping, and other geospatial applications all make use
of GNSS systems.

The first GNSS to be put into use was the Global Positioning System from the United
States of America. Subsequently, several nations adopted their own GNSS. Even today,
the acronym GPS is frequently used as a term for a navigation system. It was initially intro-
duced and exclusively intended for military use, but it soon became accessible to the general
population. Thus, enabling the acquisition of personal location data.

Table 2.1 illustrates the differences among the most popular systems.
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System GPS GLONASS BeiDou
Owner United States Russian Federation China

Orbital altitude 20,182 km 19,310 km 21,150 km
Period 11 h 58 min 11 h 16 min 12 h 38 min

Number of satellites 31 over 6 orbital planes 28
5 GEO satellites

30 MEO satellites

Frequency
1.57542 GHz (L1 signal)
1.2276 GHz (L2 signal)

1.602 GHz
1.246 GHz

1.561098 GHz (B1)
1.20714 GHz (B2)

System Galileo IRNSS
Owner European Union India

Orbital altitude 23,222 km 36,000 km
Period 14 h 5 min 23 h 56 min

Number of satellites
4 in-orbit validation satellites

8 operational satellites
(22 satellites budgeted)

3 GEO satellites
4 GSO satellites

Frequency
1.559 GHz (E2)
1.260 GHz (E6)

1.17645 GHz (L5)
2.492028 Ghz (S1)

Table 2.1: Comparison of five largest Global Navigation Satellite Systems and their speci-
fications. Source: [30].

9



Chapter 3

Data Storage Solutions

Large volumes of data are managed and stored effectively and efficiently using databases.
They offer a mechanism to access, modify, and work with data. Databases can also guar-
antee data security, consistency, and integrity. They are also helpful in situations where
multiple users need to obtain the data at the same time. Thus, some kind of a database is
inevitable, when building a model from large quantities of data, that needs to be regularly
queried and updated, like the cycling traffic model of Brno.

3.1 Data Warehousing

A data warehouse (DW) is an integrated repository of data put into a form that can
be easily understood, interpreted, and analyzed by the people who need to use it to make
decisions. It’s a subject-oriented, integrated, nonvolatile, and time-variant collection of data
in support of management’s decisions [31].

The subject-oriented property describes how a DW’s data is arranged around the main
subjects of an organization’s interests. Customers, products, sales, and vendors are a few
examples of subjects. The integrated property denotes that some meta-data and other
pertinent external data are also incorporated into a DW’s data, in addition to the data
from all operational database systems. Because of their nonvolatile nature, DWs seldom
have their data updated. DW typically contains data spanning several years. This enables
DW users to examine historical trends, patterns, correlations, rules, and exceptions.

3.1.1 Online Transactional and Analytical Processing (OLTP, OLAP)

An OLTP system captures and maintains transaction data in a database. Individual
database entries with many fields or columns are used in each transaction. Due to the con-
stant reading, writing, and updating of OLTP databases, the focus is placed on quick pro-
cessing. Built-in system logic assures data integrity even if a transaction fails. Relational
databases are generally used for transactional processing.

OLAP applies complex queries to large amounts of historical data, aggregated from OLTP
databases and other sources, for data mining, analytics, and business intelligence projects.
The emphasis here is on response time to these complex queries. Each query involves
one or more columns of data aggregated from many rows.

Table 3.1 breaks down the basic characteristics and aspects of these two approaches.
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OLTP OLAP
Characteristics Handles a large number of small

transactions
Handles large volumes of data
with complex queries

Query types Simple standardized queries Complex queries
Operations Based on INSERT, UPDATE,

DELETE commands
Based on SELECT commands
to aggregate data for reporting

Response time Milliseconds Seconds up to hours depending
on the amount of data to process

Design Industry-specific, such as retail,
manufacturing, or banking

Subject-specific, such as sales, in-
ventory, or marketing

Source Transactions Aggregated data from transac-
tions

Purpose Control and run essential business
operations in real-time

Plan, solve problems, support de-
cisions, discover hidden insights

Data updates Short, fast updates initiated
by user

Data periodically refreshed with
scheduled, long-running batch
jobs

Space require-
ments

Generally small if historical data
is archived

Generally large due to aggregat-
ing large datasets

Table 3.1: Comparison of OLAP and OLTP key properties and differences. Source: [33].

3.2 Extract-Transform-Load Process

This section is paraphrased from an article called “A proposed model for data warehouse
ETL processes” [15].

Extraction–transformation–loading (ETL) tools are pieces of software responsible for the
extraction of data from several sources, it’s cleansing, customization, reformatting, integra-
tion, and insertion into a data warehouse. Building the ETL process is potentially one
of the biggest tasks of building a warehouse; it is complex, time-consuming, and swallows
most of the data warehouse project’s implementation efforts, costs, and resources. Building
a data warehouse requires focusing closely on understanding three main areas: the source
area, the destination area, and the mapping area.

During the process, data are extracted from an OLTP database, modified to fit the data
warehouse schema, and then fed into the data warehouse. A lot of data warehouses also in-
clude information from non-OLTP systems, like spreadsheets, legacy systems, and text files.
ETL solution is often a complex problem that consumes a significant portion of the data
warehouse development efforts and requires the skills of business analysts, database design-
ers, and application developers. The ETL process is not a one-time event. As data sources
change, the data warehouse will be periodically updated.

Here are the individual steps explained in more detail [26]:

• Extraction: The extraction step is responsible for extracting data from the source
systems into the staging area. Each data source has its distinct set of characteristics
that need to be managed in order to effectively extract data for the ETL process.
The process needs to effectively integrate systems that have different platforms, such
as different database management systems, different operating systems, and different
communications protocols.
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• Transformation: In the staging area, the raw data undergoes data processing.
Here, the data is transformed and consolidated for its intended analytical use case.
The first steps of transformation often are filtering, cleansing, de-duplicating, vali-
dating, and authenticating the data. Afterward, it’s possible to perform calculations,
translations, or summarizations based on the raw data. This can include changing
row and column headers for consistency, converting currencies or other units of mea-
surement, editing text strings, and more.

• Loading: In this last step, the transformed data is moved from the staging area
into a target data warehouse. Typically, this involves an initial loading of all data,
followed by periodic loading of incremental data changes and, less often, full refreshes
to erase and replace data in the warehouse. For most organizations that use ETL,
the process is automated, well-defined, continuous, and batch-driven. Typically, it
takes place during off-hours when traffic on the source systems and the data warehouse
is at its lowest.

3.3 Data Warehouse Schemas

When designing a data warehouse, there are two popular options: the star or the snowflake
schema. They both utilize relational databases as the founding blocks, but differ in the final
model. The common theme is that each model consists of a central fact table and multiple
adjacent dimension tables [35]. A fact table is a table that stores facts that measure
the subject of the warehouse, such as sales, cost of goods, or profit for a business. Fact
tables also contain foreign keys to the dimension tables. These foreign keys relate each row
of data in the fact table to its corresponding dimensions and levels. The dimension tables
contain the attributes of the data, such as dates or addresses.

Star and Snowflake Schemas

In a star schema, all dimension tables are directly connected to the fact table. The fact
table contains information about metrics or measures, while the dimension tables contain
information about descriptive attributes. The star schema is very simple and easy to un-
derstand, making it ideal for cloud data warehousing and business intelligence applications.

The snowflake schema is an extension of the star model. By normalizing the dimension
tables, we get a stretched version of the star schema, where each original dimension table
is represented by a series of new, linked tables. Multiple advantages and disadvantages
come with this step. For example, normalized data into a snowflake schema require less
storage space. However, it’s harder to implement, query, and update. Visual representation
of these schemas can be seen in Figure 3.1.

3.3.1 Data Lake

A data lake is a centralized repository that allows the storage of raw, unstructured data
in its native format. Unlike traditional data warehouses, which store data in a structured
way, data lakes allow data to be stored in its original state.

Large volumes of data from many sources, including relational databases, social me-
dia, and sensors, as well as semi-structured data from log files and JSON, can be handled
by data lakes. This information can be saved in its raw form and then later altered, en-
riched, and structured as necessary. Table 3.2 compares them to data warehouses.
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Figure 3.1: Star and snowflake schemas examples. Sources: [25, 24].

Characteristics Data Warehouse Data Lake
Data Relational from transac-

tional systems, operational
databases, and line of business
applications

Non-relational and relational
from IoT devices, websites,
mobile apps, and social media

Schema Designed prior to the DW imple-
mentation (schema-on-write)

Written at the time of analysis
(schema-on-read)

Price/Performance Fastest query results using
higher cost storage

Query results getting faster using
low-cost storage

Data Quality Highly curated data that serves
as the central version of the truth

Any data that may or may not
be curated (ie. raw data)

Users Business analysts Data scientists, Data develop-
ers, and Business analysts

Analytics Batch reporting, BI and visual-
izations

Machine Learning, Predic-
tive analytics, data discov-
ery and profiling

Table 3.2: Key differences between data warehouses and data lakes. Source: [6]
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Chapter 4

Cycling Data and Existing
Solutions

Understanding the spatial, temporal, and social dimensions of cycling is becoming increas-
ingly important for both urban planning practice and mobility research in order to adapt
to the fast-changing urban environment and encourage more people to cycle. Cities must
place more attention on understanding cycling and active travel than motorized transport
in order to promote human-scale transportation. Types of information deducible from cy-
cling data:

• spatial patterns (destinations and route selection)

• temporal patterns (specific times of the day, parts of the month, or entire seasons)

• user demographics (gender, age, personal background)

• travel types/reasons (commute, leisure, other)

4.1 Types of Cycling Data

Despite the growing demand, finding cycling data and getting access to it remain major
obstacles. The lack of relevant data is often a limiting factor for transportation and urban
planning. Authorities normally have well-established data-gathering procedures for motor-
ized transportation, but cycling-related data is rarely included. These data are generally
gathered on a project-by-project basis at isolated places, with little to no reuse potential.

Part of the difficulty stems from the typical methods of data collection, which in-
clude travel diaries, questionnaires, interviews, static bike counters, and various statistics.
Although these materials are helpful, their accessibility and thoroughness are both con-
strained. Small sample sizes, inadequate spatio-temporal coverage, difficult route and travel
chain detection, and reliance on self-reporting are some of the typical problems. The quick
advancement of sensor technologies has made it possible to collect mobility data from a num-
ber of sources that reveals people’s daily movements and mobility patterns.

Data sources mostly used in cycling analyses include three categories [37]:

1. automatic bike counters and manual observations

2. bike sharing services (BSS), GPS tracking, sports applications
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3. surveys, interviews, and public participation events

Each category has its own benefits and downsides. Counters and manual consen-
sus counting by observation have high accuracy and detection rate, but are very limited
in the spatial department and generally capture only a small portion of the area of inter-
est. Additionally, manual observations require human interaction and usually happen only
monthly or even annually, decreasing the temporal knowledge gained from these data.

The second category (GPS data) introduces potentially the highest volume of recorded
data by far. However, these are somewhat unreliable inputs caused by faulty sensors and other
unpredictable impacts, that require much more cleaning before they can be used fur-
ther. Another undesirable feature is the inherent need for user participation or willingness
by a third-party company to provide these data sets.

Surveys usually rely on a good distribution among users, otherwise, the data can get
highly biased towards specific groups. For example, if a survey is conducted on a social
media platform, those are generally used by younger generations and the resulting de-
mographic won’t be uniformly distributed. Table 4.1 serves as a summary of common
attributes and types of information possible to obtain from introduced data sources.

4.1.1 Bike Counters

Counters are an easy tool to gather information on cycling traffic levels in specific places.
Automatic bike counts employ a range of detection methods, including inductive loops, mag-
netometers, thermal imaging, infrared and radar waves, pneumatic tubes, and piezoelectric
detectors [37]. Counters are typically seen in areas with high bike traffic to maximize their
potential because they are permanently fixed to one position. Counter data often include
the counter’s coordinates and are usually aggregated to multiple time intervals. An example
of such a machine can be seen in Figure 4.1.

Figure 4.1: Automatic bicycle counter in Copenhagen, Denmark. Source: [11]

4.1.2 Manual Observations

Manual observations are any type of data that is gathered by an observer from one or more
locations on a single occasion, on a regular basis, or in a variety of ways. Simple cyclist
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counts, sub counts (by age, gender, etc.), bike type counts (such as regular, sport, or cargo
bikes), identifying whether people cycle alone or in groups, or evaluating cycling behavior,
such as at an intersection to identify potential hazard risk are some examples of this type
of data. These are most often conducted by some sort of governing entity like a city
municipality or a road and motorway directorate.

4.1.3 Bike Sharing Trip Data

Bike-sharing services are now typical in many places. These systems typically keep track
of bike rental journeys with a separate record for each trip. These records normally include
the user and bike identifications, departure and arrival times, and the origin and destination
stations. Trip-level datasets may be linked to standard user characteristics like age, gender,
postal code, and subscription type, depending on the data supplier and the system registry
settings. Some BSS providers equip their bikes with GPS locators that collect specific
journey routes, but those are often the subject of strict security protocols and are not made
available to external entities.

4.1.4 GPS Tracking

Numerous sources of bicycle statistics are progressively incorporating GPS monitoring. This
data type is recorded with a separate GPS device or a specific location-tracking application
on a portable device (for example, a mobile phone or a smartwatch). It captures the co-
ordinates of a device at an exact time. GPS units can be carried by cyclists as portable
devices or mounted to their bicycle frames. Most modern devices have a recording frequency
of one second. This sequence of points in space and time can then be used to generate an ex-
act route of the cyclist, which enables many different analyses and visualizations. Sensitive
personal information about the user can be gained from these data, so they should always
be shared cautiously.

4.1.5 Sports Applications

Activity and health monitoring applications such as Strava1 or Sports Tracker2 are increas-
ingly used as a source of cycling data. They enable users to track their movements, heart
rate, altitude, traveling speed, and distance, establish performance goals, and share results
with other users. Data from these solutions are often owned by the app vendors, but are
under strict privacy policies and can’t be shared in their raw form. The majority of data
sets in this category are aggregated due to privacy concerns and stripped of any personal in-
formation about the end users. Using data like this eliminates the need for communication
with individual users and streamlines the process of gathering sources.

4.1.6 Surveys

Survey information on cycling can range from brief, specialized questionnaires focusing
on a single subject to extensive mobility studies at the national level focusing on the over-
all travel habits of the population, including cycling. Survey data are typically collected
in a disaggregated form, however, to protect respondents’ privacy, when disseminated

1https://strava.com
2https://www.sports-tracker.com
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through intermediary sources, survey data are frequently aggregated. Online forms are be-
ing used more frequently in surveys, which has made it simpler to distribute them and gather
information from larger audiences. In general, national travel surveys are gathered annu-
ally or every two to three years over the course of a few days of intensive data collection.

4.1.7 Public Participation GIS

Public participation GIS (PPGIS) mapping refers to techniques that allow the collection
of both qualitative and quantitative data through the active involvement of individuals.
Participants can map locations (points), routes (lines), areas (polygons), or combinations
of these using a normal PPGIS program in addition to answering survey questions. It can
be used in the context of cycling to gather data on things like trip origins and destina-
tions, route preferences, or points of interest and link this data to specific place-related
experiences and preferences associated with the mapped entities.
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4.2 Existing Solutions by Other Cities

The goal of modeling cycling traffic in a city is not unique to Brno. Other municipalities have
tackled this problem with various levels of success. Multiple studies by universities or private
companies have been conducted to try to build this type of model. This Section introduces
some of the notable ones, as well as their findings and obstacles.

4.2.1 Dresden

Possibly the most comprehensive study was published by the researchers at the Technical
University of Dresden (TUD), called “Big Data in Bicycle Traffic” [18]. Their goal was
to develop a practical introduction to the use of GPS data in bicycle traffic planning.
First, the guide explains the basics of GPS data, where can they be acquired, how can
they be used, and what can be learned from them. Afterward, a case study applying all
the introduced principles is performed in the city of Dresden.

Data Sources

This study focuses on GPS data collected by the users of any location-tracking application.
These are then provided by the app vendors, generally for a fee. Two examples given here
are Strava3 and BikeCitizen4. The latter is a local German navigation app for cyclists.
According to the authors, it proved to be not robust enough for such an analysis, thus they
decided to use Strava. The case study didn’t attempt to integrate multiple sources, like
the one proposed in this thesis. It turned out to be outside of the scope of the research.
Instead, the resources were used to thoroughly analyze just one dataset and gain from it
as much knowledge as possible.

For the basemap, TUD researchers went with the most popular OpenStreetMap (Sec-
tion 2.2), which the Strava also uses for providing data aggregated by street sections.
Additional information about the infrastructure was gained from the street network pro-
vided by the city administration, which is linked to Germany‘s Authorative-Topographic-
Cartographic Information System.

Findings [18]

The study mostly used the visualizations available in the Strava Metro dashboard, which
is provided with the data for free. A closer look at these is taken in the next chapter.
The goal was to determine whether the dataset was satisfactory for this type of analysis.

According to multiple statistical tests conducted, these data seem representative of the ac-
tual traffic volume. However, it is recommended to calibrate the absolute values by some
sort of manual census carried out by humans or mechanical devices. Although, the speed
values found in the dataset are slightly higher, on average by about 5 km/h. Relative
differences are still reasonably accurate. Strava, as an application mainly focused on recre-
ational and fitness-based cycling, implements an algorithm to determine whether an activ-
ity is a commute or not. It identifies them mainly through a “point-to-point” matching
method. Frequently cycled relations between origin and destination are classified as reg-
ular and therefore as a commuting or everyday trip [18]. This definition of a commute is
slightly broader than the one used in day-to-day English, thus the numbers might be higher

3www.strava.com
4www.bikecitizens.net
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than expected. Circular trips with the beginning and end at the same spot are usually cut
out as those do not satisfy the generic understanding of a commute. The study found this
algorithm to be adequate with high accuracy.

4.2.2 Vancouver

The next reference study was published in the Canadian Journal of Civil Engineering,
with the name “Development of a cycling data model: City of Vancouver case study” [14].
These researchers attempted to develop a framework for building a model of cycling traffic
from limited available data, using various mathematical methods and estimation techniques.
The aforementioned invented procedures were then applied to specific datasets concerning
the Vancouver case study. Available data sources included:

• automatic bicycle counts — by mechanical counters

• manual intersection counts — census counted by humans

• bicycle road network — basemap

• historical weather data

Therefore, this case study had very limited spatial coverage of the city, but fairly accu-
rate counts on those observed sections and streets.

4.2.3 Methodology

First, the census and the counters data needed to be integrated into one model. This
step is fairly straightforward, as both data points represent just a single location in space.
The only required transformation was to match the temporal values. The census data were
aggregated on an hourly basis, while the counters had 15-minute intervals.

Estimation of daily bicycle volumes (DBV) was the first metric calculated. Some
of the available data had information for the whole 24-hour period, while some only cap-
tured a part of the day. Each option required a slightly different approach. With the full
interval, the daily volume is just a simple summation of its parts. Peak hours are easily
calculated here as well. The study introduces multiple search methods capable of matching
the street to one with complete DBV data. Each approach uses a combination of these
parameters: matching by the same road class (e.g. bike path, highway...), matching by us-
ing the same date, matching by using similar weekdays during the same months and years,
matching by any weekday but in the same month and same year. After approximating
the corresponding streets, it’s possible to estimate DBVs for the incomplete data, using
periodic count factor denoted PCF. PCF for link (street) j, time period t, and captured
volume V can be calculated as shown in 4.1.

PCFjt =
Vjt1 + Vjt2 + ...

DBVj

(4.1)

Then, each street has multiple periodic factors, which can be used to estimate minimal,
maximal, and mean daily bicycle volume 4.2.

DBVimin
=

Vit

PCFjtmax

, DBVimean
=

Vit

PCFjtmean

, DBVimax
=

Vit

PCFjtmin

(4.2)
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Equally, the monthly and annual average daily bicycle traffic (denoted MADB and AADB
respectively) can be estimated. First, for links with full month or year coverage as a sim-
ple mean, then, adjustment factor is calculated from that, which is then used to calculate
MADB for partially recorded or unrecorded streets. These three steps for the monthly
statistic can be seen in Equation 4.3.

MADBi =

∑
DBVi

n
, DFij =

MADBj

DBVij
, MADBimean

= DBVday
imean

∗ DF (4.3)

This process enables a city administration to generate cycling volumes and intensi-
ties from limited resources and create a model for future planning and decision-making.
The Vancouver case study also developed a simple web-based user interface to visualize
these new data.

4.2.4 Salzburg

Department of Geoinformatics at the University of Salzburg wrote an article called “Agent-
based Bicycle Traffic Model for Salzburg City” [36]. This approach greatly differs from oth-
ers typically used, as well as those mentioned in this chapter. It doesn’t use collected
datasets to approximate bicycle volumes, instead, it uses an agent-based simulation, cre-
ating a stochastic model. Comprehensive domain knowledge is required to accurately de-
sign and parametrize the agents to reflect actual cyclists and their movement patterns.

This model was designed to simulate bicycle traffic during a weekday in late spring,
carefully choosing an optimal time and date for the experiment. It considered the effects
weather has on cycling traffic, thus a part of the year with limited precipitation and ideal
temperatures. Summer months were undesirable because a significant portion of Salzburg’s
population are students, who have school break during that time. Thus, the date 6th

of June 2013 was selected.
Three categories of agents were selected: working cyclists, student cyclists, and leisure

cyclists. Each agent was assigned two trips during the day of testing, one from home
to an individual destination and the other one back. Starting locations were generated
randomly from a resident density grid. The type of agent determined destinations. Student
cyclist destinations were generated from locations of universities and faculties. Destina-
tions for working cyclists were rendered from the workplace density grid and leisure cyclists
selected destinations within residential areas. The number of agents and their category
affiliation were deducted from studies and surveys conducted in the city in the previous
years. Based on this, 16% of the absolute population of Salzburg were cyclists, from which
44% were work-related and the rest divided between students and leisure cyclists. These
parameters could be adjusted to simulate possible shifts in the cycling culture and future
of the city. The exact times of the agent trips were stochastically chosen, following nor-
mal distribution around 7:00 in the morning and other normal distribution around 16:00
for working cyclists and 11:30 — 14:30 for students.

Results

The outputs of the simulation were validated by data from automatic bike counters in three
separate locations. The comparison can be seen in Figure 4.2. This result suggests that
the agent-based model could not intuitively estimate the complex behavior of a large group
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of various people. However, validation data were very limited so a more comprehensive
experiment could alter the outcomes.

Figure 4.2: Cyclist counts for three counting stations for the simulated scenarios
(top) and the validation reference day, 6th June 2013 (bottom). Source: [36].

4.2.5 České Budejovice

The Department of Transport and Logistics of the Institute of Technology and Businesses
in České Budejovice conducted research [7] inspecting possible usages of available data in cy-
cling infrastructure planning. It analyzed the current state of bicycle transport in the South
Bohemian region and introduced possible solutions for collecting data to improve it. Fig-
ure 4.3 shows the impact the size of a city has on the role of cycling transport in the munici-
pality. Bikes had the most popularity in mid-sized cities. In the case of larger municipalities,
it would suggest unsatisfactory infrastructure.

The study then puts forward the types of data that are commonly possible to ob-
tain about cycling traffic. These include national and city-wide traffic censuses, automatic
counting devices, as well as phone applications that collect GPS locations. Based on a cen-
sus conducted by the Czech Statistical Office, Figure 4.4 depicts the relationship between
the length of a journey and the type of transportation used for it. Bikes seem to be used
for journeys shorter than 7km, which would mean that most travel in Ceske Budejovice
could be substituted for bicycles, as the area of the city is of similar size.

Automatic bike sensors are introduced as a good option for long-term data collection,
as they provide information almost non-stop, besides outages and other errors. However,
they lack spatial coverage of the city. Furthermore, the functionality of 5 different types
of counters is explained. These include pressure sensors, pyroelectric sensors, infrared
sensors, electric induction loops, and magnetic sensors. This section is useful for a city
infrastructure planning office, to decide which is the best choice.
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Figure 4.3: Portions of different transport methods depending on the size of a municipality.
Source: [7].

Figure 4.4: Type of transportation used for a specific length of journey in Ceske Budejovice.
Source: [7].

Data acquired from Strava company are mentioned as a source of big volume but ques-
tionable relevance caused by the focus of the application on leisure-oriented users.
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Chapter 5

Analysis of Available Datasets

In the case study concerning the city of Brno, multiple datasets were available. The munic-
ipality gathers or acquires this data from third party vendors and sources. The goal of this
proposed thesis was to integrate them and enable the city planning office to use the gained
knowledge for better decision-making. The city is running an online hub with a large num-
ber of datasets freely available to the public called “Brno in Numbers”1. Open data in this
catalog vary from economy and labor market to transport, public health, and housing.
This chapter serves as an analysis of those datasets, providing useful information about
their characteristics and traits.

5.1 Bike Counters

A brief introduction to automatic bike counters was introduced in Section 4.1.1. As of
the beginning of the year 2023, Brno has 19 sensors installed around the city. Data
from the counters are automatically stored and uploaded to the online Data Hub men-
tioned previously. The refresh happens daily and the counts are aggregated at one-hour
intervals. Therefore, each data point represents one counter during one hour of a given day.
New data are appended to the last dataset so a periodic update from the source just needs
to take the new rows into account. Most of the Brno sensors also differentiate between
cyclists in opposite directions and provide this information in separate columns. These
specific counters also measure pedestrians, but that detail isn’t relevant to this use case.
The dataset can be downloaded in common file formats like CSV, Shapefile, or GeoJSON.
Table 5.1 shows a few rows from the dataset.

UnitId Latitude Longitude EndOfInterval FirstDirection SecondDirection
CAM1 49.183699 16.602423 2021-06-22 03:59:59 6.0 18.0
CAM8 49.226283 16.658782 2021-06-21 17:00:00 8.0 5.0
CAM2 49.183642 16.602337 2021-06-22 03:59:59 13.0 5.0
CAM9 49.218652 16.575043 2021-06-21 02:00:00 0.0 0.0

Table 5.1: Example data from the counters trimmed of irrelevant columns for simplicity.

1https://data.brno.cz/
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5.2 Strava Application Metro-view

Strava is a company developing an equally-named popular application and a social plat-
form used by the majority of sport-oriented people to share and compare activities, usually
collected by GPS devices, heart rate monitors, altitude meters, power meters, and other
sensors. Running and cycling are the most common types of exercise uploaded by the com-
munity. An example activity is shown in Figure 5.1.

Figure 5.1: An example activity recorded in the Strava application, with tracked location,
heart rate, and commonly calculated attributes like final distance and elevation covered,
average speed, and others.

This firm launched a program called Strava Metro2. Its purpose is to provide the millions
of data collected to urban planning offices and other governing bodies to help them better
understand how the infrastructure is currently used and to determine the best possible
changes for the future.

5.2.1 Data Collection and Methodology

All the activities are owned by the end-users, therefore, they are subject to strict licensing
rules and restrictions. The company has an obligation to protect the privacy of its users.
In order to do that, all the personal information connecting an activity to its user is stripped
before shipping the data [32].

Additionally, to protect the user’s mobility patterns, all the activities are aggregated
by street segments, meaning there is no way to track a person’s location from the Metro
dataset. Strava uses the OpenStreetMap street network as a basemap for this aggregation
process. Each small section from an activity is matched to the closest link from the net-
work and it’s assumed that is the road the cyclist took. The final model delivered to the Strava
Metro subscriber is just a list of individual street segments and the absolute number of cy-
clists using that link in a given time frame. This parameter can be customized by the user,
as the aggregation from that point is just a simple summation from the smallest possible
time frame. During this process, the original street segments found in the OpenStreetMap
network are broken down into smaller pieces, where each intersection is a splitting point.
A short data sample with daily granularity is shown in Table 5.2. The dataset provides
additional columns splitting the absolute count into intervals by user gender, age, time
of day of the activity, and average speed.

2https://metro.strava.com/
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As an application focused on leisure cycling, the representativeness of the data regarding
the generic population is in question. Therefore, the company developed an algorithm used
to identify commuting trips among the data. It was discussed in more detail in the Findings
Section 4.2.1 of the Dresden case study. The non-commute trips can then be filtered out,
to keep only the relevant information depending on the goal of the model.

5.2.2 Dataset Access and Refreshing

The MetroView is accessible through a dashboard provided by the developers. It supplies
multiple visualizations, map views, and an option to generate a new dataset for a specified
time interval. It’s possible to set both the ultimate period from which data are included
in the final file, as well as whether the included data are aggregated to hourly, daily,
monthly, or yearly counts. New data are generally added to the dashboard periodically
once a month. These datasets are generated on an on-demand basis, thus aren’t accessible
through an API, which makes it difficult to automate the process of extracting new data.
They can also only be downloaded while logged in to a user account.

edge_uid activity_type date forward_count reverse_count osm_reference_id
175537337 Ride 2021-11-09 5 0 4934858
175555034 Ride 2021-11-15 0 5 704390536
175555034 Ride 2021-11-24 0 5 704390536

Table 5.2: Sample simplified data from the Strava Metro export.

5.3 Bike Census BKOM

“Brněnské komunikace, a.s.” (BKOM) or Brno road network institution is respon-
sible for doing traffic census in the city of Brno. Bike census happens independently
from the generic motor-vehicle count, therefore the numbers should be valid. It tran-
spires biannually on the even years [13]. However, the data for the year 2022 are missing,
so available counts are from 2016, 2018, and 2020. As of early 2023, there are 628 dif-
ferent street segments in this dataset. The count depicts one regular work day and one
day of the weekend, to capture differences in commuter behavior. These are denoted
prac_YYYY and vik_YYYY respectively. The supplier doesn’t provide any docu-
mentation explaining the methodology of the data collection. Street links in the dataset
are defined by their coordinates, but it isn’t clear if they are collected from a public road
network database like OpenStreetMap, or if the location is determined by a private basemap
owned by the company. Table 5.3 shows representative data.

ObjectId prac_2016 vik_2016 prac_2018 vik_2018 prac_2020 vik_2020 coordinates
2 30 60 45 80 40 70 16.5176,49.2298,...
3 15 20 15 20 10 15 16.4630,49.2558,...
4 0 0 0 0 15 0 16.4657,49.2561,...

Table 5.3: Sample data from the BKOM bike census, irrelevant columns were discarded.
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5.4 Road Census ŘSD

Road and Motorway Directorate of the Czech Republic (ŘSD) also conducts a vehicle and traf-
fic census of the whole country. Data regarding bicycle counts can be extracted and used
in the proposed model of bike traffic intensity. The census happens every 5 years and the last
was in 2020 [39]. It focuses on multiple types of roads, including both highways and lo-
cal inner-city streets. The 2020 dataset has 108 streets marked as Brno-related. Again,
a portion of the data can be found in Table 5.4.

PČ SIL ÚSEK ZAČÁTEK ÚSEKU KONEC ÚSEKU C Skupina komunikací
6562 23 6-7540 mimoúr.x s D1 mimoúr.x s 602 0 II
6563 23 6-7541 mimoúr.x s 602 ul.Petra Křivky 1 II
6564 23 6-7542 ul.Petra Křivky mimoúr.x s 42 5 II
6565 41 6-6091 x s 42 zaús.374 od Černovic 35 II
6566 41 6-6090 zaús.374 od Černovic zaús.15278 81 II

Table 5.4: State-wide traffic census data sample. Information regarding fuel-powered vehi-
cles was removed. The column headers’ meanings are as follows: PČ — road ID, SIL —
international road number, ÚSEK — international road section ID, ZAČÁTEK ÚSEKU —
the beginning of the segment in plain words, KONEC ÚSEKU — the ending of the seg-
ment in plain words, C — number of cyclists in a 24 hour period, Skupina komunikací:
road classification.

These data have no location information, so the only way to integrate them with other
sources is to manually match and assign them to a generally available basemap. The source
does not specify an exact date of the calculation, instead, it’s presented as an average
of multiple days during the period from June to August. It doesn’t take into account
the effect of work day versus weekend on cycling commuters.

5.5 Bike to Work Campaign

AutoMat3 is a Czech organization focused on improving the environment and being sustain-
able. One of its most popular campaigns is called “Bike to Work”. People build teams with
friends or coworkers and register for the competition. The purpose is to use green forms
of transport to work or school, like walks, bikes, or scooters, as much as possible. Users
record their commutes with GPS sensors and upload them to an application. The most
successful teams then win prizes provided by the sponsors of the campaign, while simul-
taneously lowering CO2 emissions and all kinds of pollution. One run of the campaign is
usually for a month. The collected data are then aggregated and anonymized by the firm,
similarly to Strava, in Section 5.2. They provide these datasets to municipalities and other
companies, in order to analyze commuter patterns and improve the current infrastructure
[5].

The available dataset has information for the month of May each year. Raw data
from the users were aggregated to a road network basemap. The authors decided not
to use the standard OpenStreetMap, instead, a dataset by the name “StreetNet”, developed
by Central European Data Agency4. This dataset is a paid service and is not available
to researchers. Thus, the road IDs present can’t be used to integrate with other data

3https://auto-mat.cz
4https://www.ceda.cz/
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sources and matching must happen by location coordinates. A fragment from the data is
demonstrated in Table 5.5.

GID_ROAD data_2018 data_2019 data_2020 data_2021 geometry
3515.0 3 5 3 34 (16.6631 49.2968, 16.6632, ...
3516.0 10 17 10 49 (16.6623 49.2970, 16.6631, ...
4168.0 2 4 2 7 (16.6411 49.3932, 16.6413, ...
4169.0 1 1 1 18 (16.6411 49.3930, 16.6417, ...

Table 5.5: Data sample from the “Bike to work” campaign. Unnecessary columns were
abandoned for simplicity.
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Chapter 6

Proposed Algorithmic Approach

In order to integrate all the aforementioned data, one important problem needed to be
solved, and that is dataset incompatibility. Each dataset is aggregated to a different street
network, meaning that a simple join operation on the street ID or geometry columns
isn’t possible. Many basemap differences found include different street borders like be-
ginning and endings, different street granularity where one street from dataset a equaled
to multiple ways joined together from dataset B, or even occurrences of streets running
parallel a few meters next to the same one from the other network. Figure 6.1 should help
visualize these different possibilities.

Figure 6.1: Demonstration of basemap inconsistency among datasets. Seemingly, the same
street has a different granularity, length, and even location coordinates.

The number of roads in a single city can reach tens or hundreds of thousands, so this
problem needs to be solved by an algorithmic approach that can be automatized, as doing
it manually would be massively time-consuming. Datasets based on a street network model
in the Brno case study include Strava data, “BikeToWork” campaign data, and the city cen-
sus data. Another type of geometry is for example in the Automatic Sensors dataset and it
is on a single-point location basis. Basically, each record is spatially represented by a point,
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instead of a line like in the matter of streets. Another algorithm to assign point locations
to corresponding roads needs to be implemented. Both solutions should ideally be generic
enough so they don’t depend on a specific dataset, rather just require one type of geometry
included.

6.1 Point Matching Algorithm

Finding the best match between a street network and a set of points is a fairly straight-
forward task. In terms of cycling traffic analysis, these can represent automatic counters,
locations of accidents, points of interest, or even bike-sharing spots. The most obvious
solution is to assign the point to the nearest street, which is represented by a polyline.
Only a few problems can occur during this process. If the real-life street where the point is
located is missing from the dataset, it will be assigned to the nearest existing one. However,
this possibility can’t be solved besides a manual creation of the street in the dataset, so
the only option is to assume the completeness of the network. Another potential issue is
a case where multiple lines have the same distance to the point, but two adjacent streets
shouldn’t differ in the number of cyclists greatly, as they usually have to pass through both
of them. Figure 6.2 demonstrates how the algorithm will calculate distance and choose
the best match.

Figure 6.2: A simple visualization of the point matching algorithm. The point in blue
represents an automatic counter and distances to the closest streets are displayed as dashed
lines. It should choose the red street based on its proximity.

The algorithm should have these attributes. Input:

• Dataset with basemap streets defined by their geometries

• Set of points with their coordinates

30



Output:

• the same basemap dataset with a new column consisting of point IDs

Using this type of indirect encoding eliminates duplicity that would occur if the datasets
would be merged by a regular JOIN operation, in the case of multiple matches for one
street.

6.2 Line Matching Algorithm

As mentioned at the beginning of this chapter, there are multiple complications needed
to solve in order to find the best match between two different street networks. The final
algorithm should take them into consideration. These are broken down below. The inputs
of the algorithm should be a single street with its geometry and a set of streets serving
as candidates for matching. The output would be the street found as the best match,
referenced either by its ID or geometry.

6.2.1 Offset Tolerance

For example, calculating overlap between two lines and choosing the highest match isn’t
enough, because the same actual street can be represented as two parallel lines in different
datasets, as is the case in Figure 6.1 for the OpenStreetMap and BikeToWork datasets.
These lines never actually touch, even though they’re supposed to be the same object,
therefore this approach won’t suffice. A possible solution is to introduce deviation toler-
ance. All the spatial information in the geometry column of the datasets is in the standard
coordinate system defined by latitude and longitude. These numbers are in the range
< −90, 90 > and < −180, 180 > respectively. So, one point is a combination of two real

numbers. Therefore, the number of decimal points determines the accuracy of the precise
location and thus it’s possible to round to a specific point and omit an offset error.

21 21

Continuous space - before rounding Discrete space - after rounding

Figure 6.3: Rounding up the coordinates transforms a pseudo-continuous space into a dis-
crete one.

A practical example of this theory is as follows (calculated by [12]):
Point A: lat=16.00001, long=49.00001

Point B: lat=16.00002, long=49.00001

distance(A, B) == 1.84 meters (rounded)

31



Rounding all coordinates to 5 decimal points would then mean that objects with that
much span actually touch and overlap, so it’s easier to calculate similarity. The number
of rounding digits should be a hyperparameter of the algorithm. It’s important to note that
the rounding up will raise the chance of false positive matches, by grouping streets in close
proximity together, as in Figure 6.3.

6.2.2 Maximal Accepted Angle

If the algorithm tries to find candidate matches by a simple boolean overlap attribute,
it’s possible to eliminate fake positive matches by taking the angle between the lines into
account. The working assumption is that the same line in different datasets should go
mostly parallel. Automatically disqualifying lines that have a bigger angle than at least
45° will eliminate perpendicular lines and others that have a low level of similarity. However,
the optimal angle limit can’t be found and does not really exist, therefore the actual number
is the next hyperparameter of the algorithm. An important note is that most streets in all
the datasets are actually polylines and not simple lines. It’s not possible to calculate
the angle between them as each consists of multiple line segments, thus a more complicated
method (visualized in Figure 6.4) is required.

Figure 6.4: The only way to calculate the angle between two polylines is to get their
bounding box coordinates and evaluate the angle between their diagonals.

6.2.3 Best Match Score

While the first two attributes mentioned before can serve as a sort of preprocessing or cutoff
limit, the calculation of the final score or similarity will determine the street that’s picked
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at the end. Even after introducing the offset tolerance, choosing the match with the highest
overlap percentage isn’t enough, because the line will definitely touch intersecting streets,
but the actual target line the algorithm is trying to find can run perfectly parallel just out-
side the scope of the rounding buffer. It’s also really difficult to calculate overlap in the space
of longitude and latitude coordinates, as it’s continuous and not a discrete space, therefore
even a small deviation would mean two points don’t technically lie perfectly on one another.
Another thing to consider is the time complexity of the final solution. The OpenStreetMap
dataset for the greater Brno area has around 65 000 streets, each one defined by multiple
lines. Comparing all the points of each street with the others would require hours if not
days of computation each time.

The most promising option seems to be adding the bounding box or the buffer around
the line to the equation. Evaluating the overlap between two buffers instead of the exact
lines eliminates those subtle differences and deviations. Note that this will not help in all
cases, namely with perfectly horizontal and vertical streets, as their bounding boxes are
the same as the original lines. This principle is shown in Figure 6.5.

Figure 6.5: The figure shows how calculating overlap between line buffers finds matches
even when lines don’t intersect. The upper right blue line would be picked as the best
match because the overlap percentage of the other one is much lower.

6.3 Optimalization

When dealing with big data, it’s important to think about the time and space complexity
of the algorithm. The volume of the data will only increase in the feature so it’s impor-
tant to future-proof. In the case study of Brno, the selected area has ' 65, 000 streets
in the OpenStreetMap basemap. If the matching algorithm would be run on it and some
other set with similar street coverage naively, comparing each street from one to each
street from the other (N:N) would mean square complexity of O(n2). That would final
in 65, 0002 = 4, 225, 000, 000 comparisons. This number needs to be addressed and cut
down to a more manageable count.

6.3.1 Window Segmentation

The idea behind this optimization technique is that distant streets can’t possibly match,
therefore it’s not necessary to compare one street with others that are far away. It’s possible

33



to split both datasets into segments and compare a street with just the ones in the same
segment (Figure 6.6).

The first step is segment generation. The selected area of streets has a bounding
box defined by its limits. Splitting this region into equally-sized rectangles will gener-
ate a list of their corresponding coordinates: [min_x, min_y, max_x, max_y]. After that,
each dataset can be processed by adding a new column with segment IDs, determined
by the streets segment membership. There are multiple options on how to decide that.
Full line coverage by the segment isn’t ideal, because streets will often cross the segment
borders. One way is to assign the street to both segments, for the cost of some duplicity.
The other is to decide by a single limit point of the line, for example, the leftmost one. This
could introduce a small false negative rate, if those points of corresponding streets would
lay on opposite sides of the border.

Figure 6.6: Visual representation of the segmentation optimization.

The number of these segments can be variable and changed from run to run. The only
limitation is that both datasets need to use the same ones. More, smaller segments would
mean more overhead while segment generating and assigning, but fewer comparisons per
one street. The borderline false negative rate would also increase slightly. After this
one-time setup, the algorithm can be run per segment. These can also be run indepen-
dently and the results concatenated in the future, meaning that a user can get the values
only for a smaller area he or she is interested in.

6.4 Proposed Data Model for Brno

With these two algorithms implemented, it’s possible to integrate all datasets from the Brno
cycling traffic case study and create a single model with information about the number
of cyclists collected by different means. When designing an ETL pipeline to combine mul-
tiple datasets, it’s important to note how updates will be handled. For example, the data
from automatic counters are updated every hour, so the final analytical warehouse should
also acquire these new values often. The end-user might want to look at the most recent
numbers. Data gathered from the Brno Data Portal webpage1 are already stored in a cloud
storage solution under the hood of ArcGIS. It uses a standard relational database model,

1https://data.brno.cz/
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with additional extensions for geospatial processing. These are publicly available and can
be queried on demand. Thus, the updating phase is being handled on their side of things.
This enables the final model to use indirect mapping by IDs to these respective datasets. It’s
possible because the network of spatial objects doesn’t change much often in the datasets,
just new numbers of cyclists are appended with newer timestamps. The proposed data
model architecture of location mapping among datasets can be seen in Figure 6.7. Open-
StreetMap basemap network of streets was chosen as the main source of spatial information.
Of all the basemap networks used it’s the most robust and reliable one, plus the largest
dataset—Strava, uses it by default. It holds valuable information about streets and roads
like the type of surface, number of lanes, or vehicle suitability. These will be extended
by columns with IDs mapping the original streets to foreign networks.

OpenStreetMap basemap

PK OSM_way_id

FK counters_id    

FK biketowork_id

FK census_id

BikeCounters

PK counters_id

UnitName    

FirstDirectionCyclists

DateTime

BikeToWork

PK biketowork_id

Cyclists2019

Cyclists2020

DateTime

CityCensus

PK counters_id

UnitName    

FirstDirectionCyclists

DateTime

Strava

PK edge_id

FK OSM_way_id

FirstDirectionCyclists

DateTime

Figure 6.7: Proposed data model for the integration of datasets. Some attributes are
omitted for simplicity.

The nationwide road census dataset was excluded, due to missing spatial information
like GPS coordinates. Integrating it would require manual street searching and assign-
ment. Datasets from bike counters, city census, and the bike-to-work campaign are all
hosted publicly by the city, however, the Strava data are locked away under a user ac-
count and there’s no public API to access them. This means that querying them ad-hoc
isn’t possible and the dataset needs to be saved in a local storage and accessed that way.
Also, these data can’t be shared with a third party outside of the Strava Metro portal,
therefore the final application must not be available to the public.

6.5 Updating to a New Street Network

Thanks to the proposed model (6.7), the end datasets don’t need to be updated as they are
queried from the source. However, the centerpiece table mapping their basemap networks
needs to be updated when they change. This includes additions of new streets and new
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points (e.g. bike counters), reworks of existing objects (e.g. road maintenance that alters its
definition), and others. In order to eliminate the need for a full model rebuild from scratch,
another method should be implemented that finds differences between the old and the new
network and extends the existing model with new values. It should take the already existing
model and a new version of a single dataset and output the model with updated values.

6.6 Dashboard Mockup

Visualizing the model generated by previous algorithms can be done by creating a dashboard
6.8. The map should be interactive and selecting a street should update the graphs and ta-
bles on the right-side panel, to display data related to it.

October 2014< >
Mo Tu WeTh Fr Sa Su
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 25 26 27 28
29 30 31 1 2 3 4
5 6 7 8 9 10 11

24

Bike Counters

Kounicova

Bozetechova

...

Brno Cycling Traffic Model

Counters

Census

ToWork

Figure 6.8: Wireframe of the final dashboard visualizing the integration model.

Some of the datasets have a timestamp column, determining the time interval of the
recorded data. Choosing a specific date or a range of days in the left-side calendar should
also filter and aggregate values in the charts. Additionally, it would be beneficial to include
a dropdown menu of the bike counters, as there are just a few of them in the area and they
are sparsely distributed, therefore they might be challenging to locate. Selection should
move the map view to its spot. This dashboard will work with the publicly available datasets
hosted in the ArcGIS workspace, so it can be fully automated and published to the general
population. However, to include the Strava dataset, a second dashboard private to just
the city employees and people with Strava Metro access would have to be created. Addi-
tional views can be added, like heatmaps showing cyclist numbers trends or comparisons
between different datasets.
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Chapter 7

Implementation Details

The implementation of the data processing and algorithmic part was done using the Python
programming language. It has a rich domain of data science libraries and frameworks,
as well as good integration of geospatial information and processing of geometries and co-
ordinates. Geopandas1 library was used in this thesis, with its underlying parts like NumPy
for mathematical operations and Pandas for data handling. Jupyter Notebooks2 were uti-
lized for preliminary experimentation and prototyping. All the important functions that
could be used in a future expansion or other development are commented by the PEP8
standard and take advantage of the Python type-hinting mechanism to provide a better
experience for newly adopting developers.

7.1 Dataset Exploration

The first step to implement was the dataset exploration. All datasets were downloaded and
loaded into Jupyter Notebooks to inspect them and learn about included attributes, their se-
mantics, rules, and common values. These were mostly created and used during the dataset
analysis process broken down in Chapter 5. One Notebook explores one dataset and all
of them can be found in the src/dataset_exploration/ directory of the project.

The individual steps of different explorations are usually similar. First, the dataset
is loaded into a Geopandas Dataframe (internal data structure representation in mem-
ory) and then, some data cleaning occurs like type casting or formatting. Afterward, a few
rows are displayed to inspect their format and values. It’s good practice to inspect the num-
ber of columns and rows to gain a sense of the robustness of the dataset, as some might be
too large to process at once due to the limitations of the workstation and its memory capac-
ity. Pandas also provides a useful method called describe() that shows common statistics
of individual columns, like minimal and maximal values or mean. This is useful for improv-
ing domain knowledge and its limits. At last, a correlation matrix (Figure 7.1) of the most
important attributes was generated, just as an interesting analysis of possible relationships
among the data. These Notebooks also include a text field explaining how are spatial objects
identified and denoted in the dataset, and which columns together form a sort of primary
key. A unique identificator for the bike counters dataset is a combination of the LocationId,
datum(date), and the FirstDirection_Name or SecondDirection_Name values.

1https://geopandas.org
2https://jupyter.org/
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Figure 7.1: Correlation matrix of the bike counters dataset attributes. Data seem
to be fairly uncorrelated, besides the link between the numbers of cyclists in one direc-
tion and the other. This could imply either that most cycleways are bidirectional, or that
people choose bike-friendly streets over a variety of routes. Note that these are just specu-
lations.

7.2 Geometry Utilities

All methods used for geometry handling are encapsulated in the src/geometry_utils.py

source file. These are mainly implemented leveraging the Shapely3 package, designed
for manipulation of geometric objects in the cartesian plane [19].

This whole section uses the term polyline or multiline, let it be defined as an ordered
collection of simple lines, each defined by two points, where the beginning is the same
as the ending of the previous line, with the exception of the first one. The terms buffer,
bounding box, bounds can be assumed to mean the same thing; the smallest possible
square envelope of the object (e.g. line).

3https://shapely.readthedocs.io/
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7.2.1 Angles Evaluation

The first method is a computation of an angle between two polylines. Here’s the step-by-
step breakdown of this approach:

1. Transform multilines into their bounding boxes.

2. Take diagonals of these bounds and convert them into mathematical vectors.

3. Normalize those vectors into unit ones (length of 1).

4. Calculate dot (a · b =
∑n

i=1
= aibi) product between them.

5. Clip the resulting value to the < −1, 1 > interval.

6. Compute arccos from the previous number and the output is an angle in radians.

7. These can be optionally transformed to degrees.

All these mathematical operators are calculated using their numpy equivalents, and the so-
lution is based on a post [38] from the StackOverflow forum. The final method takes two
instances of either Shapely MultiLineString or LineString and outputs a single floating
point number.

7.2.2 First Line Matching Algorithm

This section discusses the first prototype implementation of the line similarity detection al-
gorithm. It proved to be inefficient and crashed against the limitations of the Shapely
library. The method called lines_overlap() takes two line arguments, again, either
as shapely MultiLineString or LineString and returns a boolean whether the lines
match or not.

The Shapely API doesn’t implement a method for calculating lines overlap percentage,
instead only a simple boolean condition of overlap is present. However, it’s still not available
for the MultiLineString object, but only for the regular LineString one. This means
that each underlying line of the polyline collection must be compared for overlap with
each line from the other collection. This is implemented using the private helper method
called _lines_overlap(). Besides the high inefficiency caused by the N-to-N comparisons,
it’s definitely not very accurate, as slightly different segmentation of the polyline into lines
means full overlap will never happen, because the lines must match in the endpoints exactly
to equal.

The method does a simple pre-processing at the beginning. It rounds up all coordinates
of the input lines to a specific number of decimal points, based on the round_digits

parameter. Default value specified by the global variable NDIGITS is 5, which evaluates
as a roundup of 2 meters in real distance. If any combination of two line segments overlaps
perfectly, it’s assumed that the full polylines are the same, and the match was found.

7.3 Bounding-box Approach to Line Matching

The second attempt at line matching algorithm was designed with findings from the first
prototype. Counting an exact overlap between two lines is not the best option, because
even a small deviation disrupts the computation. This new and improved algorithm takes
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advantage of all three principles introduced in Chapter 6, which are offset tolerance by co-
ordinate rounding, maximal angle limitation, and the best score metric. The last one was
missing completely in the line overlapping algorithm from the previous version. Besides
that, the first two principles were implemented using a hard cut-off, meaning that no line
outside of the accepted scope would ever be selected. A better approach would be to allow
bigger and bigger offsets in each iteration if the previous one didn’t find anything.

The method match_lines_by_bbox_overlap() takes one Shapely MultiLineString

argument as the input line against which the match will be searched. The second argument
is an instance of Geopandas GeoSeries, a collection of lines from the other dataset in which
the search will happen. Passing all lines to the algorithm allows more iterations of the line
set and finding multiple candidates. It returns one Shapely MultiLineString from the set
as the best match, or None if no candidates were found. A simplified pseudocode of the final
algorithm is shown in Listing 7.1.

while not found_match:

max_angle = DEFAULT_MAX_ANGLE + STEP

round_digits = DEFAULT_ROUND_DIGITS

if max_angle >= 45: # nothing was found -> bigger allowed offset

round_digits -= 1

for~other_line in~other_lines:

angle = calculate_angle(line, other_line)

round(line, round_digits)

round(other_line, round_digits)

bbox_overlap = overlap_percentage(line.bounds, other_line.bounds)

if (angle < max_angle)~and~(bbox_overlap > found_match.overlap):

found_match = other_line

# closing condition

if (max_accepted_angle >= 45)~and~(not found_match):

return None

return found_match

Listing 7.1: Pseudocode of the line matching algorithm based on a bounding-box overlap.

It starts with a maximal accepted angle of 15 degrees and rounds up all line coordinates
to 5 decimal places (these default values can be easily changed as read-only global variables).
The found_match variable stores the current best candidate. In each iteration, all lines
from the set are traversed. If the angle between the original and the challenger lines is lower
than the limit, and the overlap is higher than the current best, the line under examination
gains the position of a leading candidate. After the whole set is processed, if any match
was found, the algorithm exits and returns it. If not, the maximal accepted angle is raised
by a fixed step, which is 5 degrees by default. Then the algorithm repeats the same cycle
again. When the maximally allowed angle reaches 45 degrees, it’s assumed that no quality
matches will be found beyond that point. Therefore, the algorithm updates the number
of decimal places to round down to 4 and runs one last iteration. This allows a bigger
offset and tries to find slightly worse matches from the nearby area.

All computationally heavy operations in the algorithm like angle evaluations and bound-
ing box overlap ratios are done using the numpy library, which is optimized for high perfor-
mance. Thanks to that, this version of the algorithm is much faster than the first prototype,
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even though it runs multiple cycles over the same set. The bounding box overlap ratio for-
mula can be seen in Equation 7.1.

overlap =
buffer1

⋂
buffer2

buffer1
⋃

buffer2
(7.1)

7.4 Segmentation Tools

The window segmentation principle introduced in the previous chapter is implemented
in the src/segmentation_utils.py source code. Generation of the segments and their co-
ordinates is the first step. The method takes the bounds of the desired window of a map and
the number of segments (denoted N) to be generated in one dimension. Therefore, the re-
sulting number of segments is actually N2. The width of a single segment is calculated
as window_width / num_of_segments and identically for height. After that, the min co-
ordinates of segments in the x and y dimensions are generated by cumulative addition
of the segment width and height respectively. From these two collections of coordinates,
pairs of left-right and top-bottom borders are built by a sliding window technique, grouping
two values at a time and moving by one value to the next. After reordering these pairs ac-
cordingly, the output is a list of tuples, each tuple in the format of [min_x, min_y, max_x,

max_y] representing one segment of the map. This collection is then returned and serves
as a read-only structure for accessing segments by their IDs for the rest of the application.

There are multiple options on how to define a segment membership of a line. Full
encapsulation isn’t a good metric, as many lines will cross the segment borders and there-
fore wouldn’t be assigned to either one. The simplest and most universal alternative
is appointing based on a single point of the line borders, for example, the bottom-left
end of the bounds. All the lines will be distributed among segments this way, however,
it’s possible that two lines that should be matched can end up in different segments if
their bottom-left points are slightly distant and they get split by the segment border.
Another option is to assign the line to multiple segments and increase the likelihood
of ideal matches being in the same one, for the cost of more comparisons and overhead.
The method is_in_segment() is implemented using the “bottom-left” approach, so it
checks if the min_x and min_y values of the street borders are in between the respective
min and max coordinates of the segment.

With generated segments and a way to decide in which an object lies, it’s possible to an-
notate any dataset with segment information. The method assign_segments_to_dataset()

takes a GeoDataFrame object and the collection of segments generated in the first step.
Objects in the geometry column (usually polylines, however, it works for other types too)
are iterated over and each is tested for a segment membership. A dictionary mapping row
IDs of the original dataset with IDs of segments in the collection is created and afterward
merged into a copy of the dataframe, which is then returned from the function. The result
is the input dataset with a new column of segment IDs for each row. After annoying both
datasets about to be integrated, by a simple filter, lines can be compared with only those
in the same section.

7.5 Location Matching

The location-matching library encapsulates the implemented algorithms. First, the Open-
StreetMap dataset is loaded as the source of the truth. It uses its custom Protocolbuffer

41



Binary Format file format that’s optimized for the full planet coverage that OpenStreetMap
has to support [29]. It’s read using OSM’s own Python library called Pyrosm [34]. The
load_osm_basemap() function takes a path to the OSM file and optionally a bounding box
coordinates of the desired section of the map in the final model. The default value is a com-
pact area around the Brno municipality. Basemap is loaded into a GeoPandas DataFrame
object and stored in memory for further processing.

The rest of the package is structured as two pairs of methods used to match and update
either point-based geometries or polyline-based ones.

7.5.1 Matching Points to a Basemap

Starting with the point matching, the method match_points_to_osm() takes the previ-
ously built basemap Dataframe and a path to any dataset file compatible with GeoPandas.
Additionally, an exact name of the attribute with unique IDs needs to be specified, to de-
termine how it will be mapped, as well as how the column should be named in the resulting
dataset (rename might be desirable for clarity or in case of clashing ID column names among
different datasets). Absolute distances to basemap streets are then calculated for each
unique point in the dataset and a simple map of a point — closest street is created. A new
column named by the method param is appended to the basemap with unmatched streets
evaluating to None.

The updating method takes identical parameters, finds points from the new version
of the dataset that are not already present in the model and applies the same logic as before,
calculating distances and rewriting those new points into the model. Note that both the IDs’
names arguments must be the same as used previously as they are used to address objects
in both datasets.

7.5.2 Matching Streets to a Basemap

Matching street networks requires a generated collection of the map segments and anno-
tated basemap by them. Besides the segment array, the match_street_network_to_osm()

method follows a similar signature as the point-matching one from the previous section.
After some preliminary processing like dropping duplicate values, renaming ID columns
by a specified parameter, and others, segments are assigned to the input datasets that
are about to be matched. Then, both the basemap and the processed dataset are fil-
tered by the last method parameter segment_ids, which enables assigning only a subset
of the map segments and therefore is useful for prototyping. The rest of the algorithm is
functionally identical to the code in Listing 7.2.

final_model = GeoDataFrame()

for segment in~segments:

basemap_segment = basemap[segment]

foreign_segment = foreign_dataset[segment]

matched_lines = []

for basemap_line in~basemap_segment[geometry]:

new_match = match_lines(basemap_line, foreign_segment)

matched_lines.append(new_match)

basemap_segment[foreign_id_column_name] = matched_lines

final_model = final_model.append(basemap_segments)

Listing 7.2: Pseudocode of the line matching process done per segment.

42



Equally, updating a street network follows the same logic as with points. Streets that
were not present in the current version of the model are parsed and attempted to append
to the same basemap. The update method, however, doesn’t allow specifying a subset
of segments to be processed. This is caused by the fact that the set of newly added streets
is mostly shallowly sparse, so the segmentation process would add unnecessary overhead.
Also, it’s not possible to assign the matched streets in bulk as before, because they are
not processed in the same order as they are stored in the model and must be written into
a specific row of the DataFrame, which is a slow and expensive operation.

7.6 Visualization

For the visualization of the integration model, the ArcGIS platform was chosen due to the fact
that the city Data Department already uses it, so it’s easier to incorporate it into their ex-
isting solutions. ArcGIS uses objects called Feature layers to represent spatial datasets
that group geographical features like points, lines, and polygons [3]. These are typically
built from common file types like geojson or shapely. They are stored in an integrated Ar-
cGIS storage that uses standard SQL query language with additional extensions for spatial
data. They can be easily queried through an API, visualized on basemaps, or integrated
into all kinds of applications.

The first attempt at visualization implementation was using the basic map viewer
of the platform. It offers an option to put multiple Feature layers onto one map and in-
teract with them, by clicking on a certain object that triggers a pop-up menu with other
attributes and values of that entity. However, the integration model built in previous work
maps the end datasets by indirect encoding, and therefore a custom pop-up needs to be
created that queries the cycling values by object IDs from the model. ArcGIS developed
a custom scripting language called Arcade [1] specific for this purpose. It provides easy
querying for any feature layers imported into the map and the dynamic pop-up that dis-
plays values regarding the selected street from all datasets can be seen in Figure 7.2.

This approach proved to be undesirable as the Arcade language quickly hit its limita-
tions. It wasn’t designed to process and aggregate high volumes of data and the temporal
processing that’s required for datasets like the bike counters, which have an hourly granu-
larity and need to be digested for better understanding.

7.6.1 Dashboard

The next approach used the dashboard builder from the ArcGIS suite of applications [2]. It
loads the same Feature layers as the map viewer before, but the default pop-ups are disabled
altogether, and instead, custom elements like tables (Figure 7.3) are present and rendered
out according to the selected streets on the map component. If a single street is selected,
the tables can be transformed into charts (Figure 7.4) for a better visual representation
of relationships in the data.

The bike sensors dataset is more tricky, as the values have an hourly granularity,
therefore a desired level of aggregation must be specified by the user. For this specific use
case, the left side of the dashboard provides a date picker element. After picking a street
with aligning automatic sensor and selecting an interval of one or more days, the counters
table is rendered with corresponding data. The number of cyclists is displayed as a sum
during the time frame. This dataset differentiates between the directions of the cyclists,
so these are displayed separately. Identically, two charts (Figure 7.5) are generated, each
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Figure 7.2: Custom pop-up for the integration model in ArcGIS map viewer built using
the Arcade language. The code is saved in the src/arcgis_map_popups.js source file
for future reference.

in one direction. The left sidebar also holds a counter picker, that moves the map viewer
to the selected bike sensor.

All these elements are created using the ArcGIS Dashboard Builder by filtering the val-
ues passed from the Feature layers, as well as hooks updating them dynamically. Visual
design follows the red and white theme of the Brno Data Department. English as the main
language of the UI was chosen for the added inclusivity towards people of different national-
ities living in Brno. The dashboard enables a user to change the basemap drawn in the map
element, as well as an option to display the original datasets with their geometries, which
might be useful in cases where the matching algorithm fails. The selection of streets is
done by the top-left button on the map viewer element. It’s possible to choose a single
point or a rectangle that gathers all streets partially covered by it.

7.6.2 Strava Parser

The Strava data couldn’t be uploaded to the ArcGIS storage and used in the aforementioned
dashboard due to the licensing requirements. Therefore, a simple tool for parsing them was
implemented in the generate_strava_report() method of the dataset_query.py file.
Necessary inputs are:

• CSV file exported from the Strava Metro page

• ID of the OpenStreetMap way (displayed in the bottom section of the ArcGIS dash-
board)

• start and end date of the analyzed interval (same as the date-picker element in the dash-
board [YYYY-MM-DD])

The file export must be on a daily basis (selectable in the export section) and must cover
the requested time interval. The output html file follows a similar format as the dashboard.
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Figure 7.3: Tables displaying BikeToWork and city census data for 4 selected
streets.

Figure 7.4: Charts illustrating the data for a single selected street. These views
are valuable for understanding long-term trends in cycling traffic.
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Figure 7.5: A table and two charts from the dashboard displaying numbers of cyclists
detected on Královopolská street in the May of 2022.

It provides a table with the absolute values of cyclists and a simple line chart showing daily
trends.

46



Chapter 8

Experiments

In this chapter, experiments are conducted to evaluate the implemented algorithm. After
that, a few visualizations are shown and analyzed to find insights about the final model,
as well as the end datasets and their values.

8.1 Algorithm Evaluation

The only way to quantify the accuracy and performance of the algorithm is to have an-
notated data. However, these do not exist, therefore a manual annotation was required
to create a reproducible way of evaluating different algorithm versions during the prototyp-
ing and development phase. This is a very time-consuming task, as for each street there
might be multiple correct matches from other basemaps. Also, annotating the whole Open-
StreetMap dataset of ' 65, 000 streets is basically impossible, therefore a small sample of 21
data points was chosen and processed.

These were picked to cover as much variety as possible. Streets from the dense city
center with multiple parallel lines are represented, as well as country roads on the outskirts
of Brno. Each one is located in a different part of the city with varying lengths, angles,
trajectories, and types of intersections in close proximity. They were rendered over the other
datasets on the same basemap and visually inspected to choose the best corresponding
counterparts. Some OSM streets represent multiple inter-connected sections of a street
in the BikeToWork dataset therefore all of these had to be assigned, as the algorithm can
pick any one of them. A small sample dataset mapping IDs from different basemaps shown
in Table 8.1 was created.

OSM BikeToWork Census
5606150 221028, 221027 12
31642926 202970 224
113965475 243069, 221076, 243079, 243080 10

... ... ...
25769383 224883 107

Table 8.1: Sample rows from the algorithm evaluation dataset.

After the evaluation dataset was finished, a simple script was made that parses it,
as well as the final model built by the algorithm. It’s located in the src/experiments.py

file and the eval_street_algorithm() function. For each street, it takes these two val-
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ues and compares them. Final accuracy percentages are generated independently for the Bike-
ToWork and Census datasets and are as follows:

• BikeToWork matches: 16/21 [76.19 %]

• Census matches: 17/21 [80.95 %]

Some of the incorrectly evaluated streets were inspected to gain better knowledge about
which cases are problematic for the algorithm. Three found cases are displayed in Figure
8.1.

KotlářskáBotanická Šumavská

Figure 8.1: Three cases where the street matching algorithm failed. As can be seen, all
of them stem from the fact that datasets also contain sidewalks that run in close proxim-
ity and parallel to the inspected street. It’s best demonstrated at Šumavská Street, where
the road is actually segmented into smaller pieces, so each one has only a small partial
overlap with the OSM street in question. However, the sidewalk is defined as a long single
line, therefore the overlap is much higher even though it’s slightly distant from the original
street.

8.2 Intensity Heatmaps

The final dashboard introduced earlier also provides a number of heatmaps, visualizing
the cycling trends around the city. This analysis takes a look at two of them and compares
their values to determine if there are any common similarities. The first one (Figure 8.2)
shows the absolute number of cyclists in the BikeToWork dataset for May of 2022 as a direct
proportion of the line width. Simply, the wider the line on the map, the more cyclists were
recorded. Identically, the second Figure 8.3 shows numbers of cyclists in the City Census
dataset, registered in one workday of 2022. Both focus on commuting to work, therefore
common trends should correspond to one another.
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Figure 8.2: Heatmap visualizing the number of cyclists from the BikeToWork
dataset in May of 2022.

Figure 8.3: Heatmap visualizing the number of cyclists from the City Census
dataset in one workday of 2022.

The highest intensity can be seen around the river Svratka, that’s present in both cases.
However, the Census data show significant numbers around the river Svitava on the right
side of the city as well. In the case of the town’s center, both datasets record big density
around the main train station, but contrast can be seen in the Census dataset where a high
intensity happened through the middle of the old city center, whereas BikeToWork doesn’t
show this occurrence.

There are definitely similarities, but the city census dataset has very limited both spatial
(' 620 streets) and temporal (one day a year) coverage, therefore the values might not
correspond to the real trends happening in the city.
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8.3 Comparison Heatmap

This section focuses on an examination of cyclists’ behavior differences during a work-
day and the weekend. The City Census dataset collects data each year for one unspecified
workday and one weekend day. The heatmap in Figure 8.4 shows the comparison. It’s clear
that cyclists prefer the tight city center on regular days. They use it to commute to work,
run errands, or just go shopping. However, during the weekends the majority can be found
around the Svratka River and the Brno Dam. These parts of the city have many kilo-
meters of cycling paths separated from the car infrastructure, which leisure cyclists prefer
for safety and enjoyment reasons.

Figure 8.4: Comparison of cycling numbers during one workday and one weekend day
in 2022 from the City Census datasets. The red indicator represents that workday numbers
have the majority while blue is the other way around. The rest is defined as a spectrum
between these two colors shown in the legend.

8.4 Cycling Numbers

The final analysis aims to utilize the side-by-side visualization of the different datasets and
compare the numbers of cyclists recorded to find similarities among them. Eight streets that
are present in all of them were picked, these were mostly limited by the bike counters dataset.
Next, a time interval for the analysis was selected, filtering all the numbers for May of 2022,
as it was the most recent month with data for all datasets during the work on this thesis.
This was influenced primarily by the BikeToWork dataset which provides values aggregated
only for this month of each year. Data from counters and Strava are generated on an hourly
basis, therefore these could be transformed by a simple summation of this interval. Census
data are provided for one workday and one weekend day. To represent the best estimation
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of the whole month, the final number was calculated as (23 ∗ workday_cyclists) + (8 ∗

weekend_cyclists). These values correspond to the number of days in May of 2022. The final
results can be seen in Table 8.2.

Location Counters BikeToWork Census Strava
Královopolská 15,000 900 1,500 1,900

Černovice 22,000 1,100 None 3,100
Ikea 60,000 2,300 None 8,300

Jundrov 50,000 2,300 5,500 6,600
Komín 46,000 1,800 700 6,200

Kounicova a 10,000 240 1,700 890
Nové sady B 12,000 80 3,800 1,900
Renneská 1 6,000 2,800 7,600 2,600

Table 8.2: Comparison of the absolute numbers of cyclists among datasets on the same
streets.

It’s apparent from Figure 8.5 that the numbers vary greatly. Bike counters that record
each bicycle passing them without the need for cooperation show much higher values. These
8 comparisons don’t indicate any connection between pairs of datasets. The exception
happening between the counters and the Strava dataset, where 6 out of 8 streets have a ratio
of cyclists around 7:1. The sample is too small to call this statistically significant, however, it
indicates that the Strava dataset provides a permissible representation of the cycling traffic
intensity. One of the streets that don’t follow this relationship is Renneská, which shows
high irregularity in the counters numbers, implying the unit could have been malfunctioning
during this time.
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Figure 8.5: Visualized cycling numbers comparison among datasets.
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Chapter 9

Conclusion

This thesis breaks down the topic of modeling cycling traffic intensity from multiple datasets.
Theoretical principles relevant to the subject are explained, including the required geograph-
ical knowledge base, as well as ways of acquiring, storing, and managing spatial data. Next,
a run-down of approaches to this problem by different cities from around the world is pre-
sented. Existing datasets regarding cycling intensity in Brno are analyzed. These include
numbers from bike counters, a city-wide cycling census, or values from the “Bike to Work”
campaign. Furthermore, the issue of basemap inconsistencies is defined.

The thesis introduced a new algorithmic approach to matching different street networks.
It works by transforming a GPS-defined pseudo-continuous space to a discrete one, then es-
timating the angle between two candidate polylines, and finally by calculating the similarity
score by the overlap percentage of bounding boxes of the streets. This correctly solves most
cases of inconsistencies in the datasets, which estimated an accuracy of 80% in a small
test sample of the data. The algorithm is optimized for large amounts of data by seg-
menting the space into smaller chunks and finding candidate street matches inside them.
The approximate time for model building is around 3 hours, for the greater Brno area, con-
sisting of roughly 65,000 streets. This generic algorithm can be used on any datasets with
polyline-based geometries and therefore could be valuable in a multitude of other applica-
tions. The most notable limitation is definitely the score calculation, which returns poor
results for perfectly horizontal or vertical lines due to the bounding box evaluation. This
could be improved in future work by switching to a circle-like area, which might yield more
accurate values, for the cost of higher computational requirements. A second algorithm
for matching point-defined datasets to a street network was also implemented.

A data model of cycling traffic intensity specifically for Brno was designed, using indirect
mapping to the end datasets by their respective identificators. This way the model doesn’t
need to handle updates that happen on the vendor’s side. It could be expanded later
with additional datasets like cycling accidents or data from bike-sharing companies, with
the same set of algorithms. Finally, it’s visualized in a public dashboard which digests
values from all the datasets next to one another. The dashboard should be used by the Brno
Transportation Department to improve decision-making regarding cycling infrastructure. It
is affected mostly by the limited functionality provided by the ArcGIS dashboard platform.
Switching to a more modern framework could be beneficial in the future.

This project was submitted to the EXCEL@FIT 2023 conference [17] at the Brno Uni-
versity of Technology, where it was awarded by an expert panel, as well as by industry
partners for an original approach to data integration from different sources and the poten-
tial of practical usage of the solution.

52



Bibliography

[1] ArcGIS. Arcade [online]. 2023 [cit. 2023-04-27]. Available at:
https://developers.arcgis.com/arcade/.

[2] ArcGIS. ArcGIS Dashboards [online]. 2023 [cit. 2023-04-27]. Available at:
https://www.esri.com/en-us/arcgis/products/arcgis-dashboards/overview.

[3] ArcGIS. Feature layers [online]. 2023 [cit. 2023-04-27]. Available at:
https://doc.arcgis.com/en/arcgis-online/reference/feature-layers.htm.

[4] Australia. The Intergovernmental Committee on Surveying and Mapping [online].
2022 [cit. 2022-12-12]. Available at: https://www.icsm.gov.au/.

[5] Auto*Mat. Do práce na kole [online]. 2023 [cit. 2023-02-26]. Available at:
https://dopracenakole.cz/data.

[6] AWS. What is a data lake? [online]. 2023 [cit. 2023-01-13]. Available at:
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/.

[7] Bartuska, L., Hanzl, J. and Lizbetinova, L. Possibilities of Using the Data for
Planning the Cycling Infrastructure. Procedia Engineering. 2016, vol. 161, p. 282–289.
DOI: https://doi.org/10.1016/j.proeng.2016.08.555. ISSN 1877-7058. Available at:
https://www.sciencedirect.com/science/article/pii/S1877705816327631.

[8] Battersby, S. Map Projections. The Geographic Information Science & Technology
Body of Knowledge. 2nd ed. 2017. ISBN 978-80-244-5827-4.

[9] Bonner, S., Kureshi, I., Brennan, J. and Theodoropoulos, G. Exploring the
Evolution of Big Data Technologies. 1st ed. Boston: Morgan Kaufmann, 2017. ISBN
978-0-12-805467-3. Available at:
https://www.sciencedirect.com/science/article/pii/B9780128054673000144.

[10] Chang, K.-T. Introduction to Geographic Information Systems. 3rdth ed. McGraw
Hill, 2006. ISBN 0070658986.

[11] Cridland, J. Bicycle counter in Copenhagen [online]. 2009 [cit. 2023-01-23]. Available
at: https://www.flickr.com/photos/jamescridland/3959398194/.

[12] CSGNetwork. GPS Latitude and Longitude Distance Calculator [online]. 2023 [cit.
2023-04-11]. Available at: http://www.csgnetwork.com/gpsdistcalc.html.

[13] Data Department, B. Bike-traffic-intensity [online]. 2023 [cit. 2023-02-26]. Available
at: https://data.brno.cz/datasets/mestobrno::

intenzita-dopravy-intenzita-cyklist%C5%AF-bike-traffic-intensity/about.

53

https://developers.arcgis.com/arcade/
https://www.esri.com/en-us/arcgis/products/arcgis-dashboards/overview
https://doc.arcgis.com/en/arcgis-online/reference/feature-layers.htm
https://www.icsm.gov.au/
https://dopracenakole.cz/data
https://aws.amazon.com/big-data/datalakes-and-analytics/what-is-a-data-lake/
https://www.sciencedirect.com/science/article/pii/S1877705816327631
https://www.sciencedirect.com/science/article/pii/B9780128054673000144
https://www.flickr.com/photos/jamescridland/3959398194/
http://www.csgnetwork.com/gpsdistcalc.html
https://data.brno.cz/datasets/mestobrno::intenzita-dopravy-intenzita-cyklist%C5%AF-bike-traffic-intensity/about
https://data.brno.cz/datasets/mestobrno::intenzita-dopravy-intenzita-cyklist%C5%AF-bike-traffic-intensity/about


[14] El Esawey, M., Lim, C. and Sayed, T. Development of a cycling data model: City
of Vancouver case study. Canadian Journal of Civil Engineering. 1st ed. 2015,
vol. 42, no. 12, p. 1000–1010. DOI: 10.1139/cjce-2015-0065. Available at:
https://doi.org/10.1139/cjce-2015-0065.

[15] El Sappagh, S. H. A., Hendawi, A. M. A. and El Bastawissy, A. H. A proposed
model for data warehouse ETL processes. Journal of King Saud University -
Computer and Information Sciences. 1st ed. 2011, vol. 23, no. 2, p. 91–104. DOI:
https://doi.org/10.1016/j.jksuci.2011.05.005. ISSN 1319-1578. Available at:
https://www.sciencedirect.com/science/article/pii/S131915781100019X.

[16] Esri. ArcGIS developer documentation [online]. 2022 [cit. 2022-12-29]. Available at:
https://developers.arcgis.com/documentation/.

[17] FIT. Student conference of innovation, technology and science in IT [online]. 2023
[cit. 2023-05-13]. Available at: https://excel.fit.vutbr.cz/.

[18] Francke, A. and Lissner, S. Big Data in Bicycle Traffic. March 2018. DOI:
10.13140/RG.2.2.27176.62726.

[19] Gillies, S. Shapely [online]. 2013 [cit. 2023-04-18]. Available at:
https://shapely.readthedocs.io/.

[20] GisGeography. GIS Geography [online]. 2022 [cit. 2022-12-12]. Available at:
https://gisgeography.com/.

[21] Harder, C. and Brown, C. The ArcGIS Book: 10 Big Ideas about Applying the
Science of where. 1st ed. Esri Press, 2017. Arcgis Books. ISBN 9781589484870.

[22] Heyman, D., Sheesley, B. and Woodruff, A. Axis maps [online]. 2020 [cit.
2022-12-12]. Available at: https://www.axismaps.com/.

[23] Huisman, O. and By, R. de. Principles of Geographic Information Systems (GIS):
an Introductory Textbook. 4th ed. ITC Educational Textbook Series, 2009. ISBN
978-90-6164-269-5.

[24] IBM. Snowflake schemas [online]. 2021 [cit. 2023-01-13]. Available at:
https://www.ibm.com/docs/en/db2/9.7?topic=sss-star-schemas.

[25] IBM. Star schemas [online]. 2021 [cit. 2023-01-13]. Available at:
https://www.ibm.com/docs/en/db2/9.7?topic=sss-star-schemas.

[26] IBM. What is ETL? [online]. 2023 [cit. 2023-01-13]. Available at:
https://www.ibm.com/topics/etl.

[27] Jeffrey, C. An Introduction to GNSS: GPS, GLONASS, Galileo and Other Global
Navigation Satellite Systems. 1st ed. NovAtel, 2010. ISBN 9780981375403.

[28] OpenStreetMap. About OpenStreetMap — OpenStreetMap Wiki. 2022. [Online;
accessed 27-December-2022]. Available at:
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap.

54

https://doi.org/10.1139/cjce-2015-0065
https://www.sciencedirect.com/science/article/pii/S131915781100019X
https://developers.arcgis.com/documentation/
https://excel.fit.vutbr.cz/
https://shapely.readthedocs.io/
https://gisgeography.com/
https://www.axismaps.com/
https://www.ibm.com/docs/en/db2/9.7?topic=sss-star-schemas
https://www.ibm.com/docs/en/db2/9.7?topic=sss-star-schemas
https://www.ibm.com/topics/etl
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap


[29] OpenStreetMap. PBF Format — OpenStreetMap Wiki,. 2022. [Online; accessed
25-April-2023]. Available at:
https://wiki.openstreetmap.org/w/index.php?title=PBF_Format&oldid=2266330.

[30] Romani, M. GNSS constellations: differences, what have in common and
vulnerabilities [online]. 2019 [cit. 2022-12-27]. Available at: https://www.linkedin.com/

pulse/gnss-constellations-differences-what-have-common-marco-romani.

[31] Song, I.-Y. Data Warehouse. Boston, MA: Springer US, 2009. 657–658 p. ISBN
978-0-387-39940-9. Available at: https://doi.org/10.1007/978-0-387-39940-9_882.

[32] Strava, I. Strava Metro FAQ [online]. 2023 [cit. 2023-02-25]. Available at:
https://metro.strava.com/faq.

[33] Talend, I. OLTP vs OLAP [online]. 2023 [cit. 2023-01-12]. Available at:
https://www.stitchdata.com/resources/oltp-vs-olap/.

[34] Tenkanen, H. Pyrosm, OpenStreetMap PBF data parser for Python [online]. 2023
[cit. 2023-04-25]. Available at: https://pyrosm.readthedocs.io.

[35] ThoughtSpot. Star Schema vs Snowflake Schema: 6 Key differences [online]. 2022
[cit. 2023-01-13]. Available at: https://www.thoughtspot.com/data-trends/data-

modeling/star-schema-vs-snowflake-schema.

[36] Wallentin, G. and Loidl, M. Agent-based Bicycle Traffic Model for Salzburg City.
GI-Forum – Journal for Geographic Information Science. 1st ed. july 2015, vol. 2015,
no. 1, p. 558–566. DOI: 10.1553/giscience2015s558.

[37] Willberg, E., Tenkanen, H., Poom, A., Salonen, M. and Toivonen, T.
Comparing spatial data sources for cycling studies: A review. Transport in Human
Scale Cities. 1st ed. Edward Elgar Publishing. 2021, no. 1.

[38] Wolever, D. Angles between two n-dimensional vectors in Python. 2012 [cit.
2023-05-14]. Available at: https://stackoverflow.com/a/13849249.

[39] ŘSD. Výsledky celostátního sčítání dopravy 2020 [online]. 2023 [cit. 2023-02-26].
Available at: https://www.rsd.cz/silnice-a-dalnice/scitani-dopravy#zalozka-

celostatni-scitani-dopravy-2020.

55

https://wiki.openstreetmap.org/w/index.php?title=PBF_Format&oldid=2266330
https://www.linkedin.com/pulse/gnss-constellations-differences-what-have-common-marco-romani
https://www.linkedin.com/pulse/gnss-constellations-differences-what-have-common-marco-romani
https://doi.org/10.1007/978-0-387-39940-9_882
https://metro.strava.com/faq
https://www.stitchdata.com/resources/oltp-vs-olap/
https://pyrosm.readthedocs.io
https://www.thoughtspot.com/data-trends/data-modeling/star-schema-vs-snowflake-schema
https://www.thoughtspot.com/data-trends/data-modeling/star-schema-vs-snowflake-schema
https://stackoverflow.com/a/13849249
https://www.rsd.cz/silnice-a-dalnice/scitani-dopravy#zalozka-celostatni-scitani-dopravy-2020
https://www.rsd.cz/silnice-a-dalnice/scitani-dopravy#zalozka-celostatni-scitani-dopravy-2020


Appendix A

Contents of the Included Storage
Media

The included storage media holds these files:

• README.md: readme file explaining the installation steps and usage

• src/: directory with all the source files

• thesis.pdf : thesis paper for this project

• datasets/: directory with datasets used to build the model

• requirements.txt: list of Python packages required

• venv/: python virtual environment with packages required by the app

• data_urls.conf : configuration file defining API URLs to Brno datasets
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Appendix B

Manual

The project can also be downloaded from the public Github repository1. Both the instal-
lation steps and the usage is defined in the readme file present in the repository and the
storage media included.

B.1 Installation

The installation process follows the standard Python procedure. All the necessary packages
are defined in the requirements.txt file. To build a closed, working environment, you need
to:

• python -m venv venv (Create empty Python env in the root folder)

• source venv/bin/activate (Enable it)

• python -m pip install -r requirements.txt (Install required packages)

B.2 Usage

The first step is always to enable the Python virtual environment encapsulating all the re-
quired packages and libraries: source venv/bin/activate

All the methods for dataset matching are implemented in the
src/location_matching.py source file, it can be imported to any Python application and
used as a library. Specifically for the Brno list of datasets, the whole process is implemented
as the main method of this script. The directory structure of the storage media should be set
up correctly to start the model build by simply running: python location_matching.py

with enabled virtual environment from the src directory.
Brno datasets can be downloaded from the ArcGIS-hosted storage using the

query_arcgis_layer() method from the src/dateset_query.py source file (examples are
in the main function, but the documentation explains all the required parameters).

1https://github.com/Radluy/Cycling-traffic-intensity-Brno
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